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ABSTRACT

The design of a new computer language, called the User Interface Language (UIL), is

analyzed and evaluated by coding a representative procedure. UIL will provide the man-

machine interface for command procedures on the Space Station FREEDOM. The UIL

procedure written is modeled after an operational procedure used in the Space Shuttle

program. This work provides a concrete test case to verify that UIL can be used to

implement procedures for the Space Station. The object oriented approach taken with

UI L is based on the successful application of these concepts for a variety of other

software tools in operation today. Three major enhancements are proposed in this

thesis: event handlers, data structures, and class/object creation capabilities. The

addition of these capabilities changes the character of UIL from an object manipulation

language to an object based language. The new capabilities, if adopted, will profoundly

change the future of UIL.



1 1

1. INTRODUCTION

NASA, in conjunction with several international partners, is currently designing the

most complex system ever to be deployed in Space, the Space Station FREEDOM. The

hardware and software in this system will be many times more complex than any

previous NASA effort, including the Space Shuttle program. The success of the effort

will rely on many new innovations in hardware and software technologies. In this

thesis, we will consider the deslqn of a new software language, called the User Interface

Language (UIL), for use on the Space Station project and reflect on the design of UIL by

writing an example UIL procedure modeled after an operational control procedure used

in the Shuttle program.

UIL will provide the man-machine interface for most of the test and operation

command procedures on the forthcoming Space Station FREEDOM. UIL will be structured

much like a natural language, and will be object oriented. UIL will also be extensively

used for the development and testing of experiments on the ground, and the remote

execution of these experiments. UIL, for example. could be used to command, from the

ground, hardware valves and pumps located within a laboratory located aboard the Space

Station. The command to open the valve on a heat exchanger might be: "OPEN VALVE OF

HEAT EXCHANGER TO 85%".

We will implement an operational Ground Operations and Aerospace Language (GOAL)

procedure, called SSL02, from the Space Shuttle launch system in UIL and comment on
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the ability to use UIL for the operations performed by SSL02. We shall accomplish this

by using a computer program called a parser that allows us to implement the syntactical

description of the UIL language. The parser allows us to write the SSL02 example in UIL

code and verify that the UIL version of the SSL02 is syntactically correct. The UIL

version of SSL02 then provides us with the information needed to verify that the

language can be used to reasonably implement SSL02. We will show that, to completely

implement the SSL02 example in UIL, several extensions must be added to the UIL

syntax.

This document is organized in the following manner: The remainder of this chapter

discusses the background and requirements for UIL in the Space program. Chapter 2

discusses the general concept of object based systems, the rational for using an object

based approach in UIL, and general high level goals for the design of UIL. Chapter 3

discusses, in detail, the proposed syntax of UIL. Chapter 4 develops in detail the SSL02

example. Chapter 5 discusses each proposed extension of the UIL syntax needed to

implement SSL02 and provides a rationale for the proposed extensions. Finally, Chapter

6 will review the observations made about UIL and provide a summary of the

conclusions. There are also several appendices that contain useful information

including: a listing of the UIL syntax definition, a short GOAL code example, the SSL02

procedure written in UIL and a list of acronyms.

1 . 1. The Role of UIL

UIL is being designed to provide users powerful access to Space Station resources

without the need to write procedures in a conventional computer programming language,

such as ADA. UIL will be used by a wide range of personnel including scientists, test and

operations personnel, and astronauts. Most of these users will not be trained computer
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programmers or engineers and cannot be expected to write ADA procedures to perform

their day to day jobs. Conventional operating system command shells, such as VMS DCl,

DOS •..bat files, or Unix shell scripts, can provide some of the functionality needed by

these users; however, these command shells are not sufficiently powerful for extensive

use in the Space Station environment. Ull supports specific functions that allow access

to Space Station resources and also provides a command language that is consistent across

all of the operating systems that will be used in the Space Station environment. Ull will

fill the gap between the operating system and conventional computer programming

languages.

Many of the concepts of object based systems are included in Ull to provide the users

with a more familiar data abstraction for hardware devices then found in conventional

computer programming languages. In Ull, most Space Station subsystems will be

represented by a computer data type called an object. This computer 'object' is the

internal computer version of a physical device on the Space Station, for example, a

valve. Commands that are issued to the computer object will, in turn, cause the

computer to direct the physical object to change state. This command to an object is

called an 'action' in UIL. It is also possible for an object to have internal components

that are also objects. In the example MOPENVALVE OF HEAT EXCHANGER TO 85%M,the

"HEAT EXCHANGER" is the object that represents a complex system, the "VALVE OF" is an

internal component of the heat exchanger and is also an object. The MOPEN... TO 85%" is

the action that will be applied to the object "VALVE" within the MHEAT EXCHANGER"

subsystem.

Any changes of state within the Space Station will be specified by an object-action

pair. An object can be tested, stopped, started, examined, or asked to perform any other
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actions that it understands how to respond to. Each object may behave differently, based

on the type of object it is, to the same action. Objects will only respond to the actions

that have meaning for them. The object itself will know the correct way to respond to a

given action. For example, the action "OPEN" would perform a much different set of

procedures for an electric valve than it would for a pneumatic valve. Both types of valve

objects would receive the same action, that is to "OPEN", and would execute the correct

code required for each valve type. The burden of issuing the correct low level commands

to the hardware becomes the object software responsibility and not the responsibility of

the user of UIL.

UIL, and the many other tools that will be built to support it, will contain elements

of data base managers, display systems, user input/output interfaces, and remote

control languages. UIL will supplement and replace development in earlier aerospace

languages, such as GOAL. UIL will provide an easy to understand method of describing and

controlling complex hardware subsystems. The objects will also contain additional

procedures to support the simulation of the object behavior. This will allow debugging

software procedures before the hardware is complete, or to support operational failure

diagnosis.

It is expected that the Space Station will be composed of many thousands of software

'objects' representing subsystems built by numerous contractors and international

partners. UIL will be used in all ground based testing and operations, new launch

subsystems, and operation procedures on the Space Station. The scope of the challenge is

expected to be immense: There could be more that 20,000 object/action pairs in the

Space Station. UIL will also define the model that will be used to represent data and

control for all objects within the Space Station, and defines the structure that NASA must
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use to manage the development and configuration of Space Station subsystems and ground

support equipment (GSE).

1 .2. Syntactical Descriptions of Computer languages

A computer language is a high level description of commands and procedures that is

written to perform a particular function. These high level commands are turned into low

level instructions that can be understood by the computer. A computer language consists

of both a syntax and of semantics. The syntax corresponds to the structure of the

statements in the language, whereas the semantics describe the meaning of the

statements. The semantics of a new language is contained in the written description of

the function that each statement performs.

In order to evaluate the usefulness of a new computer language to an application,

there must be a formal description of the language. The formal description for the

syntax of UIL used here will be presented in the Backus-Naur Form (BNF). Given a BNF

form of a new language, it is possible to verify the syntactic correctness of a procedure

written in the language in an automated way by using a syntactical analysis tool called a

parser. The language syntax can only be used to verify that these rules are followed to

form a syntactically correct program, it cannot determine if the program is logically or

semantically correct. In the evaluation of UIL, a syntax parser procedure will be used

(hereafter called simply the parser).

With the parser procedure, the syntax description of UIL is input along with example

procedures written in UIL. The parser will output information on the correctness of the

syntax of the example procedure. Semantic correctness will be verified manually by

analysis and review of the procedure. The parser used by the author was written by A.
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P. Bongulielmi1 and is based on an algorithm by N. Wirth2. The parser was written in

Pascal and has been ported to many different machines, most recently to an Apple

Macintosh II by the author. With this parser, we will be able to test the syntax of UIL

procedures before the language is implemented.

1 .3. Formal Requirements for the UIL

The discussion of UIL in this thesis is based on the specification of UlL3 dated 12

July 1989 entitled 'Specification for the Space Station UIL Version 1.0'. The writing of

the UIL specification was a group effort that included Francois Cellier, University of

Arizona, Randy Davis, Un.versity of Colorado, Cliford Grim, IBM, Charles Shaw,

Century Computing, the author, and many others. Randy Davis deserves special credit as

he was responsible for writing the majority of the 150 page long UIL specification.

There is significant overlap between portions of this thesis and the UIL specification,

most notably in Chapter 3. The UIL specification provides more detail in the

specification of the semantics of the UIL; therefore, the reader interested in additional

detail is encouraged to also review the UIL specification.

Ul L has evolved from many other languages used in the Space program, from

advances in user interfaces, and from object based languages. Figure 1.1 shows many of

the languages that UIL has evolved from.
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Figure 1.1 • The UIL Family Tree

Two important ancestors for Ull are GOAL 4, developed at Kennedy Space Center and

used for the Shuttle test and launch operations, and STOl5, developed by Goddard Space

Flight Center and used in the test and operations of many Earth-orbiting spacecraft.

Both of these languages were developed by NASA. They and another language called TCl6

were found not to completely meet the requirements for UIL. Three newer languages,

SSOl7, CDOlS and CSTOl9 were also found not to completely meet the needs for the Space

Station project. None of these languages would produce the modern, easy-to-use and

easy-to-maintain language required for the Space Station. It was also felt that several

new and innovative programming concepts were needed within Ull to support the
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software programming tasks that will be undertaken for the Space Station. Therefore,

the group working on the requirements formed an updated statement of requirements for

UIL contained within the 'User Support Environment Functional Requirements

oocument" O. Concepts from object based languages have also contributed extensively to

the design of UIL (discussed in Section 2.2). A user interface prototype 11 also provided

input to the design of UIL. Finally, UIL was designed to be compatible with ADA 12, as

ADA is the language that will be used for all conventional programming on the Space

Station project. It is also expected that the actual implementation of the data structures

and actions of most objects used by UIL procedures will be written in ADA.
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2. UIL DESIGN ISSUES

This chapter introduces the reader to object based systems and discusses several of

the issues that influence the design of Ull., The rationale for the object based design of

UIL is also given. The chapter is motivated by the author's experiences in porting a

large GOAL procedure called SSL02 into Ull, SSL02 is a procedure from the operational

software currently used to launch the Space Shuttle, and should be typical of the type of

programming that UIL will be used for on the Space Station. Chapter 4 discusses the

translation of SSL02 into UIL in more detail.

Porting SSL02 to UIL allows testing aspects of the design of UIL better than might

have been done by simply 'designing' a language on paper. Indeed, the experience brought

to light several issues that the current deslqn of UIL does not address. While the debate

continues as to the exact nature of UIL, this thesis addresses one design area in depth,

namely whether UIL can be used to replace GOAL for writing procedures similar to the

ones that are currently used on the Space Shuttle program. The answer is a qualified

yes.

In this chapter, we intend to provide some rationale for the object orientation of UIL

and outline a 'high level' set of goals that UIL must meet to replace GOAL as a development

language. These high level goals can be viewed from the point of view of a manager of a

group of GOAL code developers on the Shuttle program. This manager would ask questions

such as: Are the basic concepts used in UIL proven to be reliable and useful?, Does the



20

design of UIL support effective solutions for the software that I currently develop in

GOAL?, Will UIL simplify the development of my software?

The answers to these questions are, to a great extent, found by examining the 'new

concept' in aerospace languages that UIL introduces: object based design. There are three

factors about object based design that should convince the manager that this 'new concept'

will permit UIL to meet his goals for the language. These factors are as follows: the

object data paradigm is useful for the representation of the Space Station subsystems,

object oriented systems have been used successfully in recent years to simplify many

designs. Object oriented programming should also increase the reliability and reduce the

cost of UIL programming. Let's discuss the details of an example 'object' and address

these issues as the object based concept is developed.

2.1. An Example Object

An object is a version of a physical device in the computers memory. The valve

shown in Figure 2.1 is almost as simple as one which you might find in an automatic

plant watering system. The valve has an input port and an output port that are connected

to other physical devices, for example, the main water line and some sprinklers (we

shall later represent these other devices as additional objects in the computer's

memory). The control input is attached to an electric solenoid that opens the valve when

power is applied. For the Space Station, the valve cannot be quite as simple because the

valve may be part of some mission critical or life sustaining subsystem. It is no longer

sufficient to command the valve to open and just hope it does! To ensure that we really

know that the valve has worked correctly, let's add two sensors to the valve: one that

will indicate when the valve is fully open and one to indicate when the valve is fully

closed (called status-open and status-closed). Although this seems to be a simple
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change, we shall see in a later chapter just how difficult these two sensors can make the

control procedures for this valve.

Status
~

Input

Control
Input

Status
Closed

-- Ouput

Figure 2.1 • Simple Electric Valve

In the computer memory, this valve can most simply be represented by three

procedure calls as shown in Table 2.1. There is no data associated with the valve as

there is nothing that the computer needs to remember about the valve. Two procedure

calls read the open and close status from the valve support hardware ports directly, and

one procedure call writes the command to open or close the valve to a hardware port that

activates the solenoid. The programmer would execute anyone of the three procedure

calls when ever needed - this is an example of standard procedural programming. This

type of programming is supported by most languages that are in use today (C, Fortran,

Pascal, ADA, ...). These three procedures might be placed in a library or a special file

and can be carefully controlled or 'packaged'; however, they are still simply procedure

calls. If another valve was to be added to the program, three more routines would have to

be added to the library with different port numbers.
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Table 2.1 • Simple Valve Data Structure and Procedures

Device name: Very Simple Valve
Data: Procedures:
n/a Read Open Status from input port 23

Read Closed Status from input port 24
Command Value at output port 25

A clever programmer would notice that several valves may need to be controlled, and

add additional computer data memory to remember, or store, the values of the input and

output port numbers for each valve as shown in Table 2.2. As valves are added, the three

routines would be used to perform the desired functions on each new valve. The

programmer now has an additional problem, where to store the information about the

port numbers of each valve. This, of course, is simply solved by using arrays or data

structures. However, as subsystems become more complex, the programmer is faced

with a new problem: new devices to support (such as pumps, tanks, and motors). These

new devices can be supported by adding new types of data structures. The more device

types you have, the more complicated the control and memory management will become.

Table 2.2 • Valve Data Structure and Procedures

Device name: Valve
Data: Procedures:
open-input-port = port 23 Read Open Status from open-input-port
close-input-port = port 24 Read Closed Status from close-in put-port
command-port = port 25 Command Value at command-port

Conventional procedural languages, including ADA, are of limited help to the

programmer in his task of supporting the growing number and complexity of devices and

their interconnections. The basic problem is that the conventional procedural languages

'bind' the execution order of procedures at compile time, that is to say, when the

compiler generates code, the execution of a procedure is fixed into memory. If the
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programmer desires to execute one procedure if the device is a valve and another

procedure if the device is a pump, then the programmer must test the device type and

then call the desired routine. Every programmer is familiar with this type of

programming, and clever programmers create very intricate and elegant ways of

handling complexity. Object based support in a langua'ge can simplify these applications

and provide a more consistent method of handling data and procedures.

At the most basic level, object based languages provide a data driven method of

executing procedures (ADA supports this only to a limited extent with operator

overloading, see Section 5.2 for more details). Table 2.3 shows the description of a

simple object, called valve 1. Valve 1 has the same data and procedures as the last

example, and something new called actions. The data and procedures of the last example

(shown on the left side of the table) are now internal to the new object. The external

interface to the object are the actions, shown on the right side of the table.

Table 2.3 - Valve 1 Object Structure

Object name: Valve 1
Internal Object Data: External Actions:
open-input-port Close
close-in put-port ()pen

command-port Read Status
Internal Object Procedures: Set Ports
Read Open Status from open-input-port Initialize
Read Closed Status from close-input-port Print Status
Command Value at command-port Help
Read Command Status at command-port

Actions are procedures that are called by the object system function dispatcher based

on the kind of object the action is sent to. You can think of the action as a message that is

sent to an object. Once the object receives the message, the object interprets the action

by executing the action procedure that produces the desired result. For example, if you
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send the action 'OPEN' to Valve 1, then the object system will execute the open procedure

referred to in the declaration of the object Valve 1.

The action message causes the open procedure to execute in the same manner in which

any other procedure would execute. What is different about the object orientation is that

the actual call to the correct open procedure was determined by a dispatcher by

examining the 'object' type that the action was sent to. Had you sent the action 'OPEN' to

a 'DOOR', the dispatcher would have executed a different routine. The advantage is that

the programmer does not write code that determines which open procedure needs to be

called or how the open takes place. In the case of the Space Station, the programmer of

UIL code will primarily manage objects and the actions to send to them, and will seldom

worry about how to 'OPEN' a valve or how the object finds the correct open procedure for

execution.

In Table 2.3 we added several other actions to provide the valve with a full set of

support. The 'OPEN' and 'CLOSE' actions cause the valve to change state, the 'READ

STATUS' action returns the valves position as best as can be determined, the 'SET PORTS'

action sets the input and output port addresses, the 'INITIALIZE' action sets the objects

internal data to a known state, the 'PRINT STATUS' action outputs the objects status to

the operator, and the 'HELP' action returns information on the object, and on the data and

actions that it contains.The low-level procedures still exist in this object, but they are

now only used privately by the object's action procedures.

A more concise definition for UIL objects follows (a more detailed discussion of these

definitions can be found in any of the references discussed in the next chapter):
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( 1) An OBJECT CLASS, or simply CLASS, is a formal description of the object

structure including the private memory, the private procedures, and the

set of action procedures it contains. In UIL, a class cannot receive

actions, it can only be used to instantiate (bring into existence) a new

object. In some object based implementations, the class itself is an object

that can receive actions.

( 2 ) An OBJECT, instance, or instantiation of an object is the data structure

that contains the attributes and actions associated with an object, the

attributes and actions as defined by the class that it was instantiated from.

An attribute value refers to the value of the attribute in the object's

memory.

( 3) Instantiation is the act of creating an object of a particular class type.

( 4 ) An ACTION is a request that is sent to an object to carry out an operation.

Within the object, the action procedure is the description of how to

perform the requested operation.

(5) A SUBCLASS is a new class (with a new name) created by adding additional

private memory, private procedures and action procedures to an existing

class. The new class is said to INHERIT all the features of the original

class.

( 6 ) A SUPERCLASS is the class from which a subclass has inherited features

(see subclass).
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( 7 ) If a subclass is allowed to inherit features from more than one class, the

object based system is said to allow multiple inheritance. The subclass

contains all the features of all the classes that were used to create it.

( 8 ) If an action procedure is defined in both the superclass and the new

subclass, then the action procedure in the subclass will be executed, and

it is said to override the action of the superclass. There is often provided

a technique that allows the execution of the action procedure of the

superclass from within the subclass action procedure.

( 9 ) Binding is the term used to describe the time when the action procedure is

fixed into code. The binding can happen 'early', i.e. at compile time

(executes faster, is less flexible), or 'later', i.e. at execution time

(executes slower, is more flexible).

Using an object based design is a convenient method of organizing data and procedures

in a compact way. The object representation can be applied to many application

problems with positive results. The object representation should be thought of as a tool

for the programmer for solving data management problems. Objects should not be

overused, and they do not replace conventional data structures for many applications.

The process of dispatching actions against objects consumes computer time that may not

be justified or available. The dispatching overhead is most evident in applications that

are characterized by a large number of very small objects.
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2.2. Object Oriented Systems

There are many examples of successful object oriented systems and languages in use

today. Several current examples of available object based languages are as follows (most

are commercial products): C++ 13. Objective C14. Actors 15. Flavors 16. Loops in

Lisp 17. Scoops in Scheme 18. Classic ADA 19. and Smalltalk-8020. The basic concepts

of object orientation have been discussed and used for many years (see 'Structured

Programming' by Dahl, Dijkstra, and Hoare21 or the simulation language called

SIMULA22 for some of the early implementations). The best known example of a full

featured object based computer environment is Smalltalk-80.

One of the most successful applications of object based design is found in handling the

user interface and window systems in computer workstations available today. Due to the

easy implementation of object based concepts in Lisp, most versions of Lisp support

some type of object structures, for example. Flavors. Scoops. or Loops. Consequently,

object based window systems have become the standard for Lisp workstations. New

graphic and user interface standards other than Lisp workstations are now being

designed to be object oriented, for example, widget tool kits for X-windows systems23.

The lack of object support in conventional languages has been one of the drawbacks

preventing a more extensive use of object based design.ln the case of X-windows, most of

the widget tool kits have been built by using conventional C compilers. This requires the

object orientation to be 'programmed' manually by using conventional features of the

language. In recent years, object concepts are being retrofitted into conventional

languages such as C (C++, Objective C, available object support libraries), and ADA

(Classic ADA). The availability of these languages should allow more widespread use of

object based design.
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The trend toward the use of object oriented languages is also fueled by the hope that

using an object based approach will reduce the cost of software development. Some of the

rationale behind the development of Objective C, for example, was that object based

languages increase the ability of software to be reused. The compact nature of object data

and procedures makes it easier to hide the details about the object. This increases the

portability of the objects and code. The success of object based systems provides the

answer to the managers first question: are the basic concepts proven to be reliable and

useful? The basic concepts of object oriented systems have been developed over the last

20 years. Modern workstations depend, in many cases, on object based concepts to

provide a solution for programming the complex window systems and user interfaces.

And finally, there are now a considerable number of languages in existence that support

object based programming.

2.3. ADA compatibility

ADA will be used to build the attributes and actions for most objects for UIL

execution. While ADA does support packages, data hiding, and operator overloading, it

only provides limited compile time binding, and does not support inheritance (see Table

2.4). These features, if they are deemed necessary, can either be added to ADA, or an

ADA compiler with object based extensions can be used. UIL is required to be compatible

with ADA.
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Table 2.4 • Object Features of Several languages

Feature ISmalltalk I Ada c++ I Objectlve-C lUlL
Binding time late earlv either either TBD
Overloading yes yes yes no no
Inheritance ves no ves ves TBD
Multiple inheritance yes no no possible TBD
Commercial availability yes yes yes yes no

As can be seen in Table 2.4, there are many technical issues concerning the

implementation of UIL that have not currently been resolved. The exact implementation

of UIL is not the subject of this thesis; however, we will show in later chapters that

some of the implementation details cannot be completely separated from the design of the

syntax of UIL.

2.4. Objects and Hardware Subsystems

As will be demonstrated in the following chapters, our experience with SSL02 has

shown that an object oriented approach will work well for the control of complex

hardware such as the systems that will be used within the Space Station. No other

programming paradigm appears to provide the association of data and procedures in the

efficient way that an object based approach does. The following factors are considered

most important:

( 1) The object oriented paradigm matches the problem, that is, the object

representation of software devices closely models that of physical reality.

The UIL programmer will deal with objects in software at the level of

valves and motors, not bits and bytes.
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( 2 ) In using UIL to describe hardware subsystems in the Space Station, there

will be many instances of each object class. An object oriented system is

used most efficiently in an environment where there is more than one

instantiation of each object class.

( 3 ) Class Inheritance can be used effectively for many hardware objects in

the Space Station. Classes for hardware subsystems will group software

objects into hardware groups (For example, pumps, valves, or pipes).

Subclasses will represent the more specific types of a class (For

example, electric valve, pneumatic valve, and big valve). Multiple

inheritance can also be applied in a physically meaningful way, for

example, the basic valve class can be combined with a liquid oxygen

(LOX) class to make a new subclass of LOX Valve (cf. the SSL02 example

of Valve + LOX precautions).

The simple mapping of object based representation to hardware subsystems provides

the answer to the manager's second question: does the design of UIL support effective

solutions for the software I currently develop in GOAL? GOAL supported the

representation hardware at only the most basic level, for example, at the level of input

and output ports. Contrary to this, UIL provides a higher level data and procedure

organization structure that will support effective and efficient solutions for programs

now written in GOAL code.

2.5. Writing UIL

One of the most noticeable differences from GOAL development will be how the

procedures are written. In GOAL, there was no effective way to decompose large control
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programs into smaller units. The object orientation of UIL will allow complex

procedures to be written in an easier manageable and more economic fashion. In UIL,

most of the programming will involve the creation of robust computer objects used as

interfaces to the control procedures for valves, pumps, and other hardware items (most

of which will be coded in ADA). Once these objects are implemented, building subsystem

models will be simple, and writing UIL programs that control or monitor these

subsystems will be easier than writing equivalent GOAL procedures for the following

reasons:

( 1) An entire hardware subsystem object will be created by simply

connecting together many smaller objects. The subsystem object will

contain the information of the way in which the simpler objects are

interconnected within the actual hardware subsystem.

( 2 ) Hardware subsystem objects also contain control information by having

access to the actions of the simpler objects (For example, the valve will

know how to perform basic valve operations). Additionally, any voting

strategy used to determine the actual state of an object in the subsystem

will be built into the 'schematic' of the subsystem object. A voting

strategy is a method used to determine the state of something based on

several measurements, for example, if there are two votes for open and

one vote for closed, then the valve is taken to be open.
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( 3 ) Hardware subsystem objects will contain current state information, both

from a programmatic point of view (For example, what the program is

trying to accomplish: opening a valve, starting a pump, ...) and from a

physical point of view (For example, the measured temperatures, flow

rates, switch settings, ...).

( 4 ) Each object within the subsystem will also contain computer models of

themselves to allow testing and simulation of the subsystem itself. This

will allow off-line experimental simulations of the physical system in

the event of unexpected operating conditions or for developmental

testing(5}. The subsystem will be able to communicate status

information to the outside world (For example, to operators, printers,

...) without hard coded device names or paths.

( 6 ) The objects should also contain the information needed to model component

failure modes for both off-line simulations and for control of operational

systems with actual component failures.

All the information about controlling, testing, or simulating a hardware subsystem

can be contained in the object structure. This object structure will be consistent for

each program that will be written (testing, simulation, controlling, ...). The additional

information in the structure is not harmful as only the information needed for a

particular task is used.

The clean representation of data, control, and interconnections of objects provides

the answer to the managers third question: will UIL simplify the development of my

software? When procedures were written in GOAL, there was no support for higher
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level data structures. Each programmer devised his own 'clever' solution, and all

information had to be programmed into the code; therefore, there was little overall

structure or consistency to the programs. UIL provides an intelligent, high level

structure for all device specific information.

2.6. UIL Execution Issues

UIL represents a departure from a long tradition of aerospace languages. UIL is a

modern, object oriented, modularity structured, hierarchically decomposable language.

Most languages and programs previously used in aerospace were completely flat. Often,

even subroutines were not used but replaced by sequences of 'goto' statements within an

amorphous, and almost unstructured large piece of code. Reasons for this traditional

approach to aerospace programming are the need for fast program execution, and the

need to be able to measure the execution time of particular program sections accurately.

However, on the other hand, programs written in this manner are very expensive to

properly maintain, and it is difficult to prove their correctness. It is felt that, with the

advent of faster computers, the need for time-optimal programming has become less

imminent. Also, if the need arises for optimization of time-critical portions of the code,

the UIL processor could easily be equipped with a compiler switch that would request a

particular program section to be flattened out for improved run-time efficiency.

2.7. Object Manager

To provide operational management over objects that represent operating hardware,

it is expected that a set of graphical and textual tools will be available to build, edit, and

manage the 'operating' hardware subsystem objects. There are at least two uses of object

representations of hardware subsystems: controlling actual hardware and running
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simulations of the hardware. There will be an object manager that will give one, and

only one, operating procedure intrusive access to the actual hardware at anyone time

(call this the 'operational-copy' of the object). In the Space Station environment, the

object manager is complex due to the fact that there may be two, or more, controllers

for the same hardware (either due to redundancy of hardware or to allow greater

flexibility). This object manager will allow as many 'simulation-only' copies of the

object as requested by users needing them. Nonintrusive access to the hardware (e.g.

reading the current valve position) may also be granted to several controllers

simultaneously.

In all likelihood, the implementation of the object manager will operate somewhat

like distributed database systems. For example. one method that might be used would

support the concept of a 'operational-copy' token. The processor holding the token is the

only processor that is granted intrusive access to the hardware. This token is initially

passed from the object manager to the processor in charge of the hardware. The token,

in turn, can be passed back to the object manager, or to another processor desiring

future control of the hardware. There will also be support to allow the regeneration of a

token that is lost due to a processor or a network failure.
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3. UIL SYNTAX DESIGN

This chapter summarizes syntactical differences between UIL and conventional

languages, such as C or ADA, and discusses several extensions added to UIL by the author.

The version of UIL used in this thesis is a modified form of the version published by the

User Support Environment Working Group (USEWG) dated 10 June 1989. The

organization of this chapter parallels Chapter 3 of the USEWG document. The version of

UIL used in this thesis differs from the original in two major respects: this version can

be parsed with an LL(1} parser, and this version supports the creation of complex

objects in UIL. LL( 1) st ands f or left parsible with look ahead of one symbol only.

Appendix A contains the complete listing of the UIL syntax. Only the significant

differences between UIL and conventional languages will be discussed in this chapter.

The reader who is interested in a more detailed description of UIL is directed to the

USEWG document.

This thesis uses the LL(1) version of a language syntax. An LL(1} version is

convenient for study because it is possible to obtain a parsing algorithm which

determines the syntactical correctness of test program fragments. It does this by

scanning the input file from left to right while looking ahead only one symbol. The

algorithm is straightforward, and there exist tools to examine such a language syntax

before the language is actually implemented. The parsing tool used in this thesis works

with LL(1} grammars only. The original UIL grammar was modified to permit the use of
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the LL(1) parser. All features of the original UIL syntax were represented in the LL(1)

version. The only inconvenience in the LL(1) form is that it is not as easily readable by

humans; therefore, both the USEWG and the LL(1) versions are shown in the Appendix.

The description of the syntax in this chapter will use the USEWG format.

The USEWG version of UIL does not allow procedures to define or create complex

objects. For the task of porting SSL02 into UIL, UIL must be able to define and use

complex objects without the aid of objects built external to UIL. SSL02 is a procedure

from the operational software currently used to launch the Space Shuttle, and should be

typical of the type of programming that UIL will be used for on the Space Station. The

syntax that will be used to create complex UIL objects is provided in this chapter.

3.1. Notation

The syntax is presented in Backus-Naur Form (BNF) notation as shown in Figure

3.1. The corresponding syntax plots are shown in Figure 3.2 and Figure 3.3. The

general syntax of a production rule is: name of the production (a non-terminal symbol),

followed by the '=' symbol, followed by an expression, and terminated through the 'o'

symbol. In the figure, any text between pairs of 't" and '*/' symbols are comments are

ignored by the parser. The reader may already be familiar with the BNF notation from

reviewing the syntax of ADA or other modern languages. ADA was defined by using the

BNF notation. However, ADA does not possess an LL(1) grammar and is not LL(1)

parsible. The BNF format used in this thesis differs somewhat from the USEWG

document to allow compatibility with the parser program used by the author.



/* A language element is defined through a production rule. */
language_element = definition .

/* Keywords are shown in quotes and are capitalized for clarity. */
if_statement = 'IF' expression 'THEN' any_statement

/* Definitions may contain optional parameters within square
brackets. */

valve type = 'THE' [ 'BIG' ] 'VALVE' .
/* valve type will allow either 'THE BIG VALVE' or 'THE VALVE'

to be-parsed as syntactically correct. */

/* A logical 'AND' is indicated by having a symbol follow
another. For valve type in the last example, the 'VALVE'
symbol must always follow the 'THE' symbol */

/* A logical 'or' is indicated using the' I' symbol. */
one or another = 'ONE' I 'OTHER'
a_or_b=or_c = 'A' I 'B' I 'e' .

/* Operators of differing precedence are evaluated from highest
to lowest. Adjacent operators that are of the same precedence
are evaluated from left to right. */

one or another and abc = one or another a or b or c .
/* The-last definition permits one of the-following: 'ONE A' or

'ONE B' or 'ONE e' or 'OTHER A' or 'OTHER B' or 'OTHER e' */

/* Parentheses can override the left to right parsing. */
one or another and next = ( 'ONE' I 'OTHER' ) 'NEXT' .
/* The-last definition permits only one of the following:

'ONE NEXT' or 'OTHER NEXT' */
modified one or another and next = 'ONE' I ( 'OTHER' 'NEXT' ) .
/* The last definition allows only one of the following:

'ONE' or 'OTHER NEXT' */

/* Curly braces denote repeated elements. */
repeat one or more times = { ( 'A' I 'B' I 'e' ) } .
/* The-last definition allows any of the following: 'A' or

'AAA' or 'B' or 'BA' or 'eABBBA' but not " (nothing). */

/* The '$' indicates where in the braces a repeat can exit */
repeat zero or more times = { $ ( 'A' I 'B' I 'e' ) } .
/* The-last-definition allows any of the repeat one or more times

examples and also allows " (nothing). */ - - - -

loop with exit = { 'A' $ 'B' }
/* The last definition allows one of the following:

'A' or 'ABA' or 'ABABA' but not 'AB' or 'ABAB'. */
Figure 3.1 - Example BNF Notation

37
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Figure 3.2 • Example Syntax Plots (1 of 2)
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Figure 3.3 • Example Syntax Plots (2 of 2)
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3.2. Character Set

The character set used for UIL is defined by the international standard ISO 64624.

ASCII is the U.S. version of ISO 646. Except within strings, UIL treats characters as

case insensitive.

3.3. lexical Elements

UIL statements are composed with lexical elements, as constrained by the syntax, to

form commands or procedures. The lexical elements are the words, numbers, strings,

and other special symbols used by UIL.

3.3.1. Words

In UIL, a word is defined as shown in Figure 3.4. The USEWG UIL defines a word as

letter { $ ( letter I digit)}. The parser used by the author understands 'IDENT' as

equivalent, and faster, than letter { $ ( letter I digit)}. Therefore, 'IDENT' is used, and

'letter { $ ( letter I digit) }' is commented out. The objecCdirectory_entry has been

added to the USEWG version to allow the parser to correctly recognize some typical UIL

objects. Remember that these objects will be designed by NASA or NASA contractors for

operational subsystems. The UIL executor and the parser must both know the objects and

actions that the UIL procedure may use in order to verify the syntax of a UIL procedure.

word = 'IDENT' /* letter { $ ( letter I digit) } */ I
object directory entry /* allows words to be OBJECT names */ .

Figure 3.4 - Definition of a Ull Word
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3.3.2. Numbers

UIL supports the numeric lexical elements, such as integer or real, in the same

format as ADA with minor exceptions. The USEWG version of UIL does not directly

support complex data types, data structures or arrays. The lack of support for these

data types may be a serious limitation for UIL programmers (see Chapter 5 for the

author's data type extensions to UIL).

3.3.3. Dates and Times

A special data type is supported to represent dates and times in UIL. Dates and times

are used extensively in the test and operation software that UIL is expected to be used

for.

3.3.4. Strings

Unlike most languages, UIL defines two types of strings as shown in Figure 3.5. The

texcstring is defined in the same way as in most conventional languages. The

path name_string is a special string that represents only file pathnames. The pathname

string represents a non-portable aspect of UIL. For example, the pathname_string

'/usr/myfile' would be used in a Unix system; whereas, the pathname_string

'host1 ::dkO:[usr]myfile,' would be seen in a VMS system.

text string = '''I { character} '''I
pathname string = "~I { character} " ,

/* Examples
text string:
pathname string:

"Test one", "JSC 30497"
'/dev/mta3', 'usr:[test.progs]t13a.exe' */

Figure 3.5 - Definitions of a String
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The author believes that this is not the correct way to handle pathnames between

different systems. This method builds into the language a feature that will result in the

production of non-portable code. In Chapter 5, we shall propose a different method that

will be portable.

3.3.5. Special Characters

UIL parallels standard languages by defining special characters for arithmetic

operators or separators. Two examples of UIL special characters are '*' for multiply

and '=' for assignment.

3.4. Basic Syntactic Components

This section describes the basic language structures of UIL that are built from the

basic lexical elements defined in Section 3.3. The basic language structures are names,

literals, lists, and expressions.

3.4. 1. Names

UIL names are used to identify objects, object classes, attributes, and for specifying

units of measurements. A name in UIL differs from most other languages in that a name

may contain white space between the words within the name. All of the following are

valid names: 'value', 'vacuum pump', 'pod bay door', and 'km per see'. In the current

USEWG version of UIL, the spaces are however not significant in determining whether

two objects are the same, for example, 'pod bay door' is equivalent to 'podbay door'.

Each object accessible to UIL is identified by an obiect jdentifler. A valid UIL

objecUdentifier can be either an object name or a pathname. The pathname objects are
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created and maintained by the computer's operating system. An attribute_name is the

name of an attribute within an object. In the example in Chapter 2, the port numbers in

the object in Figure 2.4 were attributes. UIL provides access to the attribute by using

the attribute_identifier syntax defined in Figure 3.6.

attribute identifier = attribute name 'OF' object identifier
Figure 3.6 - Definition of an Attribute Identifier

A UIL procedure that addresses the value of the open-input-port in valve 1 would use

the phrase 'open-input-port of valve l' (refer to Figure 2.4).

3.4.2. Literals

A literal is an explicit representation of the value of an object. UIL defines numeric,

time, string, enumeration, and measurement literals. Numeric, time, and string

literals provide the UIL programmer with constants. The enumeration literals

represent the explicit values of the class of an object called 'enumeration' and are

defined to be equivalent to the enumerated type in ADA. Measurement literals consist of

numeric literals followed by a unit of measurement.

3.4.3. Lists

A list, as defined by the USEWG version of UIL, consists of zero or more objects

separated by commas. The author believes that the list data type is very important, and

that a more formal definition should be made. See how lists are used in Chapter 4 and the

formal definition in Chapter 5.
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3.4.4. Expressions

An expression is a formula that defines a computation. The rules for expressions in

UIL are similar to those used in ADA or other conventional languages. Literals and

objects are operands within the expressions that are acted on by operators. Operators of

differing precedence are evaluated from highest to lowest. Adjacent operators that are of

the same precedence are evaluated from left to right.

UIL provides function calls that can be used as operators for expressions like in

other conventional languages. UIL also provides a method to refer to individual elements

in an object by using indices. Figure 3.7 shows the definition of an indexed_object.

indexed object = object name' (' index list ')' .
Figure 3.7 - Definition of an Indexed Object

Currently, UIL defines an index feature only for strings and lists. In the case of a

string, UIL returns the characters that are specified in the index list. In the case of a

list, UIL will return the items in the list that are referred to by the index list. The lack

of support for complex data types may be a serious limitation for UIL programmers (see

Chapter 5 for the author's data type extensions to UIL).

3.5. Statements

In UIL, statements are composed of lexical elements and syntactic constructs. There

are six types of UIL statements defined by the USEWG version of UIL as follows:

declaration, command, assignment, sequential control, conditional control, and iterative

control. The version of UIL developed in this thesis has additional statements that
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control events and provide extensions for object and action creation. These new

statements are described in Sections 3.8, 3.9, and 3.10.

3.5.1. Declarations

Declarations in UIL are used to create objects and classes. Figure 3.8 shows the

syntax of the object declarations. The subclass declaration creates a new subclass of an

existing object. The 'with' clause allows the instance attributes to be set. In the USEWG

version of UIL, it is not possible to add new actions or disable existing actions using the

subclass declaration. The object declaration is used to create a new object in computer

memory. USEWG UIL only supports ~~e creation of simple objects, such as integers or

reals. The lack of support for UIL defined actions prevents programmers from using UIL

for object based programming. The author believes that UIL must be able to create new

objects, classes and actions to be useful on the Space Station project (see Section 3.10).

subclass declaration = 'CLASS' object name
'IS' object_name [ with clause] .

object_declaration = 'OBJECT' object name
'IS' class_name [ with_clause] .

with clause = 'WITH' assignment { $ 'f' assignment}
assignment = ( name '=' expression ) .

Figure 3.8 • Syntax of Object Declarations

UIL also provides the following declarations: rename, parameter, and constant. The

rename declaration provides an alternate name for an object and will primarily be used

to assign an alias for an object with a long name. The parameter declaration describes

the class and characteristics of the formal parameters (variables) in a procedure, for

example, 'PARAMETER loop_number IS integer'. The constant declaration is used to
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create symbolic constants as in the following example: 'CONSTANT PI

3.14159265358979' .

There are predefined actions for UIL objects. For example, the action 'new' is called

when a new object is instantiated. The new action is responsible for the allocation and

initialization of the new object. Once an object is instantiated, the object will exist until

explicitly destroyed. When an object is no longer needed, the object is removed

explicitly by issuing the destroy command.

Global objects in an object dictionary are available to users and event handlers, and

they cannot be destroyed by a user. Objects created within a procedure are not visible to

other procedures unless the object is passed to the other procedure.

3.5.2. Commands

UIL commands are used to control objects. Commands represent the way in which

actions are sent to objects. The command is defined with more structure than simply

'action object' as can be seen in Figure 3.9. Remember that the actions and commanded

objects are defined by the object directories that are active when a UIL procedure is

executed. This means that the syntax does not have 'hard coded' values for specific object

directories. For the purpose of the SSL02 examples, the definition of the

basic_command was modified by adding example_command. The definition of

example_command contains all the SSL02 specific action/object pairs.
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qualifier group = { qualifing clause $ ',' } .
qualifing-clause = ( qualifier expression ) I with clause
qualifier-= 'AFTER' I 'AT' I 'BEFORE' I 'BY' I 'EvERY' I

'FROM' I 'INTO' I 'TO' I 'UNTIL' I 'WHERE'

command = basic_command [ qualifier_group ] .

basic command =
( action ( commanded object list [ direction

( direction-commanded object list )
/**+ Added example object/action dictionarIes */

example_command .

commanded_object_list = object identifier list [ 'OF'
object identifier list ]

action = verb I ( 'START' verb )-1 ( 'STOP'-verb )
verb = word .

Figure 3.9 - Syntax of Commands

For the SSL02 example, example_command has been hard coded into the syntax to

allow the syntax parser to be used for testing SSL02 as shown in Figure 3.10. The

actions and objects for most operational subsystems on the Space Station will be built

and controlled by NASA. The run-time environment will have these names available for

compiling and running UIL procedures. One can think of these in conventional terms as

object directories and action dictionaries. The run-time environment will be able to

check the syntax of UIL procedures only by knowing the object directories and action

dictionaries that a procedure will require.
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action dictionary entry =
/* events/systems-*/ 'enable'

'start' I 'revert'
/* operator */ 'write' I 'query'
/* systems */

'chilldown suction line'
'chilldown-orbiter-mps'
'open_main=fill_valve' .

'disable' I 'stop'
'enable events for'

example command = example action example object
example-action = action dictionary entry.
example=object = object=directory_entry.

I 'chilldown transfer line'
I 'activate topping'

object directory entry =
'operator object'
'activeyump'
'stop key object'

'fill system object' I
'backupyump' I
'revert key object' .

Figure 3.10 - Definition of SSL02 Objects and Actions

3.5.3. Assignment Statement

The assignment statement modifies the value of a data object. UIL defines an

assignment statement in a fashion similar to that of the BASIC language. A 'let' keyword

precedes the assignment to improve the readability and clarity.

3.5.4. Sequential Control Statement

Sequential control statements are used to control the execution of UIL procedures.

UIL defines the following sequential control statements: null, step, goto, wait, and

return. The goto and return statements provide functions similar to those that are found

in most conventional languages. The null statement performs no operation. It can be

used to provide as a placeholder for a statement when no operation is desired. The step

statement allows a label to be assigned to a sequence of UIL statements. This label is used

as the destination for a goto statement. The wait statement suspends a UIL procedures

execution until a logical expression becomes true.
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3.5.5. Conditional Control Statement

Conditional control statements are used to test logical expressions and change the

flow of execution. The conditional control statements in UIL consist of 'if', 'verify', and

'case'. The 'if and 'case' statements parallel those found in other languages. The verify

statement is unique to UIL. It is modeled after an if statement with the addition of the

'WITHIN' timing_simple_expression clause as shown in Figure 3.11. If the

10gicaLexpression does not become true within the time limit, then the otherwise clause

is taken. The raise statement described in Section 5.1.6 provides a convenient method of

handling exceptions.

verify statement
- 'VERIFY' logical expression

[ 'WITHIN' timing simple expression
'THEN' --
sequence of statements

'OTHERWISE' -
sequence of statements

'END' 'VERIFy'-.

Figure 3.11 - Definition of a Verify Statement

The verify statement has been added primarily to make the porting of GOAL

procedures into their UIL equivalents convenient. The verify statement sometimes reads

better than the if statement for control applications and has the added timing feature. In

GOAL, the verify statement acts on external function descriptors, whereas the if

statement acts on logical expressions.

3.5.6. Iterative Control Statements

Iterative control statements are used to test logical expressions and repeat the

execution of other UIL statements. UIL defines several iterative control statements,
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including a repeat, while, for, and exit statement. They perform similar functions to

those found in other conventional programming languages.

3.6. Execution Environments

This section in the USEWG document discusses several commands that are used to

invoke UIL environments. In this thesis, we do not address these commands as they are

not part of the language syntax.

3.7. Procedures

UIL procedures are defined in a similar manner to procedures in conventlor.a:

languages. A procedure may be compiled and saved. A procedure may carry arguments

that allow information to be passed into the procedure for execution. The USEWG

document also discusses several commands that are used to invoke UIL procedures that

are not addressed by this thesis.

3. 8 . Events and Event Handlers

An event is used to notify a procedure of a change in the condition of hardware. The

event is the hardware signal. When this signal occurs, an event handler programmed to

respond to the event will be executed by the computer. The USEWG definition is shown in

Figure 3.12. The USEWG version of UIL does not allow event handlers to be enabled or

disabled by a UIL program. The GOAL version of SSL02 makes extensive use of event

handlers; therefore, the version of UIL used in this thesis supports the use of event

handlers from within UIL procedures.
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event handler ,EVENT' ,HANDLER' ,FOR' event name
'IS' sequence of statements
'END' [ event-name ] .

Figure 3.12 - Definition of an Event Handler

3.9. UIL Extensions for SSL02

Extensions have been added to the USEWG version of UlL in a way to impact the syntax

of UIL as little as possible. The definition of UIL was extended by adding declarations,

eventhandlers, and declaration_extentions as seen in Figure 3.13.

UIL = { /* USEWG UIL */ procedure I declaration I
/* new */ event handler I declaration extentions } .

Figure 3.13 - Definition of UIL

The declarations allow UIL to be used to define objects that are not in a procedure, as

in the case of global objects. The eventhandler extension allows UIL to handle external

events, such as interrupts from hardware, in a similar way as the GOAL version of

SSL02 handled interrupts. The declaration_extentions allow complex objects to be

created by UIL. The declaration_extentions are defined in detail in the next section.

3.10. Object Description Language Extensions for SSL02

A major extension to the USEWG UIL proposed in this thesis is the support for

creation of complex objects. UIL currently only allows the manipulation of complex

objects and the creation of only very simple objects such as integers and real numbers.

In a way, it is incorrect to call the USEWG UIL a full-fledged object oriented language, as

it is really an object manipulation language only. The USEWG version of UIL can only be

used to send actions to objects and interpret the results.
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In Figure 3.14 and Figure 3.15, the extensions to the UIL syntax are shown that will

make UIL a full-fledged object oriented language. There are several functions needed for

this purpose, namely the possibility to define actions, classes, and objects, and a

statement to 'send' an action to an object.

uil action =
TDEFINE' 'ACTION' name [ '(' parameter name list ')' ] 'IS'

{ $ sequence of statements } --
'END' 'DEFINE' TACTION' [ name] .

declaration extentions =
( 'DEFINE' (big_object I big_class) ) I send_action

big class = 'CLASS' name list [ 'IS' name list 1
- $ declaration I - -

('ACTION' (name I action dictionary entry)
'IS' ( ( name I action dictionary entry) I 'NULL' ) ) }

{ $ uil action } - -
'END' 'DEFINE' 'CLASS' [ name list 1 •

big object =
-'OBJECT' { name list} 'IS' name list

{ $ declaration I
('ACTION' (name I action dictionary entry)

'IS' ( ( name I action dictionary entry) I 'NULL' ) ) }
{ $ uil action } - -

'END' 'DEFINE' 'OBJECT' [ name_list 1 •

Figure 3.14 • Definition of Complex Objects and Classes

The big_class definition begins with the name of the new class to be created, and with

the (optional) 'IS' clause that allows inheritance of actions and instance variables from

another class. The big_class definition also contains the declarations of object

attributes, logical translations from external action names to the internal uiLaction

procedures, and the actual uiLaction procedure definitions. The action name translation

will also allow properly written ADA procedures to be called instead of an internal

uiLaction procedures. The big_object definition allows the creation of a new object by

class name. The declaration and uiLaction portion of big_object allows the ability to add
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or override any class declarations and uiLactions. The uil_action definition defines a

UIL procedure that will be linked to the object as an action. When an action is 'sent' to an

object, this is actually the UIL procedure that will be called. The ullactlon is defined in

the same way as any UIL procedure would be.

While global UIL object directories and action dictionaries will be available before

run-time, the new actions created by big_class and big_object will not. Therefore, a

new statement called send_action is defined in Figure 3.15 to provide a formal syntax

for sending actions to objects. Both forms of the send_action statement shown below are

functionally equivalent - choose the one that fits better for any particular action and

object pair.

an action = ( action dictionary entry I action )
an=object = 'SELF' I-object_name .

with clause ] .

send action = ( 'SEND' an action 'TO' an object)
('ASK' an=object 'TO' an=action)

/* Usage examples: SEND pump status TO operator
ASK valve 123 TO open */

Figure 3.15 - Definition of an Formal Action/Object

These forms allow any action and object to be used without conflicts or parsing

problems, thereby allowing a UIL procedure to be verified as syntactically correct. It is

expected that developers will only use send_action forms for non-NASA controlled

objects classes (For example, within programs that use complex objects that are not

exported outside the application). In the case of the SSL02 example, all objects were

created by the statements defined in this section.
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4. EXAMPLES OF UIL USAGE

This chapter discusses the SSL02 example used by the author to verify that a version

of UIL could be used to replace GOAL. Before discussing SSL02, we shall discuss some of

the issues that constrained the GOAL programmer, and we shall review GKH1 F, a much

simpler GOAL open valve routine. The parser program is used to check whether the

porteo GOAL code is syntactically correct UIL code. The reader is referred to Appendix B

for the complete listing of GKH1 F, to Appendix C for a listing of the high level control of

SSL02, and to Appendix D for a listing of the SSL02 action and object definitions.

4 . 1. GOAL code example

What type of problems is the GOAL programmer faced with? The answer to this

question should provide some insight into how UIL should be designed. The GOAL

environment is quite primitive by today's standards; however, remember that the

Shuttle program found its roots more than ten years ago. In the same respect, decisions

made for Space Station Freedom now will influence the U.S. Space program for the next

10-20 years.

4.1.1. The GOAL Environment

The environment in which GOAL programs execute is quite different from what you

might imagine. The GOAL compiler was written to support the special requirements of

the controlling hardware. The operating hardware is quite simple and very restrictive.
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Like many other special purpose languages, GOAL code is compiled into an

intermediate level code. The intermediate code is, in turn, interpreted by the GOAL

executor when the operator invokes the 'task'. These tasks are executed on a special

workstation built for NASA, hereafter simply called a console. A console can run only up

to four tasks simultaneously, each of which can have up to four levels (subroutine

nesting levels). Each task has access to not more than six hardware supported timers

that can be used to time e.g. valve open and close times, and program time-outs. Each

task can also access up to six disk files, each file is 512 words in length. It is likely that

a single task would control a complete subsystem.

The task main loop code does not perform many time critical operations. Errors and

exceptions are typically handled by interrupt handlers (also written in GOAL). For

example, it is not uncommon to see delays of one or two seconds in the main command

loop code. For a task, interrupts are handled by the lowest active level and are queued if

received by that active level and enabled only at a higher level than the current

execution level.

The console itself consists of a single CPU, three color displays, three keyboards, two

moving head disk drives (ten MBytes each), a printer/plotter, fifteen PFPK keys

(programmable keypad buttons). and memory to store up to seven application pages of

display information (one viewable, six in background memory) for each display in the

console.

4. 1.2. Operational GOAL Procedures from KSC.

KSC provided listings of six GOAL procedures as shown in Table 2. All of the

procedures were reviewed, and the SSL02 and GKH1F procedures were studied in detail.
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The procedures provided a wealth of information and insight into the unique problems of

controlling hardware systems.

Table 4.1 - GOAL Programs from KSC

Procedure I Statements IFunction
SSL02 2998 fills the LOX portion of the external tank
GAH51 5210 monitors and updates status of the LH2 system
GKL4W 114 opens the A86460 LOX replenish valve
GKL4X 126 closes the A86460 LOX replenish valve
GKH1F 68 opens the A100677 LH2 main fill valve
GKH1G 62 closes the A100677 LH2 main fill valve

Several interesting general comments can be made relating to GSE (Ground Support

Equipment) and Orbiter hardware design as observed in the GOAL procedures reviewed.

The software reviewed represents less than one task in a console. Some observations

that can be made from the code reviewed are:

( 1) The more important devices (such as valves or pumps) have redundant

units that can be switched in to replace the primary device in the event of

failure. Additionally, many important sensors (pressure, temperature,

etc) have redundant sensors that can be used to verify the results of the

primary.

( 2 ) The operator typically verifies every major step completed by the

procedure, including the selection of a primary or redundant main device

(such as a pump). Most exceptional conditions that arise cause the

procedure to suspend execution to wait for a 'continue' or 'stop' command

from operator. (Interrupt handlers are not disabled while the operator

responds.)
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( 3 ) Most sensors have bypass flags that can be set to inhibit their use. This

flag is in a shared memory and is set by the operator in response to a

hardware failure. This flag must be explicitly checked by the GOAL

procedure prior to the use of the sensor.

( 4 ) In several cases, GOAL procedures used voting on sensor information to

determine if an operation is 'safe' (e.g., two out of three sensors show a

pressure nominal). The GOAL code that is used to vote on sensor

information is hard coded into the procedure. This code is made even

more complex by the bypass flags.

( 5 ) Many hardware related constants are imbedded directly into the code

(e.g., valve open delay times, maximum temperature, and conversion

constants).

( 6 ) Some pumps controlled by GOAL code have tachometers. When a new

motor speed is desired, the program outputs the speed to the motor and

delays execution for a predefined time. At the end of this time, the

program checks the pump speed to determine whether the motor has

reached the desired speed.

( 7 ) If the pump has not reached the desired speed, then the GOAL procedure

tries to 'control' the motor using software. Finally, if that does not

appear to work, the operator is given the choice to continue procedure

execution, or to override any apparent problem indicators.
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( 8 ) Many instrument measurements read from hardware are not in the

correct units (e.g., the LOX temperature used in the code is the returned

temperature value plus -293 degrees F). It is the programmer's

responsibility to adjust the readings to consistent units.

( 9 ) The GSE is different between launch pad A and launch pad B. These

differences are hard coded into the GOAL procedures. The differences

often add additional complexity to the GOAL procedures.

( 1 0) It is also possible that Orbiters (or payloads) have different GOAL code.

The code reviewed did not have an example of this; however, the code is

changed almost one out of every two Shuttle flights. One revision

comment was found to refer to the deletion of a check for the OV99 tail

number (Orbiter Vehicle number 99). OV99 was the Challenger, and the

comment was removed two years before its destruction.

(1 1) Most sensors can be programmed to generate hardware interrupts to the

GOAL program. In fact, interrupts appear to be the preferred method of

getting information. In cases where analog measurements are possible,

interrupts can be generated on reaching a low and/or a high limit.

4. 1.3. GOAL program design

The console used for the Space Shuttle provided a limited environment for GOAL

program development. The effects of the console limitations (and the technology

available in the implementation phases of the Space Shuttle program) can be witnessed

in the SSL02 code. Due to the limit of four subprogram levels (and execution speed
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concerns}, GOAL programs rarely used subroutine calls. This had the effect of creating

long, hard to understand programs. One of the few exceptions to this rule was valve open

and close routines.

Macros are used quite often to substitute for similar code segments. For example,

SSL02 makes use of a macro to ramp the main pump about eight times. This generates

many duplicate sections of the same code. In the case of the main pump, one macro

expansion was used for each pump and pad: 126 on pad A, 126 on pad S, A127 on pad A

and A127 on pad B. The same macro was also used several times in the 'revert' recovery

section. Other interesting observations:

( 1) SSL02 contains 2998 GOAL statements. Each statement used from one to

eight text lines in the listing (typically four lines).

( 2 ) About 850 statements (28%) of SSL02 end with GO TO STEP. There were

about 640 statement labels.

( 3 ) 26% of the SSL02 code is used to set up or handle interrupts.

( 4 ) 24% of the SSL02 code handles recovery from an operator 'stop' or

'revert' command.

( 5 ) The SSL02 code references 450 different external function designators.

These external function designators refer to the hardware valves, pumps,

switches, printers, plotters, lights, and so on.
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( 6 ) Often there are many external function descriptors specified in a single

GOAL statement. (For example, CHANGE <F01 > <F02> <F03> <F04> <FDS>

... <F09> SAMPLE RATE TO 0 TIMES PER SECOND). The SSL02 program

would be 30-40% bigger if GOAL did not provide a list capability.

( 7 ) Shared memory, external to the console, may be used to hold current state

information of the execution of GOAL procedures. For example,

<NLOK3000X $LOX ANALOG COUNT$> is apparently used to hold the 'state'

of the SSL02 (and of its parent program) in memory outside the console

CPU.

( 8 ) SSL02 code references 109 externally defined subprogram calls, mostly

valve open and close procedures.

4.1.4. GOAL Compiler Operation

The GOAL compiler helps make the code more readable by expanding cryptic function

descriptors by adding comments. For example, the cryptic external function designator

<GL001219A> is translated to <GL001219A $A37334 PMP A127 CLTCH H20

LOWRATE$> on the output listing. The GOAL compiler, however, fails to expand cryptic

program descriptors (For example, GKL4W is not shown as GKL4W $Open A86460 LOX

replenish valve$). The GOAL compiler also fails to clearly show nesting levels (e.g.,

within if/then/else).

The GOAL compiler took thirty minutes elapsed time or seven minutes CPU time to

compile 2998 lines of code (machine type unknown). In the event of emergency changes

to a procedure, this amount of time may be to long and may prohibit its use for real-



61

time changes in the configuration of equipment. By comparison, modern C compilers on

better personal computers can compile code at up to 100K lines/minute.

4. 1.5. The GOAL GKH1F procedure

The SSL02 procedure is too long to reproduce in its entirety in this thesis;

therefore, the much shorter GKH1 F procedure will be used to describe how GOAL code is

interpreted. The complete GOAL listing of GKH1 F is contained in Appendix B. Section

4.3.2 describes the UIL version of the GKH1 F. The procedure GKH1 F contains 68 GOAL

statements. There are about 120 lines of user documentation, mostly contained in the

header. Of me 68 GOAL statements, two statements are used to turn the valve on, twenty

statements are used to time the duration of the valve opening, nine statements are used to

display status information, leaving the remaining 38 statements to check or override

safety indicators. Section 4.3.2 describes the UIL version of the GKH1 F.

As defined in the GOAL syntax, all items enclosed by '<' and '>' are external function

designators. For example, <GLHX4112E> is a valve closed indicator that becomes true

when the valve hardware is in a closed state. The GOAL compiler adds comments

(enclosed by $....$) for each external function designator in the source code. The

designator appears in the output listing as '<GLHX4112E $A100677 MAIN FILL VALVE

CLOSED IND$>'. In GOAL, items enclosed between '(' and,), refer to variables used by

the procedure.

Several code fragments have been extracted from the listing of GKH1 F for the

discussion below. The program begins with a long header comment that describes who

wrote it, what it will be used for, its revision history and other information as shown in

Figure 4.1.



$ The program is designed to command the Al00677 main
fill valve to the open position and set the appropriate
exception monitor and GOAL notification limits.
The following types of function designators are defined
in the data base and are used in this program-
<GLHK----E> Valve discrete commands
<GLHX----E> Valve discrete position indicators
<NLH------> Bypass function designators
The respective bypasses are turned on whenever it is
desired to inhibit the issuance of the command(s)
to the component or if component response indicator(s)
and/or signal(s) is determined erroneous. No bypasses
are turned on within this program.$

Figure 4.1 • Some GHK1F Header Comments
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The program then changes the interrupt handlers as needed to perform the function

to open the valve as seen in Figure 4.2. None of the interrupt commands take effect until

the 'ACTIVATE INTERRUPT PROCESSING ON THIS LEVEL' command is executed. The

'SPECIFY INTERRUPT' statement defines the action the program will take when the

operator pushes the key '6' on the console; in this case, the command aborts the GKH1 F

procedure and exits. The 'CHANGE SAMPLE RATE' statement modifies the rate at which

the Signals of importance to GKH1 F are monitored.

The next two statements inhibit exceptions from being raised when the indicators

change due to normal operation of the program. Finally, the GHK1 F procedure informs

the system of the condition that the indicators should have after the program terminated.

The bypass flags are software flags that are stored in system common memory. These

are not functioning properly.

flags are changed by the operator to allow operation of the software when the indicators



SPECIFY INTERRUPT <PFPK6 $PSP KEY 6 DEFAULT$>
AND ON OCCURRENCE GO TO STEP 40;

-several statements omitted from the example at this point-

CHANGE <GLHK4IllER $HRS Al00677 MAIN FILL VLV OPEN CMO$>
<GLHK4l2lER $HRS Al00677 MAIN FILL VLV REDU CMO$>
<GLHX41l2E $AI00677 MAIN FILL VALVE CLOSED IND$>
<GLHX41l3E $AI00677 MAIN FILL VALVE OPEN IND$>
<GLHX4123E $A100677 MAIN FILL VALVE RED IND$>
SAMPLE RATE TO 100 TIMES PER SECOND;

INHIBIT EXCEPTION MONITORING FOR
<GLHX4112E $A100677 MAIN FILL VALVE CLOSED IND$>
<GLHX4123E $A100677 MAIN FILL VALVE RED IND$>
<GLHX4113E $A100677 MAIN FILL VALVE OPEN IND$>;

INHIBIT FEP INTERRUPT CHECK FOR
<GLHX4112E $AI00677 MAIN FILL VALVE CLOSED IND$>
<GLHX4123E $A100677 MAIN FILL VALVE RED IND$>
<GLHX4113E $A100677 MAIN FILL VALVE OPEN IND$>;

$ The previous statements inhibit those interrupts which
would result from this valve changing state. All other
interrupts are activated. $

$ The following statements check each valve position indicator
bypass. If the bypass is on, no action is taken. If the
bypass is off, GOAL and system exception conditions are
changed to reflect the state each indicator is expected to
show upon program completion. $

VERIFY <NLHX4112E $A100677 MAIN FILL VALVE CL IND BYP$> IS OFF
ELSE GO TO STEP 2;

CHANGE <GLHX41l2E $Al00677 MAIN FILL VALVE CLOSED IND$>
GOAL EXCEPTION CONDITION TO ON;

CHANGE <GLHX4ll2E $Al00677 MAIN FILL VALVE CLOSED IND$>
SYSTEM EXCEPTION CONDITION TO ON;

-several statements omitted from the example at this point-

STEP 100 ACTIVATE INTERRUPT PROCESSING ON THIS LEVEL;
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Now that the interrupt processing has been activated for the operation of the GKH1 F

Figure 4.2 - Enable Exceptions

program, the valve can be opened as shown in Figure 4.3. The commands to open the
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valve are sent using the first two statements, and the command is verified by the third

statement. If the 'VERIFY' statement does not indicate that the commands were sent, an

exception is raised to the operator.

TURN OFF <GLHK4l21ER $HRS A100677 MAIN FILL VLV REDU CMD$>;

$ The valve is commanded to its open position and the program
verifies that prerequisite control logic allowed the commands
to be issued. $

STEP 5
TURN ON <GLHK4lllER $HRS A100677 MAIN FILL VLV OPEN CMD$>;

VERIFY <GLHK4lllER $HRS A100677 MAIN FILL VLV OPEN CMD$> IS ON
AND <GLHK4l21ER $HRS A100677 MAIN FILL VLV REDU CMD$> IS OFF

ELSE GO TO STEP 15;

Figure 4.3 • Open Valve Command

Execution of GKH1 F is far from complete at this point. Figure 4.4 shows that the

procedure must monitor the opening of the valve and verify that it is open in the

expected time. The program reads in the current time and prepares to measure the time

of the initial component motion, that is, the time it takes the valve closed sensor to

become false.

The timing loop is hand coded for each timed event. The programmer must be careful

to specially consider the case where the timer starts before midnight GMT and ends after

midnight GMT. In that case, 86400 seconds (the number of seconds in a day) must be

added to the measured timer value. The operator and a printer log is informed of any

exceptional condition. Only the initial component motion timing loop is shown in Figure

4.4. The GKH1 F procedure also verifies that the valve finally depresses another sensor

which detects that the valve has fully opened.



$ The following timing loop allows 6 seconds in which to
establish initial component motion and up to 20 seconds
for the valve to home. $

READ <GMT $GREENWICH MEAN TIME$> AND SAVE AS (GMTl);

STEP 6
READ <GMT $GREENWICH MEAN TIME$> AND SAVE AS (GMT2);

LET (VLVTM) = (GMT2) - (GMTl);

IF (VLVTM) IS LESS THAN 0.0 SEC,
LET (VLVTM) = (VLVTM) + 86400 SEC;

IF (VLVTM) IS GREATER THAN OR EQUAL TO 6 SEC,
THEN GO TO STEP 9;

VERIFY <NLHX4112E $AI00677 MAIN FILL VALVE CL IND BYP$> IS OFF
ELSE GO TO STEP 7;

VERIFY <GLHX4112E $AI00677 MAIN FILL VALVE CLOSED IND$> IS OFF
ELSE GO TO STEP 6;

GO TO STEP 10;

STEP 7
VERIFY <NLHX4123E $AI00677 MAIN FILL VLV RED IND BYP$> IS OFF

ELSE GO TO STEP 8;

VERIFY <GLHX4123E $AI00677 MAIN FILL VALVE RED IND$> IS OFF
ELSE GO TO STEP 6;

GO TO STEP 10;

STEP 8 RECORD <GMT $GREENWICH MEAN TIME$>
FORMAT (NO UNITS,NO FD NAME,NO FD DESCRIPTOR)
, TEXT ( GKHIF- VLV AI00677 CLOSE IND GLHX4112E AND RDCD)
NEXT TEXT ( IND GLHX4123E ARE BYP)
NEXT TEXT ( INITIAL MOTION CANNOT BE DETERMINED)
TO <PAGE-A $DISPLAY APPLICATION PAGE B$> YELLOW
TO <CNSL-PP $CONSOLE PRINTER PLOTTER$>
<SPA-PRNTR $SPA PRINTER$>;

GO TO STEP 10;
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Once the valve has been opened, or once the operator has overridden any exceptional

condition, the program terminates successfully. Before termination, the procedure

Figure 4.4 - A Timing Loop



must activate changes in exception handling procedures on any indicators that have new

values, and deactivate any GKH1 F procedure sampling of indicators (see Figure 4.5).

$ Interrupts are activated for those valve indicators which are
not bypassed. $

VERIFY <NLHX4l12E $A100677 MAIN FILL VALVE CL IND BYP$> IS OFF
ELSE GO TO STEP 17;

ACTIVATE EXCEPTION MONITORING
FOR <GLHX4112E $A100677 MAIN FILL VALVE CLOSED IND$>;

ACTIVATE FEP INTERRUPT CHECK
FOR <GLHX4l12E $A100677 MAIN FILL VALVE CLOSED IND$>;

-several statements omitted from the example at this point-
STEP 19 CHANGE <GLHK4111ER $HRS A100677 MAIN ~lLL VLV OPEN CMD$>

<GLHK4121ER $HRS A100677 MAIN FILL VLV REDU CMO$>
<GLHX4l12E $A100677 MAIN FILL VALVE CLOSED IND$>
<GLHX4113E $A100677 MAIN FILL VALVE OPEN IND$>
<GLHX4123E $A100677 MAIN FILL VALVE RED IND$>
SAMPLE RATE TO 0 TIMES PER SECOND;

-several statements omitted from the example at this point-
TERMINATE;

END PROGRAM;

Figure 4.5 - Disable Events

4.2. Porting SSL02 to UIL

In the USEWG UIL specification, one thing was apparent: The USEWG UIL

specification does not allow a UIL program to create new complex classes or objects (see

Section 3.5.1 or 2.2.4 of the USEWG document). There is no syntax provided to describe

and/or build complex classes or objects. All but the simplest classes are assumed to be

built by ADA programmers and provided, via the operating system, to the UIL executor.

Similarly, there is no discussions about class inheritance or the issues on what to do

with (or how to control) the object databases. The assumption that UIL will not be used

66
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to create complex objects or classes simplifies the syntax and implementation of UIL;

however, it prevents UIL from being used to develop any complex objects or even be used

for object based programming. It can only manipulate existing objects and classes.

While this may be the desired UIL language, it is inadequate to port the GOAL version

of SSL02 into UIL. UIL, as currently described, cannot be used to completely describe the

functionality contained in SSL02. SSL02 is comprised of low level instructions (for

controlling registers on hardware), and of higher level instructions (used for the

control of the loading of the external LOX tank). All of the code in SSL02, whether low or

high level, was written in GOAL.

The USEWG UIL specification only covers writing high level control procedures. Low

level control procedures and class definitions must occur somewhere else (perhaps in

ADA code or, more likely, using object builder tools written in ADA).

Three areas of object programming can be identified in the SSL02 example:

( 1) Writing high level software to control the overall process. This consists

of conventional statements that act on objects, e.g. 'if' and 'for'

statements.

( 2 ) Building the object description of hardware to be controlled, for example,

instantiating the objects that make up the actual hardware.

( 3 ) Developing the classes of objects (pumps, motors, etc ...) that will be used

to instantiate the object description of the hardware. This work includes

defining both the object attributes and the object actions.
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The USEWG UIL specification is correct and useful for (1), can be used for (2), and

is not useful for (3). Considering that UIL will be used for the next 15-20 years for

Space Station development, UIL should provide a complete object programming

environment. UIL will be used for programming applications like SSL02 and many

others from a wide range of areas that Space Station developers, testers, and users will

encounter. UIL procedures should be able to describe, create, and destroy complex

classes or objects with associated actions and event handlers as needed. The question

whether or not a particular UIL user is granted permission to create such objects or

object classes in UIL should be resolved by user privileges, and not by the inadequacy of

UIL.

In the next few sections, the reader will be shown how the extensions that have been

added to UIL will allow a complete object based solution for problems such as SSL02.

4.3. SSL02 in UIL

A part of SSL02 was ported from GOAL to UIL and will be discussed in the following

three sections. In Section 4.3.1, the UIL version of the top level control functions from

SSL02 are described. Section 4.3.2 describes the UIL version of the GKH1 F open valve

procedure written using object based techniques. Section 4.3.3 describes the object

structure used to represent the hardware system that SSL02 controls.

This section reviews the hardware GSE that the SSL02 procedure controls. The GOAL

listing of SSL02 was over 200 pages long, and therefore, it is not included as an

Appendix to this document. The UIL version of SSL02 is described in the following three

sections that parallel the three areas of object programming identified in the previous

section.
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Figure 4.6 shows a simplified block diagram of the GSE that SSL02 was written to

control. The GSE is composed of a primary and an alternate LOX pumping subsystem.

These pumps are used to transfer over 1,359,000 pounds (143,000 gallons) of LOX

from a storage tank to the Shuttle external tank before a launch. Each pump has an

associated motor, a clutch and a clutch cooling system housed in an equipment room. In

the figure, the items from the alternate pumping subsystem are identified with lower

case 'a'. Various sensors are also shown in the drawing: 'T' sensors measure

temperature, 'R' sensors measure rotational velocity, and 'L' sensors measure the level

of a tank.
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Main Valve

The external control lines shown in the figure are the control signals that the SSl02

procedure sets to actuate the proper hardware. The sensors shown in the figure are

inputs to the procedure to verify that operations are executing correctly. There are

many other sensors that are not shown which monitor whether a valve is open or closed,

or whether a signal is set to the correct value. The hardware controlled is massive
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indeed. In the case of the main valve, it can take from 15 to 30 seconds to completely

open. The size and the mission critical nature of the hardware help explain why it takes

over 3000 lines of GOAL code to fill a single tank. UIL will provide a simpler and more

consistent approach to controlling hardware on the Space Station.

4.3.1. Top Level Control Procedure

In this section, the UIL code that will perform the high level functions of SSL02 will

be reviewed. The most significant difference from the GOAL version of SSL02 is that. in

the UIL version, code responsible for the high level functionality can be separated from

the lower level functions, whereas, in the GOAL version, the high and low level functions

cannot be separated. The UIL version relies on the objects to perform low level

functions leaving the high level code uncluttered. In the UIL version, the high level code

accounts for about 40 UIL statements. How many lines of GOAL code account for the high

level functions cannot be determined. The presented UIL version of SSL02 does not

translate all the functionality of the original 3000 line GOAL program; however, it

reflects a representative core of the original program (perhaps 30-40%). The

complete listing of the high level UIL code that was written is given in Appendix C.

The GOAL procedure, SSL02, is the Space Shuttle LOX Auto Fill Sequencer. The

procedure performs the operations necessary to fill the LOX portion of the Shuttle

external tank. It remains in execution until the 100% liquid level sensors flash wet,

that is, show that the tank is 100% full. The first operations performed by SSL02 are

to set up the event handlers and perform instrumentation status checks. Next, SSL02

performs a chilldown of the following items: LOX pump suction line, pump transfer

line, and orbiter MPS (Main Propulsion System). The chilldown step is performed to

slowly and carefully reduce the temperature of the hardware to the temperature of LOX,
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about -186 degrees. Once chilldown has been completed, SSL02 performs the following

steps: a slow fill of external LOX tank to 2%, fast fill of external LOX tank to 98%, and a

slow topping fill of the external LOX tank to 100%. SSL02 then transitions to a

replenish program to keep the external tank topped off to between 100% and 100.15%.

For all the example code segments shown in the following sections, the following

rules apply: UIL language elements are capitalized, names use '_' between words, class

names are terminated by '_class', object names are terminated by '_object', strings are

marked with double quotes, and enumeration constants are marked with single quotes.

Although the notation differs somewhat from what the actual UIL code would look like, it

is intended to make the examples easier to read.

Figure 4.7 shows the procedure definition for SSL02. It has a similar format to most

conventional procedural languages. The 'CONSTANr declaration defines a constant called

long_name to be equal to the value of the string "Program unit SSL02". The

'PARAMETER' declaration defines a variable called active.pump that will be used to hold

the pointer to an object of the class hwsubsystem_class. The declaration of sstozstatus

defines an ENUMERATED data type that can only be assigned the values 'run', 'stop', or

'revert' .

PROCEDURE ssl02-procedure IS
CONSTANT long name = "Program unit SSL02"
PARAMETER active-pump IS hwsubsystem class
PARAMETER backup-pump IS hwsubsystem=class
PARAMETER temp IS basic object class
PARAMETER ssl02 status IS ENUMERATED -

WITH VALUES = {'run', 'stop', 'revert'}
Figure 4.7 - SSL02 Procedure Definition

Similarly to the GOAL version of SSL02, the next few statements in the UIL version

of SSL02 perform the setup of event handlers. The event handlers shown in the next



73

figure are used to allow operator interruption of the fill process. If the operator wishes

to stop the fill operation, he can press a 'STOP' key, and thereby put the fill operation on

hold. Once the stop key has been pressed, the operator can either 'REVERT' or cancel the

operation from where it had been interrupted.

fill operation. The revert option would reverse the stop, that is, continue the fill

The first statement, 'disable stop_key_object', in Figure 4.8 is an object/action

pair. The object stop_key_object represents a push button that the operator can push.

It may be a large red button on the operators console or just a button in a window on the

terminal. SSL02 does not need to know what kind of a button it is because the

stop_key_object itself contains the detailed button control code. What is important is

that we can just send the button the 'disable' action. This action disables any prior event

handler from being activated should the operator push the button. SSL02 disables both

buttons in preparation for changing event handlers.

disable stop key object
disable revert_key_object
EVENT HANDLER FOR stop key object IS

enable revert key object
disable stop key object
stop fill-system object
LET sSl02 status = 'stop'
query operator object WITH options = {'OK', 'quit'}

END stop_key_object -
-several statements omitted from the example at this point-

enable events for fill system object
Figure 4.8 • Setup of Event Handling

The next statements install the event handlers for SSL02. In this case, the 'EVENT

HANDLER FOR' statement installs the procedure shown between 'IS' and 'END'. When the



74

stop key is pushed, this procedure will be executed. The procedure performs the

following operations: enable the revert key, disable the stop key (we are already

stopped), change the procedure status, write a message to the operator that the stop has

happened, and wait for the operator to acknowledge. It is assumed that the stop

fill_system_object would have informed the operator of the stop condition by the time

the query operator asked for an 'OK'.

This event handler is obviously incomplete. Some of the other operations that have to

be performed in a stop event would be: determine the current state, correctly shut down

the fill operation, and put the equipment into a hold for a cancel or revert operation.

These operations could be in the objects or in the top level procedure depending on the

the overall design. For comparison, almost 25% of the GOAL version of SSL02 was

associated with handling just the stop and revert operations.

Continuing into SSL02, Figure 4.9 shows the interaction with the operator to select

whether the primary or the alternate pumping system will be selected. In the first

statement, the write action sends an output string to the operator indicating that

execution of the SSL02 procedure has started. The next statement queries the operator to

select the pump subsystem to use for this fill operation and waits for a response. After

the operator responds, the procedure selects the correct pump from the

fill_system_object. This is the first example of the use of an object attribute.



write operator object WITH output =
"SSL02 procedure execution has begun"

query operator_object WITH output "Select main p128 pump or
alternate a128 pump",

{'main', 'alternate', 'quit'}options
IF response OF operator_object ,quit' THEN RETURN END IF

IF response OF operator_object = 'main'
THEN

LET active-pump = main-pump OF fill system object
LET backup-pump = alternate-pump OF fill=system=object

OTHERWISE
LET active-pump = alternate-pump OF fill system object
LET backup-pump = main-pump OF fill=system=object

END IF
enable active-pump
disable backup-pump

Figure 4.9 - Operator Selection of Pump

The filLsystem_object contains all the objects of the LOX fill system. The operation

'mainpump OF filLsystem_object' returns the object name of the mainpump system.

The mainpump system contains all of the objects used to pump LOX with the main pump

(for a better description of the fill_system_object see the next section). The 'LET

actlvspump =' assigns the actlvapump variable the name of the appropriate pumping

system object name. Again, it is important to remember that by using objects, the

details of the pump object are hidden from the programmer of this high level control

procedure. Once the actfvapump and backup-pump variables are assigned the names of

the active and backup objects, then an enable action is sent to activate up the pump to be

used for this fill operation, and a disable action is sent to deactivate the backup pump as

per the operator's wishes.

The rest of the SSL02 code repeats elements that have been demonstrated already as

shown in Figure 4.10. First, a setup and instrumentation status check is performed by
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sending the check_status action to the fill_system_object. The 'WITH' clause directs

output of any anomalies found in the status check to the operator. Once the operator has

been informed of the status, a wait suspends execution until the operator allows the

procedure to continue. This type of operator involvement is common throughout the

GOAL code we reviewed.

query operator object WITH output
"Pump started, holding for chilldown",

options = {'OK'}

/* Setup and instrumentation status check (120 GOAL statements) */
check_status fill_system_object WITH output_to = operator_object

query operator object WITH output
"Instrument-check complete, holding for pump start",

options = {'OK'}

SET speed OF active-pump TO 1000 RPM
sta~~ active-pump
WAIT startup_time OF active-pump

OR UNTIL command_completed OF active-pump

Figure 4.10 - Operational Statements

When execution continues, we send an action to set the speed of the pump to 1000

RPM. All interested objects that are part of the active pump will receive the action and

operate on the action when the pump is started. The next statement sends a start action

to the pump. The procedure then waits until the pump has started or the start has timed

out (the error handling for the later case was not added). Again, the operator is

informed of the pump start status, and the procedure waits for the operator to issue a

continue command.

The SSL02 procedure continues by executing each operation from the first chilldown

to the final fill in the same manner as shown above: send the action, wait for results,

and notify the operator. These operations are not shown in a figure. The organization of

the procedure parallels the organization seen in the GOAL code. It should be noted that
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the organization of the procedure assumes that UIL is primarily event driven. If you

review the GOAL code, you will find that it is also interrupt (event) driven. The last

part of the GOAL procedure sets up the interrupt handlers to monitor the full status and

transfers to a replenish procedure (maintain level of the tank to 100% full). Figure

4.11 shows the UIL version sending the action activate_topping to perform the same

function.

END /* of SSL02 */

write operator object WITH output =
"100% fill complete, transferring to topping"

Figure 4.11 • Transition of Control

While this top level procedure is somewhat simplified, the view that the top level

routine is only responsible for high level functions (like check subsystem, start pump,

etc) is the correct one. The elegance of the top level procedure depends on the

forethought that goes into the object and action design. In the next three sections, a

hypothetical design for these objects and actions will be presented. The design will begin

by describing the basic object classes needed, then these object classes will be used to

create more complex object classes, and finally, the objects themselves will be created.

4. 3.2. Basic Object Classes

In this section, the UIL version of the GOAL open valve procedure GHK1 F will be

discussed. The UIL approach to the open valve function will be implemented as an object

class. An object instantiated from this class will have an action that can open a valve.

When this action is sent to the valve object, the valve will be opened. While the GHK1 F
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procedure actually is used to open a valve for liquid hydrogen, the author used it as a

model for a typical valve in the SSL02 system as well which handles liquid oxygen.

As in most object based languages, UIL objects will have some default attributes and

actions that the system will define automatically. In the case of UIL, the

baslcobiectctass shown in Figure 4.12 contains examples of eight actions that each

object should support. The 'new' action is called just after the system creates a new

object for initialization of attribute data, similarly. The 'destroy' action is called to

perform any cleanup functions just before the system removes an object from existence.

The 'print', 'describe', 'list_actions', and 'is_action' actions provide either the user or a

running procedure with information about the object. Finally, the 'unhandled_action' is

called whenever an unknown action is received by the object. The unhandled_action

procedure may handle the unknown action directly or, more conveniently, wish to raise

an exception in a manner similar to ADA. Exceptions of this kind are not handled in the

USEWG version of UIL. See Section 5.1.6 for further discussion on exceptions.

DEFINE CLASS basic_object_class

/* Actions for the basic object will not be described.
They perform at least the following functions:

describe - Types information about the object to the
operator.

- Called when object is destroyed.
- Returns true if this is an action of this

object.
- Returns the list of actions that the object

can handle.
- New actions for object when created.
- Action that does nothing.
- Prints information about the object to an

I/O stream.
- Handles undefined action requests. */

destroy
is action

list actions

new
null
print

unhandled action

END DEFINE CLASS basic object class
Figure 4.12 - Basic Object Class
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These actions provide the basic capabilities that most objects will be built upon.

When a new subclass is built from the basic objectclass, all of the basicobjectclass

actions will be 'inherited' by the new class and are available for the new class. In many

cases, an object subclass will override some (or all) of these actions by new actions that

are tailored to the subclass.

Figure 4.13 shows the declaration portion of a new subclass being defined, called the

pneumatic_valve_class. The 'IS baslcoblect class' clause defines the class that the

pneumatic_valve_class will inherit actions and attributes from, in this case, the

basic_object_class. The 'CONSTANT' section defines attributes that should not be changed

by an operating procedure (as we will see later, they can be overridden only by subclass

definitions). The 'ACTION' declaration provides a mapping from the external action

names to the internal procedures that will be called if the action is sent to an object of

this subclass. The 'PARAMETER' section defines attributes that are accessed or changed

by either the procedures defined in this subclass or by a procedure using an object

created in this subclass. Following these declarations, the action procedure definitions

occur. Several of those are shown in the next few figures.



DEFINE CLASS pneumatic_valve_class IS basic_object_class
CONSTANT long name = "pneumatic valve"
CONSTANT type-= "basic class"
CONSTANT initial component motion = 1 SECOND .. 2 SECONDS
CONSTANT home time = 5 SECONDS .. 6 SECONDS

ACTION close
ACTION destroy
ACTION disable
ACTION dynamics
ACTION enable
ACTION initial
ACTION new
ACTION open
ACTION revert
ACTION stop
ACTION warning

IS close-procedure
IS destroy-procedure
IS disable-procedure
IS dynamics-procedure
IS enable-procedure
IS initial-procedure
IS new-procedure
IS open-procedure
IS revert-procedure
IS stop-procedure
IS warning-procedure

PARAMETER {input, output} IS basic object class
PARAMETER {last state, desired state, current state}

IS ENUMERATED WITH VALUES = {'open', 'closed', 'unknown'}
PARAMETER is opened IS ENUMERATED WITH VALUES =

- {'opened', 'not opened'}
PARAMETER is closed IS ENUMERATED WITH VALUES =

{'closed', 'not closed'}
PARAMETER is stopped IS ENUMERATED WITH VALUES =

- {'stopped', 'not stopped'}
PARAMETER transition status IS ENUMERATED WITH VALUES

{'waiting for component motion', 'completed',
'waiting for component home'}

PARAMETER {open_status_bypassed, close_status_bypassed,
command status bypassed} IS shared memory class

PARAMETER {open_status, closed_status} IS readable_hw-port_class
PARAMETER command status IS readwriteable hW-Fort class

Figure 4.13 - Pneumatic Valve Class

The valve that this object subclass controls is of the same design as the valve shown

in Figure 2.1. If you recall. it was designed such that it contains two indicators: one can

detect when the valve has been completely opened. and the other detects when the valve

has been completely closed. If the valve is in transition from open to close, neither of

the two indicators is activated. The actions defined in this subclass provide the

functionality to control a hardware valve of this type. Figure 4.14 shows the procedure
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defined for this subclass that overrides the definition of the 'new' action inherited from

the bastcoblecictass. It initializes all attributes to their initial values.

DEFINE ACTION new-procedure IS
/* executed only at instantiation of object */
LET open status bypassed 'off'
LET close status bypassed = 'off'
LET command status bypassed = 'off'
ASK SELF TO-warning-procedure WITH new level
LET current state 'unknown'
LET desired-state = 'unknown'
LET last state = 'unknown'
LET transition status = 'completed'
LET is closed - 'unknown'
LET is-opened = 'unknown'
LET is-stopped = 'not stopped'

END DEFINE ACTION new-procedure

'disable all'

Figure 4.14 - Pneumatic Valve New Action

A more interesting action procedure is the open-procedure that will be executed

when an object receives an 'open' action. Shown in Figure 4.15, this procedure

performs the necessary steps to open a valve. It parallels the design of the GKH1 F GOAL

open procedure discussed earlier. One of the most interesting statements in the figure is

'ASK SELF TO'. The word 'SELF' is a keyword that says to use the object, ITSELF, as the

argument. Therefore, this statement sends the warning action to itself with the

argument 'new_level = 'allow to open". The UIL executor translates this into a call to

the warning-procedure(new_level = 'allow to open'). The warning procedure sets up all

event handlers to allow the open to begin without alerting the operator that an error has

happened.



DEFINE ACTION open-procedure ( fast_mode ) IS
PARAMETER fast mode IS ENUMERATED WITH VALUES

{'stopped', 'not stopped'}
PARAMETER temp hardware state IS ENUMERATED

WITH VALUES = { 'opened', 'likely opened', 'closed',
'likely closed', 'bypassed', 'maybe open',
'maybe closed' , 'conflicting', 'in transition'

LET temp hardware state =
report_hardware_state-procedure

-several statements omitted from the example at this point-
LET desired state = 'open'
ASK SELF TO-warning WITH new level = 'allow to open'
LET transition status = 'waiting for component motion'
LET command status = 'open'
WAIT UPPER(initial component motion)

OR UNTIL close status =-'not closed'
-several statements omitted from the example at this point-

LET last state = current state
LET current state = 'open'
LET transitIon status = 'completed'
RETURN 'ok' -

END DEFINE ACTION open-procedure
Figure 4.15 • Pneumatic Valve Open Action
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The hardware is then sent the command to open by setting the command_status to

'open'. This assignment changes the value of a hardware register that controls power to

the solenoid that opens the valve. Remember from Figure 4.13 that the command_status

was defined to be a readwriteable hardware port. Another interesting item in Figure

indicated by the constant lnitlalcomponent jnotlon.

4.15 is the UPPERO operator. UPPER is used to get the upper value of the range

It turns out that the control of this valve is very complicated. The combination of

having both an 'open' and a 'close' status and bypass bits, creates a very complex

problem. The action procedure geChardware_stateJ>rocedure was used to determine
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that status of the hardware without any prior knowledge. Those interested in the

author's solution to this problem should review the complete procedure listing in

Appendix O.

4. 3. 3. Building other Object Classes

In this section, the instantiation of objects that represents the hardware controlled

by SSL02 will be described. The objects will be described from the lowest level first,

for example, the valves and pumps. Once the low level objects are instantiated, then

subsystem objects will be instantiated that contain the low level objects. Finally, the

entire SSL02 system will be described as a collection of subsystem objects.

In the last section, we discussed a valve subclass. By reviewing the code given in

Appendix 0, it can be found that the class requires an extensive definition. The next

definition will reveal one of the power aspects of object based systems and of

inheritance. In Figure 4.16, we define a new subclass of a specific valve of type a776

(the name was arbitrary). The a776 valve is slightly different in size, otherwise it is

about the same as the previously discussed generic valve. It is a simple matter to create

a new subclass for this a776 valve that inherits all the actions and attributes of the

generic valve subclass. The 'REPLACE' keyword overrides the constants in the generic

valve subclass. In just 8 lines, we created a new class!



DEFINE CLASS pneumatic_a776_valve_class IS pneumatic_valve_class
REPLACE long name = "model A776 pneumatic valve"
REPLACE initIal component motion = 2 SECONDS .. 6 SECONDS
REPLACE home time = 18 SECONDS .. 20 SECONDS
REPLACE maximum flow rate = 35 CFM
REPLACE diameter = 45 CM

1* all other actions and object data inherited from
pneumatic_valve_class *1

END DEFINE CLASS pneumatic valve class
Figure 4.16 - Pneumatic A776 Valve Class

Figure 4.17 shows a different kind of an example object subclass. In this case, the

subclass defined refers to a characteristic device rather than an actual hardware device.
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This 'precautions' subclass provides informations and actions that are related to

hardware that handles LOX. Whereas the valve class grouped the functionality by

hardware device, the 'precautions' class groups the functionality by the type of material

that is being handled. As we will see in the next section, these two subclasses can be used

to form a new subclass of object that is both a valve and handles LOX. This is possible

through a mechanism called multiple inheritance.

DEFINE CLASS liquid_oxygen-precautions_class IS basic_object_class
CONSTANT long name = "oxygen precautions and alerts"
CONSTANT type-= "precautions class"
CONSTANT boiling-point = -182.962 DEGC
CONSTANT safe_chi1ldown_temp = -186.0 DEGC
ACTION dynamics
ACTION new
ACTION warning

IS dynamics-procedure
IS new-procedure
IS warning-procedure

-several statements omitted from the example at this point-
END DEFINE CLASS liquid oxygen-precautions class

Figure 4.17 - Liquid Oxygen Precautions Class
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4. 3.4. Building the Objects Database

Using the classes defined in the last section, the last task left is to instantiate the

objects that form a computer description of the hardware that SSL02 controls. This can

be thought of as creating a hardware schematic built with the objects in the computer's

memory. The object's inputs and outputs are connected to the inputs and outputs of other

objects. For example, a tank is connected to a valve, the valve to a pump, the pump to a

transfer line, and so on. This section describes the instantiation of the objects

themselves. The complete definition of subclasses and of the object instantiations are in

Appendix D.

The general approach taken will be to instantiate the low level objects, like pumps

and valves, first, to aggregate these low level objects into larger subsystems, and

finally, to aggregate subsystems into a complete system. Figure 4.18 instantiates a

pump object called pump.J>128_object. The 'DEFINE OBJECT' statement creates an

object in computer memory. The pump is instantiated from three different object

parent classes: a pump_class, a hwsubsystem_class, and a precautions_class. These

classes contain many different attributes and actions. The object instantiated will

inherit the attributes and actions from all the classes. If two parent classes have

definitions for the same attribute or action, then the attribute or action definition from

the latter class in the parent class list will override the previous definition. The

pump_p128_object inherits the actions needed to run the pump from the

plus45_cm.J>ump_class. It inherits the actions to support its use as a part of a

hwsubsystem from the ssloz jnrmphwsubsysternclass, and it inherits the warnings

and safety actions from the Iiquid_oxygen.J>recautions_class.
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DEFINE OBJECT pump-p128_object IS {plus45_cm-pump_class ,
sslo2-pump_hwsubsystem_class,
liquid_oxygen-precautions_class}

REPLACE long name = "Main fill pump"
CONSTANT input = lox storage tank object
CONSTANT output = valve-p128_object
CONSTANT control = clutch-p128_object
CONSTANT temp = t7 object
CONSTANT temp byp = byp t7 object

END DEFINE OBJECT pump-p128-ob]ect
Figure 4.18 • Pump P128 Object

The constants defined in the pump object point to other objects that were instantiated

earlier (not shown here). The input to the pump is LOX from the LOX storage tank

object, and the output from the pump is LOX to a valve object. The clutch on the pump is

controlled by an object that knows how to control clutches. Another object monitors the

temperature, and yet another object provides the bypass flag. This type of object

aggregation is typical in object based systems.

Continuing with the aggregation from smaller to larger subsystems, Figure 4.19

shows how the pump is associated with many other objects (the other objects have been

instantiated in a similar way to the pump object). The UIL 'DEFINE OBJECT' statement

causes the instantiation of an object of the hwsubsystem_class. This class serves as a

container for subsystems. Some of the functions that this subclass might support is

input/output to the operator or status checking. In this case, the object contains all the

components of a pumping subsystem including temperature monitors, rate monitors, a

motor, a clutch, a pump, a large valve, and a cooling subsystem pump.



DEFINE OBJECT sslo2-pump_hwsubsystern_object IS hwsubsystern_class
REPLACE long name "Primary pump128 hwsubsystern"
CONSTANT contains = {tl object, t2 object, t3 object,

t4-object, tS-object, t6-object,
t7-object, t8-object, rl-object,
motor-p128_object, clutch-p128_object,
h2o-pump-p128_object, pump-p128_object,
valve-p128_object}

END DEFINE OBJECT sslo2-pump hwsubsystern object
Figure 4.19 • Pump Hwsubsystem Object
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The pump subsystem is now capable of being used to pump LOX into the Shuttle. The

operator could send an open start-pump to the subsystem, and the different objects

would behave in the desired way as described in their internal action procedures. For

example, the clutch would disengage, the power to the motor would then be starter'. the

pump begins to overheat, and other objects would just sit tight.

temperature sensors for the pump would be set to interrupt the pumping activity if the

Since the alternate pump subsystem has the exact same structure, the object

instantiated in Figure 4.20 is the same as the object instantiated in the last figure. The

'DEFINE OBJECT' creates the new object using the old object as a guide. The define object

are different.

specification would override many specific values, such as hardware port numbers, that

DEFINE OBJECT sslo2_alt-pump_hwsubsystem_object
IS sslo2-pump_hwsubsystem_object

/* redefine all the instantiation specific information
(i.e., ports, connections, ...) of the
sslo2-pump_hwsubsystem_class */

END DEFINE OBJECT ssl02 alt-pump hwsubsystem object
Figure 4.20 • Alt Pump Hwsubsystem Object

At this point, all the major objects have been instantiated and are placed in a higher

level aggregation called the fill_system_object. Figure 4.21 shows the instantiation of

this object. This object is used by the SSL02 top level procedure. Again, the
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hwsubsystem_class of object serves as a container for major subsystems, that is, the

primary and secondary pump subsystems and the LOX storage tank. The 'CONSTANT'

declarations identify attributes that will hold the object names and other values of

importance.

/* fill system specific constants */
CONSTANT slow fill time limit
CONSTANT fast-fill-time-limit
CONSTANT complete fill time limit

END DEFINE OBJECT fill system object

11 MINUTES
30 MINUTES
10 MINUTES

DEFINE OBJECT fill system object IS hwsubsystem class
REPLACE long name nET LOX loading and monItoring hwsubsystem"
CONSTANT contains {sslo2-pump_hwsubsystem_object,

sslo2_alt-pump_hwsubsystem_object,
ssl02 lox tank object}

ssl02~ump=hwsUbsystem_object
ssl02_alt-pump_hwsubsystem_object

CONSTANT main-pump
CONSTANT alternate-pump

Figure 4.21 - Fill System Object

In this thesis, all the object classes and objects were defined in UIL, and were

instantiated (from the point of view of the parser) at syntax check time. The actual

object instantiations would, most likely, be performed by NASA and would be carefully

controlled. It is also presumed that many tools will be created to allow the graphical and

textual editing of objects; therefore, it is unlikely that the SSL02 subsystem would be

instantiated by the hard coded list that appears in Appendix D. The reader will also

notice that the SSL02 control procedure was written using the syntax designed for

objects that were not created by UIL. This was done for clarity only. The action/object

statements in SSL02 would appear exactly as shown in Figure 3.15 had they been

instantiated from UIL objects.
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5. UIL EXTENSIONS

The USEWG version of UIL does not fully support the needed functionally of at least

one of the languages it was intended to replace (GOAL). In this chapter, several

recommended changes to the syntax of UIL are summarized, and issues concerning the

implementation of UIL are discussed. However, some of the issues that are discussed are

far from resolved, and their final resolution is beyond the scope of this thesis.

5.1. Recommended UIL Extensions

This section summarizes several major changes to the syntax of UIL to support the

porting of GOAL code, such as the SSL02 example, into UIL. Some of the changes have

been discussed before and are repeated here only for the purpose of completeness.

5. 1. 1. Support U1L Defined Classes

Support should be added in UIL for the creation new classes and objects. The current

USEWG version of UIL is an object manipulation language, not an object based language.

The difference is that UIL can send actions to objects and gain access to attributes in

objects; however, UIL cannot define new complex object classes or objects. The complex

objects used in the USEWG version of UIL are created by ADA programs, and they are

made available to the UIL executor through the operating system. The additions to the

UIL syntax shown in Figure 5.1 allow UIL to support the ability to create complex



classes and objects with UIL definable actions and attributes. The detailed syntax of these

object and class declarations was discussed in Section 3.10.

declaration extentions
/* create an action as a sequence of UIL statements */

uil action =
'DEFINE' 'ACTION' internal name

[ '(' parameter name list ')' 1 'IS'
{ $ sequence of-statements }

'END' 'DEFINE' 'ACTION' [ internal name] .
/* external name is a action name that will be used to send to an

object --internal name is the procedure name as defined in the
object */ -

action declaration 'ACTION' external name 'IS'
( internal_name I 'NULL'

big class
'DEFINE' 'CLASS' class list [ 'IS' class list

{ $ ( declaration I-action declaration) }
{ $ uil action }

'END' 'DEFINE' 'CLASS' [ class_list] .
big object =

'DEFINE' 'OBJECT' object list 'IS' class list
{ $ ( declaration I action declaration ) }
{ $ uil action } -

'END' 'DEFINE' 'OBJECT' [ object list ] .
Figure 5.1 • Object Definition Extensions

5.1.2. Support Generic Action Sending

UIL should provide a method for sending an action to an object for new object classes

created at run-time. Normally, the operating system provides the UIL executor with the

actions and objects that the UIL procedure will be able to use. The object and action

names are required before the UIL program can be compiled because the action and object

name occur in the code without any special syntactic clues, for example, the UIL

statement to open a valve could look like 'open valve'. This syntax presents a problem if

90
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a UIL program uses the object definition extensions described in the last section. To

eliminate this problem, a generic send action syntax is proposed in Figure 5.2 to allow

an action to be sent to an object that is not defined in a dictionary. Example generic send

action commands would be 'ASK valve TO open' or 'SEND open TO valve'. The syntax of

generic send action was discussed in detail in Section 3.10.

send action ('SEND' an action 'TO' an object)
('ASK' an=object 'TO' an=action)

action statement = send action .

an action action dictionary entry I action ) [with clause ]
an-object 'SELF'-' object name I object dictionary entry

Figure 5.2 • Action Definition Extensions

Both forms of the send action shown above (with SEN D or ASK) are functionally

equivalent. The two forms are provided because sometimes it reads better to 'ASK' an

object to do an action, and other times if reads better to 'SEND' an action to an object.

These more formal forms allow any message and object to be used without conflicts or

parsing problems.

5.1.3. Support Lists

UIL should provide better support of the list data type within the language, and not as

an object class. There are many uses of lists that are difficult to handle with fixed sized

arrays or other data types. The GOAL code made extensive use of lists to keep the code

compact and readable. UIL should also provide an unambiguous syntax to clearly indicate

that the data is in a list. UIL support of lists should be allowed in almost any expression.

Lists are too important a data type to be an 'added-in' feature of the language. They must

be fast in execution and easy to use. Figure 5.3 defines the syntax for two kinds of lists

and provided several examples of lists in use.
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expression list =
expressIon I ( '{' expression $ I, I expression '}'

name list
name ( I { I name { $ I I name } I } I )I .

LET {at b, c} FALSE
LET {a, b, c} {TRUE, FALSE, TRUE}
LET a {TRUE, FALSE, b, c}
LET a TRUE
IF {a, b, c} {TRUE, FALSE, TRUE} THEN
IF {a, b, c} TRUE THEN

Figure 5.3 • List Extensions

5. 1.4. Support Arrays and Structures

UIL should support arrays and data structures as basic data types for the same

reasons as described in the last section on lists. The USEWG version of UIL does not

support arrays and data structures. These data types should be similar to those found in

other modern conventional languages, for example, ADA or C. Objects do NOT replace all

types of data structures within a program. Conventional data structures perform many

of the desired jobs in the best possible manner. It is not acceptable to say that an object

class can be created for any type of data structure that is needed. In many cases, the

overhead that an object creates will be unacceptable.

5.1.5. Support Generic Pathnames

UIL should be designed to be portable from the beginning. Non-portable aspects

should not be introduced into the language. The USEWG version of UIL is not portable

from at least one aspect, the path names. There is no excuse for creating a modern

language that is not portable. Generic pathnames should be used in UIL. The run-time

system or operating system can translate the generic pathnames into the host computers

preferred format. It is easy to create a generic filename format {or seek out some
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standard that is already in use). A standard filename format will greatly simplify

porting efforts. Table 5.1 provides a trivial example of some filename translations.

Table 5.1 - Example of Generic File Names

System Dependent UIL System Independent
Vax::Dev: a.b.c file.ext Vax;; .Dev: ;a;b;c ;file .ext

fuse r/0 rbit/d ata file user;orbit;datafile

5.1.6. Support Event Handlers

UIL should provide support to define, attach, detach, enable, disable, check, signal,

change levels, and override event handlers from within a UIL procedure. Up to 25% of

the code in the GOAL procedures we reviewed were related to handling events. UIL

procedures should be able to manage events under statement control. There is a

temptation to implement eventhandlers as standard objects; however, the execution

time constraints associated with events will, almost certainly, require events to be

implemented as basic language features. The current UIL specification only allows

events to be used from outside UIL procedures, and does not support multi-priority

events. Figure 5.4 shows some of the syntactical extensions that UIL will require to

support events. These event handler extensions follow directly from our review of the

GOALcode.
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event enable level statement =
( 'ENABLE' I 'DISABLE' I 'CHECK' I 'QUERY' event level

event attach statement =
'EVENT' 'HANDLER' 'FOR' event name

'IS' ( sequence of statements 'NULL')
[ 'LEVEL' interrupt level ]

'END' [ event_name ] . -
event enable statement =

( 'ENABLE' I 'DISABLE' I 'SIGNAL' I 'CHECK' I 'QUERY'
( 'CHANGE' [ 'PENDING' ] 'LEVEL' )) event name

exception statement = 'RAISE' event name.
Figure 5.4 • Event Handler Extensions

The 'RAISE' statement has been added to allow an event to be raised from within a UIL

procedure. The USEWG version of UIL defines exception handling for only expression

evaluation. There are many cases of procedure error handling that can best be supported

by an event style of exception handler. The addition of the raise statement provides the

maximum flexibility in handling errors or exceptional conditions by allowing the

programmer to use either a conventional error handling procedure or by using event

handlers.

5.1.7. Support Error Handling for Timed Sections

UIL should support simpler handling of timed sections of code by adding additional

clauses to the wait statement that would make timed operations easy to code. There are

many operations that involve time, in fact, UIL defines special data types for times and

dates. To simplify the programming involved for timed functions, UIL should support

additional clauses for the wait statement like those shown in Figure 5.5. There are two

new clauses added to allow a sequence of statements to be executed when a time out

condition occurs. The raise statement described in Section 5.1.6 provides a convenient
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method of handling time out exceptions. These additions will simplify the error handling

of timed operations.

wait statement = 'WAIT'
( 'UNTIL' logical expression
( timing simple expression
( timing=simple=expression

[ 'OR' 'UNTIL' logical expression 1 ) 1
/*new*/ [ 'ON' 'TIMEOUT' sequence of-statements 'END' 'TIMEOUT'
/*new*/ [ 'ON' 'UNTIL' sequence-of-statements 'END' 'UNTIL'

Figure 5.5 - Timed Section Extensions

5.2. Binding of UIL objects

The term binding refers to the time when UIL connects the actions to the objects. If

binding occurs 'early' at compile time, the code executes much faster; however, the

program flexibility is restricted by the fact that all object structures are fixed at

compile time. ADA is an example of a language that does early binding. On the other

hand, if binding occurs 'late' at execution time, the object structures can be changed at

run-time; however, there is a significant run-time overhead attached to this enhanced

flexibility. Smalltalk-80 is an example of a language with late binding.

To crystalize the concept of binding, let us apply binding to a simple hardware

subsystem example. Given that we have a subsystem with two valves and one pump: what

does early binding or late binding imply about the subsystem? In an early binding

system, the subsystem would be compiled into code in one piece, and action procedure

calls for the valves and the pump are fixed into code. When an action is sent to the

subsystem, these procedure calls will be executed, and the results are returned. In a

late binding system, the subsystem objects could be compiled into code together or

separately or even created by a UIL procedure at run-time. The action procedures

cannot be determined until the action is sent. When an action is sent to the subsystem,
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the UIL executor will dispatch the action to the action procedures that are, at this instant

in time, attached to each of the three objects.

The preferred binding method of UIL objects and subsystems will depend on the

context of use, the implementation of the UIL compiler, and the Space Station operating

environment. There are at least three separate cases to be considered: fixed hardware

subsystems, changing hardware subsystems, and user driven applications.

At a first glance, a fixed hardware subsystem would seem to be the only application of

UIL procedures. Most subsystems aboard Space Station would fall into this category (at

least. this appears to be the case at a first glanc8j. As an example, let us call the Shuttle

a hardware subsystem. The Shuttle is a very complex system that could be compiled into

a Shuttle object. The compiler (after spending three days optimizing the code) generates

a very fast executing Shuttle object. Now, we send the Shuttle object the 'take off'

action, and it blasts into the sky as planned, and successfully goes into orbit. Everything

is fine until a flight computer fails and changes the Shuttle object configuration.

Recompiling this object is out of the question.

This example may be a bit extreme I Let us redefine the Shuttle object to refer to a

collection of LRUs (Line Replaceable Units). A line replaceable unit is a small

subsystem that cannot be changed internally; however. they can be removed and replaced

by other LRUs in flight. The compile time binding is very useful for a LRU as the LRU

object would execute very fast and could be substituted for other LRUs in the case of a

hardware failure. The connections between the LRUs could be either special purpose

code written into the UIL procedure or late binding of just the LRUs. If there is a

hardware change in operation, such as repairing or changing flight components within a

LRU. it would be likely that the LRU hardware subsystem will be 'recompiled'. It is even
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possible that a different subsystem object would be compiled for each LRU serial number

due to slight differences in operating characteristics.

The concept of a system with more than one LRU is an example of a changing

hardware subsystem. There must be a method of 'connecting' hardware subsystems

without recompiling the objects. Another extreme example is as follows: the Shuttle

object should, without being recompiled, be able to be placed on either pad A or pad B

(pad A and pad B are the two, slightly different, Shuttle launch sites at KSC). The

differences between the two pads are currently hard-coded into operational GOAL

procedures. Another example would be the replacement of a LRU in flight. Each

functionally different LRU should have its own precompiled UIL hardware subsystem

object that can be 'plugged' into the UIL subsystem controller software or a simulator.

One last example follows: the status output and control input for a subsystem should be

bound to a console or controller at run-time as desired, and changed or moved as needed.

Whereas hardware systems do not change frequently, the user driven applications of

UIL must be free to instantiate and destroy objects and object subsystems at run-time.

For example, windowing systems and most other operator directed interactions are

driven by the user, and it is simply not feasible to plan ahead how many windows the

user may be using at anyone time. In these cases, early binding cannot be used.

The conclusion to the discussion is this: It seems that UIL should support both early

binding and late binding. The Space Station will be composed of early binding LRUs that

are compiled, and late binding slots that LRUs will be plugged into. When UIL is used to

support dynamic operations like user interfaces, the binding will be, in all likelihood,

late.
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5.3. Object Based Hardware Subsystem Descriptions

Related to the binding issue discussed in the last section, there are some questions on

how to build and maintain the subsystem objects. In the SSL02 example, a subsystem

object was built of smaller objects that represent the valves and pumps. What was not

discussed in detail is how the subsystem object was built. The comment in Chapter 4 was

that all the objects were instantiated before they were combined into a subsystem. There

are problems with this: what about forward references? If object A points to object B

and object B points to object A (e.g., when the output of A is connected to the input of B

and vlcc versa), then how do you instantiate the 'first' one? At least two solutions are

possible: multi-pass object instantiation, and generation of the object connections after

all instantiations have been completed.

In the multi-pass instantiation method, all the objects would be instantiated by the

compiler, and the attribute values would be filled in after the first pass. In this way,

the forward references would not be a problem. Using an object connection scheme after

the instantiation of objects could be more flexible, for example, make objects A, B, and

only then add the connections between them. This could replace the multi-pass system;

however, this implies that there is some type of special 'code' that would follow the

instantiation of objects to connect them (via attribute values). This 'code' fills in

attribute values, but it does not generate executable code. Neither solution is ideal.

5.4. Multitasking and Testability in UIL

There are many issues, such as testability and multi-tasking, that were not covered

in this thesis; however, there are several observations about the GOAL code that may

effect the implementation of UIL. The current design of UIL makes no mention of multi-
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tasking, or how events would be handled. Observations of the GOAL code we reviewed and

the nature of controlling multiple devices suggest a multi-threaded procedure execution.

The term multi-threaded is used here to refer to several parallel execution paths

through the code. The multiple threads could be implemented either via multi-tasking

or by using event handlers or both. The object design concepts of UIL may already come

as a shock for the current users of GOAL. To say further that UIL will support multiple

threads of execution may be even more disturbing from a testability point of view.

On the other hand, one has to believe that UIL can be designed to be a more productive

language than GOAL. The GOAL language does not even provide the most basic tools for the

programmer. The current approach to developing procedures in GOAL for the Space

Shuttle is best described as event driven. The code is very 'flat' and never nests more

than a level or two of 'if ... then ... else'. The GOAL version SSL02 sets up over 290

interrupt handlers. The language depends on Shuttle hardware to generate interrupts on

every aspect of the control. In fact, all hardware devices have front end processors that

receive and process these interrupts.

There are several reasons for the way SSL02 was designed and coded with such a

dependence on interrupt handlers:

( 1) There is no CPU time spent 'polling' for external events.

( 2 ) The high priority interrupts can be handled quickly by the front end

processor, and can later be raised to the GOAL processor.

( 3) Flat code is easy to time and test and likely to execute faster.

( 4 ) The control flow is straightforward (almost a straight line).
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UIL currently avoids the issue of multi-threaded execution. In SSL02, there are

many actions that go on simultaneously and that are executed by priority or in turn by

interrupt handlers. The object based approach of UIL won't do much good with the SSL02

example unless it is augmented by some mechanisms for multi-threaded execution. The

question is whether these inherent capabilities should penetrate through to the user

surface, for example, whether the user should be made aware of the multi-threaded

execution. This thesis does not provide an answer to this difficult, yet important,

question.
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6. CONCLUSIONS

The development of the Space Station FREEDOM is an enormous effort, and the success

of the project will depend on many interlocking pieces of technology. UIL is one of these

pieces of technology. It provides users powerful access to Space Station resources

without the need to write procedures in a conventional computer programming language.

UIL is another step in the evolution of aerospace operations languages. UIL will provide

the man-machine interface for most of the test and operation command procedures,

development and testing of experiments on the ground, and the remote execution of these

experiments.

The work completed for this thesis provides a concrete test case for UIL by porting

an operational GOAL procedure called SSL02 from the Space Shuttle launch system to

UIL. The hardware controlled by this procedure should be representative of the types of

applications that UIL will be used to control on the Space Station FREEDOM. By suppling

a syntax parser program with the proposed UIL syntax, the translated UIL version of

SSL02 was verified to be syntactically correct. In the process of translating all of the

functionality of SSL02 into UIL, several inadequacies were discovered in UIL. The syntax

of UIL was then enhanced to provide the functionality to support applications such as

SSL02.

The object oriented approach that was taken with UIL is based on the successful

application of object oriented concepts to several other systems in operation today. The



102

object oriented approach has several advantages that are of use to the Space Station

program. The object oriented approach provides convenient packaging of code and data.

It is comforting to deal with the control of hardware devices at the level of 'open valve'

or 'start pump' where the details of how the valve opens is hidden from the user. For

example, once the objects were properly defined, the actual high level control part of the

SSL02 procedure was short compared to the GOAL code. The powerful concept of class

inheritance simplifies the creation of new object classes. The data driven nature of

object based systems can be used to flexibly change hardware configurations without the

need to recompile a control program.

A significant amount of time was spent analyzing the provided GOAL procedures.

These procedures and the GOAL run-time environment provide a glimpse of the past and a

warning for the future. The GOAL environment was primitive, by todays standards: huge

unstructured procedures, special purpose hardware and software, and poor

programming tools. This should not come as a shock for those involved, given that the

initial design of the system dates back more than 15 years. It is likely that the current

Space Shuttle launch system will continue to operate for another 5 years or more. The

warning is this: the UIL language that is defined today will influence the implementation

of Space Station applications and other NASA projects, such as the manned lunar base,

for many years to come; thus, a short-sighted approach to design questions today will

have detrimental effects that will hamper the future development of many projects,

projects that are not even in the early design stages now.

In this thesis, several major enhancements to UIL were proposed. The three most

important enhancements were: UIL support for event handlers, UIL support for data

structures, and UIL support for creating complex classes and objects. The addition of
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these enhancements change the character of UIL from an object manipulation language to

an object based language. The enhancements will profoundly change the future of UIL and

expand the number of applications that will use UIL.
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APPENDIX A

UIL SYNTAX DEFINITION
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.OPT
METASYMBOLS

OR I ;

SETOPTION
INTERSECTION

SYNDIA
PRTPLOT 100 ,
PRTBNF 70 ,
PL'IWIDTH 20.0 ,
PLTCHWIDTH 0.25 ,
PLOT DISPLAY ,
LABELS ;

REDEFINITIONS
COMMENT /* */

$$$$$
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/*****************************************************************
*
*
*
*

Space Station UIL (User Interface Language)
LANGUAGE SYNTAX DEFINITION Version 1.1 - 6/5/89

* In the following lines, an ,\, is actually a ,/, for comments
** Modified original version of the UIL syntax for LL(l) parsibility:
* \*+ shows added info *\ \*- shows subtracted info *\
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Modified for SSL02 version:
\**+ shows added info *\ \**- shows subtracted info *\
\*#+ shows added info *\ \*#- shows subtracted info *\
(Made all keywords uppercase for clarity)

- Added return value for return statement:
Extended 'with clause' to handle special cases in text

- Allowed program control of event handers
- Allowed function calls with zero arguments
- Added support for unique form of a list i.e., {a,b,c}
- Allowed use of a list for parameter name
- Added REPLACE to allow redefine of a CONSTANT
- Added example object/action dictionaries
- Added example unit names
- Added UIL definitions for complex objects

(big class, big object, uil action)
- Added generic send-action forms

*****************************************************************/

/* 3 language definition */
/* 3.1 about language definition */
/* 3.1 notation */
/* 3.2 character set -- see end of this file */

/* 3.3 lexical elements */
/* 3.3.1 words */
word = 'IDENT' /* letter { $ letter I digit} */ I
/**+ Allows words to be OBJECT names */ object_directory_entry

/* 3.3.1.1 reserved words */
/* 3.3.1.2 words that indicate direction */
direction = 'ON' I 'OFF' I 'IN' I 'OUT' I 'UP' I 'DOWN' I

'LEFT' I 'RIGHT' I 'FORWARD' I 'BACKWARD' I
'CLOCKWISE' I 'CW' I 'COUNTERCLOCKWISE' I 'CCW'
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/* 3.3.2 numbers */
/* 3.3.2.1 integer numbers */
integer = 'UINTEGER' /* digit { $ [ '_I ] digit} */ .
/*+*/ based_integer = base extended-part .
/*+*/ extended-part = 'i' extended_digit

{ extended digit I ( , , extended digit) } 'i'
/*- based integer = base 'i' extended digit -

- {$ [' 'lextended_digit} 'i'. */
base = integer
extended_digit = digit I letter
/* 3.3.2.2 real numbers */
/*+*/ real = integer rea1-part
/*+*/ rea1-part = '.' integer [ exponent] .
/*- real integer" integer [ exponent] . */
exponent = ( 'E' I Ie' ) [ '+' I '_I ] integer.
/* 3.3.3 dates and times */
date time = date '_I time
count_time = day '_I time
date = year 'I' ( (month 'I' day of month) I day_of-year ) .
time = hours I:' minutes [ I:' seconds 1 •
day = integer .
/*+*/ year = digit digit digit digit .
/*- year = integer. */
month = integer .
day of month = integer
day=of~ear = integer
hours = integer .
minutes integer
seconds = integer , , integer ] .
/* 3.3.4 strings */
STRING = ( "~I "~I )
text string = STRING
pathname_string = STRING .

,n, '''I ) . /* STRING predefined */

/* 3.3.5 special characters */
/* 3.3.6 separating lexical elements */
/* white space is spaces and/or tabs */

/* 3.4 basic syntactic components */
/* 3.4.1 names */
name = { word } .
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/* 3.4.1.1 names of objects, object classes and attributes */
/*- object identifier = object name I pathname literal . */
/*+*/ object-identifier = - -

( name [ ':' pathname string] ) I pathname string
/*+*/ attribute identifier = - -

attribute name 'OF' object_identifier
/* 3.4.2 literals */
/* 3.4.2.1 numeric literals */
/*+*/ numeric literal integer [ extended-part I real-part ] .
/*- numeric-literal integer literal I real literal. */
/*+*/ integer-literal integer_[ extended-part ]
/*- integer-literal integer I based_integer . */

real literal real
/* 3.4.2.2 time literals */
date time literal = date time time zone name
/* 3.4.2.3 string literals */
text literal = text string .
pathname_literal = T operating_system_name ':' 1 pathname_string
/*- string literal
/*+*/ string=literal

text literal I pathname literal . */
[ operating_system_name-':' 1 STRING

/* 3.4.2.4 enumeration literals */
extended name = { $ word } direction { $ ( word I direction ) } .
/*- enumeration literal = name I extended name . */
/*+*/ enumeration-literal = -

( {word } [ direction {$ word I direction
( direction {$ word I direction

/* 3.4.2.5 measurement literals */
measurement literal = measurement { $ measurement
measurement-= numeric literal units
units = units name I ( '«' units expression '»' )
units expression = units factor {S multiplying operator units factor } .
units-factor = - -

units name [ exponentiation operator units exponent 1 •
units_exponent = [ ,+, I I_I l-integer_literal
/* 3.4.3 lists */
list = expression { $ I I expression } .
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/* 3.4.4 expressions */
/*+*/
expression =

( ( simple expression
[ ( relational_operator simple_expression

( range test operator range
( range-operator simple expression ) I

logical not operator simple expression
'AND' relatIon { $ 'AND' relation} ) I
'OR' relation { $ 'OR' relation} ) l.

/*-
expression

( relation 'AND'
'OR'

relation
relation

$ 'AND' relation}
$ 'OR' relation } ) I

range. */
relation =

( simple expression
[ ( relational operator simple expression ) I

( range test-operator range T 1 )
logical_not_operator simple_expression ) .

range simple_expression range_operator simple_expression
simple expression = [ unary adding operator J

term { $ binary adding-operator term} .
term = factor { $ multiplying_operator factor } .
factor = ( primary [ exponentiation_operator primary 1 ) •

/*+*/
primary
/*-int
/*+int*/

numeric literal I measurement_literal I */
numeric-literal

[ units { $ numeric_literal units } 1 ) I

/* digit* /
/*-strg/name
/*+strg/name*/

string literal
STRING-I

*/
/*part of, pathname in 'name' section*/

/*-name enumeration literal I object name I function call
attribute identifier I indexed_object I */ -

/*+name*/
word }
[ ( ':' STRING ) I

( 'OF' object identifier) I
( '(' [ list T ')' ) I
( direction { $ ( word I direction } ) 1 ) I

direction { $ ( word I direction ) } )
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/*list*/ ( '(' list ')') I
/**+ support unique form for a list */

( '{' list '}' ) .

/*-
primary numeric literal I date time literal I string literal

measurement literal I enumeration literal I -
Object_name-I attribute_identifier I
indexed object I function call I
('(' lIst ')'). */

/* 3.4.4.1 operators and their precedence */
logical connecting operator 'AND' I 'OR'
logical-not operator = 'NOT' •
relational operator 'IS' [ 'NOT'

'<I I '<=' I
'IS' [ 'NOT', ,

] ) I '='
I>' I '>='
] 'WITHIN'

'/=' I

range_test_operator
range operator =
unary-adding operator
binary adding operator =
multiplying operator =
exponentiatIon operator =

'+' I '-'
'+' I '-'
'*' I ,/,
'**'

'&' •

/* 3.4.4.2 ranges */
/* 3.4.4.3 expression evaluation */
/* 3.4.4.4 objects names in expressions */
/* 3.4.4.5 functions */
function call = function name' (' [ argument list] ')' .
/*#+ added optionals around argument list to-allow functions

to be called without arguments */

/* 3.4.4.6 indices */
indexed_object = object_name' (' index_list ')' .
/* 3.4.4.7 exceptions during expression evaluation */
/* 3.4.4.8 examples of expressions */

/* 3.5 statements */
sequence of statements = { statement } .
statement =-declaration I command I

assignment statement I sequential control statement I
conditional control statement I iterative-control statement

/**+ Allow program control of event handlers */ event handler I
/*#+ Allow UIL definition of complex objects */ extensions.
/* 3.5.1 declarations */
declaration subclass declaration I parameter_declaration I

constant-declaration I
object declaration I rename declaration. */
object=rename_declaration .

/*-
/*+*/
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/* 3.5.1.1 subclass declarations */
subclass declaration = 'CLASS' object name

'IS' object name [ with clause] .
with clause = 'WITH' assignment { $ I,' assignment } .
assigTIment = ( name '=' expression ) 1

/**+ These added only for clarity */
/**+*/ ( 'DEFAULT' 'VALUE' '=' expression
/**+*/ ( 'INITIAL' 'VALUE' '=' expression
/**+*/ ( 'RANGE' '=' range) 1
/**+*/ ( 'MODE' '=' ( ( 'IN' [ 'OUT' ] ) 1 'OUT' ) ) .

/* 3.5.1.2 object declarations */
object declaration = 'OBJECT' object name

- 'IS'-class name
/***** See section 3.5.1.5 */

wi th clause ] .

/* 3.5.1.3 parameter declarations */
parameter declaration =

'PARAMETER' parameter name list
'IS' class name [-with-clause]

/*#+ Allowed use of-a list for parame~er names - easier creation
of parameters that are all the same class */

/* 3.5.1.4 constant declarations */
constant declaration = 'CONSTANT' assignment 1

/*#+ Added REPLACE to allow redefine of CONSTANT */
'REPLACE' assignment.

/* 3.5.1.5 renaming objects */
rename declaration = 'OBJECT' object name 'RENAMES' object name
/*+*/ object rename declaration = 'OBJECT' object name

(-( 'IS'- class name [ with clause-] ) 1
( 'RENAMES' object_name) - ) .

/* 3.5.1.6 the scope of objects */
destroy_command = 'DESTROY' object_name_list

/* 3.5.2 commands */
command = basic command qualifier_group ] .

/* 3.5.2.1 basic commands */
basic command

( action ( commanded obj€ct list [ direction ] ) 1
( direction-commanded object list) ) 1

/**+ Added example object/action dictionaries */
example_command .

commanded_object_list object identifier list [ 'OF'
object identifier list ]

action = verb 1 ( 'START' verb )-1 ( 'STOP'-verb ) .
verb = word .



11 2

/* 3.5.2.2 qualified commands */
qualifier group = qualifing clause { $ ',' qualifing clause} .
qualifing-clause = ( qualifIer expression) I with clause
qualifier-= 'AFTER' I 'AT' I 'BEFORE' I 'BY' I 'EvERY' I

'FROM' I 'INTO' I 'TO' I 'UNTIL' I 'WHERE' .

/* 3.5.3 assignment statement */
assignment_statement = 'LET' assignment
/* 3.5.4 sequential control statement */
sequential control statement = null statement I step statement

- -go to statement T wait statement -
return statement -

/* 3.5.4.1 null statement */
null statement = 'NULL' .

/* 3.5.4.2 step statement */
step statement = 'STEP' [ step id ]

'IS' sequence of statements-'END , 'STEP' .
step_id = name I-integer [ name ] .
/* 3.5.4.3 go to statement */
go_to_statement = 'GO' 'TO' 'STEP' step_id
/* 3.5.4.4 wait statement */
wait statement = 'WAIT' [

(-'UNTIL' logical expression) I
( timing simple expression

[ 'OR' 'UNTIL' logical expression) ) )
/*new*/ [ 'ON' 'TIMEOUT' sequence of statements 'END' 'TIMEOUT'
/*new*/ [ 'ON' 'UNTIL' sequence=of=statements 'END' 'UNTIL'

exception_statement = 'RAISE' event_name
/* 3.5.4.5 return execution */
return statement = 'RETURN' [ 'ALL' ) /**+*/ expression ) .
/* 3.5.5 conditional control statement */
conditional control statement = if statement I verify_statement I

-case statement-
/* 3.5.5.1 if statement */
if statement = 'IF' logical expression 'THEN'

- sequence of statements
$ 'ELSE' 'IF' logical expression 'THEN'
sequence of statements }

'OTHERWISE' -
sequence of statements

'END' 'IF' ~ -
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/* 3.5.5.2 verify statement */
verify statement =

- 'VERIFY' logical expression
[ 'WITHIN' timing simple expression

'THEN' --
sequence of statements

,OTHERWI SE' -
sequence of statements

'END' 'VERIFy'-.

/* 3.5.5.3 case statement */
case statement = 'CASE' expression

- { $ ( 'WHEN' logical expression
'THEN' sequence of statements )

[ 'OTHERWISE' sequence of statements]
'END' 'CASE' . - -

/* 3.5.6 iterative control statements */
iterative control statement = repeat statement

for_statement I exit statement
while statement

/* 3.5.6.1 repeat statement */
repeat_statement = 'REPEAT' sequence_of_statements 'END' 'REPEAT' .

/* 3.5.6.2 while statement */
while_statement = 'WHILE' logical_expression repeat_statement .
/* 3.5.6.3 for statement */
for statement = 'FOR' index_object_name '=' list repeat_statement
/* 3.5.6.4 exit statement */
exit statement = 'EXIT' 'IF' logical_expression] .
/* 3.6 environments, procedures and event handlers */
/* 3.6.1 environments */
/* 'INSTALL' environment [ 'ON' processor]

[ 'WITH' 'PRIORITY' '=>' expression] */
/* 'REMOVE' environment */

/* 3.7 procedures */
procedure = 'PROCEDURE' procedure name

[ '(' parameter name list ')' ]
'IS' sequence_of_statements 'END' T procedure_name

/* 3.7.2.1 executing a procedure */
/* 'EXECUTE' procedure name [ 'IN' environment

[ 'FROM' 'STEP' integer]
[ 'TO' 'STEP' integer] [ 'WITH' parameter_list] */

/* 3.7.2.2 terminating a procedure */
/* 'TERMINATE' procedure_name [ 'in' environment] */
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/* 3.7.2.3 suspending a procedure */
/* 'SUSPEND' procedure_name [ 'IN' environment] */

/* 3.7.2.4 resuming execution of a suspended procedure */
/* 'RESUME' procedure_name [ 'IN' environment] */

/* 3.7.2.4 redirect a procedure */
/* 'REDIRECT' procedure name [ 'IN' environment

'TO' 'STEP' step_name */

/* 3.B events
event handler

and event handlers */
'EVENT' 'HANDLER' 'FOR' event name
'IS' sequence of statements
,END ' [ event =name ] .

/* 3.B.3.1 enabling and disabling events */
/* 'ENABLE' 'NOTIFICATION' 'OF' object name */
/* 'DISABLE' 'NOTIFICATION' 'OF' object_name */

/* 3.B.3.2 signalling an event */
/* 'SIGNAL' object name [ 'TO' list] */
/* Primitive definItions (predefined) */

letter = 'LETTER' .
digit 'DIGIT'.

/*
character = letter I digit I special symbol
digit = '0' I '1' I '2' I '3' I '4' T

'5' I '6' I '7' I 'B' I '9' .
letter = 'A-Z and a-z'
space = 'space bar' .
special symbol- = , , I '''' I '" I '(' , ) ,

- '+' I ,-, I '*' I 'I' '='
'&' I space I tab

" '<'
'I' ,.,

'>', ,,
tab = 'tabulator'
text_symbol '! ',] , , $',A, '%' ,. ,,

" , ,{ , , ?'
, I '

'@', } ,
, [ ,
'-'

,\, I

*/

/* Simple definitions (italic synonyms) */

logical expression = expression.
timing_simple_expression = simple_expression

argument list
attribute list
index list
object_identifier_list

list
list
list
list

object name list
parameter-pame_list

name list
name-list



name list =
/*#+-unique list syntax */
attribute name
class name
event name
function name
index obJect name
object name -
operating_system_name
parameter name
procedure-name
time zone-name
units name =
/**+*7 'SECOND'

'MINUTE'

name
'{' name
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$ 'f' name}
$ 'f' name } '}'

name
name
name
name
name
name
name
name
name
name

/**- Added example unit names */
I 'SECONDS' I 'CFM' I 'CM' I 'DEGC'
I 'MINUTES' I 'PERCENT' .

'RPM'
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/*****************************************************************
** UIL (User Interface Language) Extensions for SSL02
* Version 1.00
******************************************************************/

UIL = { procedure I declaration I event handler I extensions }
/* The action dictionary and object directory entries will be
* built and controlled by NASA. For this example, they been
* coded into the syntax. Note that defining the syntax for
* example command in this way incorrectly allows such commands
* as OPEN-MOTOR or LAUNCH VALVE. In the operational system,
* the action dictionary will maintain a list of object classes
* that the action can be sent to. */

example command = example action example object
example-action action dictionary entry-.
example-object = object-directory entry- --

action dictionary entry =
/* events/systems-*/ 'enable'

'start' 'revert'
/* operator */ 'write' 'query'
/* systems */

'chilldown suction line'
'chilldown-orbiter-mps'
'open_main=fill_valve'

'disable' I' stop'
'enable events for'

'chilldown transfer line'
'activate_topping'

object directory entry =
'operator object' I
'activeyump'
'stop_key_object'

'fill system object'
I 'backupyump'
'revert_key_object' .

/*****************************************************************
*
*
*
*
******************************************************************/

UIL (User Interface Language) Object Description
Language Extensions for SSL02

Version 1.00

/*#+*/
extensions ( 'DEFINE' (big object

send action -
uil action =

'DEFINE' 'ACTION' name [ '(' parameter name list ')' ] 'IS'
{ $ sequence of statements }

'END' 'DEFINE' 'ACTION' [ name]
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big class =
TCLASS' name list [ 'IS' name list]

{ $ declaration I
('ACTION' (name I action dictionary entry)

'IS' ( ( name I action dictionary entry) I 'NULL' ) ) }
{ $ uil action } - -

'END' 'DEFINE' 'CLASS' [ name list] .

big object =
TOBJECT' { name list} 'IS' name list

{ $ declaration I
('ACTION' (name I action dictionary entry)

'IS' ( ( name I action_dictionary_entry ) I 'NULL' ) ) }
{ $ uil action }

'END' 'DEFINE' 'OBJECT' [ name_list) .

/* Note that a more conventional syntax of object languages
is allowed in this extended definition of the UIL syntax.
Both forms shown below are functionally equivalent. These
more conventional forms allow any action and object to be used
without conflicts or parsing problems. Developers can use the
formal forms for non-NASA controlled applications */

send action 'SEND' an action 'TO' an object)
('ASK' an-object 'TO' an-action)

( action dictionary entry I action )
'SELF' I-object_name.

with clause ) .an action
an=object

$$$$$



APPENDIX B

GOAL GKH1 F PROCEDURE LISTING

118



119

BEGIN PROGRAM (GKHIF);

$ Identification
System name -
S/w structure diagram -
Company / Group / Phone -

Hardware/software configuration
Flight software -
Flight hardware -
PCM format -
LPS hardware
GSE -

LH2
80KOOOOl
MMC/Software group

requirements
N/A
N/A
N/A
LINK GSE 4
PNEUMATIC VALVE Al00677
SOLENOID VALVES A80995,
A80994,A80996.

Function description
Purpose/functions of program -
The program is designed to command the AI00677 main
fill valve to the open position and set the appropriate
exception monitor and GOAL notification limits.
The following types of function designators are defined
in the data base and are used in this program-

<GLHK----E> Valve discrete commands
<GLHX----E> Valve discrete position indicators
<NLH------> Bypass function designators

The respective bypasses are turned on whenever it is
desired to inhibit the issuance of the command(s)
to the component or if component response indicator(s)
and/or signal(s) is determined erroneous. No bypasses
are turned on within this program.

OMRSD reqrnts satisfied -
Hazards and warnings -
Prerequisites -

TBD
TBD
TBD

Comm FD's / function - SENT <NOOILH2 $COM INTERRUPT$>
TO CONSOLE <LH2 $RESP. SYSTEM CONSOLES>

Pseudo FD's / function -
NLHKOIOlX- Fast flag - Is used when rapid execution is

required.
NLHK9999X- Stop flow - Can be set on by the operator
NLHK4l11E- Stimulus bypass is tested to select primary

or secondary hardware operational mode or to
prevent issuance of a command.

NLHX41l2E, NLHX4113E, NLHX4123E -
An indicator/measurement bypass is tested for
data validity or for changing/activating in-
terrupt processing on a function designator.

-additional comments deleted-. $

DECLARE QUANTITY (GMT1)=GMT, (GMT2)=GMT, (VLVTM)=SEC;
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$ The previous items are internal variables for this subroutine
only. $

SPECIFY INTERRUPT <PFPK6 $PSP KEY 6 DEFAULT$>
AND ON OCCURRENCE GO TO STEP 40;

$********** BEGIN OPERATING STEPS **********$
ACTIVATE PROCEDURE ERROR OVERRIDE;

CHANGE <GLHK4111ER $HRS Al00677 MAIN FILL VLV OPEN CMD$>
<GLHK4121ER $HRS Al00677 MAIN FILL VLV REDU CMD$>
<GLHX4112E $Al00677 MAIN FILL VALVE CLOSED IND$>
<GLHX4113E $Al00677 MAIN FILL VALVE OPEN IND$>
<GLHX4l23E $Al00677 MAIN FILL VALVE RED IND$>
SAMPLE RATE TO 100 TIMES PER SECOND;

INHIBIT EXCEPTION MONITORING FOR
<GLHX4ll2E $Al00677 MAIN FILL VALVE CLOSED IND$>
<GLHX4l23E $Al00677 MAIN FILL VALVE RED IND$>
<GLHX4113E $Al00677 MAIN FILL VALVE OPEN IND$>;

INHIBIT FEP INTERRUPT CHECK FOR
<GLHX4ll2E $A100677 MAIN FILL VALVE CLOSED IND$>
<GLHX4123E $Al00677 MAIN FILL VALVE RED IND$>
<GLHX4113E $A100677 MAIN FILL VALVE OPEN IND$>;

$ The previous statements inhibit those interrupts which
would result from this valve changing state. All other
interrupts are activated. $

$ The following statements check each valve position indicator
bypass. If the bypass is on, no action is taken. If the
bypass is off, GOAL and system exception conditions are
changed to reflect the state each indicator is expected to
show upon program completion. $

VERIFY <NLHX4112E $Al00677 MAIN FILL VALVE CL IND BYP$> IS OFF
ELSE GO TO STEP 2;

CHANGE <GLHX4112E $Al00677 MAIN FILL VALVE CLOSED IND$>
GOAL EXCEPTION CONDITION TO ON;

CHANGE <GLHX4112E $Al00677 MAIN FILL VALVE CLOSED IND$>
SYSTEM EXCEPTION CONDITION TO ON;

STEP 2 VERIFY <NLHX4l23E $A100677 MAIN FILL VLV RED IND BYP$> IS OFF
ELSE GO TO STEP 3;

CHANGE <GLHX4123E $Al00677 MAIN FILL VALVE RED IND$>
GOAL EXCEPTION CONDITION TO ON;

CHANGE <GLHX4123E $A100677 MAIN FILL VALVE RED IND$>
SYSTEM EXCEPTION CONDITION TO ON;
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STEP 3 VERIFY <NLHK0101X $FAST FLAG$> IS OFF
ELSE GO TO STEP 4;

VERIFY <NLHX4113E $A100677 MAIN FILL VALVE OP IND BYP$> IS OFF
ELSE GO TO STEP 100;

CHANGE <GLHX4113E $A100677 MAIN FILL VALVE OPEN IND$>
GOAL EXCEPTION CONDITION TO OFF;

CHANGE <GLHX4113E $A100677 MAIN FILL VALVE OPEN IND$>
SYSTEM EXCEPTION CONDITION TO OFF;

STEP 100 ACTIVATE INTERRUPT PROCESSING ON THIS LEVEL;

$ The valve is commanded to its open position and the program
verifies that prerequisite control logic allowed the commands
to be issued. $

STEP 4 VERIFY <NLHX4l12E $AI00677 MAIN FILL VALVE CL IND BYP$> IS OFF
THEN GO TO STEP 5;

RECORD <GMT $GREENWICH MEAN TIME$>
FORMAT (NO UNITS,NO FD NAME,NO FD DESCRIPTOR)
, TEXT ( GKH1F- VALVE A100677 OPEN CMO GLHK4111E)
NEXT TEXT ( IS BYPASSED, PROGRAM TERMINATED)
TO <PAGE-A $DISPLAY APPLICATION PAGE B$> YELLOW
TO <CNSL-PP $CONSOLE PRINTER PLOTTER$>
<SPA-PRNTR $SPA PRINTER$>;

GO TO STEP 15;

STEP 5 TURN ON <GLHK4111ER $HRS A100677 MAIN FILL VLV OPEN CMD$>;

TURN OFF <GLHK4121ER $HRS AI00677 MAIN FILL VLV REDU CMD$>;

VERIFY <GLHK4111ER $HRS A100677 MAIN FILL VLV OPEN CMO$> IS ON
AND <GLHK4121ER $HRS A100677 MAIN FILL VLV REDU CMO$> IS OFF

ELSE GO TO STEP 15;

$ The following timing loop allows 6 seconds in which to
establish initial component motion and up to 20 seconds
for the valve to home. When NLHK0101X fast flag is on
the program terminated after initial component motion has
been established. $

READ <GMT $GREENWICH MEAN TIME$> AND SAVE AS (GMT1);

STEP 6 READ <GMT $GREENWICH MEAN TIME$> AND SAVE AS (GMT2);

LET (VLVTM) = (GMT2) - (GMT1);

IF (VLVTM) IS LESS THAN 0.0 SEC,
LET (VLVTM) = (VLVTM) + 86400 SEC;
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IF (VLVTM) IS GREATER THAN OR EQUAL TO 6 SEC,
THEN GO TO STEP 9;

VERIFY <NLHX4112E $A100677 MAIN FILL VALVE CL IND BYP$> IS OFF
ELSE GO TO STEP 7;

VERIFY <GLHX4112E $A100677 MAIN FILL VALVE CLOSED IND$> IS OFF
ELSE GO TO STEP 6;

GO TO STEP 10;

STEP 7 VERIFY <NLHX4123E $A100677 MAIN FILL VLV RED IND BYP$> IS OFF
ELSE GO TO STEP 8;

VERIFY <GLHX4123E $A100677 MAIN FILL VALVE RED IND$> IS OFF
ELSE GO TO STEP 6;

GO TO STEP 10;

STEP 8 RECORD <GMT $GREENWICH MEAN TIME$>
FORMAT (NO UNITS,NO FD NAME,NO FD DESCRIPTOR)
, TEXT ( GKH1F- VLV A100677 CLOSE IND GLHX4112E AND RDCD)
NEXT TEXT ( IND GLHX4123E ARE BYP)
NEXT TEXT ( INITIAL MOTION CANNOT BE DETERMINED)
TO <PAGE-A $DISPLAY APPLICATION PAGE B$> YELLOW
TO <CNSL-PP $CONSOLE PRINTER PLOTTER$>
<SPA-PRNTR $SPA PRINTER$>;

GO TO STEP 10;

STEP 9 RECORD <GMT $GREENWICH MEAN TIME$>
FORMAT (NO UNITS,NO FD NAME,NO FD DESCRIPTOR)
, TEXT ( GKH1F- VLV A100677 INITIAL MOTION IS GREATER ),
NEXT TEXT ( THAN 6 SEC)
TO <PAGE-A $DISPLAY APPLICATION PAGE B$> YELLOW
TO <CNSL-PP $CONSOLE PRINTER PLOTTER$>
<SPA-PRNTR $SPA PRINTER$>;

GO TO STEP 10;

STEP 10 VERIFY <NLHK0101X $FAST FLAG$> IS OFF
ELSE GO TO STEP 15;

STEP 11 READ <GMT $GREENWICH MEAN TIME$> AND SAVE AS (GMT2);

LET (VLVTM) = (GMT2) - (GMT1);

IF (VLVTM) IS LESS THAN 0.0 SEC,
LET (VLVTM) = (VLVTM) + 86400 SEC;

IF (VLVTM) IS LESS THAN 20 SEC,
THEN GO TO STEP 13;
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VERIFY <NLHX4113E $A100677 MAIN FILL VALVE OP IND BYP$> IS OFF
ELSE GO TO STEP 12;

RECORD <GMT $GREENWICH MEAN TIME$>
FORMAT (NO UNITS,NO FD NAME,NO FD DESCRIPTOR)
, TEXT ( GKH1F- VALVE A100677 OPEN TIME EXCEEDED LIMITS),
TO <PAGE-A $DISPLAY APPLICATION PAGE B$> YELLOW
TO <CNSL-PP $CONSOLE PRINTER PLOTTER$>
<SPA-PRNTR $SPA PRINTER$>;

GO TO STEP 15;

STEP 12 RECORD <GMT $GREENWICH MEAN TIME$>
FORMAT (NO UNITS,NO FD NAME,NO FD DESCRIPTOR)
, TEXT ( GKH1F- VLV A100677 OPEN IND GLHX4113E BYPASSED),
TO <PAGE-A $DISPLAY APPLICATION PAGE B$> YELLOW
TO <CNSL-PP $CONSOLE PRINTER PLOTTER$>
<SPA-PRNTR $SPA PRINTER$>;

GO TO STEP 15;

STEP 13 VERIFY <NLHX4113E $A100677 MAIN FILL VALVE OP IND BYP$> IS OFF
ELSE GO TO STEP 11;

VERIFY <GLHX4113E $A100677 MAIN FILL VALVE OPEN IND$> IS ON
ELSE GO TO STEP 11;

RECORD <GMT $GREENWICH MEAN TIME$>
FORMAT (NO UNITS,NO FD NAME,NO FD DESCRIPTOR)
, TEXT ( GKH1F- VALVE A100677 OPEN TIME IS),
(VLVTM)
TO <PAGE-A $DISPLAY APPLICATION PAGE B$> YELLOW
TO <CNSL-PP $CONSOLE PRINTER PLOTTER$>
<SPA-PRNTR $SPA PRINTER$>;

$ Interrupts are activated for those valve indicators which are
not bypassed. $

VERIFY <NLHX4112E $A100677 MAIN FILL VALVE CL IND BYP$> IS OFF
ELSE GO TO STEP 17;

ACTIVATE EXCEPTION MONITORING
FOR <GLHX4112E $A100677 MAIN FILL VALVE CLOSED IND$>;

ACTIVATE FEP INTERRUPT CHECK
FOR <GLHX4112E $A100677 MAIN FILL VALVE CLOSED IND$>;

STEP 17 VERIFY <NLHX4123E $A100677 MAIN FILL VLV RED IND BYP$> IS OFF
ELSE GO TO STEP 18;

ACTIVATE EXCEPTION MONITORING
FOR <GLHX4123E $A100677 MAIN FILL VALVE RED IND$>;
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ACTIVATE FEP INTERRUPT CHECK
FOR <GLHX4123E $A100677 MAIN FILL VALVE RED IND$>;

STEP 18 VERIFY <NLHX4113E $A100677 MAIN FILL VALVE OP IND BYP$> IS OFF
ELSE GO TO STEP 19;

ACTIVATE EXCEPTION MONITORING
FOR <GLHX4113E $A100677 MAIN FILL VALVE OPEN IND$>;

ACTIVATE FEP INTERRUPT CHECK
FOR <GLHX4113E $A100677 MAIN FILL VALVE OPEN IND$>;

STEP 19 CHANGE <GLHK4111ER $HRS A100677 MAIN FILL VLV OPEN CMD$>
<GLHK4121ER $HRS A100677 MAIN FILL VLV REDU CMD$>
<GLHX4112E $A100677 MAIN FILL VALVE CLOSED IND$>
<GLHX4113E $A100677 MAIN FILL VALVE OPEN IND$>
<GLHX4123E $A100677 MAIN FILL VALVE RED IND$>
SAMPLE RATE TO 0 TIMES PER SECOND;

TERMINATE;

STEP 40 TURN ON <NLHK9999X $STOP FLOW$>;

CHANGE <GLHK4111ER $HRS A100677 MAIN FILL VLV OPEN CMD$>
<GLHK4121ER $HRS A100677 MAIN FILL VLV REDU CMD$>
<GLHX4112E $A100677 MAIN FILL VALVE CLOSED IND$>
<GLHX4113E $A100677 MAIN FILL VALVE OPEN IND$>
<GLHX4123E $A100677 MAIN FILL VALVE RED IND$>
SAMPLE RATE TO 0 TIMES PER SECOND;

SEND INTERRUPT <N001LH2 $COM INTERRUPT$>
TO CONSOLE <LH2 $RESP. SYSTEM CONSOLES>;

TERMINATE;

END PROGRAM;
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UIL
/****************************************************************

****************************************************************
*
*
*
*

SSL02 routine written in UIL
This version translated by G. T. Sos
from KSC GOAL SSL02 code

* SSL02 LOX Auto Fill Sequencer:
* This procedure performs the operations necessary to fill the LOX
* (liquid oxygen) portion of the ET (External tank). It remains
* in execution until the 100% liquid level sensors flash wet
* (show tank is 100% full).
*
*
*
*
*
*
*
*
*
*

First, setup events and perform an instrumentation status
check. Next, perform the chilldown of the LOX pump suction
line, pump transfer line, orbiter MPS (Main Propulsion
System). Once chilldown is complete, perform slow fill
external LOX tank to 2%, fast fill external LOX tank to
98% and topping external LOX tank 100%. SSL02 then
transitions to replenish proqram to keep the external tank
topped off to between 100% and 100.15%.

****************************************************************
****************************************************************1

1* NOTE: Upper case are language syntax keywords *1

PROCEDURE ssl02-Frocedure IS
CONSTANT long name = "Program unit SSL02"
PARAMETER active-Fump IS hwsubsystem_class
PARAMETER backuP-Fump IS hwsubsystem_class
PARAMETER temp IS basic object class
PARAMETER ssl02 status IS ENUMERATED -

WITH VALUES = {'run', 'stop', 'revert'}

1****************************************************************
*
*
*

Specify exceptions

****************************************************************1

disable stop key object
disable revert_key_object

EVENT HANDLER FOR stop key object IS
enable revert key object
disable stop key object
stop fill-system object
LET sSl02 status = 'stop'
query operator object WITH options

END stop_key_object -
{'OK', ,quit '}



127

EVENT HANDLER FOR revert key object IS
disable revert key obJect
enable stop key object
revert fill-system object
LET sSl02 status = 'revert'
query operator object WITH options

END revert_key_object
{'OK', ,quit '}

LET ssl02 status = 'run'
enable stop_key_object

/****************************************************************
*
*
*

Begin operating steps
* The original SSL02 has additional code for stopping and
* restarting the filling of the L02 external tank that was not
* included in t-.heUIL version.
*****************************************************************/

write operator object WITH output =
"SSL02 procedure execution begun"

/* Select a pump */

query operator_object WITH output
options

"Select main p128 pump or
alternate a128 pump",

{'main', 'alternate', 'quit'}
IF response OF operator_object ,quit' THEN RETURN END IF
IF response OF operator_object

THEN
LET activeyump
LET backupyump

OTHERWISE
LET activeyump
LET backupyump

'main'
mainyump OF fill system object
alternateyump OF fill=system=object
alternateyump OF fill system object
mainyump OF fill=system=object

END IF
enable activeyump
disable backupyump
/* Setup and instrumentation status check (120 GOAL statements) */
/* Actions are be expected to report any anomalies to operator */

check status fill_system_object WITH output_to = operator_object
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query operator_object WITH output
"Instrument check complete, holding for pump start",

options = {'OK'}

SET speed OF active-pump TO 1000 RPM
start active-pump
WAIT startup_time OF active-pump

OR UNTIL command_completed OF active-pump

query operator_object WITH output
"Pump started, holding for chilldown",

options = {'OK'}

/* LOX pump suction line chilldown (156 GOAL statements) */

chilldown_suction_line active-pump
WAIT suction_line_cool OF active-pump

/* Pump transfer line and vehicle chilldown
(240 GOAL statements) */

chilldown_transfer_line active-pump
WAIT transfer_line_cool OF active-pump

/* Orbiter MPS (Main Propulsion System) chilldown
(438 GOAL statements) */

chilldown orbiter mps fill system object
WAIT orbiter_mps_cool OF fill_system_object

/*Slow fill external LOX tank to 2% (84 GOAL statements) */

query operator object WITH output
"Chilldown done, holding for pump speed ramp to 2850 RPM",

options = {'OK'}

SET speed OF active-pump TO 2850 RPM
WAIT UNTIL command_completed OF active-pump

query operator object WITH output
"Pump ramped to 2850 RPM, holding for 2% fill",

options = {'OK'}

SET flash-point_level OF fill_system_object TO 2 PERCENT
open~ain_fill_valve active-pump

WAIT slow fill time limit OF fill system object
OR UNTIL flash-F0int OF et_tank_status_object

query operator object WITH output
"2% slow fill complete, holding for 98% fast fill",

options = {'OK'}
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/* Fast fill external LOX tank 2% to 98% (205 GOAL statements) */

SET flash-point_level OF fill_system_object TO 98 PERCENT
SET speed OF active-pump TO 3450 RPM

WAIT UNTIL command_completed OF active-pump

WAIT fast fill time limit OF fill system object
OR UNTIL flash-point OF et_tank_status_object

query operator object WITH output =
"2% slow fill complete, holding for 98% fast fill",

options = {'OK'}

write operator object WITH output =
"98% fill complete, ramping pump to 2850 RPM for topping"

/* Topping external LOX tank 98% to 100% (228 GOAL statements) */

SET flash-point_level OF fill_system_object TO 100 PERCENT
SET speed OF active-pump TO 2850 RPM
WAIT UNTIL command_completed OF active-pump

WAIT complete fill time limit OF fill system object
OR UNTIL flashyoint-OF et_tank_status_ob}ect

/* GOAL: Transfer to replenish program (4 GOAL statements) */

write operator object WITH output =
"100% fill complete, transferring to topping"

END

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

$$$$$
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APPENDIX D

UIL SSL02 OBJECT/ACTION DEFINITIONS
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UIL
/****************************************************************

****************************************************************
*
*
*
*
*

System Object Class Definitions
Object classes defined in detail: basic object class,
pneumatic_valve_class, pneumatic_776_vaTve_class AND
liquid_oxygen~recautions_class.

*****************************************************************
****************************************************************/

/****************************************************************
* Define the Basic Object Actions
*
*
*
*
*****************************************************************/

All objects used for SSL02 have basic actions that will be
provided by default. These object action definitions are
shown below.

DEFINE CLASS basic_object_class
/* The actions for the basic object will not be described in

detail. They perform at least the following functions:
new - Called when the object is created.
null - An action that does nothing.
print - Prints information about the object to a I/O stream.
describe - Types information about the object to the operator.
list actions - Returns list of the actions that object can handle.
is action - Returns true if this is a actions of this object.
unhandled action - Handles action requests not defined by the object.
destroy - - called when object is destroyed. */

END DEFINE CLASS basic_object_class
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
$$$$$
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UIL
/****************************************************************
** Very simple valve object
* with just 3 bits of hardware information!
* open_status, closed_status and command status
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Read hardware
open status
closed status
command status

Bit clear
valve not open
valve not closed
commanded to close

bit Bit set
valve is open
valve is closed
commanded to open

Write hardware bit Bit set
command status command to open

Bit clear
command to close

Software bit
open status bypassed
close status bypassed
command_status_bypassed

Bit set
Ignore open status
Ignore closed status
Ignore command status

Bit clear
Use status
Use status
Use status

The valve is designed such that it contains two switches:
one can detect when the valve has been completely opened,
and the other shows when it is completely closed. When the
valve is in transition from open to close, then neither
switch is activated. These two status switches and the
bypass flags make the valve quite complicated to control.

****************************************************************/

DEFINE CLASS pneumatic valve class IS basic object class
CONSTANT long name ~ "pneumatic valve" - -
CONSTANT type-= "basic class"
CONSTANT initial component motion 1 SECOND .. 2 SECONDS
CONSTANT horne time = 5 SECONDS .. 6 SECONDS

ACTION new IS newyrocedure
ACTION initial IS initialyrocedure
ACTION open IS openyrocedure
ACTION close IS closeyrocedure
ACTION stop IS stopyrocedure
ACTION revert IS revertyrocedure
ACTION enable IS enableyrocedure
ACTION disable IS disableyrocedure
ACTION warning IS warningyrocedure
ACTION dynamics IS dynamicsyrocedure
ACTION destroy IS destroyyrocedure
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PARAMETER {input, output} IS basic object class
PARAMETER {last state, desired state, current state}

IS ENUMERATED WITH VALUES = {'open', 'closed', 'unknown'}
PARAMETER is opened IS ENUMERATED WITH VALUES =

- {'opened', 'not opened'}
PARAMETER is closed IS ENUMERATED WITH VALUES =

{'closed', 'not closed'}
PARAMETER is stopped IS ENUMERATED WITH VALUES =

- {'stopped', 'not stopped'}
PARAMETER transition status IS ENUMERATED WITH VALUES

{'waiting for component motion', 'completed',
'waiting for component home'}

PARAMETER {open status bypassed, close status bypassed,
command status bypassed} -IS shared memory class

PARAMETER {open_status, closed_status} IS readable_hw-port_class
PARAMETER command status IS readwriteable_hw-port_class

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
DEFINE ACTION new-procedure IS

/* executed only at instantiation OI object */
LET open status bypassed = 'off'
LET close status bypassed = 'off'
LET command status bypassed 'off'
ASK SELF TO-warning-procedure WITH new level='disable all'
LET last state 'unknown'
LET desired state = 'unknown'
LET current-state = 'unknown'
LET transition status = 'completed'
LET is opened - 'unknown'
LET is-closed = 'unknown'
LET is-stopped = 'not stopped'

END DEFINE ACTION new-procedure
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
DEFINE ACTION initial-procedure IS

PARAMETER temp current state IS ENUMERATED
WITH vALUES = {-'opened', 'likely opened', 'closed',

'likely closed', 'bypassed', 'maybe open',
'maybe closed' , 'conflicting', 'in transition'

IF {open status bypassed, close status bypassed,
command=status_bypassed} /= 'off'

THEN
query operator object WITH output

"Warning - valve open or close bypass on engaged!",
options = {'OK'}

END IF
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WHEN 'opened' OR 'likely opened' OR 'closed'
OR 'likely closed'

THEN NULL
WHEN 'maybe open' OR 'maybe closed'

THEN
query operator object WITH output

"Warning - low certainty of valve position!",
options = {'OK'}

WHEN 'unknown' OR 'conflicting' OR 'in transition'
THEN

query operator object WITH output =
"Error - valve position undetermined!",

options = {' OK' }
END CASE
ASK SELF TO warning-procedure WITH new_Ievel='disable all'
LET last state = 'unknown'
LET desired state = temp current state
LET current-state = temp-current-state
LET transition status = 'completed'
LET is opened ~ temp is opened
LET is-closed = temp-is-closed
LET is-stopped = 'not stopped'
ASK SELF TO warning-procedure WITH new_level =

'maintain current state'
END DEFINE ACTION initial-procedure
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
DEFINE ACTION open-procedure ( fast_mode ) IS

PARAMETER fast mode IS ENUMERATED WITH VALUES
{'stopped', 'not stopped'}

PARAMETER temp hardware state IS ENUMERATED
WITH VALUES = { 'opened', 'likely opened', 'closed',

'likely closed', 'bypassed', 'maybe open',
'maybe closed' , 'conflicting', 'in transition'

LET temp hardware state =
report_hardware_state-procedure

IF {open status bypassed, close status bypassed, fast_mode,
command status bypassed, temp hardware state}
{'off',-'off',-'off', 'off', 'closed'}-THEN

/* No bypassed status bits, do complete open */
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IF {current_state, temp_hardware_state}
THEN

query operator_object WITH output
"open request on open valve",

options = {'OK'}

'open'

END IF
LET desired state = 'open'
ASK SELF To-warning-procedure WITH new level='allow to open'
LET transition status = 'waiting for component motion'
LET command_status = 'open'
WAIT UPPER(initial component motion)

OR UNTIL close status =-'not closed'
IF close status /= 'not closed' THEN

query operator_object WITH output
options

"Error" ,
{'OK'}

END IF
LET transition status 'waiting for component home'
WAIT UPPER(home time)

OR UNTIL close status = 'open'
IF close status /= 'open' THEN

query operator_object WITH output
options

"Error" ,
{'OK'}

END IF
ASK SELF TO warning-procedure WITH new level='maintain open'
OTHERWISE

/* ADD bypassed status open procedure here */
NULL

END IF
LET last state = current state
LET current state = 'open'
LET transition status = 'completed'
RETURN 'ok' -

END DEFINE ACTION open-procedure
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
DEFINE ACTION close-procedure IS

/* similar to open */
END DEFINE ACTION close-procedure
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
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DEFINE ACTION stop-procedure IS
/* handles case of stop operation from operator */

END DEFINE ACTION stop-procedure

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
DEFINE ACTION revert-procedure IS

/* handles case of revert (restart) operation from stop */
END DEFINE ACTION revert-procedure
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
DEFINE ACTION enable-procedure IS

/* handles enable message. In this example, enables this
valve for any operations. */

END DEFINE ACTION enable-procedure
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

DEFINE ACTION disable-procedure IS
/* handles disable message. In this example, disables

this valve for any operations. */
END DEFINE ACTION disable-procedure
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

DEFINE ACTION get_hardware_state-procedure IS
PARAMETER {temp hardware state, temp is opened, temp control status,

temp-is closed, temp control-command} IS ENUMERATED
WITH VALuEs ~ { 'opened',-'likely-opened', 'closed',

'likely closed', 'bypassed', 'maybe open',
'maybe closed' , 'conflicting', 'in transition' }

/* Attempt to determine current state from hardware without
interrupting current operations. read values of sensors
into temporaries and analyze the results */

LET temp hardware state = 'unknown'
LET temp-iS opened = 'bypassed'
LET temp-is-closed = 'bypassed'
LET temp-control status = 'bypassed'
IF open status bypassed = 'off' THEN

LET temp_is=opened = open_status
END IF

IF close status bypassed = 'off' THEN
LET temp_is_closed = close_status
END IF

IF command status bypassed
LET temp_contral_status
END IF

'off' THEN
command status
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/* the following is an example of how to handle partially known
state of the hardware. This code is NOT in the actual SSL02
program, as it is my own ideas of how this might be handled with
an enumerated type. SSL02 handled the problem on a case by case
basis and, in general, only checked a few of the possible
states. */

WHEN {'opened', 'not closed', 'commanded open'}
THEN LET temp_hardware_state=' opened' /* 3 votes in 3 */

WHEN {'opened', 'bypassed',
{'bypassed', 'not closed',
{'opened', 'not closed',

THEN LET temp_hardware_state='likely

'commanded open'} OR
'commanded open'} OR
,bypassed' }

opened' /* 2 votes in 2 */

WHEN {'bypassed', 'bypassed',
{'opened', 'bypassed',
{'bypassed', 'not closed',

THEN LET temp_hardware_state='maybe open'

'commanded open'} OR
,bypassed'} OR
'bypassed'}
/* 1 vote in 1 */

WHEN {'not opened', 'closed', 'commanded closed'}
THEN LET temp_hardware_state='closed' /* 3 votes in 3 */

WHEN {'not opened', 'bypassed',
{'bypassed', 'closed',
{'not opened', 'closed',

THEN LET temp_hardware_state='likely

'commanded closed'} OR
'commanded closed'} OR

,bypassed' }
closed' /* 2 votes in 2 */

WHEN {'bypassed', 'bypassed',
{'bypassed', 'closed',
{'not opened', 'bypassed',

THEN LET temp_hardware_state='maybe

'commanded closed'}
'bypassed'} OR
'bypassed'}

closed' /* 1 vote in 1 */

OR

WHEN {'opened', 'not closed', 'commanded closed'} OR
{'not opened', 'not closed', 'commanded closed'} OR
{'opened', 'bypassed', 'commanded closed'} OR
{'bypassed', 'not closed', 'commanded closed'} OR
{'not opened', 'bypassed', 'commanded open'} OR
{'bypassed', 'closed', 'commanded open'} OR
{'not opened', 'not closed', 'commanded open'} OR
{'not opened', 'closed', 'commanded open'} OR
{'not opened', 'not closed', 'bypassed'}

THEN LET temp_hardware_state='in transition' /* 2 votes in 3 */

WHEN {'opened', 'closed', 'commanded closed'} OR
{'opened', 'closed', 'commanded open'} OR
{'opened', 'closed', 'bypassed'}

THEN LET temp_hardware_state='conflicting' /* 1 vote in 2 */
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WHEN {'bypassed', 'bypassed', 'bypassed'}
THEN LET temp_hardware_state= ,bypassed' /* 0 votes in 0 */

END CASE
RETURN temp hardware state
END DEFINE ACTION get_hardware_state-procedure
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
DEFINE ACTION report_hardware_state-procedure IS

PARAMETER temp hardware state IS ENUMERATED
WITH VALUES = { 'opened', 'likely opened', 'closed',

'likely closed', 'bypassed', 'maybe open',
'maybe closed' , 'conflicting', 'in transition'

WHEN 'opened' OR 'likely opened' OR
'closed' OR 'likely closed'

THEN NULL
WHEN 'bypassed' OR 'maybe open' OR 'maybe closed'

THEN
query operator object WITH output

"Warning low certainty of valve position!",
options = {'OK'}

WHEN 'conflicting' OR 'in transition'
THEN

query operator object WITH output
"Error valve position undetermined!",

options = {'OK'}
END CASE

RETURN temp hardware state
END DEFINE ACTION report_hardware_state-procedure
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
DEFINE ACTION warning-procedure(new_level) IS

PARAMETER new level IS ENUMERATED WITH VALUES
{'maintain current state', 'allow transition to open',

'allow transition to closed', 'maintain open',
'maintain close', 'disable all'}

PARAMETER status IS ENUMERATED WITH VALUES =
{'waiting for component motion', 'completed',

'waiting for component home'}



IF new level = 'maintain current state' THEN
IF current state = 'open' THEN

LET new-level = 'maintain open'
OTHERWISE LET new level = 'maintain close'

END IF
END IF

CASE new level
WHEN 'allow transition to open' OR

'allow transition to close' THEN
EVENT HANDLER FOR open_status IS NULL END
EVENT HANDLER FOR close status IS NULL END
EVENT HANDLER FOR command status IS NULL END

WHEN 'maintain open' OR 'maintain close' THEN
IF open_status_bypassed = 'off' THEN

EVENT HANDLER FOR open status IS
LET sta~us = state_change_handler() END

END IF
IF close status bypassed = 'off' THEN

EVENT-HANDLER FOR closed status IS
LET status = state_change_handler() END

END IF
IF command status bypassed = 'off' THEN

EVENT HANDLER FOR command status IS
LET status = state change handler() END

END IF --
WHEN 'disable all' THEN

EVENT HANDLER FOR open status
EVENT HANDLER FOR close status
EVENT HANDLER FOR command status

END CASE
END DEFINE ACTION warning-procedure

IS NULL END
IS NULL END
IS NULL END

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

DEFINE ACTION state_change_handler event source ) IS
IF event source THEN

query operator object WITH output
"Error condition unexpected change of state!",

option's = {' OK' }
END IF

END DEFINE ACTION state_change_handler

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

DEFINE ACTION dynamics-procedure IS
/* the dynamics procedure would contain all the necessary

information for simulations of the valve, and of the
valves failure modes (not included here) */

END DEFINE ACTION dynamics-procedure

END DEFINE CLASS pneurnatic_valve_class

139
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/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
$$$$$
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UIL
/****************************************************************
* Define New Valve Based on Existing Class *
* *****************************************************************/

DEFINE CLASS pneumatic a776 valve class IS pneumatic valve class
REPLACE long name ~ "model A776 pneumatic valve"- -
REPLACE initial component motion = 2 SECONDS .. 6 SECONDS
REPLACE horne time = 18 SECONDS .. 20 SECONDS
REPLACE maximum flow rate = 35 CFM
REPLACE diameter = 45 CM

/* all other actions and object data inherited from
pneumatic_valve_class class */

END DEFINE CLASS pneumatic_valve_class

/****************************************************************
* Simple Liquid Oxygen Precautions Object
*
*
*
*
*
*****************************************************************/

This object is intended to provide liquid oxygen specific
information for other objects. This object provides a good
way to consistently apply a set of related information to
other classes.

DEFINE CLASS liquid_oxygen-precautions_class IS basic object class
CONSTANT long name = "oxygen precautions and alerts" -
CONSTANT type-= "precautions class"
CONSTANT boiling-point = -182.962 DEGC
CONSTANT safe_chilldown_temp = -186.0 DEGC

ACTION new
ACTION warning
ACTION dynamics

IS new-procedure
IS warning-procedure
IS dynamics-procedure

PARAMETER
{last state, desired state, current state}

IS-ENUMERATED WITH VALUES =
{'maintain current state',

'allow transition to warm',
'allow transition to chilldown',
'maintain warm',
'maintain chilldown',
'disable all'}

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

DEFINE ACTION new-procedure IS
LET current state = 'disable all'

END DEFINE ACTION new-procedure
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/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
DEFINE ACTION warning-procedure(new_level) IS

PARAMETER new level IS ENUMERATED WITH VALUES =
{ 'maintain current state',

'allow transition to warm',
'allow transition to chilldown',
'maintain warm', 'maintain chilldown', 'disable all'}

/* This code would manage the warning messages and state changes for
the variables contained in this object class */

END DEFINE ACTION warning-procedure

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

DEFINE ACTION state_change_handler event source ) IS
IF event source THEN

query operator object WITH output
"Error condition unexpected change of state!",

options = {'OK'}
END IF

END DEFINE ACTION state_change_handler

1* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
DEFINE ACTION dynamics-procedure IS
1* the dynamics procedure would add all the necessary

information for simulations of the objects (like pipes,
pumps, ... ), and of any failure modes *1

END DEFINE ACTION dynamics-procedure

END DEFINE CLASS liquid_oxygen-precautions_class

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

$$$$$
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UIL
/****************************************************************

****************************************************************
*
*

System Object Instantiations
* These object instantiations would, most likely, be build and
* stored as controlled objects by NASA. It is also presumed that
* tools will exist that will allow graphical and textual
* editing of these objects; therefore, it is unlikely that the
* SSL02 subsystem would be created by the object list
* like the one that follows.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Four different examples of object classes are
defined in detail: pneumatic_valve_class,
pneumatic 776 valve class, basic object class AND
liquid_oxygen~recautions_class.- -
Other object CLASSES used but not defined in detail include:

hwsubsystem class IS "hwsubsystem with operator I/O"
plus100 hp motor class IS "100 horse power pump"
plus100-hp-clutch class IS "100 horse power clutch"
plus10_Cmyump_class IS "smaller H20 pump"
p1us4S_cmyump_class IS "large LOX pump"
temp sensor class IS "standard temperature sensor"
tachometer class IS "standard tachometer"
controlyoint_class IS "hardware control point"
high temp sensor class IS "hw sensor A"
low temp sensor class IS "hw sensor B"
low-tachometer class IS "hw sensor C"

Other hardware OBJECTS used but not defined in detail include:
11 object IS "700K liters LOX tank sensor object"
by})11 object IS "operator bypass for 11 object object"
t9_object IS "-200 to -170 degc temp-sensor object"
byp_t9_object IS "operator bypass for t9_object object"
sslo2_1ox_tank_object IS "700K liters LOX tank object"

not defined in detail
IS "operator software
IS "operator software
IS "operator terminal

include:
key for revert
key for stop"
output/input"*

Other OBJECTS used but
revert key object
stop key object
operator=object

*****************************************************************
****************************************************************/

DEFINE OBJECT sslo2yump_hwsubsystem_object IS hwsubsystem_c1ass
REPLACE long name "Primary pump128 hwsubsystem"
CONSTANT contains {t1 object, t2 object, t3 object,

t4-object, tS-object, t6-object,
t7-object, t8-object, r1-object,
motory128_ob}ect, clutchy128_object,
h2oyumpy128_object, pumpy128_object,
valveyl28_object}

END DEFINE OBJECT sslo2yump_hwsubsystem_object
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DEFINE OBJECT valve-p128_object IS
{pneumatic_a776_valve_class, sslo2-purnp_hwsubsystem_class,
liquid_oxygen-precautions_class}

REPLACE long name "Main LOX fill valve"
CONSTANT manufacture type "Rockwell 30544766E5G"
CONSTANT serial number "878-32487-34985837-48 89.02.04"
CONSTANT input pump-p128_object
CONSTANT output orbiter et main object
PARAMETER {open status bypassed, close-status bypassed,

command status bypassed} IS-shared-memory class
/* set the valves of-objects to actual - -

shared memory locations here */
PARAMETER {open status, closed status, command status}

- - IS readable_hw-port_class
/* set the valves of objects to actual hardware

ports here */
END DEFINE OBJECT valve-p12S_object
DEFINE OBJECT {byp tl object, byp t2 object, byp t3 object,

byp-t4-object, byp-t5-object, byp-t6-object,
byp-t7-object, byp-t8-object, byp=rl=object}

-IS-shared~emory_class
END DEFINE OBJECT {byp tl object, byp t2 object, byp t3 object,

byp-t4-object, byp-t5-object, byp-t6-object,
byp=t7=object, byp=tS=object, byp=rl=object}

DEFINE OBJECT tl_object IS high temp sensor class
REPLACE long name = "0 TO-200 DEGC Temp sensor"
CONSTANT bypass flag = byp tl object

/* set the valves of obJect variables to actual
hardware ports here */

END DEFINE OBJECT tl object
/* objects t2_object-thru t6_object defined similar to tl_object */

DEFINE OBJECT t7 object IS
low temp sensor-class

REPLACE long-name = "-200 TO -170 DEGC LOX Temp sensor"
CONSTANT bypass flag = byp t7 object

/* set the valves of obJects to actual hardware ports here */
END DEFINE OBJECT {t7 object, tS object}
/* object tB_object defined similar to t7_object */

DEFINE OBJECT rl object IS
low tachometer class

REPLACE long name = "0 RPM to 3500 RPM Tachometer"
CONSTANT bypass flag = byp rl object

/* set the valves of obJects to actual hardware ports here */
END DEFINE OBJECT rl_object
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DEFINE OBJECT {engage_clutch-p128_object,
engage_valve-p128_object,
engage clutch cool object}

IS control-point_class -
CONSTANT allowed states = {'on', 'off'}

/* set the valves of objects to actual hardware ports here */
END DEFINE OBJECT {engage_clutch-p128_object,

engage_valve-p128_object,
engage_clutch_cool_object}

DEFINE OBJECT motor-p128_speed_object IS control-point_class
CONSTANT allowed valves = {O RPM, 3S00 RPM}

/* set the valves of objects to actual hardware ports here */
END DEFINE OBJECT motor-p128_speed_object

DEFINE OBJECT motor-p128_object IS {pluslOO_hp_motor_class,
sslo2-pump_hwsubsystem_class}

REPLACE long_name = "Main fill pump motor"
CONSTANT output = clutch-p128_object
CONSTANT control = motor-p128_speed_object
CONSTANT temp = tl object
CONSTANT temp byp = byp tl object

END DEFINE OBJECT motor-p128_object

DEFINE OBJECT pump-p128_object IS {plus4S_cm-pump_class,
sslo2-pump_hwsubsystem_class,
liquid_oxygen-precautions_class}

REPLACE long name "Main fill pump"
CONSTANT input lox storage tank object
CONSTANT output valve-pl 28_ob ject
CONSTANT control clutch-p128_object
CONSTANT temp = t7 object
CONSTANT temp byp = byp t7 object

END DEFINE OBJECT pump-p128=obJect

DEFINE OBJECT clutch-p128_object IS {pluslOO_hp_clutch_class,
sslo2-pump_hwsubsystem_class}

long name = "Main fill pump motor clutch"
input = motor-p128_object
output = pump-p128_object
cooling_system = h2o-pump-p128_object
control engage_clutch-p128_object
temp {t2 object, t4 object,

tS-object, t6-object}
{byp t2 object~ byp t4 object,
byp-tS-object, byp-t6-object}

END DEFINE OBJECT clutch-p128_object - -

REPLACE
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT

CONSTANT temp_byp
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DEFINE OBJECT h20-pump-p128_object IS
{pluslO_cm-pump_class, ssI02-pump_hwsubsystem_class}

REPLACE long name "Main fill pump clutch cooling H20 pump"
CONSTANT input engage_clutch-p128_object
CONSTANT control clutch-p128_cooling_object
CONSTANT temp t2 object
CONSTANT temp byp byp t2 object

END DEFINE OBJECT h20-pump~128_object
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
DEFINE OBJECT sslo2_alt-pump_hwsubsystem_object

IS ssI02-pump_hwsubsystem_class
/* redefine all the instantiation specific information

(i.e., ports, connections, ...) of the
ssI02-pump_hwsubsystem_class */

END DEFINE OBJECT ssI02_alt-pump_hwsubsyste~object
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
DEFINE OBJECT fill system object IS hwsubsystem class

REPLACE long name = nET LOX loading and monItoring hwsubsystem"
CONSTANT contains {ssl02-pump_hwsubsystem_object,

ssl02_alt-pump_hwsubsystem_object,
ssl02 lox tank object}

sslo2~ump=hwsUbsystem_object
ssl02_alt-pump_hwsubsystem_object

CONSTANT main-pump
CONSTANT alternate-pump

/* fill system specific constants */
CONSTANT slow fill time limit
CONSTANT fast-fill-time-limit
CONSTANT complete fill time limit

END DEFINE OBJECT fill_system_object

11 MINUTES
30 MINUTES
10 MINUTES

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
$$$$$
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APPENDIX E

LIST OF ACRONYMS



ANSI

ASCII

BNF

COo..

CST a..

DCL

000
ET

ISO

JSC

co\L

GSE

GSFC

KSC

LL( 1 )

La!

L(X)PS

LOX

LRU
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USTOF ACRONYMS

American National Standards Institute

American Standard Code for Information Interchange

Backus-Naur Form

Customer Data and Operations Language

Colorado System Test and Operations Language

Digital Command Language

Disk Operating System

External Tank

International Organization for Standardization

Johnson Space Center

Ground Operations and Aerospace Language

ground support equipment

Goddard Space Flight Center

Kennedy Space Center

Left parsible with Look ahead of 1 symbol only

Liquid Oxygen

Lisp Object Oriented Programming System

Liquid Oxygen

Line Replaceable Units



NASA

SCCXYS

SIMUlA

SSl~

SStv1E

SSOL

STOL

TAE

TCl

Ull

USEWG

VMS
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LIST OF ACRONYMS (Continued)

National Aeronautics and Space Administration

Scheme Object Oriented Programming System

Simulation Language

Space Shuttle Liquid Oxygen

Space Shuttle Main Engines

Space Station Operations Language

System Test and Operations Language

Transportable Applications Executive

TAE Control Language

User Interface Language

User Support Environment Working Group

Virtual Machine Operating System
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