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TERMINOLOGY INDEX

Component The smallest subdivision of the machine that the family
manager chooses to identify. This could be a PC board, or it could
be a resistor on that board.

Data Analysis Routine.

Data denotes raw facts. It comprises the raw materials, the ingre-
dients for information.

Name of a family of equipments inside a fabrication facility.

Name of fabrication facility at AMD

Name of fabrication facility at AMD

An incident that causes a machine to fail to perform its intended
function.

An internal code that the programs use to represent a unique failure.

Failure Description:An English language description of a unique failure.

Failure Menu: A hierarchical data structured containing Major-SubSystems, Minor-
SubSystems, and Failure Components and their Failure Modes.

Failure Mode: The manner in which a component has failed.

Facility: The overall manufacturing environment can be decomposed into
smaller environments, the so-called facilities, based on the nature
of the involved equipment park and its intended functions.

Family: A group of machines of like type and model that share a common
failure menu.

Family Manager: The equipment engineer or specialist assigned to create and oversee
the content of a given family menu.

Family Menu: Menus such as Failure Menu, Symptom Menu, and Repair Activity
Menu.

Folder: A menu choice that can be decomposed further into sub menus.

HDC: Hierarchical Data Collection System - the software that displays
the appropriate menu and collects event data, such as failure data.
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Information: Processed data become information. For example, failure data are
collected by HDC and as a result, a failure description is formed.
This description is considered information.

Ingress: A Relational Data Base

Item: Name used to describe the lowest component level in the menu.

Knowledge: Knowledge (only factual knowledge is defined in this system) is
defined as synthesized information. During synthesis, one piece of
information is compared to other pieces of information, and they are
combined in significant likes to form a pattern or chunk of knowl-
edge.

Major Subsystem: The largest subdivision of a machine that the family manager chooses
to identify.

Minor Subsystem: A machine subdivision contained within a major subsystem and
containing components and/or other minor subsystems.

MMR: Menu Maintenance Routines - the software used by the family
managers to perform various housekeeping functions on the fam-
ily menus.

Occurrence: It is the number of frequency that an event has occurred in the
past.

Other: A special menu option chosen by maintenance personal in the ab-
sence of an appropriate menu selection, requires input of failure,
symptom, and repair activity description, and is subject to approval
by the equipment family manager.

Repair Activity: It is activities done by maintenance personnel to fix the equipment.

Symptom: Symptom is defined as equipment malfunction, quality disturbances,
or process instability.

Syrnptomic Factor: The Symptomic factors constitute a means of classification of symp-
toms.

Syrnptomic Classification:The Symptomic Classification is used to decompose symp-
toms in a hierarchical fashion.

Workstream: A Data Base Management System (Comets)
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ABSTRACT

This thesis introduces the problem of knowledge acquisition in developing a Trou-

ble Shooting Guide (TSG) for equipment used in integrated circuit manufacturing.

TSG is considered as a first step in developing an Expert Diagnostic System (EDS).

The research is focused on the acquisition and refinement of actual knowledge from

the manufacturing domain, and a Hierarchical Data Collection (HDC) system is in-

troduced to solve the problem of bottleneck in developing EDS.

An integrated circuit manufacturing environment is introduced, and issues relat-

ing to the collection and assessment of knowledge concerning the performance of the

machine park are discussed. Raw data about equipment used in manufacturing envi-

ronment is studied and results are discussed. A systematic classification of symptoms,

failures, and repair activities is presented.



12

CHAPTER 1

Introd uction

As industry grows and its technology evolves, manufacturing systems are becoming

more and more complex. These systems frequently break down and then, they need

to be diagnosed. As a result, the cost of troubleshooting and maintenance has become

a crucial point in most of these manufacturing systems. On the other hand, accurate,

timely, and reliable information about the equipment's behavior and the knowledge

domain are essential for performing a proper diagnosis, and thus, the availability of

an automated maintenance system seems highly desirable. Therefore, an Automated

Expert Diagnostic System is highly recommended to bring these goals to bear. To

make this system fully automated, three self maintenance parts are required: (i)

a Watchdog Monitor to detect any error or discrepancy in the system; (ii) a Self

Maintenance Diagnoser Scheme that can pinpoint the faulty component, and (iii)

an Automated Repair System to perform the actual repair activity. This type of

automated system may be feasible for new plants that are now under development

(Figure 1.1 illustrates such a system). However, for currently existing plants, this

approach may not be practical due to the absence of interfaces for Watchdog Monitors

and Automatic Repair Systems. Retrofitting an existing manufacturing system with
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Figure 1.1: An Automated Expert Diagnostic System

the appropriate interfaces may often be almost as expensive as to replace the entire

plant. Therefore, existing manufacturing systems need humans, such as operators

and technicians, for guidance and maintenance. Figure 1.2 shows a Fault Diagnoser

with its crew to show the first step toward automating the process of fault diagnosis

in existing plants.
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"" .-
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Figure 1.2: Fault diagnoser with human as maintenance and guidance
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It is not the intent of this author to develop a fullfledged Expert Diagnostic System.

Rather it is his intent to develop a semiautomated Knowledge Acquisition Scheme

to collect and capture accurate information relating to equipment failures and their

symptoms; and further to design a methodology to relate these pieces of information

to each other to form a Knowledge Base for TroubleShooting Guide. It is envisioned

that this TroubleShooting Guide forms the basis of an Expert Diagnostic System that

could further revolutionize the way maintenance is practiced.

In developing the above Knowledge Acquisition Scheme, designing a tool that can

automatically acquire knowledge would be desirable. Finding such a tool can be done

in many different ways. The first way is to do it by hand. This method is expensive

and slow. It requires craftspeople, custom designers, and MIS departments, which all

cost money. Applicability of this approach is also limited to fairly simple processes.

It would not be possible for a company to hire qualified permanent staff to perform

this job in the context of an ever more project-oriented manufacturing environment

with its increasingly complex machine park. On the other hand, if a company uses

external and highly qualified consultants, the cost will be outrageous. Furthermore,

handcrafting can take so long that the software is likely to be obsolete by the time it

is ready for use.

The second way is to think of everything in advance. Such a package provides

tables that are flexible enough to accommodate every foreseeable situation. This ap-

proach is feasible for applications that do not evolve, such as accounting and payroll.
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Such software is not suited for a manufacturing environment where the data base

evolves constantly due to inclusion of a new machine type, a new type of symptom,

failure, and so on. Moreover, the original development of this software is difficult to

maintain and tends to run like a "three-legged horse" (rovira, 1990).

Finally, the third way is to design an adaptive software. Adaptability of the soft-

ware to an ever-changing environment would be the most important factor in its

acceptance into a manufacturing environment. Such software must be able to main-

tain and modify its own tables and parameters in accordance with newly available

knowledge. In this approach, only the (fairly application independent) mechanisms

for modifying tables and parameters are frozen, whereas the (domain-specific) knowl-

edge itself is not predetermined. The price to be paid for the generality and flexibility

of this approach is a somewhat reduced execution speed in comparison with the other

two approaches. However, this disadvantage is quite acceptable in the context of flexi-

ble manufacturing systems, where the cost of the diagnostic computer is, in any event,

only a rather insignificant portion of the overall system cost, and where the cost of

a non-operational machine due to an undiagnosed failure is far more significant than

the cost paid for reliable and fast failure analysis.

In this thesis, the author will try to present the system development in three dis-

tinct stages: He first describes the development of a Hierarchical Menuing System to

collect data; he then introduces a design strategy for collecting data items and relating

the various facts to each other; and finally, he designs an Example-Based Knowledge
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Base to complete the Trouble-Shouting-Guide as his final goal. Quick prototyping

is used to establish the system architecture and its detailed requirements. Symptom

Prototype, Repair Activity Prototype, and Diagnostic Prototype are among those

components that determine the appropriate knowledge representation, man-machine

interface, supporting hardware, and functional architecture of the system. A discus-

sion of these prototypes is postponed to Chapter 4 in which all relevant terms are

defined.
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CHAPTER 2

Knowledge Acquisition and Design Principles

2.1 Introduction

In chapter one, the need for the development of an autonomous system was ex-

pressed and, in this context, a semiautomated expert diagnostic system was proposed.

In this chapter, the author focuses on the development of such an expert diagnos-

tic system, and he begins with the most difficult part, the knowledge acquisition.

The author first explains the advantages of using an expert diagnostic system over

the other two rivals, human diagnosis and a diagnostic system using conventional

programming techniques. Next, he introduces the problem of knowledge acquisition,

which constitutes from several different perspectives the primary bottleneck in the

development of automated fault diagnosers as reported by various scholars in the

field (Buchanan, 1983). Several approaches for knowledge acquisition are presented

along with the modes in which their knowledge can be acquired. Furthermore, sec-

tion 2.4 introduces several knowledge acquisition tools, including those that exist as

components of expert system shells, those based on repertory grids, and finally those

that serve to guide the interviewing of human experts. Section 2.5 explores types of



18

knowledge to be acquired from the manufacturing domain by an individual, such as

an operator or a technician, and also provides an analysis of the structure of such

knowledge. Finally, the chapter concludes with a description of the software design

principles, and presents a step-by-step development life cycle of the overall system.

2.2 Expert System

In search for an efficient scheme for fault diagnosis, the author noticed that three

general schemes of fault diagnosis have been employed in the past that differ in

the kind of technology used. These schemes are referred to as human diagnosis,

conventional diagnosis, and expert system diagnosis(Klue; Karel, G. and Kenner,

M.,1989). Obviously, the human (manual) scheme is of not much interest in the

context of this thesis. Its drawbacks are evident. Human experts are scarce and

expensive. Their expertise is often specialized to one particular type of equipment.

If only a few machines of that type are used in the manufacturing environment, it is

economically infeasible to hire an expert. Thus, when the equipment breaks down, the

expert has to be flown in, which adds to the cost of diagnosis and repair and prolongs

the downtime of the equipment, which in turn again increases the cost. If sufficiently

many machines are used, it is possible to hire an expert. Yet, the education of experts

is time consuming and expensive, and the life span of most machines used in modern

integrated circuit manufacturing is so short that the education to train a human

expert on a new machine constitutes a significant portion of the life span of that
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machine. On the other hand, conventional (code driven) programming techniques are

inadequate for fault diagnosis in manufacturing. While conventional fault diagnosers

provide for excellent run-time performance (speed), they are characterized by a low

degree of flexibility. Thus, a real-time fault diagnoser for an aircraft (implemented as

part of the autopilot) will probably be implemented using conventional programming

techniques, since speed is of the essence and since the aircraft remains the same

throughout its life cycle. However, in a manufacturing environment, the diagnostic

knowledge is continuously evolving since new processes are being manufactured by

existing machines and since new machines are either added to the machine park or

replace existing machines in the machine park. Thus, a high degree of flexibility of the

fault diagnoser is utterly important, and yet, the time constants of the manufacturing

environment are sufficiently slow so that the overhead inherent in the (data driven)

expert system approach can be tolerated. Thus, it becomes evident that the expert

system approach to fault diagnosis is the most suitable among the three alternatives

for the application in hand.

Sell (1985) divides artificial intelligence into two subdomains: human cognition

and intelligent artifacts. Human cognition deals with how experts go about solving

problems, and hence, human cognition characterizes the understanding of the work-

ings of the experts' mind while solving a problem. Intelligent artifacts, on the other

hand, are concerned with the specific pieces of knowledge of the expert used when

a particular problem is being solved. Thus, human cognition deals primarily with
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the domain independent meta-knowledge of the mechanisms of thinking, whereas the

intelligent artifacts relate to the always domain specific pieces of information em-

ployed in the thinking process. In an expert system, these two types of knowledge

are separated as well. Intelligent artifacts are stored as facts in the (domain specific)

knowledge base, whereas the method of thinking is implemented in the (domain

independent) inference engine. The process of building an expert system can be un-

derstood as the capturing of the domain knowledge of an expert and his thinking

mechanisms in computer software in such a way that it can emulate the expert in

arriving at solutions to the problems of interest. Present expert system techniques

provide the ability to encode knowledge in usable software programs for giving ad-

vice on specific problems. Since the facts are stored as data entries in a knowledge

base, new facts can be deduced and stored in the knowledge base without need for

recompilation. However, little support is provided for generating the entries in the

knowledge base. Yet, the power of an expert manufacturing system is derived from

the knowledge it processes, not from the particular formalisms and inference schemes

it employs in the construction of the system (Feigenbaum); that is why a knowledge

acquisition tool plays a central role in the building of an expert system for capturing

knowledge relating to an integrated circuit manufacturing plant.
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2.3 Knowledge Acquisition: The Bottleneck

The design of an expert system usually faces several difficulties in the formaliza-

tion of the problem, i.e., the selection of useful knowledge, the knowledge acquisition,

the knowledge representation, and finally the knowledge utilization. Among the top

difficulties, knowledge acquisition is recognized as the most critical element in the de-

velopment of an expert system, and it is known to be the most problematic. Buchanan

et al. (1983) describe knowledge acquisition as the bottleneck of the technology due

to the inherent difficulty in retrieving knowledge from human experts (since humans

are not fully aware of their own cognition mechanisms, and therefore don't have a

complete and deliberate access to the intelligent artifacts stored in their memory),

and due to the difficulty of appropriately translating and representing human exper-

tise. Knowledge acquisition is defined as the process of transforming data on expertise

into an implementation formalism (Kidd, 1987). Thus, this process consists of ac-

quiring domain knowledge from the expert (knowledge elicitation) and formalizing

the gathered knowledge for analysis (knowledge representation).

Traditionally, knowledge acquisition has been approached from two major vantage

points: manual and automated. Figure 2.1 illustrates these two approaches.
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MANUAL
APPROACH

Knowledge
Acquisition

Body of
Domain
Knowledge

Knowledge
Engineer

TOOL-CENTERED
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Body of
Domain
Knowledge

Figure 2.1: Two approaches for knowledge acquisition (McGraw)

The manual approach is both time consuming and costly. It takes time for a

knowledge engineer to become familiar enough with the domain at hand to elicit

knowledge from a domain expert in an efficient manner. Therefore, considerable

research is being conducted in the development of automated knowledge acquisition

tools. Programs that automate facets of the knowledge acquisition process range from

those that support the knowledge engineer in conceptualizing or developing a model

of the domain (Planet: Gains and Shaw, 1986; AQUINAS: Boose and Bradshaw

1987a,b; Kitten: Garg-Janardan and Slavendy, 1987; Kriton: Diederich, Ruhmann

and May, 1987) to those that purport to automate the interviewing (Knack: Klinker,

et al., 1987a,b), domain modeling (More: Kahn, 1985) , and refinement processes

(OposII: McGraw, Seale, 1987; Lotta: McGraw, Seale, 1987). Some tools have been

developed for the purpose of researching the knowledge acquisition process itself to
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identify more efficient approaches to knowledge acquisition (McGraw, 1989); others

have been developed as commercially available stand-alone tools (MacSmarts: Ras-

mus, 1988; First-Class: Ruth, 1988). Marcus et al. (1985) report that the existing

knowledge acquisition tools are mainly to provide two kind of assistance:

Increase the ease with which a domain expert can communicate his or her

expertise

and/or

Organize or proceduralize the knowledge that is communicated so that all rel-

evant knowledge for a situation is exposed.

There exist a number of different ways to approach knowledge acquisition (knowl-

edge elicitation) for expert system development. Several techniques are widely used

(Kidd, Slater, Welbank, Hart, waterman & Newel, Rozenblit): (i) interviewing ex-

perts, (ii) learning by being told, (iii) learning by observation, (iv) conceptual sort-

ing, (v) multidimensional scaling, (vi) machine induction, (vii) protocol analysis, and

(Viii) explicit representation (KAR). In reality, none of these techniques is used to

the total exclusion of the others (McGraw, 1989). In some cases, a hybrid approach is

adopted. In others, a single approach serves as primary tool for one phase of the de-

velopment, while additional approaches are adopted for use in later stages. Buchanan

et al. (1985) have investigated different modes that are used to acquire knowledge.

They presented four different modes, each representing a variation of the manual
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Figure 2.2: Knowledge acquisition modes (McGraw)

and automated perspective. Figure 2.2 illustrates five knowledge acquisition modes

(McGraw, 1989), each of which varies along a continuum from manual to automated,

based on the knowledge source and the transfer mechanism.

The first two knowledge acquisition modes are manual in nature while the third,

fourth, and fifth modes reflect varying degrees of automation.

Most knowledge acquisition tools have been developed to circumvent the bottle-

neck in the process of building expert systems. Most developers would agree that the

primary causes of this bottleneck are the difficulty of retrieving appropriate knowl-

edge from human experts and of appropriately translating or representing human

expertise. If tools could be developed such that a domain expert could sit at a

workstation and encode his or her expertise directly, the bottleneck might be re-

duced. It has been suggested that, by using knowledge acquisition tools, there may

be less "noise" introduced into the encoded knowledge (Friedland, 1981). "Noise" is



25

here defined as either erroneous information, missing information, poor description

language, or unreliable data. Noise is often introduced in manual knowledge acqui-

sition as a consequence of a misunderstanding between the domain expert and the

knowledge engineer. However, the same type of noise can also be introduced as a

consequence of a misunderstanding between the domain expert and the knowledge

acquisition tool. For example, if a taxpayer (domain expert) uses a tax prepara-

tion program (knowledge acquisition tool) to generate his tax declaration (knowledge

base), it is not evident that the generated tax declaration contains less "noise" than

if he or she makes use of a CPA (knowledge engineer) who extracts the knowledge

from the taxpayer using an expert interviewing technique, and then enters the ex-

tracted knowledge into the (probably identical) tax preparation program. The tax

preparation program will ensure consistency among the data entries, not necessarily

correctness. This consistency may, in fact, have the undesired side effect that in-

correct data entries are less likely to be exposed later. Thus, the previously quoted

conclusion does not seem plausible. It is a formidable task to design a knowledge ac-

quisition tool that is able to reason about potential misunderstandings. To this end,

it may in fact be desirable to equip the knowledge acquisition tool with redundant

data entry to reduce potential noise by means of internal data consistency checks.
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2.4 Knowledge Acquisition Tools

Unfortunately, The diversity in the focus of existing knowledge acquisition tools,

the manner in which they have been implemented, and the domain in which they

have have been tested, make a comparison of their features ineffective. Furthermore,

the continued increase in the number of tools designed to automate some portion

of the knowledge acquisition process prohibits the author from covering each tool.

However, it is the intend of this author to introduce to reader to a few examples of

different types of existing knowledge acquisition tools. This is done by dividing tools

into three distinct categories.

In the first category, the author introduces two expert system shells that are being

used as knowledge acquisition tools. These are powerful tools that have been devel-

oped for specific applications. For example, MacSmarts (Rasmus, 1988) is an expert

system building tool developed by Cognition Technology for the Macintosh family

of computers. MacSmarts combines the ability to design rule-based and example-

based systems with a user-friendly interface and the ability to link rules and devices

to other elements (e.g. graphics, text, spreadsheets, databases, and/or knowledge

bases). While some domain experts may be able to input knowledge using the rule-

based component, the factor that makes MacSmarts attractive as a knowledge ac-

quisition tool is its example-based knowledge-base development component. After

the domain expert has provided information on factors, choices, and advice, the ID3
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algorithm (Quinlan, 1982) is used to translate the examples (factors, choices, advice)

into an expert system knowledge base.

Another example of an expert system shell is the 1st-class expert system (Ruth,

1988) It is a shell that can be used as knowledge acquisition tool in the development

of expert systems. 1st-class has the capability to help the knowledge engineer to

develop a knowledge base through sets of examples. This type of knowledge base is

applicable to domains that have a classification system with historical and tabulated

data. When the knowledge base is built, 1st-class will construct rules based on the

examples saved in its knowledge base by applying one of the following methods:

optimize the rule, left-to-right optimized rule, progression of factors, or exhaustive

left-to-right rule. Then, it inspects rules for their validity and finally determines

which questions to ask, and in what sequence they ought to be posed.

In the second category, the author presents knowledge acquisition tools that are

used to build domain models based on Repertory Grids. These tools have been de-

signed to automate (a portion of) the knowledge acquisition process. Knowledge

acquisition research at BDM corporation has resulted in a design of BDM-KAT,

(Blaxton, Geesey, Reeke, 1987). BDM-KAT provides the knowledge engineer with

the ability to create an initial knowledge base. It consists of three modes: clarifi-

cation, prediction, and diagnosis. In the clarification mode, BDM-KAT provides a

framework that encourages the identification of domain concepts and categories, and

the decomposition of domains into subprocesses. It builds a model of the expert's
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conceptualization of the process, complete with graphically-depicted interrelation-

ships and composite subprocesses. Once the clarification mode has been completed,

the knowledge engineer may enter the prediction mode. The purpose of the predic-

tion mode is to expose gaps and fill holes that remain in the knowledge base. When

an acceptable mode has been developed, the knowledge structure can be refined in

the diagnosis mode. In the diagnosis mode, the expert views the current state of the

knowledge base in the form of a flow chart in which each major node represents a

process.

Finally, in the third category, the author presents knowledge acquisition work-

benches as a tool to acquire knowledge. While some of the knowledge acquisition tools

may assist the user in creating a domain model, workbenches are designed to provide

a mean to translate knowledge that has been previously captured into a representa-

tion scheme that can be used by the expert system under development. Systems such

as AQUINAS (Boose, 1987), KRITON (Diederich, Ruhmann, May, 1987), and TDE

(Kahn, 1987) all fit under this category. For example, among the top choices, Kriton

is described as a Hybrid Knowledge Acquisition Tool that uses a variety of knowledge

acquisition methods to elicit and capture knowledge from domain experts (Diedrich,

Ruhmann and May, 1987). Kriton makes use of the domain experts' declarative and

procedural knowledge as well as static, text-based knowledge. Its architecture sup-

ports the use of three knowledge elicitation methods, namely automated interviewing,

text analysis, and protocol analysis.
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2.5 Identifying and Tapping Knowledge

A primary task of the knowledge engineer is to capture and conceptualize what

a domain expert knows and uses to solve problems. Thus, before the author can

proceed to explain the acquiring of knowledge from domain experts, he must put

himself in the pace of a knowledge engineer and provide a basic understanding of what

knowledge is, how it is stored, and how domain experts access it. Therefore, the focus

of this section is to define knowledge that is being acquired in the integrated circuit

manufacturing environment by individuals, usually either operators or technicians,

and explore this knowledge from various perspectives. Whenever possible, examples

are given to support concepts. However, let us first define the two most common

terminologies used in this context: Knowledge Engineer and Domain Expert.

Domain Expert

The domain expert is an individual selected for expertise in a given field and

for his or her ability to communicate knowledge. In this project, there are

three types of experts that each will have an important role in developing

this expert system. They are the following:

Technician: A maintenance person responsible for diagnosing faults in man-

ufacturing equipment.

Operator: An individual who operates the equipment, responsible for de-

tecting that a fault has occurred.
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Family Manager: The equipment engineer or specialist assigned to create

and oversee the content of a given family menu such as the failure menu or

the symptom menu.

Knowledge Engineer

The knowledge engineer is an individual responsible for structuring and/or

constructuring an expert system. In this project, the author assumes the

role of the knowledge engineer.

LAYERS OF KNOWLEDGE: Data, Information, Knowledge

Data

In this system, data denotes raw facts and concepts expressed in factual

statements. Data comprises the raw materials, the ingredients for informa-

tion. These ingredients are collected by the operators and technicians, and

are stored in the Workstream Data Base. Section 4.1 presents the Work-

stream data base and its role in developing the expert system. Figure 2.3

illustrates a sample of data acquired from the manufacturing environment.

Information

Processed data become information. Information can result from analyzing

the data based on some established criteria. Analyzed data are informative

and can be useful for the maintainability of the manufacturing environment.

Questions such as:
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Sample Data

Faci.l.i.ty Year

Enti.ty Operator

Begi.n-Date End-Date

Begi.n-Time Start-Date

Enti.ty-Type Event-Durati.on

Vendor End-T:ime

Locati.on Shi.ft

Event-type Techni.ci.an

* *

Figure 2.3: Sample data acquired from manufacturing domain

What is the most common type of entity failure?

What is the total hours to repair a given entity?

What is the total hours to repair a given failure type?

What is the frequency of repair for a given failure type?

What is the frequency of repair for a given entity?

are among those that can be addressed here.

Information, in general, tells more about the status of a domain as questions

are formed. For example, failure data are collected by the Hierarchical Data

Collection System (HDC) and as a result, a failure-description is formed.

This description is considered information while the individual entry about

the faulty component is referred to as data. To clarify this concept better,
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the author presents the following example: suppose an inference bell is the

faulty component that caused a particular machine to crash and as a result,

made the operator bring the machine down for the purpose of fault diag-

nosis and repair. After diagnosing the fault, the Technician uses RDC to

collect the failure and its failure mode. As a result of this process, a fail-

ure description with the path: Track assembly; inference assembly! inference

bell! broken is formed. Since this description tells us about the status of the

inference bell, i.e., whether it is loose, broken, or misadjusted, the complete

failure description is considered information, whereas the faulty component

entry, inference bell, prior to the fault diagnosis is referred to as data. This

information is first stored in the Failure Menu Data Base, and will then be

transferred to the Relational Data Base! Ingress for further analysis. The

failure description records provide a useful source of information for devel-

oping the knowledge base of the expert diagnostic system.

Knowledge

Philosophers, psychologists and artificial intelligence researchers have attempted

to answer the question what is knowledge? Knowledge is defined in Webster's Die-

tionary as Facts or ideas acquired by study! investigation! observation! or experience.

Reyes Roth (1983) contends that knowledge consists of description, relationship, and

procedures. Fischer (1987) defines knowledge as sorted information, called a model,
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Symptom code
&& Description

Fai.l..ure Code
Freq. && Description

more
info
to add.••........_- .....•....•.."L..._.....•I..- ...•...__ ..•...._ ...•.... ..&. •••••••••••••.•••

Figure 2.4: Chunk of knowledge

which is used by a person to interpret, predict, and appropriately respond to the out-

side world. Knowledge consist of relationships formed by a combination of declarative

(factual) and procedural (methodic) statements that are called upon for the perfor-

mance of an application. Tuthill (1990) defines knowledge as synthesized information.

During synthesis, one piece of information is compared to other pieces of information,

and they are combined in significant links to form a pattern or chunk of knowledge.

In our application, the Symptom Description, Failure Description, and Repair Activ-

ity Description are examined, compared, and combined together to form a chunk of

knowledge. Figure 2.4 illustrates the chunk of knowledge used in prototyping of this

system.

It is important for readers to realize that the above chunk of knowledge is designed

solely for the purpose of prototyping the system. This chunk contains the minimum

amount of information and data necessary to build the prototype. This chunk needs

to be completed by additional processed data as required. Most of the necessary

information is organized in the Relational Data Base, Ingress.
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Figure 2.5: Pyramid of data (Tuthill)

Data, information, and knowledge form a wisdom hierarchy. Figure 2.5 illustrates

the wisdom hierarchy. Data is aggregated and cathected with meaning as the hier-

archy develops.

2.6 Design Principles

Eliciting knowledge from an expert domain in appropriate form is prohibitively

difficult. However, while the expert cannot directly communicate his expertise and

strategies, he can provide data and critical information about equipment performance

via an intelligent editing program. A learning program can then process this infor-

mation to induce rules or formulate strategies in further building the knowledge base

for expert reasoning. For example, Michaleski (1980) has used AQll to formulate

factual knowledge as rules that diagnose plant disease. In some cases, its rules were
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more effective than the rules that were generated manually by a domain expert. The

extent to which these strategies (rules) are representative of the complete solution

depends on the goodness and completeness of the set of knowledge that is used to

form the theory. Induced descriptions are guaranteed to be valid only for the facts

from which the induction was made (Shapiro, 1987). Therefore, the integrity of the

knowledge acquired by a knowledge acquisition tool must be one of this project's

primary objectives.

This research has concentrated on the acquisition and refinement of actual knowl-

edge from the manufacturing domain and does not deal with the problem of learning

(inducing rules) or acquiring strategies for diagnosing a machine. Its primary objec-

tive is to develop an intelligent system that can acquire factual knowledge, such as

symptoms, failures, repair activities, and all other data surrounding the operation of

the manufacturing equipment, and is then able to relate these pieces of information

together in building the knowledge base for expert reasoning. This knowledge can

then be retrieved to assist the technician in troubleshooting problems. To develop

a system that can fulfill all requirements of the users and also support the analysis

of historical information about the equipment, the author decided to make use of a

prototyping technique.
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Why Prototyping?

Prototyping is a strategy for determining requirements for a system where the

end user is not entirely clear up front what he or she really wants. User needs are

extracted, presented, and developed by building a working model of the ultimate

system quickly and in context and by letting the end user interact with that model,

i.e., with the prototype. The technique differs significantly from prespecification in

that once the software engineer has gained an initial understanding of the problem, he

attempts to implement that understanding immediately. The resulting first-cut model

serves as an anchor point to permit meaningful and unambiguous communication

among all project participants. The definition of the system occurs through gradual

and evolutionary discovery. It is the intent of this author to show step by step how

this evolution took place.

Figure 2.6 illustrates the system development life cycle. At the top level, a Hier-

archical Data Collection is designed to enable the user to collect data using specific

menus available in the domain. This system also needs a Menu Maintenance Routine,

MMR, that can maintain these menu data bases. At this stage of development, Fail-

ure Collection seems to be the most suitable candidate for the prototype due to the

nature of its menu development. Section 4.2 describes these issues in more details.

The next stage of development is to study the symptoms and their characteristics.

The main task is to study how symptoms can be classified based on the comments

available in the Comet Data Base. Positional factors, behavioral factors, physical
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factors, and circumstantial factors are all among the issues that need to be studied.

Furthermore, the question of who should collect symptoms and when, is an important

consideration due to its significant effects on the integrity of the symptom data base

and the way relationships are formed with the failure data base.

Finally, it is to be investigated how symptoms are related to failures and in what

manner they should be collected so that they can be easily and reliably related to

failures for developing the knowledge base. Section 4.3 discusses these issues as the

author develops the symptom prototype. HDC needs to be optimized in accordance

with the result.

In the Repair Activity Prototype, a part of the expert system needs to be developed

to collect repair activity comments from the Comet Data Base. The main objective is

to study the nature of repair activities and their relationship with the failures. It is to

be investigated how and in what manner these repair activities ought to be collected

and related to their corresponding failures. The question of what constitutes a valid

repair activity needs to be addressed since there exist plenty of repair activities that

are irrelevant to the failure at hand.

At the final stage of the development life cycle, an application program needs to

be designed to support operators and technicians with the trouble shooting task. In

this step, all the application programs developed during the symptom and repair

activity prototypes are put together. The goal of this application program is that for

each given symptom it provides the list of failures together with their frequencies of
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Develop Repair Activity Prototype

Optimize the System

Develop an Application Program
for Trouble Shooting

Figure 2.6: The system development life cycle
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occurrence, and vice versa. It also provides a list of repair activities together with

their frequencies of occurrence for each given failure. The application program is

discussed in Section 4.5.
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CHAPTER 3

Manufacturing Errvirorrment

3.1 Introduction

This chapter discusses the manufacturing environment and deals with important

issues relating to collecting and measuring knowledge about performance of the ma-

chine park. A System Entity Structure (Zeigler, 1984) is introduced as a unique

way to represent knowledge relating to the above environment and the activities per-

formed on its machines. In Section 3.3, a manufacturing environment is introduced.

Section 3.4 presents how equipment time needs to be categorized in order to be able

to measure certain aspects of performance. A guideline for measuring performance

is provided in Section 3.5. In Section 3.6, event activity is introduced as a means

to keep track of the equipment activities. Issues concerning the involved Data Base

Management Systems, such as Workstream and Ingress, as well as the Menu Data

Base are discussed in Section 3.7. Finally, this chapter concludes with a discussion

of collected comments about equipment behavior and activities that will be used to

build the Symptom Prototype and Repair Activity Prototype explained in Chapter 4.



41

3.2 System Entity Structure

The System Entity Structure (SES) is a mechanism to describe hierarchically

structured sets of objects and their interrelations (Zeigler, 1991). The SES is a la-

beled tree with attached variable types, i.e., a graphical object that describes the

decompositions of systems into parts. In this chapter, the SES is used as a knowl-

edge representation scheme that formalizes the modeling of systems in terms of only

decomposition and specialization. Specialization is a mode of classifying objects and

is used to express alternative choices for components in the system being modeled.

3.3 Manufacturing Environment

In this section, the author presents how the overall manufacturing environment can

be decomposed into smaller environments, the so-called facilities, based on the nature

of the involved equipment park and its intended functions. Figure 3.1 illustrates a

decomposition of a manufacturing environment into many facilities. Each facility

can be further decomposed into families. A family is defined to be a collection of

equipment of similar types or copies of the same model.

There are many aspect of an equipment that can be studied. Those that are useful

for this project such as equipment state, equipment event or equipment hardware are

considered for further investigation. In this section, a hardware decomposition of

equipment is presented. This decomposition is illustrated in Figure 3.2. Equipment

can be decomposed into several Major-SubSystems. Each of these Major-SuhSystems
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Manufacturing Environment

II
Env-dec

Facility1 Facility2

I
Facility3 * * *

Facility-dec

----~~~--~--~l~l: .... . .
Family1 Family2

I
Family3 ***

Family-dec

Entity1
(equip1 )

Entity2
(equip2)

Entity3
(equip3)

Entity4
(equip4)

Entity5
(equip5)

* * *

Figure 3.1: System Entity Structure of manufacturing environment
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Equipment

Hardware-dec

* *Major-SubSystam1 Major-SubSystem3

Major-SubSystem2 Major-SubSystem4

Hardware-dec

* *
II

Minor-SubSystaml.

Minor-SubSystem2
I

Minor-SubSystem4

n
Componen1i Component 3 * *

Component 2 Component4

Figure 3.2: SES of hardware-decomposition of equipment

can be further decomposed into several Minor-SubSystems. Minor-SubSystems can

be hierarchically decomposed into yet smaller subsystems if this is thought necessary

by the family manager. The final decomposition will be into Components. Thus,

a Component is the smallest subdivision of the machine that the family manager

chooses to identify.
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Equipment

I
State-dec

Figure 3.3: System Entity Structure of equipment states

3.4 Equipment States

In this section, the author defines how equipment time needs to be categorized into

states in order to be able to measure certain aspects of equipment performance. These

states are determined based on their functions, not by organization. Equipment time

has been divided into six states into which all equipment conditions must fall. Each

of the equipment states can be further divided into as many sub-states as necessary

to achieve the desired equipment tracking resolution. Figure 3.3 illustrates the six

states as they are grouped under Operation Time, Equipment Downtime, Equipment

Uptime, and Inactive Time.
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At the highest level of classification, Equipment Time can be divided into two

groups, Inactive Time and Operation Time. Inactive Time is a period of time when

the equipment is not scheduled to function, such as during the third shift, on week-

ends, or when the equipment is out of production due to a training session. The equip-

ment is then considered to be in its Non-Scheduled-State. Operation Time categorizes

equipment during time periods when it was intended to function. The total Oper-

ation Time is equivalent to the total time (Clock) minus the Non-Scheduled-State

time. The Operation Time can be subdivided into two distinct groups, Equipment

Uptime and Equipment Downtime.

Under the Equipment Uptime category, equipment can be classified under either of

three different states: the Production-State, the Stand-By-State, and the Engineering-

State. The Production-State is a period of time when the equipment performs its

intended function, such as regular production, production test, and so on. The

Stand-By-State is a period of time when the equipment is in a condition where it

could perform its intended function but it is not operated. Situations which fall

under this category include: no operator available, no product available, no support

tools available, or waiting for the result of a running test. Finally, the Engineering-

State is a period of time when the equipment is in a condition to perform its intended

function, but it is used to conduct engineering experiments. New product evaluation

runs fall under this category.
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Under Equipment Downtime, equipment can be categorized into either an Unscheduled-

Downtime-State or a Scheduled-Downtime-State. The Unscheduled-Downtime-State

is a period of time when the equipment is not III a condition to perform its in-

tended function due to an unexpected downtime event. Examples of situations that

fit under this state include: (i) Maintenance Delay: a period during which equip-

ment is waiting for personnel or parts, (ii) Diagnosis: the period of time needed

by a technician to identify the faulty component, (iii) Repair: the time needed by

a technician to repair the problem and bring the equipment back to a condition

where it can perform its intended function, (iv) Equipment test: a period during

which the technician operates the equipment to demonstrate its proper functionality.

The Scheduled-Downtime-State is a period when the equipment is not in a condi-

tion to perform its intended function due to a planned downtime event. Preventive

Maintenance Delay, and Change of Consumable Chemicals fall under this category.

Preventive maintenance can be scheduled to occur at a certain time to reduce the

likelihood of equipment failure during operation. Figure 3.3 uses the System Entity

Structure to present the above concepts.

3.5 Performance Measurement Issues

This section provides guidelines for measuring the performance of equipment used

in the manufacturing environment: reliability, availability, and maintainability. These
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metrics are concentrated on the relationship of equipment failures to Production-

State time, rather than the relationship of failures to total elapsed time (Clock). In

the following sections, the author will define performance measurement issues for

equipment in a manner to be consistent with the standards used in industry.

3.5.1 Equipment Reliability

Equipment reliability is defined to be the probability that the equipment per-

forms its intended function for a specified period of time. The time used here is the

Production-State and not the Clock. In the sequel, the author presents one reliability

metric, MTBF, the mean time between failures.

MTBF - Mean Time Between Failures

MTBF is defined to be the average time the equipment performs its intended

function between failures. It is the Production Time divided by the number

of failures during that time.

MT BF = ProductTime
#of Failure

(3.1 )

3.5.2 Equipment Availability

Equipment availability is defined as the probability that the equipment will be in

a condition to perform its intended function when required. The author presents one

metric of equipment availability, the Operational Uptime.
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Operational Uptime

Operational Uptime is defined to be the percentage of time the equipment is

in a condition to perform its intended function during the Operation Time.

. . EquipmentU ptime
Operational Uptzme(%) = 0 . T. X 100

peraiion irne
(3.2)

3.5.3 Equipment Maintainability

Equipment Maintainability is defined as the probability that the equipment will

be retained in, or restored to, a condition where it can perform its intended func-

tion, within a specific period of time. The author presents one metric of equipment

maintainability, MTTR, the mean time to repair.

MTTR: Mean time to repair

MTTR is the average time needed to repair a faulty component and bring

the equipment back to a condition where it can perform its intended func-

tion. It is the total repair time divided by the number of failures during the

considered time period.

MTT R = TotalRepairTime
#of Failure

(3.3)
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3.6 Event Activity

Events are defined to represent time instants at which something is being done to or

happens to a piece of equipment. Events are logged into the system in order to track

the activities of the equipment. An event can change the state of the equipment.

Events can be classified into many categories, such as sign down an entity (sign

down),log on to work on an entity (log on), log off to stop work on an entity (log off)

or repair completed (repair complete). Each of these categories includes many events

as illustrated in Figure 3.4. This figure also shows the Event- Type, which defines the

type of an event. For example, under the "MNT repair" event, if the Event-Type is

set to failure, the technician may collect failure data, whereas if the Event-Type is

repair, he can only collect data about repair activities. In the following sections, the

author discusses each of the above categories in more detail.

3.6.1 Sign Down an Entity

A maintenance personnel or a process engineer may sign down an entity (equip-

ment) for many different reason depending on the state of the equipment at the time.

For example, any scheduled or unscheduled maintenance or any processing engineer-

ing work, or a material handling can be a valid reason to sign down an equipment.

Therefore, special events has been defined to report the changes in the function of

the machine as the time progress. Author presents the following events under which

an equipment can be signed down.
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Event-Type Sign-clown-ap

Log-on-apec

repair-complt-apec

ENG
Repair

UPG
Complete

MIl
Don ••

~~© * log-off-apec
'1'0 Down Down Down Down

For For '1'0
MIl '1'0 PM ENG UPGHN'I'

PM ENG MIl
Logon Logon Logon

*PM
Logoff

MIl
Logoff

Figure 3.4: System Entity Structure representation of equipment events
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Down to MNT

Down for PM

Down for ENG

Down to UPG

Down to MH

(maintenance after failure)

(preventi ve maintenance)

(process engineering)

(equipment upgrading)

(material handling)

By choosing one of the above events, the personnel can record the change in the

status of the machine, and he may also provide additional information about the

behavior of the machine, if appropriate. These data entries provide useful sources

of information for analyzing the equipment reliability, maintainability, and availabil-

ity, and furthermore, they can be used for analytical purposes relating to equipment

maintenance resource management such as an Expert Diagnostic System or a Main-

tenance Cost Analysis.

3.6.2 Log on to start working on an entity

After an equipment is signed down, usually, it takes a while before a repair person

starts working on the equipment. Most of the time, the necessary personnel, such

as a technician, is not immediately available and must be called on duty. Therefore,

there arises the need for a different event to report this change of activity on the

machine in order to be able to distinguish between the time when the equipment was

in a waiting status and the time that a maintenance person actually worked on the

equipment. It is important to remember that knowledge of the precise time span
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needed for equipment maintenance is critical for analyzing equipment performance.

The following log on events are a few examples defined to report the start of work on

a piece of equipment.

MNT Logon

PM Logon

ENG Logon

MH Logon

(Start maintenance after failure)

(start preventive maintenance)

(start process engineering)

(start material handling)

3.6.3 Log off to stop working on an entity

The maintenance person is sometimes interrupted before repair has been com-

pleted. This may happen due to a coffeeor lunch break, or it may happen because

the technician requires some parts that are not available, or because the technician is

preempted to attend to another higher priority event. Such a change of activity must

also be recorded in order to be able to calculate the true repair time. Therefore, a

set of events has been designed to report the time at which work on the equipment

was interrupted, and to report what activities were performed during the time of

maintenance. Thus, log off events are used to either denote the completion of work

(i.e., a successful maintenance), or the interruption of work due to any of the above

scenarios.

MNT Logoff (Stop of maintenance after failure)
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PM Logoff

ENG Logoff

MH Logoff

(stop of preventive maintenance)

(stop of engineering runs)

(stop of material handling)

This discussion also sheds some additional light on the previously described log on

events. Log on events are used to either denote the true beginning of a maintenance

activity or the resuming of work after it had been previously interrupted.

3.6.4 Repair Completed

When maintenance work on a piece of equipment is finally completed, the main-

tenance personnel logs a repair completed event. This is used to report findings

concerning the nature of the problem, such as the faulty component along with its

failure mode, as well as the final repair activities. The following events are designed

to fulfill these actions.

MNT Repair

PM Complete

ENG Repair

UPG Complete

MH done

(completion of maintenance after failure)

(completion of preventive maintenance)

(completion of engineering runs)

(completion of upgrading equipment)

(completion of material handling)
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3.7 Data Base Management System (DBMS)

In this section, the author introduces three types of data bases, Workstream,

Ingress, and Menu, used in this project. He first explains the function of each of the

data bases as well as their importance. Finally, he discusses how the three data bases

are related to each other.

3.7.1 Workstream DBMS

Workstream is an On-Line DBMS that uses a terminal as its primary means of

interacting with the user. Workstream contains several independent modules, each

of which is designed to carry out a specific task. For example, one module keeps

track of a wafer during its production, while another module is designed to collect

engineering parameters and data at wafer processing points. The module that this

project deals with is used to track information regarding wafer process equipment and

other entities used in the FAB, such as tools, fixtures or operators. A special task

of this module, which is related to this thesis, is to aid the maintenance personnel,

to collect information related to equipment behavior, its faulty component and its

failure mode, and the repair activity performed on the machine. This is accomplished

by use of the Hierarchical Data Collection system, HDC.

Data is collected through keyboard entry and is accomplished through "event

logging" activities. When an operator or a technician performs a function, he or she

must first log a proper event into Workstream. There is some concern about possible
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inaccuracies in the collected data due to faulty time stamping. If it was left up to the

technician if and when he or she logs the events into Workstream, some events would

not be logged at all, while others would be logged after the fact thereby falsifying

the time stamp. The system cannot accurately monitor total event/status time if

events are logged after the fact. For collecting data such as a symptom, a failure,

or a repair activity, a proper Event-Type as well as the event itself must be logged

into Workstream before the HDC can be activated. For example, when collecting a

failure, both the "MNT repair" event and the "failure" Event-Type must be logged

into Workstream before HDC can be called. HDC then brings up the failure menu

related to the family to which the equipment belongs. At this time, the technician

may collect the failure by updating the menu or by adding another element to it. In

the sequel, collected data are automatically reported back to Workstream for long

term storage. All of these data are saved in a special Area designated as Module.

Figure 3.5 illustrates the interaction between the Workstream DBMS and the Menu

Data Base using HDC.

3.7.2 Ingress DBMS

Ingress is a relational data base with unique build-in utilities for creating forms for

data queries and analysis. In Ingress, data are stored in tables, which can be merged

and selected for analysis purposes. Furthermore, as a relational data base, it provides

means for easy flexible english-like ad hoc data queries. Thus, Ingress is an ideal
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system for relating data items to each other, for flexible data analysis, and for data

presentation. While Ingress is a good DBMS choice for data analysis, Ingress would

not be suitable for storing the menu data bases, because Ingress makes tremendous

demands on computing resources, which make the data storage and retrieval process

slow. There is also the danger that Ingress may not be available when needed.

While this would be inconvenient for data analysis, it would be catastrophic for data

collection. It would mean that either a repair activity would have to wait until

Ingress becomes available or that data collection cannot be accomplished on-line.

However, unavailability of the menu during an event invariably results in inaccurate

time stamping of the collected data. Both alternatives are therefore unacceptable.

In Ingress, as discussed above, data can be tabulated and related to each other for

the purpose of data analysis. Equipment reliability, availability, and maintainability

can be addressed here. Furthermore, questions such as what is the total number of

hours to repair a given entity or a given failure type? or what is the frequency of

repair for a given entity? can be addressed here. This information can then be used

for the development of the knowledge base of the Expert Diagnostic System.

Data can be extracted from Workstream and transferred to Ingress by another

data conversion program, Extract, for the purpose of data analysis and (graphical)

presentation. These data can also be used to build the knowledge base for the Expert

Diagnostic System.
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Menu Date Base

II
Type

--~r-------

Symptom Menu Failure Menu Activity Menu

Figure 3.6: Specialization of Menu Data Bases

3.7.3 Menu Data Base

In section 3.3, Figure 3.1 illustrates the decomposition of a facility into numbers

of families. It further shows that each family contains many pieces of equipment

of similar or the same type and model. Therefore, each of these families requires a

separate Menu Data Base to exploit the similarity between the entities contained in

that family. Furthermore, there should exist separate menus for collecting symptoms,

failures, and repair activities. Figure 3.6 illustrates these menus as specializations of

the Menu Data Base.

The contents of these menus, how they are designed and structured, will be dis-

cussed in Chapter 4, Sections 2 through 4. The main purpose of these menus (symp-

tom, failure, and repair activity) is to formalize knowledge related to equipment

behavior, the faulty component and its failure mode, and a description of what was

done to solve the problem. These menus contain these pieces of knowledge for each

type of equipment. They are designed in a hierarchical fashion, and are accessed

through the Hierarchical Data Collection (HDC) module. Figure 4.2 illustrates the
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hierarchical decomposition of the failure menu. In addition to HDC, there exist util-

ity routines, called Menu Maintenance Routines (MMRs), to maintain the content

of these menus. MMR is used by the family managers to maintain equipment infor-

mation as it is being updated by the operators and technicians. Since operators and

technicians can make mistakes in reporting pieces of information, new data items are

kept local until the respective family manager can validate the new information (i.e.,

changes of the menus). For this purpose, he uses MMR to report the updated menus

back to Ingress.

Figure 3.7 illustrates the relationship of all 3 data bases through MMR, HDC, and

the Extract program. HDC and MMR were designed by AMD in Austin, Texas. The

participation of this author in the design and implementation of these two software

products is limited to a few utility modules of the MMR software, and the enhance-

ment of HDC as the symptom and repair activity prototypes were developed.

3.8 Comments in Data Base

In this section, the author discusses two types of comments collected by operators

and technicians during the operation and maintenance of equipment. These com-

ments, as well as other data, are collected through Workstream and have been saved

in a designated area, area-L, of the data base. The first type of comment is a descrip-

tion of equipment behavior at the time of sign down, when an operator detected a

discrepancy in machine behavior or product quality. When an equipment fails, the
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Figure 3.7: Workstream, Ingress, and Menus via. HDC and MMR
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operator signs down the machine by logging a "Down to MNT" event into Work-

stream. He then reports the observed discrepancy in his own terms and language.

These comments are referred to as symptom comment in Chapter 4.

The second type of comment is a description of activities executed by a technician

in order to bring the machine back to a condition in which it can perform its intended

function. These activity comments may be relevant or irrelevant to the real problem

of the machine. Figure 3.8 presents sample information collected through Workstream

using the events described in Chapter 3.

This chapter introduced the manufacturing environment and discussed issues re-

lating to collecting and measuring knowledge about performance of the machine park.

It also presented how "equipment time" and "equipment activity" need to be cat-

egorized in order to measure a certain aspect of equipment performance. Finally,

this chapter concluded with a discussion of collected comments about equipment be-

havior and activities. In the next chapter, these comments will be utilized as a way

to study characteristics of the symptom and repair activities and their relationships

with failures.
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Event: Down to MNTFacility: FAB10
Family: DSW
Entity: DSW8
statusl: Wait for maintenance
Event-Type: Failure
Date: 03/12/90
Ti.ma: 04:12:46
Queue-ti.ma: xxx
Techni.cian: Smith
Failure ID: 42
Symptom Comments: Failed prealign

check.
Event: MNT Logon
Facility: FAB10
Family: DSW
Entity: DSW8
Statusl: check
Event-Type: check
Date: 03/12/90
Time: 04:55:54
Technician: George

Event: MNT L0cP0ff
Facility: FABl
Family: DSW
Entity: DSW8
Statusl: Wait
Date: 03/12/90
Ti.ma: 05:52:41
Techni.cian: George
Repair Comments: Cleaned the Gears.

still has Y problem
Event: MNT Logon
Facility: FAB10
Family: DSW
Entity: DSW8
statusl: check
Event-Type: check
Date: 03/12/90
Ti.ma: 07:31:26
Techni.cian: smith

Event: MNT Refair
Facility: FABl
Family: DSW
Entity: DSW8
Statusl: Wait
Event-Type: Failure
Date: 03/12/90
T:i.ma:08:04:27
Technician: Smith
Failure ID: 42
Conmants: Pre aligned T/A backslash and warn gears. Set up loading

correction.

Figure 3.8: An example of collected information from Workstream
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CHAPTER 4

Rapid Prototyping of Symptom and Repair Activity

Knowledge Bases

4.1 Introduction

This chapter discusses the methodologies used to collect symptom, failure, and

repair activity data. It also discusses how a knowledge base can be built along with

its application program to implement a trouble shooting guide necessary to trou-

ble shoot the equipment failure. Section 4.2 deals with issues concerning failures.

The Hierarchical Data Collection System (HDC) for collecting data about failures

along with the Maintenance Menu Routine (MMR) for maintaining those data are

explained. Section 4.3 addresses issues relating to symptoms, and investigates impor-

tant questions such as: What is a symptom? How can symptoms be classified? How

can a symptom menu be developed? How can a symptom be related to the failure

that caused it? How is a knowledge base built? and finally: How is the application

program developed? A symptom prototype is built and discussed, and a specification

for collecting symptoms and building a knowledge base is presented. Section 4.4 deals
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with issues relating to repair activities. Important questions concerning repair activ-

ities are studied and summarized. A methodology for collecting data about repair

activities and relating them back to a failure is presented. A repair activity prototype

very similar to the symptom prototype is designed. This chapter concludes with a

discussion of the overall application program, which is a collection of the application

programs designed in Sections 4.3 and 4.4.

4.2 Failure Collection

4.2.1 Introduction

This section deals with issues concerning failures. First, the author explains what

constitutes a failure and discusses the issue of single failures versus multiple failures.

A strategy to build a failure menu is described in section 4.2.3. Finally, this section

describes the Hierarchical Data Collection (HDC) System developed to collect data

about failures, along with the Menu Maintenance Routine (MMR) which maintains

the collected data.

4.2.2 Issues Concerning Failures

A failure is an incident that causes a machine to fail to perform its intended

function. However, there are failures that are not machine related: for instance,

a failure in the material handling process, or a failure caused by the environment,

which can introduce a disturbance in the quality of the product. These failures are
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Failure MOde Component && Failure MOde

Out of adjustment Flatfinder out of adjustment

Out of alignment Paddle out of alignment

Out of tolerance Temperature out of tolerance

Dirty Backlash gear dirty

Worn out Backlash gear worn out

Burned out Light burned out

Defective Horizental sync board defective

Loose Cable to camera loose

Bad connection Bad connection in microscope socket

Locked up System locked up

Figure 4.1: Representative list of failure modes

classified under "Not a Machine Failure." Machine related failures can be described

by a path showing the hierarchy of the systematic decomposition of the equipment's

hardware beginning with its Major-SubSystem down to the faulty Component and

its Failure Mode. A single component may have many failure modes. Each failure

mode is a manner in which a component may fail. Consequences of a failure can be

assessed for each failure mode. These may vary from inconvenience to serious down

time, from rework to broken wafer. The criticality of each effect of a failure can then

be used to weight the failure in developing the expert diagnostic system. Figure 4.1

provides an exemplary list of failure modes as they are used in menus.
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One of the most important issues concerning the analysis of failures is the issue

of a single failure versus multiple failures. When an equipment fails to perform its

intended function, the expert diagnostic system (or the technician) may be presented

with a list of logically related failures. The diagnostic question becomes whether

multiple failures have indeed caused the machine to go out of production, or whether

there exists one primary failure that initiated the problem while the remaining failures

were consequence failures.

Consequence failures may be caused by a delay between the time when the original

failure occurred and the time when the failure was recognized and the machine was

signed down. For example, if a material handling failure occurred while transporting

a wafer from one place to the next in the manufacturing process, the misaligned

wafer may scratch and thereby damage a tool on its way. The original failure was the

material handling failure, yet, there exists a consequence failure that may be reported

independently. It is not always easy to relate these failure reports to each other.

However, consequence "failures" are also frequently being reported due to the

nature of the repair activity initiated by the original failure. For example, in the

event of a "leaking o-ring on a laser rod," to repair such a leak, the rod would have

to be removed. To remove the rod, the mirrors at either end of the cavity would have

to be removed. After drying the rod and replacing the ring, the mirrors need to be

realigned, as would all optical components in the path to the wafer surface. Now,

one scenario for the logging of the failure (s) over several shifts could be as follows:
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The first technician to attack the problem might remove the rod, dry and remount it,

then mount but not adjust the mirrors. At the end of the shift, he would log off and

report the repair activities performed interpreting the failure as "o-ring leaked." The

next technician might adjust the mirrors, log off and report his activities, identifying

the failure mode as "mirror out of adjustment." Finally, the last technician to work

on the equipment would then adjust the delivery optics bringing the equipment back

to its normal condition. The failure in the eyes of the last technician would be

"delivery optics out of adjustment." In summary, what should be considered as a

failure? After interviewing many domain experts and family managers, all strongly

agree that only one failure has occurred, namely: "o-ring leaked" even though three

different "failures" were reported and could be counted. In the above case, three

constituent actions have taken place as a consequence of one single failure.

Those interviewed strongly believe that in up to 99% of all cases, there exists a

single root failure causing a machine to go out of production, and that it is hardly

possible to find an example of multiple failures that occur simultaneously to the same

machine without a common root failure. Thus, the capability of diagnosing simulta-

neous multiple unrelated failures is not an issue. However, the two examples presented

in this section demonstrate clearly that consequence failures are quite common. The

two types of consequence failures outlined above are quite different in nature. Yet,

they have a similar appearance in the failure log: in both cases, several failures are
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being reported that have a common cause. It is a diagnostically difficult problem to

reconstruct the causal chain from the failure log.

4.2.3 Failure Menu

The Failure Menu is a hierarchical data structure organized in accordance with

the hardware decomposition of the equipment, along with the failure modes for each

component listed in that menu. In Section 3.3, a hardware decomposition of a piece

of equipment was discussed, and a system entity structure was presented. Here, the

author will describe how this hardware decomposition can be utilized along with

other factors to develop a failure menu. In the first level of the menu, there exists a

list of Major-SubSystems as they were originally recognized by the family manager.

A Major-SubSystem is the largest subdivision of a machine. Each Major-SubSystem

can be decomposed into several Minor-SubSystems. Each of these Major- or Minor-

SubSystems is called a folder. Thus, folder is a name that describes a menu choice, a

subsystem, which has another menu associated with it. A folder may contain several

items or other folders. Item is a synonym for Component. It describes the lowest level

of menu listing. At the lowest level of the menu, each item (Component) is associated

with its failure modes. Figure 4.2 illustrates a hierarchical menu structure showing

the above concepts. Figure 4.3 introduces a modified, simplified, truncated failure

menu to show an example of a Major-SubSystem, Minor-SubSystem, Component, and

Failure Mode. For example, AWH is a Major-SubSystem while TRANSFER ARM,
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PREALIGNER, RECEIVE ELEVATOR, AND SEND ELEVATOR are considered

to be its Minor-SubSystems. Furthermore, the paddle, transfer arm, backlash or

warm gear, and motor speed are the Components of TRANSFER ARM (Minor-

SubSystem). Failure Modes for these components are: out of adjustment, dirty, and

worn, respectively.
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Equipment (Entity)

I
Hardware-dec

* *Major-SubSysteml Major-SubSystem3

Major-SubSystem2 Major-SubSystem4

Hardware-dec

* *
n

Minor-SubSysteml

Minor-SubSystem2 Minor-SubSystem4

Har~re-dec

I Component 3
n

Componen-a * *
Component2

I I
Component 4

Failure-mode-type

Failure
Model

Failure
Mode2

Failure
Mode3

Failure *
Mode4 *

Figure 4.2: Systematic Classification of Failures



STAGES/CHUCK
CHUCK/THETA

chuck dirty
theta drive jammed
theta home sensor defective
wafer present sensor out of adjustment
other

STAGE MECHANICAL
barry table air hose leaks
barry table out of level
x motor defective
x motor gearbox dirty
other

AWH TRANSFER ARM
paddle out of adjustment
transfer arm dirty
backlash or warm gear worn
motor speed out of adjustment
other

PREALIGNE~realign theta out of adjustment
spindle center out of adjustment
flatfinder drive motor defective
flatfinder sensor out of adjustment
motor speed out of adjustment
spindle height out of adjustment
wafer present sensor out of adjustment
otherRECEIVE ELEVATOR
boat guides out of adjustment
cable defective
comb sensor out of adjustment
drive motor defective
index flag out of adjustment
motor speed out of adjustment
wafer present sensor outof adjustment
otherSEND ELEVATOR
wafer preset sensor out of adjustment
boat guides out of adjustment
cable defective
comb sensor out of adjustment
drive motor defective
index falg out of adjustment
motor speed out of adjustment
wafer boat stuckother

Figure 4.3: A Failure Menu

71
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PLATEN
platen dirty
platen out o~ adjustment
platen vacuum soleno~d de~ective
align motor de~ective
align sensor de~ective
tower out o~ alignment
other

ELEVATOR.
bar code reader de~ecti ve
elevator motor de~ective
lead screw stick1nq
travel sensor out o~ adjustment
bar code reader cable de~ective
elevetor motor cable de~ective
lead scrow worn
other

COLUHN/I'OCfJS
ACS acs locked up

acs out o~ adjustment
monitor de~ective
chasis de~ective
sensor de~ective
other

AWA/CCUTV
ceo MODUL&

illuminator lamp burned out
power cable de~.ctive
camera control module de~ective
canera de~ective
ccu setup out o~ adjustment
power supply out o~ adjustment
vertical module out o~ adjustment
vertical weep module de~ective
other

Figure 4.3 - A Failure Menu (continued)
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As the above figure indicates, there is an option "other" at the bottom of each

folder. These options are to give operators or technicians the capability to attach

new items or folders to the existing menu. Of course, these new items or folders will

have to be checked and validated by the family manager, using the MMR software,

for correctness and usefulness.

To develop such a menu, a text file containing the Major-Subsystems, the Minor-

SubSystems, and related Components along with their Failure Modes needs to be

edited. A software has been developed to take this text file and create a data structure

that HDC can work with. The menu can evolve as users collect data.

4.2.4 Hierarchical Data Collection

The Hierarchical Data Collection (HDC) system is software that has been linked to

Workstream, and enables maintenance personnel to collect data related to equipment

performance. This software can be called from Workstream to display anyone of the

menus such as the symptom, failure or repair activity menu, depending on the event

the machine is in. HDC assists the user in stepping through the various levels of the

menu. Each level is presented as a separate screen or window from which a choice

must be made. When a field is selected, its number of occurrence is updated. The

number of occurrence is the frequency of the given field which indicates how many

time that field was selected. The frequency will be incremented upon its selection.

All selections from previous level menus will be displayed as a reminder and will form
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the path that describes the collected data. This path will be sent back to Workstream

for storing and further analysis. In the case of the absence of an adequate field, HDC

allows the user to enter his own description by selecting the "other" option. Other

allows the user to enter a conditionally valid description at the next and possibly

subsequent levels of the menu. As a result, a mail message will be forwarded to the

supervisor and/or equipment engineer who will then be required to follow up either

by validating the new description, or by reassigning it to an existing description.

The following example of a failure collection using HDC is given to provide a better

understanding of how these steps may be taken. A failure description may be collected

when a technician has identified the faulty component and also has completed the

repair activities, and as a result, the equipment is restored to functioning. At that

point, the technician may log the "MNT Repair" event into Comets and set the event

type to failure in order to activate HDC in the appropriate mode. HDC will display

a specific failure menu related to the family to which the equipment belongs. At the

first level of the menu, the user is faced with a list of Major-SubSystems and needs to

make a selection that leads to the faulty component. At this point in time, the user

is aware of which component has failed, and he also knows which Major- or Minor-

SubSystem the faulty component belongs to. If there is any doubt or confusion as to

which selection would be best to make, the search utility may be used to bring up

all plausible paths that contain such a component related to the specific failure. As

a selection is made, the next screen (menu) appears for further selection. When the
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selection is completed, the selected path will stored as the failure description. The

failure description is then sent back to Workstream for storage and further analysis.

A graphical presentation of Workstream, HDC, and the menus is given in Figure 3.7.

4.2.5 Menu Maintenance Routine

The Menu Maintenance Routine (MMR) facility is a collection of several utility

modules. This code has primarily been developed to maintain the collected data in

the menus. Several utilities were developed that are useful to a variety of different

users, from the family managers down to the programmer, such as Add, Validate,

Make, Outline, Maintain, or ItemEdit. A few utilities and their related benefits are

as follows: Add: is a module that allows a family manager to add a new item

or folder to an existing menu file. Clean is a module that works as a garbage

collector; it crunches the file after the family manager has invalidated an item or

folder. ItemEdit is software that can be used by a programmer or an expert who

is knowledgeable about the menu files. This software maintains existing items and

folder records at the data structure level. It allows programmers to dynamically

update item and folder information at the data structure level. This software also

maintains the menu file data integrity in case of bugs in production utilities. It is

also helpful in testing new utilities and fixes. Maintenance utility can be used by

family managers to dynamically update and manipulate existing menu information

for items and folders. Validate is software that a family manager uses to validate a
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new entry entered by maintenance personnel. He can delete, reassign, or modify the

entry. In case of any modification, the changes will be reported back to Ingress to

update the data in the data base. Figure 3.7 illustrates the complete cycle of data

collection starting including Comets, HDC, the menus, MMR, and Ingress.

4.3 Symptom Prototype and Knowledge Base

4.3.1 Introduction

This section introduces issues related to the collection of symptoms. A study of

symptoms for equipment belonging to the DSW family of FAB15 is presented.

Questions such as: What constitutes a symptom? and: What are the charac-

teristics of a symptom? are investigated. A methodology for classifying symptoms

has been developed and field-tested. Sections 4.3.3 and 4.3.4 present this method-

ology. Symptomic factor and Symptomic classification are used as a systematic way

to classify symptoms. In Section 4.2.4, question concerning the who, how and when

of symptom collection are studied. The relationship between symptoms and failures

is also addressed. This section presents furthermore the symptom prototype built to

support the specifications for collecting symptoms, for relating symptoms to failures,

and for building a knowledge base. Finally, the specification (requirement definition)

for collecting symptoms is also presented in this section.
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Symptom

II
Type

Process
Instability

Equipment
Malfunction

Quality
Disturbances

Figure 4.4: Specialization of symptoms

4.3.2 What is a Symptom?

A symptom is defined as a sign or indication of something [Webster dictionary].

In our context, a symptom sometimes indicates an equipment malfunction that is

caused by a faulty component. On the other hand, many symptoms can be related

to an instability in the processing of the product, i.e., they are related to problems

in material handling. Again others may be characterized as problems with product

quality. They often are related to equipment calibration problems. For example,

a quality disturbance can be caused by environmental factors such as changes in

humidity or temperature in the chamber. Such factors can influence the calibration

of equipment, and thereby reduce the quality of the produce. Figure 4.4 illustrates

the types of symptoms represented through a system entity structure specialization.

It is very difficult to pinpoint a symptom by keeping track of the hardware de-

composition of equipment, even if the observed symptom results from an equipment

malfunction. This difficulty is due to the lack of operator knowledge at the time of
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sign down (Down to MNT). The operator does not know at that time which is the

faulty component. It is also clear that a hardware decomposition would not be useful

in pinpointing the symptom in the case of either of the other two symptom types:

the process instability and the quality disturbances. Therefore, there is a need for a

methodology to systematically classify symptoms, which can accomplish the above

task.

In pursuing this question, the author has studied a large amount of comments

about equipment behavior that were collected during sign down and that were stored

in the data base. These comments reflect the operators' explanation of observations

about equipment behavior and product, expressed in each operator's own terms and

language. Below are a few examples of such comments:

Gates window jumps up and down
Will not send wafer to prealigner
Picture bad
Bad picture
No focus
Bad focus
No vacuum on chuck
Won't send wafer out
Fatal disk error
Paddle will not take wafer from chuck to receiver boat.
Inconsistent alignment
Arm won't transport wafer
Arm won't drop wafer on chuck
Misaligning wafer
Exposure went out
Double image

Receiver paddle won't release wafer

The investigation of such comments led to the creation of a methodology for

systematic classification of symptoms using two new concepts that will be called
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Symptomic factors and Symptomic classification. These are defined in the next two

sections.

4.3.3 Symptomic Factor

The Symptomic factors constitute a means of classification of symptoms. Using

Symptomic factors, a symptom can be classified into many categories. Each new

category conveys a more precise picture than the previous one. Symptomic factors

vary for different symptoms. They are based on the equipment's functional, physical,

observational, and procedural characteristics. A typical Symptomic factor decompo-

sition for an equipment family is shown in Figure 4.5.

4.3.4 Symptomic Classification

The Symptomic classification is used to decompose symptoms in a hierarchical

fashion. At the highest level of the hierarchy, symptoms are described in their most

general form. As we proceed down the hierarchy, the symptoms become more spe-

cialized and thereby provide a better and more precise picture. Figure 4.6 illustrates

a Symptomic classification of problems for a representative family in the FAB.

At the first level of this hierarchy, problems are classified into several types in-

cluding: alignment problem, handling problem, process problem, focus problem, con-

trol system problem, environmental problem, etc. This decomposition characterizes a

symptom in a very general fashion. Each of these categories can be further special-

ized (classified) into several subcategories based on the their symptomatic factors.
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Symptomic Factors
II

Type

~

Numerical Procedural Logical Observational Measurement
Factor Factor Factor Factor Factor

II
Type

~

Temperature Color Humidity Test

II II II
type type type

nn n
Hot Cold Red Green Yes

Passed
No
Failed

Figure 4.5: Symptomic factor decomposition for an equipment family
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Symptomic Classification

II
Symptom-spec

Errvir-orrmerit Handling
SYInftOIn SYInptOIn

Exposure I AlignInent II
SYInptOIn SYInptOIn

Control '"
Systern
SYInptOIn

Process Focus
SYInptOIn SYInptom

Environment-spec

r-----'U'---- Handl.inq-spec

High Temp Low Ternp

Sending
Wafer
SYInptOIn

Receiving
Wafer
SYInptOIn

Transfer
Ar-m/Paddle
SYInptOIn

II

Prealign
Wafer
SYInptOIn

Arm/Paddl. ••-sp ••c

n
~addle
Scratches
Wafer

Paddle
Drops
Wafer

Paddle '" '"
Does not
Release Wafer

Figure 4.6: Systematic classification of symptoms
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Procedural Factor for
Handling Problem

II
type

Sending
Wafer Receiving

Wafer

Prealign
Wafer Transfer

Arm/Paddle
Wafer

Figure 4.7: Procedural factor decomposition for wafer handling

Logical Factor for
Environmental Problem

I I
type

__ UL-_-,

Hot
(High)

Cold
(Low)

Figure 4.8: Logical factor decomposition for environmental problem

For example, handling problems can be classified into sending wafer problem, receio-

ing wafer problem, prealign wafer problem, transfer arm/paddle problem, etc. This

classification is based on the procedural Symptomic factors that have been specified

for handling problems. A procedural Symptomic factor decomposition for the above

example is shown in the Figure 4.7.

Another example of a classification at the first level is the classification of environ-

mental problems into problems of Hot and Cold. For this example, the Symptomic

factor decomposition is recognized to be a logical factor decomposition as shown in

Figure 4.8.
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At the second level of the hierarchy, each symptom can be further classified

(specialized) into several categories. Figure 4.6 shows the classification of trans-

fer arm/paddle into paddle scratches wafer, paddle drops wafer, and paddle does not

release wafer. The Syrnptomic factor for this classification was recognized to be pro-

cedural. The classification can be continued if the family manager recognizes the

existence of a Symptomic factor that can categorize the symptom further in a more

clear and precise manner.

Symptoms are the most precise and clear messages that can indicate a malfunction.

They are always in their most specialized form and are located at the bottom level

of the hierarchy. For instance, in the previous example, "paddle scratches wafer" is

considered to be a symptom, which is a specialization of "transfer arm/paddle." The

path from the top level down to the bottom level is called the symptom description.

For example, the symptom description for the above example would be:

handling symptom; transfer arm/paddle symptom; paddle scratches wafer

As the above description indicates, a symptom in its general form would not be

very useful in diagnosing an equipment failure. A Symptomic factor is the result of

a further classification of symptom. In this example an observational factor, such as

to watch how the handling process takes place, has lead the operator to classify the

handling symptom more precisely as "transfer arm/paddle symptom." Off course,

this classification is only feasible for equipment that is covered by glass where an

operator or technician can observe the process of handling the wafer. The machines
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in FABIO are of the type with glass cover. However, there exists equipment without

a glass cover (e.g. in FABI5) and, as a result, the process of wafer handling cannot

be observed. In this case, a numerical code displayed on the equipment's monitor can

be helpful in further classifying the problem. These codes are usually documented

in the equipment reference manual. Each of these codes can specify whether a time

out was due to a problem with "sending elevator" or "receiving elevator," etc. This

Symptomic factor is referred to as numerical Symptomic factor. An example of a

symptom description using the numerical Symptomic factor would be:

AWH ERRORS; code 24

Symptom menus for FABIO and FAB15 are illustrated in Figures 4.10 and 4.11.

4.3.5 Relating Symptoms to Failures

This section investigates important issues such as who should collect symptoms,

when should symptoms be collected, and how to relate symptoms, especially mul-

tiple symptoms, to the corresponding failure. In pursuing the above investigation,

this author has developed several programs to extract, for further study, symptom

comments, which are available in the data base. This particular study was done on

two different FABs, one using two months of data and the other using six months

of data. One program designed to relate a failure to its corresponding symptom

comment. The program simply searches the data base for a specific failure (failure

ID) which was collected during a "MNT repair" event. Upon its finding, the search
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will be continued for its corresponding "Down to MNT" event in order to collect the

symptom comment. This process will be continued until all episodes are tested. A

few sample results are shown in Table 4.1.

Table 4.1 - Failure with corresponding symptoms comments

I'dl.ure 1:0
Fail.ure Description

Comments

181
DSW; AHA/CCUTV; ceo MODULE; ccu setup out or adjustment

rocus probl.em on screen
rocus wal.k
rocus is bad
rocus wal.k, not across Tezas either
need to adjust gate &ngl.e
key won't l.ock on
l.ert gate not l.ocking on l.amp rl.uctuation
bal.ck l.ine across screen
bad picture on screen, crooked and bl.urry
bad picture
picture not cl.ear
gates won't l.ock on

Fail.ure m
Fil.ure Description

Comments

6
DSW; AHB; PREALIGNER; r1atrinder senaor out or adjustment

preal.igner sha.lting
machine won't start
preal.ign no working
preal.ign not re1atJ.ng warer correct1y
preal.ign won't re1ease warer

Fai1ure m
Fai1ure Description

Comments

27
DSW; AHB; SEND ELEV1TOR; warer present sensor out or adjustmerlt

won't send warer out
sender boat sensor not working
won't send warer out
sender e1evator wil.l.not 90 down

Fail.ure m
Fai1ure Description

Comments

D~W; PREALIGNER; motor speed out or adjustment

warer won't start
keeps tilai.ng out on every wder
inconsistent al.ignment
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These examples clearly indicate how many times a particular failure has occurred

during a period of six months. The number of occurrences is equivalent to the number

of comments listed under the failure description. Furthermore, while these failures

usually cause similar symptoms, there are occasions when this is not the case. Table

4.1 clearly shows such an example. Furthermore, some failures have a tendency to

occur more often than others. This would suggest a need for prioritizing the preventive

maintenance of equipment in order to forestall high incidence failures. Table 4.2 and

Table 4.3 summarize the results of two separate studies from two different FABs,

analyzing six months and two months of data, respectively.

Table 4.2 - Partial distribution list of failures during six month period

93 Transfer Arm

Humber of Major-SubSystem Fai1ed
Occurrences

21 Receive Elevator
17 Send Elevator
14 Electronic Chassis

257 Hot • Machine Failure

(a)

108 Ho problem found

~ of occurrence Failure Description

257 Hot • Machine Failure

......................... . .
36 Process problem

.......~~..................~~~~ ..t:~..~.:~:~~.~..~~.t:~~?~....

(b)
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Table 4.3 - Partial distribution list of failures during two month period

Name t of Occurrence of failur~

Machine Failure 201

Total number of 263
....._~ ..~~p.~~.~ .
Not a Machine 63I'ail.ure

(a)

63 Not a machine failure

Operator error

t of Occurrence, Failure description

23 No problem found
12 Process problem................................................................................
6 Down to incorrect category....................... _.- . _ -- _ _ .
11
4 Software probl.em

(b)

From the above, a striking and very interesting finding is that a high percentage of

equipment sign downs was not a result of actual equipment failure, rather it was due

to "not a machine failure." Furthermore, a large percentage of the "not a machine

failure" situations were attributed to operator error, down to incorrect categories, no

problem found or process problem. For example, Table 4.3a illustrates that during

two months of operation there were 264 occurrences of MNT Repair, out of which

the number of "not a machine failure" accounted for 63. This corresponds to about
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25% of the total number of machines signed down. Table 4.3b illustrates the 5 most

common causes for 63 "not a machine failure". In the six months study, Table 4.2a

indicates that while problems with transfer arm occurred 93 times, problems with

send elevator occurred 17 times, problems with receive elevator occurred 21 times,

problems with not a machine failure occurred 257 times. The partial distribution (the

most 3 common) of "not a machine failure" is shown in Table 4.2b which indicates

that out of 257 "not a machine failure" there are 108 occurrence of "no problem

found" , 36 occurrence of "process problem" , and 30 occurrence of "down to incorrect

category" .

One of the most important issues dealing with symptoms is who should collect

the symptom and when. This issue is of utmost importance due to its effects on

the integrity of symptom collection. Since the operator is the one who operates the

equipment and observes any indication of faulty performance, such as equipment

malfunction, processing break down, or quality disturbance, the operator would be

the most suitable candidate to report this event. The symptom collection should

take place when the operator signs down the equipment, i.e., during Down to MNT.

The collected symptoms can be very useful for the technician in processing the fault

diagnosis. The technician can use the expert diagnostic system to display the most

probable cause of any reported symptom.

However, while it seems most logical that the operator should carry out the task of

symptom collection, there are concerns over operator judgment and inconsistency in
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selecting the most appropriate symptom. It may be a difficult task for the operator

to interpret Symptomic factors such as logical or observational in determining the

true symptom, and the result could be questionable. For example, in those pieces

of equipment where the operator cannot see the exact handling process, it would

be difficult for him or her to pinpoint the appropriate symptom. Furthermore, the

study shows that in many situations the reported symptom had nothing to do with

the failure. This kind of error can be very harmful. A bad symptom not only corrupts

the knowledge base, but it also provides the technician with misleading information

in his search for the faulty component. In interviewing the domain experts, there

is agreement that in most cases, such as in processing problems, the technician will

have a lot to say about the true symptom and will be able to clarify the ambiguity

that the operator had during the sign down of the equipment.

For the above reasons, validation of the operator-collected symptom is vital in

achieving a credible knowledge base and maintaining its integrity. Validation in this

context is different from the one done by the family manager using the "validate"

utility of MMR. At this point, the technician judges the operator's selection and

interpretation of the symptoms for validity, integrity, and relevance to the failure.

Therefore, an intermediate storage is proposed so that symptoms can be saved, and

repair activities collected, during each "Down to MNT" and "Log off" event, respec-

tively. In this way, information can easily and quickly be retrieved to be displayed

for the technician whenever a "Down to MNT" or "MNT repair" event is logged into
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Workstream. Such information needs to be displayed whenever a technician logs a

"MNT Repair" event to collect the failure. Validation can be done by simply an-

swering a "yes" or "no" to the prompt regarding each previously collected symptom.

In the case of an invalid symptom, the technician may collect a new symptom, and

a "mailing" system needs to be designed to inform the family manager of the dis-

crepancy between the operator's and the technician's views of the symptom. The

family manager would then need to investigate this discrepancy, and educate both

the operator and the technician concerning the outcome of the investigation. At

times it may be necessary to add another option to the menu or set up policies that

both types of personnel can follow. It is important that both the operator and the

technician have the same understanding of each item in the menu and its meaning.

Whenever a validation takes place, the result should be reflected coherently in the

Menu, Workstream, and Ingress data bases.

To carry out the process of validation, an intermediate storage is necessary to

save both symptoms and repair activities for quick retrieval during the "Down to

MNT" and "MNT repair" events. In this way, the technician knows exactly what

was reported as the original symptom and what kind of actions were previously taken

to fix the problem. This information acts as a guide to each successive technician

working on the problem, informs him or her what needs to be done when he or she logs

the "Down to MNT" event, and also helps him or her identify the true failure when

he (she) logs the "MNT Repair" event. For example, in the previously mentioned
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scenario involving an o-ring leak, displaying the prior symptoms and repair activities

simplifies the job for the second and third technicians: it becomes easier to see what

remains to be done in order to complete the job, and it aids the identification of the

true failure. Figure 5.1 illustrates the type of information that needs to be displayed

during each event.
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4.3.6 Symptom Prototype

The symptom prototype has been developed to experiment with different ways of

specification, requirement definition, symptom collection, symptom/failure relation,

the knowledge base and its application program, and finally, in order to obtain an

opportunity to examine the trouble shooting guide in advance. The prototype can

be used to specify the necessary interface connections along with other necessary

requirements of the trouble shooting guide.

The prototype extracts comments from the data base and translates comments into

a real symptom description by using the symptom and failure menus. The prototype

then relates these symptom descriptions to their corresponding failure descriptions

as it builds a knowledge base. As a result, a knowledge base for (at this point

only single) symptoms and failures is developed, and a methodology to extend this

knowledge base for multiple symptoms is discussed.

In the final stage of this prototype, an application program is designed to assist

the maintenance personnel in trouble shooting equipment problems. The application

program displays all the failures related to a given symptom in descending order

of occurrence frequencies. It is also possible to display all symptoms related to any

given failure. In this way, the technician can start with the reported symptom, display

failures that may cause that symptom, then pick the most likely failure, display all

symptoms that usually accompany this failure, and check whether other (unreported)

symptoms can also be observed. If this is not the case and if he or she believes that
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Figure 4.9: Development cycle for symptom prototype

these symptoms should be present, the most likely failure is rejected, and the list of

symptoms for the next most likely failure in the list are displayed.

The prototype was developed based on two months of data available for the DSW

family of FAB15. Figure 4.9 illustrates the development cycle for the symptom proto-

type. The next paragraph discusses issues involved in each phase of this development

cycle.

During the first cycle, develop symptom menu, a strategy for developing a symp-

tom menu is discussed, and symptom menus for the DSW family of FABI5 and

FABIO are constructed and presented. (Sections 4.3.3 and 4.3.4 present Symptomic

factors and a Symptomic classification as a systematic way to classify symptoms) Fig-

ures 4.10 and Figure ?? illustrate the above two menus. The FABIO menu relates
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to equipment with a glass cover so that the operator can observe the wafer handling

process. As a result, there is an option in Figure 4.10 that describes problem with

wafer handling: won't send wafer, won't receive wafer, won't prealign wafer, transfer

arm/paddle problem. But in FAB15, equipment without a glass cover is used and

thus, the wafer handling process cannot be visually observed by the maintenance

personnel. Therefore, these symptoms must be classified based on some numeric

codes displayed on the equipment monitor. Each of these code describes a particu-

lar handling problems described above. Figure 4.11 classifies these symptoms under

AWH ERROR as awh time out, code 24, and code 29.

The symptom menu is simply a hierarchical data structure that can assist the

maintenance personnel in describing symptoms. The symptom description is a path

that begins at the main menu level and that becomes progressively more specific

as the maintenance personnel makes selections while proceeding along the various

hierarchical levels of the menu.

In the second development cycle, collect comments from Workstream, this author

has developed a program to extract comments from Workstream and to translate

these comments into symptom descriptions. The symptom and failure menus have

been used to assist this process. Figure 4.12 illustrates such a process. These symp-

toms will be validated and then will be related to their corresponding failures. This

process is done by identifying and extracting the entire episode. An episode is the

complete cycle of maintenance starting from "Down to MNT" and ending with "MNT
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WAFER ALIGNMENT
inconsistent alignment
AWA failed
AWA locked up
compansator problem
key will not lock on
other

WAFER HANDLING
won't send wafer
won't receive wafer
won't prealign wafer
no vacuum on chuck
transfer ar.m/padd1e problem
other

EXPOSURE PROBLEM
gates and windows problem
not exposing wafer
over exposure
double image
lamp intensity incorrect
other

FOCOS PROBLEM
bad picture
ccu problem
no picture
other

ENVIRONMENTAL PROBLEM
TEMPERATURE

low
high
other

other
CONTROL SYSTEM PROBLEM

disk error
computer lock up
key board is not working
other

STAGES
stages problem
stages time out
other

CHOCK SPOTS
chuck spots/dirty chuck
other

Figure 4.10: Symptom Menu for FabIO



AWA PROBLEM

awa does not exist
camera setup required
other

AWH ERRORS

awh timeout
code 24
code 29
other

CONTROL SYSTEM PROBLEM

computer lock up
key board won't work
monitor/screen problem
other

RMS PROBLEM
align done interrupt not received
bar code error
detectors did not balance in time
fork extend error
fork retract error
fork vacuum error
inventory not working
no reticle detected on fork
no reticle detected on platen
obstruction between elevator and turntable
platen vacuum error
reticle alignment is false
reticle detected error
reticle rotation error
other

auto focus failure
awl problem
dfas problem
exposure problem
high particle counts
hot spots
ias timeout
lamp temperature out of tolerance
scratching wafers
send/receive elevator problem
other

Figure 4.11: Symptom Menu for Fab15

96
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Workstream (DBMS)

Extracted
______ -~~L--..JIII Dat.

Factual
Knowledge

Base

Figure 4.12: Process of building the knowledge base

Repair," which can include many "MNT Log on" and "MNT Log off" events. Com-

ments were validated for correctness and relevance of comments to failures through

interviews with domain experts and family managers. A knowledge base was con-

structed as the above process continued.

The third level of the development cycle is dedicated to issues concernmg the

knowledge base. A knowledge base was constructed for relating a single symptom

to its failure. This knowledge base is known to be an example-based knowledge base.

Each example, which is being referred to as factual knowledge, simply defines the rela-

tionship between a failure and its corresponding symptoms or vice versa. It is simply

a record that holds related information such as symptom description, failure descrip-

tion, frequency of occurrence, and other necessary information. In Chapter 2, Section
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2.5, the data, information, and knowledge were described in detail. It is important

to notice that what is being built here is only a presentation of factual knowledge.

To acquire procedural knowledge, such as rules, from the above knowledge base, one

may develop programs to automatically create such rules. This represents major

work toward the development of an expert diagnostic system, which falls outside the

scope of this thesis. An example of a single data structure for knowledge used to

build knowledge base is presented in Figure 2.4. This structure can be expanded as

necessary to utilize more information. For example, data specifying a "time stamp"

would be essential in augmenting the knowledge base with a time model of equip-

ment performance. Also issues relating to multiple symptoms can be addressed with

simple modifications of this data structure, provided the family managers agree to

collect multiple symptoms using the following procedure: A user interface from the

HDC side is necessary to let the user collect symptoms as often as needed. Multiple

symptoms can then be related to their corresponding failure in one package.

During the final prototype development cycle, an application program was de-

signed to complete the Trouble Shooting Guide. Two separate programs were devel-

oped that work off the knowledge base and display the list of failures for any given

symptom and the list of symptoms for any given failure, respectively. Figure 4.13

and Figure 4.14 illustrate the results of the these two programs. In these figures,

symptoms or failures are arranged according to their frequency of occurrence. These

application programs are in their most simple forms and apply the most fundamental



Symptom: SendIReceive elevator problem

Freq. Failure Description

(9) AWHj Bad send puck cable
(8) AWHj TRANSFER ARMj T/a falg out of adjustment
(4) AWHj SEND ELEVATORj Wafer present sensor out of adjustment

Symptom: AWH ERRORj Awh timeout

Freq Failure Description

(7) AWH; RECEIVE ELEVATOR; Boat guides out of adjustment
(5) AWH; TRANSFER ARM; Paddle out of alignment
(3) Not a Machine Problem; Facility Problem

Figure 4.13: Result of application program: symptom vs. failure
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principles. As the knowledge base is augmented using other factors such as time

stamps, this program can be expanded to utilize all the properties and resources

available.
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Freq. Symptom Description

Failure: AWHj TRANSFER ARMj paddle height out of adjustment

(9) Scratching wafer

Failure: AWHj PREALIGNERj motor speed out of adjusment
Freq symptom Description

(10) WAFER ALIGNMENTj inconsistent alignment

(8) AWH ERRORj awh timeout

Figure 4.14: Result of application program: failure vs. symptom

This prototype was tested for equipment used in the DSW family of Fab15. Each

testing required further revision in the prototype and as a result of this process, a

methodology to collect symptoms and specifications to build a knowledge base were

characterized. Questions were addressed such as: What is a symptom? when, is it

to be collected, how, and by whom? A methodology for classifying symptoms was

developed as well as software to develop the symptom menu from a text file. It

was recognized that symptoms must be validated through the use of "Short Term

Memory," and a methodology for doing this was designed. HDC was enhanced for

collecting symptoms, connection interfaces between Ingress, Workstream, and MMR

were specified, the need for a "browser" to browse through the menus in diagnostic

mode was determined, and also other considerations are the result of the above

study and prototype. This prototype concludes with the specification for collecting
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symptoms and also introduces two different ways to build a knowledge base to trouble

shoot equipment problems.

Methodology and specification to collect symptoms

1. The symptom menu needs to be structured in a hierarchi-
cal fashion similar to the data structure for the failure menu,
based on recognized principles such as Symptomic factors and a
Symptomic classification. A conversion program already exists
to translate the symptom menu text file into a structured file
that HDC can use. Two different menus for the DSW families
of FABIO and FAB15 have already been developed.

2. A user interface that enables maintenance personnel to ac-
tivate HDC as often as they need.

3. The symptom menu needs to have an "Other" option in the
second and subsequent menu levels. "Other" will be allowed
as a conditionally valid description in the menu. Selection of
"other" automatically results in an electronic mail message be-
ing sent to the supervisor and/or equipment engineer, who will
then be required to follow up either by validating the new de-
scription, or by reassigning it to an existing description. If
an "other" symptom is validated as belonging to a new cate-
gory, the menu is automatically augmented to include the new
symptom type.

4. Symptom descriptions need to be collected as a required
part of logging transaction during the "Down to MNT" event
by an operator.

5. Collected symptoms need to be displayed during each "Down
to MNT" and "MNT Repair" events.

6. Symptoms need to be validated for their integrity, correct-
ness, and relation to the failure during "MNT Repair". (This
validation is different from the one performed by family man-
ager through the use of "validate utility.") If a collected symp-
tom is irrelevant to an identified failure, a new symptom needs
to be collected. A mail message must inform the family man-
ager of the discrepancy for further investigation. A consequent
implementation of this procedure promises to minimize the gap
between the operator's and the technician's interpretation of
observed symptoms and their selected paths in the symptom
menu.
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7. In case of an invalid symptom, the symptom menu needs to
be updated. A newly validated symptom must be reported to
Workstream and Ingress.

8. The use of Short Term Memory to temporarily store col-
lected symptoms is necessary for preventing a contamination of
the permanent data bases with non-validated information, but
is also important for easy and quick retrieval of information
for display during the "Down to MNT" and "MNT Repair"
events.

Two approaches to build a knowledge base

It is recognized that the best way to build the knowledge base for the Trouble

Shooting Guide is to use the validated data available in Ingress. This data has been

validated (a validation interface already exists between MMR and Ingress), it is well

tabulated, and different pieces of information can easily be related to each together

for building the knowledge base. Another alternative is to adopt the way the pro-

totype was constructed, and acquire the the knowledge directly from Workstream.

This approach requires a lot of redundant work to duplicate features already con-

tained in/for Ingress: such as the connection interface between MMR and Ingress,

the validation procedures available for Ingress implementing the validation done by

the family manager, the existence of maintenance episodes and tabulated data in

Ingress (Workstream data is poorly organized), a need for extra linkage of data col-

lection from Workstream, etc. The following graphical representation illustrates the

above assertions.
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4.4 Repair Activity

4.4.1 Introduction

This section investigates issues relating to repair activities. Activity comments

have been extracted from the Workstream data base and are studied for their char-

acteristics and relevance to the failures. A methodology to analyze repair activities

is introduced. A repair activity menu similar to the one developed for the symptom

prototype has been developed. Finally, specifications for collection of repair activities

and the development of a knowledge base are presented.

4.4.2 Repair Activity

Repair activities are defined as actions performed by maintenance personnel to

bring a signed down machine back to a state in which it can perform its intended

function. In Section 4.2.2, the author introduced the failure mode as a way to describe

how a component has failed. The repair activity, here, is defined as the procedures

taken to correct the failure component. These activities can be relevant or irrelevant

to the failure mode specified in the collected failure description. A validation process

needs to be designed to allow maintenance personnel to validate repair activities after

completion of the diagnosis. To understand the relationship between failures and

repair activities, as defined above, the author has developed a program to extract

the repair activity comments from the history file, and has related them to their

corresponding failure descriptions. These results were studied in order to gain a clear
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definition of repair activities and also to find a way for developing a repair activity

menu. Table 4.4 shows activity comments related to corresponding failures.



Table 4.4 - Failure and its related repair activity

ID 1 Failure eeacription

DSW; RNS; PUTEN; platen dirty 1 * C1e~ v.ac linea

Loq o~~ Cc ant KNT repair COIIIIIIeDt

95
_ _ ...•- ........•.•.......•.....•..••..•....•..••..•....••....•...• -.- .•...-...........•.•.....••••..•......•.............•.........................................................

* Replaced platen vacuua
aenaor

* C1eaned pl.aten

* C1eaned platen

* C1eaned platen

* C1eaned platen

* Replaced ~iAo value
..................•..••.•..••••.........................•................................... - .

* ba.t ACS

* Set up ACS unit

* b.et ACS

* Replaced power aupply
to aonitor

* Replaced cable to aonitor

* Adjuat target voltage
and ~ocua

* Adjuat il.lum1nator

* Setup CCU

* Adjuated CCU and gate
angela .

* a.tup CCU

80 I DSW; COLUMN/FOCUS; ACS;
aca out of adjuatment

* C&ll.brated ACS

64 I DSW; AWA/CCOT; CCU MODOLE;
computer aetup de~ective

* Replaced t.-p

1811 DSWi AHA/CCUTV; ceo NODULE;
ccu ••tup out o~ adjuat.en

* Adjuated AHA ayat•• and
CCU aetup..............................................................................................................

•.....
o
0\
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An important issue concerning a repair activity is that, during the task of diag-

nosis, the maintenance personnel may have difficulties identifying the failure. As the

technician trouble-shoots a repair, he may become involved with activities unrelated

to the original problem. He may notice that some wiring is loose or some other

parts were out of adjustment, and may decide to take action to repair these simul-

taneously. However, these additional corrections are unrelated to the failure that

caused the machine to go down. Regardless of their relevance to the reported failure

(symptom), all these repair activities need to be collected at the "Log off" event.

A Short Term Memory as proposed in Section 4.3 is a must to store these collected

data for quick retrieval in order to inform new personnel of prior activities (since

individual repair activities may stretch over several days and may be performed by

different technicians) and also to assist the technician( s) in validating the collected

data. The collected data needs to be validated during the "MNT Repair" after the

failure component has been identified and all the repair activities have been com-

pleted. Validation can be done by the technician by answering "yes" or "no" to the

prompt regarding each collected repair activity. The technician would be the best-

qualified person to judge the relevance of a collected activity to a reported failure

since he or she is the domain expert who knows the machine and its functions best.

For example, in the case of the "o-ring leak" failure, the mirror had to be removed

which then called for subsequent readjustment. However in another situation, the
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mirror will be out of place due to vibration and also needs readjustment. Here, the

first mirror adjustment may not be collected while the second would.



4.4.3 Repair Activity Menu
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This section discusses the development of a repair activity menu. The repair

activity menu is designed as a hierarchical data structure based on the hardware

decomposition of the equipment, just as in the case of the failure menu. A set of

"repair activity verbs" needs to be attached to the menu to express the way the

component has been repaired. A typical Repair Activity Verb list is prepared and

shown in Table 4.5.

Table 4.5 - List of Repair Activity Verb

2

lubricated

Verb-ID Verb Verb-ID Verb

12

tightened

11 powered down1 adjusted/setup
aligned

3 calibrated
powered up

13 raised
4 cleaned 14 rebooted
5 corrected 15 rebuild
6 decreased 16 reinstalled/installed
7 enlarged repaired

18 replaced8 increased
19 reseated.·9 leveled
20

In developing the repair activity menu, the author notes that adding up to 20 repair

10

activity verbs to each existing component in the menu is not practical. Some menus

have already grown to 900 hundred failure descriptions in six months of operation, i.e.
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to 900 failure components. Adding another level of 20 options to each component is

definitely not a good idea. Therefore, a better approach uses a menu for repair activity

which is a hierarchical data structure based on the hardware decomposition of the

equipment starting with the Major-SuhSystems , followed by the Minor-SubSystems,

and finally the Failure Components. However, repair activity verbs also need to

be incorporated along with the selected path from this menu to form the repair

activity description. Creating such a menu, as with the failure menu, would be time

consuming, especially for the existing FABs where a failure menu has been used for

a long period of time. Therefore, a special software was developed to create such a

menu from the existing Failure Menu. Table 4.6 shows a menu for the DSW family

in FAB15.
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Table 4.6 - Repair Activity Menu

STAGES/CHUCK
CHUCK/THETA

chuck
theta drive
theta home sensor
wa~er present sensor
other

STAGE MECHANICAL
barry table air hose
barry table
x motor
x motor qearbox
other

AWB TRANSFER ARM
padcUe
trans~er arm
backlash or warm qear
motor speed
other

PREALIGNE~realiqn theta
spindle center
~lat~inder drive motor
~lat~inder sensor
motor speed
spindle height
wa~er present sensor
otherRECEIVE ELEVATOR
boat quides
cable
comb sensor
drive motor
index ~lag
motor speed
wa~er present sensor
otherSEND ELEVATOR
wa~er preset sensor
boat quides
cable
comb sensor
drive motor
index falq
motor speed
wafer boatother



Table 4.6 - Repair Activity Menu (continued)

RMS
PLATEN

pl.aten
pl.aten vacuum sol.enoid
al.ign motor
al.ign sensor
tower
other

ELEVATOR
bar code reader
el.evator motor
l.ead screw
travel. sensor
bar code reader cabl.e
el.evator motor cabl.e
other

COLUMN/FOCUS
ACS

acs
monitor
chassis
sensor
other

AWA/CCUTV
CCU MODULE

il.l.umdnator l.amp
power cabl.e
camera control. modul.e
camera
ccu setup
power suppl.y
vertical. modul.e
vertical. weep modul.e
other

112
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It is proposed that when HDC selects the path through the repair activity menu,

thereafter the screen containing the list of repair activity verbs needs to be displayed

in order to further select the proper verb. Thus, the repair activity description would

be the selected path from the menu in addition to the selected verb. The repair

activity description will have a code number equivalent to:

Repair-Activity-Description-ID = (Activity-ID - 1) * 20 + verb-ID (1)

It is proposed that the interface between Menu and activity-list be done from the

HDC side.

4.4.4 Repair Activity Prototype

The repair activity prototype is developed in a similar way to the one for the

symptom prototype. The development cycle is similar to the one previously ex-

plained (Figure 4.9). It extracts repair comments from the Workstream data base

and translates them into the repair activity description. Repair comments will first

be validated through domain experts for integrity, correctness, and relevance to the

failure. These comments will be related to their corresponding failure description to

build a knowledge base. Since the interface between the repair activity menu and the

repair activity verb list was not available, most of this process was done manually.

The development cycle for the repair activity prototype can be described as follows:
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During the first cycle, develop repair activity menu, software was developed to cre-

ate a repair activity menu from the existing failure menu. Also a list of repair verbs

was prepared along with a strategy to generate a path for repair activity descriptions.

The list of repair activity verbs, the repair activity menu, and the strategy are pre-

sented in Table 4.5, Table 4.6, and equation (1), respectively. During the second and

third cycle, a program was developed to extract repair activity comments from the

Workstream data base and relate them to their corresponding failure. These com-

ments were validated manually through domain experts and a knowledge base was

constructed. The structure of this knowledge base is similar to the one developed for

the single symptom/failure knowledge base.

During the final prototype development cycle, an application program (similar to

the one for symptom/failure) was developed to carry out the final task of the trouble

shooting guide. This program would help the technician in the FAB to display the

list of repair activities for a selected failure description. This program is in its most

simple form and applies the most fundamental principles within the trouble shooting

guide. Figure 4.16 illustrates the result of such a program. A browser is further

necessary to complete the application program for production. The browser lets the

user browse through the repair activity menu to select options and finally displays

the results developed. The browser is simply a front/end truncated HDC.



Failure:A WH; PREALIGNER; Motor speed out of adjustment

Freq. Repair Activity Description

l15

Figure 4.16: Result of the application program for repair activity prototype

(8) AWH; PREALIGNER; MOTOR; Fairchild Switch adjusted
(4) AWH; PREALIGNER; MOTOR; Spindle speed adjusted
(2) AWH; PREALIGNER; MOTOR; Loading correction adjusted

Failure: AWH; CCUTV; llIuminator not bright

Freq Repair Activity Description

(6) AWH; CCUTV; Illuminator lamp adjusted
(2) AWH; CCUTV; Illuminator lamp replaced

Methodology and specification to collect repair activities

1. The repair activity menu needs to be developed as a hier-
archical data structure based on the hardware decomposition
of the equipment. Its data structure is similar to the failure
and symptom menus. A text file can be generated from the
failure menu using the software developed in Section 4.4.3, and
finally this text file can be further converted into a structured
file that HDC can use.

2. A special interface needs to be created to display the repair
activity verbs after each selection made from the menu, and
also to calculate the ID number for the repair activity descrip-
tion.

3. A user interface needs to be developed to let the mainte-
nance personnel collect multiple repair activities during either
"Log off" or "MNT repair" events. This simply lets the main-
tenance personnel call HDC as often as necessary.

4. Repair activities need to be collected during each "Log
off" event (if such exists) and "MNT repair" event after the
technician has completed the task of diagnosis and has returned
the machine to a state in which it can perform its intended
function.
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5. The collected repair activities during "Log off" need to be
displayed at the "Down to MNT" event. This will provide the
technician with information as to what has been achieved so
far and possibly what needs to be done in addition to complete
the work.

6. Short Term Memory, suggested in Section 4.3, is necessary
to temporarily store the collected repair activities for quick
retrieval. This will assist the process of validation.

7. Repair activities collected during the "Log off" event need
to be validated by the last technician during the "MNT repair" .
This can be done by answering "yes" or "no" to each prompt
regarding collected repair activities. In case of an invalid repair
activity, the menu needs to be updated accordingly. Validated
repair activities need to be reported to Workstream.
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4.5 Diagnoser (Application Program)

This section discusses the proposed application program required to carry out the

task of implementing the Trouble Shooting Guide. It consists of actually adding

together the three application programs developed in Sections 4.2 and 4.3 along

with a browser that enables maintenance personnel to browse through each menu to

examine different selections for possible answers. The browser can be implemented

as a front/end truncated HDC. In order to activate the Trouble Shooting Guide,

the maintenance personnel needs to log a "diagnostic" event into Workstream. This

requires adding "diagnostic" events to the Workstream data structures and properly

checking them in HDC. The Trouble Shouting Guide consists of three functional

modes: (i) For a given symptom, it displays a list of possibly related failures according

to their frequency of occurrence, (ii) for a given failure, it displays a list of potentially

related symptoms according to their frequency of occurrence, and (iii) for a given

failure, it displays a list of repair activities that may possibly fix the failure according

to their frequency of occurrence. Whenever a mode is selected, the browser will

display a proper menu from which a selection can be made. This selection will be

routed to a knowledge base for pattern matching, and a proper list of findings will

be displayed. The proposed interface is shown in Figure 4.17.



Sel.ection:(Appl.ication
Program)

BROWSER:(Browsi.ng
through
menu)

Knowl.edge
Base:

Output:

..........................
User Interface
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. .

...............

Failure des.
(9) a ym L
(5) ~yrn2
(3) syrn8
(1) ~yrn22
(1) ~yrn23

Figure 4.17: Diagnoser shell

Symptom des.
(10) fail22
(8) fail3
(5) fail6
(2) faill

Failure des.
(9) rep12
(8) rep 9
(3) rep 3
(2) rep 2
(1) rep 11
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CHAPTER 5

Results

A manufacturing environment was introduced and issues relating to collecting and

measuring knowledge about performance of the machine parked were discussed. It

was also discussed how "equipment time" and "equipment activity" need to be cat-

egorized in order to measure certain aspects of equipment performance. Figure 5.1

illustrate the event activities designed under which an operator or technician is able

to collect and validate data relating to equipment performance. These figures sum-

marize five different events along with their activities: Down to MNT, MNT Logon,

Diagnostic, MNT Logoff, MNT Repair.

A maintenance personnel, operator, may sign the equipment down during the

"Down to MNT" event as a result of equipment malfunction, instability in the pro-

cessing, or quality disturbances. During this event, the operator is to collect symp-

toms using HDC and the symptom menu. He may also call the diagnostic system if

he feels the failure is minor and can be fixed easily using Trouble Shooting Guide. Us-

ing this procedure, there would be no need to call upon the technician for assistance.

The main purpose of the "MNT Logon" is to report the exact time maintenance

personnel start to work on the equipment. This distinguishes between the time when
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the equipment was in a waiting status and the time a maintenance person actually

worked on the equipment. During this event, symptoms collected by the operator

and the repair activities done by prior technicians can be displayed. This informa-

tion would be essential to a new technician as what has been done to the equipment

and/or what else needed to be done to complete the work. During the "Diagnos-

tic" event, maintenance personnel may call the Trouble Shooting Guide to trouble

shoot the problem. The episode information (symptoms, and prior repair) need to

be displayed to facilitate the trouble shooting.

MNT Logoff is designed so that a technician can report his repair activities before

he leaves his maintenance activity. This event will be logged into the system only

when the task of diagnosis is not finished and equipment is not yet back to the

state in which it can do its intended functions. This event is typically used when a

technician takes a lunch break or leaves his post for other reasons. Display of episode

information would be informative rather necessary.

When equipment is completely fixed and back to the state in which it can do its

intended function, the technician would log the "MNT repair" event into the system

to accomplish several functions. Collected data are validated by answering "Yes"

or "No" questions. If an error identified, he may collect symptom on the spot. He

also collects the final repair activities and validates the collected repairs(if any) by

simply answering "Yes" or "No" questions. Finally, he may collect the failure that he

thinks caused the machine to be signed down. Display of the episode information is
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necessary for validation purposes and also to assist the technician in making a right

judgment in selecting the real cause of the failure.
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Down To MNT:

MNT logon:

Display
info

Diagnostic:

Display
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Collect Symptom (Multiple) I
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, Call Diagnostic System 1-- _ .• _ ......•.•.....•...• - -- ......•. _ •..........•...........• - .•.. -.- .............•......................................•
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e Repair Activity2
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E ~ympton .......................................
p I

i n Sympt0m2
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0 0 repail Repair Activityl
d act. ........................................
e Repair Activity2

Call Diagnostic System
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Figure 5.1: System's event activity protocols
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MNT Logoff:
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MNT Repair:
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Symptoal.

E ......................................
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0 0 repaiz Repair ActiYityl
d aet. .........•.................•....•...••
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i D Sympt0a2
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0 0 repaiz -Repair ActiYityl
d act. ......................................
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-
Validate Symptom

Validate/Collect Repair Activity
, .

Collect Failure

Figure 5.1: System's event activity protocols (continued)
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Quick prototyping was used to establish the system architecture and its detailed

requirements. In these prototypes, issues concerning symptom and repair activity

were studied. What symptom is and what constitutes repair activity were defined

and presented. Methodology and specification for collection of symptom and re-

pair activity were developed and presented. Sections 4.3.6 and 4.4.4 present these

methodologies respectively. Symptom and repair activity prototypes were developed

to determine appropriate knowledge representation, man-machine interface, support-

ing hardware, and functional architecture of the system. A system architecture is

presented in Figure 4.17. The results of both prototypes are presented in Figures

4.13, 4.14, and 4.16.

As prototypes were completed, HDC needed to be enhanced to carry out the task

of collecting symptom and repair activity. Figure 5.2 illustrates the need for a shell

around HDC. Inside this shell, a decision box receives the proper "event" and "event-

type" from Workstream and decides which action: such as collection of symptom,

failure, repair, or diagnosis (use of Trouble Shooting Guide) need to be taken. A user

interface is also needed for multiple collection of symptom or repair activity. The

shell also illustrates in which fashion collection and validation of data take place. For

example, when "event" is "Down to MNT" and "event-type" is "symptom", then

HDC will invoke symptom menu.



Symptom
Menu

Figure 5.2: HOC Shell /-'
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Trouble Shooting Guide consists of knowledge acquisition routines, Example-

Based( case-based) knowledge base, and an application program. Knowledge acquisi-

tion will extract well-formed, tabulated, and validated knowledge from Ingress and

update the knowledge bases. There exist two kinds of knowledge bases: symptom-

failure and failure-repair. The application program simply employs a logical but

non-intelligent interface method on the knowledge base. Trouble Shooting Guide

gives all possible failures to a set of symptoms or vise versa. It also suggests all sets

of repair activities which should be taken to fix a failure.

One of the most important issue concerning the Trouble Shooting Guide is the

speed of TSG and how soon its knowledge base needs to be updated with new in-

formation. It Was strongly suggested that the process of updating the knowledge

base should be done through a program which is to be triggered whenever Ingress

receives new data from Workstrearn and is validated by MMR. This would require

that another program be triggered whenever an episode is completed at Short Term

Memory. Program simply transfers the episode to Workstream and forwards it fur-

ther to Ingress. This way we have separated the process of collecting and validating

information from the process of updating knowledge base. This avoids the problem

of permitting maintenance personnel to have access to knowledge base to collect and

update data which would be highly risky and could jeopardize the integrity of the

knowledge base.
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Finally, this paper discussed the pyramid of data in this system. It explained how

data, information and knowledge were formed and shaped. Figure 5.3 illustrates such

a progress systematically.
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Conclusion

The designed Trouble Shooting Guide is the first step toward the development of

Expert Diagnostic System. It assists operators and technicians in problem isolation

and repair activities for equipment used in Integrated Circuit Manufacturing. It

isolates the failure and suggests appropriate repair activities. TSG will suggest all

possible failures for a set of symptoms according to frequency of occurrence. It also

provides a display listing of repair activities which one need to fix the failure. TSG

would be useful tool in the training of new technicians. It can be used by an operator

to detect failure in case of a minor problem, and to suggest the proper repair activities.

This shortens the diagnosis time by not requiring the call of a technician. It assists

technicians to diagnose equipment failure more accurately and quickly. TSG acquires

knowledge from domain experts (operator, technician, family managers) through a

series of automated interviews; as a result it solves the bottle neck of building an

Expert System. It also partially automates the process of validating and updating

its own knowledge. This system is applicable to all kinds of equipment available

within a company.
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