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Abstract

At temperatures below 2.17K the phenomenon of thermal waves has been observed in

liquid Helium. This paper describes the reproduction of these waves, called “Second

Sound,” by means of simulation. Two different models for the heat transport in Helium

are tried. First the classical heat diffusion equation is used with temperature dependent

thermal parameters. The second model for heat transport is based on the more complex

Two Fluid Model which was introduced for Helium close to the absolute zero point of

temperature. Simulations with various initial and boundary conditions show that the

first model is not sufficient to describe heat transport in Helium, whereas the second

model gives satisfactory results.



Abstract

Das Phänomen von thermischen Wellen wurde in flüssigem Helium unter 2.17K

beobachtet. Diese Arbeit beschreibt die Reproduktion dieser Wellen, die ,,Second Sound“

genannt werden, durch Simulation. Zwei verschiedene Modelle für den Wärmetransport

wurden angewandt. Als erstes wurde die klassische Wärmeleitgleichung mit tem-

peraturabhängigen thermischen Parametern verwendet. Das zweite Modell für den

Wärmetransport basiert auf dem komplizierteren ,,Zwei–Flüssigkeiten“–Modell, das für

Helium nahe dem absoluten Nullpunkt eingeführt wurde. Simulationen mit verschiede-

nen Anfangs– und Randbedingungen zeigen, daß das erste Modell den Wärmetransport in

Helium nicht zufriedenstellend beschreibt, während das zweite Modell zufriedenstellende

Ergebnisse liefert.
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stop, but would never reverse its direction, no oscillation is possible. For all times, the

energy of the system is stored in the mass. If we built a chain consisting of dampers and

masses and gave every mass an initial velocity, again the same behavior could be observed;

the masses coming to a stop somewhere, but never changing their direction. Hence, two

different kinds of storage elements are needed for linear oscillations to occur.

The same experiments can also be made with electrical systems, where the capacitor

and the inductance are storage elements and the resistor is the dissipative element.

1.2 Thermodynamical Systems

Thermodynamical Systems are commonly described in terms of temperature and heat

or entropy currents. The thermal capacitance of a material describes the capability of

storing energy in the medium. The overall flow of entropy into an element determines

the increase of temperature, so heat is stored. The relation of entropy flow between two

elements with different temperatures is described as thermal conduction. This flow is a

resistive effect.

We have now one storage element which can be classified as capacitive. There is no

inductive storage element in thermal systems. Let us assume that such an element exists,

this would mean that we can store entropy flow. Therefore, there might be an entropy

flow even without a temperature difference. This is in contradiction to the second law of

thermodynamics which states that a spontaneous heat or entropy flow is always directed

from a point of higher temperature to a point of lower temperature. Hence, if there

is an entropy flow, there must be a temperature difference. Since the previously made

assumption is wrong, there is no thermodynamic inductive element.

In 1.1, we found that there have to be two different kind of storage elements in a

system in order for it to oscillate. Since thermodynamical systems only have a capacitive

storage element, we conclude that they cannot oscillate. However, in 1944 Peshkov was

able to detect temperature waves which he called Second Sound [1, 2]. A tube filled with

Helium is cooled down to a value below a critical temperature Tλ = 2.17K, where it is in

a liquid state. Periodical heating of one end of the tube generates heat waves which can
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be detected with a thermometer.

This phenomenon seems to contradict the results of the previous paragraph on the first

view. But we must remember that all derivations in 1.1 were done under the assumption of

linear time–invariant systems. The physical properties of Helium in this low temperature

range depend very much on the temperature so that we no longer deal with time invariant

systems. Additionally the equations describing the storage and dissipative elements are

nonlinear.
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published by Vinen describes the basic physical properties of Superfluid Helium also suit-

able for newcomers [6]. A more recent work is Puttermann’s Superfluid Hydrodynamics,

which covers both theory and effects in a complete form [7].

The research in Low Temperature Physics grew almost exponentially, so that there

is now a huge number of papers. Therefore my selection is not at all comprehensive but

rather represents those parts of research I was interested in, namely phenomenological and

quantitative description of thermal behavior and numerical solution of heat transport in

Helium II. Unfortunately I was not able to find a single source which provided me with all

numerical values for physical properties over the Temperature range of interest. So I had

to gather my data from various papers, each describing the measurement of a parameter

in a small temperature range and approximating it through a function. For temperatures

sufficiently smaller than Tλ, I used papers by Kramers [8] and Vinen [9]. Around Tλ the

behavior of the specific heat curve is well documented by Buckingham [10] and Ferrell

[11]. For the parameters describing the thermal conductance, several equations can be

found for either just below or above the critical temperature [12, 13, 14, 15, 16]. I was

able to find papers about numerical analysis of heat propagation in Helium II from two

authors, namely Fiszdon [17] and Gentile [18, 19]. I will later use Gentile’s results for

comparison with my simulations.



Chapter 3

Heat Conduction Modeled With

Time–Variant R–C–Networks

3.1 R–C–Networks

As I mentioned in the introduction, thermodynamical systems have only one energy stor-

age element. The electrical analog of this type of systems is a network consisting merely of

resistors and capacitors. For simplicity, from now on I shall call every system of this type

R–C–network. Since heat transfer is described by a partial differential equation, we are

confronted with a distributed parameter system, whereas classical mechanical or electrical

systems are lumped parameter systems. By dividing the continous space into finite ele-

ments, we obtain ordinary differential equations for the heat conduction, which have the

same form as the equations for mechanical and electrical R–C–networks. As for Helium at

low temperatures the specific heat capacity and the thermal conductance are functions of

the temperature itself, the system is time–variant, even though the temperature doesn’t

explicitly appear in the equations.

To demonstrate that there are differences between time–variant and time–invariant

systems let me give an example. Consider the second–order system

ẋ = A(t)x (3.1)

7
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where

A =

⎛
⎝ 4a −3ae8at

ae−8at 0

⎞
⎠ . (3.2)

The eigenvalues of the system can be easily found to be time–independent. They are

λ1 = a (3.3)

λ2 = 3a (3.4)

The solution of this linear time–variant system is

x1 = 1.5(x10 + x20)e
5at − 0.5(x10 + 3x20)e

7at (3.5)

x2 = 0.5(x10 + 3x20)e
−at − 0.5(x10 + x20)e

−3at (3.6)

with the initial condition as

x =

⎛
⎝ x10

x20

⎞
⎠ (3.7)

If we choose a < 0, both eigenvalues are in the left half of the λ–plane. A linear time–

invariant system is stable if and only if all eigenvalues have negative real parts. However,

from (3.6) we see that the solution is unstable although the eigenvalues of the system are

all negative. We see that we can’t simply transfer a theorem from linear time–invariant

system theory to time–variant systems. If we take the theorem stating that linear time–

invariant systems can only oscillate if they have complex eigenvalues, we can make again

no conclusion about the ability of a nonlinear and time–variant system to oscillate. This

observation encourages us to try to find a model for the heat transfer in Helium II which

has only real eigenvalues but which can be nonlinear and time–variant. By simulating

this system with an experiment it can be detected if the system is capable of oscillating.

We model the heat propagation in Helium II with the normally used heat diffusion

equation letting the specific heat capacity and the thermal conductance be functions of

the temperature. Without reducing generality, we can consider only the one–dimensional

case, i.e. heat conduction through a Helium filled channel with constant variables over

every cross–section.

ρcp(T )
∂T

∂t
= λ(T )

∂2T

∂x2
(3.8)
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λ = thermal conductivity

ρ = density

cp = specific heat capacity

If we discretize the space into finite elements of length ∆x and if we use the central–

difference formula [21] for the second spatial derivative of T, we get a set of ordinary

differential equations.

dTi

dt
=

λ

ρcp

Ti−1 − 2Ti + Ti−1

(∆x)2
(3.9)

=
1

A∆xρcp

(
λA

Ti−1 − Ti

∆x
− λA

Ti − Ti+1

∆x

)
(3.10)

=
1

A∆xρcp

(Q̇in − Q̇out) (3.11)

where

A = cross section of Helium channel

∆x = length of an element

Q̇in = heat current into the element

Q̇out = heat current out of element

3.2 Modeling in Terms of Bond Graphs

The bond graph technique is a tool to graphically represent a physical system. The part

of the graphs giving name to the technique are the bonds that simultaneously connect

two variables of two elements. The two variables that are assigned to each element are

called adjugate variables. One of them is called the “effort” e and the other the “flow” f .

The product of e and f has the dimension of a power, i.e., the bond basically represents

a flow of power. Figure 3.1 shows the bond.

Other basic elements are the junctions of which two different kinds exist, the so–called

“0–junction” and the “1–junction”. At the 0–junction all effort variables are equal, and

the sum of all flow variables adds up to 0. At the 1–junction all flow variables are equal,

and the sum of all effort variables adds up to 0 [Fig 3.2].
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3.4.1 Model 1: Initial Temperature 1.4K

The formulas used in this text for the specific heat capacity at constant pressure, cp, are

actually formulas for the specific heat under saturated vapor pressure csat. However, for

T < 2.5K the difference is less than 1%, which can be neglected here [5]. Kramers verified

through experiments an empiric formula found earlier by Hull [8, 20]. They approximated

csat between 0.6 and 1.4K as

cp = csat = 100 T 6.2 J

kgK
. (3.14)

The density of Helium can be considered constant in the temperature range according to

[5]

ρ = 145.5
kg

m3
. (3.15)

The length of the elements and the crosssection of the channel were chosen to be

∆x = 1 · 10−4m (3.16)

F = 1 · 10−4m2. (3.17)

If we define the entropy flow Ṡ of a body as the heat flow Q̇ divided by its temperature

T , which is not the original definition of entropy, but which is convenient and usual in

the bond graph technique [21],

Ṡ =
Q̇

T
(3.18)

we find from

∆Q̇ = ρF∆xcp
dT

dt
(3.19)

∆Ṡ =
ρF∆xcp

T

dT

dt
. (3.20)

If we plug in (3.14 – 3.17) we obtain (in SI–Units)

∆Ṡ = 1.455 · 10−4 T 5.2dT

dt
. (3.21)

This is the equation describing the modulated capacitance, mC, of the system.
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For the heat current as a function of T and dT , London gives an approximation

deduced from his Two Fluid Model [4]. The equation is valid for large heat currents or

large slits as in our case. The formula was later verified through measurements by Vinen

[9]. The heat current density q̇ is given as

q̇ = −
(

dT

dx

) 1
3
(

ρ2s4
λ

A

) 1
3

T

(
1 −

(
T

Tλ

)5.6
)(

T

Tλ

)5.6

(3.22)

where

Tλ = 2.173K. (3.23)

sλ is the specific entropy at T = Tλ, which can be found to be [8]

sλ = 1.57 · 103 J

kgK
. (3.24)

A is the so–called Gorter–Mellink constant, which is a function of temperature but which

we assume to be constant in our case [9, 5].

A = 350
ms

kg
(3.25)

If we replace dT/dx through ∆T/∆x and rewrite the equation for Ṡ, we obtain

Ṡ = −F

(
ρ2s4

λ

A∆x

) 1
3
(

1 −
(

T

Tλ

)5.6
)(

T

Tλ

)5.6

(∆T )
1
3 . (3.26)

Plugging in numerical values we obtain finally (in SI–Units) an equation describing the

conduction of heat in Helium II

Ṡ = −154.32

(
1 −

(
T

2.173

)5.6
)(

T

2.173

)5.6

(∆T )
1
3 . (3.27)

3.4.2 Model 2: Initial Temperature 2.1728K

As a second case, I investigated the heat conduction in the region around Tλ. The specific

heat capacity in the vicinity of this point is described by Ferrell through the empiric

formula [11]:

cp = 0.626

(
ln

2

|τ | − 2sign(τ)

)
J

gK
(3.28)

τ =
T − Tλ

Tλ

|τ | < 5 · 10−2
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For this second case we choose

∆x = 1 · 10−3m (3.29)

F = 1 · 10−4m2 (3.30)

ρ = 146.57
kg

m3
. (3.31)

If we use (3.18) and plug in 3.28 we obtain (in SI–Units)

∆Ṡ =
0.19076

T

(
ln

2Tλ

T − Tλ

− 2sign(T − Tλ)
)

dT

dt
(3.32)

as equation for the capacitance of the system.

For the heat conduction we must consider two different cases, depending on whether

the temperature is above or below Tλ. Below Tλ the heat conduction is described by

Crooks, who gives for the heat flow density q̇ the formula (all in SI–Units) [16]:

q̇ = −ρssλT

(
sλgradT

263ρn

) 1
3.5

(Tλ − T )−
1

5.83 (3.33)

with

ρs = 1.43(Tλ − T )
2
3 ρ (3.34)

sλ = 1.57 · 103 J

kgK
(3.35)

Using the numerical values (3.29 – 3.31) we obtain for the entropy flow as function of the

temperature difference

Ṡ = −94.9(Tλ − T )0.838(∆T )
1

3.5 . (3.36)

For temperatures above Tλ, Ferrell gives the thermal conductivity of Helium as

λ = λ0

(
2

τ

) 1
3
(
ln

2

τ

) 1
2

(3.37)

with

τ =
T − Tλ

Tλ

λ0 = 1.36 · 10−3 W

mK
(3.38)
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Using the relation

Ṡ = −F

T
λ

∆T

∆x
(3.39)

we obtain

Ṡ = −−1.36 · 10−4

T

(
2Tλ

T − Tλ

) 1
3

√
ln

2Tλ

T − Tλ

∆T. (3.40)

The heat conduction for T < Tλ decreases with increasing temperature below Tλ until

it reaches 0 at Tλ. Above that point the conduction increases again but stays by many

orders smaller than below Tλ, which is not surprising since Helium II is known to be

superconductive for heat.

3.5 Simulation and Results

For the simulation I coded the problem in DYMOLA [21, 22]. DYMOLA is not a simula-

tion language but a program generator which supports different simulation languages. It

handles very easily several hierarchically structured layers of subsystems and is also well

suited for systems modeled in bond graphs since the built in “nodes” are similar to the

junctions in bond graphing. I used the VAX/VMS version of DYMOLA, which can gener-

ate programs in DESIRE [23]. DESIRE, which stands for “Direct–Executing–SImulation

in REal time,” is a high–speed direct–executing interactive simulation program with an

on–time output of colored graphs on the screen. It supports different Runge–Kutta meth-

ods and Adams and Gear rules as integration algorithms. The DESIRE programs were

executed on VMS/VAX and on a PC–compatible computer. The integration algorithm

used was Euler forward with a fixed step size of ∆t = 0.5 · 10−7s for the first model, re-

spectively ∆t = 1.0 · 10−5s for the second model. Appendix A shows the used DYMOLA

programs.

As heat source I chose for the first model a value of Q̇ = 0.2W for τ = 2 · 10−5s, which

equals an entropy flow of Ṡ = 0.143W/K. Fig 3.6 shows the temperature of the first 4

space elements over time with an initial temperature of T0 = 1.4K. The heat propagates

in the medium in a dissipative manner, the temperature of an element never exceeds the

temperature of its neighbor to the left. Fig 3.7 shows the results of the second model

with an initial temperature of T0 = 2.1728K just below Tλ. Again the temperatures of
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the first 4 elements are shown. The heat flow is Q̇ = 0.1W and the resulting entropy flow

Ṡ = 0.046W/K for τ = 1 · 10−3s. The heat propagation through Helium in this case is

even slower as before and only the first element exceeds Tλ. For both cases I conducted

simulations with various entropy sources in respect to heat flow and time. I used also

space elements of different lengths between 10−5m ≤ ∆x ≤ 10−2m. In none of all these

combinations, a behavior different from the shown diffusive behavior could be observed,

especially did no solution resemble a wave–like heat propagation.







Chapter 4

Heat Transport and Two Fluid

Model

4.1 Two Fluid Model

In an attempt to explain the remarkable properties of Helium II a model was presented

by two different authors in 1941 [24, 25]. The basic idea of the model is that below Tλ

Helium consists of two different liquids which are ideally mixed. One of them is called

the “superfluid component” with the density ρs, the other the “normal component” with

the density ρn. Both partial densities add up to the total density:

ρs + ρn = ρ (4.1)

The fraction of ρs/ρn is a function of the temperature; at Tλ there is no superfluid compo-

nent present whereas for T = 0K the normal component vanishes. Fig 4.1 shows the two

densities plotted over the temperature. Another assumption of the model is that at any

point in space each component has its own velocity called vs respectively vn. Therefore

we can write for the mass current density

J = ρsvs + ρnvn (4.2)

The normal component behaves like an ordinary liquid, it has the viscosity νn. The

superfluid component has a viscosity coefficient equal to zero, it flows without friction.

20
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Sound. It can be produced by an oscillating heat source that causes the two components

to oscillate in antiphase.

Let us consider the case of constant heat transfer in a Helium II filled channel. We

apply at one end of the channel a heat source that transforms the superfluid component

into the normal component. This normal component flows away from the source to a

heat sink at the other end of the channel, where it is transformed back to the superfluid

component again. This component flows then back in the other direction. So we have

a steady flow of the two components flowing in opposite directions. This mechanism of

heat transport called superconduction of heat can be interpreted as Second Sound with

the frequency 0.

4.2 Hydrodynamical Equations

The dynamics of Helium II are described by the following conservation equations: con-

servation of mass, conservation of momentum for both components and conservation of

energy. A general form of these equations can be found in [26]. In our case we can

simplify the model in two ways. Without loss of generality we will consider only the one–

dimensional case. Assuming heat transport with a zero net mass flow, we obtain from

(4.4)

vs = −ρn

ρs

vn. (4.5)

Then the normal velocity vn and temperature T describe completely the behavior of

Helium II, and the following equations can be obtained [18]:

∂T

∂t
=

K

ρcp

∂2T

∂x2
− vn

∂T

∂x
− s

cp

∂vn

∂x
T +

A(T )ρn

cp

(
ρ

ρs

)3

v4
n +

A0

cp

(
∂vn

∂x

)2

(4.6)

∂vn

∂t
= A0

ρs

ρn

∂2vn

∂x2
− vn

⎛
⎝3

∂vn

∂x
+ A(T )

(
ρ

ρs

)2

ρv2
n

⎞
⎠− s

ρs

ρn

∂T

∂x
(4.7)

with the thermodynamic parameters:

K = dissipation

cp = specific heat capacity
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s = specific entropy

A(T ) = Gorter–Mellink constant

A0 = viscosity

The two equations are strongly coupled by the presence of ∂vn/∂x in the equation for T

and of ∂T/∂x in the equation for vn. Additionally s, A(T ), cp, ρs and ρn depend on the

temperature and contribute to the coupling of the equations.

4.3 Numerical Values for the Thermal Parameters

For the simulation I followed for a great part the description of Gentile’s numerical in-

vestigations on heat transport in Helium II [18]. The initial temperature and the point

around which the parameters are approximated is T0 = 1.8K. The parameters ρ, K and

A0 are considered to be constant in the used temperature range.

ρ = 145.3
kg

m3
(4.8)

K = 5 · 10−4 W

K
(4.9)

A0 = 2.6 · 10−8m (4.10)

For the entropy s, the heat capacity cp and the density of the normal component we find

for T > 1.4K [18, 4]:

s = sλ

(
T

Tλ

)5.6

(4.11)

sλ = 1.57 · 103 J

kg K
(4.12)

ρn = ρ
(

T

Tλ

)5.6

(4.13)

cp = 5.6sλ

(
T

Tλ

)5.6

(4.14)

For the Gorter–Mellink constant A(T ) the formula of Crooks was used, which gave good

results in comparison with measured data [16, 5].

A(T ) = 263(Tλ − T )−0.74 (in MKS units) (4.15)
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(
∂Ti+1/2

∂x

)
t

=
Ti+1,t − Ti,t

∆x
(4.21)

Ti+1/2,t =
Ti+1,t + Ti,t

2
(4.22)(

∂2vi+1/2

∂x2

)
t

=
vi+3/2,t − 2vi+1/2,t + vi−1/2,t

2∆x2
(4.23)

4.5 Boundary Conditions

At the left end of the channel, at x = 0, the velocity of the superfluid component is

assumed to be zero.

v1 = 0 (4.24)

In the differential equation for ∂v1/∂t forward–difference formulas have to be used for the

space derivatives instead of central–difference formulas [21]. Using (4.24) we obtain:(
∂v3/2

∂x

)
t

=
3v3/2,t + 3v2,t − v5/2,t

6∆x
(4.25)

(
∂2v3/2

∂x2

)
t

=
−2v3/2,t + v2,t

∆x2
(4.26)

At the same end, the heat flow q̇0 is introduced into the channel. To obtain an equation

for the temperature T1 of the first space element, an energy balance in the first node

can be made [18]. For this element the dissipation K and the viscosity A0 have been

neglected. Using (4.24) we obtain:

∂T3/2

∂T
=

q̇0

ρcp2∆x
− s

cp2∆x
T2v2 (4.27)

T1 = 2T3/2 − T2 (4.28)

At the right end of the channel, x = l, the boundary conditions are not so important

since the simulation ends as soon as the temperature front reaches this end. We assume

symmetry conditions, so that we can write:(
∂v

∂x

)
x=l

= 0 (4.29)

(
∂T

∂x

)
x=l

= 0 (4.30)
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For the second derivatives we will use the same difference formulas with the symmetry

condition:

Tn+i = Tn−i (4.31)

vn+i = vn−i (4.32)

4.6 Simulation and Results

The obtained set of ordinary differential equations was solved using ACSL (Advanced

Continuous Simulation Language) [27]. ACSL is a simulation program for nonlinear

differential equations. It allows a free form of input of the equations since it sorts them

into the required order. It also features a possibility to use submodels which are called

MACROS. As integration algorithms it supports Runge–Kutta, Adams Bashforth, and

Gear formulas.

In order to have only nodes with integer numbers, I renumbered the nodes so that for

space nodes with odd numbers the temperature and for even numbers the velocity of the

normal component is evaluated by simulation. The values in between are calculated as

median of neighbouring nodes. The distance ∆x between two such new nodes was chosen

as

∆x = 2.5 · 10−3m. (4.33)

The heat input q̇0 has the shape of a rectangular pulse with a value of

q̇0 = 3 · 104 W

m2
(4.34)

and a duration of

τ = 0.5 · 10−3s. (4.35)

Appendix B shows the ACSL program. I used the Heun algorithm as integration method

with a fixed step size of ∆t = 1 · 10−6s. The simulation was run for tmax = 4 · 10−3s.

Fig. 4.3 shows the results of the simulation. Shown is the temperature difference of the

nodes to the initial temperature T0 over time. The distance between two plotted nodes is

5∆x = 12.5·10−3m. It can be seen that the heat propagates in the medium as a wave since
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The distance between the maxima of two neighbouring curves is

∆t = 0.81 · 10−3s. (4.36)

As the distance between two curves is given as

∆x = 12.5 · 01−3m (4.37)

we obtain for the propagation velocity

v =
∆x

∆t
= 15.4

m

s
(4.38)

Measurements show for a temperature of 1.8 K a velocity of second sound of u = 19.5m
s

[28]. The difference in measured and calculated velocity probably originates from the

description of the thermal parameters as functions of the temperature [18], but the sim-

ulation results basically confirm the Two Fluid Model of Helium II.



Chapter 5

Conclusions

5.1 Conclusions

The purpose of this project was to investigate whether the heat propagation in Helium II

can be described with the classical heat diffusion equation and nonlinear parameters. If

this model of Helium had shown the capacity of oscillating, it would have been an example

of a nonlinear oscillating system with only real eigenvalues, as mentioned in chapter 1.

But the results of several simulations with different initial and boundary conditions show

no sign of wave–like heat transport. This shows that the description with the classical but

nonlinear diffusion equation is not sufficient for the heat propagating system in Helium II.

The motivation for the search for nonlinear oscillations was the temperature depen-

dance of the specific heat capacity and heat conduction. But for temperatures below

Tλ the bending of the curves for these parameters is very small. Considering the small

temperature variations, the nonlinear portion of these parameters is not very important.

This motivated a simulation around Tλ where the nonlinearities are significant. But these

nonlinearities are such, that they damp heat transportation even more, the specific heat

capacity has a singularity and goes to infinity at that point and the heat conduction goes

to zero.

The simulation with the Two Fluid Model shows that this theory is sufficient to

describe heat conduction in Helium II. For further research it would be interesting to

29
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describe the Two Fluid Model in terms of bond graphs. By showing the energy flow in

the system this could contribute to a better understanding of the thermal behavior of

Helium II.

5.2 Zusammenfassung

Das Ziel dieser Studienarbeit war zu untersuchen, ob die Wärmeleitung in Helium II mit

der klassischen Wärmediffusionsgleichung mit nichtlinearen Parametern beschrieben wer-

den kann. Wäre dieses Modell für Helium schwingungsfähig gewesen, würde es ein Beispiel

darstellen für ein nichtlineares schwingungsfähiges System, das nur Eigenwerte auf der

realen Achse hat, wie in Kapitel 1 erwähnt wurde. Aber die Ergebnisse von mehreren

Simulationen mit verschiedenen Anfangs– und Randbedingungen zeigen keine Anzeichen

einer wellenartigen Wärmeausbreitung. Dies zeigt, daß die Beschreibung mit den klassis-

chen aber nichtlinearen Differentialgleichungen nicht genügend ist für die Wärmeleitung

in Helium II.

Die Temperaturabhängigkeit der spezifischen Wärmekapazität und der Wärmeleitung

war die Motivation für die Suche nach nichtlinearen Schwingungen. Aber für Tempera-

turen unter Tλ ist die Krümmung der Kurven dieser Parameter sehr klein. Berücksichtigt

man weiter die kleinen Temperaturänderungen, so ist der nichtlineare Anteil an diesen

Parametern nicht maßgeblich. Dieser Umstand regte eine Simulation um Tλ an, wo die

Nichtlinearitäten signifikant sind. Aber diese Nichtlinearitäten sind gerade so, daß sie den

Wärmetransport noch mehr dämpfen; die spezifische Wärmekapazität hat an dieser Stelle

eine Singularität und geht gegen unendlich, während die Wärmeleitung nach null geht.

Die Simulation mit dem Zweiflüssigkeitenmodell zeigt, daß diese Theorie die

Wärmeleitung in Helium II zufriedenstellend beschreibt. Für weitere Untersuchungen

wäre es interressant, das Zweiflüssigkeitenmodell mit Hilfe von Bondgraphen darzustellen.

Daß auf diese Weise die Energieflüsse aufgezeigt werden, kann zum Verständnis der ther-

mischen Vorgänge beitragen.



Appendix A

DYMOLA Programs

This appendix contains the DYMOLA programs which were used to simulate the heat

transport with the help of Bond Graphs. It consists each of a main program, a library

file bond.lib and a file exp.ctl which describes the simulation experiment.
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A.1 Model 1: Initial Temperature 1.4K

model1.dym

@bond.lib

model project

submodel (SF) SF

submodel (cell) c1, c2, c3, c4, c5, c6, c7, c8, c9,c10, ->

c11,c12,c13,c14,c15,c16,c17,c18,c19,c20

submodel (mC) mC(mgamma = 1.455E-4)

node n1, n2, n3, n4, n5, n6, n7, n8, n9,n10, ->

n11,n12,n13,n14,n15,n16,n17,n18,n19,n20,n21

constant T0 = 1.4

output y1, y2, y3, y4

input time, tau

connect SF at n1

connect mC at n1

connect c1 from n1 to n2

connect c2 from n2 to n3

connect c3 from n3 to n4

connect c4 from n4 to n5

connect c5 from n5 to n6

connect c6 from n6 to n7

connect c7 from n7 to n8

connect c8 from n8 to n9

connect c9 from n9 to n10

connect c10 from n10 to n11

connect c11 from n11 to n12

connect c12 from n12 to n13
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connect c13 from n13 to n14

connect c14 from n14 to n15

connect c15 from n15 to n16

connect c16 from n16 to n17

connect c17 from n17 to n18

connect c18 from n18 to n19

connect c19 from n19 to n20

connect c20 from n20 to n21

SF.F0 = 0.2/T0

SF.time = time

SF.tau = tau

y1 = (c1.e1 - T0) * 1000.

y2 = (c2.e1 - T0) * 1000.

y3 = (c3.e1 - T0) * 1000.

y4 = (c4.e1 - T0) * 1000.

end
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bond.lib

model type mRS

cut A(e1/f1), B(e2/-f2)

main cut C[A B]

main path P<A-B>

parameter mtheta = 1.0

constant Tlam = 2.173 , eps =1.E-30

local help1, help2

help1 = (1-(e2/Tlam)**5.6) * (e2/Tlam)**5.6

help2 = (lim(abs(e1)-eps) + eps)**(1/3)

f1 = mtheta * help2 * sgn(e1) * help1

e1 * f1 = e2 * f2

end

model type mC

main cut A(e/f)

parameter mgamma = 1.0

local C

C = mgamma * (e)**5.2

C * der(e) = f

end

model type bond

cut A(x/y), B(y/-x)

main cut C[A B]

main path P<A-B>
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end

model type cell

submodel (mRS) mRS(mtheta = 154.32)

submodel (mC) mC(mgamma = 1.455E-4)

submodel (bond) b1, b2, b3

node n1, n2

cut A(e1/f1), B(e2/-f2)

main cut C[A B]

main path P<A-B>

connect b1 from A to n1

connect b2 from n1 to B

connect b3 from n1 to n2

connect mRS from n2 to B

connect mC at B

end

model type SF

main cut A(./-f)

terminal F0, tau, time

f = F0 * swtch(tau - time)

end
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exp.ctl

cmodel

simutime 5.E-5

step 0.5E-7

commupoints 101

input 2, time(depend,t), tau(independ,2.E-5)

ctblock

scale = 1

XCCC = 1

label TRY

drunr

if XCCC<0 then XCCC = -XCCC | scale = 2*scale | go to TRY

else proceed

ctend

outblock

OUT

dispt y1, y2, y3, y4

outend

end
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A.2 Model 2: Initial Temperature 2.178K

model2.dym

@bond.lib

model project

submodel (SF) SF

submodel (cell) c1, c2, c3, c4, c5, c6, c7, c8, c9,c10

submodel (mC) mC(mgamma = 0.019076)

node n1, n2, n3, n4, n5, n6, n7, n8, n9,n10,n11

constant T0 = 2.1718

output y1, y2, y3, y4

input time, tau

connect SF at n1

connect mC at n1

connect c1 from n1 to n2

connect c2 from n2 to n3

connect c3 from n3 to n4

connect c4 from n4 to n5

connect c5 from n5 to n6

connect c6 from n6 to n7

connect c7 from n7 to n8

connect c8 from n8 to n9

connect c9 from n9 to n10

connect c10 from n10 to n11

SF.F0 = 0.1/T0

SF.time = time

SF.tau = tau

y1 = (c1.e1 - mC.Tlam) * 1000.
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y2 = (c2.e1 - mC.Tlam) * 1000.

y3 = (c3.e1 - mC.Tlam) * 1000.

y4 = (c4.e1 - mC.Tlam) * 1000.

end



APPENDIX A. DYMOLA PROGRAMS 39

bond.lib

model type mRS

cut A(e1/f1), B(e2/-f2)

main cut C[A B]

main path P<A-B>

parameter mtheta1 = 1.0, mtheta2 = 1.0

constant Tlam = 2.172 , eps =1.E-37

local f1l, f1u, tau

tau = (e2-Tlam)/Tlam

f1l = mtheta1*(abs(e1)+eps)**(1/3.5) * sgn(e1) * ->

(abs(Tlam-e2)+eps)**(0.8381)

f1u = mtheta2 * (2/(abs(tau)+eps))**(1/3) * ->

sqrt(ln(2/(abs(tau)+eps)))*e1/e2

f1 = f1l * swtch(-tau) + f1u * swtch(tau)

e1 * f1 = e2 * f2

end

model type mC

main cut A(e/f)

parameter mgamma = 1.0

constant Tlam = 2.172 ,eps = 1.E-37

local C

C = mgamma * (ln(2*Tlam/(abs(e-Tlam)+eps)) - 2*sgn(e-Tlam))/e

C * der(e) = f

end
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model type bond

cut A(x/y), B(y/-x)

main cut C[A B]

main path P<A-B>

end

model type cell

submodel (mRS) mRS(mtheta1 = 94.897, mtheta2 = 1.36E-4)

submodel (mC) mC(mgamma = 0.019076)

submodel (bond) b1, b2, b3

node n1, n2

cut A(e1/f1), B(e2/-f2)

main cut C[A B]

main path P<A-B>

connect b1 from A to n1

connect b2 from n1 to B

connect b3 from n1 to n2

connect mRS from n2 to B

connect mC at B

end

model type SF

main cut A(./-f)

terminal F0, tau, time

f = F0 * swtch(tau - time)

end
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exp.ctl

cmodel

simutime 10.E-3

step 10.E-6

commupoints 101

input 2, time(depend,t), tau(independ,1.E-3)

ctblock

scale = 1

XCCC = 1

label TRY

drunr

if XCCC<0 then XCCC = -XCCC | scale = 2*scale | go to TRY

else proceed

ctend

outblock

OUT

dispt y1, y2, y3, y4

outend

end



Appendix B

ACSL Program

This appendix contains the ACSL program used for the simulation of the heat transport

in Helium II with the use of the Two Fluid Model.

helium.csl

PROGRAM helium

INITIAL

MACRO gm(out,tem) $"-----------to calculate Gorter Mellink constant"

out = 10.**(2.1+3.12*alog10(tem)+0.0076/(1-(tem/tlam)))

MACRO END

MACRO temdot(out,temm2,tem,temp2,vm1,vp1)

MACRO REDEFINE v

v = (vm1+vp1)/2

out = k/(rho*5.6*slam) * (tlam/tem)**5.6 *...

(temm2-2*tem+temp2)/(4*dx**2) -...

v*(temp2-temm2)/(4*dx) - tem/5.6 * (vp1-vm1)/(2*dx) +...

(gm(tem)*rho*(1/(1-(tem/tlam)**5.6))*v**4 +...

a0*(tlam/tem)**5.6*((vp1-vm1)/(2*dx))**2)/(5.6*slam)

MACRO END

MACRO vdot(out,vm2,v,vp2,temm1,temp1)

42
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MACRO REDEFINE tem

tem = (temm1+temp1)/2

out = ((tlam/tem)**5.6 -1) * ( a0*(vp2-2*v+vm2)/(4*dx**2) -...

slam*(tem/tlam)**5.6*(temp1-temm1)/(2*dx)) -...

v * (3*(vp2-vm2)/(4*dx) +...

gm(tem) * (1/(1-(tem/tlam)**5.6))**2 * rho * v**2)

MACRO END

constant...

tem0 = 1.8, v0 = 0, taut = 0.5E-3, tmax = 4E-3,...

slam = 1.57E+3, tlam = 2.173, a0 =2.6E-8, dx = 2.5E-3,...

k = 5E-4, rho = 0.1453E+3,...

tem2i = 1.8, tem3i = 1.8, tem5i = 1.8, tem7i = 1.8,...

tem9i = 1.8, tem11i = 1.8, tem13i = 1.8, tem15i = 1.8,...

tem17i = 1.8, tem19i = 1.8, tem21i = 1.8, tem23i = 1.8,...

tem25i = 1.8, tem27i = 1.8, tem29i = 1.8, tem31i = 1.8,...

tem33i = 1.8, tem35i = 1.8, tem37i = 1.8, tem39i = 1.8,...

tem41i = 1.8, tem43i = 1.8, tem45i = 1.8, tem47i = 1.8,...

tem49i = 1.8, tem51i = 1.8, tem53i = 1.8, tem55i = 1.8,...

tem57i = 1.8, tem59i = 1.8, tem61i = 1.8, tem63i = 1.8,...

tem65i = 1.8, tem67i = 1.8, tem69i = 1.8, tem71i = 1.8,...

tem73i = 1.8, tem75i = 1.8, tem77i = 1.8, tem79i = 1.8,...

tem81i = 1.8

cinterval cint = 1E-4

algorithm ialg = 3

nsteps nstp = 500

q0 = 3E+4

schedule q0stop .at. taut

END $"-----------------------------------------------of INITIAL"

DYNAMIC

DERIVATIVE

"----------------------------- first two nodes"
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temd2 = (q0/(rho*5.6*slam)*(tlam/tem2)**5.6-tem3*v3/5.6)/(2*dx)

tem2 = integ(temd2,tem2i)

tem1 = 2*tem2 - tem3

v1 = 0

vdot2 = ((tlam/tem2)**5.6 -1) * (a0*(v3-2*v2)/dx**2 -...

slam*(tem2/tlam)**5.6*(tem4-tem2)/(2*dx)) -...

v2*( 3*(3*v2+3*v3-v4)/(6*dx) + gm(tem2)*...

(1/(1-(tem2/tlam)**5.6))**2 * rho * v2**2)

v2 = integ(vdot2,0)

"------------------------- nodes in the middle"

tem3 = integ(temdot(tem1,tem3,tem5,v2,v4),tem3i)

v3 = (v2+v4)/2

tem4 = (tem3+tem5)/2

v4 = integ(vdot(v2,v4,v6,tem3,tem5),0)

tem5 = integ(temdot(tem3,tem5,tem7,v4,v6),tem5i)

v5 = (v4+v6)/2

tem6 = (tem5+tem7)/2

v6 = integ(vdot(v4,v6,v8,tem5,tem7),0)

tem7 = integ(temdot(tem5,tem7,tem9,v6,v8),tem7i)

v7 = (v6+v8)/2

tem8 = (tem7+tem9)/2

v8 = integ(vdot(v6,v8,v10,tem7,tem9),0)

tem9 = integ(temdot(tem7,tem9,tem11,v8,v10),tem9i)

v9 = (v8+v10)/2

tem10 = (tem9+tem11)/2

v10 = integ(vdot(v8,v10,v12,tem9,tem11),0)

tem11 = integ(temdot(tem9,tem11,tem13,v10,v12),tem11i)

v11 = (v10+v12)/2

tem12 = (tem11+tem13)/2

v12 = integ(vdot(v10,v12,v14,tem11,tem13),0)

tem13 = integ(temdot(tem11,tem13,tem15,v12,v14),tem13i)
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v13 = (v12+v14)/2

tem14 = (tem13+tem15)/2

v14 = integ(vdot(v12,v14,v16,tem13,tem15),0)

tem15 = integ(temdot(tem13,tem15,tem17,v14,v16),tem15i)

v15 = (v14+v16)/2

tem16 = (tem15+tem17)/2

v16 = integ(vdot(v14,v16,v18,tem15,tem17),0)

tem17 = integ(temdot(tem15,tem17,tem19,v16,v18),tem17i)

v17 = (v16+v18)/2

tem18 = (tem17+tem19)/2

v18 = integ(vdot(v16,v18,v20,tem17,tem19),0)

tem19 = integ(temdot(tem17,tem19,tem21,v18,v20),tem19i)

v19 = (v18+v20)/2

tem20 = (tem19+tem21)/2

v20 = integ(vdot(v18,v20,v22,tem19,tem21),0)

tem21 = integ(temdot(tem19,tem21,tem23,v20,v22),tem21i)

v21 = (v20+v22)/2

tem22 = (tem21+tem23)/2

v22 = integ(vdot(v20,v22,v24,tem21,tem23),0)

tem23 = integ(temdot(tem21,tem23,tem25,v22,v24),tem23i)

v23 = (v22+v24)/2

tem24 = (tem23+tem25)/2

v24 = integ(vdot(v22,v24,v26,tem23,tem25),0)

tem25 = integ(temdot(tem23,tem25,tem27,v24,v26),tem25i)

v25 = (v24+v26)/2

tem26 = (tem25+tem27)/2

v26 = integ(vdot(v24,v26,v28,tem25,tem27),0)

tem27 = integ(temdot(tem25,tem27,tem29,v26,v28),tem27i)

v27 = (v26+v28)/2

tem28 = (tem27+tem29)/2

v28 = integ(vdot(v26,v28,v30,tem27,tem29),0)
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tem29 = integ(temdot(tem27,tem29,tem31,v28,v30),tem29i)

v29 = (v28+v30)/2

tem30 = (tem29+tem31)/2

v30 = integ(vdot(v28,v30,v32,tem29,tem31),0)

tem31 = integ(temdot(tem29,tem31,tem33,v30,v32),tem31i)

v31 = (v30+v32)/2

tem32 = (tem31+tem33)/2

v32 = integ(vdot(v30,v32,v34,tem31,tem33),0)

tem33 = integ(temdot(tem31,tem33,tem35,v32,v34),tem33i)

v33 = (v32+v34)/2

tem34 = (tem33+tem35)/2

v34 = integ(vdot(v32,v34,v36,tem33,tem35),0)

tem35 = integ(temdot(tem33,tem35,tem37,v34,v36),tem35i)

v35 = (v34+v36)/2

tem36 = (tem35+tem37)/2

v36 = integ(vdot(v34,v36,v38,tem35,tem37),0)

tem37 = integ(temdot(tem35,tem37,tem39,v36,v38),tem37i)

v37 = (v36+v38)/2

tem38 = (tem37+tem39)/2

v38 = integ(vdot(v36,v38,v40,tem37,tem39),0)

tem39 = integ(temdot(tem37,tem39,tem41,v38,v40),tem39i)

v39 = (v38+v40)/2

tem40 = (tem39+tem41)/2

v40 = integ(vdot(v38,v40,v42,tem39,tem41),0)

tem41 = integ(temdot(tem39,tem41,tem43,v40,v42),tem41i)

v41 = (v40+v42)/2

tem42 = (tem41+tem43)/2

v42 = integ(vdot(v40,v42,v44,tem41,tem43),0)

tem43 = integ(temdot(tem41,tem43,tem45,v42,v44),tem43i)

v43 = (v42+v44)/2

tem44 = (tem43+tem45)/2
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v44 = integ(vdot(v42,v44,v46,tem43,tem45),0)

tem45 = integ(temdot(tem43,tem45,tem47,v44,v46),tem45i)

v45 = (v44+v46)/2

tem46 = (tem45+tem47)/2

v46 = integ(vdot(v44,v46,v48,tem45,tem47),0)

tem47 = integ(temdot(tem45,tem47,tem49,v46,v48),tem47i)

v47 = (v46+v48)/2

tem48 = (tem47+tem49)/2

v48 = integ(vdot(v46,v48,v50,tem47,tem49),0)

tem49 = integ(temdot(tem47,tem49,tem51,v48,v50),tem49i)

v49 = (v48+v50)/2

tem50 = (tem49+tem51)/2

v50 = integ(vdot(v48,v50,v52,tem49,tem51),0)

tem51 = integ(temdot(tem49,tem51,tem53,v50,v52),tem51i)

v51 = (v50+v52)/2

tem52 = (tem51+tem53)/2

v52 = integ(vdot(v50,v52,v54,tem51,tem53),0)

tem53 = integ(temdot(tem51,tem53,tem55,v52,v54),tem53i)

v53 = (v52+v54)/2

tem54 = (tem53+tem55)/2

v54 = integ(vdot(v52,v54,v56,tem53,tem55),0)

tem55 = integ(temdot(tem53,tem55,tem57,v54,v56),tem55i)

v55 = (v54+v56)/2

tem56 = (tem55+tem57)/2

v56 = integ(vdot(v54,v56,v58,tem55,tem57),0)

tem57 = integ(temdot(tem55,tem57,tem59,v56,v58),tem57i)

v57 = (v56+v58)/2

tem58 = (tem57+tem59)/2

v58 = integ(vdot(v56,v58,v60,tem57,tem59),0)

tem59 = integ(temdot(tem57,tem59,tem61,v58,v60),tem59i)

v59 = (v58+v60)/2
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tem60 = (tem59+tem61)/2

v60 = integ(vdot(v58,v60,v62,tem59,tem61),0)

tem61 = integ(temdot(tem59,tem61,tem63,v60,v62),tem61i)

v61 = (v60+v62)/2

tem62 = (tem61+tem63)/2

v62 = integ(vdot(v60,v62,v64,tem61,tem63),0)

tem63 = integ(temdot(tem61,tem63,tem65,v62,v64),tem63i)

v63 = (v62+v64)/2

tem64 = (tem63+tem65)/2

v64 = integ(vdot(v62,v64,v66,tem63,tem65),0)

tem65 = integ(temdot(tem63,tem65,tem67,v64,v66),tem65i)

v65 = (v64+v66)/2

tem66 = (tem65+tem67)/2

v66 = integ(vdot(v64,v66,v68,tem65,tem67),0)

tem67 = integ(temdot(tem65,tem67,tem69,v66,v68),tem67i)

v67 = (v66+v68)/2

tem68 = (tem67+tem69)/2

v68 = integ(vdot(v66,v68,v70,tem67,tem69),0)

tem69 = integ(temdot(tem67,tem69,tem71,v68,v70),tem69i)

v69 = (v68+v70)/2

tem70 = (tem69+tem71)/2

v70 = integ(vdot(v68,v70,v72,tem69,tem71),0)

tem71 = integ(temdot(tem69,tem71,tem73,v70,v72),tem71i)

v71 = (v70+v72)/2

tem72 = (tem71+tem73)/2

v72 = integ(vdot(v70,v72,v74,tem71,tem73),0)

tem73 = integ(temdot(tem71,tem73,tem75,v72,v74),tem73i)

v73 = (v72+v74)/2

tem74 = (tem73+tem75)/2

v74 = integ(vdot(v72,v74,v76,tem73,tem75),0)

tem75 = integ(temdot(tem73,tem75,tem77,v74,v76),tem75i)
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v75 = (v74+v76)/2

tem76 = (tem75+tem77)/2

v76 = integ(vdot(v74,v76,v78,tem75,tem77),0)

tem77 = integ(temdot(tem75,tem77,tem79,v76,v78),tem77i)

v77 = (v76+v78)/2

tem78 = (tem77+tem79)/2

v78 = integ(vdot(v76,v78,v80,tem77,tem79),0)

tem79 = integ(temdot(tem77,tem79,tem81,v78,v80),tem79i)

v79 = (v78+v80)/2

tem80 = (tem79+tem81)/2

vdot80 = ((tlam/tem80)**5.6 -1) *...

( a0*(v80-2*v78+v76)/(4*dx**2) -...

slam*(tem80/tlam)**5.6*(tem81-tem79)/(2*dx)) -...

v80 *gm(tem80)*(1/(1-(tem80/tlam)**5.6))**2 * rho * v80**2

v80 = integ(vdot80,0)

temd81 = k/(rho*5.6*slam) * (tlam/tem81)**5.6 *...

(tem77-2*tem79+tem81)/(4*dx**2) +...

gm(tem81)*rho*(1/(1-(tem81/tlam)**5.6))*v81**4/(5.6*slam)

tem81 = integ(temd81,tem81i)

v81 = v79

END $"----------------------------------------------- of DERIVATIVE"

DISCRETE q0stop

q0 = 0

END $" of DISCRETE q0stop"

termt (t.gt.tmax .or. (tem81-tem0).gt. 1E-2)

END $" of DYNAMIC"

END $" of PROGRAM"
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