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ABSTRACT

This thesis describes computer simulations of a new wavefront sensing tech-
nique for Adaptive Optics based on local wavefront curvature measurements, along
with edge slope measurements. The output signal from the curvature sensor can be
directly applied to the electrodes of a bimorph or membrane mirror. The mirror is
used as an analog device to solve the Poisson Equation, providing a fast real time
compensation for atmoépheric disturbances.

The open loop characteristics of the system are presented. The ideal re-
sponse is analyzed, and side effects such as non-linearity, photon and diffraction
noises are discussed.

Closed loop simulations are presented thereafter. A seven actuator system
showed a few unstable modes. A 13 actuator system with proper filtering corrects
the atmospheric perturbations.

To simulate atmospheric distorted wavefronts, an algorithm based on spec-
tral decomposition of the Zernike covariance matrix was derived.

This sensor can also be used to test large telescope mirrors using a modified

program that solves the Poisson Equation with Neumann boundary conditions.
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CHAPTER 1
INTRODUCTION

1.1. Adaptive Optics.

A principal cause of bad transmission of general electromagnetic waves
or particular optical ones is the distortion due to atmospheric disturbances. The
received wavefront phase has been affected. Therefore, a way to improve transmis-
sions, or imaging in the optical case, is to restore the original phase of the wavefront
to remove the distortions. The adaptive optics concept consists of making a real
time estimate of the wavefront phase, have a deformable active mirror match this
estimate, whereby the wavefront will automatically be corrected when light reflects

on that mirror.

1.2. Effects of the atmosphere and definitions.

Atmospheric turbulence produces perturbations on both the amplitude a.qd
the phase of incoming wavefronts. Only phase perturbations can be corrected by
putting a deformable mirror in a plane conjugate to the telescope entrance aper-
ture. Fortunately the image degradation due to uncorrected amplitude fluctuations

remains small and, image quality can be considerably improved by correcting phase

errors only.

1.2.a. Effects of the atmosphere.
As we just said, the atmosphere mainly produces variation of phases on the

wavefront. Because of those perturbations, deformations and corrugations on the
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wavefront surface are produced, which involve distortions and blur on the image.
The deformation z(z,y) or z(7) of the wavefront surface will be compensated by
the adaptive optics scheme. The relationship between the phase and the surface is

linear:
A
= — 1.2.1
() = - 4(7) (12)
where ) is the wavelength of the incoming wave.

With respect to the observed image, the expression is not so simple. The

irradiance distribution I(z,y) or I(7) of the image is given by (Gaskill, 1978):

2

I(z,y) =| 7}"{P(x, y)ef‘i"(”’y)} (1.2.2)

where 77 represent the two dimensional Fourier transform operator, and P(z,y)
is a gate function the value of which is 1 for any point (z,y) inside the pupil, and
0 for any point outside the pupil. ¢/(z,y) is the error phase term that includes
not only the ¢(z,y) atmospheric phase error, but also the errors produced by the

optical aberrations of the telescope.

1.2.b. Principle of correction.

The goal is to compensate for the surface deformation on z(7). This can be
achieved by producing a similar opposite deformation on an adaptive mirror.

Therefore, we really must know more about those z(7) deformations. Math-
ematically, z can be described as a random Gaussian process. In order to build the
system, we essentially need to know the amplitude and the scale of the deforma-
tions, which means the variance and the covariance of the process. The image is
not changed by adding constant terms on z(), and thus the relative deformations

we are interested in are best described by the structure function

D,(5) =<| 2(F+ ) — 2(®) | > (1.2.3)
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where the notation “< ... >” stands for the average value.

For a good approximation {Roddier, 1981), D,(p) follows Kolmogoroff’s
law (Kolmogoroff, 1941)

D,(p) = 6.88()\/27)2(p/r,)?/® (1.2.4)

where p =| I’ | and r, is the Fried parameter (Fried, 1965), or turbulence strength
parameter, which characterizes both the amplitude and the scale of the perturba-
tions. r, depends upon the wavelength we are looking at as A%/5, The larger r, is,
the better the weather is, thus, the better the seeing is. Typical values for r, for
good astronomical sites are:

ro = 80cm for A = 2.2um (infrared light)

ro = 12em for A = 0.5um (visible light)

According to (1.2.4), the standard wavefront error, the square root of the
deformation, over a distance p = r, is 0.42). Deformations over smaller distances
can be considered “small” compared to A and need not be corrected. Therefore, the
Fried parameter r, determines the smallest scale of the perturbations to be applied

on the adaptive mirror.

1.2.c. Other involved parameters.

An important fact is that the wavefront perturbation is nearly wavelength
independent. The surface change 2 can be approximated as being the total optical
path fluctuation due to the atmosphere. Its wavelength dependence therefore is
directly related to the refractive index of the air which varies very little with wave-
length. However, the dependence of r, upon A cannot be ignored. The structure
function D,, as described earlier, does not depend upon the wavelength. It is then

clear that r, varies as \%/5.
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Another important fact is the time evolution of the wavefront. The atmo-
sphere is composed of inhomogeneities that produce deformations on the wavefront.
These inhomogeneities not only vary with time, but also move because of wind across
the optical beam. Nonetheless the so called Taylor approximation states that their
life time is long compared to their transit time, and can be considered infinite. Be-
cause atmospheric turbulence is distributed over layers at different altitudes, the
wavefront perturbation both propagates in an average direction, and changes more
or less rapidly according to the dispersion of the wind velocities.

The last important parameter is the isoplanatic patch angle Q. This is the
angle over which the wavefront perturbation remains approximately the same. If a
perturbation was just at the end of the telescope, any light coming from any source
would just go through the same perturbation. But if the perturbation is built over
several layers at various altitudes, two sources separated by an angle # encounter
different perturbations. This parameter is important when the sensing star, or star
on which the perturbation is estimated, is different from the observed star. If a
good correction for the observation is desired, the angle § between the two stars

must therefore be less than (1.

1.3. Current development in Adaptive Optics.

Control theory and active systems have been used for a long time in many
engineering fields, such as mechanics or electronics. However, it is not the case in
optical sciences. People have tried to build elements, such as lenses and mirrors, as
precise as possible, which are supposed to change as little as possible with external
perturbations. The advantage of such optical systems is that, once tuned up and
adjusted, they really worked fine. But, on the other hand, they are totally unable

to take care of any external change or disturbance.
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In astronomy, or any other field where the light has to go through air, a
limitation of the systems was due to air turbulence. At that point, it was realized
that it would be very convenient to use adaptive control there too.

The first adaptive optics systems were built a little more than a decade
ago, and since then, there have been improvements in the technology and applied
theory, but no real change in fundamental operations.

Any adaptive optics system works exactly like any adaptive control system.
There is a first stage that consists of estimating the disturbance or perturbation
that has to be corrected. A second stage consists of processing this estimate, and
the last stage consists of applying a signal in the control loop that will compensate
for the disturbance. The compensation is done with a deformable active mirror.

Figure (1.3.1) represents a typical adaptive optics system (Goad, 1989).
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Figure (1.3.1) A typical adaptive optics system.

1.3.a. Estimating the incoming wavefront: estimation of slopes.

What is important in a distorted optical wavefront is the phase difference
between the different positions on that front. Any absolute value of the phase
is irrelevant for imaging. Therefore, people have looked toward detecting phase
differences for possible correction.

A wavefront is a moving surface, say in a two—dimensional space. Therefore,
estimating the phase difference requires estimation of the slopes along two distinct

directions. To have an optimal decoupling and as much information as possible
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from the slope measurements, the two directions are chosen to be orthogonal to
each other. There currently exist several kinds of slope sensors. They can be split
in two categories.

The first solution consists of putting an array of lenslets in the optical
beam. Each lenslet corresponds to a zone where two values of the slopes will be
known. If there was no local distortion of the wavefront, the light would focus on
the focus point of the lenslet, but on the other hand, if there is a small wavefront
distortion, the light will focus on a point distinct from the lenslet focus point.
The distance and position of this point gives the information of the local slopes
of the wavefront. This kind for sensor is called a Shack-Hartmann sensor (Hardy,
1978). The practical realization of the lenslet array and the detector varies with
the materials and technology used, but they all use this same Hartmann theory.

The second solution consists of using interferometry theory (Koliopoulos,
1980). The wavefront is sheared along the two directions by a small amount. In-
terference patterns are produced due to local changes of phase. These changes of
phase can then be directly related to the local slopes of the incoming wavefront.

Such a sensor has been developed at Itek (Hardy, 1976).

1.3.b. Algorithms of reconstruction.

After the estimation stage, estimation of local slopes in two orthogonal
directions, the wavefront must be reconstructed. Much work has been done for
that purpose, and several algorithms have been derived. Another type of research
was devoted to theoretically studying how well the slope estimates, followed by
reconstruction, matched the true wavefront, and to analyzing the properties and

imperfections of the procedure as a whole.
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With respect to the reconstruction algorithms, research has proceeded in
two different directions. The first solution consists of directly solving for the phase
values from those known phase differences. The second solution consists of first
computing the Laplacian array from the slope data, and then solving the resulting
Poisson equation (Hudgin, 1977).

Knowing the slopes or phase differences over a discrete array actually means
that there are finite difference equations to deal with. Such problems are well
known in applied mathematics, and can be rewritten in terms of n equations with n
unknowns, where n is the number of to-be-found phases for which two local slopes
are known. This linear system of equations can be solved, usually with matrix
operations.

The other approach consists of computing the Laplacian at every solution
point from the four adjacent slopes, according to the discrete Laplacian definition.
Then, the phase values are obtained by solving the Poisson equation. This is usually

performed by either of three methods:

(1) numerically through an iterative algorithm, e.g. of the Jacobi type, speeded

up with some successive over-relaxation technique,

(2) digitally by writing a set of difference equations and solving the corresponding

linear matrix equation, or finally

(3) analogically by using some resistive plates onto which currents proportional to
Laplacians are injected at each point. The resulting voltage distribution indeed
follows Poisson’s equation (a so-called Beuken model).

All of those algorithms must, of course, be optimized for each particular

type of situation.
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Along with the research related to the algorithms themselves, theories have
been developed around them. The main subjects of interest have been noise sensi-
tivity, scalability to large array size, optimization, and least squares fit.

Herrman (1981) worked on the sensitivity of the system to noise created
by sampling, aliasing, and cross-coupling between several frequency modes in the
atmosphere. Fried (1977), Hudgin (1977), and Noll (1978) looked at the scalability
of such systems with different hypotheses concerning the geometry of the pupil, and
the type of sampling. In all these situations, they found that the propagation error
ratio oout/0in increases as Log(n), where n is the number of solution points. Fried
(1977) and Herrman (1980) worked on the error produced in the least squares fit of
the reconstruction. Wallner (1983) compared several configurations for the sensors

in z and y directions to try to find an optimal setup.

1.3.c. Compensation using a piston position active mirror.

The last element that is missing in the complete adaptive optics loop as
described so far is the active element. Once the reconstruction algorithm has pro-
duced an estimate of the distorted wavefront, this estimate has to be applied to a
flexible mirror that will match it as accurately as possible.

This estimate is an estimate of the phase of the wavefront which means it
corresponds to a displacement on the mirror surface. This displacement is produced
by a push-pull piston used as an actuator. This is why the active mirrors most
commonly used are called “piston-position mirrors”.

As technology has evolved, so has the construction of those mirrors. They
used to be flexible mirrors with several piezo-electric ceramic cylinders as command
actuators. Currently, a more monolithic construction is preferred. Such mirrors

were e.g. developed at Itek (Hudgin, 1975). Basically, the mirror consists of an
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aluminized piece of flexible glass, under which a single piece of piezo-electric ceramic
is glued. Command electrodes produce non-uniform electric fields. By applying
voltages to those electrodes, the mirror surface is being displaced. By controlling
this displacement properly, we can reconstruct the wavefront.

The current development and construction have reached a point where com-
mercialized versions of such mirrors contain up to 500 actuators, their maximum
displacement is about *+7um from equilibrium which corresponds to a correction
of 25 wave perturbations, their resonant frequencies are in the 10k Hz range, and
their command voltages are about 3000V olts for maximum displacement. Figure

(1.3.2) represents one of those mirrors, commercialized by Itek (Goad, 1989).

Faceplate

Actunior
estack

Eleetrical
leada

Figure (1.3.2) A typical piston position active mirror.

1.4. Suggested new technique.

The currently used technology in adaptive optics as it has been outlined in
the previous section has several drawbacks which we shall described in the sequel. A
suggested new technique provides improvements to the classical approach without

sacrificing many of its advantages.
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Currently used wavefront sensors measure local wavefront tilts or wavefront
first derivatives along two orthogonal directions. The newly suggested sensor mea-
sures the total local wavefront curvature or the Laplacian of the wavefront surface
2(z,y) together with the wavefront tilts at the edges. Those tilts provide boundary
conditions to solve the Poisson Equation obtained with the Laplacians, to obtain an
estimate of the wavefront surface for reconstruction. This method presents several
advantages.

The setup of this sensor is much simpler. It is more difficult to measure a
vector field, as with a Hartmann sensor, than a scalar field for Laplacians. We now
only need half the number of detectors.

One of the most successful algorithms to reconstruct wavefronts detected
with a Hartmann sensor is the so-called Hudgin algorithm which consists of com-
puting the Laplacians from the tilts, and thereafter solving the Poisson equation
(Hudgin, 1977). The proposed sensor provides the Laplacians directly.

For atmospheric distorted wavefronts, local curvatures are nearly statisti-
cally independent. Curvature sensing measurements are therefore expected to be
more efficient than tilt measurements.

In adaptive optics applications, membrane or bimorph mirrors can be used
as analog devices to solve the Poisson equation. In this case, the signal from a
curvature sensor can be fed directly to the mirror without computation, providing
an extremely fast control loop. Figure (1.4.1) represents a block diagram of the

complete new suggested system.
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Figure (1.4.1) The curvature-sensing membrane-mirror system.
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CHAPTER 2
CURVATURE SENSING AND COMPENSATION

2.1. Curvature sensing.

2.1.a. Principle of curvature sensing.

To compensate for a distorted wavefront using adaptive optics, we surely
must first estimate it. Nowadays, most of the optical atmospheric sensors are Hart-
mann type sensors. They look at a point source, such as a star, and estimate the
slopes of the incoming wavefront. Those slopes are estimated along both the z and
the y axes over an array of points. Another way to get an estimate is to use a curva-
ture sensor which does not estimate the slopes, but instead estimates the Laplacians
at every point of the wavefront. This sensor also gives the normal derivatives at the
edges of the pupil. They are required to fully determine the wavefront.

Theoretically, this sensor works physically in the following way:

Y

Y

Figure (2.1.1) Theorical setup of the curvature wavefront sensor.
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2.1.b. Mathematical expression of the curvature signal.
The sensor measures the two irradiance distributions I; and I, on each side
of the focal plane. From Fresnel’s diffraction theory, it can be shown that (Roddier,

1987):

LA -B(-A _, [os,
LA+ L7 = [V

The VZz term represents the Laplacians of the wavefront surface we are

d
c1T) — %Z(CIT_‘)60 (2.11)

looking for, and the circular Dirac distribution 6. represents the outward-pointing
normal derivatives on the edge of the signal. The constants C and ¢; depend upon

the optical setup: focal length f, and distance £ of the detectors from the focal

plane.

= — = c =

fif -9 f
Co ; 7 (2.1.2)

The output signal of this sensor indeed provides enough information to
reconstruct an estimate of the wavefront.

The procedure to use such a sensor is to first know both the irradiances I3
and I3, then subtract one from the other, and divide by the sum to normalize. At
that point, only the reconstruction of the wavefront by solving the Poisson equation

is needed.

2.1.c. Practical realization.

There are several ways to practically realize such a sensor. It is of course not
possible to directly use the setup suggested in figure (2.1.1) since any photodetector,
such as a CCD for example is not transparent, and therefore CC D, as positioned
would prevent all light from going on to lens L and CCD,.

The two possible solution suggested so far (Roddier, 1988) differ from each
other a lot. The first one involves polarized light and a special lens used for L, the

other method involves a small focal-variable mirror used for L.
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The goal of the sensor is to record two extra-focal images simultaneously.
This can be achieved by using a special lens for L, a bi-refringent achromate similar
to those used in Dyson interferometers (Dyson, 1957). In this setup, we no longer
need CCD;. The camera or CCD used will be placed at the position CC D,. For
one light polarization, the focal length is f/2, half that of the telescope, and the
camera records the illumination originally on CCD,. For the other polarization,
the focal length is equal to ¢/2, and the image originally on CCD; is reimaged
on CCD, with the required 180° rotation. The two new images can be separated
through space, by decentering the bi-refringent lens laterally. Thereby, the two

images will be projected beside each other onto the same plane.

>
P
Bi—-refringent i
lens
CCD
i
1 ]
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Figure (2.1.2) Practical setup with bi-refringent
lens and separation in space.

Alternatively, the two images can be separated in time. In that case, a
rotating polarizer has to be used in the main beam, and the two images will appear
sequentially on the detector, producing a modulated output. The required curvature

signal can be reconstructed through synchronous demodulation of this signal.
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Figure (2.1.3) Practical setup with bi-refringent
lens and separation in time.

The other approach consists of using a small focal variable mirror with
focal length f, instead of lens L. Again, only one detector or camera will be
needed. When f, is chosen equal to f/2, the image originally on CCD;, will be
in focus at the location the camera. When f, is chosen equal to /2, the image
originally on CCD; will be focused at the location of the camera. Therefore, by
toggling the variable focal length periodically between f/2 and £/2, the two images
will alternatively appear on the detector. Again, a demodulation scheme can be

used.
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Figure (2.1.4) Practical setup with focal variable mirror.

Both methods have their advantages and disadvantages. Using the bi-
refringent approach, it is possible to observe both images simultaneously and con-
tinuously. Unfortunately, this approach has some drawbacks. First, only half the
light goes to each image which can be a problem for very weak sources. Also the
bi-refringent lenses are rarely used. They must be custom made and are therefore
very expensive. The advantage of the mirror approach is that it is much easier to
use, and works with classical components. Unfortunately, no continuous imaging is

possible.

2.1.d. Comparison of sensitivity and photon noise for classical
and curvature sensing.

Let us compare the sensitivity of our method to that of a Shack-Hartmann
sensor. To resolve wavefront fluctuations of scale r,, a Shack-Hartmann sensor will
use a lenslet array with lenslet size r,. The angular width of the image produced
by a single lenslet is A/r,. Hence, the standard deviation of a slope measurement
obtained from a single photon position is of the order of A/2r,. For n photons the

standard deviation is y/n times smaller. Most of the reconstruction processes use
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the so-called Hudgin’s algorithm that actually computes the Laplacians from the
slope measurements. The Laplacian is computed by taking the difference between
adjacent slopes in the z direction plus the difference between adjacent slopes in
the y direction. The result is divided by the sampling interval r,. The standard

deviation o, of the Laplacian is therefore

A
T r2y/n

We now can perform a similar analysis for our curvature sensing method.

Os (2.1.3)

We measure the illumination over an area of width r, in the pupil plane. The
standard deviation on our measurement is 1/4/n. Assuming £ < f in the optical

setup, the standard deviation o, on the Laplacian will be

_t
f2y/n

The maximum sensitivity is achieved when £ = Af2/r2 in which case it is

O = (2.1.4)

clear that our o, is exactly the same as o,, the one we found for a Shack-Hartmann
Sensor.

The sensitivities of the two methods are therefore identical. Nonetheless,
in our method, sensitivity can be easily balanced against spatial resolution on the
pupil by just modifying £, that is just moving the photodetectors. However, with a

Shack-Hartmann sensor, the same operation requires changing the lenslet array.

2.2. Active Mirrors

The curvature sensor, as described in the previous section, delivers a signal
that can be processed to solve the Poisson equation. A solution for our adaptive
optics system would be to numerically solve this equation on a digital computer,

thereby obtaining an estimate of the phase values of the wavefront, which can then
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be applied to a classical piston-position type mirror. Such a system looks exactly like
the currently used adaptive optics systems, except that the blackbox “Hartmann
sensor” has been replaced by the blackbox “curvature sensor”. However, both have
exactly the same input/output characteristics.

The drawback of such a solution is that, as we stated, we would have to
numerically solve the Poisson equation. This is a number crunching problem which
requires much computer time, especially for large systems. Therefore, this solution
may prevent us from following the atmosphere in real time due to insufficient speed.

Another approach is to consider other types of mirrors that would not
require to solve the Poisson equation explicitly. The suggested curvature sensor
delivers a signal which can be amplified and applied directly as a potential distribu-
tion on a bimorph or a membrane mirror without requiring any computation. The
signal produces, on such mirrors, local curvature changes proportional to the volt-
age applied, which provides for a direct compensation for the measured curvature.
Here, bimorph or membrane mirrors are used as an analog device which automat-
ically solves the Poisson equaiion, and produces the desired wavefront shape. The
method is potentially able to correct wavefronts with high spatial resolution at very

high speed.

2.2.a. Membrane mirror

A membrane mirror typically is an assembly including an aluminized poly-
mer foil, a transparent electrode, conducting pads, and control electrodes. The
membrane itself is made of reflecting material and is used as the flexible mirror. It
is positioned between the transparent electrode containing a bias voltage V, and, on

the other side, a region of actuators consisting of conducting pads having a voltage
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Vo + V,. The membrane is always at ground. Figure (2.2.1) shows a membrane

assembly.
Window Transparent electrode
B /| Membrane mirror
/|
Vo
T T T T T\RACtuators

VO]

VotV,

Figure (2.2.1) A membrane mirror assembly.

When V, is equal to zero, no net force is applied to the membrane, and
therefore, there is no deflection. When a voltage V, is applied to any electrode,
there will be a deflection over the corresponding pad. This deflection is such that
the Laplacian at every point over the pad is the same, and proportional to V,. It is
then very clear that such a membrane mirror is perfectly suited for our application.

Since we have derived an analytic transfer function for the sensor, it would
be very convenient to have one for the membrane active mirror as well. It can be

shown that, for an ideal membrane, the equation of motion is (Morse, 1948):
9?2 2

aéﬁz(x,y,t) =T V?2(z,y,t) + P(z,y,t) (2.2.1)
where 2z is the vertical displacement at point (z,y) and time ¢. o is the mem-
brane mass per unit area, P is the local pressure function applied to the membrane,
T is the tension per length or stress multiplied by the thickness, and VZ2z is the
Laplacian operator acting on the mirror surface 2(z,y). Atmospheric wavefront dis-
turbances propagate at wind speed which is typically a hundred times smaller than
propagation of sound in a membrane. In other words, the membrane will always be

activated at frequencies well below its first resonance frequency. Therefore, we can
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assume that the membrane is always in a state very close to its steady state given
by equation (2.2.2).

V22 + &;,’i) =0 (2.2.2)

A real membrane would certainly differ from this ideal model. The model
has been developed without consideration of damping effects, i.e., assumes perfect
elasticity. The effects of the finite boundary have been neglected as well, and the
equation has been linearized which means that the results apply to small voltages
and small resulting deflections only. Also, a real membrane would have a resonance
frequency which limits the bandwidth of operations.

Therefore, a real membrane may approximately satisfy this equation, but
only for sufficiently small excitations (deflections). Grosso and Yellin (1977) showed
that this is indeed possible. The damping effects can be controlled by introducing a
pressurization of the membrane cavity, the effects of finite boundary and boundary
conditions can be handled, and with respect to the non-linearity, they found that the
linear region is quite large compared to the required range for our application. The
resonance frequencies of a membrane mirror are several kHz, and therefore, as we
already said, are sufficiently large not to interfere with the atmospheric turbulence
correction. For these reasons, a membrane mirror indeed presents us with a very

good approach for this adaptive optics system.

2.2.b. Bimorph mirror

Bimorph mirrors are very similar to the previously discussed membrane
mirrors. Also bimorph mirrors are active devices with electrodes, and they undergo
a deformation as voltages are applied.

As for the case of the membrane mirror, the bimorph is an assembly that

includes several components. First, the optical element is a piece of flexible glass
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that is polished and coated. This is the deformable mirror. The control of the
deformation is done with piezo-electric elements. The glass is firmly glued to an
inner electrode on which a constant biasing voltage is applied. Beneath this inner
electrode, a plate of piezo-electric ceramic with normal polarization is also glued,
and still below this ceramic, there are placed differently shaped control electrodes.
Figure (2.2.2) represents such a bimorph assembly.

Reflecting surface

Glass

| ]
l ———Piezo—electric

Inner ceramic
electrode

Command
electrodes

Figure (2.2.2) A bimorph mirror assembly.

When a voltage is applied to those, the lateral dimensions of the piezo-
electric element changes locally, and the bimorph bends like a bi-metallic strip
around the electrode.

Equations for this device can be derived from the physics of the materials.
After minimization of the expression, and again assuming steady state like for the

membrane, we obtain (Steinhaus, 1979):
Viz+ AVIV =0 (2.2.3)

where A is a constant that should be determined experimentally. V(z,y) is the
voltage distribution on the inner electrodes, and z(z,y) is the bimorph deflection.

This equation looks very similar to the Poisson equation. Nonetheless its
solution is more complex. To numerically obtain 2(V), a regular Poisson equation

would have to be solved with given boundary conditions, and this would yield to
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yet another Poisson equation to be solved, but now with new boundary conditions
and a right hand side, or forcing term. The whole procedure would hence be much
harder.

Note that for a free forcing term, the membrane solution V' = %V2z is a
solution of the bimorph equation. Therefore, the main difference between a bimorph
mirror and a membrane mirror is related to the boundary conditions, i.e., how the
mirror is mounted at the edges.

The advantage of the bimorph over the membrane is that it is less sensitive
to acoustic perturbations, and is less fragile. But its boundary conditions are much
harder to handle. Similarly to the membrane mirror, also the bimorph should not
be excited too much in order to reduce the effects of the non-linearities. As with
the membrane mirror, the resonance frequencies of the bimorph are several kHz,

and therefore, do not interfere.
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CHAPTER 3
OPEN LOOP SYSTEM SIMULATION

3.1. Simulation of wavefronts
The model of our system must include a model of the disturbance the effects

of which we wish to correct. We shall begin our modeling process by describing the

disturbance.

3.1.a. Definition of Zernike polynomials

Both input and output signals are optical wavefronts. The input wavefront
is estimatéd and corrected to produce the output wavefront. Both of them can be
considered two-dimensional functions, following certain models and statistics. Since
they may be very complex, people have looked toward finding a base to decompose
them. Usually functions are decomposed into cosine and sine components using the
Fourier transform. For wavefront aberrations, since they are mostly observed over
a circular domain such as the mirror of a telescope, it is much more interesting to
decompose them onto polar coordinate basic functions.

Such a decomposition exists, and the basic functions are the Zernike poly-
nomials (Zernike, 1934). They have been used for a long time in optics to describe
aberrations. They have the particularity of being separable in angle and radius.
Their analytical definition can be found to be (Born and Wolf, 1965):

Z(p,0) = R (p)Cos mé for m even
Z(p,0) = R™(p)Sin mb for m odd (3.1.1)
Z(p,0) = R2(p) form=0
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where R[*(p) is a recursive polynomial of degree n. The parameters m and n
represent the frequency variables. m is called the azimuthal frequency, and n the
radial degree. Exactly like for the Fourier decomposition, higher values of n or m
denote higher frequency components. It is convenient to order and number them
according to a desired sequencing scheme. Several such schemes exist, but we shall
use the one suggested by Noll (1976). The first terms are given in table (3.1.1).
Some of those polynomials are plotted on figures (3.1.1a) and (3.1.1b).

Each row includes all the polynomials with the same radial degree n, and
each column includes the terms that have the same azimuthal frequency m. The
numbering sequence of the index j of every polynomial Z;(p, 8) proceeds row by row,
and for a given value of n, modes with a lower value of m are ordered first. In the
case where two polynomials have the same n and m, even j terms correspond to the
symmetric modes in Cos(m#), while odd j terms correspond to the antisymmetric
modes in Sin(m#f).

With respect to the normalization, there exist several alternatives. Some-
times all the polynomials are normalized such that Max(Z(p,4)) = 1.0 on the unit
circle. Nonetheless, we prefer to use here the normalization that Noll suggested: the
root mean square (rms) value of the polynomial over the unit disk is 1. This will
simplify the later statistical analysis when simulating random atmospheric wave-
fronts. The fact that the rms value is indeed 1 can be checked by computing the

integral:

1 2w 1
Zrms = — / / Z%(p,0) pdp df =1 (3.1.2)
T 0 0
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Figure (3.1.1a) Zernike polynomials.
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Since Z(p,8) can be separated in p and 8, Z2(p,0) can be separated too,
and thus, the work for the integral can be much simplified. Also, the evaluation of
some integrals can be used for more than only one Zernike term.

Note that for our application, the Z; constant term is mostly unused since
we are working with zero mean terms only.

Any physical function F(p,0) can be expanded into a linear combination
of Zernike terms. Similarly to the Fourier decomposition, the coefficients will go to

zero as the order of the polynomial increases.

3.1.b. Simulation of simple wavefronts

The simplest possible wavefronts are single Zernike polynomials. To sim-
ulate any of these is a simple task. The program just has to evaluate a given
polynomial over an array of points. The Zernike term may be any of those defined
earlier, or even a term of higher order.

A less simple wavefront is a linear combination of those, with different
weighting coefficients. Since we want to correct physical functions, the low order
terms will have higher coefficients than high order ones.

One advantage of simulating all the terms, and simple combinations thereof,
separately is that we can verify that they are all decoupled and, thereby determine

up to what level the overall system can be considered to be linear.

3.1.c. Atmospheric wavefronts

If we look at an atmospheric wavefront, our eventual goal for correction,
we surely can decompose it into Zernike terms, too. The difference between simple
wavefronts and atmospheric wavefronts is that the atmosphere has random distur-
bances. We only know a statistical distribution of its behavior. If we want to indeed

compensate for such disturbances, we first must know something about them.
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As we said earlier, the atmosphere can be described as moving waves with
a given shape and speed which depends upon the weather conditions. We already
presented an expression for its structure function (1.2.3), and we said that it obeyed
Kolmogoroff’s law (1.2.4).

Now, the problem is to relate all this to the Zernike polynomials that are so
convenient to use. Noll wrote a very interesting paper on this subject (1976). The
relationship that we are looking for can be obtained through energy considerations.
The Wiener power spectrum of the phase fluctuations in the atmosphere due to the

Kolmogoroff turbulence is given by:

0.023
rg/3f11/3

Wy (f) = (3.1.3)

where f is the wave spatial frequency, and r, is Fried’s parameter characterizing the
seeing (Fried, 1966).

The Zernike representation of this spectrum can be obtained by looking at
the covariance of the terms in a Zernike expansion. The coefficient for every term
can be said to be a Gaussian random variable with zero mean. The mean square of
each of the Zernike coefficients as computed by Noll (1976) is given in table (3.1.2).

Table (3.1.2) Mean Square coefficients for each of the Zernike

polynomials for the atmosphere, where D is the
pupil diameter, and r, Fried’s parameter.

Zernike terms Expected Mean Square value
Z3, Z3 0.4557 (D/r,)%/3
Z4,Z5, Zg 0.0236 (D/r,)5%/2
Z7,Z3,Z9,Zlo 0.0063 (D/To)5/3
Z11, 212, 213, Z14, 215 0.0025 (D/r,)5/3

These data are fundamental to the understanding of the Zernike decom-

position of the atmosphere. Nonetheless, they are not directly exploitable for our
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simulation. We need random amplitude coefficients. The expected values of the
amplitudes are simply the square roots of the expected mean square values given in
table (3.1.2), since the polynomials are normalized such that the rms value is equal
to the amplitude coefficient. The expected values of the amplitude coeflicients are

given in table (3.1.3).

Table (3.1.3) Amplitude coefficients for each of the Zernike
polynomials in the atmosphere, where D is the
pupil diameter, and r, Fried’s parameter.

Zernike terms Amplitude value
23,73 0.6750 (D/r,)5/®

Z4, Z5, Zg 0.1535 (D/r,)5/®

Zn, 23, 29, Z10 0.0793 (D/r,)5/°
Z11, Z125 213, 214, Z15 0.0499 (D/r,)5/®

However, even the new table cannot be used directly because there exists
a second problem. Some terms are statistically dependent on each other and must

be decoupled first.

3.1.d. Simulation of atmospheric wavefronts that obey Kolmogo-
roff’s law

In order to simulate random atmospheric wavefronts, we must assign ran-
dom variables to each Zernike term. Unfortunately, we cannot use the amplitude
coefficients in table (3.1.3) directly. This approach would work only if we dealt with
independent random variables, which means that all the terms should be decoupled.
This is however not the case. If we look at the complete covariance matrix, we notice
that it is not diagonal. Therefore, in order to simulate random wavefronts that are
in accordance with the atmospheric characteristics, we must apply a linear variable

transformation such that, in the new variables, the covariance matrix is diagonal.
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This is necessary since we don’t have an algorithm to generate properly correlated
random variables directly.

The covariance matrix in the Zernike basis can be evaluated. Let z; and
zj1 be two Zernike polynomials as defined in Section 3.1.a with amplitude a; and
aj. Their covariance < aj,a;; > can be evaluated from equation (3.1.4). This
expression is similar to equation (25) of Noll’s (1976) paper, except that it has been

corrected for printing errors and some other inaccuracies.

Ko 6, T[(n+n' — §)/2] (D/r))"?
T[(n—n'+ 5)/2] T[(@ —n+ D)2 T[tnt v + 2)/2]

< aj,aj >= (3.1.4)

where n, m, n’, and m' are the radial degree and azimuthal frequency of z; and
zjr. Table (3.1.4) shows the relation between j, m, and n for a few terms. This
information can be read out from table (3.1.1). §, is a Kronecker symbol the value
of which is 1 if m = m' and if § and j’ do not have the same parity in the case
m # 0; and the value of which is 0 otherwise. In other words, this means that the
covariance is O for all terms that are not in the same column. Furthermore, for the
covariance to be non zero, the terms must have the same parity on the index, i.e.,
the covariance between a sine term and a cosine term is zero (a fact that had been

overlooked in Noll’s expression).

Table (8.1.4) Degree and frequency for the first 14 Zernike polynomials

j 2,3 | 4 | 5,6 | 7,8 | 9,10 | 11 | 12,13 | 14,15

1 2 2 3 4 4
m 1 0 2 1 3 2 4

=}
w
N

o
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Back to equation (3.1.4), I'(z) is the usual Gamma function that involves

Bessel integrals. Also:

0.046 I'(%) ! — !
Koo =~ (2m)t1/3 —2—1-4373—(—1)< + /2/(n+ 1) (n' +1) (3.1.5)

or, after computation of the numerical coefficient,

Koo = 2.2802 (—1)(ntn'=m=m")/2, /(5" 1) (n' + 1) (3.1.6)

Using these expressions, we can evaluate the covariance matrix of the first
n Zernike terms. n is arbitrary, but the larger n is, the better the approximation
to the real atmosphere will be. From now on, we shall work with n = 15, which
means that we shall work with the first 14 zero mean Zernike polynomials, or the
first four rows in table (3.1.1). This will include more than 97% of the energy in
the spectrum (Noll, 1976), which is good enough for our purpose.

Let us now describe the procedure to simulate random atmospheric wave-
fronts. We want to generate random coefficients for the first 14 Zernike terms in
the Zernike basis with a given covariance matrix.

Let A be the desired vector the components of which are the random co-
efficients for the Zernike polynomials Z,...Z;s. A can be represented as a column
vector:

a2
as

A= (3.1.7)

ais
The covariance matrix can then be written as:
E(agaz) E(agaa) cee E(aza,15)

E(agaz) E(a3a3) e E(a3a15)

C=E[A-AT]|= (3.1.8)

E(a15a2) E(a15a3) E(a15a15)
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where the notation E(a;a;r) is used instead of < a;j,a;+ > as defined in (3.1.4) for
the expected values. This covariance C matrix is given in figure (3.1.2). We can
notice that it is almost diagonal. This fact makes it easy to determine a change of
basis which will completely diagonalize the matrix.

From its analytic expression, we know that C is Hermitian. Therefore there
exists a unitary matrix U, (U~! = U7T), such that U - C - U7 is diagonal.

This U matrix can be obtained by computing a singular value decompo-
sition (SVD) over the covariance matrix C. From the SVD routine available in
CTRL-C, we obtain two matrices, a unitary matrix X, and a diagonal matrix S

such that C = X - S - XT. From there it is clear that
XT.c.x=xT.Xx-8-XT.-X=58 (3.1.9)

and therefore the matrix U we want is simply equal to X7. Matrices S and U are
given in figures (3.1.3) and (3.1.4) respectively.

Now, let us define another vector B the components of which (bs, bs, ..., b15)
are given by

B=U-A (3.1.10)

We then have for the new covariance matrix
EB-BT|=E[U-A-AT . UT|=U-E[A-AT].UT =5 (3.1.11)

which clearly is diagonal. The covariance matrix of B being diagonal means that
the 14 components of B are uncorrelated. Since we deal with Gaussian random
variables, they are statistically independent. Thus, we have found the basis we

were looking for.
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Figure (3.1.3) Diagonal matrix S. (D/r,)®/* units.
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To conclude the complete procedure, we generate 14 Gaussian random vari-
ables that will be the components of the vector B. To obtain the coefficients we

want, we simply compute the A matrix using the relation
A=UT.B=U"'.B (3.1.12)

To simulate a Gaussian random variable, there exist many different proce-
dures. One of the easiest and most popular ones was introduced by Frieden (1984).
Starting from two independent uniform random variables z; and z;, immediately
obtained with the RAN function on a computer, we can obtain two independent

Gaussian random variables g; and g, using formulas (3.1.13a) and (3.1.13b).

g1 =u+ 0 Cos(27z;) /-2 log(z2) (3.1.13a)

g2 = p+ 0 Sin(2rz1) /-2 log(22) (3.1.13b)

where p represents the desired mean of the Gaussian variable, and o denotes its
desired standard deviation.

For our application, u of course will be 0, while ¢ is the square root of one
of the coefficients of the diagonal matrix S corresponding to each term. Once these
14 independent numbers have been obtained, we simply multiply them by UT as
explained earlier to obtain the coefficients of the Zernike polynomials with correct

variance and covariance from the atmospheric spectrum.

3.2. Simulation of the curvature sensor.
The task of this sensor is to be able to determine, for any given wavefront,
the Laplacians at every inside point, and the normal derivatives at every edge

point. In real operation, this is done optically, and the desired signal is obtained by
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subtracting the two irradiance signals as explained earlier, or by using a modulation
scheme such as the bi-refringent lens.

For the simulation, in some cases, we do not necessarily have to really know
what happens within the sensor itself. We may be able to consider it as a black
box which, for any given input signal, produces the desired output signal. In other
cases, we may wish to completely study the sensor itself, and model in detail its
non-ideal characteristics. We must then simulate what really happens inside the
sensor. However, these are separate cases, for which we created separate simulation
routines. Accordingly, we can use the routine that is appropriate for any given

problem.

3.2.a. Simulation of the ideal sensor characteristics.

Since we know the sampled two-dimensional wavefront, we can mathemat-
ically compute the data we want, that is, average the Laplacians over given areas,
and average the normal derivatives over given parts of the edges.

Our configuration may involve a sensor with a potential shape as shown
in figure (3.2.1), although the number of distinct elements used in figure (3.2.1) is

examplary.
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Figure (8.2.1) A typical sensor configuration.
Any of the central detectors measures the average Laplacian over its area.
Any of the edge detectors measures the average normal derivatives at its position.
To evaluate the average Laplacian over a detector, we compute the Lapla-
cian at every point that lies inside that particular detector, and compute an average
value. Mathematically, to obtain an expression for the Laplacian at a given point

(z,y), we start from its definition (Kreysig, 1979):

2

V24(z,5) = O b y) + 2 bz, 3) (3.2.1)
’y - 81;2 ,y ay2 ’y eddd e

Assuming the sampled second derivative is the difference between the first
derivatives on each side, divided by the spacing, we get an expression for the discrete

Laplacian:

B 1) - ) (S - )
+

V2¢(:z:,y) == ( W T

(3.2.2)
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Now, assuming the derivative to be the difference between the function

itself on each side, and again dividing by the spacing, we get:

h h

Vholo) = (LY b _ gl se=10)) /,

+<¢(:c, y+ 1})L ~$(z,v)  d(z,y) — :(x, y— 1)>/h 629
V24(z,y) ~ x4+ 1,y) +o(z—1,y) + ¢(9;';2y +1) + ¢(z,y — 1) — 46(z, y)
(3.2.4)

where h is the normalized distance between two adjacent points.
To get the normalized derivative at each of the edge detectors, we can,
using a least square algorithm, fit a plane through all the points that lie inside

that particular element, and the normal derivative will be proportional to the plane

coefficient along the normal direction.

Any one of the edge detectors looks similar to the one shown in figure

(3.2.2), where 7 is the unit vector along the normal axis, and £ is the unit vector

along the tangential axis.

Figure (3.2.2) A typical edge detector.



55

We therefore want to fit the plane az, + by: + ¢ = 0.
A least square algorithm states that ) |¢ — (azn + by; + ¢) ]2émin for all

#(Zn,y:) inside the element. Therefore,
> [¢S— (azy, + by: + c)|2 _

= 0 (3.2.5a)
Y |6 — (azn + by: + ¢)|
=5 =0 (3.2.5b)
az‘¢—(“x“+by*+°)|2=o (3.2.5¢)
dc -

This is a system of three equations with three unknowns: a, b, and ¢. With
some algebraic computations and manipulations, we obtain the following expressions
for the coefficient a in which we are interested:

_AY z$—B) yp+C3 ¢
AY 22— BY zy+C) .z

a (3.2.6)

where

A=(NT v - (X)) (3:2.10)
B= (N Z Ty — Z xz y) (3.2.7b)
C = (zzyZy—Znyz) (3.2.7¢)

and where N is the total number of ¢(z,,y:) points on the segment.

With such a scheme for all the central and all the edge elements, we indeed
get the output required to solve the Poisson equation with Neumann boundary
conditions. We have simulated the overall curvature sensor without simulating the

optical sensor itself. This describes its ideal characteristics.
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3.2.b. Some examples of such curvature signals for simple wave-
fronts.

We shall look at three different curvature signals with Laplacians inside,
and with edge slopes on their boundaries. Let us start with a tilt aberration.

A tilted wavefront produces a shift on the image. The shift will be equal
in size but with opposite direction for each of the two recorded images. The image
does not change in size, which implies that the irradiances are the same if they are
centered correctly. This shift is given by equation (3.2.8) in terms of an € aberration
amplitude, and in terms of f and ¢, the setup parameters of the sensor as explained
before. The measurement units of displacement are expressed in multiples of the
pupil radius.

ef(f -9

Shift = =0 — (3.2.8)

Therefore, we can expect the subtraction to yield a 0 Laplacian zone inside
the region, and some high positive and negative signals along the edges where there
is no overlap of the two images. Figure (3.2.3) represents such an expected signal.

The simulation routine confirms this.

S, N

Figure (3.2.3) A pure tilt curvature signal.
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Now, let us take a defocus wavefront. A defocus aberration optically cor-
responds to a shift of the focus point along the optical axis. The actual focus is
closer or further from where it is supposed to be. Therefore, the two images will be
centered, but will not have the same diameter, hence, the local irradiance will also
change. The radius of our two images are given by equation (3.2.9) with the same

notation as for equation (3.2.8).

4cf(f -4

Radius =1+ 7

(3.2.9)

Therefore, we can expect the subtraction to yield a constant Laplacian zone
inside the region corresponding to the difference between the two intensities, and
some high signal zone along the edges corresponding to the non-overlap due to the
fact that one image is larger than the other. Such a signal is shown on figure (3.2.4).

As for the tilt, the simulation confirms the analytical results.

Figure (3.2.4) A pure defocus curvature signal.

The last example is a pure astigmatism wavefront. Such an aberration
optically deforms a circle into an ellipse. Only the orientation of the ellipse will
differ on the two images, but not their size, and not their intensity. The major and
minor axes of the two ellipses are given in equation (3.2.10), with the same notation

as before.
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A:z:es=1:i:2—6f—('£—_——q

(3.2.10)

Therefore, we can expect the subtraction to yield a 0 Laplacian zone inside
the region, and four high signal zones along the edges corresponding to the non-
overlap of the two ellipses. Such a signal is shown in figure (3.2.5). Again, the

simulation routine confirms the results.

0

N

Figure (3.2.5) A pure astigmatism curvature signal.

3.2.c. Simulation of the sensor by ray tracing method.

This second method will further involve the physics of the sensor itself,
although we shall still neglect side effects such as diffraction. We consider now the
sensor as an optical setup including the main element, usually the telescope, the
small lens to correct for complete symmetry, and the two irradiance detectors in
planes P; and P;. We use geometrical optics laws.

Similarly as for the previous simulation routine, we use the distorted wave-
front as input, and we wish to obtain an output signal that corresponds to its
curvature with boundary conditions. The principle of the ray tracing method is
very simple. The light rays are simulated one by one. Each starts from a position

on the wavefront surface and propagates in a direction orthogonal to the surface at
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that position. The propagation is of course a perfect straight line. Therefore, that
ray will intercept plane P;, and the spot of impact on the corresponding detector
will be recorded. Then the ray will pursue its route and will pass through lens L.
Here a deviation occurs. The lens is being used to symmetrize the setup. This
means that the ray will proceed into a direction which will let it hit the symmetric
point of the original place on the wavefront with respect to the focus point of the
telescope. On its way, it will intercept plane P, and again, the spot of impact on
the photodetector will be recorded.

This procedure can be executed a large number of times, once for each ray
simulated. Of course, the position on the wavefront has to be different for all rays
so that the whole surface is scanned. This scanning can be done along a determined
grid, or using random positions (Monte Carlo technique).

Once the desired number of rays has been simulated, the two irradiance
distributions Iy and I; are known, since the local irradiance on any surface is
proportional to the number of rays that had an impact on that particular surface.
This is called a spot diagram.

From there, it is trivial to obtain the desired curvature output signal since
only the ratio fl_T_L has to be evaluated with a complete spatial symmetry on I.

Let us now describe how to practically implement a routine for this. The
input data is a wavefront 2(z,y) that is known over a 2D array. From this array,
and the knowledge of the optical parameters f and ¢, it is possible to compute the
irradiance arrays I (z,y) and Ix(z,y).

First, it is clear that the process which generates a vector position deviation

out of a vector slope is completely linear. Therefore, the problem can be separated
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into two problems, one along each of the two orthogonal directions Z and y. Fig-

ure (3.2.6) shows what is happening with a local wavefront perturbation in the £

direction.

Figure (3.2.0) Ray tracing showing the eflect
of a perturbation in the ¥ direction.

The whole picture is in a plane y = yo. We are interested in finding the
spot of impact of the ray emanating from position £ = zo where the wavefront has
a local disturbance. If there were no disturbance, the spots of impacts would be
Ty = g and 9 = —zo, if we consider a normalized scale removing the reduction
[/ f due to the convergence toward the focus point. But due to the disturbance an

additional correction Az is required. Due to symmetry, the correction is the same
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for both impact spots. Since the wavefront is known at every point, it is clear that

the true deviation Az; can be computed from

Az z(zo + k,y0) — 2(zo — h,yo)
f-9" 2h

(3.2.11)

where h represents the spacing between two adjacent points on the wavefront array.

Denormalizing, we obtain the following value of Azx:

L9 [2(z0 + R, y0) — 2(z0 — h,y0)]

Az ) (3.2.12)
Therefore, we obtain for the points of impact z; and z2:
-7 h, — — h,
o~ F(f = &) [2(z0 + h,y0) — 2(zo — h, yo)] + 7o (3.2.13a)
2h ¢
—¢ h,yo) — —h,
2q f(f = 8 [#(z0 + b, yo) — 2(z0 — hyyo)] _ z (3.2.13b)

2h ¢

Similarly, for the deviations due to perturbations in the other direction, we

find:
g n T O [2(m0,v0 + 1) — 2(zorvo —H)] | (3.2.14a)
2h £
vy f(f = 9 [2(z0, %0 2';’2) —z(z0,v0—h)] _ Yo (3.2.14b)

From any starting point (zo,yo) on the wavefront, and the knowledge of the
local wavefront surface, we can therefore compute the positions of impact (z;,y1)
and (z2,y2) of the ray in the planes P; and Ps.

In Section 3.4, we shall present simulation results using this algorithm.
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3.2.d. Simulation of the sensor including diffraction effects.

This simulation model is the most accurate of the three models. The al-
gorithm produces a simulation of the true picture that will be generated on the
detectors. This model enhances the previous model by taking diffraction phenom-
ena into account. By comparing the results of this very accurate simulation with
the results obtained from the previous two models, we can decide if, and if so, to

what extent these effects can be neglected in the overall simulation.

I, ~1I

As we said in previous parts, the sensor signal is LT

where I; and I,
are the irradiance distributions in the two planes on each side of the focus point of
the telescope. So far, we have had only approximations for these distributions. We
have not computed them accurately yet. This is the goal of this section.

To obtain a mathematical expression for such an irradiance, we have to
make use of the diffraction theory. For our case, since the out-of-focus planes where
I, and I; are detected are close enough to the focus, we shall apply the Fresnel
diffraction theory (Gaskill, 1978).

The input data are again a wavefront z(z,y), and the knowledge of the
optical setup and the parameters £ (the distance of the out-of-focus planes from the
focus point), A (the wavelength), and f (the focal length of the telescope).

According to the Fresnel diffraction theory, we have to work with the com-
plex amplitude of the wavefront, and realize that the transmission through a lens, or
the propagation between lenses is characterized by a two-dimensional convolution.
It can be shown that the complex amplitudes A; and A; of the wavefronts reaching

the two detectors are (Roddier, 1987):
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Ay (F) =

. 2 . =2 . 3
.,\(f1 2) e+’"ﬁfp(ﬁ)\ll(ﬁ) eHITIGT ¢TSS di (3.2.150)
B

. . -2 . 5
Ax(7) = T(fl—e_)e""ﬁ%’ / P(3)U(p) e /™50 ¢ HTNGEN df  (3.2.150)
J

where P(7) is the gate function of the pupil entrance, which is 1 inside the
pupil region, and 0 outside the pupil region. ¥(7) is the complex amplitude of the
incoming wavefront:

U(F) = 4P = 57 (3.2.16)

To relate the complex amplitudes A; to the irradiances I; which are the

functions that we really need, we use the relationship I;(7) =| A7) ‘2. We obtain:

=2 . 5 2
zl(f)=52‘(f—1_7)z" / P(5)¥(5) eH"Nt=n WS dj (32.17a)

L(7) = T\Tfl:w /p(,;)\p(,;) eI ¢~ HTXGS dp (3.2.17b)

For the simulation, it is of course very inconvenient to evaluate such two
dimensional integrals. However, we can notice that we have an e~%™ term in the
integrals, which is by definition a kernel for a Fourier transform. Thus, these two I
and I, irradiance distributions can be evaluated using 2D FFT routines. A general
public domain easy to use 2D FFT routine is FOUR2, written by Brenner (1968).

The complete procedure to simulate our curvature sensor is the following.
From the wavefront z(z,y) or z(7), the function ¥(7) is evaluated, and then gated
with P(7). The result is multiplied by the Fresnel terms 77" then the 2D FFT
is taken, its modulus is squared, and finally, the result is multiplied by the constant

coefficient.
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Using this algorithm, we can derive the true values for the irradiance dis-

tributions I (z,y) and Iz(z,y).

3.3. Reconstruction algorithms.

We are now at a point where the output signal from the curvature sensor
is known. From this information, we must derive the corresponding wavefront, so
that we can correct it. Therefore we need some kind of wavefront reconstruction
algorithm.

As we said in the introductory chapters, that reconstruction will eventually
be done for the closed loop system analogically by feeding the curvature signal
directly to the electrodes on a membrane or bimorph mirror. On the other hand,
for the purpose of open loop operations, or for this closed loop simulation, we still
need to reconstruct the wavefront on a computer.

From now on let us talk about that reconstruction process as a subsystem,
or element, of the overall system. An input signal will be applied to this subsystem
which can be either the output of the previously discussed subsystem or a signal
taken from real measurements. The input is the curvature signal with edge condi-
tions, i.e., a set of values of the Laplacian over the pupil, and a set of normal slopes
at the edges of that domain. Therefore, in order to reconstruct the wavefront, we
need to solve the Poisson equation which is a particular type of an elliptic partial
differential equation.

For such kinds of differential equations, a number of algorithms had been
previously developed, and an extensive set of software routines has been made
available (Rice, 1985). Nonetheless, because our application is very special (non-
rectangular domain with Neumann conditions given as Dirac . distributions), we

had to write our own algorithm to speed up the numerical solution, and at the same
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time, to increase its accuracy. This was decided after our initial attempts to use
ELLPACK (Rice, 1985) were not very successful. However, we made use of existing
techniques and code fragments as much as possible in order to minimize the amount
of algorithmic development and coding necessary.

We now are going to talk about the kernel of the selected algorithm, an
iterative solution with successive overrelaxation which turned out to be the most
promising algorithm for our application. Thereafter, we shall discuss how noise is
amplified through this kernel, which is an essential characteristic to be considered
in a fair comparison between the curvature sensing method and the classical slope
measurement technique for adaptive optics. Finally, we shall explain our complete
algorithm with its particular way of handling our special boundary conditions. The

algorithm will be demonstrated at hand of several open loop situations.

3.3.a. General algorithms for elliptic equations.

Two main approaches are widely used in the solution of elliptic partial
differential equations. In both cases, the equation is discretized over an array, and
therefore, there are a finite number of points to work with, although this number
may be quite large.

The first approach consists of writing one equation per solution point, which
produces a set of n equations with n unknowns. Solving the system gives the n
solution point values. Each of these equations is obtained by writing a limited gnd
order Taylor series expansion around the point. For the point (z,y) we obtain an
equation of the form:

bz, y) ~ 2T LY HIE LY + ¢(z,4y — 1) +é(@y+1) —lepl(zy) (54
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where lapl(z,y) = h®- V2¢(z,y) is the Laplacian at the point (z,y) for normalized
sampling.

The drawbacks of this method are that a very big matrix may have to be
inverted, e.g. by Gaussian elimination, which gives rise to other numerical problems,
and that even if we “have an idea” of the solution that we are looking for, there is
no way we can “help” the computer. This last option is very useful for our closed
loop system.

Indeed, in closed loop operation, the curvature sensor sees only the residual
error that still has to be corrected. Since this error is hopefully very small compared
to what has already been corrected, it seems to be a “good idea” to use the previous
reconstruction as a starting point for the next inversion. Unfortunately, with a direct
matrix algorithm, it is not possible to do so, and therefore, each inversion consumes
as much time as the previous one.

Clearly, it would be possible to use this linear algebra technique to recon-
struct the wavefront, but this would not be very efficient.

However, there exists an alternative approach which offers many advan-
tages. The main difference is that, instead of using direct inversion routine, we use
an iterative algorithm, which starts with an initial guess of the solution which is
subsequently improved in an iterative fashion. As the algorithm goes on, the solu-
tion comes closer and closer to the true answer. The whole procedure is very easy
to program, and we can indeed “help” the algorithm by supplying an intelligent
first guess to it. If our initial guess is good, it will take the computer much less
time to converge toward the final solution. In a closed loop operation, we just have
to give as initial guess the solution of the previous loop.

This algorithm is one of the standard algorithms that are widely used in

numerical linear system solutions, and, of course, this algorithm was also available
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within ELLPACK (Rice, 1985). The problems that we faced when using ELLPACK
were related to how ELLPACK treats the boundary conditions, and were not related
to the kernel algorithm itself.

Now that we have seen that it would indeed be better to use an iterative
algorithm, let us precisely described what the requirements are for it to work, i.e.,
what conditions must be satisfied to guarantee convergence. Any linear iterative
(recursive) scheme describing the transition from step (m — 1) to step (m) may be

represented in the following form
wlm™ = Tulm-1 Lk (3.3.2)

where T is called the iteration matrix, k is a constant vector, and (m) indicates the
iteration count. Let

el™ = (™ _ oy, (3.3.3)

be the remaining error vector after (m) iterations, where u,o; is the true solution,

which is therefore unchanged by equation (3.3.2). Hence, u,,; satisfies the equation
Usol = TUsol + & (3.3.4)

Subtracting (3.3.4) from (3.3.2) gives
e(m) = Te(m=1) — 7m(0) (3.3.5)

It can be shown by spectral decomposition of T' that the norm of e(™) as

m — oo satisfies (Young, 1972):
I et™ fl< w™(T)- || e | (3.3.6)

where u(T) is the spectral radius (the length of the largest eigenvalue) of T. It

is therefore clear that, for the iteration equation (3.3.2) to converge, the largest
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eigenvalue of the iteration matrix T must be less than unity. Furthermore, we can
notice that the smaller the eigenvalues are, the faster the convergence will occur.
Now that we know the requirements for the method to converge, let us
describe how the algorithm is implemented. The basic algorithm is the so-called
Jacobi algorithm, which however converges very slowly. This algorithm requires on
the order of n? iterations to converge where n is the number of solution points. On
the other hand, we can speed up the convergence dramatically by using a successive
overrelazation method (SOR). At each step, the algorithm tries to anticipate what
to do according to what it did on previous steps. It tries to “learn” how to work
more efficiently. This method involves extrapolation of the solution, and therefore,
is a two-step scheme. At a solution point (z,y) the algorithm first computes the
predictor $(z, y) from the knowledge of both the value of the normalized Laplacian
lapl(z,y) at that point, and of the nearest-neighbor average ¢(z,y) (Southwell,

1980):

é(z,y) = (z,y) — lapl(z,y) /4 (3.3.7)

where,

B(z,y) = 2EF Ly) +é(z—1,y) 1— $(z,y— 1) + é(z,y +1) (3.3.8)

Then, this predictor ¢(™) (z,y) is used to define the corrector,
SmH1) = ™) 4 w{q;(m) _ ¢(m)} (3.3.9)

where w is called the relaxation parameter. Hence, the m-th complete iteration

equation for each point is (Southwell, 1980):

¢+ (z,y) = (™ (z,y) + w [5‘”"(-’8,1/) — lapl(z,y) /4 — ¢(™ (z,y)] (3.3.10)
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Comparing equation (3.3.9) with equation (3.3.2), we find that the T matrix

for successive overrelaxation, which we shall call T},, satisfies the equation:
ngr = (1 - W)I + WM (3-3.11)

where I is the identity matrix, and M computes the equation (3.3.8).

Tsor is a function of the relaxation parameter w which still must be chosen.
To achieve the best convergence, the optimal SOR parameter wopt must be selected
such that the eigenvalues of the iteration matrix T,,, are as close as possible to
the origin. The solution to this problem leads to the well known optimal SOR

parameter (Young, 1972):
2

1+ Sin 2y

Wopt = (3.3.12)

where n is the total number of points for the solution.

Under those conditions, using the optimal SOR parameter, the convergence
rate is reduced to a factor of n instead of the previous n2 as for the regular Jacobi
method.

With such an algorithm, we eventually will be able to reconstruct the wave-
front, or simulate the active mirror, in a closed loop mode. However, we still need
to handle the boundary conditions correctly. However, before proceeding with this
discussion, let us look at the noise amplification for this subsystem on the Laplacian

alone.

3.3.b. Noise amplification and scalability for the reconstruction
algorithm.

The main purpose of a complete noise and noise amplification study is to
be able to compare the capability of a curvature sensing based system to the one

of a slope sensing system. In Chapter 2, Section 2.1.d, we showed for the sensor
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alone that photon noise affected both sensor types in exactly the same manner.
Nevertheless, since the ultimate goal is to compare the reconstructed wavefronts,
we need to analyze how the reconstruction algorithm is effected by noise. Because
the two sensor types are equivalent from a noise point of view, the only difference
could be caused by the reconstruction algorithms themselves.

An estimate of the so-called noise amplification is a ratio that relates the
error on the reconstructed wavefront to the error on the measurements. Two com-
plete studies have been performed for classical systems. Fried (1977) and Hudgin
(1977) have analyzed the propagation of errors in the case of slope measurements.
They both define the error coefficient as the ratio of the mean square wavefront
error over the mean square slope error for a unit sampling interval. Fried’s analy-
sis applies to a Shack-Hartmann sensor with a square lenslet array yielding phase
estimates at the corners of the squares, whereas Hudgin’s algorithm applies to the
same sensor, but yielding phase estimates at the center point of each square.

For our comparison, we redefine the error coefficient as the ratio of the
mean square wavefront error to the mean squa.ré Laplacian error for a unit sam-
pling interval. In the case of slope measurements, the mean square Laplacian error
is four times larger than the mean square slope error. According to our new def-

inition, the noise propagation factors become for Hudgin’s and Fried’s analysis:

(Gout/Tin) Hudgin = 0.1403 + 0.0258 In(N) (3.3.13a)

(Gout/Tin) Fricd = 0.1640 + 0.0801 In(N) (3.3.13b)

where N represents the number of solution points across the pupil. For a square
pupil, the total number of points n would therefore be n = N 2. and for a circular

aperture, we would have n ~ w(N/2)2. Table (3.3.1) relates typical values for IV to
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the number n of solution points, or number of actuators for an active systems, in

the case of a circular aperture.

Table (3.3.1) Relation between the number of points across
the pupil N, and the total number of points over the pupil n

2 4 6 8 10
n 3 13 28 50 79

In order to compare our curvature sensing technique to the previously used
slope detection technique, we performed a similar analysis to those made by Fried
(1977) and Hudgin (1977). We were interested to find the propagation error co-
efficient in the case of curvature measurements. One way to achieve this was to
theoretically derive an expression for this quantity. This was partly done at Ka-
man Aerospace, Corp. (Shellan, 1987). Shellan tried to express the phase function
through a Fourier series expansion, and used the Fourier coefficients in his compu-
tations. Unfortunately, the computations and expressions grew too large to obtain
a general result. To get rid of some terms, he made some approximations such as as-
suming a “very large” number of actuators, in the 10000* range. That assumption
of course was not admissible for our purpose since, for astronomical applications, we
can hardly use more than 50 independent active elements. Nevertheless, Shellan’s
work anticipated that noise propagation would be much larger for curvature than
for slope measurements, especially as the number of actuators increases.

Not being able to have an exact analytic derivation of the error propagation
coefficient, we went along a different route, and tried to obtain the desired noise
propagation from simulation results. There are two ways to do this.

The first solution consists of determining all the coefficients of the con-

volution matrix which relates the reconstructed wavefront values to the Laplacian
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coefficients. The required error coefficient is simply the sum of the squared ma-
trix coefficients. We ran such a procedure for many different array sizes, and pupil
shapes. The results for 0,us/0:, are summarized in table (3.3.2). The drawback of
this first method is that, for large arrays, it takes a long time to compute this con-
volution matrix due to the large number of terms, so we did this only for relatively
small array sizes. On the other hand, a big advantage of this approach is that the

coefficients computed in this way are highly accurate.

Table (3.3.2) Error propagation coefficient from the convolution method

Array size “square” “circular”
3 0.24 0.07
5 0.78 0.17
7 2.17 0.35
9 2.75 0.58
11 4.11 1.03

The second solution consists of running a so-called Monte Carlo analysis.
Random Laplacian arrays are simulated with a given variance, and the algorithm
reconstructs the wavefront the variance of which is measured. o,y4t/0in is simply the
ratio of those two numbers. Of course, for the Monte Carlo analysis, a large number
of runs has to be executed for each data point since it is a statistical approach and
since we do not want to be sampling limited. The values of the propagation ratio are
summarized in table (3.3.3). The reason why we made some runs with independent

removal of the overall tilt will be explained later.
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Table (3.3.3) Error propagation coefficient from the Monte Carlo method.

Array size “square” “circular” “circular” with
no tilt
7 2.19 0.32 0.17
9 2.78 0.61 0.23
11 4.06 1.01 0.44
15 7.65 1.69 0.78
23 17.99 3.97 1.80

Fortunately, the results in tables (3.3.2) and (3.3.3) are in good agreement
with each other. This gives us a good confidence in the accuracy of these results.
The small difference may stem from the fact that the Monte Carlo approach is a
statistical one, and we would require an infinite number of runs to obtain the true
answer. Now, about the data themselves, the error coefficient was found to increase
as the square of the linear array size (as expected by Shellan for very large ar-
rays). Using the slope measurement technique, it increases only with the logarithm
of the size. An explanation for this unfortunate difference is that the values for
the Laplacian derived from the slope are not independent of each other. Indeed,
adjacent values share a common slope value (with opposite sign) which limits the
error propagation, whereas curvature sensing yields independent Laplacian values.
A complete comparison of the error propagation in the two techniques is presented

in figure (3.3.1).
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Figure (3.3.1) Error propagation for several cases.

The “H” and “F” curves are for a slope sensor. They are plots of equations
(3.3.13a) and (3.3.13b), respectively. The other three curves represent the propa-
gation error using our curvature sensor. The “a” curve is a plot of the “square”
assumption in the tables and is for the case of a square pupil discretized along
a square grid in the array. The “b” curve is for the “circular” assumption, and
deals with a circular pupil discretized along an hexagonal grid. We note that the
error is less severe for the latter case. With the square pupil, the corners produced
high errors. Inspection of the distribution of errors in the reconstructed wavefronts
shows that the main contribution is an overall tilt error. Figure (3.3.2) shows a

reconstruction of a completely random Gaussian distributed Laplacian. We would
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expect to obtain a completely flat image. Figure (3.3.2) shows clearly the tilt error

introduced in the reconstruction.
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Figure (3.3.2) Example of reconstruction from random Laplacians.

The error can be considerably reduced if this tilt is removed by subtracting a
plane wave, least-square fitted to the reconstructed wavefront. The resulting errors
are the 3"¢ case, or curve “c” in figure (3.3.1). If we now look at the dominant error
term after elimination of the tilt error, as shown in figure (3.3.3), we can clearly

identify it as an astigmatism term.
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Figure (3.3.3) Example of reconstruction from random
Laplacians after removal of global tilt.

Hence, the error propagation is essentially due to low order terms with zero
Laplacians, the terms that are on the first diagonal in the Zernike table. The results
could therefore be considerably improved if some modal estimations of these terms
were performed.

From this analysis and comparison, we can conclude that error propagation
is probably the main drawback of curvature sensing. However, for small sensor
arrays such as required to measure and compensate low order aberration terms of
optical telescopes during astronomical observations, it is clear that the curvature
performance may be at least comparable to, but possibly even better than those of

a Hartmann sensor with the advantage of a lesser complexity.
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3.3.c. How to handle correctly the boundary conditions.

So far we have studied how the kernel of the reconstruction algorithm func-
tions, and how the propagation error increases with the array size. From this,
we were able to assess the maximum array size with which we can still obtain an
acceptably low noise amplification.

However, this discussion considered the Laplacian part of the Poisson equa-
tion only, that is, the effects of the boundary conditions were ignored. Unfor-
tunately, to correctly reconstruct the wavefront from our curvature sensor signal,
these boundary conditions are not only required, but they are in fact as impor-
tant as the Laplacian curvature signal itself; and they must therefore be handled
properly.

For our application, all boundary conditions are of the Neumann type,
which means that we force the slope at the edges of the domain rather than the
positions themselves as for Dirichlet type boundary conditions. Such a problem
does not have a unique solution since any constant position added to the overall
solution will also satisfy the Poisson equation and the Neumann type boundary
conditions. We forced a unique solution by making the additional assumption of a
zero mean value of the overall image. This was actually the major problem that we
faced when we initially tried to use ELLPACK (Rice, 1985). ELLPACK was not
able to handle elliptic partial differential equations with a non-unique solution over
a non-rectangular domain properly.

With Neumann boundary conditions, boundary points are to be updated
according to a slope, which means a relative update rather than an absolute update.
This is numerically difficult to handle. Furthermore, the pupil is circular, while the
discretization grid is square. Hence, the solution will call for accurate interpolations

to obtain accurate results.
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The initial signal out of the curvature sensor is the combination of two
irradiance distributions as explained in Chapter 2, Section 2.1. These irradiances
are recorded with any kind of detector, but the point is that we can expect them
to be recorded with a very large spatial resolution, such as with a CCD array.
However, for the reconstruction, we do not want the resolution to be so high, since
first we want above all to correct low frequency terms, and second, we are limited
by the noise propagation factor for large arrays as shown in the previous section.
Therefore, we need to compress the information from a large array to a small one.

Another important consideration becomes clear when we look at a typical
curvature signal. One such signal is shown in figure (3.3.4). Two CCD frames were
taken on each side of the focus point, and were then combined. The resolution of

the CCD is 512 pixels in each direction. Two disjoint zones are clearly visible.
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Figure (3.3.4) Typical curvature signal from an experiment.

A first zone is the center zone which covers almost the entire pupil. The
signal here corresponds to the Laplacian of the wavefront, and represents the nor-
malized difference between the two irradiances. Therefore, the amplitude of that
signal is small compared to the irradiance values.

A second zone clearly visible is a ring around the edge of the pupil. That
ring represents the signal stemming from the boundary conditions. It is produced
by the non-overlapping of the edges of the two irradiances. Therefore, its amplitude
is large over a small area. Theoretically, it is supposed to be a Dirac distribution.

It is obvious that, in order to obtain an accurate reconstruction, the algo-

rithm must be able to treat each of these two zones differently.
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We have explored several approaches before we were able to derive an algo-
rithm which indeed gave satisfactory results for our special boundary value problem:
a Neumann problem with circular domain for which the boundary slope is not a
priori known, but must be computed as well. As we shall demonstrate, we indeed
found an algorithm which reconstructs wavefronts from curvature signals, such as
the one shown in figure (3.3.4), such that they match the true solution well.

This algorithm is currently coded in a Fortran program called NPOIS.
Before starting with the iteration, NPOIS preprocesses the image data from a topo-
logical point of view, i.e., determines which points belong to the Laplacian domain
(so-called solution points, or S-points), which points belong to the edge region (so-
called boundary points, or B-points), which points are just outside the edge but
still influence the solution (so-called close neighbor points, or C-points), and fi-
nally, which points are so far outside the domain that they can be ignored in the
reconstruction (so-called outside points, or O-points).

NPOIS then computes the boundary slopes using an algorithm that will be
explained in due course, and only then starts iterating on the Poisson equation using
the normal derivatives at the boundary positions that were previously computed.

As stated earlier, the number of reconstruction points is much sma.ll‘er than
the initial number of points. This is the first decision to be made during the
preprocessing phase. Let us call N;, the number of data along a pupil radius on the
CCD curvature signal, and N,,; the same quantity but for the reconstruction array.
It is clear that N, has to be much smaller than N;,, and that (FN:t)z CCD pixels
will correspond to a single reconstruction point. Therefore, the Laplacian signal at
every solution point is an average over a small surface of the CCD signal.

Now, let us look at the boundary conditions. To solve the Poisson equation,

a discretization is needed. We decided to use N,,; points along a radius. From this
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data, if we assume a scaling such that the pupil obtains a unit radius, the sampling
distance A must be equal to 1/N,,;. To correctly reconstruct the wavefront, the size
of the normal derivative zone must be that particular h as shown on figure (3.3.5),
where P stands for an interior point of the solution, and X denotes an exterior
point with respect to the pupil. Hence, the routine must consider CCD data points
as an edge slope derivative signal, if they lie on a ring with a normalized outer
radius of 1+ —2—1\,—10—‘; and with an inner radius of 1 — s:2—. If we consider CCD pixel

2Nout *

coordinates, the radii will be N;, + 5%”17

o Pupil Edge
P P P P X X
} e - - — 1 i ! L 1 3
1 L ] L] ! 1 ¥ 7
— NS
h Edge Slope

Figure (3.3.5) Discretization along a radius.

Therefore, the first task of the algorithm is to scan all the data points that
come from the CCD array, and check whether they are inside the pupil, on the edge
ring, or outside. A flag with three different values is set for each point.

Now, NPOIS knows which points have to be considered directly as Lapla-
cian, which must be further processed to obtain slope values, and which can simply
be ignored. The next move is to explore the reconstruction array, and perform some
topological analysis on it.

Indeed, for all the solution points, the iteration process has to use the kernel

equation (3.3.10) as explained in Section 3.3.b. Nonetheless, for solution points close
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enough to the edge, it may happen that one or two neighboring points do not lie on
the pupil. Those actually are the points that will provide the boundary conditions.
To be able to use the kernel equation (3.3.10), all points must have four neighbors
that are periodically updated. Therefore, NPOIS checks all inside points and will
provide “close neighbor points” to those that are missing some neighbors. Figure
(3.3.6) illustrates this concept of close neighbor points. On that figure, S stands
for solution points, B denotes boundary solution points with missing neighbors,

C marks close neighbor points, and O depicts outside points that can be totally

ignored.
0 0 ©
c C C
—
B B B
S 8§ S

Figure (3.3.6) Example of S-, B-, C-, and O-points near the pupil edge.
At that point, the iterative process works smoothly for all the S- and B-
points, but still, the problem is that the C-points also have to be updated.
From what we said so far about the Neumann conditions, it is clear that
those C-points have to be updated according to the forcing slope information. This
would be trivial if we worked with a square pupil. Figure (3.3.7) shows such an

example. The update equation for any C-point would simply be
é(C) = ¢(B) + h - Slope (3.3.14)

where h is the sampling interval, B marks the next point on the left of that particular

C-point, and Slope denotes the local slope between the B- and the C-point.
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(Figure 3.3.7) Simple case of the edge of a square pupil.

Let us now consider a circular domain. We want to find the update equation
for any given C-point. If we draw a line 7', such that it is normal to the boundary
and passes through C, it is clear that %" will also pass through the center of the
pupil, but will probably not pass through any B-point.

It is possible to assign an angle variable to 7’. This means that the location
of the C-point from the center is described in polar coordinates. The same can be
done for all B-points. If the size of the reconstruction array is given by Nyy¢, then
the number of B-points will approximately be np = 27 N,y;. Hence we obtain np
angle values that can be sorted from O to 2.

Polar coordinates are required for the “support” point concept. To be
updated, any C-point must have a neighbor in the direction toward the pupil center.
As we said, there is no reason why a B-point should happen to be present in that
direction. However, it is certain that two B-points, one on each side of 7, always
exist. Therefore, by interpolating between those two B-points, it is possible to
obtain an approximation for the value of the solution at any point P on 7 which
can then be used in the update equation for the C-point. The easiest way to find
the best two candidates for supporting B-points is to look at the angle a of the

C-point, and choose those B-points the angles of which are closest to a such that
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one B-point has an angle that is just a little larger than a, say « + €,, while the
other has an angle that is just a little smaller than a, say a — €3. This is why it is
very convenient to have all the B-angles already sorted in an array. Figure (3.3.8)

illustrates the support point concept.

Figure (3.3.8) Example of two “support points” By and B,
The update equation for the C-point can now be written in a straightfor-
ward manner. Generalizing equation (3.3.14), we find:

da2¢(B1) + d1¢(Bz)
dy + da

#(C) = ¢(P) + hp - Slope = + hp - Slope (3.3.15)

where B; and B, are the two support points, d; and d; their distances to P, and
hp the distance from P to C.

In order to compute dy, dz, and h, we need the coordinates of P. We can
v . . . . — . 5 =7 .
find them by noting that P is at the intersection of n" with By B;. The equations
of those lines are:

y= 2%, (3.3.16a)
2

YB, —YB, (

z—zp,)+YB, (3.3.16b)
.'BB, — :125l

y:

where (z,,¥B,), (£B,,¥B,), and (zc,yc) are the coordinates of By, Bz, and C

respectively.

Solving for the intersection coordinates zp and yp yields:
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xC’(yB1 B, — B, yBe)

zp = , 3.3.17a
(zB, — zB,)yc — (yB, — ¥B,)ZC ( )

yp = ——Yo(V5.25: — 25,p,) (3.3.176)
(zB, — zB,)vc — (v, — ¥B,)ZC

To clarify, let us summarize the complete procedure to obtain the update
equations for all C-points.

e Obtain all the B-points for a given array and sort them according to their
angle.

e For any C-point, compute its angle, and find the two closest B-angles
embracing the C-angle. Those two B-points are called the two support points.

e Obtain the coordinates of the P point by computing the intersection of

7_7,) with Ble.

o Compute the values d;, d3, and h,, and then the coefficients K; = #‘_&E
and K, = FiLd;'
e The update equation is:
#(C) = K1¢(B1) + K2¢(B2) + hy - Slope (3.3.18)

Note that it is not necessary to compute an explicit estimate of the function
value at P. NPOIS will simply store the three coefficients K;, K3, and h, during the
preprocessing phase for use during the iterations. Those coeflicients are constant,
and therefore, it would be a waste of time to recompute them ever again.

The last point that is still missing for the algorithm to be complete is how
to obtain the Slope factor. If we knew the boundary conditions as true Neumann
conditions, nothing more would be needed, but we actually do not know these slopes

precisely. All we know is the quantity a—aﬁqﬁ(z) bc. It is clear that we wish to remove
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the Dirac term. This can be accomplished if we remember the sifting property of
the §(z) distribution. For every function f(z), it is true that:

“+co

/ f(2)8(z — zo)dz = f(zo) (3.3.19)

— O
Similarly, we can integrate the boundary signal from the CCD along its

normal direction. As we said previously, that signal is within a ring the inner

radius of which is 1 — ml— while its outer radius is 1 + 5 Nl . NPOIS already set
out out

a flag for those values. Integrating along this route, we can find the integral, and

the result we were looking for:

pma:

3 a
Eh-qS(z)&c(p —-1)dp = —(9—7;¢(z) - = Slope (3.3.20)

Pmin

—— . N- = : N.
where pmin = Nin — 5y and pmaz = Nin + 33007

Now, we still need to evaluate the normal derivative. The data on the ring
are used by approximately np C-points, since there are about the same number of
C-points as B-points. Therefore, each C-point is influenced by all points that have
similar angles within :i:n—"'g. Hence, our 1D integration can be translated into a 2D

sum with an averaging coefficient:

oma.a: Pma.z

>, > curv{p,b)

Slope = Zmin Pmin (3.3.21)

oma.z pmaz
> 1

omin Pmin

where curv(p, ) is the direct signal from the CCD array, pmin and pmaz the same
as for the integral (3.3.20), and 0,4 and 0,5 are equal to a¢c £ f;.
This is the procedure to obtain the Slope factor. Of course, this algorithm

too can be executed once and for all during the preprocessing phase and can be
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stored away for each of the C-points. This concludes the description of the prepro-
cessing phase.

For the iterative phase, NPOIS knows which points are to be directly up-
dated with the kernel equation (3.3.10), and which points are close neighbor points
that have to be updated with the special equations the coefficients of which are in
memory. During the iteration process, NPOIS updates all the inside points first,
and then computes all the close neighbor points.

Once per given number of iterations, usually about 100, NPOIS computes
the rms value of the reconstruction. It assumes that the solution has converged if the
difference between this rms value, and the previously computed one is smaller than
a given accuracy factor. When convergence has been achieved, the final solution is
used as the reconstructed wavefront the curvature signal of which was the curvature
sensor output.

Let us now look at an example for reconstruction. The signal we looked
at in figure (3.3.4), as we already said, was taken with a CCD. The optical setup
consisted of a light point source, an achromat (a pair of lenses) considered as the
main optical element, and a CCD that was moved from one side of the focus plane
to the other in order to take the two pictures. The exposure time was in the seconds
range, and since it was taken in a quiet lab, there was no distortion on the images
due to atmospheric turbulence. Therefore, the only aberrations were due to the lens
itself. Hence, our curvature sensor along with the complex reconstruction algorithm
can precisely measure aberrations of optical elements. The achromat had a focal
length f = 120c¢m, a radius r = 3¢m, and the CCD planes P; and P; were at a
distance £ = 2¢m from the focus point.

Running NPOIS produced an estimate of the aberrations of the optical

element itself. The errors on its surface are shown in figure (3.3.9). It shows



essentially a coma aberration probably produced by a small error in the

of the lens components.
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Figure (3.3.9) Reconstruction of the errors on the
wavefront at the output of an achromat.
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centering

The NPOIS program provides us with a very quick and easy way to obtain

both qualitative and quantitative information on optical elements.

3.3.d. Extension of NPOIS to include central obscuration.

The next step consists of pursuing this new method to test optical equip-

ment a little further before going back to the open loop simulation for adaptive

optics systems.

From the previous section, it was clear that NPOIS was perfect

to recon-

struct lens deformations from the information taken out of two out-of-focus images.
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Unfortunately, lenses are not really of a huge interest for testing. Indeed, usually,
they are of relatively small diameter, rarely larger than a foot, and people know
quite well how to make them. On the other hand, what is still hard to make are
telescope mirrors. They can be as much as 6 meters in diameter from a single piece
of glass, and due to this large area and weight, it is impossible to produce them
with as accurate a surface as desired. Therefore, it would be very convenient if it
were possible to perform on the telescope mirror the same kind of testing as we did
for the lens. Unfortunately, most telescopes are made such that their mirrors have
a big hole right in the middle, which produces a central obstruction. This central
obstruction imposes a new boundary condition on our Poisson equation. Therefore,
it is clear that NPOIS cannot be used as is for testing telescope mirrors.

If we compute a curvature signal as before, taking two images on each side
of the focus plane, and evaluating a normalized difference, we shall obtain the same
signal as before, with an additional high intensity circular é. distribution at the
position of the central obscuration due to the non-overlapping of the hole.

Therefore, with our special algorithm, we need to handle not only the outer
ring, but also this new inner ring. Due to the modularity of the NPOIS program
developed previously, the extended version, called CPOIS, was very easy to develop.
As before, we must create S-, B-, C-, and O-points for the inside border as well.
An example is presented in figure (3.3.10). The rest of the procedure to obtain the
update equations for the close neighbor points is the same, except we now must
consider the normal derivative to be directed toward the mirror center for the inner

ring, and toward the outside for the outer ring.
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Figure (3.3.10) Example of S-, B-, C-, and O-points
for the case with two boundary signals.

To test CPOIS, we used CCD frames of out-of-focus images from the
Canada-France-Hawaii (CFH) Telescope located on Mauna Kea in Hawaii. Origi-
nally, those pictures were taken to be processed with another algorithm (C. Roddier,
1989), but it was worthwhile doing some work in parallel and checking for result
discrepancies. The tested primary mirror is 3.6 meters in diameter, its focal length
is 13.5 meters, and the pictures were taken at 10¢m from its focus point.

Both CCD pictures look basically like figure (3.3.11).
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Figure (3.3.11) A typical out-of-focus
image from the CFH Telescope.

The corresponding curvature signal is shown in figure (3.3.12). We can
clearly see the zone of the hole, the curvature zone, and both the inner and outer

edge slope signal zones.
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Figure (3.3.12) Curvature signal from the CFH Telescope.

The reconstruction with CPOIS, and the Zernike decomposition on the
corresponding reconstructed wavefront could be compared with another approach
of interpreting the same out-of-focus images, still using the same curvature sensing
concept, but without a complete reconstruction (C. Roddier, 1989).

To summarize the other algorithm: it determines the Zernike coefficients
directly from the images or from the curvature signal, and corrects the images or
the signal directly by subtracting one after the other of the newly found Zernike
polynomials, to make it possible to determine the next coefficient. There is no

accumulation error because all the Zernike polynomials are orthogonal to each other.
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From two typical out-of-focus images, taken at the same distance on each
side of the focus point, it is possible to directly determine the amount of tilt, the
defocus, and the spherical aberrations without computing the curvature signal first.
Indeed, a shift corresponds to a tilt, a change of pupil size corresponds to a defocus,
and a change of ratio of the outer diameter to the hole diameter corresponds to a
spherical aberration. Hence, just from the two independent pictures, it is possible to
extract qualitative as well as quantitative informations on the Zernike polynomials
Zy, Z3, Z4, and Z;;. Once known, these polynomials can be subtracted from
the pictures by means of shift (tilt), overall reduction or expansion (defocus), and
special mapping (spherical).

At that point, the curvature signal is computed in the usual fashion, i.e., a
least square fit of a plane through the Laplacian zone provides the amplitude and
orientation of the pure coma term (Zernike polynomials Z7 and Zg). Again, these
are immediately subtracted including their corresponding edge signals.

The last sequence of the algorithm consists of decomposing the edge signal
into a Fourier series. The first harmonic is zero since it corresponds to tilt aberration
that has already been removed, the second harmonic corresponds to astigmatism
(Z5 and Zs), and the third harmonic corresponds to the zero-curvature coma (Zo
and Zo).

In this way, it is possible without solving the Poisson equation at all to
determine the Zernike coefficients up to Z;; for the telescope mirror aberrations.

The results obtained in this manner were compared for both lenses and
telescope mirrors with those determined by NPOIS and CPOIS and were found to
be approximately 90% to 95% compatible.

While CPOIS was not really needed for our overall problem, it was a useful

exercise to develop the code since it helped verify the correctness of the needed
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NPOIS code. Moreover, both methods could be used in parallel, and it may also
be possible to improve the reconstruction even further by combining the two meth-
ods, i.e., by subtracting some Zernike polynomials first, and then solve the Poisson

equation for the remaining ones. However, this idea has not yet been pursued any

further.

3.4. Open loop simulation.

We now have explained how to write simulation routines for each of the
system elements. The open loop operation starts from a known simulated wavefront,
and ends up with a reconstructed one, that must match as closely as possible the
first one. In between, the wavefront has been decomposed into Laplacians and edge
slopes.

Working with several different aberrations and amplitudes, we can study

non-linear effects and noise due to photons and diffraction.

3.4.a. Study of non-linearities.

It is no surprise that the main non-linear problem of this system arises at
the edges. Especially for the reconstruction, NPOIS expects the edge signal to be
within a ring of a certain diameter for a given reconstruction resolution.

What if that edge signal is larger than the ring? Some of it will clearly
escape on the exterior side and get lost in a zone that is never scanned by the
algorithm. Or, on the interior side, some high intensity signal can interfere with a
low intensity Laplacian signal. It is obvious that we cannot expect the result to be
good for that kind of a situation.

The edge signal may become large if either the distance of the photodetec-

tors to the focus point is too small, or if the aberration amplitude is too large. In
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a real situation, we can expect £ to be fixed, and therefore, we would be faced with
this too large edge signal problem only when the aberration amplitude becomes too
large for a given optical setup.

Therefore, we have to run some simulations to study this problem more
carefully. Since we do not want to be bothered by any additional noise, we have to
use the mathematical routine described in Section 3.2.a to simulate the wavefront
sensor.

About aberrations, we again choose tilt, defocus, and astigmatism since for
them we know the corresponding edge signal width W for a given situation and
amplitude coefficient €. It is straightforward to show by using equations (3.2.8),
(3.2.9), and (3.2.10) that this width W will be respectively for a tilt, a defocus, and

an astigmatism:

Wi = — 7 (3.4.1a)
8e(f — £
Wdefocu.s = '_(j:e_ﬁ (3.4.1b)
4e(f — ¢
Wa,stigma.tiam = _"‘(—f-z—)f‘ (3.4.16)

We now have to choose typical values for all the parameters, including
the reconstruction resolution, and perform open loop simulations with different
aberration amplitudes to observe if a breakpoint is indeed present when the edge
signal becomes larger than that which NPOIS expects.

With the exception of the non-linear effect we want to study, the rest of the
procedure is completely linear. Therefore, we do not have to be very careful about
values for parameters as long as they are within a typical range. We chose f = 10
and £ = 1 for the optical setup. For the reconstruction, we chose 10 points on a

radius where, as shown in Section 3.3.b, the error propagation is still acceptable.



96

Therefore, under those conditions, we can expect to obtain a breakpoint when

W = 0.1, which implies for the amplitudes:

astigmatism __ . -5
break =25-10

€break — 50 - 10—5

=12.5-107°

(3.4.2a)
(3.4.2b)

(3.4.2¢)

The procedure for the simulation is very simple. We simulate the wavefront

by evaluating the correct Zernike terms with the corresponding amplitudes, run

the mathematical routine to get a perfect curvature signal, run the reconstruction

program to compute an estimate of the initial wavefront, and compare them. The

results are in tables (3.4.1a), (3.4.1b), and (3.4.1c) for the three different aberrations.

Table (3.4.1a) Linearity for tilt.

Initial amplitude

Reconstructed amplitude

10

30

80

.10-5
20 -
.10~5
40 -
50 -
60 -
70 -
-10~3

10~5

10—3
10~8
103
108

9.99.105

20.13 -
29.80 -
39.88 -
50.08 -
59.06 -
65.94 -
-1078

73.01

105
10~5
105
10~3
105
10~5




The corresponding plots are

spectively.

Table (3.4.1b) Linearity for defocus.

Initial amplitude

Reconstructed amplitude

1

[0 BN« I ]

.10~5
.10-5
.10~5
.10~5
.10

0.96 -
1.91 -
3.73 .
.1075
7.36 -

5.65

10—%
105
10~°

10~5

97

10-10~5
15-1075

9.31.1075
12.61-1075

Table (3.4.1c) Linearity for astigmatism.

Initial amplitude

Reconstructed amplitude

2.1078

5.105

10-10-8
20-10~5
30-10~5
40-10-5
50105

2.17.10°°
5.02 105
9.91.10"5
20.24 - 1078
29.73-10~5
35.72 105
42.23.10°5

in figures (3.4.1a), (3.4.1b), and (3.4.1c) re-
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Figure (3.4.1a) Linearity for tilt. (1075 radius units)
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Figure (3.4.1b) Linearity for defocus. (10~5 radius units)
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Figure (3.4.1c) Linearity for astigmatism. (10~% radius units)

From the plots, we clearly see that the foreseen breakpoints are indeed
present, and almost where expected. Probably, for the tilt and astigmatism, we
could not hope for a picture that matched our predictions as well. However, for
defocus, we see a systematic error, even before the breakpoint region, an error that
we had not anticipated. It is not clear at this point where this error comes from.
However, it is rather small and therefore, in practice, not very important.

From these runs, we conclude that the non-linear effect we studied is not
dramatic. The system after the breakpoint seems to under-estimate the aberration,
rather than over-estimate it. This point is important since we do not want to have

oscillations in the later closed loop system.
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3.4.b. Study of photon noise.

Now we have a better idea of the intrinsic non-linearities of the system, we
can look at some external noise.

Photon noise exists due to the fact that the irradiance distribution is not
continuous. The light intensity depends on the number of photons that fall on the
detector, and this is a discrete number. Furthermore, for photons coming from a
star, the distribution over the different detectors is surely totally random, and it
may happen that some detectors receive much more photons than others for a given
sampling period. This of course creates bad estimates, and therefore errors in the
reconstruction.

As the average number of photons increases, the uncertainty of the estimate
decreases. Hence, it is very important to know on the average how many photons
are required to have an acceptable error.

For that purpose, we made simulations using the ray tracing routine. Each
ray photon started from a uniformly distributed random position on the wavefront.
The impact point was considered as the photon impact. The detector array has
eight points on a pupil radius which corresponds roughly to 200 points on the
reconstruction. We made runs for five different aberrations with three different
photon noise coefficients for each. We sent 5000, 10000, or 20000 photons overall,
which correspond to 25, 50, or 100 photons per detector respectively.

The amplitude coefficient for the aberration was chosen such that the al-
gorithm would not produce any non-linearity in the reconstruction. The amplitude
was set such that the edge signal width was about half the ring width, about the
optimal case for NPOIS.

The setup was exactly as before: f = 10, £ = 1, with 10 points for recon-

struction. The aberrations we chose to work with were tilt, defocus, astigmatism,
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coma, and spherical. The corresponding aberration amplitudes for an edge signal

of half the ring size were:

Etiig = 25 10—5a €defocus = 6.25 - 10_5: €astigmatism = 12.5-107°
E€coma = 3.57-107°%,  egpnericar = 2.08 - 1075 (3.4.3)

Our indicator parameter is the ratio of the r.m.s. value of the residual error
over the initial wavefront r.m.s. value. Runs were made for 25, 50, and 100 photons

per detectors. The results are summarized in table (3.4.2).

Table (3.4.2) Residual errors when photon noise is present

Aberration 25 ph. 50 ph. 100 ph.
tilt 24 .08 .02
defocus .25 .10 .05
astigmatism .28 .10 .03
coma 31 .15 .09
spherical .33 .19 .14

The corresponding plots are in figure (3.4.2).
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Figure (3.4.2) Residual error when photon noise is present
It is clear that the system response is not satisfactory for 25 photons. It

becomes acceptable for about 50 photons per detector.

3.4.c. Study of diffraction noise.

This last non-ideal characteristic of the open loop system was more difficult
to study exhaustively. Indeed, the way to go should have been similar to the one
for the study of photon noise, except that the sensor simulation routine should now
have been the one described in Section 3.2.c rather than the previous ray tracing
method. However, even if theoretically the tough part of the routine was only
to evaluate two 2D FFTs, to do the complete study would have required doing
2048 x 2048 FFTs!

Although our FOURT routine was able to handle this, the computer space

and calculation time required to do it was out of our possibilities. Therefore, we
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did not perform a complete study, but had to be content with a number of worst
case simulations instead.

If we look at a typical setup for the operations, such as the two examples
presented in Section 3.3.c and 3.3.d, we can obtain a rough idea for the values of
the involved parameters. Assuming a 2 meter telescope, and working with a unit
pupil radius (1 meter) for the main optical element, we find roughly the following

values for the other parameters:

f~20, £~005 A=x05-10"° (3.4.4)

which imply in the FFT equations (3.2.17a) and (3.2.17b) an angle for the Fresnel

terms of about:

i £p? 0 0.05 - 1.0%
Af(f—€  ~0.5-10-%.20-20

Therefore, if we want to sample this correctly, we need to sample at least

= 250 - 7 = (125)(27) (3.4.5)

at the Shannon limit which means a strict minimum of 2 - 125 points for a pupil
radius, or at least 500 pixels across the pupil diameter. To get a little away from
this theoretical limit, we should at least double that number, i.e., we need 1000
pixels.

Now, when taking an FFT, we must also include that amount of zeros on
the side for zero-padding. Hence, we need a 2048 x 2048 FFT. It is therefore clear
that this approach is not reasonable. Fortunately, we were able to find an alternative
approach which still allowed us to study diffraction noise.

What we want to study is how diffraction affects and deforms the estimates

and reconstructions. If we choose the setup parameters so that the diffraction is
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much larger than that of a typical real situation, we can study the diffraction noise
limitation, and we may be quite close to the true limit.

Changing the parameters so that diffraction would be worse than for a real
situation means to either decrease £ or increase A\. Hopefully, changing any of those
two parameters in this way will reduce the required sampling, and thus the FFT
dimension.

We decided to work with complex arrays of size 256 x 256 for the FFT,
which was the largest size we could handle on our VAX if we still wanted to have
some space available out of the allocated disk quota, and if we did not wé.nt to
wait too long for a single simulation to complete. Under those conditions, we had
to reduce the quantity A - £ by at least a factor of 10. We therefore moved the
photodetectors closer to the system focus point by a factor of 5 from their typical
positions, and simulated infrared light with a wavelength three times larger than
the usual visible light.

With such a configuration, the setup is in the worst situation that possibly
could happen during regular operations.

Even in this setup, the requirements for the simulation could not be ignored,
and we limited ourselves to study tilt and astigmatism aberrations only. One sim-
ulation run required roughly a quater of an hour of CPU time on a VAX-11/750.

The images produced over the planes P; and P, for a mid-size tilt are disks

with diffraction rings. A typical such image is shown in figure (3.4.3).
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Figure (3.4.3) Typical image due to a single wavefront tilt.

The irradiance distributions I; and I, differ from each other by a simple
shift, as could be anticipated knowing the nature of the tilt aberration. Cross-
sections right through the middle of each of the two images are shown in figures
(3.4.4a) and (3.4.4b). We clearly see that they are indeed quite the same except
for the shift. We also clearly see the variation in the intensity as a function of the

distance from the center due to interference.
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Now, combining these two irradiance distributions (difference divided by
normalizing sum) gives rise to the curvature signal. Such a signal, as shown in
figures (3.4.5) and (3.4.6), looks indeed very noisy. The Laplacian zone is no longer

a flat “O”.

Tigure (3.4.5) Curvature signal for the tilt.
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Figure (3.4.6) Cross-section of the curvature signal for the tilt.

Running the reconstruction algorithm on this “bad” signal produces an
unexpected result: The diffraction noise is completely filtered out, and the re-
constructed wavefront, as shown in figure (3.4.7), is a pure tilt with the correct

amplitude within +1%.
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Figure (3.4.7) Reconstruction of the wavefront.

An explanation for this unanticipated good result is that fringes have mostly
high spatial frequency components compared to the aberration frequency and sam-
pling for the reconstruction. Therefore, when solving the Poisson equation which
actually performs a second order integration, the diffraction noise is smoothed out.
In the Fourier plane, solving a Poisson equation corresponds to an 1/w? attenuation,
therefore completely eliminating high frequency noise. This is a good point for cur-
vature sensing versus classical sensing, since for a Hartmann sensor, the attenuation
would be only 1/w.

For the case of astigmatism, there is not much new in addition to the
conclusions drawn from the tilt runs. A typical astigmatism irradiance distribution
is shown in figure (3.4.8). It looks similar to what could be expected: an ellipse
with diffraction rings. The other image over the second plane is very similar except

for a 90° rotation of the ellipse axes.
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Figure (3.4.8) Astigmatism image.

The corresponding curvature signal is shown in figure (3.4.9). Similarly to

the tilt case, the inside Laplacian signal no longer is zero, but contains some noise

instead.

Figure (3.4.9) Astigmatism curvature signal.
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The reconstruction wavefront, figure (3.4.10), as expected from the “good”

results for the “tilt”, is a pure astigmatism with a correct amplitude also within

+1%.

Figure (3.4.10) Astigmatism reconstruction.

3.5. Chapter summary.

In this chapter, we first analyzed the input, i.e., the atmosphere. There-
after, we looked at the process of wavefront detection, i.e., the sensor. Finally,
we described the wavefront reconstruction, in our case this consisted of solving the
Poisson Equation. These three processes together describe the open loop simulation
which we then applied to our physical configuration to analyze the behavior of our
overall system in open loop.

The atmosphere had to be described using a mathematical model. For this
purpose, the Zernike polynomials were introduced. We then derived an algorithm
that allows us to simulate random atmospheric wavefronts with correct amounts of

variance and covariance for all the Zernike terms.
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The next step of our work consisted of simulating the wavefront sensor.
Three different algorithms were derived, and corresponding procedures were imple-
mented in computer code. Each of these algorithms was designed to deal with a
different situation. A mathematical routine provided the perfect theoretical signal
that we could expect out of the sensor. A ray tracing routine provided the response .
of the system under the influence of a finite number of photons. Finally, a routine
using the Fresnel theory was coded for studying the effects of diffraction noise.

The third step was concerned with the process of wavefront reconstruction.
An estimate of the noise propagation through this second order reconstruction was
presented in two different ways. The error seems to increase as the square of the
number of solution points. The Poisson equation had to be solved with special
Neumann boundary conditions: the boundary conditions were normal slopes, the
values of which were, however, not known in advance. A program called NPOIS was
written to handle this problem. In addition, an extension of this program, called
CPOIS, was also developed for the purpose of analyzing the central obstruction of
telescope mirrors. This program has most of its utility for mirror testing.

The last step of our study was to run open loop simulations to carefully
study the complete system. Side effects or secondary effects consisted first of non-
linearities due to our non-ability to properly handle the edge signal when it becomes
too large. The second study was devoted to problems related to photon noise. Fi-
nally, we studied the effects of diffraction noise. However, neither of these effects are

critical for typical configurations as they may be used in astronomical observations.
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CHAPTER 4
CLOSED LOOP SYSTEM SIMULATION

The open loop response of our curvature sensing based adaptive optics
system has been studied, including the problems of noise and scalability. It seems
that for astronomical applications, none of these non-ideal behaviors are a major
drawback. On the contrary, curvature sensing showed advantages in comparison
with classical slope sensing.

The next step for our work is to simulate closed loop operations to see how
the correction really works, and toward which equilibrium the system converges:
how the initial wavefront is estimated, corrected, and how important the resulting

error is in comparison with the initial error.

4.1. Closed loop system.

In previous chapters and sections, we have clearly defined each part of the
overall system. We worked with subsystems for which we have simulation routines.

A distorted wavefront is estimated through its Laplacian and edge deriva-
tives, and a membrane mirror or bimorph mirror by itself solves the Poisson equation
to reconstruct the estimate of the initial wavefront on its surface.

The wavefront is reflected by the mirror. The phase after the reflection
is the initial phase minus the reconstructed phase. The phase difference is the
residual error. Closing the loop simply means estimating the residual phase, and
correcting it. The feedback control loop was previously shown in figure (1.4.1).

Assuming that the system is stable, the estimate of the incoming wavefront will
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converge. Theoretically, this settled estimate approaches the disturbed wavefront.
Nevertheless, because of noise in the system and high spatial frequency components
in the atmosphere, a residual error will always be present. It is the aim of this
chapter to discuss how large this residual error will be.

It is clear that the mirror reconstructs an estimate of the shape of the
wavefront we want to correct, while the sensor measures only the difference between
what has been corrected so far with what has to be corrected, hence, it measures
what still needs to be corrected. Therefore, the signal we want to apply to the
mirror must be the sum of all the successive differences: an integration through
time.

For our closed loop simulation, at each system iteration, the curvature
signal will be added to what is already in memory, and the complete sum will be
applied to the simulated membrane electrodes. Hence, we need one more small
routine beyond those that we used in the open loop situation. This routine does
not present any difficulty though.

The last modification to adapt our open loop simulation to a closed loop
simulation concerns the solution of the Poisson equation. We could use NPOIS, but
because of the preprocessing phase, this approach is very slow, and if we want to
look at the system convergence, we need at least a few dozens of complete system
iterations. Therefore, it would be much better if we could find another way to solve
the Poisson equation. We look for a new routine that executes faster than NPOIS,
but which on the other hand does not need to be as accurate. The high accuracy
of NPOIS was required since we wanted to study secondary and side effects during
the open loop simulation, but now, we can content ourselves with an approximate
solution, since the closed loop operations should provide for the necessary additional

corrections.
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Also, the NPOIS algorithm seems unrealistic for the real system, the one
that will be built. We have to remember that one of the goals of this system is to
come up with a solution that is realizable with analog technology. This would not
be the case for NPOIS. We used this program initially to perform a complete study
and to obtain a reference solution, but, for the real system, we must come up with
an alternative solution.

Let us consider a real membrane. We know that there are electrodes at-
tached to the membrane that bend themselves such that the Laplacian of the mem-
brane surface is proportional to the applied voltage. However, we must consider
the boundary conditions, i.e., the slopes, which are of the Neumann type. It seems
difficult to find any physical actuator system that would force that slope as desired
at the edge of a membrane. Here too we have to find an alternative.

The slope signal from the sensor output can also be considered a Laplacian
since it actually is a distribution of such. If we apply this signal to an electrode,
it will bend the membrane dramatically in the vicinity, and thereby produce a
discontinuity in the slope. In addition, we can force the discontinuity to be along
only one desired direction by shaping the electrode accordingly. Hence, we can
produce a change of slope in the normal direction of the membrane in accordance
with the applied voltage to an electrode.

As we already said, it is difficult to force a derivative at a given point on a
membrane. It is easier and almost mandatory to have fixed positions as boundary
conditions, i.e., conditions of the Dirichlet type. For our particular problem, it is
possible to convert our former Neumann conditions to Dirichlet conditions. Indeed,
if we consider a very large membrane, several times the size of the pupil, and we
apply a constant (e.g. zero) position all along its boundary, and we do not apply

any signal in between the outer edge of the pupil and that “far away” new edge,
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then, controlling some edge electrodes as described earlier, we can force the correct

boundary conditions at the pupil edges.

-~ Pupil edges

--------- -

Figure (4.1.1) Membrane response to a single edge electrode.

Figure (4.1.1) shows what happens when a single edge electrode is excited.
If the overall membrane is large enough compared to the pupil zone, we can assume
symmetry, i.e. we can assume that the slope on both sides of the electrode is equal
in magnitude. Hence, the slope at the pupil edge is half the overall change of slope.
Therefore, to obtain the desired edge slope at the pupil boundary, the overall change
of slope around the electrode must be twice that amount. Hence, in order to obtain
the correct response, we must multiply the sensor output signal by a factor of 2
before converting it to the control voltage that then is being applied at the edge
electrodes.

The suggested solution consists of a very large membrane that is fixed along
its edge, with the pupil being at its very center with inner Laplacian electrodes,
and boundary electrodes that will directly receive the Dirac distributions from the
curvature sensor. The boundary electrodes have to be a small distance outside

the pupi! region so that the slope discontinuity will be outside the zone where
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light reflects on. Such a new membrane configuration is shown in figure (4.1.2).

The number of independent elements or actuators here stands examplary for a real

configuration.

Fixed membrane edge

Zero Laplacian zone

Boundary electrode

Pupil edge

Laplacian electrodes

Figure (4.1.2) The new membrane configuration.

This is a physically realizable solution for the real system. In the sequel, we
wish to simulate this configuration to assess its physical properties. We now have to
solve a Dirichlet problem which is much simpler than the previously solved Neumann
problem. There arises no longer any need to preprocess the data or perform any
topological analysis. We simply have to use the kernel equation (3.3.10) in the
iterations. The points that do not lie on the new membrane surface are simply
fixed at a zero position and are never updated.

Since we want to simulate an astronomical configuration, i.e., operate on
a small overall number of photons for the total image, and since each actuator

should be hit by at least 50 photons (a larger number of photons being better), the
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number of actuators in the system must be rather small. The procedure to solve the

Poisson equation is to work with a much larger array and use several discretization

points per electrode zone. For a given electrode, all the points will receive the same

Laplacian information, and the electrode will bend itself with the same curvature ‘
all over its area. The zero Laplacian zone as described earlier will of course be

discretized also, but it will receive a constant zero signal. A typical working array

to solve this Poisson equation is outlined in figure (4.1.3).

We now have all the elements needed for running closed loop simulations.

100 { 1 | 1 I 1

80
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Figure (4.1.83) Discretization for solving the Poisson equation.

4.2. Simulation of the seven element system.
Now that we have clearly defined the system, have made choices for each
of its elements, and have devised algorithms for each of them, we want to apply all

these algorithms together to perform closed loop simulations.
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4.2.a. Our first system.

We have to select a realistic configuration for the complete system, i.e.,
select the number of active elements, choose the number of elements for the esti-
mation, decide on the proportions of Laplacian and edge elements, determine the
shapes of all these elements, and specify all other parameters.

To be able to correct faint and weak stars, without being limited by photon
noise, we want to use as few detectors as possible.

If we look at the error participation for each of the Zernike terms in the
atmosphere as we explained in Chapter 3, Section 3.1.c, we see that the atmosphere
wavefront r.m.s. error can be reduced by almost a factor 7 when correcting = and
y tilts, defocus, and z and y astigmatisms. Therefore, if we limit our correction to
those five terms, we need at least five detectors and actuators.

The first basic system configuration we decided to use consisted of seven
elements, a central element, and six edge elements placed along a hexagonal pattern.
The central element corresponds to a Laplacian, while the six edge elements are the
boundary actuators. Figures (4.2.1) and (4.2.2) represent the sensor and membrane
mirror, respectively. With such a seven element configuration, we can estimate seven
independent parameters, which means that we can at best correct the first seven
Zernike terms. In practice, due to the so-called Shannon limit, we probably will not

correct them completely.
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6 boundary detectors

Pupil edge

1 Laplacian detector

Figure (4.2.1) The seven element sensor.

Fixed membrane edge

Zero Laplacian zone

[>

6 boundary electrodes

Pupil edge

1 Laplacian electrode

Figure (4.2.2) The seven element membrane mirror.

For the simulation, we must simulate the desired wavefront and pass data
successively through all the parts of the system. During the estimation and recon-
struction phases, the data will mainly be Laplacian and slope arrays, while for the
feedback loop, it will mostly consist of wavefronts for partial correction.

The simulation makes it easy to investigate the influence of every param-

eter. This enables us to judge their effectiveness and sensitivity. We can also try
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to to optimize the geometry of each element, and once we approach the optimal
configuration, we can obtain an idea as to what is the best performance that we

can expect of the system.

4.2.b. Simulations for single aberrations.

To have a better idea of the response of all the different atmospheric modes,
we shall first run the simulations for only one Zernike polynomial at a time. Once
this is done, we shall try linear combinations of those polynomials with the correct

atmospheric proportions.

a. Simulation and correction of tilt.

We applied an initial wavefront with a tilt, and ran several simulations
with different sets of parameter values. Each simulation was terminated when it
became clear that the system had converged to its final or equilibrium state. At
that moment, we were able to assess the estimate of the disturbance, and we could
look at the correction and the residual error. In the following, we describe the
results obtained for 20 simulations.

We used 10 different sets of electrode positions and sizes, and applied both
smoothing and non-smoothing on the curvature sensor signal. The smoothing here
consists of calculating an average signal for the edge electrodes from two neighbors.
The two signals are equally weighted. This technique is termed “50% smoothing”.
Introducing this smoothing technique provides us with an excellent means to reduce
high frequency noise, but also affects the reconstruction of the terms we want to
correct. Probably, a tradeoff will have to be found. The first five sets are for “large”
edge electrodes, about one fifth of the pupil radius, placed at different distances from

the center. The five next sets are for “thin” edge electrodes, about one tenth of the
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pupil radius, also placed at different distances from the center. Those electrodes
should better approach the required 6, distribution. With respect to the central
element, since for tilt the inside Laplacian is zero anyway, the central electrode
shape and size is irrelevant to the problem under consideration.

Table (4.2.1) Residual error expressed in percents of the
disturbed input tilt wavefront.

Interior radius Exterior radius No smoothing 50% smoothing

1.1 o.r.

0.9 1.1 oo 's)
1.0 1.2 fo's} 37%
1.1 1.3 11% 13%
1.2 1.4 9% 11%
1.3 1.5 8% 9%
1.0 1.1 18% 2%
1.1 1.2 14% 12%
1.2 1.3 9% 14%
1.3 1.4 9% 9%
1.4 1.5 % 8%

We notice that, exactly as we had expected, if the electrodes are inside the
pupil or very close to the pupil’s edge, the discontinuity in the radial slope makes
the system unstable. As the electrodes are placed farther away, the residual error
becomes smaller. Also, as predicted, it seems that the best convergence occurs when
the electrodes are thiner, i.e., about one tenth of the pupil radius.

We now want to describe how this convergence was reached. For example,
let us consider the last simulation, the one with 7.r. = 1.4 and o.r. = 1.5 for the
two cases (50% smoothing and no smoothing). Figures (4.2.3) and (4.2.4) show
plots of the residual error graphed versus the number of iterations. In each case, we
begin with no correction (error=100%), and after about 20 iterations, the system

has almost converged. Figure (4.2.3) shows this error reduction without smoothing.
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It just regularly decreases to reach its final value of 7%. Figure (4.2.4) shows the
same graph but this time with 50% smoothing. We notice that the estimate is
the best at iteration #£13. Later, the error increases again until it settles at about
8%. Our interpretation of this result is such that the algorithm without smoothing
underestimates the error whereas the algorithm with 50% smoothing overestimates
the error. Since the residual error, as computed by the algorithm, represents the
absolute value of the error, the seemingly excellent result at iteration #13 is a fluke,
i.e., simply represents the transition of the error through zero. This indicates that
we actually might be better of by using a linear combination of the two estimates,

i.e., using a smoothing of less than 50%.
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Figure (4.2.3) Evolution of the residual error for tilt
initial wavefront without smoothing.
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Figure (4.2.4) Evolution of the residual error for tilt
initial wavefront with 50% smoothing.

b. Simulation and correction of defocus.

This experiment is similar to the previous example, but this time, we ap-
plied a defocus aberration rather than a tilt aberration. The selection of the geomet-
ric parameters was the same as in the previous case, however, we did not simulate
the examples that were unstable for the tilts (since system stability is independent
of the applied input). Also, due to the circular symmetry of the aberration, it is
not necessary to repeat the experiment with and without smoothing. With respect
to the central element, we are no longer in a position where we can ignore this
parameter since, for defocus, the Laplacian is a non-zero constant. Hence, we chose
two separate configurations, both using circular central electrodes, but one with a

radius of 80% of the pupil radius, and the other with a radius of 90%. The results

are:



Table (4.2.2) Residual error expressed in percents of the
disturbed input defocus wavefront.

125

Interior radius Exterior radius Central radius Central radius
1.1 o.r. 80% 90%
1.1 1.3 2% 1%
1.2 1.4 4% 1%
1.3 1.5 4% 1%
1.1 1.2 6% 1%
1.2 1.3 8% 1%
1.3 1.4 9% 1%
1.4 1.5 10% 1%

For the 80% set, contrary to the tilt, the convergence turned out to be better

if the electrodes are placed closer to the pupil. This can be explained by the fact

that the defocus aberration is mainly determined by the Laplacian, the edge signals

contain redundant information. For the 90% set, the convergence error is negligibly

small. This result was found independent of the placement of the edge electrodes.

This confirms that, for defocus, the boundary conditions are less important than

the Laplacian. Also, the residual error is in general much smaller than for the tilt.

Figure (4.2.5) shows a plot of the case where 7.r. = 1.2, o.r. = 1.3, and the 80%

central electrode. The error of the estimate decreases rapidly at the beginning, and

then gradually converges to its final 8% value.
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Figure (4.2.5) Evolution of residual error for
defocus initial wavefront.

c. Simulation and correction of astigmatism.

We ran simulations with the same conditions as before, again with only
one central electrode type since, as for tilt, the inside Laplacian is always zero. The
results were about the same with or without smoothing. Since the tilt results looked
better without smoothing, we chose to present only those data in the table below.

Table (4.2.3) Residual error expressed in percents of the
disturbed input astigmatism wavefront.

Interior radius Exterior radius No smoothing

1.1, o.r.

1.1 1.3 28%
1.2 1.4 : 26%
1.3 1.5 24%
1.1 1.2 28%
1.2 1.3 28%
1.3 1.4 25%
1.4 1.5 23%
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For astigmatism, the correction is not as good as for the two previous
types of wavefronts. As predicted, we reach the Shannon limit for seven elements,
and we were therefore able to correct only about 77% of the disturbance. Since
astigmatism is completely determined by boundary conditions, it could be expected
that the correction looks better for thinner electrodes positioned away from the
pupil. However, the improvement is not remarkable since most of the error stems
from the Shannon limit which is reached independently of the electrode location
and shape. Figure (4.2.6) shows a plot of the residual error as a function of the
iteration count for i.r. = 1.4, and o.r. = 1.5. The graph looks similar to figure
(4.2.3) for tilt, except that the final value is much larger. Also, the final value is
reached faster, namely as soon as the Shannon limit becomes the dominant factor

in the error estimate.
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Figure (4.2.6) Evolution of residual error for
astigmatism initial wavefront.

d. Other Zernike polynomials.
From those first few simulations, we acquired a fairly good idea of the
system response to the three single aberrations, or five first Zernike terms that we

wish to correct.
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How about the higher terms? Although we cannot correct them with the
system as configured (since we cannot correct more than the first seven Zernike
terms with our seven electrode setup), we do not want them to interact with those
terms that we were able to correct. Therefore, when running simulations with higher
order terms as input only, we can obviously not correct these terms, but we wish
to ensure that they do not interact with lower order terms, i.e., we wish to make
certain that the residual error contains the uncorrected terms only. We therefore
would like to guarantee that the various terms are, in their effects on the residual
error, as much as possible decoupled from each other.

In order to verify this, we performed simulations for all Zernike terms up
to Z,5 independently, i.e., for all the first four rows in table (3.1.1). We tested
several setups for the different parameters similar to those that we used in the
previous examples. Since those runs are of lesser importance, we shall not print
all the results here, but provide a summary only. Table (4.2.4) shows the residual
error and convergence rate for the first 14 zero average Zernike polynomials with
i.r. = 1.3, and o.r. = 1.4, hence thin electrodes, that were placed not too closely to

the pupil; the central electrode radius being equal to 90% of the pupil radius.
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Table (4.2.4) Residual error expressed as the ratio of the r.m.s. error
when convergence is assumed over initial wavefront r.m.s.

Zernike term Convergence rate: Residual error:
(aberration) # of iterations IS ony/IMSin;
Z,, Zs (Tilt) 17 8%
Z4 (Defocus) 24 1%
Zs, Zg (Astigmatism) 13 24%
Zq, Zg {Coma) 9 660%
Zg (0-curv Coma) 16 13%
Z1o (O-curv Coma) 4 104%
Z,1 (Spherical) 16 266%
Z12, Z13 (5”" Astig) 10 307%
Z14, Z1s 10 234%

The most interesting data in table (4.2.4) clearly is the residual error for
the coma terms. The “corrected” wavefront is almost 7 times as bad as the “un-
corrected” one! The evolution for that particular run is plotted in figure (4.2.7).
We anticipated that there would be no correction, but at least we did not want the
error to increase. Furthermore, the residual error is mainly produced by a huge tilt.
Therefore, there exists coupling between the terms. Similarly, spherical aberration
produce a defocus error. High order aberrations produce lo§v order errors for terms

in the same column in table (3.1.1), i.e., the same azimuthal frequency.
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Figure (4.2.7) Evolution of residual error for
coma initial wavefront.

We suspect that the same observation is true for other adaptive optics
configurations as well, e.g. those making use of the Hartmann sensor, but we had
no chance to investigate and prove this suspicion.

The overall system with all terms present will still correct disturbances but
only if the proportion of high order terms to low order terms is sufficiently small.
We know that, in the atmosphere, the low order terms contain most of the energy,
but whether the energy content of the higher order terms is indeed sufficiently small,
that we don’t know for a fact. Only simulations with linear combinations of different

terms can tell.

4.2.c. Simulatjons for linear combinations of aberrations.

Now that we have obtained results for single aberrations, we can try to in-
vestigate the combined effects of linear combinations of those aberrations, applying
weights that are characteristic for a random atmospheric wavefront since our even-

tual goal is to correct aberrations of the atmosphere. Derived from table (3.1.3),
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equation (4.2.1) provides a rough estimate of the r.m.s. proportion for the first few

Zernike terms.
Tilt(2) ~ 28%, Defocus = 7%,  Astigmatism(2) ~ 6%,

Coma(4) =~ 3%,  Spherical ~ 2% (4.2.1)

In order to investigate the effect of individual aberrations in the overall
concert, we decided to start with tilt alone (already done), then add defocus in
the right proportion, then add astigmatism, and so forth. For each of these cases,
simulations of the obtained corrections were performed. When we have evaluated
the results for the five aberrations of the list above, we will know the response to
96% of the atmospheric components (Noll, 1976) which will give us a fairly good

idea of what happens in the real situation.

a. Tilts and defocus combined in a 4 to 1 proportion.
Of course, we ran the simulations only for stable and good configurations
as evaluated in the previous examples, i.e., we applied no smoothing and used a

large central electrode.

Table (4.2.5) Residual r.m.s. error expressed in percents
of the r.m.s. of the disturbed input wavefront.
Tilts and defocus aberrations.

Interior radius Exterior radius Convergence
i.r. o.r. Error
1.1 1.3 11%
1.2 1.4 9%
1.3 1.5 8%
1.1 1.2 12%
1.2 1.3 11%
1.3 1.4 8%
14 1.5 7%
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The convergence is pretty good, similar to the tilt alone. We have to re-
member that for defocus alone, the error was in the 1% range all the time. Their
combination has not affected the correction capability of the system. The evolution

for the particular case ¢.r. = 1.4, and o.r. = 1.5 is plotted in figure (4.2.8).
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Figure (4.2.8) Evolution of the residual error for tilt
and defocus aberrations combined.

b. Tilt, defocus, and astigmatism in the required proportion.
We ran almost the same simulations as for the previous case, except that

now we add the 6% aberration corresponding to each astigmatism.
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Table (4.2.6) Residual error for tilt,
defocus, and astigmatism combined.

interior radius exterior radius Convergence

1.7. o.r. error

1.1 1.3 o0

1.2 1.4 10%

1.3 1.5 9%

1.1 1.2 13%

1.2 1.3 10%

1.3 1.4 10%

1.4 1.5 8%

Again, the combination has not affected the convergence except for one
case in which the system seemingly turned unstable. At this point, we have no
explanation for this unexpected behavior. The evolution plots look similar to the

previous one without astigmatism, figure (4.2.8), and are therefore not presented.

c. Addition of the coma terms to the previous wavefront.

Again, we ran the simulations exactly as before, except that we added 3%
aberration corresponding to each of the two non-zero curvature coma terms, i.e.,
the Zernike polynomials Z7 and Zs.

Table (4.2.7) Residual error for tilt, defocus,
astigmatism, and coma in atmospheric proportion.

interior radius exterior radius Convergence

1.1, o.r. error
1.1 1.3 0o

1.2 1.4 75%
1.3 1.5 75%
1.1 1.2 60%
1.2 1.3 5%
1.3 1.4 75%
1.4 1.5 70%
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It is obvious that, this time, the combination has dramatically affected
the convergence. Adding just a few percent coma made the error jump from the
previous 10% range to a 70% range. The “corrected” wavefront is hardly better
than the “uncorrected” one. We had partly foreseen this as a possible problem when
we analyzed the runs for coma alone in Section 4.2.b. At that time we noticed that
the residual error was mostly an uncorrected huge tilt. Again, the errors in table
(4.2.7) are mainly produced by tilts.

An evolution plot, shown in figure (4.2.9), demonstrates that the system
starts with a good behavior, the error decreases, but after a while, it no longer works
as it should. This can be easily explained. Figure (4.2.9) is simply a superposition of
figures (4.2.8) and (4.2.7), i.e., initially, the three correctable error terms make the
total error decrease, but after a small number of iterations, the virtually unstable

coma term takes over and makes the total error grow again.
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Figure (4.2.9) Evolution for tilt, defocus, astigmatism, and coma.
To further investigate this, let us perform some runs with tilt and coma
alone, without any of the other aberrations. We know that, when there is only tilt,

the error is about 10%, and that for coma alone, it is about 660%. Let us call
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the proportion ratio of coma against tilt, for the same direction, that is either both
Cos terms, or both Sin terms. This means that we shall have combination of Z,
with Zg, or Z3 with Z;. Clearly, for no coma we have v equal to 0, and the error
is 10%, while for coma only, we have v equal to 1, and the corresponding error is
660%.

We want to evaluate the error as a function of 4 when varying ~ from 0 to
1. The results of those simulations are presented in table (4.2.8) and figure (4.2.10).

Table (4.2.8) Residual error as a function of 7,
ratio of coma amplitude over tilt amplitude.

~ Error
0.0 10%
0.1 69%
0.2 217%
0.3 364%
0.4 433%
0.5 564%
0.6 586%
0.7 603%
0.8 641%
0.9 657%
1.0 660%
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Figure (4.2.10) Error as a function of ~.
As can be seen, the error increases overproportionally with the introduction
of even a modest percentage of coma. The system would work satisfactorily if the «
value were much smaller than 0.1, but unfortunately, this is not the case for Earth

atmosphere. The true « value for the atmosphere is 3% ~ 0.1.

d. Addition of spherical aberration.

Although we already know that our system will not work for Earth atmo-
sphere, we decided to analyze the effect of adding spherical aberration to see if the
system performance deteriorates even further. We ran simulations for the same case
as for table (4.2.7), with the required amount of spherical aberration added. The
results of these simulation runs are summarized in table (4.2.9). Evolution plots

look the same as in figure (4.2.9), and were therefore omitted.
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Table (4.2.9) Error for the mixture of the first five aberrations.

Interior radius Exterior radius Residual

1.1, o.r. error
1.1 1.3 oo

1.2 14 72%
1.3 1.5 78%
1.1 1.2 72%
1.2 1.3 78%
1.3 14 78%
1.4 1.5 78%

Again, as we already knew, the combination has affected the convergence.
Adding the spherical term has not removed the negative effect of the coma. The
error now is in the 75% range. As we noticed when we ran the spherical aberrations
alone, the error was mainly due to an uncorrected huge defocus. The combination
spherical-defocus shows the same behavior as the combination coma-tilt. As for the
former case, the proportion of spherical in the atmosphere compared to defocus is
way too high for our system to be effective for correction. However, it seems that
the system at least remains stable as long as the boundary electrodes are sufficiently

far away from the pupil.

4.3. Comments and explanations for the seven element system.

We can draw some important conclusions from all the simulations we per-
formed with this first system. It is very clear that this setup will not work properly
as is to correct the atmosphere. However, we saw that the procedure worked quite
well for a number of simple cases. Our goal was to be able to correct with seven
electrodes the two tilts, the defocus, and the two astigmatisms. We were able to cor-

rect those aberrations and linear combinations of those with atmospheric weighting
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almost perfectly, when they occurred alone, i.e., when no other types of aberrations
(coma, spherical) were present. This is a positive step.

Nonetheless, we ran into problems. When we added higher order Zernike
terms, present in the Kolmogoroff spectrum, we, of course, were unable to correct
those, as we had anticipated. But, worse, under such conditions, the system even
did not correct the simple terms any longer, terms that it had been able to correct,
when alone. This was due to the fact that the higher order terms gave cause to new
lower order contributions through non-linear coupling between the various terms.

An explanation of all of this may be the following. We can split the Zernike
polynomials into three distinct categories. The first class contains the five low order
terms Z, to Zg which are theoretically correctable by this particular seven electrode
system configuration. The second class contains the Zernike polynomials Z7 to Z11
which are right in the Shannon limit zone. Finally, the third category which includes
polynomials Z;2 and above, contains higher frequency terms.

The first class does not present any problems as we were able to demonstrate
at hand of the tilt, defocus, and astigmatism simulations as well as any combinations
thereof.

The third class does not interfere either since those terms are high frequency
terms that are filtered out. Indeed, they do not affect the correction either due to
the thickness of the detectors or due to the thickness of the electrodes. These are
stable, undetectable, unobservable, and uncorrectable terms. Since they contain
very little energy in the power spectrum, this is still fine.

On the other hand, the second category of terms is the one that causes
problems. They cannot be corrected, but are not smoothed either, and their pres-

ence dominates the estimation to such a high extent that they render the overall
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correction useless for atmospheric wavefronts. They represent unstable uncontrol-
lable modes that contain little energy in the beginning, but become more and more
important as the number of iterations increases. This is why some of the evolution
plots (e.g. figure (4.2.9)) start decreasing first while those terms still contain little
energy, but as soon as they pick up a sufficient amount of energy, they start dom-
inating the controllable terms, and the residual error increases again. In order to
have the system work properly, we must keep these terms fully controllable.

How can we find a solution? It is mandatory to be able to control this second
class of polynomials, since we clearly cannot tolerate any unstable uncorrectable
modes in the system.

The first idea might be to move those terms down into the first class. To this
end, we would need to be able to correct more terms, and therefore, we would need
more electrodes and detectors. Indeed, we could correct all the terms belonging
to the first two classes if we were using 13 electrodes instead of the previously
used seven. Unfortunately, this approach does not work since there would exist
a new Shannon limit, further away but nevertheless real, which would again make
some modes uncontrollable, polynomials that currently are in the third class, i.e., we
simply would create a new second class at higher frequencies than before. Therefore,
the proposed idea is not a good one.

The solution is therefore to move those terms up into the third class. If we
can achieve this, we can make those terms stable uncontrollable and unobservable
modes. Since their original energy content is quite low, this would be perfectly
acceptable. For this purpose, we need additional smoothing. We can create artifi-
cial smoothing, and this will work. We shall end up with a small number of stable
observable and controllable polynomials (class one), and an infinite set of stable un-

observable and uncontrollable modes (class three). Fortunately, most of the energy
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of the wavefront is contained in the few low order terms that make up class one.
The price that we would have to pay for this modified design is that the correction
of the class one terms will be somewhat affected. The system will still correct those
terms to a certain degree, but it will not do so as radically as before because of the
additional smoothing.

If we want the first five terms (which are very impoftant in the atmosphere
spectrum) to be corrected accurately and yet make all higher terms stable, we need
to improve this last solution further. For example, we could use 13 electrodes with
such a strong smoothing that the Shannon terms would not be present, and the
terms Z;2 and above would thereby be stabilized. The terms Z7 to Z;1, which
would theoretically be correctable with 13 elements, would no longer be perfectly
corrected as a consequence of the artificial smoothing, however, this does not pose
any problem since these terms do not contain much energy in the spectrum. More
importantly, the first five polynomials would still be correctable with high accuracy,
since they would be sufficiently far away from the smoothing to prevent serious
system degradation. This 13 element configuration with extra smoothing may be a

good solution.

4.4. Simulation of the 13 element system:.

In the previous section, we drew conclusions about why our attempted seven
element system failed to correct a satisfactory spectrum of Zernike terms. Our
interpretation was that, owing to undersampling, mid-order terms were partially
detected but could not be properly corrected, thus producing errors on lower order
terms. In order for such a sysﬁem to work, it must be blind to terms which are

around the Shannon limit for the particular system. For instance, they can be
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smoothed out by spatial filtering. If one still wants to effectively correct tilt, defocus,

and astigmatism, a higher number of detectors becomes necessary.

4.4.a. Our second system.

In section 4.3, we suggested a 13 element system could possibly work ac-
cording to our hypotheses. Therefore, we again have to decide about a realistic
configuration for our new system. We chose 13 elements, but we still have to choose
the proportion of Laplacian against edge elements, and the shapes of the electrodes.

From the previous modal response given in table (4.2.4) and the combina-
tion runs, we clearly see that the terms that we do not wish to be amplified, are
primarily the non-zero curvature coma terms (Z7 and Zg), and the spherical term
(Z11). Those terms in the Zernike table (3.1.1) are not on the main diagonal, and
all of the terms on that main diagonal (zero curvature polynomials) received very
satisfactory corrections with the seven element system. Therefore, we do not want
to change the edge actuators in any way. The difference between our two systems
has to concern Laplacian elements only.

Now, if we consider defocus or spherical aberrations, we see that due to
their circular symmetry, it is desirable to use a central actuator. We are thus left
with six other Laplacian elements which we can easily distribute over another ring.
Figures (4.4.1) and (4.4.2) represent the new sensor and the new membrane mirror,
respectively. The overall electrode system now consists of a central Laplacian ele-
ment, a ring of six additional Laplacian elements neighboring the central element
each of which is contained in a 60° sector of the pupil, and finally, a boundary ring
of six edge elements, each of which is also contained within a 60° sector, rotated
30° against the other rings in order to improve the equilibrium in the azimuthal

direction.
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Figure (4.4.1) The 13 element sensor.

Fixed membrane edge

Zero Laplacian zone

6 boundary electrodes

Pupil edge

7 Laplacian electrodes

Figure (4.4.2) The 13 element membrane mirror.
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We shall run simulations similar to those that we performed for our previous
system. Again, we shall try to find an optimum setup with respect to the size and
position of each electrode. Also, we must remember that we have to apply some
smoothing to make the system blind to all terms that would otherwise be unstable.

Therefore, we must also try to optimize the amount of smoothing.

4.4.b. Simulations for single aberrations.

This time, we are in the first place interested in the stability of all the
terms. For the seven element system, we looked at the corrected terms and their
rate of convergence, before noticing the stability problems caused by the higher
order terms. This was not the right approach since no-one really cares about how
fast the low order aberrations are corrected if the overall system is unstable!

Hence, we shall start by checking stability, or rather non-amplification of
as many terms as we can for several different setups and smoothing. Since the
Shannon limit is now close to the 13" term, we need more than the previous 14
Zernike polynomials to work with. Hence, we have to add some more to our list.
Table (3.1.1) went up to Z;s, i.e., contained the first five rows, i.e., radial degrees
zero to four. Let us now add a sixth row. This contains the terms Z16 to Z21. They
are listed in table (4.4.1). With the same normalization procedure as before, the

r.m.s. value is still equal to 1.
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Table (4.4.1) Some more Zernike polynomials.

Zernike Azimuthal
number Z; frequency m Definition Z(p, )

16 1 Z16 = v/12(10p% — 12p2 + 3p)Cosl
17 1 Z17 = V12(10p5 — 12p® + 3p)Sind
18 3 Z18 = V12(5p°% — 4p3)Cos30

19 3 Z1o = V12(5p° — 4p®)Sin30

20 5 Z20 = v/12(p®) Cos58

21 5 Zgl = \/ﬁ(ps)Sin50

The procedure to test a particular setup is therefore to run the simulation
for each of those 20 Zernike terms, and look at the residual error and the convergence
rate. For the former seven element system, we concluded that the response was
usually better when we worked with thin edge electrodes, placed not too closely
to the pupil. For our new 13 element system, we can expect a similar behavior.
Hence, it seemed wasteful to spend more time trying to find out an optimal position
for the edge actuators since we already have a fairly good idea of where we should
put them. On the other hand, we have not worked yet on smoothing techniques.
Therefore, we shall stress more on this new aspect of our problem.

Spatial filtering and smoothing means that some curvature signals-are com-
bined in a weighted sum before they are applied to the membrane electrodes. The
farther away from each other the elements are that are combined in the weighted
sum, the larger the amount of smoothing will be. Thereby, the bandwidth of the
spatial filter is reduced which, in turn, determines which of the Zernike terms are
filtered out.

Hence, the smallest possible smoothing occurs when a signal is mixed only
with its immediate neighbor. Increasing the number of neighbors involved in the

mixing increases the amount of smoothing. In the extreme situation, taking averages
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from all the elements at the same time will result in an overall zero signal since the
overall sum is zero. That would mean an infinite smoothing, and no terms would
be corrected at all.

What we want is the correct amount of smoothing that ensures that the
terms around the Shannon limit do not disturb the operation of the system with
respect to the low order terms.

The procedure we want to follow is to start with only a small amount of
smoothing, i.e., the low order terms will certainly not be affected, while the high
order terms will probably not be sufficiently filtered, and therefore, cause overall
system instability. Then, we increase the amount of smoothing, until overall system
stability is preserved, i.e., until the high order terms are satisfactorily filtered out
by the system, while the low order terms are still corrected accurately.

The 13 signals to which the smoothing technique will be applied contain the
six edge signals, the six outer Laplacian signals, and the central Laplacian signal.
In the smoothing process, the 13 signals are linearly mixed to produce 13 new
signals which are then converted to be applied to the 13 membrane electrodes. As
we showed in figures (4.4.1) and (4.4.2), the overall configuration of the detector
and actuator systems are very similar. A one to one connection can be made.
Nonetheless, this is not mandatory. We could e.g. assume that the actuator system
is rotated by 30° against the detector system. In that case, any electrode will be
affected by two neighboring detectors which will generate some smoothing. Figure
(4.4.3) shows the system without any rotation, while figure (4.4.4) shows the system

with a 30° rotation.
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Figure (4.4.3) Sensor and mirror without rotation.

Figure (4.4.4) Sensor an d mirror with 30° rotation.
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Now that we have outlined all the possibilities for smoothing and assigned
a geometrical interpretation, from a signal processing point of view, to at least one
such smoothing configuration, let us discuss the mathematical properties of some

of them.

a. First smoothing.

As we said, the simplest smoothing occurs when only two signals are mixed.
The basic configuration for this is to use the 30° rotation alignment, and have the
applied signal to any electrode be the average of the two detector signals that
the electrode covers. Clearly, the center element will not be affected, and there is
absolutely no interaction between elements of one ring and the other, in other words
between Laplacians and edge slopes.

The simulation is run for the 20 Zernike polynomials mentioned earlier, and
the results are summarized in table (4.4.2).

Table (4.4.2) Residual error expressed as the ratio of the r.m.s. error
when convergence is assumed over initial wavefront r.m.s.

Zernike term Convergence rate: Residual error:
(aberration) # of iterations IMScony/TMSing
Zs, Zs (Tilt) 11 2%
Z4 (Defocus) 9 1%
Zs, Zg (Astigmatism) 14 22%
Z7, Zg (Coma) 8 17%
Zy, Zyo (0-curv Coma) - 100%
Z11 (Spherical) 5 66%
le, Z13 (5th' Astig) 10 ’ 71%
Z14, AT 7 147%
Zve, Zi7 5 122%
Z18, Zi9 - 100%
Z20, Z21 . 5 128%
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The correction for the terms we want to correct is really excellent, the
smoothing does not seem to affect the accuracy with which the low order Zernike
terms are corrected. The terms that we wish to suppress but not necessarily correct
are unfortunately still rather prominent. However, their amplification is way smaller
than it was in the case of the seven element system. While we previously were
confronted with errors in the range of 660%, now the largest error is below 150%.

To improve the situation further, we should add some more smoothing.

b. Second smoothing.

The previous smoothing was in the azimuthal direction only. We now want
to try some smoothing in the radial direction as well. For that purpose, we decided
to take the configuration without rotation. In a first step, we smooth only the edge
actuator signals, but don’t smooth the Laplacian elements yet at all.

Each Laplacian electrode will receive directly the corresponding detector
signal. Each edge electrode will receive 50% from its associated detector, and 50%
from the average of its two edge neighbors and its two Laplacian neighbors.

Again, the simulation is run for our 20 Zernike polynomials, and the results

are summarized in table (4.4.3).
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Table (4.4.3) Residual error expressed as the ratio of the r.m.s. error
when convergence is assumed over initial wavefront r.m.s.

Zernike term Convergence rate: Residual error:
(aberration) # of iterations IMScony/TMSin;
Za, Zs (Tilt) 4 2%
Z4 (Defocus) 5 1%
Zs, Zs (Astigmatism) 12 17%
Zz, Zg (Coma) 20 37%
Zg (0-curv Coma) 22 4%
Zi0 (O-curv Coma) - 100%
Z11 (Spherical) 3 68%
Z12, 213 (5”‘ Astig) 9 67%
Z14, Z15 7 116%
16, 217 4 115%
Z18 15 119%
Zio 4 86%
Z20, Z21 4 125%

As in the previous case, the correction of the terms we wish to correct is ex-
cellent, the correction for astigmatism has been even improved. The new smoothing
procedure has further reduced the terms that we wish to suppress. The maximum

amplification dropped meanwhile to 125%.

c. Third smoothing.

To further pursue the study of smoothing in the radial direction, we shall
smooth not only the elements on the outer ring but also the ring of Laplacian
elements. The center element too will be mixed with its neighbors.

Each ring Laplacian electrode will receive 50% from its associated detector,
and 50% from the average of its two edge neighbors, its two Laplacian neighbors,
and the center detector. The center electrode will receive 50% from the center
detector, and 50% from the average of the six Laplacian detectors on the first ring.

Each edge electrode will receive, like in the previous smoothing case, 50% from its
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associated detector, and 50% from the average of its two edge neighbors and its two
Laplacian neighbors.

Once again, the 20 Zernike polynomials were tested, and the simulation
results are summarized in table (4.4.4).

Table (4.4.4) Residual error expressed as the ratio of the r.m.s. error
when convergence is assumed over initial wavefront r.m.s.

Zernike term Convergence rate: Residual error:
(aberration) # of iterations IMScony/TMSing
Z,, Zs (Tilt) 10 2%
Z4 (Defocus) 14 1%
Zs, Zo (Astigmatism) 13 17%
Zq, Zg (Coma) 13 37%
Zg (0-curv Coma) 21 4%
Z10 (0-curv Coma) - 100%
Z11 (Spherical) 9 66%
Z12, Z13 (5”‘ Astig) 9 68%
Z14, 215 5 116%
Zie, Zu 4 115%
Z1s 9 119%
VAT 7 86%
Zao, Za1 4 125%

Compared to the previous case, there is hardly any difference. The conver-
gence rate now seems a little slower, but the residual error is the same. Therefore,

it was probably not a useful strategy to allow too much smoothing along the radial

direction.

d. Fourth smoothing.
We now test a smoothing with complete separation between Laplacian and
edge signals. The smoothing will be only along the azimuthal direction for the edge

actuators, but will be along both directions for all the Laplacian elements.
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Each ring Laplacian electrode will receive 60% from its associated detector,
and 40% from the average of its two Laplacian neighbors, and the center detector.
The center electrode will receive 60% from the center detector, and 40% from the
average of the six surrounding Laplacian detectors on the first ring. Each edge
electrode will receive 60% from its associated detector, and 40% from the average
of its two edge neighbors.

The results of the simmulation for the 20 Zernike polynomials are summarized

in table (4.4.5).

Table (4.4.5) Residual error expressed as the ratio of the r.m.s. error
when convergence is assumed over initial wavefront r.m.s.

Zernike term Convergence rate: Residual error:
(aberration) # of iterations IMS;ony /TMSing
Za, Zs (Tilt) 7 2%
Z4 (Defocus) 11 1%
Zs, Ze (Astigmatism) 17 17%
Z7, Zg (Coma) 10 37%
Zg, Zyo (0O-curv Coma) - 100%
Z11 (Spherical) 8 66%
Z12, 213 (5th Astig) 5 66%
Z14, 215 10 116%
Z16, Z17 6 115%
AT - 100%
Z1o 13 86%
Z20, 421 4 125%

Compared to all the previous cases, this one is the best considering residual
error. With respect to the convergence rate, it is faster than the last case, and of the
same order as the one before. Therefore, this smoothing technique was considered

the best among all those that we tested so far.
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4.4.c. Simulations for linear combinations of aberrations.

Similarly as for the former seven element system, we first obtained results
for every single aberration up to the 20" Zernike term. We can now try to simulate
linear combinations of those again under the condition of atmospheric weighting.
The proportions that we shall use here are the same as before, and that were given
in equation (4.2.1). This time, we can feel more confident since now all the terms
are more or less controllable, and none of them is submitted to a huge amplification
factor as was previously the case for some of the “bad” terms.

Exactly as before, to obtain a complete picture of the overall system per-
formance, we have to move step by step, starting with a single tilt and adding,
one at a time, the higher order aberrations to the input. With a complete Zernike
spectrum for the first 14 terms, this represents more than 97% of the atmosphere
perturbation energy. Since the last 3% is present only in very high order terms
that are neither detected nor corrected by the system, we can feel confident that
we know the complete atmospheric system response with those 14 first terms.

We ran the simulations for each of the four cases for which we studied the
single term response. From now on, we shall call them configurations a, b, ¢, and
d in accordance with the paragraph numbers in the previous section 4.4.b.

Here are the results for all the successive combination runs.
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Table (4.4.6) Residual r.m.s. error expressed in percents
of the r.m.s. of the disturbed input wavefront.
Tilts and defocus aberrations.

Convergence
Case number Error
a 2%
b 2%
c 2%
d 2%

This could be easily anticipated: from the seven element system, we knew
that tilts and defocus aberrations were completely decoupled, and the results for
each of them sepa.ratély were in the 2% range for tilts, and in the 1% range for
defocus.

Table (4.4.7) Residual error for tilt, defocus,
and astigmatism aberrations combined.

Convergence
Case number Error
a 5%
b 4%
c 4%
d 4%

Again, the linear combination of the term is exactly what could be expected
from single runs. The error is worst for case a, but we have to remember that the
astigmatism error was 22% for that case alone compared to 17% for the other
ones. This is enough to explain the percentage difference on the combination.
In comparison with the seven element setup, astigmatism is corrected much more
effectively. This is due to the fact that, in the seven element setup, the astigmatism
terms were already somewhat affected by the Shannon limit which is not the case

here.
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Table (4.4.8) Residual error for tilt, defocus,
astigmatism, and non-zero curvature coma aberrations.

Convergence
Case number Error
a 7%
b 6%
c 7%
d 6%

The non-zero curvature coma was the term that blew up the seven element
system. We made hypotheses as to how to design a new system that would eliminate
those problems. With our 13 element system, the addition of these coma terms does
not affect the convergence dramatically. As desired, these terms are almost filtered
out, and the system is basically blind to them.

Table (4.4.9) Residual error for tilt, defocus,
astigmatism, and all coma term aberrations.

Convergence
Case number Error
a 8%
b 7%
c 7%
d 8%

The zero curvature coma terms did not give any trouble with the old system.

They do not do so with the new one either.
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Table (4.4.10) Residual error for tilt, defocus,
astigmatism, coma, and spherical aberrations.

Convergence
Case number Error
a 9%
b 9%
c 8%
d 9%

Spherical was the second worst aberration for the seven element system.
It produced a huge uncorrectable error upon defocus. With the new system, this

seems no longer to be the case.

Table (4.4.11) Residual error for tilt, defocus,
astigmatism, coma, spherical, and 5% order astigmatism.

Convergence
Case number Error
a 10%
b 10%
c 9%
d 10%

Table (4.4.12) Residual error for the first five rows
in the Zernike table. Hence, up to Zis.

Convergence
Case number Error
a 13%
b 12%
c 12%
d 12%

We are now at a point where the first five rows of the Zernike table are
present with correct atmospheric coefficient in our simulated disturbed input. The

residual error is about 12% which is very satisfactory. This means that the r.m.s.
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corrected wavefront is about a factor of 8 improved over the uncorrected wavefront.
This is more than the required factor to go from typical atmospherically distorted

images to diffraction limited images for astronomical observations.

4.4.d. Simulations for random atmospheric wavefronts.

Since we now know that the system works for fixed linear combinations,
we have to introduce the statistical approach as described in Section 3.1.d to really
simulate the atmosphere. We now include Zernike terms up to Z,;, which represents
98% of the total energy in the atmosphere (Noll, 1976).

The computer simulates random wavefronts, and exactly as before, we look
at the residual error at convergence, and the corresponding convergence rate. Since,
this is a statistical approach, several runs are needed for our estimate of the complete
correction not to be sample limited. Table (4.4.13) shows for 15 different runs the
r.m.s. value of the uncorrected random wavefront, the r.m.s. value of the residual
error after convergence of the correction scheme, and the percentage residual error
as defined earlier. We use the best configuration we determined from the previous

runs, i.e. case d.



Table (4.4.13) Correction for random atmospheric wavefronts.

Uncorrected input Corrected output Residual
wavefront (rms) wavefront (rms) error
(radius units) (radius units) (%)
49-10—% 70-10~7 14.3%
56 -10~° 52.10~7 9.3%
67-10—6 71-10~7 10.6%
47.10°° 88.1077 18.7%
67-10° 10-107° 14.9%
54.10~6 79107 14.6%
51-10—° 10-10—6 19.6%
75-10~° 11-1076 14.7%
271076 55-107 20.4%
62-10° 83.10~7 13.4%
75-10~¢ 11-1076 14.7%
76 -10~¢ 87.107 11.4%
49.10° 84-10"7 17.1%
65-10~° 11-10—¢ 16.9%
71-10~6 82-10~7 11.5%
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Over those few values, the residual error has an average value of 14.81%.

This represents about a factor of 7 of reduction for the r.m.s. value of the wavefront.

This is a good result for an adaptive optics system.

4.5. Simulations of correction for images.

The 13 element system that we designed gave satisfactory results for wave-
front correction. After convergence of the closed loop operations, only a small
fraction of the initial error persists. However, it would be interesting to see what
this will do for the astronomer, or for the observing camera. Indeed, a wavefront
is more of a theorical tool, but is not of much interest in an observation. What we
really want are images, good images.

Back in Chapter 1, Section 1.2.a, we summarized the relations between

a wavefront surface and its corresponding observed image, equations (1.2.1) and
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(1.2.2) (Gaskill, 1978). We are now at a point where we would like to know not
only the input and output wavefront of our active system, but also the corresponding
input and output images, so that we can compare them, and be conscious of the
improvement.

To go from wavefront surface to images, we first have to go from wavefront
surface to phase. This is given by equation (1.2.1), and is an easy task. We simply
need the wavelength which we are observing at.

However, to go from phase values to images, we need to use again a 2D
FFT routine. Fortunately, this time, we do not have problems with the sampling
since the FFT size has to be the wavefront array size.

The procedure from a wavefront surface z(z, y) to obtain the corresponding
image irradiance I(z,y) is the following:

e Multiply 2(z,y) by 27 /X to obtain ¢(z,y).

e Take the complex exponential e/#(%¥) of the phase.

¢ Gate the result by the pupil function: 1 inside, O outside the pupil.

e Take the 2D FFT of the result.

o Evaluate the square of the modulus. This last computation gives the
irradiance distribution, the observed image.

With such a procedure, we are able to visualize the performances of our
system and its correction capabilities. We simulated a realistic situation in that we
used real values for wavelength and pupil parameters. We simulated what would
happen if our 13 element system was behind the 2.2m telescope of the University
of Hawaii on Mauna Kea, with a typical seeing parameter of r, = 56cm at a typical

infrared wavelength of A = 2.2um.
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Figure (4.5.1) shows a 3D plot of the irradiance distribution for an average
of 21 uncorrected images for 21 wavefront samples. Figure (4.5.2) shows the same

average image with closed loop correction.
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Figure (4.5.1) Uncorrected image for 21 samples.

Figure (4.5.2) Corrected image for 21 samples.
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Figures (4.5.3) and (4.5.4) show the corresponding contour plots of the

previous 3D figures. Note the perfect circular rings on the corrected image.

Figure (4.5.3) Uncorrected image for 21 samples.

Figure (4.5.4) Corrected image for 21 samples.

4.6. Chapter summary.
In this chapter, we first derived the necessary requirements for a real physi-
cal membrane mirror to be used in our adaptive optics system. We then looked at a

configuration with seven actuators. Unfortunately, several unstable uncontrollable



161

modes were present in this configuration. We then came up with hypotheses how to
modify the system to make it stable. A second configuration with 13 elements was
designed. This configuration was stabilized with the aid of a specifically designed
filtering technique. The stability of the configuration was tested to be very reliable.
The adaptive optics system was then simulated with typical atmospheric random
wavefronts used as disturbed input.

A physical membrane mirror in a realistic experiment has to be fixed at
its edges to a position. It is therefore technically not feasible to use Neumann
boundary conditions. We have to use Dirichlet boundary conditions. We showed
that it is possible to convert the edge signals out of our curvature signals to high
density signals which produce slope discontinuities at some places on a very large
membrane. This new large membrane has to be fixed at its edges. The pupil zone
now represents only a small disk at the center of the membrane.

A seven element configuration was tested in closed loop operations. The
convergence was very efficient and fast enough when the disturbed input wavefront
was composed of tilt, defocus, and astigmatism aberrations, or combinations of
those only. However, when higher order Zernike terms were introduced, our system
did not only fail to correct for those, but the higher order terms even introduced
new low order terms that were no longer corrected. The instability of the coma and
spherical aberrations rendered the whole system unstable.

Faced with the instability problems of our first system, alternatives had to
be found. We separated the Zernike polynomials into three class, each of which was
considered with a different perspective. The first class contains the polynomials
that we want to observe and correct as best we can. The second class contains
the unstable modes that we wish to eliminate. The third class finally contains all

the high frequency terms that are of no concern to us since they are stable and
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since their total energy content is negligible. The solution we came up with was to
expand the number of actuators to 13, and at the same time apply strong filtering
to suppress all those terms that are located around the Shannon limit, i.e., those
terms that are by nature uncontrollable and unstable.

In order to guarantee the stability of all terms, the following filtering tech-
nique was applied: each membrane electrode receives a linear combination of signals
from its associated detector and from the detectors that are associated with its im-
mediate neighbours. Even with this smoothing technique, the system can still be
considered entirely analog. The good convergence properties of this algorithm made

it possible to correct random atmospheric wavefronts so that they would give rise

to diffraction limited images.
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CONCLUSION

In this thesis, we showed that the newly introduced “curvature sensing and
compensation” concept can work for an adaptive optics system. The performance
of this system is quite good compared to the classical approach using a Hartmann
sensor from the point of view of noise sensitivity.

However, curvature sensing cannot be used as is for applications where a
very large number of independent actuators is required. For astronomy, this is not
a problem.

In closed loop operations, the system has to be designed carefully with
proper filtering to avoid any instability. The filtering we used was mostly found
empirically. The filter as well as the geometry of the actuators could be further
optimized.

Our system uses a membrane mirror. It would be interesting to study the
behavior of the curvature sensing algorithms also for a bimorph mirror where the

boundary conditions must be handled differently.
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