DBDF: AN IMPLICIT NUMERICAL DIFFERENTIATION ALGORITHM

FOR INTEGRATED CIRCUIT SIMULATION

by

Luoan Hu

A Thesis Submitted to the Faculty of the
COMMITTEE ON ELECTRICAL AND COMPUTER ENGINEERING

In Partial Fulfillment of the Requirements
For the Degree of

MASTER OF SCIENCE
WITH A MAJOR IN ELECTRICAL ENGINEERING

In the Graduate College

THE UNIVERSITY OF ARIZONA

1991



STATEMENT BY AUTHOR

This thesis has been submitted in partial fulfillment of requirements for an
advanced degree at The University of Arizona and is deposited in the University Library
to be made available to borrowers under rules of the Library.

Brief quotations from this thesis are allowable without special permission,
provided that accurate acknowledgment of source is made. Requests for permission for
extended quotation from or reproduction of this manuscript in whole or in part may by
granted by the head of the major department or the dean of the graduate college when
in his or her judgment the proposed use of the material is in the interests of scholarship.
In all other instances, however, permission must be obtained from the author.

SIGNED: tf\, l Q{m

APPROVAL BY THESIS DIRECTOR

This thesis has been approved on the date shown below:

"Dlcanpe B 0N M y, 194)

FrancoisaE. Cellier J Date
Professor of Electrical
and Computer Engineering




ACKNOWLEDGEMENTS

I wish to express my deepest appreciation to professor Francois E. Cellier, my
thesis advisor, for his valuable advice toward this research and his time and patience in
reviewing this thesis. Special thanks also go to professor Olgierd C. Palusinski and
Brenton LeMesurier for their constructive criticism of the thesis and presentation. I also
wish to express my appreciation to Burr-Brown Corp. for providing financial support for
this project. Finally, I would like to acknowledge my wife, Xiangyang Shen, for her

tireless assistance and significant contributions in many ways to this research project.



TABLE OF CONTENTS
LIST OF ILLUSTRATIONS

................................

LISTOF TABLES . . . . . . e e e e
ABSTRACT . . . . e e e e e e e
1 INTRODUCTION AND DEFINITIONS . ......................
1.1 Description of ODES and Stiff Systems . ... ...............
1.2 Absolute Stability Region of Some Numerical Methods . ... ... ..
1.3 A(x)-stability, Stiff Stability and Gear’s Method . . . ... ........
2 IMPLICIT INTEGRATION VS DIFFERENTIATION

2.1 SPICE: An IC Simulation Program . . . . ... ...............

2.2 Transient Analysis: Implicit Integration vs Implicit Differentiation

2.3 Does SPICE Really Employ Gear’s Methods? . .. ............
2.4 Motivation for Developing the DBDF Method . ... ...........

3 DEVELOPMENT OF DBDFMETHOD .......................
3.1 A Multistep Numerical Scheme . .......................
3.2 DBDF Method for Solving Implicit LV.P. . . ... ............
3.3 General Formulation for Solving Inverse Systems . . ...........

4 ERROR ANALYSIS OF DBDF METHOD .....................
4 1LTE Analysisof DBDF . . . . . ....... .. ... ... ... .....
4.2 A Practical Algorithm for LTE Estimation .................

5 IMPLEMENTATION OF DBDF METHOD INCTRL-C . ... .........

5.1 Control of Stepsizeand Order . . ... ....................



5.2 Startup and Convergence of Newton-Raphson Iteration . . ... ... .. 49

5.3 Construction of DBDF Program . . . ... .................. 51
5.4 Numerical Test . . ... ... ...ttt iie e 57
CONCLUSION . . . . e e e e e e e e e e 71
APPENDIX SOURCECODE (INCTRLC) ...................... 72

REFERENCES . . . . .. e e e 86



Figure page
1.1 Stability Regions . . . . ... ... . e 12
1.2  Stability Regions (continued) . ............ ... ... ... ...... 15
2.1 Differential Pair Circuit . . ... ... ... ... .. ... 18
2.2 p-nJUNCHON . .. .. e e e e e 20
5.1 Structure of DBDF Program . ... ... .. ... ... . ..., 52
52 FlowChart of MAIN . . . . . .. ... ... . i 53
53 FlowChart of DBDF . . . ... ... .. . ittt 54
54 FlowChart of SDBDF . ... ... ... ... ... . ... 55
5.5 FlowChart of NR . . . .. . .. . et e et 56
5.6 Cased4 (R-CCircuit) . ... ... ...ttt it 60
5.7.1 Numerical Solution(x;) and Global Error(E,) for Case 1 . . . ... ... ... 63
5.7.2 Global Error(E)) forCase 1 . . . ............ ... ... ...... 64
5.8.1 Numerical Solution(x;) and Global Error(E,) for Case 2 . . . ... ... ... 65
5.8.2 Global Error(E;) forCase 2 . . .. ......................... 66
5.9.1 Numerical Solution(x;) and Global Error(E,) for Case 3 . . . ... ...... 67
59.2 Global Error(E)) forCase 3 . . . . ...... ... .. .. ... ... 68
5.10.1 Numerical Solutions(Q,, I, and V,) for a R-C Circuit (Case 4) . ... ... 69

LIST OF ILLUSTRATIONS

5.10.2 Global Error(E,) for a R-C Circuit (Case 4) . . e 70



LIST OF TABLES

Table page
0 27
0 58
T 59
0 P 60

R 61



ABSTRACT

Frequently, the design of integrated circuits cannot be accomplished by purely
analytical techniques. Accurate and efficient algorithms for numerical circuit simulation
are important tools. Several circuit simulators, such as SPICE, have been made available

for this task.

Contrary to many other applications of numerical system simulation, integrated
circuit problems don’t lend themselves to a formulation of state-space models, since the
space charge in a p-n junction is a nonlinear and noninvertible function of the voltage
across the junction. Therefore, it is necessary to employ numerical differentiation instead

of numerical integration in this type of simulation study.

The numerical algorithms employed in today’s circuit simulators are fairly
primitive. SPICE, for example, offers only two very simple implementations of the

trapezoidal rule and of the backwards differentiation formula.

This thesis describes the design and implementation of DBDF, a specification of
a numerical method in Nordsieck format for solving circuit simulation problems. A

formal stability and truncation error analysis are included.



CHAPTER 1

INTRODUCTION AND DEFINITIONS

1.1 Description of ODEs and Stiff Systems
In continuous system simulation, we are usually faced with a system of m

simultaneous first-order ordinary differential equations(ODEs) represented as:

X = FX,», X(©0) = X, (1.1)

with ¢t e [0, T], X € R™. This is called the initial value problem for first-order
systems. We want to find the solution X(t) at time t € [0,T]. The system can be linear
(X = A@®) X + B(t)), but in general it is nonlinear. A subclass of the initial value

problems, known as stiff systems, is of interest since it arises in many application areas
such as electronic circuit analysis, most chemical kinetics problems and the method-of-
lines solution to parabolic PDE problems. Stiff differential equations contain time
constants with greatly different values. The time constants refer to the rate of decay. In
other words, for stiff systems, the eigenvalues of their Jacobian matrices exhibit a
widespread range in the complex root plane. Let us consider the following linear time
invariant initial value problem:
X = AX,

X0 =[10,-1]
Where
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X = [ U(t), V(t), W(t) ]s
-21 19 -20

A=(19 -21 20
40 -40 -40

In this case, the Jacobian dF/0X is the constant matrix A whose eigenvalues A; can be

found to be -2, -40+40j. The theoretical solution is given as:

u(®) = %e -2, %e ~40(c0s40f + sind0f),
1o 1 a .
wt) = Ee - Ee (cos40t + sind0r),

w(t) = -e *%(cos40r - sind0).
There exist, however, several different definitions of stiff systems. One of them requires:
(i) Re(\) < 0, and (i) max|Re(\)| > min|Re(\)|, where A, i = 1, 2, ... m, are the
eigenvalues of the Jacobian dF/dX. Also max|Re(\)| : min|Re(\)| is called stiffness
ratio of the system. The example given above thus has a stiffness ratio of 20. Stiffness
ratios of the order of 10° arise frequently in practical problems. Attempts to apply some
of the most commonly used numerical integration methods, such as Runge-Kutta or
Adams techniques, to solve such problems encounter substantial difficulties because of
the stability properties of those methods. This statement will be substantiated in due

course.

1.2 Absolute Stability Region of Some Numerical Methods
Since the problem of stability is only related to a method,[Gear, 1971a] let us

consider the single initial value ODE:
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X = Ax, x(0) = 1. (1.2)

All comments apply equally to the system:
X = AX, X(0) = X,

where A is a constant, diagonalizable matrix.[Dahlquist,1974] The region of absolute

stability for a numerical method with fixed stepsize h can be defined as the set of values
of h (real, nonnegative) and A, for which a perturbation in a single value x, will produce

a change in subsequent values which does not increase from step to step.[Gear, 1971a]

First, let us look at the explicit Euler rule applied to the test ODE:

xn+1 = xn +h‘xn
- 5, + s, .3)
= (1 + Ah)x, .

A stable solution requires |1 + Ah| < 1 which means that 3 h must lie in a unit circle
around -1 in the complex ) h plane (Fig. 1.1-a). In other words, the step size h must be

chosen to keep the )\ h value within the absolutely stable region.
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a) Euler (explicit) b) Euler (implicit)

¢) Runge-Kutta d) Adams Bashforth

Fig. 1.1 Stability Regions
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Then let us look at the implicit Euler rule:

*
1]

n+l xn * hxml

xn + )'hxml

]

1 - Ak . (1.4)

Here this method has a absolutely stable region outside the unit circle around 1. (Fig.

1.1-b)

For the purpose of further analysis and discussion, the stability regions of some
most commonly used numerical algorithms are given as follows:

For a p-stage Runge-Kutta method (p = 1,2,3,4 and accordingly order 1 to 4), the

algorithm is stable as long as the 3 h values lie inside the closed contours. (Fig. 1.1-c)

Now let us turn to the general linear multistep method which may be written as

,E:oafx"‘f"l = hj{%p F A (1.5)

One of the most commonly used multistep method "families" are the Adams methods
which have the coefficients ay = 1, oy = -land &y = @3 = ... = o, = 0. Fig. 1.1-d
gives the stability domains (inside the closed regions) of the k-step, kth order Adams-

Bashforth formulae(ABF) (as in (1.6) with B, = 0, thus they are explicit methods).

xn+1

(1.6)

-j+1

k
= x, + hZBf,
j=1
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Fig. 1.2-a shows the stability domains of the k-step, (k+1)th order [Lambert,1973]

Adams-Moulton formulae(AMF) (as in (1.7) with B, # 0, thus they are implicit

algorithms).

k-1
X = %, * hEB,S, (L.7)
j=0

Note that for k = 3, 4, 5, 6, these methods are stable inside the regions indicated; For
k = 2, known as the Trapezoidal rule, the method is stable throughout the left-hand
complex half-plane. (called A-stability[Dahiquist, 1963, Lambert,1973]) For k=1, the

method is stable outside the unit circle around 1.

Another set of widely used multistep numerical integration methods are the
Backward Differentiation formulae(BDF) which have the coefficients ¢;#0, j = 0, 1,
2, ..., k, Bo#0 and 8=0 for j= 1, 2, 3, ... k, thus we know they are implicit

algorithms.(1.8)

k
pe1 = Jgajxn-jd + hpof;ul (18)

The stability regions of BDF for k = 1, 2, 3 ..., 6 [Gear,1969,1971a] are sketched in
Fig. 1.2-b. The BDF methods are stable outside of the closed contours. Also it is noted
that for k < 2, the BDF methods are A-stable; for k = 3, 4, 5, 6, they are known as

stiffly stable[section 1.3} and for k > 7, the methods are unstable. [Gear,1971a]



a) Adams Moulton b) BDF

B e .

Tt

N

N

7

'{///

|

c) A(o) Stability d) Stiff Stability

Fig. 1.2 Stability Regions
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1.3 A(w)-stability, stiff stability and Gear’s method

We have seen in 1.1 and 1.2 that a stiff system requires very small step sizes to
be taken to keep all Ah within the stable domain, except when an A-stable method is
applied. It is noted that the difficulties due to the stiffness are also dependent on the
simulation time interval [0,T]. As long as the T is sufficiently small, we will not see any
problem at all in selecting the stepsize for a numerical solution. Let us introduce an
"additional eigenvalue", A,.,= -1/T, to the set of eigenvalues in section 1.1 if T >
10/ | A\ | - With this addition, the applicable scope of definition for stiffness in section 1.1
will be extended to cover also first order systems and systems with a mismatch between
eigenvalues and simulation run length. From 1.2 it is noted that all higher order methods
are not A-stable.(implicit Euler and Trapezoidal rule are first and second order
respectively) Indeed, Dahlquist [1963] proved that a multistep method that is A-stable
cannot have an order greater than two and that the method of order two with the smallest
error constant (0.5) is the Trapezoidal rule.[Gear, 1971a] Since the restriction on order
for an A-stable method to solve stiff systems is a severe one, two less demanding stability
definitions have been proposed: 1) A(«)-stable [Lambert, 1973] if it is absolute stable for
some (sufficiently small) o € (0,#/2), (Fig. 1.2-c)[Lambert,1973] and ii) Stiffly stable
[Gear, 1967, Lambert, 1973] if in the region R, ( Re(Ah) <-a) it is absolutely stable, and

inR, (-a < Re(Ah) < b), ( |[Im(Ah)| < c¢) it is accurate. (Fig. 1.2-d)

Let us now consider the methods which are not necessarily A-stable but are A(x)

or stiffly stable. It can be seen that among the methods considered in section 1.2, the class
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which has these stability properties is BDF. In fact its use for stiff systems goes back to
Curtis and Hirschfelder in 1952 [Lambert, 1973]. The problem of stiffness has been
known for some time and has attracted the attention of many numerical analysts. One of
the most important contributions in this area was made by Gear in 1971 [Lambert, 1973].
He derived the stability domain for the k-step BDF methods with k up to 6 and gave the
definition of stiff stability. He then developed sophisticated numerical integration software
by combining two options (Adams and BDF methods, both were implemented as predictor
corrector pairs). [Lambert, 1973] For the automatic solution of initial value problems, it
is highly desirable to adjust the integration step size and order in order to minimize the
computation and at the same time, achieve a given error bound. Gear’s method employed
a technique originally due to Nordsieck[Lambert,1973], which is in fact a kind of
"transformation" from a multistep method to a "single" step format. The idea is that,
instead of storing a number of back values of x; and f; (for a multistep method), we can
store up to the kth derivative to construct the so-called Nordsieck vector at a single point
of the local polynomial interpolation which represents the solution.[Cellier, 1988, Lambert,
1973] For this single step vector format, the step size and order control, as well as the

startup procedure can be more conveniently derived.

Until now, we talked about basic numerical concept for solving initial value
problems. In the next chapter it is shown how these concepts are related to electronic
circuit simulation techniques, one of the most important applications in electrical

engineering.
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IMPLICIT INTEGRATION VS DIFFERENTIATION:

Problems with Integrated Circuit Simulation

2.1 SPICE: An IC Simulation Program

An electronic circuit simulation program that characterizes the performance of a

circuit is one important computer aid in the circuit design process. The need for accurate

and efficient circuit simulation has prompted the development of many circuit programs

as well as the advancement of the associated numerical methods. Here let us consider

SPICE, one of the most commonly used simulation programs by electronics industry.

Like most available network simulation software, SPICE, instead of using state-

space representations, employs the topological description for network modelling due to

the frequent algebraic loops inherent in most practical electrical circuits [Cellier, 1991]

and for its simplicity and efficiency. As an example, [Nagel, 1975] let us look at the

following simple electronic network. (Fig. 2.1)

8

vcc
+12
RC1 RC2
10K 10K
4

RS1
1 1K 3
" Ql Qz
6 RS2
VIN . RS

Q3

VEE 9
-12

Fig. 2.1 Differential Pair Circuit

RBIAS
20K

Q4
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It can be modeled in SPICE as follows:

DIFFPAIR CKT - SIMPLE DIFFERENTIAL PAIR
* AC DEC 10 1 10GHZ
*+ DC VIN -0.25 0.25 0.005
* TRAN SNS 500NS
.TRAN 5NS 500NS
VIN 1 0 SIN(O 0.1 SMEG 5NS) AC 1
VCC 8 0 12
VEE 9 0 -12
Q1 426 QNL
Q2536 QNL
RSI

QNL

RBIAS 7 8 20K

.OUTPUT V4 4 0 PRINT DC TRAN

.OUTPUT V5 5 0 PRINT MEG PHASE DC TRAN PLOT MEG

+ PHASE DC TRAN

.MODEL QNL NPN (BF=80 RB=100 CCS=2PF TF=0.3NS TR=6NS
+ CJE=3PF CJC=2PF VA=50)

.END

To accomplish the transition from the physical circuit to a mathematical system
of equations, each element in the circuit is represented by a mathematical model
implemented inside SPICE. The system of equations is determined by the model
equations for each element and topological constraints. There are three basic analyses
available in SPICE: dc analysis, time domain transient analysis and small signal ac
analysis. Here let us restrict the discussion to the transient analysis which is most closely

related to the subjects of this thesis.
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2.2 Transient Analysis: Implicit Integration vs Implicit Differentiation

Transient analysis determines the time domain response of the circuit over a
specified time interval [0, T]. The initial value is either specified by the user or
determined by a dc operating point analysis. At the discrete time points within the time
interval [0, T], a numerical integration (differentiation) algorithm is employed to
transform the differential model equations of each energy-storage element into equivalent
algebraic equations. Then the time point solution is determined by Newton-Raphson
iteration.

Numerical integration algorithms can be either explicit or implicit. For the reason
of stability properties (section 1.2) the implicit methods are far superior for circuit
simulation. Also it is noted that very frequently the circuits of interest today are heavily
nonlinear due to the increasing application of integrated circuits (IC). Let us now look
at a p-n junction, one of the very basic units in IC design. We know it could be modeled

as a diode and a nonlinear capacitor connected in parallel (Fig. 2.2). [Cellier, 1991]

A A

Fig. 2.2 p-n junction
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For the nonlinear diffusion capacitor we have:

Q, =fV) = <L’ - 1,
L =Q,

where I, is the saturation current of the diode, 7 is the time constant of the capacitor, and
V, is the thermal voltage. Then we use the kth order Backward Differentiation formula
(BDF which is a stiffly stable method and was implemented in SPICE) to solve the above

ODE:

k
xn+l = .z:lajxn—jﬂ'l + hBOxnd’
J-

k

: 1
= Qn+1 = 7;5;(0’"1 - ]Ea]'Qn'jﬂ)’
Vlfl E
1 7 1
- I, =—1l(e""-1) - —( .
n+l hﬁot _‘,(e ) hpo(jglajou-ju)

We would like to use the above BDF algorithm to solve this ODE, i.e. solve for Q,,;.

But the real situation is that V, is already given or determined by previous calculation

and Q, = f(V,) does not have an analytical inverse (V. = y( I =Q¢ )). Therefore, SPICE

has no choice but to compute Q, from Q, = f(V.) and then numerically
DIFFERENTIATE the result to compute dQ./dt. [Cellier, 1991] Thus we may consider
that inside SPICE, instead of implicit numerical integration, the ODE is solved by

"implicit numerical differentiation". Furthermore, we will define this type of ODE
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formulated in the above example as an inverse problem which has the following general

format;

x = g%, Ht) = %, 2.1)

2.3 Does SPICE Really Employ Gear’s Methods?

There is another problem worth to be mentioned here. In SPICE, there are two
numerical methods available for solving ODE systems resulting from electronic circuits,
one is the Trapezoidal method which, as we know, is a second order implicit method
with an A-stability domain. The other is the so-called "Gear’s algorithm" which is to be
discussed in more detail: In SPICE, the "Gear’s method"[Nagel,1975] starts from the

rearranged BDF algorithm:

X = XaX, .. (2.2
i=0
Let us use the following kth order polynomial to do backward interpolation:
YO = ¢y + )t~ + ... + e, Dt (2.3)

The c; can be obtained by fitting (2.3) to the k+1 values (X,,1, X, .- Xy4+1.0) t0 produce

the equation:

2.4)
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Substituting (2.4) into (2.2) yields the equation:

=, = 0yCo + 0, (Co+Ch+... +C R D)
+@,(Cy +€,(2h) +... + ¢, 2h)D)
+a,(cy+ ¢ (kh) +... + ¢, (k). (2.5)

Comparing the coefficients yields the system:

1 1 .. 1 ||%] |0
0 A .. kh||e |-1

0 A% ... (kh)?||®,|=|0
C . , (2.6)

0 h* .. (kb)Y @) | 0 |
Solving for «; and substituting into (2.2) gives the BDF methods for fixed stepsize h. For
variable stepsize, the results depend on hy, h,, ..., h, which might have different values.

So the equation with «; becomes: [Nagel, 1975]

1 1 1 . 1 |l [o]

k
Oh, h+h_, .. Xh

n - n+l-i
i=1 @y (-1

k
2 2 2 =
0 hy (b o B [ 15| o |- e

k
k k k
0 ht (h+h_) .. (i_Zlh,,ﬂ-i). 2 [0

which means thatthe o; i = 0, 1, ... kand k = 1, 2, ..., 6) need to be recomputed for

every time step in order to obtain x . and x .
One question arises here: Is this really Gear’s method? In chapter 1 we mentioned

that Gear’s method is based on (originated from) the BDF (which is the same as in
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SPICE) predictor-corrector pair and then employs the Nordsieck technique to transform
the multistep method to a "single step” matrix format. One of the major advantages is
that after this transformation, the order and step size control can be achieved much more
easily (the quite expensive recomputation of ¢; is no longer required here). Another
advantage of the single step format comes to play when we try to upgrade the method
for stability improvement. [Skeel, 1977] It is more convenient to be handled in the
Nordsieck form than in the multistep format. (for instance, the blending technique
discussed later) Although "Gear’s method" as used in SPICE adjusts order and step size,
this is what we see in other methods also (Trapezoidal). In fact, the "Gear’s method" in
SPICE is nothing more than basically a BDF method whose application for stiff systems

goes back to Curtis and Hirschfelder (1952) [Lambert, 1973]

2.4 Motivation for Developing the DBDF Method

In 1.2 and 1.3 we talked about the stability regions of some numerical methods.
We realized that the implicit methods are superior to the explicit methods for the circuit
simulation due to their improved stability properties. Also we noted that for those
implicit algorithms, all of them fall into either one of two categories: One (as the 4th
order AMF method) has a closed stability domain within the left complex plane. The
other (as the third order BDF algorithm) has a closed instability domain within the right
half complex plane. If a system has eigenvalues close to the imaginary axis, neither type
of those algorithms can ever represent the analytical stability domain correctly. (One

would have the tendency to make it appear more stable and the other make it appear less
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stable.) [Cellier, 1988]. There are several algorithms designed which try to handle this

kind of situation. Currently one of the most promising technique is called Blended Linear
Multistep Method derived by R. Skeel. He took a combination of 2 multistep formulas,
AMF and Gear’s methods, which are all in the Nordsieck matrix format with variable
coefficients. The resulted blended formula works much better than either of the original
methods. (Larger stable region with high accuracy)[SKEEL, 1977], [Cellier, 1988] We
would like to try this blending technique for the Trapezoidal method (which is in fact a
second order AMF) and BDF in SPICE. Unfortunately, this cannot be done easily
because: 1) Both Trapezoidal and BDF in SPICE are not in matrix form which is
necessary for the blending; 2) The blending technique derived by Skeel deals with the
system (1.1) but the real systems we come up in circuit simulation basically are in the
format (2.1), i.e., in the inverse formulation. It means we will need to rederive the
blending algorithm for the inverse systems. 3) To achieve 2), we can neither use directly
the existing TRAP and BDF in SPICE (which can deal with inverse systems, but not in
matrix format), nor the widely used Gear’s method (which is in the matrix format, but
cannot handle inverse ODE systems). We really need to derive an implicit multistep
numerical differentiation method which can solve the inverse initial value systems and
is specified in the "single" step matrix format. The detailed derivation, analysis and
implementation of a new method (we called it DBDF, which stands for Differentiation

method based on BDF algorithm) will be the topic of the remaining chapters.
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CHAPTER 3

DEVELOPMENT OF DBDF METHOD

From chapter 2 it is known that the most common problem raised in transient
analysis of electronic circuits is how to solve an inverse initial value problem (I.V.P.)
accurately and efficiently. Until now, a number of numerical methods have been

proposed for solving the general form of I.V.P. represented as

£ = fx,0, x(t) = x, 3.1
But there are few methods available to deal with the inverse problem

x = g(&0, i) = %, (3.2)
In this chapter, we shall derive in much detail a numerical method for solving the inverse
I.V.P. (3.2), which is stiffly stable and able to adjust the stepsize and order
automatically. We call this new method DBDF method, which stands for Differentiation
algorithm from Backward Difference Formula. The algorithm derivation will be given

first, then it is to be expanded to a formulation for solving general inverse differential

systems.

3.1 A Multistep Numerical Scheme
Because of the larger absolute stability domain compare to some other algorithms

(chapter 1), let us once again consider the BDF scheme:



k
X, = %a

i

ixn-i+l * hﬁO n+l*
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(3.3)

The local truncation error of (3.3) is ¢, x**P(¥)h**!. The o, B, and c,,, for k = 1,2

... 5 are given in table 3.1.

Table 3.1 Coefficients and error constants of BDF scheme

k II 1 2 3 4 5

Bo 1 2/3 6/11 12/25 60/137

a 1 4/3 18/11 48/25 300/137
a, -1/3 -9/11 -36/25 -300/137
a, 2/11 16/25 200/137
a, -3/25 -75/137
as 12/137

Cony -1/2 -2/7 -3/22 -12/125 -10/137

From there we try to develop a scheme for solving the inverse I.V.P. (3.2). First note

that (3.3) can be written equally as

therefore

xn+1

‘xn+1 =

Considering (3.2) it follows

. x
1

L (x
Boh ™1 im

k

i n-i+l * hpoxrwl'

- Xax, )

(.4)

(3.5)
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, 1 , X
x,|+l = _(g(xn+l’tn*l) - Eai xn__l-+l). (3,6)
poh i=1

Note that (3.6) is an equation with respect to X which can be solved by Newton
iteration. Let
(O _ x,f""

X =

k
, (-1 . (I-1)
g(xn+1 ’ tml) - %aixn—i+1 - ﬁohxrﬂl
la

Lo ea 6
—a;(x.n+] ] t,u.l) - Boh ’
I =1,2,.,.m

A later discussion (chapter 4) will show that m=3 is sufficient for a given LTE bound.
Combining (3.7) and (3.4) gives

¢

.0 _ .(m
Xp+1 = Xp
- : -
g(xn*l ’ trn-l) - Eaixn-wl - Boh‘xn*l
U (o VI i=1
Xnel = Xpai

og ,.d-1)
é(xml L2, - Boh

E (3.8)
n+l Eafxn—i+l + ﬁohx;f:‘;

*
]

I =12,.,m

\

As an example, apply (3.8) to the test equation

X =AX,

or
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1
xX=—Xx, A=0).
lx (2=0)

then
k
lxrﬁ_ll) - L O Xp iy ~ Bohxrfl:ll)
. _ G- _ A i=1
Xnrl = Xpep™ T~ 1
P
k
E ai'xn—id
_ =l
! .
— - B.h
) 0
SO
k
k El 0 X, i
- i=
Xpo = Z X, o + Boh
i=1 1 h
PR
k
LooX,
= 1=
1 - AByh

Note that if, instead of (3.8), the BDF scheme (3.3) is applied to the above test
equation, we will get exactly the same numerical result. This fact will lead to a
conclusion that the scheme (3.8) has the same absolute stability domain (stiffly stable for

order 1 ... 6) as (3.3) that was shown in chapter 1.

3.2 DBDF Method for Solving Implicit I.V.P.

In the last section, we have come out with a numerical scheme for solving inverse
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[.V.P.. But (3.8) is neither convenient nor efficient to be used for the same reasons as
mentioned in chapter 2. In order to get a highly automatic numerical method for solving
inverse 1.V.P. problems, the Nordsieck technique [chapter 1] is employed here to achieve
our goal. The idea is that, instead of storing a number of back values of x;, we store up
to the kth derivative at a single point of a local interpolation polynomial which represents
the solution. The key to adapting the Nordsieck technique is to create the right local

interpolation polynomial for the numerical solution of the I.V.P..

Let us try to express (3.8) in a matrix format. First we define

o _ 08,.0
Dn+l - -a—x.(x’“’l’ tn+l) - poh‘

then from (3.8)

k

Yo x -
10, = (et :=1°“:'1;“‘ _ g(t,.nﬁ}l”)’ (3.9)
n+1 D, D,.;
which can be equivalently written in a matrix form as:

(x, 1 [ 1 0 0 . . o ][ % |
hx,f?] ho, hB,  ha, he, hx,fl,_ll)
b b B T b
X1 |51 O 0 1 0 0 Xp-1

0 0 0
0
Xnket] L 0 0 o .. 0 1 A ey




31

0]
-1
hg(t 24t
+ n+1?*n+l 0
D
3.10)
-O-
forl =1, 2, ... mand
x, o, By @ oo o .. ol Xpo1
9101 0 . .. 0|lni™
b 1 0 0 0 X,
= 1 0 ... ..
0 o 0 0 3.11)
0 0 O
0
Xnka) (0 0O 0 .. 0 1 Oj_x,,_,,_

forl = 0.

Let us define:

* (m)
x, , hx,"”, x, 5 o X, DI 1=0
1-1)
x4 =

n+l

x, ixC0 x o x  DIT 1=1,2,.,(m+1)

L=[0, -1, 0, ..., 0],

péb h
n+l D(l-l).
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Let B,, B, be the square matrices defined in (3.11), (3.10) and

0 0 0 .. O]
By o, .-

B,=|o0 0 0 .. 0

R
~

0 0 0 .. O]

Then (3.8) can be rewritten equivalently as

(0) -D
n+1 B()X

_ (m)
= BX;
{
O (-1 (-1 (l 1
Xml =B Xn+l +LP n+l g( n+1? Xne1

3.12)
X(l 1 +P(l 1)[32X’f£ D+Lg(t (1 1))]

n+l n+1? n*l

wherel = 1, 2, ...,m.

We have, in (3.12), a "one step" form of the predictor-corrector method (3.8).
However, if we attempt to change the stepsize, the earlier difficulties are still present,
since the vector of back values X,,..”, i=1,2,...,k-1, contains information computed at
a number of different points. Now let us consider a kth order interpolation polynomial
W, (t) which satisfies

W, () = x, i=nn-1,..,n-k+1

k(t ) x . (m)

The W,(t) and its derivatives on t, can be determined and if we define U,., to be
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2
UY, = W), W), %—Wk(tn), ’I'c—fw,f"’(r,,)]f, (3.13)

n+1

it turns out that the relation between U,,,® and X, satisfies

() ©
u® =Qx9. (3.14)

n+l = n

where Q is a constant matrix determined by the interpolation conditions. These Q

matrices corresponding to k = 1, 2, ... , 5 are given as follows:
4 00 O
1 00
Q_IO 0. =l0 1 o Q—10400'
=10 1] k2 ’ 374768 -1
-110
-3 24 -1

(36 0 0 0 0]
0 3 0 0 0
-85 66 108 -27 144}
-60 36 90 -36 216
-11 6 18 -9 2|

(288 0 0 0 0 0]
0O 288 0 0 0 O
| |-830 600 1152 -432 128 -18
288|-755 420 1248 -684 224 -33|
-238 120 432 -288 112 -18
|25 12 48 -36 16 -3

Qis=

Combining (3.12) and (3.14) gives

©

Qx\) = QBQWUS + QLP,E?’Igan,l,i‘zh—), (3.15)
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where u,© is the second element of U,,,®. Define

1) 1
Un+1 = QX

n+12

then
(¢Y) 0 0 u2(0)
Upa = QBxQ_l U;E+)1 t QLP:+)18(tn+1,—h—).
Similarly
uz(l-l)
u® =0B,Q UL +QLP Vs(t,. =)
P (3.16)
i- - -1 yq0- .
=usP + PP 10B, 0 ULY + OLg(,, ., —)1.

h .
1 =1, 2, ...,mand u,%" is the second element of U,,,*?. Note that

© _ ©)
Un+1 - mel

- QBOX'Em) - QBOQ—I U’EM),
Thus we have obtained a method with one-step format:

U;f?)x = QBOQ—I U;EM)

uz(H) (3.17)
- - - I-

Uy = Uy + P 1QB, QT U, + QLG — )]

1=1,2, ..., m

Comparing with the original equation (3.8), equation (3.17) has the advantage that

the vector U,,,® defined by (3.13) contains only information calculated at point t,. As
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a single step numerical formulation, if, for instance, we want to adjust the stepsize from
h to rh, all we have to do is to multiply the ith component of U,,,® by r, i = 0, 1, 2

.., k.
We will call the scheme (3.17) the DBDF method, which stands for a numerical

Differentiation method from the Backward Difference Formula.

3.3 General Formulation for Solving Inverse Systems

The DBDF algorithm developed in 3.1 and 3.2 can only be applied for solving
a single inverse O.D.E.. In this section, we will extend the DBDF to a general purpose
numerical method for solving inverse initial value systems (I.V.S.). A similar approach

as in the previous sections is to be followed here for the derivation purpose. Suppose we

are given
x =g(tx),
x(ty) = X, (3.18)
where
x, LACE T 2] 10
X, & xRy, X)) T
x=| " gix) = . ) %=l
X, 8,(83,, %), .., X) | % o)

Then the Jacobian matrix turns out to be
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-agl g, igj
ot,  Ox,
. 9%, 98, 9%,
RBGH _\ax ar, T ok

sl

% : oo (3.19)

g, o, %
ok, ok, o

s-

Let xg.’ and xgl’ be the lth numerical approximation of x(t,) and %) it follows

. (D () . . ()
X = (R Xpps oos Kigp) - (3.20)

Let us define the (k+1) X s matrix

r

X

X X.

1n 2.n SN
N0 0] O]
hxl,n«-l hx2,n+1 hxs,rnl
0 _ =
Xoel S| X, Xppq o Kepr P [=0,1,..,m. (3.21)
Fra-ker F2p-ker 0 Fonoken]

Then from (3.4), (3.18), (3.20) and (3.21), we can obtain the following multistep format

for solving the given system (3.18)

X =B, X",

n
10 -1 (-1) _ ~U-Dypon 0-1 (3.22)
X1 = Xn+1) +h(BXp41 * Gpiy (Dyay nr

where
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0 0 .. 0|
-1 -1 -1
gl(,n& g2(,n+i b gs(,)u;
(-1 _
G =-| 0 0 .. 0 }
0 0 .. 0

3 -
p&l = a—i(t x;ﬁll)) = Bohl.

n+1 n+1’

B,, and B, are defined in section 3.2. Again let us apply the Nordsieck technique here

and define

D — 0]
Zn+1() - QXn+l ’

where
xl,n+1 x2,n+1 xs,n+1
h.xul+l h:cz”l+l h.xswl
h? h? h?
hkx(k) h* xz,(k) h"x(k)
T L+l T M2+l et T Msnel
K k! koY

Q and X_,,® are defined as before. We can obtain the single step format as follows for

solving the given system (3.18)

( 2%-08,077"

o -1 a-1n -1 Z(I]l)(2)
{ Z = Z * h [QBZQ —lzfl*l * Q Gn*l (tyu-l’ ——;'—)] (3.23)

n+1 n+1

[(D (I_ll -l]T.
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38

where z,,,%(2) is the second row vector of matrix Z_,,*". Note that the ith column

vector z;,,,® in Z,,,® represents the Ith approximation of the vector [x;,,;, hx;,.,?, ...

k T
’ h /k!xi,n+1(k)] .

To avoid computing the inverse matrix (D,,,*?)? which is quite expensive in

(3.23), the following technique can be employed:

Let us define

1-1) _ W -1
viD=z0 -z4P,

n+1 n+l n

and

40
h

-1 _ -150-1) -1
Y, =[QB,Q'Z,." +QG, 1 (.1

n+1 n+l n+l

It follows

V(l-l) = Y(I—l) [(D(l‘l))-l]T‘

n+l n+l n+l

Taking transpose of both side gives

(V(l—l))T _ (D (l—l))-l (Y(l-l))T'

n+l n+l n+1

or

D(l"l)(V(l'l))T = (Y(I“l))T'

nel n+l n+1

k.

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

Solving (3.28) for (V,,,*")" and taking the transpose again gives V,,,*?. Consequently
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we get (from 3.24)

Z(D _Z(l-l) + V(l-l).

n+l = “n+1 n+l

In practice we don’t reevaluate the Jacobian matrix for every iteration step. We
keep D,,,? as a constant matrix D,,, in (3.23) and (3.24) to reduce the computational
overhead. thus if we define
A, = QBQ', A, = QB,Q', D,,, = D,,,*"

forl = 1, 2, ..., m. The practical format of the DBDF can be written as follows

20, - 4,2
a-n
-1 _ (-1 -1 Zp (2
J Yn+1 -Alzml * QGn+l (tn+1’ _;l——) (329)
1-1 I-1
(er+1 ))T = Dn+l (Vrfd ))T
U] a-n I-1)
Zy=Zpy Vrfu




40
CHAPTER 4

ERROR ANALYSIS OF DBDF METHOD

In this chapter we are first concerned about the theoretical analysis of the LTE
for the DBDF method, then we incorporate a heuristic argument and experiences with

our result to come up with a more practical algorithm for an error estimate and control.

4.1 LTE Analysis of DBDF
We give the conclusion first.
Conclusion:

Let us apply the DBDF scheme (3.8) to solve
x = g(x0, i) = %,
with starting value x; satisfying
|x(z) -x,| <bh¥, i=0,1,...k
where b, is a constant. Also we make the assumption that g(x,2) is sufficiently smooth

with respect to x. Let ggfax, dPg/dPx satisfy, for t € [t,, T,

1215850, | 98<y, @.1)
ox %

where J, u are constants. Then the local truncation error (LTE)



k
_ , (m)
The1 _x(tn+1) - [_Z:Iax‘xn—id +p n+1
'=

satisfies
k+1
|t,., | <ch®™.

This can be proven as follows:

41

We note that in (3.14), (3.16), U=QX, Q is a constant matrix; the first and second

components of U are always identical with that in X,(section 3.1) respectively, hence we

know (3.17) has the same error behavior as (3.8). Instead of (3.17), it is sufficient to

estimate the LTE for (3.8). We approach that in two steps:

i) Consider the local error with the assumption that the Newton iteration is

convergent to the exact solution of % i.e., consider

k
xn+l = Eai‘xn—i+1 + pOh‘xn+1’
i+l
1 k
Xpe1 T [8CG,. ot - Xax, ]
Boh i=1

We define

k
Tm-l =x(tn+1) B [Eaix(tn-i+l) *+ ﬂohx.m-l]

which can be written as

E
Tpy = (X)) - [E“:"(‘n—m) + Bohitt, D1} + {Bohlx(t,, ) -%,,,1}

=e te,.

(4.2)

(4.3)
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From Henrici[1962], there is a constant b, such that

k
e = x(t,,+1) - [Ealx(tn_iq) + poh't(tnq)]
= (4.4)

= b h*.

To estimate €,, note that from (4.2) and the assumption (4.1), it follows

x(tn+l) B xml = x(ttnl)

k
[g( n+1? n+1) B Zaz‘x(trwid)]
Boh i=1

T~ gl
3" 3"

[ﬁohx( +1)+Ecc x(t, ;. — 8@, .1, %,.)]

k
[Bollx( +1)+§aix(t o) ~ 8ty X, )]

' Blh n+1? (@, +1)) g( n+1? ’”'1)]
0

- piohblhhl + Bih gg (.15 8) [2C2,,9) - %,,4]

where the Mean Value Theorem was applied. (£ is a value between % and x(, l)) Thus

b
n--L %8¢ ol -] =-th*

Bp 3z - B
#,,,) ~ %,., = bp*? (4.5)
e, = O(h*?)
i.e.
t,,, = O(h*). (4.6)

i1) Let us turn to the LTE analysis of (3.8). Assume
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i =i@)

X, = x(2) i=1,2,.,n. “.7)

then the local truncation error of (3.8) turns out to be:
€n+1 = x(tn+l) - xm-l
X m
=x(tn*l) - z:laix(tn-i+l) B l30h’x.7h‘1
i=

k
= x(t,.) ~ Ze(t, ) - Bty + BohChy, - t ),

where % . is the exact solution of

. 1 . “
xn+1 = [ g(xn+l’tn+l) - %ai xn-—i+l]'
i=

Boh

Considering the result (4.6) gives

€,. = O(B*Y) + Boh(i,,, - %),

n+l  “n+l

Note that x - %) is the error caused by the Newton iteration. Let us define

d =%, - 1=0,1,...,m.

n+l1»
According to Dahlquist[1974],
d, = 0(d>),

where again we made use of assumption (4.1).

Since
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. . . . (m)
=X, —%(,,,) +x(tn+l) -X,

=b,h " + (2, ) -3(2,)
= b,h*"! + O(h)

= O(h),
thus

d,=0M?, d,=0k", d,=0(®b).

For the derived scheme (3.8), k=1,2,... 5, we know that it is sufficient to have m=3

to guarantee
€,., = O™,

Now the proof is completed.

4.2 A Practical Algorithm for LTE Estimation

To satisfy a given error bound, let us consider the LTE for a kth order BDF

scheme in a single step:
Ceah* ' x® D) + OR*?) (4.8)

where the c, ., depends on the method to be used and is given in table 3.1. The O(h**?)
term can be neglected and the first term needs to be estimated so that the order k and
stepsize h will vary accordingly in order to maximize the stepsize (efficiency
consideration). At the same time, the LTE must be limited by a given error bound €. The

following approach of estimating the LTE and controlling stepsize and order for the
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DBDF scheme mainly come from the strategy employed in Gear’s method, [Gear, 1971a]
with some modification according to our experimental testing process. To decide whether
the computed value of x(t,) at each step can be accepted or a smaller stepsize or different
order need to be selected, we need a algorithm to estimate the LTE first. From chapter

3 the resulted vector for a solution of a single ODE in the nth step has the form:

® |7

X x
x, hx, .. h*=
k!

The backward divided difference of the last component in each previous step leads to the

estimation of h’“‘x,fm)/k! . Consider (4.8), if the given LTE bound is ¢, then the chosen

stepsize h for a kth order scheme must satisfy:

] (k)l
— 2t kn-
Ck+1k!|VUk|—Ck+1k!|h T -h —E!—_I

+ k+1
=C B 5, 4.9

<E.

A detailed strategy of implementation of the DBDF will be given in the next chapter.
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CHAPTER 5

IMPLEMENTATION OF DBDF METHOD IN CTRL-C

Just like any other newly developed algorithm in numerical computation, DBDF
needs to be implemented in a program for the purpose of experimental testing and
evaluation. The program language used here is CTRL-C which is a high level matrix
manipulation language and is more convenient to program than other general purpose
program languages. The price paid for this convenience is a drastic reduction in

execution speed.

In a highly accurate multistep numerical scheme, it is usually uneconomical to
keep the stepsize or order constant. The automatic control of them is therefore an
important and interesting part of a program for solving initial value systems. From a
practical point of view, it is seldom reasonable to ask the user to specify stepsize and
order. A method is incomplete unless it contains facilities for determining these
parameters automatically. The primary point for the choice is to minimize the total
computation to achieve a given error bound. In other word, based on the fact that the
amount of work per step is relatively independent of the order, the order is to be chosen
such as to maximize the stepsize so that the required accuracy is satisfied. Also as in all
other multistep method implementations, a startup prdcedure must be devised for

automatic computation. A detailed discussion is to be given in this chapter.



47
5.1 Control of Stepsize and Order

We rewrite (4.9) as follows

* ®
no_ h kxn—l |
k! k!

¢ K VU] =¢,, Kl R *

k+1
zck‘»lhk”'xrs P

<E€.
What we really want is to find the largest stepsize for which the predicted local error is
acceptable. The basic stepsize control strategies are as follows:
1) Equation (4.9) is tested for every computation step.
2) Step h is accepted if (4.9) is satisfied; then the new stepsize h,, for the next step is
estimated.
3) Step h is rejected if (4.9) is not satisfied; then the current step is recomputed and
retested as 2).

Suppose the new h for the next step or current rejected step is rh, the following

equations are used for determining r:
k+1 =
€ K1(1.2r, ) | VU, =€,

1 € *1
T = —[————1%"
*1 12 ¢, K| vU,| .1

The coefficient 1.2 is used as a safety factor to keep the resulting LTE from reaching the
error bound. There is also the possibility that we could use a larger stepsize with other
orders. The following equations are used for determining r for order k+1 and k-1

respectively:
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=._1_[—_.____€ 152, (5.2)

1
R S ¥ (5.3)
" 1.3[ckk!|Uk|] ‘

where

Note that the different factors (1.2, 1.4, 1.3) in (5.1), (5.2) and (5.3) favor first not
changing the order and second not increasing the order based on the work required for
one step. Since the theory of the order and stepsize algorithms is quite incomplete, there
is no known best way to proceed. The mechanism adopted here is based on tests quoted
by Nordsieck(1962), Gear(1971), and Shampine(1975), also on our own experimental
test. Some restrictions on the ratio of successive stepsizes are necessary to assure stability
in a practical sense and the overhead is considerably reduced when a constant stepsize
is used. The selection of a relatively "optimal" stepsize depends on the stepsize not
varying too much locally. [Shampine 1975] For these reasons, we tend to choose steps
in groups of constant stepsizes with occasional transitions from one stepsize to another.
In addition to those basic strategies mentioned earlier, some technical considerations

implemented into the CTRL-C program [Appendix] are as follows:
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1) The new stepsize h,., will be permitted to vary between 0.5h to 2h.(we accept r only
in the range [0.5, 2]) The order is only considered changing by one.

2) If 1 < r < 1.1, the stepsize is kept unchanged since the increase is not worth the
computer time to perform it. If 0.9 < r < 1, we make r = 0.9. This means that if we
need to reduce the stepsize, we do so by a non-trivial amount.

3) The estimate of r is made k+1 steps after the last change in order or stepsize. (To
reduce the overhead of testing too frequently, we will not recompute r for 10 steps if no
step increase was made at that time)

4) Raising the order will not be considered unless the current step is successful and is
unchanged from the last step.

5) Lowering the order is considered whether or not the step is successful.

6) When the step has failed, our approach is simply to half the stepsize and try again.(A
failed step may be due to a somewhat abrupt change in the solution)

7) Repeated failures for a single step are a signal that the solution is discontinuous.
[Shampine, 1975] We drop the order to one after three unsuccessful trials. This in effect
discards all the information in previous steps which is assumed not to be correct and

restarts the code.

5.2 Startup and Convergence of Newton-Raphson Iteration
For a multistep method there is always an initial phase during which a strategy
is adopted to bring the procedure to a regular situation. Since our DBDF is an order and

stepsize variable method and performs error bound testing for every step, we can initially
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set the order to one and the stepsize to hy. For order one, U, is [x, hoxo]T. Since %, is

given and x, can be computed from g(xo, to), this gives enough information to allow a

first order process to be used. From then on, the order and stepsize are chosen

automatically.

Some codes require the user to choose an initial stepsize h, which is certainly
inconvenient because most users have no idea of how to estimate a suitable value.
Although what value of h, to choose seems not a critical matter for a self testing

program, it would certainly effect the amount of computation work and efficiency. Our

code selects h, according to the given error bound ¢ and the initial value xo.[Shampine,

1975] The idea is as follows: If a zero order algorithm is considered, then the x(t;) and

LTE are as follows:
x(t,) =x,+ O(h)
=x, + bk, + O(h?).

e, =k, + O(h?).

For the first order formula, the LTE can roughly be estimated as

~ ~h2y
e1~heo~h X,

To be conservative we want to initially satisfy

0.5 = |%, |

thus we select
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=

0.5¢ 1
0 .

max( Ixol’ 1)
‘In case of small lxol (1), it gives

h,=(0.5¢)'".

There is one more thing we may need to consider: The convergence of the

Newton-Raphson iteration to determine %, at every step. In 4.1. ii) it is shown that the

LTE bound would be satisfied if the number of iterations m equals 3. A large number
of numerical tests have indicated that is a good choice. There does exist the possibility
when the solution does not converge within e in three iterations. Should this happen, our
code would reduce the current stepsize to a factor of 1/8 and recompute the solution

again. Very likely that would bring the solution inside the LTE bound.

5.3 Construction of DBDF Program

As mentioned earlier the DBDF program is implemented in CTRL-C and consists
of a calling program MAIN and five subroutines as shown in Fig. 5.1. MAIN (Fig. 5.2)
contains the given system which is initialized by calling GXDS and solved by calling
DBDF. MAIN also» possesses the ability to give the final simulation results in both the
form of values and curves of the solution and error(local and global). Fig. 5.3 gives the
flow chart of DBDF which implements the derived multistep method by calling the

subprogram SDBDF repeatedly. SDBDF (Fig. 5.4) performs a single step of the
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numerical computation of DBDF and contains all the strategies of order and stepsize
control, LTE and convergence test and control. The Newton Raphson iteration is
accomplished by subroutine NR (Fig. 5.5) which calls GXDS to obtain the function
evaluation and calls JXDS to compute the Jacobian. The numerical inversion block INV
makes little sense for a program written in CTRL-C but will significantly save the
computation effort later when the method is reimplemented in another general purpose

computer language.

MAIN
DBDF GXDS
SDBDF
jrovaraeasenes NR
;! INV JXDS GXDS

Fig 5.1 Structure of DBDF Program



X =g(xt)
X (0)

ENTER

i
PARAMETER SETUP

INITIALIZE h,

COMPUTE x, DBDF

1 r

COPUTE er OUTPUT x, ee

OUTPUT x,, er

Fig 5.2 Flow Chart of MAIN



LOADING DATA

Y

CREATE COEFFICIENT
MATRICES

UPDATE i

i

DISPLAY

(singularity)

RETURN

Fig 5.3 Flow Chart of DBDF

54



55

LOADING DATA
FOR CURRENT STEP

|

UPDATE t, x;,

RESET ORD, h
| \ FOR

REDUCE h;

DIVERG ?

L.T.E. TEST

CURRENT STEP

RESTART

er < €7
/

y

RETURN x;, z,, ¢,

ORD OR h
ARE CONST MORE

KEEP ORD, h FOR

COMPUTE ORD, h
FOR NEXT STEP

( ReTURN

NEXT STEP

Fig 5.4

Flow Chart of SDBDF



DETERMINE COEFF MATRICES
FOR CURRENT ORDER

INITIALIZATION

i

ITERATION

Y

REDUCE h; to hy/8

Fig 5.5 Flow Chart of NR

DISPLAY
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5.4 Numerical Test

A series of numerical tests have been made to compare our DBDF method with
the Adams predictor corrector method and Gear’s method in ACSL.(Advanced
Continuous Simulation Language) We also implemented the Adams and Gear methods

with adjustable stepsize and order in CTRLC for our comparison purpose.

As mentioned earlier, our motivation for deriving the DBDF method is to solve
implicit ODEs (which may not be invertible to an explicit format). From the point of
testing and comparison, we selected intentionally those cases which can be written in
either formats. Moreover, in order to estimate the global error, problems with known
analytical solution were emphasized. For the following testing cases, we set the LTE
bound to e=10" for all these methods. Let us first define:

E, : estimation of maximum LTE

E, : estimation of maximum global error

T, : end of simulation time

N,, : number of steps used for a simulation run
X, : analytical solution

X; : numerical solution j=0, 1, ..., n

Case 1. Test equation: (A=-1)
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The results of DBDF, Adams and Gear methods are shown in Table 5.1.

Table 5.1 R ADAMS------- O [ J— GEAR---------- > |
l[ DBDF CTRLC |  ACSL CTRLC | ACSL
* E, 6.09 1.54 ; 9.59 6.49 ; 11.4
* E, 0.98 0.67 ; 0.95 ;
T, 15 15 ; 15 15 ; 15
N 102 80 E 100 ;
' H

* values x 107

It is noted for a test equation with A=-1, all these methods give acceptable results. The
Adams(CTRLC) is faster since the (k+1)th order corrector allows larger stepsize with

the same LTE bound. The solution curves are given in Fig. 5.7.1-2

Case 2. Stiff ODE:

x = 100(sinz - x)
x(0)=0

1
x =
¢ 1.0001
This example is taken from Dahlquist[1974]. was shown that if a Runge-Kutta(R-K)

[sinz - 0.01cost + 0.01 e 710%]

method was employed, for h=0.03, the result turns out frightfully unstable Let us look

at our results in Table 5.2 and Fig. 5.8.1-2



Table 5.2 e — INDYNY (RS I S— GEAR--------- > |

|[ DBDF CTRLC ! ACSL CTRLC : ACSL
] ]

* E, 5.08 490 ! 11.5 3.37 : 3.17
- i ]
* B 0.995 0.998 H 0.83 H
l '

T, 5 5 H 5 5 H 5

1 ]
i 1
N, 119 546 ! 269 !
I L

* values x 107

Both of the DBDF and Gear methods give higher accuracy and efficiency for the stiff

ODE than the Adams algorithm(which even shows unstable tendency from the E, curve

in Fig. 5.8.2)

Case 3. Stiff system:

X =4

X, = -1000x, - 1001 x,

x,(0) =1 x,=€”
x,(0) = -1 x,,=-e”’

The eigenvalues turn out to be s,=-1, s,=-1000. Note that this system has stiffness ratio

equals to 1000! When applying R-K method, it explodes for h=0.0027.[Dahlquist, 1974]

Our testing results are shown in Table 5.3 and Fig. 5.9.1-2.(the CTRLC version is not

extended to solve systems, therefore only ACSL version available for this case)



Table 5.3 | <o ADAMS------- > <o GEAR---------- > |
" DBDF CTRLC : ACSL CTRLC i ACSL
* E, 6.08 ; 2430 ; 79.2
* E, 0.98 ; §
T, 15 ; 15 ; 15
N, 102 E S

* values x 107

The Adams turns out to be entirely unstable. Even the Gear’s method in ACSL does not
give satisfy solution(we don’t know why). The DBDF is successful and the recorded

stepsize h,, is 0.74.

Case 4. Simple R-C circuit: (Fig. 5.10)

R I
—
I

Vr

Fig. 5.6 Case 4. (R-C Circuit)

Here we assume the nonlinear capacitor lead to the relation:



Q. =8V = e -e"
= IR _ VoI
V. -V
5 0
1=Q, = ___R_C
with initial condition:
Vy = 1,
V.(0) =0,
: V,(0) - V.(0)
Q0 =10 = L <~
R
- L @
R
and
o
O _ e"™Re™® - 9Re® e 9K
ol
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Since the Q. = g(V,t) is not invertible, we will apply DBDF method to solve this

problem.
Table 5.4 | < emmmmmen ADAMS------- P R GEAR------—--- > |
II DBDF CTRLC : ACSL CTRLC i ACSL

(] 1

* E i 1

‘ ' '

* B, 6.211 H i

] ]

T, 10000 : :

I 1

N, 224 : '

! H

* values x 107
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It is noted that the E, value is not provided since the analytical solution is not available.
The E, has increasing tendency at the beginning but the algorithm can guarantee that E,
will never reach the LTE bound. From this case we can see the DBDF methods are very

efficient for solving this type of inverse problem.
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CONCLUSION

The analysis and experimental testing given in the above text suggest that the
DBDF method is very efficient for the solution of inverse differential systems. It can be
incorporated into an highly automated simulation program for various applications.
Furthermore, it can fairly easily be further upgraded, e.g. by incorporating the blending
technique proposed by Skeel(1977) to achieve a larger stability region and higher

accuracy. This is possible due to the consequent utilization of the Nordsieck technique.

Based on what has been discussed in this thesis, a number of further aspects of
interest could be discussed:

1) We could attempt an explicit global error analysis. In this thesis, the global
error was assumed to be approximately one order of magnitude larger than the LTE. This
assumption was made by common sense reasoning, and is compatible with the
experimental results presented in the thesis.

2) After a completed investigation and assessment of the DBDF algorithm, we are
ready to derive the blending algorithm for inverse differential systems in accordance with
the suggestion made by Skeel(1977), which could lead to a highly robust and efficient

simulation software useful for general purpose integrated circuit design.
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[/ RkKfeskdkr test file for DBOF algorithm Jeslede fededlede st e dedest
;;********* (adjust h & ord) for SYSTEM: x=g(x',t), start from x'(0)
DIARY >main.dry

echo=1;

DEFF dbdf

DEFF Sdbdf

DEFF NR

DEFF GXDS

DEFF JXDS

//

long

ordmax=5,

ordset=5,

epsi=1.00-7,

epmin=epsi*1.00-7,

tmax=1§,

num=10,

t0=0,

1=2,

//1=1,

//
//B[Bxd0(1)=-0.01;
//

//xd0 (1) =-100;

//xd0(1)=0.001;
/7 xd0 (1) =0;
//xd0(2)=1;
//

xd0 (1) =~1;
xd0 (2) =1;

//
x0=GXDS (xd0, t0) ,
//

//x0=1;

//x0=exp (-t0) ,
//x0=exp (-t0% (1+0.5%t0)) ,
//x0=1/(1+t0) ,

//x0=1/11,

//x0=SiN (t0),

//x0=1/ (14t0) * (3~EXP (~t0) * (2+t0) ) ;
//

//compute derivative xd0 as the initial value of Ist jter8.

/
//xd0=-exp (-t0),
//xd0== (1+t0) *exp (-t0* (1+0.5%t0)),
//xd0==1/ ((1+t0) #*2) ,
//xd0=1/ ({11-10) *%2) ,
//xd0=C0S (t0),
//%xd0=0,
xdOm=MAX (ABS (xd0) ),
|f xdOm>epsi, ...
hO= (ABS ((0.5%epsi) /xd0m)) **0.5,
ELSE ...
hO=(ABS (0.5%epsi) ) #*0.5,
END
GLOB (epsi)
GLOB (epmin)
GLOB (1)
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GLOB (ordmax)
GLOB (ordset)
GLOB (h0)
GLOB (tmax)
GLOB (t0)
GLOB (xd0)
GLOB (num)

//call dbdf to implement dbdf algorithm

// xx,ee,tt are resulted vecters.

[xx,ee, tt]=0BDF (x0) ;

/7

//compute actual solution

/7

[nt,mt]=S1ZE (tt),
//xa={(1/1.0001)*%(sin(tt) -0.01%cos (tt)+0.01%exp (-100%tt));
//xa=exp (-0.01%tt);

//xa=ZROW (2,mt),

//

xa(1,:)=exp(-tt);
xa(2,:)=-exp{-tt);
//

//xa(1,:)=x0(1) *exp (-0.5%tt),
//xa{2,:)=x0(1)*2% (exp (-0.5%tt) ~exp (-2%tt)) +x0 (2) *exp (-2*%tt),

//

//xa=exp (~tt) ;

//xa=ones (tt) ./ (ones (tt) +tt) ;

//xa=exp ((~tt) .* (ones (tt)+.5%tt)); .
//xa=ones (tt) ./ (ones (tt) +tt) .* (3%ones (tt) ~EXP (-tt) .* (2%ones (tt) +tt));
//xa=anes (tt) ./ (11%ones (tt) -tt) ;

//xa=ones (tt) ./ (ones {tt)+tt);

//xa=sin(tt);

//

//compute actual error

er=ZROW (1,mt) ;

FOR i=l:mt, ...
er (:,i)=ABS(xa(:,i)-xx(:,i)); ...
END
//
// er=ABS (xx-xa) ;
//

term='4100"';
hard="'tekf';

redhard >tdbdf.tekf;
//

//term='prx’

[/ RxRRkxkk plot xx (i,])
window('211")
plot(tt,xx)

//title(’ DBOF ")
//xlabel (' T ")
ylabel ( Xi ")
//replot

//erase

//page

[/ RRkfkdkdnkk plot actual error
window('212")
plot{tt,er)



//titie(! glob ERR
//x1abel (! T
ylabel (' Rg
replot
erase
page
[/ dddiidde plot estimated error
window('211")
plot(tt,ee)
//title (! EST ER DBOF
//xlabel (! Time
ylabel (' £l
replot
erase
page
[/ RRkvekk plot xa
//window ('2221%)
//plot (tt,xa)
//title (" ACCURATE VALUE OF NONLINEAR OOE ")
//xlabel (' T ')
//ylabel (' Xa ')
//replot
//erase
//page
redhard -close
{nn,mm]=S1ZE (tt);
tend=tt (1,mm},
{eemax, id1]=MAX (ABS (ee)),
[ercolm]=MAX (ABS (er));
[ermax, id2]=MAX (ercoim),
DIARY -off
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// [xxn,een, ttn]=DBDF (x0)

// Simulates an SYSTEM: ( x=g(x',t) ) with variable h & ord.
// by use of an DBDFnumerical integration
// algorithm (start-up automaticly from lower orders).

// Define the embedded functions

// Generate GENERAL coeffecient matrices for the k-step kth-order
// Gear-Nordsieck integration algrathm. (k=1..5)

z1=ZROW(1,2) ;
22=ZROW (1, 3),
23=ZROW (1,4
zLb=ZROW (1, 5),
z5=ZROW (1,6) ;
/7

bi1=[1 1;0 11;

b2=1/3*%[4 2 -1;0 3 053 0 0];

b3=1/11%[18 6 -9 2;0 11 0 0;11 0 0 0;0 O 11 o];
bh=1/25%[48 12 -36 16 -3;0 25 0 0 0325 0 0 0 0;0 O 25 0 0;0 0 0 25 0];
b5=1/137%{300 60 -300 200 -75 12; 0 137 0 00 0;137 0000 0;00 137000
000 137 00;0000 137 0];

//
qI1=EYE (2);
q2=[1 0 050 Y 03-1 1 1];
q3=1/L*{4 0 0 0;0 4 0 0;-7 6 8 -1;-3 2 4 ~1];
qb=1/36%[36 0 0 0 0;0 36 0 0 0;-85 66 108 -27 4;-60 36 90 -36 6;-11 6 18 -9 2];
q5=1/288+%[288 0 0 0 0 0;0 288 0 0 0 0;-830 600 1152 -432 128 -18

-755 420 1248 -684 224 -33;-238 120 432 -288 112 -18

~25 12 48 -36 16 -3];

//gbgl=bl;
//qbg2=1/3%[3 3 -1;0 3 0;0 ¢ 1];
//abq3=1/11%[11 11 -1 -7;0 11 0 0;0 O -1 15;0 0 -2 8];
//qbqh 1/50%[50 50 2 -22 ~46;0 50 0 0 0;0 0 -20 45 160 0 0 -20 20 132]

00 -2 - H
//qqu 1/274%027k 274 34 -B6 -206 -326;0 274 0 0 0 0;0 0 -176 Ib7 74k 1615
// 0 0 -170 19 756 2315;0 0 -30 ~45 214 1295;0 0 -2 -3 -4 269 ];
//

gbgl=ql*bl/ql;
qbg2=q2%b2/q2;
gbq3=q3%b3/q3;
gbgl=qh=bh/ql;
gba5=q5%b5/95;
//

gqblgql=[21;1 1];

qblq2=1/3%{22;3 3 -1;3 3 -1];

gbiq3=1/22%[23;22 22 -2 -14;33 33 -3 -21;11 11 -1 -7]);

qblql=1/150%[24;150 150 6 -66 ~138;275 275 11 -121 -253;150 150 6 -66 -138

25 25 1 -11 -231;
qblg5=1/3288%[z5
3288 3288 408 -1032 -2472 -3912;6850 6850 850 -2150 -5150 -8150
4795 4795 595 -1505 -3605 ~-5705;1370 1370 170 -430 -1030 -1630
137 137 17 -43 -103 -163];
ql1=[0 -1 000 01';

gt2=[0 -1 -1 0 0 0]"';

ql3=1/2%[0 -2 -3 -1 0 0]';
qlb=1/6%[0 -6 -11 -6 -1 0]';
q15=1/24%{0 -24 -50 -35 =10 -1]"';
cl=-1/2;
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¢2=-2/9;
c3=-3/22;
ch=-12/125;

c5=-10/137;

//
b3=[b1 [23;231;25;25;25;25; b2 [22322;22];25:25;25; b3 [z1321;21;21];25;25

bk zk';25; b5];

q9={q1 [23:23]:25;25:25;25; q2 [22;22;22)325;25;25; q3 [zl;z1;21:21];25;25

gk 2b4';z5; g5];

qbq9=[gbql [23;231;25;25;25;25; qbq2 [22;22;22)525325:25; qbgq3 [z1;z21;21;21]

25;25; gbql z4';z5;qbg5];

abl1q9=[qblql [23;23]1;25:;25;25;25; qblq2 [22;22;22];25;25;25; qblg3 [21;21;2]

q19=[ql) ql2 q13 qlk q15];
gama=[cl c2 ¢3 ck c5];
GLOB (b9)

GLOB (q9)

GLOB (gbg9)

GLOB (qb1q9)

GLOB{q19)

GLOB (gama)

//

i=0;

count=0,

hi=ho,

hil=hi;

ord=1;

xxo=x0,

xdo=xd0,

zzo1=ZROW(2,1);

2202=ZROW (2,1) ;

FOR i=1:1, ...
2202 (:,i)=[xxo (i) shi%*xdo(i)];

END,

tto=t0;

eeo=0;

21];25;25; gblgh z4';25; gqblq5];

// al: count used to control the ord & h adjusting.

al=0;

// pgxdo: old value of Jaco respect with xd.

pgxdo=0;

GLOB (hi)

GLOB (hi 1)}

GLOB (tto)

GLOB (ord)

GLOB {xxo0)

GLOB (eeo)

GLOB (count)

GLOB (al)

GLOB (pgxdo)

i=0;

WHILE i<num,
i=i+];
count=count+i, ...
[2zn1,2z2n2,een]=S0BOF (zz01,2202) ;
xt=CONJ ([2zn2(1,1:1)]"); ..
xxn=[xxo xt];
XXO=XXN;
2zol=zznl;
2202=22n2;
eeo=een;
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[nt,mt]=SIZE(tto); ...

time=tto (mt), ...

ttn=[tto tto(mt)+hil; ...

tto=ttn; ...

hi=hil, ...

If hi<epmin, ...
DISPLAY (‘Solution may have singularaty here.'); ...
i=num; ...

END,

IF tto(mt+1) > tmax,
DISPLAY ('The seting time is over. Simulation stop.');
i=num;

END,
o/
i
N
ol
END

IF ABS (een(mt+1)) < epmin, ...
DISPLAY (‘The solution ---> linear as time ~--> infinity. Simu stop.'); ...
i=num;

END,
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// [2z2n1,2zn2,een]=sdbdf (z201,2202)
//
//%%% single step of DBOF for inversed SYSTEM (vary h & ord) #¥%%
//
// Calculate one step of integr8 by DBDF algorithm for a nonlinear
// system with adjustable order 1 .. ordset
//
// The computational coefficient matrices and variables are imported as globals
// ( ©9,99,9b99,ab139,q!9,gama,ordset,ordmax,ord,epsi,epmin, tmax, num, t0, x0, x0,
//  hO,hi...)to reduce in/out arguments.
/7
[n,m]=S1ZE (xxo0) ;
[nz,m2])=S1ZE (2202) ;
xi=zzo2(1,1:1);
ti=tto (m);
til=ti+hi;
2i=2202;
e=eea(m) ;
// rOo=himl/hi
ro=1;
// if iter8 diverge-->rk=1/8, hi=rbkxhi
rh=t;
// for some QDE, pgxd needn't be recomputed for each step. (flag=0)
// for other QDE, pgxd DO need recomputed even though flag=1}.
flag=0;
GLOB (m) ,
GLOB (r&),
GLOB (f1ag),
IF m=1, ...
[zil,zit]=NR(zi,til,ord);
ELSE ...
ord=nz-1, ...
himi=ti-ttof{m=-1); ...
rO=hi/himl; ...
1F ro<>1, ...
FOR i=1l:ord+!, ...
FOR j=1:1, ...
zi (i,j)=00%x(i=1))%zi (i,]): ...
END,
END, ...
END, ...
[zil,zit]=NR(zi,til,ord); ...
..// if iter8 diverge-->rk=1/8, hi=rk*hi, redo it ...
IF rk<0.8, ...
hi=rbkxhi; ...
til=ti+hi; ...
al=0; ...
FOR i=l:ord+!, ...
FOR j=1:1, ...
zi (i,j)=(rbee(i=1))%2i (i,j); ...
END, ...
END, ...
{zi1,z2it]=NR(2i,til,ord); ...
END, ...
END
//
// Error test , stepsize and order control.
//
etest=0;
// r1 : if keep ord unchanged, hil=rix*hi



rli=1;
// r2 : if reduce ord by 1, hil=r2%hi
r2=0;
// r3 : if increas ord by 1, hil=r3shij
r3=0;
facto=1;
FOR i=1l:o0rd, ...
facto=facto®*i; ...

END,
// error estimate
FOR i=1:1,

et(i)=gamékord)*facto*(ziI(ord+l,i)-zi(ord+|,i))+epmin; e
END,
etest=NORM{et,'INF');
[em, idm]=MAX (ABS (et)) ;
eenl={eeo etest];

// if etest<epsinon, accept solution. determine ordn & hil for next step.

IF etest<=epsi, ...
r1=(1/1.2) % (epsi/etest) *x (1/ (ord+1)) ;
IF al<ord+l,
al=al+tl; ...
ordn=ord;
hil=hi; ...
ELSE ...
IF ord>=2, ...
dn=ABS (gama (ord-1) #facto*zil (ord+1,idm)); ...
r2=(1/1.3) % (epsi/dn) #% (1/ord) ; ...
END, ...
|F ord<=ordset-1, ...
ddz=zi1l (ord+1, idm)-2%2202 ({ord+1), idm)+zzol ({(ord+1),idm); ...
dn=ABS (gama (ord+1) #*facto*ddz); ...
r3=(1/1.4) % {epsi/dn) #* (1/(ord+2)); ...
END, ...
re={r1,r2,r3]; .
[rmax, id]=MAX (rr);
rErMaxK; ...
IFr>1.1, ...
IF r>5,
r=5; ...
END, ...
hil=r%hi; ...
al=-1; ...
ELSE ...
IF r<0.9, ...
hil=r*hi; ...
al=-1; ...
ELSE ...
hil=hi; ...
END, ...
END, ...
{F id=2, ...
erdn=ord-1; ...
al=-1; ...
flag=1l; ...
ELSE ...
IF id=3, ...
ordn=ord+1l; ...
FOR i=1:1, ...
zb(i)=(zi1 (ordn,i)~2zi (ordn,i)) /ordn; ...
2bb (i) =(zz02 (ordn, i) ~zzol {ordn,i)) fordn; ...
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END, ...
211-[2|1 CONJ (zb! )]
zzol—[zzol ZROW(1,1)];
zzoZ [zzoz CONJ( zbb')];
al= ‘e
flag=l; N
ELSE ...
ordn=ord;
IF hil=hi;
al=al+l;
END, ...
END, ...
END, ...
END, ...
voo// xxn=[xxo0,zil(1)];
zznl=zz02 (1:ordn+1,:) ;
zzn2=zil (1:ordn+1,:);
ELSE ...

..// otherwise, reject above solution,determine new hi, ordn for currend...
...// step, recompute solution until satisfied. ...
...// nf : # of times solution are rejected. ...

nf=0; ...

r=r0;

WHILE etest>epsn, ‘e

nf=nf+i; ...
ri=1; ...
r2=0; ...
FOR i=1:1; ...
xd {i)=zi(2,i)/hi; ...
END, ...
...// if fail more than 3 times, reduce ord=l. ...
IF nf>=3, ...
ordn=1}; ...

flag=1l; ...
I'F nf>3, ...
hi=0.5%hi; ...
ELSE ...
hi=(ABS (0.5%epsi/ (MAX (xd)) *%0.5;
END,

FOR i=1:1, ...
2202 (2,1)=hi%*xd(i); ...
END, ...
zi=2202(1:2,:); ...
til=ti+hi; ...
{zi1,2it]=NRXDXS (zi,til,ordn); ...
...// otherwise, determine hi=r%hi, ordn for current step ...
ELSE ..
rl-(l/l 2) * (epsi/etest) %% (1/ (ord+1)) ;...
IF ord>=2, ...
dn=ABS (gama (ord-1) #facto®zil (ord+1,idm)); ...
r2=(1/1.3) % (epsi/dn) *%(1/ord) s ...
END, ...
re={rl,r2]; ...
[rmax, id]=MAX(rr); ...
rErmax; ...
hi=r%hi; ...
til=ti+hi; ...
1F id=2, ...
ordn=ord-1; ...
flag=1l; ...



ELSE ...
ordn=ord;...
END, ...
FOR i=l:ord+1, ...
FOR j=1:1, ...
2i (i, g)=(rxe(i=1))%2zi (i,j)s ...
END, ...
END, ...
[zil,zit]=NR(zi,til,ordn); ...
...// if iter8 diverge-->rk=1/8, hi=rbk*hi, redo it
IF rk<0.8, .
hi=rbxhi; ...
til=ti+hi; .
FOR i=l:ord+1,
FOR j=1:1, ...
2i (L 0) = (rhi (i-1)) 52 (L J) 5
END, .
END, .
{zil,zit]=NR(zi,til,ordn); ...
END, ...
END, ...
facto=1; ...
FOR i=l:ordn, ...
facto=facto®ij;
END, ...
...// test estimat error again, until satisfied ...
FOR i=1:1,

et (i) =gama (ordn) *facto*(zi1 (ordn+1,i) -zi (ordn+1,i) ) +epmin; ...

END, ...
etest=NORM(et, ' INF');
[em, idm]=MAX (ABS (et)) ;
eenl=[eeo etest]; ...
al=0; ...
END, ...
...// get hil for next step ...
hil=hi;
END
// get ordn for next step.
ord=ordn;
//xxn=[xi zi1(1)];
zznl=2202 (1:ordn+l,:); ...
zzn2=zi1 (V:ordn+l,:);
een=eenl;
RETURN
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//[zil,zit]=NR(zi,til,ord)
//

//Do Newton_Raphson iteration to get xd.

// Determine coeffecient matrices for current order

ni=(ord-1) * (ordmax+1) +1;

nh=nl+ord;

b=b9 (nl:nh, l:ord+l);

q=q9 (nl:nh, l:ord+1);

qbg=gbqg (nl:nh, l:ord+1);

gblgq=gbiq9(nl:nh, l:ord+1);

gl=ql9{l:ord+1, ord);

beta=b(1,2);

//

//doing N_R iter8 to get xd(i+1).(included in vector zit)
/

2=2zi;
u=EYE (1) ;
//VF m=1, ...
/7 [pgxdl=JXDS{z(2,:)/hi,til); ...
// p=pgxd-beta*hi*u; ...
// |F NORM(p)<=1.0D-15, ...
// DISPLAY (‘warning: (Jaco-betathi*!) is almost singutar. '), ...
// END, ...
// pit=CONJ{({u/pP)'); ...
// pgxdo=pgxd; ...
//END,
[11777777777771777177777777/77/777
// (section deleted put at the end of function. |t may be reused after
// further consideration.)
J11177771777777771777777777777777
\F flag >=0, ...
[pgxd]=JXDS{(z(2,:) /hi,til); ...
p=pgxd-beta*hi*u; ...
IF NORM(p) <=1.0D-15, ..

DISPLAY ('warning: (Jaéo-beta*hi*l) is almost singular. '}, ...
END, ...
pit=CONJ ((u/p) )5 ...
FOR i=1:3,

g1=ZROW (ord+1,1); ...
g1(2,:)=CONJ(GXDS(z(2,:)/hi,tin))}*; ...
dz=(gblg*z-q*gl) *pitiukhi; ...
2=z+dz; ...
END, ...
IF MAX (MAX (ABS (d2))) >epsi, ...
rb=0.125; ...
DISPLAY ('lteration not converg, set hi=(1/8)*hi.'): ...
END, ...
pgxdo=pgxd; ...
END,
2it=2;
//

//determine x(i+1). (in zi}l)

zii=gbqg*zit;

flag=0;

RETURN
/;////////////////////////////////////////////

/
L1071777707777777707777777717777777¢777777777/
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//[x]=GXDS (xd, t)
//%nown SYSTEM x=g(x',t)

// e=exp (1) ;
//x (1) = ekh(]S)ke**(—gﬁloookxd)-e**Z*e*k(-IOOOﬁxd),
// x(1)= e%x (9) Sakd (-9)’(]000:’:xd) ek kekk (-1000%xd) ;

;;x (1) =enxxlx (ej’:;’: (- 100%xd) -e*% (-900%xd) ) ,

x(1)=-1.001%xd (1) -0.001%xd (2) ,
x(2)=xd (1),
//

//x (1) ==2%xd (1) ;
jjx(2)='3*xd(I)-O.S*xd(z);
//x (1) =xd (1) / (xd (2) #%2) ;
/7% (2) =xd (2) %%2;

//

//x=-0.01%xd;
//x=-0,01%xd+sin (t);
//x=-xd;

//x=-100%xd;

//x==(1+t) *xd;
//7x==1/ (1+t) %xd;
//x=={1+t) * (xd=-exp (-t) ) ;
//x=sqrt (1/tx(xd+1/(1+t)));
//x=sgrt(abs ({xd-1/(11-t))/(t=10)));
//x==1/ ((1+t) *%3%xd) ;
//x=sqrt(-xd) ;
//x=sin (2%t) / (2%xd) ;
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//[pgl=JXDS (xd, t)
//partial derivative of x=g(x',t) respect to x'

/7 e=exp (1) ;

//pg= 1000%e%k2%ek* (- 1000%xd) ~9000%*ex* (18) xe** (-g000%xd) ,

// pg= 1000%ekex¥% (- 1000%xd) ~9000 ke (9) feerex (-90003‘<xd) H
//pg=100%e%#% ] % (xekk (-900%xd) —e** (~100%xd) ) ;

/

1.001;
0.0071;

. .e

O — 1 1
-

//pg (1, 1) ==2;
//pg(1,2)=0;
//pg (2,1)=-3;
//pg(2,2)=-0.5;
/7

//pa (1,1)=1/(xd (2) #*2) ;

//pg (1,2)==2%xd (1) / (xd (2) #*%3) ;
//pg(2,1)=0;
5499(2.2)=2*xd(2):

// pg=-0.01;

//pg=-1;

//pg=-100;

//pg=-1/(1+t) ;

//pg=-(1+t) ;
//pg=.5/sgrt (¥ (xd+1/ (1+t))) ;
//pg=.5/sqrt (abs ((£-10) * (xd=1/(11-t))));
//pg=]/ ( (]+t) Sk 3kxdrk2) ;
//pg=-0.5/sqrt (-xd) ;
//pg=-sin(2#%t) / (2%xd#*2) ;
RETURN
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