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ABSTRACT

A new methodology for predicting the behavior of macro-economic variables is

described. The approach is based on System Dynamics and Fuzzy Inductive Reason-

ing. A four-layer pseudo-hierarchical model is proposed. The bottom layer makes

predictions about population dynamics, age distributions among the populace, as

well as demographics. The second layer makes predictions about the general state

of the economy, including such variables as in
ation and unemployment. The third

layer makes predictions about the demand for certain goods or services, such as milk

products, used cars, mobile telephones, or internet services. The fourth and top layer

makes predictions about the supply of such goods and services, both in terms of their

volume and their prices. Each layer can be in
uenced by control variables, the values

of which are only determined at higher levels. In this sense, the model is not strictly

hierarchical. For example, the demand for goods at level three depends on the prices

of these goods, which are only determined at level four. Yet, the prices are themselves

in
uenced by the expected demand. The methodology is exempli�ed by means of a

macroeconomic model that makes predictions about U.S. food demand during the

20th century.
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CHAPTER 1

Introduction

During the late 1950's, some very unusual, miniature size economy cars were

imported to the United States. One of these was the German Z�undapp, a 9.5 foot,

16 horsepower four-seater with two doors : one at the front of the car and the other

at the rear. The model designation was Janus, for the two-faced Roman God who

guarded the gates with the help of peripheral vision. The Z�undapp's driver and front

passenger faced forward, while the two rear passengers faced the back.

Being a rear-seat passenger in the Z�undapp was a lot like engaging in the time

series based forecasting approaches. The only thing you would see was where you

had been, and you often had little idea where you were going.

A navigator sitting in the rear of the Z�undapp and having to give instructions to

a blindfolded driver in the front would have an easy task, if the future were not much

di�erent from the past. Economic Forecasting is a similar task. Unless hampered

by unpredictable events such as technological advances and changes in either the

economy or consumer demands, accurate forecasts can be made.

Economics is a decision science with an objective of trying to explain the deci-

sions of the agents that make up the economy. The U.S. economy consists of over 120
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million families, each of which is making individual decisions designed to optimize

their own well-being or utility, each having di�erent family characteristics and his-

tories and with decisions based largely on di�erent information. The macroeconomy

is then the aggregate of the series produced by the individual families, an exam-

ple being consumption. A subset of this example, namely food consumption is the

subject of this study. Whether or not a non-linear relationship at the micro{level

produces non-linearity at the macro{level depends on various conditions, on the type

of non-linearity, and the common features of the various micro information sets.

As an example of a family decision making which is not a rule-driven autonomous,

or deterministicmechanism, consider the consumption of poultry products by a family

over some period, such as a month. The family starts a month with a stock of food

products and periodically buys some fresh food products over the course of the month.

In most cases, the total consumption of food products changes little over a month.

For a longer period, the total consumption will change and probably become more

e�cient. The consumption of poultry products can be considered to be a constant

proportion of the consumption of total food products. Some forecasting models of

consumption quantity of poultry products are based on total food consumption and

a forecast of this quantity. However, throughout the month, the family makes a

sequence of decisions about whether or not to consume a particular variety of food,

in this case poultry food products on any occasion. These decisions will depend

on family characteristics, such as family size and age composition, and its economic
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variables such as the family income, the price of poultry food products and other

potential purchases. The economists will emphasize income and prices, even though

many families do not actually know these variables with any precision. The decisions

are made frequently and not independently and di�er across families. One aspect of

the economy is that any of its variables dislikes being thought of as being forecastable.

At the next possible instant, the economy reacts to this action and probably ensures

that the forecast is incorrect.

Making informed predictions about macroeconomic quantities is a very di�cult

task. The same facts are interpreted in a number of di�erent ways by various

economists leading to diametrically opposite opinions about the state of the econ-

omy. The economy actively de�es any attempt at being understood. This is called

the \e�ciency" of the economy. A totally e�cient economy is one that it is totally

unpredictable. The reasoning behind this is also convincing. As long as the economy

is predictable, someone will take advantage of it and make a lot of money. But the

economy reacts to this action also. In short, it reacts vehemently to any small change.

This aspect of its behavior is what makes its study interesting. Under this situation,

the best that we can hope for, would be to get as close as possible to predicting the

behavior of the economy and at the same time allow the economy to be as elusive as

it wants to be about its behavior.

Making predictions about the state of the economy is not a di�cult task [1]. What

is more signi�cant is the reliability of these predictions. Predictions about the state of
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the economy are not valuable unless the quality of these predictions can be assessed.

The heart of the modeling/simulation environment is the part that estimates the

error of the prediction. An economic modeling tool that is not self-critical, that does

not check the validity of its own predictions is essentially worthless.

1.1 Economic Modeling

A variety of di�erent techniques have been proposed and are in use for economic

modeling [2]. Commonly employed methods use statistical techniques. Most of the

time-series based forecasting techniques are statistical techniques. The majority of

statistical procedures for economic modeling are designed to be used with data orig-

inating from a series of independent experiments or survey interviews. The resulting

data or sample is taken as representative of some population. The statistical analy-

sis that follows is largely concerned with making inferences about the properties of

the population from the sample. With a time series data set, which is usually the

case for economic models, the sequence of occurrence of the data plays considerable

importance as it represents the time{history of the data.

Statistical procedures usually involve using past values of the data series to �t a

straight line or an exponential curve to build a model. Extrapolation is then adopted

to make a forecast. These forecasts have no insight into the economic forces that

drive the model. It is also a rather na��ve model since, sometimes readily available
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information is ignored. Statistical models may su�ce if the model is less complex

and fairly straight-forward.

The other types of models that are available, then fall into two categories. They

are knowledge-based deductive models and pattern-based inductive models.

1.2 Knowledge-based Deductive Models

The most widely used knowledge-based deductive economic models are System

Dynamics models [3]. System Dynamics starts out with the selection of a number

of so-called level variables (state variables). Levels are variables that accumulate

over time. For each level, a number of rate variables are de�ned. Rates are divided

into in
ows and out
ows. In
ows contribute to the growth of the associated level,

whereas out
ows contribute to their decline. For each rate variable, a set of the

most important factors is written down that in
uence the value of the rate. This is

consistent with other modeling approaches. According to George Klir, the selection

of variables must be the �rst step in any modeling e�ort. It constitutes the level 0 of

the epistemology of levels in his General System Problem Solving framework [4].

The factor variables of the System Dynamics methodology are then grouped into

four classes : levels, rates, external inputs, and auxiliary variables. The factors may

themselves be levels or rates, i.e., variables whose dynamics are already covered by the

description provided earlier, or they may be external driving functions, whose values
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Figure 1.1: A Typical System Dynamics Model

as functions of time must be known, or �nally they can be auxiliary variables. Any

variable that does not fall into one of the �rst three categories is called an auxiliary

variable. It is simply added to the set of variables, for which in
uencing factors must

be determined.

A typical System Dynamics model in Fig. 1.1 shows how a growth variable can be

represented using System Dynamics. The value of the variable at any time instant t,

is the sum of the value of the variable at any time instant, t-k and the accumulation

during the time period k. The net addition during the time k, is the sum of the

amount added due to growth and the amount added as the input to the system.

Therefore, in this example, the current value is the \level" variables, the additions

are the \rate" variables and the growth rate is an \external function".

Classical System Dynamics then goes about proposing equations that link the fac-

tors together, and this is where it becomes unreasonable. System Dynamics assumes
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independence of di�erent in
uencing factors. This assumption is not justi�able. The

disadvantage with this model is that it makes structural assumptions about the sys-

tem to be modeled, assumptions that are di�cult to verify or refute, yet its predictions

depend heavily on these silent assumptions, and the method is totally blind to its

own gullibility.

A deductive model, derived from physical principles, has a high degree of validity

in the sense that somewhat valid results can be obtained for a large range of values of

its parameters. However, the results may not be very accurate due to the uncertainty

of the actual parameter values and due to unmodeled dynamics.

1.3 Pattern based Inductive Models

The most commonly used pattern-based inductive economic models are Neural

Network models [5]. A Neural Network is a highly non{linear set of (either static or

dynamic) equations of arbitrary complexity. Using enough neurons distributed over a

su�cient number of layers, basically any functional relationship can be approximated

with arbitrary accuracy. Since the precise structure of the Neural Network doesn't

matter, the structural assumptions are essentially harmless. The Neural Network

assumes a very rich structure and can basically represent any behavioral pattern.

Parametric models su�er from the following drawbacks :
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� Since the Neural Network assumes a structure in advance, it becomes very

di�cult at a later stage, to assess the error of this assumption. But there is

also an advantage due to this assumption - since the assumed model structure

is very rich, structural error is usually negligible.

� Since most parametric models are deterministic in nature, it becomes di�cult to

assess the error of the predictions made, because this error cannot be estimated

in a deterministic sense. Once a Neural Network has been trained, it will make a

prediction for any input pattern it is presented with, irrespective of how unlikely

the correctness of the prediction may be. This is a serious drawback of all

parametric models as we can never evaluate the genuineness of our prediction.

� Optimization is a part of any inductive model. The larger the number of pa-

rameters to be optimized, the slower the optimization will be. Training will

thus take a very long time before we can start making a prediction.

Parametric models make an assumption about the structure of the relationship

and then optimize parameter values to obtain an optimal curve �t between the ob-

served and predicted output trajectories. Non-parametric models do not make any

assumptions about the underlying model structure, and thus restrict themselves to

characterize and record in the most e�cientmanner previously observed input/output

patterns for use in the future and for interpolation.
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Non-parametric models o�er solutions to the aforementioned problems. They also

have their drawbacks. Extrapolation in a non-parametric inductive model is totally

impossible. A non-parametric model can only reproduce what it has been shown

earlier in terms of input/output patterns. It cannot extrapolate beyond the range of

input values that it has previously encountered.

In the case of parametric models, the extrapolation power lies precisely in the

structural assumption made i.e., the more incorrect that structural assumption is,

the more likely it will be that the extrapolated predictions are wrong. The enhanced

validity of a parametric model hinges upon a correct guess of the underlying model

structure.

Hence the real issue is not whether to use a structural or a behavioral model.

The problem of gullibility can only be overcome by a non{parametric model that

preserves the training data during the simulation (prediction) phase, comparing the

current input patterns with those that had been used in the modeling (training)

phase. Structural information should be added where available in order to reduce

the need for training data, but should be limited to assumptions that can be veri�ed.

Fuzzy Inductive Reasoning is a non-parametric modeling technique. Fuzzy Induc-

tive Reasoning is a modeling methodology that preserves the best of both worlds, by

enabling the user to mix deductive and inductive models in a single modeling and

simulation environment.
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1.4 Fuzzy Inductive Reasoning

Inductive Modeling tries to deduce a relationship between observational patterns,

from a set of observations of input-output behavior of the system. The exact relation-

ship between the variables is never calculated. The relationship should be capable

of reproducing the observed output patterns when the model is presented with the

observed input patterns. It should also be capable of producing sensible predictions

of the output that are not totally incorrect when the model is presented with pre-

viously unobserved and di�erent input patterns. Fuzzy Inductive Reasoning (FIR)

is one such modeling approach. FIR has a history of success in identifying dynamic

models of complex systems [6, 7, 8].

Fuzzy Inductive Reasoning not only allows modeling the system, but also allows

modeling the error of the simulation. However, the same methodology used to model

the output cannot be used to model its error. This is because of the fact that, if

indeed it were possible to calculate a deterministic value for the inaccuracy, then the

error could be subtracted from the prediction and a precise value of the output could

be obtained. Hence, the error can only be modeled in a statistical sense.

Fuzzy Inductive Reasoning has an inherent self-validation capability. It rejects

making predictions that are not justi�able on the basis of the available facts [9], a

feature that can also be used to estimate the horizon of predictability [10].
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Fuzzy Inductive Reasoning is a modeling and simulation methodology that gener-

ates a qualitative input/output model of a system by �nding the best possible fuzzy

in�nite state machine between discretized (fuzzi�ed) input and output states of the

system. The methodology is composed of the following main engines :

� Fuzzi�cation (Recoding)

� Qualitative Modeling

� Qualitative Simulation

� Defuzzi�cation (Regeneration)

Inductive reasoning models the behavior of time-dependent phenomena by a pure

pattern-matching approach. All inductive modeling methodologies involve studying

input/output patterns followed by an optimization phase. To minimize the time

taken for optimization, the real{valued signals are recoded into a smaller set of dis-

crete classes. For example, instead of calculating the price of a food item in dollars,

we classify the price as being either `very cheap', `cheap', `moderate', `costly', or

`very costly'. What recoding achieves is that it converts the quantitative trajectory

behavior into a qualitative episodical behavior. Evidently some amount of knowledge

is lost in the process of recoding. This is minimized by the use of fuzzy rules. Hence

the process of recoding is also called fuzzi�cation.

Fuzzi�cation of real-valued variables is done for the following reasons :
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� It speeds up the optimization dramatically. Suppose a relationship between n

inputs and 1 output is given. Rather than searching through a n dimensional

continuous search space to �nd the optimal input-output patterns, the search

is limited to the very coarse n dimensional continuous discrete search space of

class values. In this way, class values are used for determining the neighborhood

of the optimal solution, whereas the fuzzy membership information is then used

for interpolation in the vicinity of the optimal solution.

� The Optimization in the discrete space of the class values is deterministic. How-

ever, the subsequent interpolation in the continuous space of fuzzy membership

values is stochastic. This approach is better capable of coping with model

uncertainty than a purely deterministic approach.

� An almost identical technique to the one that is used to predict, in a statistical

sense, the fuzzy membership value of the output, can also be used to assess,

again in a statistical sense, the accuracy of the prediction made.

The second module is the qualitative modeling engine. Once the quantitative tra-

jectory behavior has been recoded into a qualitative episodical behavior, the process

of modeling consists of �nding �nite automata relations between the recoded vari-

ables that make the resulting state transition matrices as deterministic as possible.

Such a relation is called a mask.
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The mask consists of positive, negative and zero elements. The negative elements

in the matrix denote inputs of the qualitative functional relationship, so-called m-

inputs [11]. The positive value represents them-output. A mask has the same number

of columns as the episodical behavior to which it is applied, and it has a certain num-

ber of rows. The number of rows of the mask matrix is called the depth of the mask.

The mask can be used to 
atten a dynamic relationship out into a static relationship.

A mask candidate matrix is an ensemble of all possible masks, from which the best

one is chosen by a mechanism of exhaustive search. The mask candidate matrix con-

tains -1 elements where the mask has a potential m-input, it contains a +1 element

where the mask has its m-output, and it contains 0 elements to denote forbidden

connections.

Each of the possible masks is compared to the others with respect to its potential

merit. The optimality of the mask is evaluated with respect to the maximization

of its forecasting power. The Shannon entropy measure is used to determine the

uncertainty associated with the forecasting of the desired output state, for given

feasible input states.

The third module is the qualitative simulation engine. FIR makes predictions

by comparing the newly observed input pattern with all the input patterns in the

experience data base (the training data), and �nds the �ve nearest neighbors. It then

predicts the most likely class and side values, and calculates the membership value

as a weighted average of the membership values of the �ve nearest neighbors. In
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this way, reasoning is done using the (discrete) class and side values only, whereas

the concrete quantitative information is preserved by interpolating among the (real{

valued) membership functions of the �ve nearest neighbors.

The fourth and �nal module is the defuzzi�cation module. Here, the predicted

class, side, and membership values are converted back to real{valued quantitative

predictions using the inverse operation to the fuzzi�cation.

A schematic representation of the two primary engines of the FIR methodology,

namely the qualitative modeling and qualitative simulation, as well as the two inter-

face engines, fuzzi�cation and defuzzi�cation is shown in Fig. 1.2

1.5 Hybrid Model

Since the non-parametric method seems like a viable alternative for forecasting,

it could then be employed for economic forecasting. However as in the case of the

statistical techniques and other methods, the methodology in its pure state does not

allow for incorporation of economic policies. Therefore, if the economic policies can

somehow be forced into the methodology, a smart forecasting technique may result.

Economists insistently talk about the equilibrium of demand and supply, yet the

prices tend to 
uctuate and never really settle down. This phenomenon has a number

of features.
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Figure 1.2: Schematic of the Fuzzy Inductive Reasoning Methodology
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The systems that generate such erratic behavior consist of individual parts that

interact with each other. In a market place, demand and supply interactions involve

exchange of goods and services between producers and consumers. The interactions

among the individual components do not occur instantaneously, but in a time delayed

manner. Producers who o�er their goods and services on the market may generate

excess supply that leads to a drop in price. As a result, they may restrict production

in the next period, leading to shortages and subsequent price increases. In many

real-world dynamic processes, the response of one system component may not occur

in direct proportionality to a stimulus that it receives. Rather, the responses may be

related to the square of the initial stimulus or take place in some other non{linear

relationship.

Understanding the economy requires knowledge about the role of complex feedback

processes and the way in which their strengths change over time. A typical modeling

methodology in such cases is to compartmentalize systems into subsystems for which

it is possible to specify cause{e�ect relationships that have closed{form solutions.

Unfortunately, the methods that achieve such solutions may limit the extent to

which one is able to accommodate timelags and non{linear relationships. By placing

emphasis on �nding closed{form solutions, we run the risk of eliminating from our

models the very features that make them interesting.
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In our day to day lives, we develop several models of dynamic processes. We

notice and collect a number of details. In our mind, we abstract many details that

we consider inconsequential. Then, we relate the remaining pieces of information to

each other and make a projection of the possible outcome of the dynamic process. If

we have drawn the right conclusion, we will use our model again in similar situations.

If we are wrong and can a�ord to be wrong, we will revise our model the next time.

While for some decisions mental models are su�ciently simple and accurate to

provide a basis for action, this is usually not the case. The larger the number of system

components and the more time lags and non{linearities there are in the system, the

more di�cult it is for us to develop mental models for decision making as it becomes

a tedious task to identify and throw away the inconsequential details.

To model and better understand non{linear dynamic systems requires identi�ca-

tion of the main system components and their interactions. Such a model should

then optimize the available facts by mixing knowledge-driven structural information

with data-driven behavioral information. This suggests that we would need a Sys-

tem Dynamics model to identify our economic forces and then use Fuzzy Inductive

Reasoning to make a forecast. This research work proposes such a model. The main

system components are identi�ed using System Dynamics and the consequence and

inconsequence of variables and their interactions with one another is determined using

Fuzzy Inductive Reasoning.
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This research e�ort departs from the classical System Dynamics approach at the

point where the System Dynamics model assumes one-to-one relationship between

its variables. Instead, each rate equation is identi�ed from observational data as an

Inductive Reasoning model.

This research is the �rst attempt ever to combine System Dynamics with Fuzzy

Inductive Reasoning in a mixed quantitative and qualitative modeling e�ort.

Data de�ciency is a major problem in all economic predictions. The data rate is

dictated by the natural time constants of the processes to be predicted. For example,

population dynamics change over years, not over days. Hence, providing data more

frequently than about once a year doesn't help. However, how relevant are data

collected before the invention of reliable contraceptives for making predictions about

the number of children per woman of childbearing age today? How many data points

can be used for predicting the number of mobile telephones? Mobile telephones

simply haven't been around very long. The data deprivation problem is the major

stumbling block of any economic model. The proposed model shall address this issue,

and put the problem into proper perspective.

Finally, any prediction is an act of extrapolation. Clearly, an external event, such

as a war or a new invention, that is not foreseeable, cannot be predicted, and when

it occurs, it immediately invalidates any prediction made prior to the event. A useful

side product of being able to produce an estimate of the prediction error, is that
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this same estimate can be used to estimate the horizon of predictability, i.e., the time

window into the future, for which meaningful predictions can be made, assuming that

no unpredictable external events interfere.

Some of the conventionally used econometric modeling techniques are discussed

in Chapter 2. Chapter 3 describes in detail the System Dynamics methodology. The

Fuzzy Inductive Reasoning methodology is described in Chapter 4. Chapter 5 tries

to elaborate on the structure for the proposed model and looks into two such models

- a simple model that is speci�c to the U.S. Food and Agriculture industry, and a

complete econometric model that can be applied to any U. S. industry. The complex

model was run with the same food data and the results are explained in Chapter 6.
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CHAPTER 2

Review of Economic Forecasting Techniques

For over �fty years, experts and novices, learned scholars and na��ve upstarts have

searched for statistics that signal future changes in economic activity. It is a very

di�cult task to identify the perfect indicator in forecasting future economic activity.

Statistical techniques exist that attempt to determine this relationship to the best

possible extent, but none have been outstandingly successful. Most time{series fore-

casts are based on statistical theory, not economic theory. Therefore, the time{series

forecaster has no insight into the economic forces that drive the numbers. The time{

series forecaster can adjust the predictions in the light of current economic events and

may use economic theory to do so. Still, economic theory is not formally incorporated

into the procedure.

In recent years, it has become fashionable to employ Neural Network models for

predicting economic quantities. In some situations, Neural Networks are better suited

than econometric models or NARMAX models [12], because they make less stringent

structural assumptions about the relationships of the variables among each other.

A basic review of di�erent techniques available for economic forecasting follows.
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2.1 Time Series Data

Time Series Data are a sequence of observations over regular intervals of time. The

time{series may consist of weekly production output, monthly sales, annual growth,

or any other variable, the value of which is observed or reported at regular intervals.

Analyzing a time{series helps identify patterns and tendencies that explain variation

in past sales, growth rate or any variable of interest. This understanding contributes

to our ability to forecast future values of the variable.

2.1.1 Time Series Components

Analysis of a time series involves identifying the components that have led to the


uctuations in the data. This approach, known as the classical approach, identi�es

the following components :

� Trend(T) { This is an overall downward or upward tendency. To the extent

that the trend component is present, a regression line �tted to the points on

the time{series will have either a positive or a negative slope.

� Cyclical(C) { These are the 
uctuations that repeat over time, with the pe-

riodicity usually greater than one year. A business cycle is an example of this

type of 
uctuation.

� Seasonal(S) { These are also periodic 
uctuations, but their periodicity is at

the maximum, one year.
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� Irregular(I) { This component represents random, or noise 
uctuations that

are the result of chance events, such as work stoppages, oil embargoes, equip-

ment malfunction, or other happenings that either favorably or unfavorably

in
uence the value of the variable of interest. Random variation can make it

di�cult to identify the e�ect of the other components.

In the classical time{series model, these components may be combined and repre-

sented in various ways, i.e., either as a product or as a sum. The classical time{series

model can be represented by :

y = T � C � S � I (2.1)

where y = observed value of the time series variable

T = trend component

C = cyclical component

S = seasonal component

I = irregular component

The model assumes that any observed value for y is the result of in
uences exerted

by the four components, and here it has been assumed that the e�ect can be repre-

sented by a product of all the four components. The observed value of y is assumed

to be the trend value, T adjusted upward or downward by the combined in
uences

of the cyclical, seasonal and irregular components.
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Several alternative models exist, including an additive model, with

y = T + C + S + I (2.2)

It can also be assumed that the value of y depends on the value for y for the

preceding period. In other words, yt (observed value for time period t) may be

expressed as a function of T; C; S; I and yt�1 (observed value for the preceding time

period). Also the multiplicative and additive models may be combined as :

y = (T + C) � S � I (2.3)

In general, the most important component of most time series is the trend, which

may be examined by,

� using regression techniques to �t a trend to the data or

� using smoothing techniques to moderate the peaks and valleys within the series.

2.1.2 Curve Fitting

Regression techniques are used to �t the available data to an equation. The

equation may be linear or non{linear. Non{linear equations may be exponential or

polynomial equations.

While, the linear equation �tting technique is an extension of the Simple Linear

Regression technique, the polynomial equation �tting is an extension of the Multiple

Regression technique.
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2.1.2.1 Linear Trend Equation

The linear trend equation �tting technique is a simple linear regression model,

having a y intercept and a slope, with estimates of these population parameters

based on sample data and determined by standard formulas. The model is described

in terms of the population parameters as :

yi = b0 + b1 � xi + �i (2.4)

where yi = a value of the dependent variable; y

xi = a value of the independent variable; x

b0 = the y intercept of the regression line

b1 = slope of the regression line

�i = random error; or residual

The equation can then be written as :

byi = b0 + b1 � xi (2.5)

where byi = estimated value of the dependent variable; y

xi = a value of the independent variable; x

b0 = the y intercept of the regression line

b1 = slope of the regression line

The best �t equation is then determined using the Least Squares criterion. The

equation is then moved one step forward in time to make a forecast.
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2.1.2.2 Exponential Trend Equation

A non{linear equation may prove to be more appropriate than a straight line for

some time{series. One of the possibilities is to �t an exponential equation, a method

that is advantageous whenever the time{series tends to increase at an increasing rate.

The exponential trend equation is expressed as

byi = b0 � (b1)
xi (2.6)

The equation can also be expressed using logarithms as :

log byi = log b0 + xi � log b1 (2.7)

In this case, a simple linear regression model is obtained similar to the previous

case. A forecast can then made by moving the model ahead one time instant into

the future.

2.1.2.3 Polynomial Trend Equation

A non{linear time series can also be �tted by a polynomial equation. This involves

an equation estimating y as a function of x, but the method treats x, x2, . . . , xn as

independent variables instead of just one.

The polynomial equation can be expressed as

byi = b0 + b1 � xi + b2 � x
2
i + : : :+ bn � x

n
i (2.8)
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The polynomial equation includes a constant component(b0), a linear component(b1x)

and non{linear components(b2x2, . . . ,bnxn ). As such, it is especially appropriate

when an upward trend in the time{series is followed by a downward trend or vice{

versa. This type of equation can also be used whenever the time series either grows or

decays at an increasing rate. This capability rivals that of the exponential equation,

but whether the polynomial equation �ts the time series better than the exponential

equation will depend on the data to which they are being applied.

2.1.3 Smoothing Techniques

The techniques described earlier �t an actual equation to the time series. How-

ever most time series have short term 
uctuations. There are several techniques

available that smoothen out these short-term 
uctuations. They dampen the sudden

upward and downward jolts that occur over the series. There exist several forecasting

procedures that can be classi�ed as using smoothing techniques. These procedures

all conceive of a time series possessing locally elements of level, trend, and possibly

seasonality. Some of these techniques are described below

2.1.3.1 Moving Average

The moving average replaces the original time series with another series, each

point of which is the center and the average of N points from the original series.

For this reason, this technique is also known as the centered moving average. The
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purpose of the moving average is to take away the short-term seasonal and irregular

variation, leaving behind a combined trend and cyclical movement. Including more

periods in the moving average dampens the original 
uctuations to a greater extent.

This is because a larger base reduces the impact of any single data point.

2.1.3.2 Exponential Smoothing

The basic exponential smoothing equation replaces an observed series X by a

smoothed series �X - an exponentially weighted moving average of current and past

values of X, e.g.

�Xt = aXt + (1� a)Xt�1; 0 � a � 1 (2.9)

In the simplest version of exponential smoothing, the latest available smoothed value

is used to forecast all future observations.

In practice, the simplest approach is rarely employed, and several modi�cations

designed to take into account local trend and seasonality have been introduced. The

following is due to Holt [13] and Winters [14]. Writing the trend factor at time t as

Tt, the seasonal factor as St, and again denoting the smoothed series as Xt, the local

trend is estimated as

Tt = C( �Xt � �Xt�1) + (1� C)Tt�1; 0 � C � 1 (2.10)

If the seasonal cycle has period L, then the seasonal factor at time t is

St = B
Xt

�Xt

+ (1 �B)St�L; 0 � B � 1 (2.11)
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and the smoothed series is given by

�Xt = A
Xt

St�L
+ (1 �A)( �Xt�1 + Tt�1); 0 � A � 1 (2.12)

The forecast of Xn+h made at time n is then

X̂n(h) = ( �Xn + hTn) Sn�L+h; h = 1; 2; : : : ; L (2.13)

X̂n(h) = ( �Xn + hTn) Sn�2L+h; h = L+ 1; L + 2; : : : ; 2L (2.14)

The Holt-Winters method assumes additive trend and multiplicative factors, but can

be modi�ed to deal with a multiplicative trend or an additive seasonal component.

It remains to determine suitable values for the smoothing constants A; B; C. This

can be achieved by calculating forecasts of the known observationsXn,Xn�1,Xn�2,. . .

over a grid of possible values of the smoothing constants, and selecting the set which

performs best in terms of average squared forecast error.

Two alternative exponential forecasting procedures in common use are due to

Brown [15] and Harrison [16].

2.1.4 Box-Jenkins Method

Box and Jenkins [17] described a forecasting procedure based on �tting a stochastic

model to an observed time series. The class of models considered by these authors
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for non-seasonal time series can be written as

(1� �1 B � �2 B
2 � : : :� �p B

p) (1 �B)d Xt = �0+(1��1 B��2 B
2�: : :��q B

q)at

(2.15)

where the at's are uncorrelated deviates, each with the same variance, and B is a

back-shift operator on the index of the time series, so that BXt = Xt�1, B2Xt = Xt�2,

and so on. It is assumed that the roots of the polynomial equations

(1 � �1 B � �2 B
2 � : : :� �p B

p) = 0 (2.16)

and

(1 � �1 B � �2 B
2 � : : :� �q B

q) = 0 (2.17)

all lie outside the unit circle.

Model-building is viewed by Box and Jenkins as an iterative process of identi�ca-

tion, estimation and diagnostic checking. At the identi�cation stage, tentative values

for p,d and q are chosen. The coe�cients of the selected model are then estimated

using statistical techniques. Finally, diagnostic checks on the adequacy of represen-

tation of the model are employed. These may suggest modi�cations to the model, in

which case the whole cycle is repeated until a satisfactory model is found.

For seasonal time series of period L, Box and Jenkins proposed the model

(1� �1B
L � �2B

2L � : : :�pB
PL)(1 � �1B � �2B

2 � : : :� �pB
p)(1 �B)d(1 �BL)

D
Xt

= �0 + (1 ��1B
L ��2B

2L � : : :��qB
QL) (1 � �1B � �2B

2 � : : :� �qB
q)at (2.18)
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The assumptions of multiplicativity in this equation can be relaxed if such a course

is suggested at the identi�cation stage of the model-building cycle.

Forecasts of future values of a time series can be obtained by projecting forward

the Box-Jenkins models. Unlike the exponential smoothing methods, the Box-Jenkins

forecasting procedure is not fully automatic, as a good deal of judgment is required

in constructing the particular forecasting model to be employed. This fact illustrates

both the principal strength and a slight drawback of the procedure. The rigidity in-

herent in the exponential smoothing methods is considerably slackened, but forecasts

take rather longer to generate when the Box-Jenkins approach is employed.

2.1.5 Step-wise Autoregressive Procedure

A vast majority of the economic time series are non-stationary i.e., they do not

have a �xed mean over time. These series can generally be reduced to stationarity

by �rst di�erencing. Accordingly, to minimize the danger of discovering spurious

relationships it is advisable to analyze changes rather than levels of such series.

Consider a model of the form

xt = � +
KX
j

�jxt�j + at (2.19)

where

xt = Xt �Xt�1 (2.20)
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and K is some, possibly quite large, positive integer. One possibility, of course, is

simply to �t the above equation by ordinary least squares. However, unless K is

very small, such an approach would yield estimates of the coe�cients that are no

where close to the actual original values. An alternative is to employ a step-wise

regression routine. In the �rst step, the lagged value xt�j which contributes most

towards explaining variance in xt is introduced. In the second step, the lagged value

which best improves the �t is added, and so on until introduction of further lagged

values fails to produce a signi�cant improvement in �t. Regressors introduced at an

earlier stage, whose later contribution to the �t turn out to be insigni�cant can be

dropped from the regression. Forecasts of future observations are then obtained by

projecting forward the �nal �tted model.

Like exponential smoothing, this approach is fully automatic. Unlike exponential

smoothing, however, the choice of forecast function is quite wide i.e., as in the Box

and Jenkins method, an identi�cation process is built into the forecasting mechanism.

2.2 Neural Networks

A Neural Network can be used to make forecasts just like any of the other statisti-

cal techniques. Although the simple exponential smoothing is an e�cient statistical

technique for forecasting, more accurate forecasts can be obtained by the Box and

Jenkins technique. It has been reported that simple Neural Networks can outper-

form conventional methods, sometimes by several orders of magnitude [18]. It was
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also shown that the Neural Network model could forecast just as well as the Box

Jenkins forecasting system [19].

Most of the stock market forecasting systems are based on some kind of statistical

models such as Box-Jenkins methodologies. In recent years, arti�cial neural networks

have also been applied to stock market forecasting and have achieved a certain degree

of success [20], [21]. Wu et al developed a neural network model that makes forecasts

of the stock market [22]. It was shown by Wu et al that the forecasts made by

the Neural Networks were much better than the Box-Jenkins forecasts for the same

system under consideration. For short memory systems, it was shown by Tang et al

[23] that Neural Network models are superior to Box Jenkins models.

To monitor the forecasting system and determine whether one has to adjust pa-

rameters to reduce forecasting errors, a recurrent Neural Network can be used. The

weight adjusting strategies of the recurrent Neural Network can be used to reduce

the forecasting errors. Therefore, we can obtain forecasts e�ciently based on simple

exponential smoothing without having to monitor the forecasting system constantly

and adjust the parameters manually. This proves to be a very e�ective tool in fore-

casting.

When the general Box-Jenkins methodologies of time series are applied, the tasks

of tentative model identi�cation, parameter estimation and diagnostic will have to

be performed before the model can be used to forecast. They usually su�er from the
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huge computational cost of handling large volume data. However, in order to have a

more accurate prediction, these systems usually are required to forecast based on the

data of the last ten or twenty years. Therefore, most of them can only forecast based

on monthly data of past years to be computationally feasible. Moreover, every time

we have a new time series of historical data, the Box Jenkins forecasting methodology

has to be reapplied to identify the model and estimate the parameters to produce

future forecasts. Therefore, this modeling is a labor-intensive task because the model

identi�cation can only be judged by the researchers from the available candidate

models.

A brief detail over how a Recurrent Neural Network can be used for forecasting

using the same technique as exponential smoothing, but yielding better results fol-

lows. The equation used for simple exponential smoothing technique can be written

as:

Ŷt = � � Yt + (1 � � ) � Yt�1 (2.21)

where Ŷt = estimated value of the variable; Y at time t

Yt = value of the variable; Y at time t

Yt�1 = value of the variable; Y at time t� 1

� = weight of the neural network
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It is obvious that the recurrent neural network will produce exactly the same

results as the simple exponential technique as long as the value of � is known.

In simple exponential smoothing, the value of � is chosen in such a way as to

minimize sums of squares of forecast errors. A usual method of �nding an appropriate

value of � is through a search on the interval (0,1) using the historical data. Once a

value for � is determined, it is incorporated into the smoothing equation to generate

future forecasts. Since no forecasting system will provide perfect forecasts, it is

essential to monitor the system in some fashion to determine whether or not an

adjustment to � is necessary. Hence, the method of simple exponential smoothing

still runs into the problem of manually monitoring and adjusting the system.

In the arti�cial neural network as shown in eq. 2.21, the smoothing parameter now

becomes the weight of the connection between the input node Yt�1 and the output

node Ŷt in the recurrent neural network. The weight adjustment formula of the

arti�cial neural network can be used to monitor the smoothing parameter of simple

exponential smoothing. Since the recurrent neural network self-adjusts the weight

of its connections as described by Wasserman [24], it does not need any manual

monitoring and adjusting. Although this method is similar to the simple exponential

smoothing, the recurrent neural network has the advantage of automatically adjusting

itself to the new data and simultaneously producing forecasts.
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Neural Network models are better than Structural Models because they make less

stringent structural assumptions about the relationships of the variables among each

other. While this is good, this turns out to be its own undoing. The reason is the

following. A Neural Network is a parametric model. The Neural Network being a

highly non-linear set of equations can be used to represent any functional relationship

with arbitrary accuracy. The structural assumptions are essentially harmless because

during the training period of the Neural Network, the structural assumptions about

the system hardly matter. But once the model has been trained, the system knowl-

edge is totally contained in the network parameter values. The training data is no

longer preserved. So now, if the input variable driving the system and the model

suddenly leaves the range of input values used in training, the Neural Network never

gets to know this. The Neural Network will still continue to make predictions on the

output although the output has no signi�cance. This is its undoing. The reason here

being that the structural assumptions did not matter before training, but they do,

once the network parameters have been �xed.

Finally, Neural Networks like other statistical techniques never incorporate the

economic policies within the model. Therefore, a model that does incorporate such

features is always a better alternative.
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CHAPTER 3

System Dynamics

In a primitive society, all systems were those arising in nature and man adapted

to these systems without ever feeling compelled to understand them. With the onset

of the Industrial Revolution, these systems developed complexity and began to a�ect

and eventually dominate life with their impact on all facets of life - economic cycles,

political turmoil, unstable prices and 
uctuating unemployment. Their behavior

was so confusing that a general theory to explain their behavior seemed impossible.

System Dynamics arose out of the need to �nd an orderly structure for explaining the

cause and e�ect relationships. System Dynamics tries to establish the basic principles

behind system behavior.

Most social systems are information feedback systems. The system behavior is

a�ected by information 
ow forward and backward into the system. Feedback systems

deal with the manner in which information is used for the purpose of control. It

helps us understand how the amount of corrective action and the time delays in

interconnected components can lead to unstable 
uctuations. The study of feedback

systems occupies a special place in economic systems because in economic systems,

interactions between system components strongly a�ect the system behavior. As was

seen in the previous chapter, Mathematics has been used to structure knowledge in
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science, but has not been adequate for handling the essential realities of important

social systems.

In an information feedback system, it is the presently available information about

the past that is used as a basis for deciding future action. The behavior of all

feedback systems can be explained by Structure, Delays and Ampli�cation. The

structure of a system tells how the parts are related to one another. Delays exist

in the availability of information and taking decisions and actions based on this

information. Ampli�cation exists all throughout the system and is manifested when

an action is more forceful than might at �rst seem to be implied by the information

given as input to the governing decisions. The behavior of an economic system arises

from the di�erent ways in which structure, timelags and ampli�cation interact in the

system.

Economic systems are abundant with fragments of knowledge. We have such

fragments of knowledge, but have no way to structure this knowledge. To e�ectively

interrelate and interpret observations in any �eld of knowledge, we require a theory.

This theory could help put these fragments of knowledge together, to help learn the

system. System Dynamics is a methodology or theory that helps assemble these

fragments into a uni�ed structure. With the help of this structure, it now becomes

possible to interrelate facts and observations and learn from experience. It is this

structure that helps to interpret past information, to understand it and to predict

the future.
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System Dynamics is based on the fact that all processes in nature are feedback

systems, having many components, each of which can itself be a feedback system.

The System Dynamics (SD) methodology can be considered to be superior over

conventional mathematical models because it looks at the general concepts that gov-

ern system behavior rather than an exclusive examination of any single part, which

may not yield vital information. The SDmethodology tries to �t a structure re
ecting

the information and material 
ow paths as they naturally occur in the system, rather

than force a structure upon the model that satis�es an arbitrary set of mathematical

equations.

3.1 Modeling Dynamic Systems

Most mathematical models of economic systems are steady-state, stable, and lin-

ear. In reality, most economic systems are unstable and restrained only by their non{

linearities. Time and time rate changes form the essence of these models. Therefore,

a successful model would be one that is dynamic and capable of adequately generating

its own evolution over time.

System Dynamics models start with a structure, meaning the general nature of

the interrelationships within it. Assumptions about the structure are not related

to the data that drive the model. Plausible numerical values are assigned to the

coe�cients after a reasonable structure matching the descriptive knowledge of the
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system is obtained. The model is then accordingly altered such that its behavior

resembles that of the real world system. The model tries to relate individual rules and

characteristics of the system to the consequences that they imply. System Dynamics

models are chie
y represented using information feedback loops, levels, rates and

decision functions[25] [26].

3.1.1 Information Feedback Loops

Since economic systems are closed loop, information feedback systems, models

of such systems, must preserve the closed loop structure that gives rise to so much

of the interesting behavior. Information is continually fed back into the system as

decisions are made. These decisions are also fed back into the system as information.

A distinction between information and decision is very di�cult as there is no speci�c

di�erence between the start or the end of the loop. A representation for a feedback

loop is shown in Fig. 3.1.

Economic 
uctuations are one manifestation of the time-varying interactions that

occur in the information feedback loops. When rising sales exceed plant capacity,

this leads to expansion plans, which in turn restores a balance of supply and demand.

Therefore the decision ultimately a�ects the environment that causes the decision.

The SD methodology might seem to suggest that the model should lack interest

in the microscopic separate events that eventually build up the model. The study of
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Source

Decision

Action

State of the systemInformation

Figure 3.1: A Feedback Loop
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individual events gives an idea of the decision structure and delays in the system, and

is one of the richest sources of information about the way the model should be built.

The methodology appreciates this fact, and simply suggests that more attention be

paid to the system as a whole rather than concentrating at one single speci�c aspect

of the system.

The fundamental nature of any SD model is then one that alternates between the

following two entities namely, Information Reservoir and Decisions. The information

reservoirs are called \levels" in the System Dynamics terminology, and the basic

structure of the model can then be an alternating structure of reservoirs or levels

interconnected by controlled 
ows. One such simple model is shown in Fig. 3.2.

The essential features of the model are

� Several levels, that each accumulate over time

� Flows that transport the contents of one level to another

� Decision functions that control the rates of 
ow between levels

� Information channels that connect the decision functions to the levels.

3.1.2 Levels

The levels are accumulations within the system. Levels are the present values of

those variables that have resulted from the accumulated di�erence between in
ows
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Figure 3.2: An Embryonic System Dynamics Model
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State Variable
Inward Flow Outward Flow

Figure 3.3: Representation for a Level Variable

and out
ows. A level may have any number of in
ow or out
ow channels. In short,

levels are the time integrals of the net 
ow rates. These variables are analogous to

state variables in physical systems. A graphical representation for a level variable is

shown in Fig. 3.3.

3.1.3 Flow Rates

Rates de�ne the present, instantaneous 
ows between the levels in the system. The

rates correspond to activity, while the levels measure the resulting state to which the

system has been brought by the activity. The rates of 
ow are determined by the

levels of the system according to the rules de�ned by the decision functions. The

rates in turn determine the levels. The levels determining a particular 
ow rate will

usually include the level from which the 
ow itself comes.

Rate variables and Level variables, although very similar in appearance to one

another are in reality, quite di�erent. If a system has been brought to rest, i.e., all

activity in the form of 
ows were to cease, the levels would still exist but not the

rates. The inputs to the rate variable could be a decision, an auxiliary variable or
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Level
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Decision

Figure 3.4: Representation for a Rate Variable

a level variable itself. These input variables help the rate variables control the 
ow

from the source to the system. This graphical representation for a rate variable is

shown in Fig. 3.4.

3.1.4 Decision Functions

A decision function is a simple equation that determines, in some elementary way,

a 
ow in response to the condition of one or two levels. The decision functions

determine how the available information about levels leads to the current rates or

decisions. All decisions pertain to impending action and are expressed as 
ow rates.

There also exist decision functions that are long and elaborate. They might involve

evaluation of a number of subdecisions. They can then be broken down into a number

of smaller stages. Each of the smaller stages is evaluated by a separate decision

function.
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Decision functions determining the rates are dependent only on information about

the levels. Rates are not determined or in
uenced by other rate variables. The present

instantaneous rates are not available as inputs to the making of other decisions. Two

variables can be connected by a level variable. System Dynamics then goes about

determining a set of equations to relate di�erent components in the model.

(i)Level Equations { New values of levels are calculated at each of the closely

spaced solution intervals. Levels are assumed to change at a constant rate between

solution times, but no values are calculated between such times. Level equations are

independent of one another. A level at time t depends on its previous value at time

t-k and on rate of 
ow during the interval k.

(ii)Rate Equations { The rate equations de�ne the rates of 
ow between the levels

of the system. The rate equations are the decision functions. A rate equation is

evaluated from the current value of levels in the system, very often including the

level from which the rate arises and the one into which the rate enters. The rates in

turn cause the changes in levels. The rate equations in a broad sense, decide what

happens next in the system. A rate equation evaluated at time t, determines the

decision governing the rate of 
ow over time k, until the next time instant t+k.

Rate equations are evaluated independently of one another within any particular

time step, just as level equations are. Interactions occur by their ensuing e�ect on

levels that then in
uence other rates at later times.



55

(iii)Auxiliary Equations { When a rate equation is rather complicated, it can be

broken down into a number of component equations called auxiliary equations. The

auxiliary equation is of great help in keeping the model formulation in close corre-

spondence with the actual system, it can be used to de�ne separately many factors

that make up the decision function. The auxiliary equations can be substituted for-

ward into one another and then �nally into the rate equation. They disappear with

the appearance of complexity into the rate equations. The auxiliary equations are

evaluated at time t+k, but after evaluation of the level equations and before the

evaluation of the rate equations for the same time instant, t+k.

(iv)Supplementary Equations { Supplementary equations are used to de�ne vari-

ables which are not part of the model structure, but help understand the system

behavior and eventually aid a better and e�cient representation of the system be-

havior.

(v)Initial Value Equations { Initial Value equations are used to de�ne initial

values of all levels that are necessary before starting to run the model. They are also

occasionally used to compute some constants from other constants. The initial value

equations are evaluated before the start of each model run.

The model is then run assuming a closed boundary system. Any action of the

system is explained in terms of its components and their interactions. The System

Dynamics methodology overcomes the disadvantages of other economic modeling
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techniques as it tries to make a more sensible explanation about the behavior of the

system. It places more emphasis on the components of the system, and recognizes

the overall behavior to be a by-product of the interactions among its components.

3.2 Laundry List

As a �rst step towards deriving a set of state equations, we try to enumerate all

the factors that in
uence the rate variables. Such an enumeration is called a laundry

list. The in
uencing factors may be levels, rates or converters. Laundry lists are the

�rst step towards deriving state equations. Care must be taken to avoid algebraic

loops in the equations.

For example, it might be claimed that the birth rate depends on: the population,

the material standard of living, the available food (both quantity and quality), edu-

cation, the availability of contraceptives, as well as religious beliefs, to just mention

the more important factors. This can be written as :
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birth rate �

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

population

material standard of living

available food quantity

available food quality

education

availability of contraceptives

religious beliefs

Such an enumeration is called a laundry list[27].

Dubious relations such as :

death rate �! birth rate

birth rate �! death rate

should be avoided to eliminate algebraic loops among the rate variables within

the structure.

3.3 Structure Diagram

Forrester suggested a method for the representation of levels, rates and other vari-

ables occurring in a System Dynamics model[25]. The Structure Diagram clearly
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distinguishes between levels, rates and converters or auxiliary variables. Level vari-

ables are represented by square boxes. Most levels are bracketed by two little clouds

that represent the sources and sinks of the level. Sources provide an in�nite supply

of the material which is stocked up or accumulated in the level variable. Sinks pro-

vide an inexhaustible dumping place for the same material. The double lines from

the source cloud to the level and further to the sink cloud symbolize the 
ow of the

material. Single lines symbolize the 
ow of information or the decisions.

Rate variables are denoted by circles with an attached valve. The rate variables

control the 
ow into and out of the storages, i.e., the levels and stocks, symbolically

by opening/closing the valve that they are responsible for. The rate variables are

governed by the decision functions to decide how much of material should 
ow. Each

rate variable is in
uenced by several other decision functions. This is symbolized by

several decisions entering a rate variable. Great care must be taken to avoid algebraic

loops if the rate variables in
uence themselves.

Converter variables are denoted by circles without an attached valve. They collect

information from sources and deliver it to the rate variables after processing it. They

can be used to explain additional dynamics. A structure diagram that represents

the total population is shown in Fig. 3.5. The total number of people at any instant

is dependent on the birth rate and the death rate. The birth rate and death rate

are in
uenced by factors such as war. During a war, the death rate increases while

the birth rate decreases. However, the rate variables themselves usually change only
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Figure 3.5: A typical Structure Diagram

slowly; e.g., this year's birth rate is positively correlated with last year's birth rate.

This inertance of the rate variables is modeled using the delay boxes placed around

the valves. The net population is also dependent on immigration and emmigration.

These two factors were, in the model of Fig. 3.5 lumped together with births and

deaths.

3.4 Forrester's World Model

The highly successful nature of the System Dynamics approach prompted Jay

Forrester to propose a model of the world based on the System Dynamics theory[28].

Jay Forrester proposed the World Model, hoping to answer the questions posed

by the \Club of Rome", a group that tried to decide whether there was a way to

determine the destiny of the human race. The world model was one of the most
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famous SD models ever developed and published. Most of the concepts in the world

model re
ect the attitudes and motivations of the recent past and present. In these

aspects, the model is a very primitive one.

The world model proposed by Forrester addressed only the broad aspects, and

assumed that the present course of human events is not altered. This though, is a

valid assumption and most models make a similar assumption, that the working is

conditional to the persistence of a certain phenomenon or feature. The aggregration

of the world model is at such a high level that the distinctions between developed

and underdeveloped economies do not appear explicitly. The structure diagram for

the world model is shown in Fig. 3.6.

The world model was built with �ve levels chosen as cornerstones for building the

structure, namely

� Population

� Capital Investment

� Unrecoverable Natural Resources

� Fraction of Capital invested in the Agricultural sector

� Pollution

Each level was assumed to represent a principal variable in a major subsystem of

the world structure. Forrester had decided that the world could be captured by these
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Figure 3.6: Forrester's World Model
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�ve levels. The interactions between these �ve levels and the levels themselves were

expected to answer most of the phenomena arising in the world.

The world model used the year 1970 as reference for de�ning constants and vari-

ables i.e., the world conditions are described relative to the conditions in 1970. Ini-

tial values starting from the year 1900 were determined and the model was run. The

model was run beyond the year 1970 to make predictions on the values of the di�erent

levels and the rates.

The world model proposed by Forrester brought about a revolution in the �eld of

modeling, with a sudden spurt in the use of System Dynamics for modeling. What

followed his work, was a number of related works that used the methodology of Sys-

tem Dynamics to model di�erent social systems whose modeling was earlier thought

impossible.

A bibliography of System Dynamics written in the early eighties [29] is more than

30 pages long and contains already more than 600 entries. System Dynamics seemed

unstoppable. Unfortunately, for reasons explained later, the world model just made

explicit and very obvious some of the ridiculous assumptions that the SD methodology

used as a rule{base for its model building.
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3.5 Shortcomings of the World Model

The World Model eventually brought about the downfall of the System Dynamics

models because it made explicit and very clear the drawbacks of using a System

Dynamics model. The validity of a SD model is questionable.

In a physical system, like an electrical system or a mechanical system, we are aware

of the variables that contribute to the power of the system. But in a SD model, we

are never sure of this. The given model may be able to re
ect the already observed

behavior of the real system, but we may not be able to justify the model predictions

of future behavior to re
ect the true future of the real system under study.

There always exists the possibility of unmodeled dynamics. When the world model

is run backwards in time, which can be easily achieved by reversing the signs of all

rate equations governing the model, the results are quite amazing. The population

decreases for a short period, before rising to an unacceptable value and eventually

reaching in�nity, when in reality it should near zero. This is a very good illustration

of the failure of the world model and System Dynamics in general. The model may

be able to capture most of the activities in terms of the interactions and attributes

that contribute to the power of the system, but the model is never complete unless

the unmodeled dynamics are negligible.

For example, one can write that:

BR = f(P;MSL;FQn;FQl;Ed;Co;RB) (3.1)



64

to encode the aforementioned laundry list for the birth rate, and although this equa-

tion is an approximation of reality, it is an acceptable approximation, because the

implicit interactions among the in
uencing factors su�ciently account for the dy-

namics of the system. Any modeling e�ort is inherently reductionistic in nature, and

more in
uencing factors can always be added to the laundry list, if it should turn out

that important dynamics have been overlooked.

Unfortunately, it is at this point where the SD methodology, as proposed by

Forrester, becomes questionable. Because Forrester didn't know how to handle an

equation as complex as the one presented above, he proposed to \rewrite" the above

equation as follows:

BR = BRN � P � f1(MSL) � f2(FQn) � f3(FQl) � f4(Ed) � f5(Co) � f6(RB) (3.2)

i.e., he pulled out the normal birth rate constant (BRN) as well as the population,

and then described the \small signal behavior" of the variations imposed by the

remaining factors. His assumptions are that each rate equation is purely static in

nature, and that the in
uencing factors are independent of each other. These are a

lot of assumptions that can hardly ever be justi�ed, and that almost invariably lead

to behavioral patterns in simulations that have little in common with reality.

First, it should not be assumed that the rate equations are static in nature. There

exist natural state variables in systems that don't fall into the category of things that
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accumulate. For example, in mechanics:

dx

dt
= v (3.3)

dv

dt
= a (3.4)

The position, x, and the velocity, v, are natural state variables, whereas the acceler-

ation, a, is not. Yet, it doesn't make sense to proclaim that positions and velocities

accumulate, or that velocity is an in
ow or out
ow of position. These secondary

dynamics can be captured by allowing the rate equations to be themselves dynamic.

Second, the assumption of independence of di�erent in
uencing factors is ludi-

crous. This assumption cannot be justi�ed on any grounds. However, it was precisely

this assumption that made many economists embrace this technology at �rst, because

it makes the modeling e�ort tractable. It eliminates the need for large quantities of

measurement data.

The world model was very explicit in bringing out the drawbacks of SD because

SD was trying to represent a very large system, where the possibility of unmodeled

dynamics was very high. SystemDynamics works wonderfully well when the system is

small and of limited complexity, as there exist su�ciently few actions and interactions,

and modeling this is not a di�cult task. But when a system is large, complex and

comprised of a number of actions and counteractions, the SD methodology fails as

there still exist important unmodeled dynamics even after a high-level SD model is

proposed for the said system.
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CHAPTER 4

Fuzzy Inductive Reasoning

System Identi�cation consists of two chief steps { in the �rst step, the structure

that best characterizes the observed input-output behavior patterns is identi�ed and

in the next step, the parameters associated with the selected structure are identi-

�ed, such that the observed input-output patterns are optimally reproduced by the

synthesised system.

Fuzzy Inductive Reasoning (FIR) can be used as a tool for structure identi�cation.

An abstraction concept called optimal mask is introduced by FIR to help describe

the optimal structure of the system to be identi�ed. Since the system is qualitative

in nature, the optimal mask technique used by FIR does not describe the complete

structure. It selects a subset of variables from all observed potential input variables

that are best suited to be used in reproducing the observed input-output patterns in

the best possible manner.

Inductive Modeling was invented by George Klir [4] in the 1970's. It was used in

his General System Problem Solving (GSPS) methodology as a tool to describe con-

ceptual modes of system behavior. A �rst implementation of the Klir methodology

was the System Approach Problem Solver (SAPS) [30]. A more practical application

is SAPS-II, an implementation of a large subset of the GSPS methodology developed
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at the University of Arizona[31]. Fuzzy measures were introduced into the GSPS

methodology in 1989 [32], and the kernel functions of fuzzy inductive reasoning were

incorporated in SAPS-II, a year later [33]. SAPS-II is now available as a Matlab tool-

box. The syntax of the SAPS-II function calls and the proper use of these functions

are presented in [34].

4.1 Fuzzi�cation

Since a qualitative model is required by FIR, this is achieved by fuzzy recoding.

The process of converting quantitative variables into qualitative equivalents is called

recoding. Recoding usually means that some amount of knowledge is lost. This

is minimized in the triplet methodology. All real{valued variables are recoded into

qualitative triplets. The �rst component of the triple is the class value, the second

is the fuzzy membership function value, and the third is the side value [34, 35, 36].

The real{valued variable is recoded into a class value that is a coarse discretization

of the original real{valued variable. The fuzzy membership value denotes the level of

con�dence expressed in the class value chosen to represent a particular quantitative

value. The side value, tells us whether the quantitative value is to the left or to the

right of the peak value of the associated membership function. The side value, which

is a speciality of FIR, is responsible for preserving the complete knowledge in the

qualitative triplet that had been contained in the original quantitative value.
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Figure 4.1: Membership functions of the price of food variables

Fig. 4.1 shows the fuzzy recoding of a quantitative variable (price of a commodity)

into the �ve classes `very cheap', `cheap', `moderate', `costly' and `very costly' using,

in the shown example, popular knowledge to determine the so-called landmarks, i.e.,

the borders between neighboring classes. A quantitative value of price = 25, would

in this case be recoded into a class value of `moderate', a membership value of 0.70

and a side value of `right'. Evidently, the qualitative triple contains exactly the same

information as the original quantitative value.

The process of recoding is applied to each observed variable (trajectory) sepa-

rately. The recoded qualitative episodical behavior is stored in three matrices, one

containing the class values, the second storing the membership function values, and

the third keeping the side values. Each column of these matrices represents one of

the observed variables, and each row represents recorded states. The quantitative

trajectory behavior can thus be mapped into qualitative episodical behavior.
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4.1.1 Number of levels

One consideration during the process of fuzzi�cation is the choice of number of

levels into which the episodical behavior is to be captured. Any qualitative prediction

made on the basis of a qualitative model will be limited to the same set of classes. One

cannot hope to make predictions that are more precise than the qualitative model that

one is working with. Therefore selecting the number of levels is an important decision.

The selection of the number of discrete classes for representing each of the variables in

the system relates to the struggle between generality and speci�city. The more levels

are chosen, the larger will be the expressiveness or speci�city of the qualitative model.

However, then making predictions becomes a di�cult task as there is a need for more

data. The smaller the number of levels chosen, the predictiveness(generality) of the

model becomes better, but the less useful the predictions will be. If every variable is

recoded into exactly one level, then the model will be highly predictive, but also at

the same time completely useless.

From statistical considerations, in any class analysis, ideally each possible discrete

state should be recorded at least �ve times[37]. The number of discrete states depends

on the number of data points and is given by:

nrec � 5 : nleg = 5 :
Y
8i

ki (4.1)
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where nrec denotes the total number of recordings, i.e., the total number of ob-

served states, nleg denotes the total number of di�erent legal states, i is an index that

loops over all variables, and k is an index that loops over all levels. If each variable

assumes the same number of levels, this reduces to:

nrec � 5 : (nlev)
nvar (4.2)

where nvar denotes the number of variables and nlev denotes the chosen number

of levels for each variable. The number of variables is usually known and the number

of recordings is frequently predetermined. The optimum number of levels is then:

nlev = round (nvar

r
nrec
5

) (4.3)

For reasons of symmetry, usually an odd number of levels is preferred over an even

number of levels. Choosing an odd number of levels will allow grouping anomalous

levels symmetrically around the normal state.

Once the trajectory behavior has been recoded into episodical behavior, the in-

ductive reasoning methodology can be applied. Inductive reasoning consists of a step

of inductive modeling followed by a step of deductive simulation. In the inductive

modeling step, a qualitative model is induced in the form of a �nite state machine

relating qualitative inputs to qualitative outputs. The selection of variables is the

qualitative model. An abstraction mechanism is employed that determines which
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input variables to look at when one wishes to conclude something about a particular

output variable.

4.2 Inductive Modeling

Inductive modeling consists of studying the input{output behavior to obtain a

good representation of the system behavior in terms of the most signi�cant inputs

for any output. The episodical behavior from the recoding phase is stored in a

raw data matrix. The task at hand is to identify a model that best describes the

relationship between the di�erent rows of the raw data matrix at each time instant.

Each row of the raw data matrix represents one variable and each column represents

one time instant. The values of the raw data matrix are in the set of legal levels that

the variable can assume. For a �ve variable system, the episodical system might look

like:

0
BBBBBBBBBBBBBBBBBBBBB@

time u1 u2 y1 y2 y3

0:0 : : : : : : : : : : : : : : :

�t : : : : : : : : : : : : : : :

2:�t : : : : : : : : : : : : : : :

3:�t : : : : : : : : : : : : : : :

...
...

...
...

...
...

(nrec � 1):�t : : : : : : : : : : : : : : :

1
CCCCCCCCCCCCCCCCCCCCCA

(4.4)
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4.2.1 Input-Output Behavior

The modeling process involves determination of �nite automata between the re-

coded variables that are as deterministic as possible. A state transition matrix that

relates the input and output variables along with their probabilities of occurrence is

built. This state transition matrix is a possible relationship between the qualitative

variables. A possible relation among the qualitative variables of a �ve-variable system

could be of the form:

y1(t) = ef (y3(t� 2�t); u2(t� �t); y1(t� �t); u1(t)) (4.5)

where ef denotes a qualitative relationship. The ef does not stand for any explicit

formula relating the input arguments to the output arguments, but only represents a

generic causality relationship that, in the case of the inductive reasoning methodology,

will be encoded in the form of a tabulation of likely input/output patters, i.e., a state

transition table. In SAPS-II, the equation (4.5), is represented by the following

matrix :

0
BBBBBBB@

tn
x u1 u2 y1 y2 y3

t � 2�t 0 0 0 0 �1

t � �t 0 �2 �3 0 0

t �4 0 +1 0 0

1
CCCCCCCA

(4.6)
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The negative elements in this matrix are referred to as m-inputs. m-inputs denote

input arguments of the qualitative functional relationship. They can be either inputs

or outputs of the subsystem to be modeled, and they can have di�erent time stamps.

The above example contains 4 m-inputs. The sequence in which they are enumerated

is immaterial. They are usually enumerated from left to right and top to bottom.

The single positive value denotes the m-output. The terms m-input and m-output

are used in order to avoid a potential confusion with the inputs and outputs of the

system. In the above example, the �rst m-input corresponds to the output variable

y3, two sampling intervals back, y3(t� 2�t), whereas the second m-input refers to the

input variable u2 one sampling interval into the past, u2(t� �t), etc.

In inductive reasoning, such a representation is called a mask. A mask denotes a

dynamic relationship among qualitative variables. A mask has the same number of

columns as the episodical or recoded behavior to which it should be applied, and it

has a certain number of rows, the depth of the mask. The mask helps to 
atten the

dynamic relationships between variables as shown in Fig. 4.2.

The optimal mask is the one abstraction that leads to the most deterministic

input/output behavior. The problem of �nding the optimal mask once again relates

to the struggle between the generality and speci�city. If more m-inputs are added to

the mask, the observed patterns become more and more speci�c. Yet, chances are

that a newly observed input pattern has never been seen before, making a prediction
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impossible. Removing m-inputs from the mask leads to bolder, less speci�c, patterns

that are likely to be ambiguous. The model no longer represents the true dynamics of

the system, leading to non-deterministic input/output behavior, i.e., to ambiguities

in the predictions made.

4.2.2 Optimal Masks

Determination of the optimal masks involves a de�nition of an ensemble of all

feasible masks from which the optimal mask will be selected. This is accomplished

by means of de�ning a mask candidate matrix. A mask candidate matrix for the

previous example might be de�ned as :

0
BBBBBBB@

tn
x u1 u2 y1 y2 y3

t � 2�t �1 �1 �1 �1 �1

t � �t �1 �1 �1 �1 �1

t �1 �1 +1 0 0

1
CCCCCCCA

(4.7)

In the mask candidate matrix, -1 elements indicate potential inputs, whereas the

+1 element still indicates the true mask output. 0 elements denote forbidden con-

nections. From the mask candidate matrix, the optimal mask is often determined in

a process of exhaustive search, but more e�ective suboptimal search strategies have

also been devised[38].
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A general rule for constructing the mask candidate matrix is to cover with the

mask the largest time constant of the system that we wish to capture in the model.

The mask depth should be chosen as twice the ratio between the largest and the

smallest time constants to be captured.

In order to determine the optimal mask from the episodical behavior, constraints

limiting the search space can be speci�ed through the mask candidate matrix by

blocking out forbidden connections by means of 0 elements, and by specifying the

maximum tolerated mask complexity, i.e., the largest number of non-zero elements

that the optimal masks may contain.

The exhaustive search process starts by evaluating �rst all legal masks of com-

plexity two, i.e., all masks containing a single input and then proceeds by evaluating

all legal masks of complexity three, i.e., all masks with two inputs and �nds the best

of those and this is continued until the maximum complexity has been reached. In

all practical examples, the quality of the masks will �rst grow with increasing com-

plexity, eventually reach a maximum, and then decay rapidly. A reasonable value for

the maximum complexity is usually �ve or six.

Each of the possible masks is compared to all others with respect to its potential

merit. The optimality of the masks is evaluated with respect to the maximization

of their forecasting power. The Shannon entropy measure is used to determine the

uncertainty associated with forecasting a particular output state given any legal input
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state. The Shannon entropy relative to one input is calculated from the equation :

Hi =
X
8i

p(o=i) : log2 p(o=i) (4.8)

where p(o=i) is the conditional probability of a certain output state o to occur,

given that the input state i has already occurred. The term probability is meant in

a statistical rather than in a pure probabilistic sense. It denotes the quotient of the

observed frequency of a particular state divided by the highest possible frequency of

that state.

The overall entropy of the mask is then calculated as the sum:

Hm = �
X
8i

p(i) : Hi (4.9)

where p(i) is the probability of that input to occur. The highest possible entropy

Hmax is obtained when all probabilities are equal, and a zero entropy is encoun-

tered for relationships that are totally deterministic. A normalized overall entropy

reduction Hr is de�ned as :

Hr = 1:0 �
Hm

Hmax

(4.10)

Hr is obviously a real-valued number in the range of 0.0 to 1.0, where higher

values indicate an improved forecasting power. The optimal mask among a set of

mask candidates is de�ned as the one with the highest entropy reduction. In the

computation of the input/output matrix, a con�dence value can be assigned to each

row, and this value indicates how much con�dence can be expressed in the individual

rows of the input/output matrix.
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The basic behavior of the input/output model can now be computed. It is de�ned

as an ordered set of all observed distinct states together with a measure of con�dence

of each state. Rather than counting the observation frequencies, which is what is done

in the case of a probabilistic measure, the individual con�dences of each observed

state are accumulated. If a state has been observed more than once, more and more

con�dence can be expressed in it. Thus, the individual con�dences of each observation

of a given state are simply accumulated. A normalized con�dence of each input-

output state can then be calculated by dividing the accumulated con�dence in that

input-output state by the sum of con�dences for all input-output states sharing the

same input state.

Application of the Shannon entropy to a con�dence measure is a somewhat ques-

tionable undertaking on theoretical grounds since the Shannon entropy was derived

in the context of probabilistic measures only. For this reason, some scientists prefer to

replace the Shannon entropy by other types of performance indices that were derived

in the context of the particular measure chosen [32], [39].

The size of the input/output matrix grows with the increasing complexity of the

mask, and consequently, the number of legal states of the model grows quickly. Since

the total number of observed states remains constant, the frequency of observation of

each state shrinks rapidly, and so does the predictiveness of the model. The entropy

reduction measure does not account for this problem. With increasing complexity,

Hr simply keeps growing. Soon, a situation is encountered where every state that
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has ever been observed has been observed precisely once. This obviously leads to

a totally deterministic state transition matrix, and Hr assumes a value 1.0. Yet,

the predictiveness of the model will be dismal, since in all likelihood already the

next predicted state has never been observed, and that means the end of forecasting.

Therefore, this consideration must be included in the overall quality measure.

From statistical considerations, in any class analysis, ideally each possible dis-

crete state is recorded at least �ve times[37]. Therefore, an observation ratio, Or, is

introduced as an additional contributor to the overall quality measure[33] :

Or =
5 � n5x + 4 � n4x + 3 � n3x + 2 � n2x + n1x

5 � nleg
(4.11)

where :

nleg = number of legal input states

n1x = number of input states observed only once

n2x = number of input states observed twice

n3x = number of input states observed thrice

n4x = number of input states observed four times

n5x = number of input states observed at least �ve times

If every legal input state has been observed at least �ve times, Or is equal to 1.0.

If no input state has been observed at all, i.e., no data is available, Or is equal to

0.0. Thus, Or can be used as a quality measure. With the observation ratio, Or,
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the overall quality of a mask, Qm, is then de�ned as the product of its uncertainty

reduction measure, Hr, and its observation ratio, Or as:

Qm = Hr �Or (4.12)

The optimal mask is the mask with the largest Qm value.

Once the optimalmask has been found and the corresponding Finite State Machine

(FSM) generated, forecasting future system behavior is almost trivial. All that needs

to be done is compare newly observed input patters with those stored in the FSM, and

read out the corresponding output patterns. If the FSM is not totally deterministic,

i.e., if for the same input pattern several di�erent output patterns have been observed

in the past, then there are several choices :

� All possible outcomes along with their previous relative observation frequencies

can be reported.

� Reporting is limited to the most probable outcome.

� A random number can be generated and any one of the previous observations

can be predicted with the correct statistical probability of occurrence.

The relative frequency of occurrence of an output pattern for any given input

pattern can be used as a measure of correctness of the prediction made. The pre-

diction contains an error and also, the quantity that measures the correctness of the

prediction contains an error itself. The FIR methodology has been successfully used

in a number of di�erent applications [40, 41].
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The optimal mask is applied to the given raw data matrix resulting in an in-

put/output matrix. Since the input/output matrix contains functional relationships

within single rows, the rows of the input/output matrix can be sorted in alphanumer-

ical order. The result of this operation is called the input/output behavior matrix

of the system. The input/output behavior matrix is a �nite state machine. For each

combination of input values, it shows which output is most likely to be observed.

4.3 Inductive Simulation

The next module is the qualitative simulation engine. FIR makes predictions

by comparing the newly observed input pattern with all the input patterns in the

experience data base (the training data), and �nds the �ve nearest neighbors. It then

predicts the most likely class and side values, and calculates the membership value

as a weighted average of the membership values of the �ve nearest neighbors. In

this way, reasoning is done using the (discrete) class and side values only, whereas

the concrete quantitative information is preserved by interpolating among the (real{

valued) membership functions of the �ve nearest neighbors.

4.3.1 Five Nearest Neighbors

The second stage of Qualitative Simulation is a statistical stage. In this stage, a

prediction is made of a most likely fuzzy membership value for the output. The fuzzy

membership value is a distance weighted average of the �ve nearest neighbors in the
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experience database, whereby the distance function is computed in the input space,

and the interpolation is done in the output space. The mathematical details of what

really happens are explained below.

Since FIR deals with multi-input/single-output (MISO) systems exclusively, each

state consists of m-input variables and a single m-output variable. The �rst problem

to be considered is one of normalization. Since the di�erent m-inputs can represent

arbitrary physical or other quantities, their absolute values can be vastly di�erent

from one another. In order to create a meaningful metric of proximity in the input

space, it is necessary to normalize the input variables. This is accomplished using a

pseudo-regeneration of the fuzzi�ed input variables:

posi = classi + sidei : (1:0�Membi) (4.13)

where the class values are assumed to be integers starting from `1' representing the

lowest class, and the side values are also integers assuming the values `-1' representing

the logical value `left', 0 representing the value `centre', and `+1' representing the

value `right'. The index i represents the ith input variable in the input state of

the current observation. The position value, posi can be viewed as a normalized

pseudoregeneration of the ith input variable. Irrespective of the original values of the

input variable, posi assumes values in the range [1:0; 1:5] for the lowest class, [1:5; 2:5]

for the next higher class, etc.
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Figure 4.3: Normalization of the input variables

Fig. 4.3 shows the normalization of an input variable. Here the price of a food

variable is normalized.

Similarly,

posij = classij + sideij : (1:0 �Membij) (4.14)

represents the normalized pseudo-regeneration of the ith input variable of the jth

nearest neighbor in the experience database.

pos = [pos1; pos2; : : : ; posn] (4.15)

is the position vector representing the current input state, assuming that the system

to be modeled contains n m-inputs, and

posj = [pos1j; pos2j ; : : : ; posnj ] (4.16)

represents the corresponding position vector of the jth nearest neighbor.
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The distance between the current input state and its jth nearest neighbor is com-

puted as:

disj = k pos� posj k (4.17)

It is necessary to avoid distance values of 0.0:

dj = max(disj; �) (4.18)

where � is the smallest number that can be distinguished from 1.0 in addition.

sd =
5X

j=1

dj (4.19)

is the sum of the distances of the �ve nearest neighbors, and:

drelj = dj=sd (4.20)

are the relative distances. By applying this algorithm either to the entire experience

data base or a suitable subset thereof, the �ve nearest neighbors can be determined

while simultaneously computing their distance function.

The interpolation is done in the output space. Absolute weights are computed as

wabsj = 1:0=drelj (4.21)

and

sw =
5X

j=1

wabsj (4.22)

is the sum of the absolute weights. Hence the relative weights can be computed as :

wrelj = wabsj=sw (4.23)
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Using this information, the membership value of the predicted output is determined

as:

Membout =
5X

j=1

wrelj : Memboutj (4.24)

If one of the observations in the experience database coincides, by chance, with the

new observation, its relative distance value will be very close to 0.0, whereas that of

the other four neighbors will be considered larger. Consequently, this data record will

have a predominant in
uence on determining the membership value of the output.

On the other hand, if the �ve nearest neighbors are all approximately equally far

away from the new observation, the relative distance values will all be approximately

0.2, and each of the corresponding records in the experience database will have equal

weight in determining the membership value of the new output.

4.4 Defuzzi�cation

In the defuzzi�cation module, the predicted class, side, and membership values are

converted back to real{valued quantitative predictions using the inverse operation to

the fuzzi�cation.

FIR's con�dence measure has two components. FIR measures the distance be-

tween the new data point to be predicted from its �ve nearest neighbors in the input

space. If the distance is small, only little interpolation needs to be done, and FIR

is more con�dent that the proposed prediction is accurate. Secondly, it looks at the
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dispersion among the outputs of the �ve nearest neighbors. If the dispersion is small,

FIR is con�dent that it can predict accurately the new output value. If it is large, it

cannot know which of the neighbors is right, and therefore, assigns a lower value to

the con�dence measure [9].

FIR, although internally operating as a qualitative technique (reasoning about

discrete class values), looks from the outside like a quantitative technique thanks

to its fuzzi�cation and defuzzi�cation engines. FIR is therefore compatible with

quantitative approaches, such as System Dynamics. FIR submodels can be easily

embedded in SD models, as proposed in the advocated methodology.
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CHAPTER 5

Food Demand Model

The proposed methodology is a blend of the knowledge based models and the

pattern recognition models. The methodology is based on System Dynamics. The

problem concerning the determination of relationships between di�erent variables

which is not very easy to determine using conventional System Dynamics is overcome

by the use of Fuzzy Inductive Reasoning.

5.1 The Na��ve Model

The methodology was put to test with a simple SD model [42]. Fig. 5.1 shows the

highly simpli�ed System Dynamics macroeconomic model that was used to predict

aspects of U.S. food demand in the 20th century. This is a rather na��ve model, but

it was found to serve for illustrative purposes.

The amount of food available on the market, a level variable, depends on food

production and consumption, two rate variables. Both food production and con-

sumption are heavily in
uenced by the food prices, an auxiliary variable. The food

prices depend primarily on the amount of food currently on the market, but also on

the state of the economy, here re
ected by another auxiliary variable, the in
ation.

Both the economy (here represented by the unemployment rate) and the population
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Figure 5.1: System Dynamics Model of U.S. Food Demand
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(the prospective buyers) in
uence food consumption. The two delay boxes represent

secondary dynamics. They re
ect the inertia of both food production and consump-

tion, as neither of them will change abruptly over night.

In order to be able to predict food demand and supply, it is necessary to know

something about the state of the economy and population dynamics [43]. The econ-

omy is represented by two level variables, the number of jobs, and the volume of

money. Although there exist tight interactions between these variables, they can be

modeled almost independently. The reason is that the number of jobs (or rather

the unemployment rate) is a controlled variable. The government tries to keep it

always around 5%. If the unemployment rate climbs, the lending rate is lowered;

this provides incentive for the construction industry, which absorbs the surplus un-

employed. If the unemployment rate decreases much below the 5% level, the lending

rate is increased, which dampens the construction industry, which makes more work-

ers unemployed. The reason is simple: if there are too few unemployed workers, the

employers have to raise the salaries in order to attract employees, which leads to an

increased in
ation rate.

Knowledge of the population dynamics, and in particular the number of young

adults, helps with predicting unemployment. Once the unemployment is predicted,

it can in turn be used as a driver for predicting the in
ation rate.
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Figure 5.2: U.S. Toddler Population Dynamics in the 20th century

The population dynamics are in
uenced by the state of the economy, but only to

a minor extent. Only during the great recession of the 30s, could a notable change

in birth rate patterns be observed as a consequence of a poor economy. The other

anomaly are the few years starting close to 1960, which was around the time when the

birth control pill was introduced. It also coincides with the years of the Vietnam war,

when many potential fathers were abroad for years in a row, and therefore, could not

sire children in the U.S. The U.S. toddler population dynamics are shown in Fig. 5.2.

To summarize, it makes sense to postulate a hierarchical model, whereby the

population dynamics (level 1) are explained only from their own past, whereas the

economy (level 2) is explained from its own past and the already predicted population

dynamics. Finally, the food model (levels 3/4) is predicted by its own past as well

as all the previously predicted variables of the population dynamics and economy

layers. The three{layer hierarchy is shown in Fig. 5.3. For reasons to be explained
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Figure 5.3: The Layered Model Architecture

later, the top two layers (food demand and supply) were lumped into a single layer

for the purpose of this research e�ort.

An additional advantage of the layered architecture is that the models at levels 1

and 2 are generic models that can be created once and for all. They do not depend on

the application to be predicted at level 3, i.e., if there should suddenly be a need to

predict the demand for used cars rather than powdered milk, the bottom two layers

of the architecture will remain the same. Only the top layer changes.

5.1.1 The Population Dynamics Layer

The System Dynamics methodology stipulates that equations need to be found

that predict the rate variables. The level variables then follow by integration. Yet in

practice, it is much easier to gain access to good measurement data for level variables

than for rate variables. Therefore, it may be easier to predict the level variables

directly.



92

The data available to us for this study include the total U.S. population recorded

(estimated) annually since 1910. They also include the percentages of the population

in di�erent age brackets, as well as the demographic distribution.

The idea was to create a Fuzzy Inductive Reasoning model that predicts each of

these variables from its own past and from past values of the other population dy-

namics variables. For example the number of newly borns depends on the population

of childbearing age, whereas the population of teenagers depends on previous values

of the population of toddlers, etc. The data from 1910 until 1970 were to be used as

training data, whereas the remaining 25 years should be used to validate the model.

One problem was that FIR is totally pattern{based, i.e., FIR can only predict what

it has been shown before. Yet, the population is non{stationary. It grows almost

exponentially. FIR certainly is not capable of predicting such a growth variable.

This problem was solved with a simple trick. Since the population grows almost

exponentially, it makes sense to postulate the model:

dP

dt
= k(t) � P (5.1)

If k were a positive constant, the population, P , would grow exponentially. By

allowing k(t) to be time{dependent, the actually observed population dynamics can

be modeled. However, whereas P is a growth variable, k is essentially stationary.

The population derivative can be approximated as:
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dP

dt
�

P (n)� P (n � 1)

�t
(5.2)

and since �t = 1:

k(n) �
P (n) � P (n� 1)

P (n)
(5.3)

Since k(t) is stationary, k can be predicted from its own past and from past values of

other population dynamics variables. However, once k(n + 1) is predicted, Eq.(5.3)

can be shifted by one year into the future and solved for P (n+ 1):

P (n+ 1) �
P (n)

1:0� k(n+ 1)
(5.4)

Fig. 5.4a shows one, three, and �ve year predictions of the U.S. toddler population

plotted together with the observed data for the years 1970 until 1995. Fig. 5.4b

shows the average relative error as a function of the number of years to be predicted.

Similarly good results have been obtained for the populations in age brackets and for

the demographics.

The forecast is non{trivial, because the onset of the forecasting period coincides

with the anomaly of the Vietnam war and the introduction of the birth control pill.

Several trivial predictions were tried also. Their prediction errors were always larger

by at least a factor of four in comparison with the FIR predictions. The errors that

were calculated were not relative errors.
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5.1.1.1 Prediction Error

The errors that were calculated consist of four di�erent components. The �rst

component measures the accuracy with which the forecast predicts the mean value

of the time series:

errmeani =
abs(mean(y(t))�mean(ŷi(t)))

max(abs(mean(y(t))); abs(mean(yi(t))); �)
(5.5)

It is a relative error with a fudge factor, � that is used to make sure that the

formula never fails. But in reality, the fudge factor will never come into play, because

it will only be applied when:

mean(y(t)) = mean(yi(t)) = 0:0 (5.6)

in which case the numerator is exactly equal to zero.

The second component measures the accuracy, with which the standard deviation

of the time series is being predicted:

errstdi =
abs(std(y(t))� std(ŷi(t)))

max(abs(std(y(t))); abs(std(yi(t))); �)
(5.7)

The same applies as above w.r.t the fudge factor.

For the third and fourth component, the time series and its prediction are jointly

normalized to the range [0.0,1.0]. Let:

ymax = max(y(t); yi(t)) (5.8)
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where the max-operator is applied to the concatenated series consisting of y(t)

and yi(t), and similarly:

ymin = min(y(t); yi(t)) (5.9)

Normalized time series can be computed as:

ynorm(t) =
y(t)� ymin

max(ymax � ymin; �)
(5.10)

and similarly:

ynormi
(t) =

yi(t)� ymin

max(ymax � ymin; �)
(5.11)

Since the two curves have been normalized, it is now possible to use the absolute

errors. The pointwise absolute error between the two curves y(t) and yi(t) can be

computed as:

errabsi(t) = abs(ynorm(t)� ynormi
(t)) (5.12)

It is also possible to de�ne the pointwise similarity between the two curves as:

simi(t) =
min(ynorm(t); ynormi

(t))

max(ynorm(t); ynormi
(t); �)

(5.13)

where, this time around, the min- and max-operators are being applied element-

wise rather than to the concatenated time series.

Using pointwise similarity, a pointwise similarity error can be de�ned as:

errsimi
= 1:0 � simi(t) (5.14)
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The averaged absolute and similarity error is then de�ned as:

erravgi = mean(errabsi(t) + errsimi
(t)) (5.15)

Finally, the total error, in percentage, is the sum of the four components multiplied

by 25.0:

errtoti = 25:0 � (errmeani + errstdi + erravgi) (5.16)

The factor 25.0 is justi�ed, because there are four separate components that all

measure di�erent aspects of one and the same thing. Each one of them is usually

in the range of [0.0, 1.0] ( although some errors could be larger than 1.0 at times ),

thus, the accumulated total error should be somewhere in the range [0%,100%] most

of the time.

The error formula is a compromise that was developed over a long period of

time by J. L�opez [44], and that saw many revisions over the years. It results in a

quanti�cation of success or failure of predictions that is quite consistent with the

intuitive understanding of success or failure that a human observer would have when

comparing y(t) and yi(t) by the naked eye.

5.1.2 The Economy Layer

Whereas the population dynamics layer is quite sophisticated, the economy layer is

still rudimentary. Until now, unemployment rate and in
ation were used to represent
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the state of the economy. Other important economic drivers, such as import/export

statistics and national debts were ignored.

Fig. 5.5a shows the three year prediction of the in
ation, represented by the total

cost of food spent per person per year, predicted from its own past alone and predicted

using the already predicted population dynamics as additional input. Fig. 5.5b shows

the corresponding error curves as a function of the years of prediction. The lower level

aided the prediction. When FIR made a forecast with variables from the population

layer along with variables from layer two, the error was much lower than the forecast

made with layer two variables alone. This justi�es the layered approach. The same

strategy was used for the in
ation (another growth variable) that had been used in

the case of the population dynamics.

Fig. 5.6a shows the three year prediction of the unemployment rate predicted only

from its own past, and also predicted using the predicted population dynamics as well

as the predicted in
ation rate as additional inputs. Fig. 5.6b shows the corresponding

relative error curves as a function of the years of prediction. As postulated, knowledge

of the lower levels helped reduce the prediction error.

5.1.3 The Food Demand/Supply Layer

Food data were available in four di�erent categories [45]:

1. dairy products,
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2. meats, �sh, and poultry,

3. fruits and vegetables, and

4. miscellaneous foods.

Each category is subdivided further into individual products. For each product, there

are available data about the amount of consumed goods as well as the prices that

they were sold at. Hence there are lots of data available to base the food{layer model

upon.

Since this was a �rst study to ascertain the working of the methodology, only a

few individual products, one from each category, were more or less arbitrarily picked

out. Models were obtained for:

1. fresh milk and cream,

2. �sh,

3. fresh vegetables, and

4. cereal, grains and bakery products.

Food prices and volume cannot be decoupled from each other. The food prices depend

on the amount of food available, yet the food consumption depends on the price. One

problem, of course, is that the time constants for food prices and consumption are

much shorter. The food prices change over the year, and so does consumption. With
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food consumption being lumped and food prices being averaged over an entire year,

important dynamics are being lost.

In order to come up with a decent model at such a high aggregation level, the

relationship between prices and volume must be considered to be immediate. The

food prices depend on the current food consumption, and vice versa. In order to

tackle this interdependence problem, the following approach could be used. The

prices are �rst �xed at the previous year's level, and the amount of food sold at those

prices, given the current population dynamics and economy data, can be calculated.

From the estimated consumption, the pro�t of the producers can be obtained. This

model is embedded in an optimization layer, in which the food prices are treated as

parameters, and the pro�t is the performance index to be maximized.

Yet, in this �rst study, a much simpler approach was chosen. It was assumed that:

price(n) = fp(price(n� 1); volume(n� 1); inflation(n))

volume(n) = fv(volume(n� 1); price(n); inflation(n); population(n))(5.17)

where n means \up to year n", and n�1 signi�es \up to year n�1," i.e., dependences

on earlier years are always allowed as well. In this way, the costly optimization was

avoided. However, the assumption that this year's food prices depend on last year's

volume is certainly not justi�able, and will probably lead to a signi�cant reduction

in overall prediction quality.
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Figure 5.7: Fresh Milk and Cream Forecast and Error Curves

As in the case of the economy layer, predictions using only the past of the variable

to be predicted, i.e.:

volume(n) = f(volume(n� 1)) (5.18)

were used as reference. Fig. 5.7a shows the three year prediction of the volume of

fresh milk and cream predicted using Eqs.(5.17) on the one hand, and Eq.(5.18) on

the other. Fig. 5.7b shows the prediction error as a function of the number of years

of prediction for the two models.
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Again, the more complex model performed better in the case of fresh milk and

cream, but this wasn't the case with all variables. Also, the improvement is not very

large.

In order to obtain yet better results, it will be necessary to implement the afore-

mentioned optimization scheme. Also, it may make sense to allow past values of

the overall amount of food in a given category to be used as additional input for

predicting the consumption of a particular food item within the same category. This

modi�cation will allow to take into account replacement foods. Whereas the total

intake of calories per person per year is constant, people may replace one food item

by another within the same category if the prices of the individual items change.

Annual data from 1910 to 1970 were used as training data, i.e., only 61 data

records were available for training the model. The model could be expected to work

better if we had a bigger training set.

The data deprivation problem was overcome by interpolating between the mea-

surement data points using e.g. spline interpolation (available in Matlab). Clearly,

adding more data points by means of interpolation doesn't add any additional infor-

mation to the data set. The new data are derived data, and one shouldn't expect

that the model would improve as a consequence of such data. Yet, they may actually

help for two reasons.
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First, FIR uses the �ve nearest neighbors for predicting fuzzy membership values.

Because there are only 61 data records in the training data base, the neighbors will

be far away, and therefore, a lot of interpolation has to be done. By generating e.g.

three new arti�cial data points for each measured one, the system would now have

241 data points to work with. Therefore, the �ve nearest neighbors will be much

closer to the current data point, and consequently, much less interpolation will be

needed.

Second, FIR tries to have at least �ve recordings for each discrete state. With

61 data records, only 12 di�erent states can be recorded 5 times each. This means

that FIR will always pick extremely simple models with one to three ternary input

variables only. If FIR is o�ered four or �ve possible input variables, it will pick the

most relevant ones, and discard the others, although they might carry useful infor-

mation. If the data deprivation problem is reduced, FIR might pick a mask of higher

complexity, and thereby also exploit the information contained in less important

variables.

5.2 The Enhanced Macroeconomic Model

The 
exibility o�ered by FIR might then be used by us to describe an enhanced

macroeconomic model that can be used for any commodity in general. A new revised

model structure that could be used for any industry is now proposed. Most of the

drawbacks of the simple model were overcome here. The overall three-tier layer
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structure and the dependence of the di�erent variables on each other can be described

by Fig. 5.8.

The advantage of such a model structure is that the third layer can be replaced

by any commodity or service without a�ecting the other two layers. The population

layer in the new model is the same as the one that was used in the simple model.

The enhanced model di�ers from the simple model in layers two and three. In layer

two of the simple model, the total dollars spent on food products was taken as a

measure of the in
ation rate. While this may hold true for making forecasts in the

food products industry, this might not necessarily be the case for other industries.

The newly proposed model has a much more stable economy layer consisting itself in

a pseudo two{layer structure. The per capita income, wage rate and unemployment

rate are dependent on the population layer and the in
ation rate is measured from

the consumer price index and the producer price index, which are dependent on the

population layer and the other economy layer variables also. The Consumer Price

Index is a measure of the changes in price over time. The Consumer Price Index

re
ects the e�ects of in
ation and government action to control it. The Producer

Price Index is a measure of the prices of commodities in the market. The third layer

makes prediction on the price of food products and the quantity of food consumed.

External functions such as the total dollars spent on food and the quantity of food

consumed in a particular group are input into the structure. The proposed model

structure is not speci�c to any industry. The �rst two layers are the generic layers
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and the third layer can be changed to �t any industry of choice. If we needed to

make a prediction on the number of cellular phones in use in the United States, the

third layer needs to be replaced with variables that are speci�c to the cellular market

in the U.S.

5.2.1 Population Layer

The �rst layer of the model is the Population layer. The population layer is broken

up into 3 sections. The �rst section makes predictions on the population in di�erent

age groups. The second, on the total population and the third on the ethnicity in

population. Fig. 5.9 shows the SD model for the distribution of population in di�erent

age groups.

The toddler population is dependent on the young adult population. The young

adult population has been assumed to be the population in the age group of 15-24

years. As the average marriage age grew, the population between the ages of 25-34

years started to also contribute to the toddler population in recent years. This has

not been accounted for here for the sole reason that this trend is quite recent.

The population in each age group is dependent on the population in the earlier

age group and also on its own value. The dependency on its own value is shown with

the help of the delay box. Each level variable is driven by the previous level variable.
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Figure 5.9: System Dynamics Model for Population in Di�erent Age Groups
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The total population can be represented as the net sum of the total input into the

population and the out
ow out of the population. The inputs are the immigration

rate and birth rate and the outputs are the emmigration rate and the death rate.

Obviously, the total population is the sum of the population in the di�erent age

groups. This is shown in Fig. 5.10.

A SD model was also developed for the distribution of population based on the

demographics. This helped make forecasts based on percentages of population that

were white, black and neither black nor white. These results were not used in the

example described, as the consumption of food products is a�ected very little by

the demographics. Since the average income levels are still di�erent among di�erent

ethnic groups, one might think that demographics would a�ect food consumption,

but the simulations performed showed this in
uence to be of second order small.

However, demographics probably would a�ect other economic variables, such as the

percentage of used cars bought relative to new cars.

5.2.2 Economy Layer

The proposed economy layer is driven by the population layer. The economy is

represented by seven level variables. The variables are split into two pseudo{layers.

The per capita income, wage rate and the rate of unemployment are directly depen-

dent on the population layer; the consumer price index and the producer price index,
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which are indicators of the state of the economy, are dependent on the population

layer as well as the earlier forecast economy variables.

The per capita income is a good measure of the buying capacity of the consumer,

and the wage rate and the rate of unemployment represent the growth of the economy

and are very closely related to each other. Together, they represent the state of the

economy from a consumer's perspective.

The Consumer Price Index (CPI) describes the change in prices from one time

period to another for a �xed `market basket' of goods and services. It is usually

generated monthly or annually. The CPI can be used as an economic indicator. By

re
ecting changes in prices, the Consumer Price Index is the primary measurement

of in
ation in the United States and of the perceived success or failure of government

policies to control in
ation.

The Producer Price Index (PPI) is another variable used by the federal government

and other institutions as a special purpose index. The PPI is the oldest continuous

statistical series published by the U.S. Bureau of Labor Statistics. It re
ects the

prices of approximately 3200 commodities. Price data are collected from sellers of

these commodities and usually apply to the �rst large-volume transaction for each

commodity. Like the CPI, it is based on shipments of commodities as measured in

the industrial census and from other data.
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Figure 5.11: System Dynamics Model for the Economy Layer

The CPI and the PPI represent the state of the economy from a supplier's per-

spective. Fig. 5.11 shows the SD Model that represents the economy layer.

5.2.3 Food Demand/Supply Layer

The amount of food available in the market is a level variable that depends on

another level variables, namely the price of the food items. The food items were clas-

si�ed into four categories and for each of these categories, the consumption quantity
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of any item would be proportional to the consumption quantity of the other items.

This is because food items with similar calorie content and within the same price

range would be consumed in almost similar quantities. Therefore, the consumption

amount of the total group quantity is an external function to the level variables.

These variables are also in
uential on the food prices. The SD model for the topmost

layer is shown in Fig. 5.12.

All food products cannot be lumped together as each individual product has its

own dynamics. In some cases, the price of food products is not very in
uential on the

consumption quantity. For example, the demand for fresh milk is not very responsive

to price changes, due to the perishability and high transport costs of raw whole milk.

However, the demand for manufactured milk products is more responsive to price

changes because these products are less bulky and perishable, and hence more easily

stored and transported. This di�erence in the responsiveness of demand to price is

the basis for the classi�ed pricing [46].

De�nitely, the prices of food components that are forecast earlier depend on the

forecast of the food quantity. This loopback is achieved by an Optimization layer. In

the Optimization layer, it is assumed that the food suppliers act rationally and that

they have the same information available i.e., that they are able to make predictions

on the demand on the basis of the current prices. It can be assumed that they all

try to maximize their pro�ts in terms of dollars earned.
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Figure 5.12: System Dynamics Model for Food Demand/Supply Layer
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The food suppliers are introduced into the model. The model would predict the

prices of food items given the expected demand and the pricing structure of other

competitive food items. The pricing structure of other competitive food items must

carry a small weight, because otherwise, the overall model may become unstable, yet

it is an important incentive function that cannot be totally ignored.

This model will then be combinedwith the demandmodel. In the combinedmodel,

the prices needed by the demand model are computed using the supply model and

the demand predictions needed by the supply model are computed by the demand

model.
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CHAPTER 6

Experimental Simulation and Results

6.1 Annual Data

The proposed model was run with annual data for each year from 1910 to 1994.

The data set consists of annual time series observations over the period 1910-1994.

Per-capita consumption of twenty-one food items and corresponding average retail

prices for those items were constructed from several USDA and Bureau of Labor

Statistics (BLS) sources. The quantity data are aggregates taken from the USDA

series Food Consumption, Prices and Expenditures. Estimated retail prices corre-

sponding to the quantity data were constructed as follows. Detailed retail price

estimates that are available for 1967 were used along with the respective quantity

observations to construct an average retail price per pound in 1967 for each food cat-

egory (e.g., milk). For all other years, the �xed 1967 quantity weights, together with

either consumer price indices for food items or average retail food prices were com-

bined to construct a consistent retail price series for each commodity. The consumer

price index (CPI) for all nonfood items is used for the price of nonfood expenditures.

The income variable is per capita disposable income.

The demographic factors included in the data are the empirical age distribution

for the U.S. population and proportions of the U.S. population that are white, black
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and neither white nor black. The estimated age distribution is based on ten-year age

intervals, plus categories for children less than �ve-years of age and adults who are

sixty-�ve years and older. The ethnic variables are linearly interpolated estimates of

Bureau of Census �gures reported on 10-year intervals.

6.2 Quarterly Data

As suggested in [42], the annual data was interpolated using the built-in splines

interpolator in Matlab, and data was generated every three months. This data is in

reality \dummy" data, because we have not added any knowledge to the model by

increasing the number of data points. but this will help improve the forecasts as has

been explained earlier.

6.3 Layer One

Fig. 6.1 shows the forecast results for the toddler population. The toddler popula-

tion depends on its own value in the previous year as well as the population capable

of bearing children, namely the young adult population.

Correction of Forecast Values

Since the sum of population in individual age groups must be equal to the total

population, there is a possibility to correct the forecasts made in the bottommost

layer. The total population can be written as sum of all the population in the
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Figure 6.1: Forecast Results of Population below 5 years Using Quarterly Data
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di�erent age groups.

Psum = P0�4 + P5�14 + P15�24 + P25�34 + P35�44 + P45�54 + P55�64 + P65+ (6.1)

A correction factor `k' can then be introduced as :

k =
Ptotal

Psum

(6.2)

Then the corrected forecast in each age group is

Pcorr = Pagegroup � k (6.3)

Fig. 6.2 shows the forecast results for the toddler population after making the

necessary correction. The error in forecast dropped by a small amount after correction

was incorporated. Forecasts were also made in the other age groups and all error rates

were well under ten percent. As in the previous cases, the error is not a relative error

measure.

Fig. 6.3 shows the forecast results for the total population.

Forecasts were also made on the percentage distribution of population based on

the ethnicity. The error in the forecast is shown in Fig. 6.4. It is interesting to note

that the error remains at a very low value for the �rst few forecast periods and then

increases very steeply.
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Figure 6.2: Forecast Results of Population below 5 years Using Quarterly Data and
Correction
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Figure 6.3: Forecast Results of Total Population Using Quarterly Data
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Figure 6.5: Toddler Population Forecast with Annual Data

To illustrate the better performance of the model using quarterly data over the

model using annual data, the results of similar forecasts using annual data is shown

in Fig. 6.5, Fig. 6.6, Fig. 6.7 and Fig. 6.8.

Since the total population was an almost linear curve, forecasts were also made

on the total population without incorporating the growth variable strategy discussed

in the earlier section. This was possible because forecasts were only made for a

short period into the future, and FIR sometimes tolerates a (very small) amount

of extrapolation. The forecast results are shown in Fig. 6.9. There is improvement

in the forecasts when a growth variable is used instead of the variable itself. The
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Figure 6.6: Toddler Population Forecast after correction using Annual Data
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Figure 6.7: Total Population Forecast and Error Curves using Annual Data
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Figure 6.8: Error in Forecast of White and Black Population using Annual Data
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Figure 6.9: Error in Forecast without the Growth Function

total population curve is almost linear. When direct forecasts were attempted on

variables that capture more non{linearity, the variables in layers two and three for

instance, FIR simply refused to make any prediction without proper use of the growth

functions.

The approximation of the growth variable as a �rst order equation helps reduce

the error values. This might suggest that if the growth variable is approximated as a

still{higher order equation, yet better forecasts can be obtained. This turned out not

to be true. Fig. 6.10 shows that, while for a smaller horizon, the error values using

�rst and second order approximations are comparable, the �rst order approximation

performs better for longer horizons.

With quarterly data, two di�erent mask candidate matrices were used to check

for any improvement in the forecast, namely a simple and a complex mask candidate

matrix.
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Figure 6.10: Error in Forecast by Approximating the Growth Function as Second
Order Function

The simplemask candidate matrix that was used for the forecast of a three variable

system using quarterly data looks like :

mcan =

0
BBBBBBBBBBBBBBBBBB@

�1 �1 �1
0 0 0
0 0 0
0 0 0
�1 �1 �1
0 0 0
0 0 0
0 0 0
�1 �1 �1
+1 0 0

1
CCCCCCCCCCCCCCCCCCA

The rationale for the simple mask candidate matrix is that since the added data

is only dummy, those entries can be masked out in the search for an optimal mask.

This helps speed up the modeling process.

The complex mask candidate matrix that was used for the forecast of a three

variable system using quarterly data looks like :
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mcan =

0
BBBBBBBBBBBBBBBBBB@

�1 �1 �1
�1 �1 �1
�1 �1 �1
�1 �1 �1
�1 �1 �1
�1 �1 �1
�1 �1 �1
�1 �1 �1
�1 �1 �1
+1 0 0

1
CCCCCCCCCCCCCCCCCCA

(6.4)

The rationale for the complex mask candidate matrix is that it provides FIR with

optimal 
exibility in choosing the best possible m-inputs. However, the forecasts

were similar in both cases, as this was expected since the extra data added had no

knowledge in them. If the added data were original data, i.e., if we had raw quarterly

data to feed into the model, then better forecast results could be expected.

6.4 Economy Layer

Fig. 6.11 and Fig. 6.12 show the forecast results for the disposable per capita

income and the wage rate. These variables depend on the total population, a variable

that was forecast in layer one. Other forecast models that take as input only their own

past values were also tried. The model that used data from layer one outperformed

the simple model.

Fig. 6.13 shows the forecast results for the rate of unemployment. The forecast

results of the �rst layer were included to make a forecast of the rate of unemployment.
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Figure 6.11: Disposable Per Capita Income Forecast and Error Curves
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Figure 6.12: Wage Rate Forecast and Error Curves
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Figure 6.13: Unemployment Forecast and Error Curves

The forecast also included the young-adults who are the young working population,

the total population and the wage rate. Similar forecast were also performed using

only the rate of unemployment and using the rate of unemployment and the wage

rate only. The forecast error in the simpler models were much higher than that of

the composite model.

Fig. 6.14 shows the forecast and error curves for the Consumer Price Index for all

items, namely food and non{food. Various other forecast models were also used that

used partial inputs from the �rst and second layers. The errors in the partial models

were much higher than those of the proposed model.
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Figure 6.14: Consumer Price Index Forecast and Error Curves
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Figure 6.15: Producer Price Index Forecast and Error Curves

Fig. 6.15 shows the forecast and error curves for the Producer Price Index for

materials and components. Various other forecast models were also used that used

partial inputs from the �rst and second layers. Once again, the more complex model

performed better than the simpler models.

6.5 Food Supply Layer

Fig. 6.16, Fig. 6.17, Fig. 6.18 and Fig. 6.19 show the forecast and error values for

the price of poultry products, fruit produce, cheese products and fat and oil products,

respectively. As in earlier cases, various other models that depend only on layer three
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Figure 6.16: Poultry Products Price Forecast and Error Curves

alone, or layer two and three alone or their own past alone were tried. The complex

model that depended on all three layers produced the best results.

6.6 Food Demand Layer

Fig. 6.20, Fig. 6.21, Fig. 6.22 and Fig. 6.23 show the forecast and error values

for the consumption quantity of poultry products, fruit produce, cheese products

and fat and oil products, respectively. As in earlier cases, various other models that

depended only on layer three alone, or layer two and three alone or their own past
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Figure 6.17: Fruit Produce Price Forecast and Error Curves
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Figure 6.18: Cheese Price Forecast and Error Curves
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Figure 6.19: Fat and Oil Products Price Forecast and Error Curves
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Figure 6.20: Poultry Products Quantity Forecast and Error Curves

alone were tried. The complex model that depended on all three layers produced the

best results.

The use of quarterly data helped make better forecasts. Only in some cases were

the forecast results similar. As explained earlier, the consumption quantity of some

food products, like fresh milk and cream, are not a�ected very much by changes in

their price. In these cases, the forecasts using annual data and quarterly data are

almost the same. The results are shown in Fig. 6.24 and Fig. 6.25 respectively.
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Figure 6.21: Fruit Produce Quantity Forecast and Error Curves
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Figure 6.22: Cheese Quantity Forecast and Error Curves
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Figure 6.23: Fat and Oil Products Quantity Forecast and Error Curves
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Figure 6.24: Milk Quantity Forecast and Error Curves using Annual Data
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Figure 6.25: Milk Quantity Forecast and Error Curves using Quarterly Data
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6.7 Optimization Scheme

In this scheme, a distinction is made between the demand and supply layers which

were earlier combined together as a single layer. As explained earlier, the relationship

between the prices and consumption volume are considered to be immediate. The

food prices depend on the current food consumption volume and vice{versa. The

optimization scheme tries to model this interaction.

The prices are �rst �xed at the previous year's level. The volume of food sold

at those prices, given the current population dynamics and economy data, can be

calculated. From the estimated consumption, the pro�t of the producers can be

obtained. This model can then be embedded in an optimization layer, in which the

food prices are treated as parameters, and the pro�t is the performance index to be

maximized.

The algorithm to be followed is described below for making forecasts on a few

diary products :

Using the food supply model, a forecast of the price of milk and fresh cream,

butter products and cheese products is made. Let this be represented as P 0
1 , P

0
2 and

P 0
3 and let

P0 =

0
BBBBBBBB@

P 0
1

P 0
2

P 0
3

1
CCCCCCCCA
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Using the food demand model, a forecast of the consumption quantity of milk and

fresh cream, butter products and cheese products is made. Let this be represented

as A0
1, A

0
2 and A0

3 and let

A0 =

0
BBBBBBBB@

A0
1

A0
2

A0
3

1
CCCCCCCCA

The Pro�t Index can then be calculated as

PI0 = P 0
1 �A

0
1 + P 0

2 �A
0
2 + P 0

3 �A
0
3 (6.5)

Adjusting the prices from the food supply layer in the following manner:

P1 =

0
BBBBBBBB@

P 0
1 � 1:05

P 0
2

P 0
3

1
CCCCCCCCA

P2 =

0
BBBBBBBB@

P 0
1

P 0
2 � 1:05

P 0
3

1
CCCCCCCCA
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P3 =

0
BBBBBBBB@

P 0
1

P 0
2

P 0
3 � 1:05

1
CCCCCCCCA

we can obtain from the food supply model, the corresponding

A1 =

0
BBBBBBBB@

A1
1

A1
2

A1
3

1
CCCCCCCCA

A2 =

0
BBBBBBBB@

A2
1

A2
2

A2
3

1
CCCCCCCCA

A3 =

0
BBBBBBBB@

A3
1

A3
2

A3
3

1
CCCCCCCCA

The corresponding Price Indices are then

PI1 = P 1
1 �A

1
1 + P 0

2 �A
1
2 + P 0

3 �A
1
3 (6.6)
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PI2 = P 0
1 �A

2
1 + P 2

2 �A
2
2 + P 0

3 �A
2
3 (6.7)

PI3 = P 0
1 �A

3
1 + P 0

2 �A
3
2 + P 3

3 �A
3
3 (6.8)

The sensitivity of the consumption quantity to the price is calculated as

�PI

�P1
=

PI1 � PI0

P 1
1 � P 0

1

(6.9)

�PI

�P2
=

PI2 � PI0

P 2
2 � P 0

2

(6.10)

�PI

�P3
=

PI3 � PI0

P 3
3 � P 0

3

(6.11)

and is written as

�PI =

0
BBBBBBBB@

�PI
�P1

�PI

�P2

�PI

�P3

1
CCCCCCCCA
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A fresh value for the price is then calculated as

P4 =

0
BBBBBBBB@

P 4
1

P 4
2

P 4
3

1
CCCCCCCCA

where

P4 = P0 + 
 � �PI (6.12)

The value of 
 is set at a small value, say 0.01. This value of P4 can be used as

the price from the food supply model and all the above steps can be repeated again,

until the norm of �PI drops to a value almost close to zero. The value of P4 is then

the best price that will maximize the pro�ts for the suppliers.

It was not possible to perform the above mentioned optimization scheme using the

data that was available because of the small size of the training data. When the price

was moved beyond a certain margin, FIR started to complain that it had not seen

the input pattern earlier and so refused to make a forecast. This can be overcome,

if we had true data that were available in more frequent intervals. For instance, the

price of tomatoes changes on a daily basis. The dynamics in such a model could be

su�cient to run the optimization scheme.



151

CHAPTER 7

Conclusion and Future Research

In this thesis, a new mixed quantitative and qualitative approach to modeling

macroeconomic systems for the purpose of short{term prediction (one to �ve years)

was presented. A three{layer architecture was proposed. It was shown that fairly

accurate predictions of macroeconomic variables can be obtained using this layered

architecture.

What are the main advantages of a mixed SD/FIR approach? Pure SD is attrac-

tive because it requires very few training data, but the methodology is treacherous,

because it doesn't o�er any self{assessment capabilities. Pure FIR is attractive be-

cause of its sheer generality and ease of use, but it has the problem of requiring

lots of data, and without any underlying structure, the modeling e�ort needs to be

started from scratch for each new application. The mixed SD/FIR approach com-

bines the best of both worlds. It saves of SD what is worth saving, but adds FIRs

self{assessment capabilities and reduces drastically the assumptions made on the

model.

It is amazing how well the methodology worked, given the fact that the model

had to operate in a mode of severe data deprivation. Annual data from 1910 to 1970
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were used as training data, i.e., only 61 data records were available for training the

model.

The data deprivation problem was overcome by interpolating between the mea-

surement data points using spline interpolation (available in Matlab). Clearly, adding

more data points by means of interpolation did not add any additional information

to the data set. The new data are derived data, and one shouldn't expect that the

model would improve as a consequence of such data. Yet, they actually helped for

two reasons.

First, FIR uses the �ve nearest neighbors for predicting fuzzy membership values.

Because there are only 61 data records in the training data base, the neighbors will

be far away, and therefore, a lot of interpolation has to be done. By generating e.g.

three new arti�cial data points for each measured one, the system would now have

241 data points to work with. Therefore, the �ve nearest neighbors will be much

closer to the current data point, and consequently, much less interpolation will be

needed.

Second, FIR tries to have at least �ve recordings for each discrete state. With

61 data records, only 12 di�erent states can be recorded 5 times each. This means

that FIR will always pick extremely simple models with one to three ternary input

variables only. If FIR is o�ered four or �ve possible input variables, it will pick the
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most relevant ones, and discard the others, although they might carry useful infor-

mation. If the data deprivation problem is reduced, FIR might pick a mask of higher

complexity, and thereby also exploit the information contained in less important

variables.

The improvement in forecasts by use of interpolated data also suggests that if it

were actually possible to obtain true data collected at more frequent intervals, then

better forecasts can result.

How does this study help with predicting other variables, such as the demand for

used cars, or the prices of telephone calls? The two bottom layers of the architecture

are independent of the application at hand. Only the top layer (demand and supply)

needs to be reidenti�ed for each new application. This certainly helps.

Many technological variables have a much shorter history. For example, cellular

phones or the world wide web simply haven't been around very long. Yet, their time

constants are considerably shorter also, and therefore, data can be recorded more

frequently. If monthly data are meaningful (because the time constants are months

rather than years), only about six years worth of data would be needed to get 60 data

points. In this case, a spline interpolation on the lower levels serves an additional

purpose. It can be used to provide the intermediate data points needed to feed the

faster changing technological variables of the top layer.
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Finally, although the bottom layers are certainly speci�c to the U.S., the three{

layer architecture itself is not. For each new country or region, the two bottom layers

will have to be reidenti�ed, yet, the structure of the architecture will remain the

same.

Future work should include obtaining data at more frequent intervals of time such

that the Optimization between the Food Demand and Food Supply layers can be

performed. Data sets pertaining to a di�erent U.S. industry could be used to make

forecasts in that industry. If it were possible, it would also be helpful to obtain

a break-up of the population based on income levels. This would help bind the

population and macroeconomy layers much closer together.

The modeling approach chosen in this research represents a drastic deviation from

the approaches pursued by mainstream economic research. In order to better assess

the usefulness of the advocated methodology, a thorough and fair comparison between

the two approaches should be made.

This thesis work is a �rst step towards a mixed deductive and behavior model-

ing approach and hopes to pave the way for newer and bolder economic modeling

techniques.
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