EFFICIENT SIMULATION OF PHYSICAL SYSTEM MODELS

USING INLINED IMPLICIT RUNGE-KUTTA ALGORITHMS

by

Vicha Treeaporn

A Thesis Submitted to the Faculty of the
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

In Partial Fulfillment of the Requirements
For the Degree of

MASTER OF SCIENCE
In the Graduate College
THE UNIVERSITY OF ARIZONA

2005

STATEMENT BY AUTHOR

This thesis has been submitted in partial fulfillment of requirements for an ad-
vanced degree at The University of Arizona and is deposited in the University Library
to be made available to borrowers under rules of the Library.

Brief quotations from this thesis are allowable without special permission, pro-
vided that accurate acknowledgment of source is made. Requests for permission for
extended quotation from or reproduction of this manuscript in whole or in part may
be granted by the head of the major department or the Dean of the Graduate College
when in his or her judgment the proposed use of the material is in the interests of
scholarship. In all other instances, however, permission must be obtained from the
author.

SIGNED:

APPROVAL BY THESIS DIRECTOR

This thesis has been approved on the date shown below:

Dr. Francgois E. Cellier Date
Professor of Electrical and Computer
Engineering

ACKNOWLEDGMENTS

I am grateful to my advisor Professor Francois E. Cellier for his guidance, encourage-
ment, and patience. I am fortunate to have worked with such an extremely knowl-
edgeable individual who is always available and always ready to lend a helping hand.
His classes are always challenging and fulfilling, and the wealth of knowledge gained
is invaluable. Every class has a common theme starting with the initial understand-
ing of the problem at hand, to the problem solving methodology and finally to the
application of a solution.

To my parents.

TABLE OF CONTENTS

LIST OF FIGURES e 7
L1ST OF TABLES o 9
ABSTRACT o it ittt e 10
CHAPTER 1. PRELIMINARIESottt 11
1.1. Model Representations 11
1.2. Solution by Numerical Methods 11
1.3. Numerical Stability 13
1.4. Stiffness 14
1.5. Approximation Errors oL 17
1.6. Fully-Implicit Runge-Kutta Algorithms 18
1.6.1. RadauITA 19

1.6.2. Lobatto IIIC, 20

1.6.3. HW-SDIRK 20
CHAPTER 2. BACKGROUND it 22
2.1. Differential Algebraic Equations, 22
2.2. Inline-Integration 24
22.1. RadauIlA 25

2.2.2. Lobatto ITIC(4) 30

2.3. Sorting 32
2.4, Tearing 34
2.5. Step-Size Control 36
25.1. RadauITA 37

2.5.2. Lobatto IIIC 38

2.6. HW-SDIRK and Lobatto IIIC(6) 38
CHAPTER 3. HW-SDIRK 39
3.1. Numerical Stability 39
3.2. Numerical Damping 43
3.3. Step-Size Control 44
3.4. Inlining 46
CHAPTER 4. LoBaTTO IIIC(6) 50
4.1. Numerical Stability and Damping 50

4.2. Step-size controlo 51

TABLE OF CONTENTS— Continued

CHAPTER 5. NUMERICAL EXPERIMENTS 56
5.1. Implementation o 59
5.2. Simulation Results 61

CHAPTER 6. CONCLUSIONS ittt e 102

APPENDIX A. TEST PROBLEMS 104
A.1. Class A — Linear with real eigenvalues 104
A.2. Class B — Linear with non-real eigenvalues 104
A.3. Class C — Non-linear coupling 105
A.4. Class D — Non-linear with real eigenvalues 105
A.5. Class E — Non-linear with non-real eigenvalues 105

APPENDIX B. SAMPLE IMPLEMENTATION 106

REFERENCES 117

FIGURE 1.1.
FIGURE 1.2.
FIGURE 1.3.
FIGURE 1.4.

FIGURE 2.1.

FIGURE 3.1.
FIGURE 3.2.
FIGURE 3.3.
FIGURE 3.4.
FIGURE 3.5.

FIGURE 4.1.
FIGURE 4.2.
FIGURE 4.3.
FIGURE 4.4.

FIGURE 5.1.
FIGURE 5.2.
FIGURE 5.3.
FIGURE 5.4.
FIGURE 5.5.
FIGURE 5.6.
FIGURE 5.7.
FIGURE 5.8.
FIGURE 5.9.

FI1GURE 5.10.
FIGURE 5.11.
FIGURE 5.12.
FIGURE 5.13.
FIGURE 5.14.
FIGURE 5.15.
FIGURE 5.16.
FIGURE 5.17.
FIGURE 5.18.
FIGURE 5.19.
FIGURE 5.20.
FIGURE 5.21.
FIGURE 5.22.

LisT OF FIGURES

Domain of analytical stability 13
Stability domainof BE 00000 15
Stif ODEon 0 <t <1. 16
Stif ODEon 0<t<0.02 16
Simple RLC Circuit 23
Stability domain of HW-SDIRK(3) 42
Stability domain of HW-SDIRK(4) 42
HW-SDIRK(3)4 damping plots 44
Stability domain of the HW-SDIRK alternate error method 46
HW-SDIRK alternate error method damping plots 47
Stability domain of Lobatto IIIC(6) 52
Lobatto IIIC(6) damping plots 52
Stability domain of Lobatto IIIC(6) error method 54
Lobatto IIIC(6) error method damping plots 55
ODE set A solution 56
ODE set Bsolution, 57
ODE set Csolution 57
ODE set D solution 58
ODE set E y; solution 58
ODE set E yg solution 59
ODE set E y3 solution 61
ODE set E yy solution 62
ODE set A inlined with Rad3 66
ODE set A inlined with Rad5 67
ODE set A inlined with Lob4 68
ODE set A inlined with Lob6 69
ODE set A inlined with HW-SDIRK 70

ODE set A inlined with HW-SDIRK and alternate error method 71

ODE set B inlined with Rad3 72
ODE set B inlined with Rad5 73
ODE set B inlined with Lob4 74
ODE set B inlined with Lob6 75
ODE set B inlined with HW-SDIRK 76

ODE set B inlined with HW-SDIRK and alternate error method 77
ODE set C inlined with Rad3 78
ODE set C inlined with Radb

LisT OoF FIGURES— Continued

FIGURE 5.23.
FIGURE 5.24.
FIGURE 5.25.
FIGURE 5.26.
FIGURE 5.27.
FIGURE 5.28.
FIGURE 5.29.
F1GURE 5.30.
FIGURE 5.31.
FIGURE 5.32.
FIGURE 5.33.
FIGURE 5.34.
FIGURE 5.35.
FIGURE 5.36.
FIGURE 5.37.
FIGURE 5.38.
FIGURE 5.39.
FIGURE 5.40.
FIGURE 5.41.
FIGURE 5.42.
FIGURE 5.43.

FIGURE 5.44.

method

ODE set C inlined with Lob4 80
ODE set C inlined with Lob6 81
ODE set C inlined with HW-SDIRK 82

ODE set C inlined with HW-SDIRK and alternate error method 83

ODE set D inlined with Rad3 84
ODE set D inlined with Rad5 85
ODE set D inlined with Lob4 86
ODE set D inlined with Lob6 87
ODE set D inlined with HW-SDIRK 88

ODE set D inlined with HW-SDIRK and alternate error method 89

ODE set E inlined with Rad3 90
cont) ODE set E inlined with Rad3 91
ODE set E inlined with Rad5 92
cont) ODE set E inlined with Rad5 93
ODE set E inlined with Lob4 94
cont) ODE set E inlined with Lob4 95
ODE set E inlined with Lob6 96
cont) ODE set E inlined with Lob6 97
ODE set E inlined with HW-SDIRK 98
cont) ODE set E inlined with HW-SDIRK 99

ODE set E inlined with HW-SDIRK and alternate error method 100
cont) ODE set E inlined with HW-SDIRK and alternate error

TABLE 1.1.
TABLE 1.2.
TABLE 1.3.
TABLE 1.4.

TABLE 3.1.
TABLE 4.1.

TABLE 5.1.

LisT OoF TABLES

Generalized Butcher Tableau 18
Radau ITA(3) 21
Radau ITA(5) 21
Lobatto IIIC(4) 21
HW-SDIRK(3)4 39
Lobatto ITIC(6) 50
Cost Summary 65

10

ABSTRACT

Stiff systems commonly occur in science and engineering, and the use of an implicit
integration algorithm is typically needed to simulate them. As model complexity
increases, the need for efficient ways to solve these types of systems is becoming
of increasing importance. Using a technique called inline-integration with implicit
Runge-Kutta (IRK) algorithms and tearing may lead to a more efficient simulation.
To further increase the efficiency of the simulation, the step—size of the integration
algorithm can be controlled. By using larger integration steps when allowable, the
simulation can progress with fewer computations while still maintaining the desired
accuracy.

In this thesis, for the purpose of step—size control, two new embedding methods
will be proposed. The first will be for HW-SDIRK(3)4, a singly diagonally implicit
Runge-Kutta (SDIRK) algorithm and the second for Lobatto IIIC(6). These two
embedding methods will then be compared with those previously found for the Radau
ITA family and Lobatto ITIC(4), all fully-implicit Runge-Kutta algorithms.

EFFICIENT SIMULATION OF PHYSICAL SYSTEM MODELS
UsSING INLINED IMPLICIT RUNGE-KUTTA ALGORITHMS

Vicha Treeaporn, M.S.
The University of Arizona, 2005

Director: Dr. Francois E. Cellier

Stiff systems commonly occur in science and engineering, and the use of an implicit
integration algorithm is typically needed to simulate them. As model complexity
increases, the need for efficient ways to solve these types of systems is becoming
of increasing importance. Using a technique called inline-integration with implicit
Runge-Kutta (IRK) algorithms and tearing may lead to a more efficient simulation.
To further increase the efficiency of the simulation, the step—size of the integration
algorithm can be controlled. By using larger integration steps when allowable, the
simulation can progress with fewer computations while still maintaining the desired
accuracy.

In this thesis, for the purpose of step—size control, two new embedding methods
will be proposed. The first will be for HW-SDIRK(3)4, a singly diagonally implicit
Runge-Kutta (SDIRK) algorithm and the second for Lobatto IIIC(6). These two
embedding methods will then be compared with those previously found for the Radau
ITA family and Lobatto IIIC(4), all fully-implicit Runge-Kutta algorithms.

11

Chapter 1

PRELIMINARIES

1.1 Model Representations

A mathematical model is a representation of a system in which experiments can be
performed on that model to learn about the system [1]. One way a physical system
can be represented is by a system of Ordinary Differential Equations (ODEs). This

type of model description is called a state—space model and can be expressed by:
x = f(x,u,t) (1.1)
X(t = to) = X0
where x is the state vector, u is the input vector, and ¢ denotes the time variable.
Another representation is by Differential Algebraic Equations (DAEs) and can be
written in general form as:
0= f(x,x%,u,t) (1.2)
X(t = to) = X0

where x is a vector of unknown variables that can also appear in differentiated form,

u is the input vector, and t is the time variable.

1.2 Solution by Numerical Methods

There are two different schemes of numerical integration, implicit methods and ez-
plicit methods. Explicit integration algorithms only depend on past values of state
variables and state derivatives to compute the next state. On the other hand, implicit
integration algorithms, depend on both past and current values of the state variables

and state derivatives. Explicit methods have the advantage over implicit methods

12

in that they are relatively easy to implement. The simplest of these is the Forward
Euler (FE) algorithm:
x(t+h) = z(t)+z(t) - h (1.3)

where h is the step size. From Eq.(1.3), it can be seen that it is just a matter of
procedural computation to compute the next step from the current step. This is true
in general for all explicit algorithms. This relative ease, however, comes at a price.
In order to compute the next step, an explicit integration may need an excessively
small step size to maintain numerical stability if solving a stiff system. Compared
with explicit techniques, implicit techniques may have better numerical properties
but have additional computational load. This additional load comes from the need to
simultaneously solve a non-linear set of equations during every step. Even with this
additional computational load, implicit methods may allow the use of larger step sizes
when solving stiff systems. The simplest implicit integration method is the Backward
Euler (BE) algorithm:

z(t+h)~x(t)+z(t+h)-h (1.4)

From this equation it can be seen that additional computational load comes in the
form of a nonlinear algebraic loop. The problem is that before (¢ + h) can be com-
puted, 2(t + h) must be known, but in order to compute & (t+ h) the value of x(t+ h)
must be known.

Both the FE and BE algorithms are single—step methods since when moving the
solution from time t to t + h, neither method uses values from any previous time
instants t — h, t — 2h, etc. Integration algorithms that use values from multiple time
instants are referred to as multi-step algorithms. The Adams—Bashforth—Moulton
algorithms and the widely used Backward Difference Formulae (BDF) are examples
of multi-step methods. Much work has been done to solve these systems by numerical
methods. To evaluate the performance of these methods, benchmark test problems

can be used.

13

ASM

N\

»3?{%}

FIGURE 1.1. Domain of analytical stability

1.3 Numerical Stability

The numerical stability of a solver is evaluated using a homogeneous time—invariant

linear test problem:

x = Ax (1.5)

X(t = to) = X0
This system can be solved analytically with any solution given by:
x(t) = exp(At) - xo (1.6)

and if all of the trajectories (orbits) stay bounded as t — oo, then the solution is
analytically stable. If all of the eigenvalues A of A have negative real parts then
the system is analytically stable. The domain of analytical stability is shown in
Figure 1.1 where the stable region is shaded. In order to find the numerical stability,
the integration algorithm is applied to the linear test problem. For example, the
numerical stability domain of BE can be found by first creating an equivalent discrete—

time system. Substituting Eq.(1.5) into Eq.(1.4) results in:

x(t+h) =x(t) + Ax(t+h)-h (1.7)

14

or written more compactly as:
Xk+1 = [I — Ah]_lxk (18)

where I is the identity matrix and k, by indexing the simulation time is the k™
integration step. In this new representation x(¢) corresponds to xj and the value at
the next time step x(t+ h) corresponds to xy 1. The discrete-time system of BE can

then be expressed with a discrete state matrix F as:

Xk+1 = F- Xk (19)
F=[-Anp" (1.10)

If and only if all of the eigenvalues of F are inside the unit circle, then the system
is numerically stable. Shown in Figure 1.2 is the numerical stability domain for
BE. The region inside the circle is the unstable region and everything outside is the
stable region. The domain of numerical stability tries to approximate the domain of
analytical stability and the BE algorithm doesn’t do very well. Comparing Figure 1.1
and Figure 1.2, it can be seen that the analytically unstable region is for the most part
numerically stable when using BE. From [2], a method is called A-stable or absolute
stable if it contains the entire left half of the A\ - h-plane as part of its numerical
stability domain. The BE algorithm is very stable, thus it is an A—stable method. A
method is called L—stable if it is A—stable and has damping properties such that as

the eigenvalues approach negative infinity, the damping approaches infinity.

1.4 Stiffness

Many of the interesting problems in science and engineering lead to equations that are
stiff. A rough idea of stiffness is that somehow the computation of the numerical solu-

tion to these equations is in some sense ill-conditioned over the range of integration.

15

o
4]
T

Unstable:

|

o

4]
T

_2 1 1 1 1
-1 0 1 2 3

O{ACh}
FiGURrE 1.2. Stability domain of BE

An example from [3] illustrates this. The following:

i =—10° (z —exp (—t)) — (exp (—1)) 0<t<ty (1.11)

z(0) =0

is a prototypical stiff equation. Shown in Figure 1.3 is the solution for ¢t; = 1. At first
glance, the solution seems to behave perfectly fine, but upon closer inspection there
is a transient region for small ¢ that can be better seen in Figure 1.4. The analytical

solution of (1.11) is given by:
2(t) = exp(—t) — exp(—10%t) (1.12)

From this equation it can be seen that there is a fast component given by exp(—103t)
and a slow component given by exp(—t). After a short time the solution looks like
the dominant term exp(—t) since the fast component has vanished. From the point

of view of an explicit integration algorithm, even though the fast component has de-

0.3} .
0.2 i
0.1} .

0 L

0 0.2 0.4 0.6 0.8 1
t
FIGURE 1.3. Stif ODEon 0<¢t <1

O L L I

0 0.005 0.01 0.015 0.02

t

FIGURE 1.4. Stiff ODE on 0 < ¢ < 0.02

16

17

cayed after the transient region, the step size must still be kept small. This is what
makes the problem stiff. Thus, if ¢; limited to the transient region, then the problem
is not considered stiff. There are various definitions of stiffness because several phe-
nomena can occur [4]. In general, stiff equations result from sets of equations that
have eigenvalues that vary greatly in magnitude such that there are both slow and
fast modes. The solution then behaves like it exists in multiple regions of different
scales. Although another attempt to better quantify stiffness has been made in [4],

the definition found in [2] is sufficient:

Definition 1.4.1. A system is called stiff if, when integrated with any explicit RKn
algorithm and a local error tolerance of 107", the step size of the algorithm is forced
down to below a value indicated by the local error estimate due to constraints imposed

on it by the limited size of the numerically stable region.

Stiff problems occur commonly and implicit integration algorithms are better
suited to solve these types of problems. Since implicit methods may have better
numerical properties, larger step sizes can be used leading to a more efficient simula-

tion.

1.5 Approximation Errors

When a model is simulated, errors can occur in various places. The first type of error
occurs because only a finite number of terms of the Taylor series are used and is
called the truncation error. A second source of error comes from the use of a digital
computer to perform a simulation. A computer can only represent numbers with
finite precision so this type of error is called roundoff error. With the combination
of truncation and roundoff errors, the computed value of the trajectory at the next
point in time cannot be exact. Over multiple integration steps this error propagates
as an error in the initial conditions from one step to the next. This type of error is

called accumulation error.

18

TABLE 1.1. Generalized Butcher Tableau

c A

T b’

It should be noted that there can also be errors in the model itself. The system
may have dynamics that are not included in the model or the model may not represent
the physical system accurately. The former type of errors are structural model errors
and the latter are parametric model errors. Both types of errors do not affect the
numerical integration method since they are model errors and are dealt with through

model validation discussed in [5].

1.6 Fully-Implicit Runge-Kutta Algorithms

Problems of interest will primarily occur in DAE form and will invariably be stiff.
Therefore, implicit algorithms must be used for their simulation. One class of implicit
integration algorithms that may lead to efficient implementations together with a
technique called inline—integration are the implicit Runge-Kutta algorithms. Runge-
Kutta algorithms are single—step methods but compute intermediate values at various
time instants within the step called predictors. Each time instant when a predictor
is computed is called a stage. At the end of the integration step, some combination
of those predictions, called the corrector, is used to compute the state vector.
Runge—Kutta methods can be represented in a compact form shown in Table 1.1
called a Butcher Tableau [6]. In the generalized Butcher Tableau, the c—vector denotes
the time instant when each stage is evaluated. The b’~vector denotes the weights for
the corrector stage, and the A—matrix contains the weights for the predictor stages.

The Butcher Tableau of an m—stage algorithm with b’,c € R™ and A € R™*™ has

19

the property ¢; = Z;n:l a;j for i =1,...,m and can be expanded into:
1% stage: xP1 = % + Z aljh)'cpj

J
}.(Pl = f(XPl, tk+cl)

ond stage: xP? = % + Z agjhfcpj
J
%P2 = £(xP2 t)40,)

mth stage: xFm = x, + E amjhfcpj
J
XPm = f(XPm7 tk—l—cm)

. P;
corrector: X1 = Xk + E bjhx,’
J

For IRKs the resulting predictor equations are coupled together and must be solved

simultaneously.

1.6.1 Radau ITA

A family of very compact fully-implicit Runge-Kutta algorithms are the Radau ITA
algorithms. The third order accurate technique, Rad3, uses only two stages, while
only three stages are needed in the fifth order accurate method, Rad5. The Rad3
algorithm is defined by the Butcher Tableau shown in Table 1.2. Although the Rad5
algorithm is fifth—order accurate, both irrational coefficients and time steps may make
this method less attractive. The Butcher Tableau shown in Table 1.3 describes the
Radb algorithm. Since the second and third stages of Rad3 and Rad5, respectively, are
evaluated at the end of the step, the corrector equations collapse with the respective

equations that describe those stages.

20

1.6.2 Lobatto IIIC

Other fully-implicit Runge-Kutta algorithms are the Lobatto IIIC methods. The
commonly used fourth order accurate method requires three stages and is described
by the Butcher Tableau shown in Table 1.4. The sixth order accurate method uses
four stages and is analyzed in a later chapter. Like the Radb algorithm, the third
stage of this algorithm is evaluated at the end of the integration step. Thus, the

corrector equation also collapse with the equation that describes the third stage.

1.6.3 HW-SDIRK

One interesting algorithm is HW-SDIRK(3)4, not fully—implicit, but a diagonally
implicit Runge-Kutta. This algorithm is 4""-order accurate using five stages. Also
part of this algorithm is a 3"4-order accurate embedding method that can be used for
step size control. Unlike Rad5, both methods contained in HW-SDIRK have rational
coefficients. What makes this algorithm interesting is that when used with inlining,
each stage of this algorithm can be iterated on separately. This algorithm will be

analyzed in a later chapter.

21

TABLE 1.2. Radau ITA(3)

1/3 5/12 —1/12
1 3/4 1/4
v | 3/ 1/4

TABLE 1.3. Radau ITA(5)

4-/6 88—7V6 296—169v6 —2+3v6
10 360 1800 225
446 | 296+169v6 88+7v6 —2-3V6
10 1800 360 225
1 16—v/6 16+v6 1

36 36 9
T 16—/6 16+/6 1
36 36 9

TABLE 1.4. Lobatto IIIC(4)
0 [1/6 —1/3 1/6
1/211/6 5/12 —1/12
1 |1/6 2/3 1/6
v | 1/6 2/3 1/6

22

Chapter 2

BACKGROUND

Traditionally, the model to be simulated was kept separate from the simulation engine.
This was done since, at that time, the idea of generating a model was something that
a modeler did, whereas performing experiments on a model or simulating a model was
something that was done on a computer. Since these were two separate things, it could
happen that the model that was created may not lend itself to being implemented
very easily for simulation.

The simulation engines in use typically required first—order ordinary differential
equations (ODEs), a state—space representation, as the model description. For simple
models this may not be a problem, but as model complexity increases, it may be
more convenient to use an equivalent differential algebraic equation (DAE) model

representation.

2.1 Differential Algebraic Equations

Physical systems are not easily represented by state—space models since the equa-
tions describing a physical system are typically algebraically coupled. Because of
this, physical systems are usually described by a mixture of differential and algebraic
equations called Differential Algebraic Equations (DAEs). This can, for example, be
seen in the following set of equations that can describe the simple circuit shown in

Figure 2.1:
up = f(1) (2.1)

Uy = Rl . il (22)

Ug = R2 . ig (23)

23

L
ur,
v O
10 A
Ficure 2.1. Simple RLC Circuit
dig,
=L. = 2.4
ur, dt ()
duc
c=0C - —= 2.5
ic pr (2.5)
Uy = U1 + Uc (2.6)
Uy, = Uy + Us (2.7)
Uc = Uz (2.8)
19 =11 + 1L (2.9)

These equations can also be represented in the form of a structure incidence matrix
[2]. Each row of the structure incidence matrix S represents an equation and each
column represents a variable. When the i*" equation (row) contains the j*" variable

(column), then the element S; ; is set to 1, otherwise it is set to 0. With the columns

24

ordered by wuyg, i, U1, %1, U, i2, U, dé—f, ds—f, and i¢, the structure incidence matrix of

this circuit can be written as:

10000000O0GO0O0
0011000000
0000110000
00000O0T1T100
00000O0O0O0T11

SRLC= 11 01 00000 0 0 (2.11)
0010101000
0000100000
0101000000
0001010001

The complexity of these equations is denoted by the index of the system. An index—0
system has a structure incidence matrix that is lower triangular after sorting. This
means that the system doesn’t have any algebraic loops or structural singularities.
An index—1 system doesn’t have structural singularities but does have algebraic loops.
The structure incidence matrix for this case is block lower triangular after sorting.
Systems that have an index > 1 have structural singularities and are higher—index

problems.

2.2 Inline—Integration

As noted in §1.2 it is straightforward to solve Eq.(1.1) using an explicit integration
algorithm. However, when the system to be solved is stiff it is more appropriate to
use an implicit integration algorithm. The problem is that implicit algorithms lead to
nonlinear equations that, in general, need to be solved by a Newton iteration. By tak-
ing advantage of the structure of the model equations and the integration algorithm,
the efficiency of the simulation can be improved [7]. This can by accomplished by a
technique called inline integration. Using inline integration, an implicit integration
algorithm can be merged with the model. In this way the differential equations are

eliminated and the resulting model becomes a set of difference equations (AEs)[7].

25

Using implicit Runge—Kutta algorithms together with inline integration and tearing
[8] may lead to efficient implementations. This is desirable when a sufficiently large
and complex system needs to be simulated, for instance, in real-time. This is the case
since only a Newton iteration needs to be performed on the set of AEs at each time
step. To illustrate the process of inline integration, the circuit shown in Figure 2.1

will be inlined with three different IRKs.

2.2.1 Radau ITIA

By inlining the Rad3 algorithm with the model of the circuit shown in Figure 2.1, the
set of DAEs given by Egs.(2.1)—(2.10) is replicated once for each stage of the integra-
tion algorithm and Rad3 integrator equations are added for each of the derivatives.

From Table 1.2, the integrator equations can be expressed as:

S5h h .
xk+%zxk+ﬁ-xk+%—ﬁ~xk+1 (2.12)
Xk+1 = Xk + Z : kk-ﬁ-% + Z : Xk—l—l (213)

and inlining the circuit model with Rad3 results in the following equations:

U(]:f(tk—Fg)

v =Ry -5
ve = Ry - Jo

vy = L-djg

Vg = V1 + Vo
UV, = U1 + U2
Vo = V2

Jo=J1+JL

(2.14)
(2.15)
(2.16)
(2.17)
jo = C - dve (2.18)
(2.19)
(2.20)
(2.21)
(2.22)
(2.23)

J1=7J2+ Jjc

26

up =Ry -1y
Us = Ry - 19

uL:L-dz'L

Uy = Uy + Uc
Uy, = Uy + Us
Uc = U

7:0:7;1+’iL

(2.24)
(2.25)
(2.26)
(2.27)
ic = C - duc (2.28)
(2.29)
(2.30)
(2.31)
(2.32)
(2.33)

11 =12+ ic

S5h . oh

jL ZLk 1 _'_ E : djL - E d/LL (234)
3h h

11, UL, + — 'djL‘l'— 'dZL (235)
4 4
5h 5h

Vo = Ucy,_, + E . dUC — E . duc (236)
3h h

Uc = Ucy,_, + Z . dUc + Z . duc (237)

where ¢z, , and u¢,_, are the state values computed during the previous time step. In
this case, the time derivatives present in Eqs.(2.4) and (2.5) have been eliminated in
the resulting 24 equations in 24 unknowns. Since the two stages of Rad3 are coupled
together, all 24 equations of this AE system must be solved simultaneously.
Similarly, the set of equations for the same circuit inlined with the Rad5 algorithm

becomes:

wozf<t+4_10\/6-h> (2.38)

wlle-ml

w2:R2-m2

wL:L-dmL

mc:C’-dwc

Wy = Wi + we
Wy, = W1 + Wa
Weo = Wa

mo = mi +my

mi = Mo + Mc

v =R)
vy = Ry ja
v, =L-djg
Jjo =C-dvc

Vg = V1 + Vo

UV, = U1 + U2

Ve = Vg
Jo=J1+JL
J1=7Ja+ Jo
up = f(t+h)
u = Ry -4y
Uy = Ry - 19

up, = L -dip,

ic =C-duc

Uy = U1 + Uc

U, = Uy + Uo

Uc = Us

1o =11 +1p

11 =12 + ¢

88 —7v/6

360 1 dme

296 — 169v/6 . -2+ 3v6

—\/_ hedjp + —2+3V6
1800 225

. . 296 + 169v/6

Jr = pre(ir) + —\/7 ~h-dmyp,

1800
—2 —3v6
+88§T(7)\/6~h~djL+7\f-h-diL

225
16 — V6
36

1
e djp g b diy

my, = pre(ig) +

-h-diy,

ir, = pre(iy) + ~h-dmp,

16 + 6
16416
36

88 — 7/6
7360 -h-dwc

296 — 1691/6 2436
—\/_.h.dvchjLi\/_
1800 225
296 + 169v/6
— Y hd
ve = pre(uc) + 1300 we
—9_
+88+7\/6_h_dvc7+ 3v6
360 225
16 — /6
36 -h-dwc

1
-h-dvc+§'h-duc

we = pre(uc) +

hduc

hduc

uc = pre(uc) +

16 + 6

- 36

(2.68)

(2.69)

(2.70)

(2.71)

(2.72)

(2.73)

29

where pre(-) denotes the value computed for a variable during the previous time
step. After inlining the original model of 10 equations with Rad5b, there are now
36 equations in 36 unknowns that must be solved simultaneously. From this set of
equations it can be seen that irrational coefficients appear in a number of different
places. The augmented incidence matrix for one stage of Rad5 inlined equations can

be written as:

(2.74)

SO O OO oo oo
SO OO = EHEOOO~=O
O R R OOOOoOOoOo O
O OO = EFEF OOO KOO
O PR OO OO o kOO
OO DO O OO RO OoOOo
— O O OO ook o oo
OO OO OO R OO OO
O R OO OO O o oo
_— O =R OO 00O oo oo
DO O R O OOO OO

DD O DO OO O -

[a)
[a)
[e)
[e)
(@)
(@)
[a)
—_
[a)
(@)
—_

where the columns are now ordered by uq, g, U1, i1, Us, 12, ur, dir, duc, ic, iy, and uc.

Together with the incidence matrix for the coupling between the different stages:

0000O0O0OO0OO0OOO0OO0OO0
0000O0OO0OO0OOOOO OO
0000O0OO0OO0OOOO0OO OO
0000O0OO0OO0OOOO0OO 0O
000O0O0OO0OO0OO0OOO0OO0OO0
000O0O0OO0OO0OO0OOO®O0OO0
C= 000O0O0OO0OO0OO0OOO0OO0OO0 (2.75)
0000O0OO0OO0OOOO0OO OO
0000O0OO0OO0OOOOTO OO
000O0O0OO0OO0OO0OOO0OO0OO0
0000O0O0OO0O1O0O0O0O0
0000O0O0OO0OO0OT1TO0®O0O0

the structure incidence matrix for the Radb set of inlined equations can be written

as:
S C C

Saas = |C S CJ. (2.76)
C C S

30

2.2.2 Lobatto IIIC(4)

Finally, the same circuit inlined with Lobatto IIIC(4) result in the following equations:

wy = f(t) (2.77)
w; = Ry -my (2.78)
Wy = Ry - my (2.79)
wy, = L-dmy, (2.80)
me = C - dwe (2.81)
Wy = Wy + We (2.82)
wr, = w + Wy (2.83)
we = wy (2.84)
mo = my +myg (2.85)
m; = me + mc (2.86)
vo=f <t + g) (2.87)
v =Ry (2.88)
vy = Ry - s (2.89)
v, = L-djp, (2.90)
jo = C - dve (2.91)
v = vy + Ve (2.92)
v, = U1 + U9 (2.93)
Vo = Vo (2.94)
Jo=J1+JL (2.95)
J1=J2+Jc (2.96)

up = f(t+h) (2.97)
Uy = R1 . il (298)
Uy = R2 . ig (299)
'éc =C- duc (2.101)
Uy = Uy + uc (2.102)
Uy, = U + U2 (2103)
Uc = Us (2.104)
i = iy + iz (2.105)
iy =iy +ic (2.106)
h h h
mL:pre(iL)+6-dmL—g-dijLg-dz'L (2.107)
4 _ h bh h
jL:pre(zL)+6-dmL+E-djL—E-dzL (2.108)
h 2h h
we = pre(uc) + % ~dwe — g ~dve + % ~duc (2.110)
h oh h
Vo = pre(uc) + 8 . dwc + E : dUc — E : duc (2111)
2
uc = pre(uc) + % . dwc + gh : dUc + % . duc (2112)

Compared with Radb, the only differences in the equations are the time instants when
the equations are evaluated and the coefficients for the integration algorithm. Since
the equations are otherwise the same, both Rad5 and Lobatto IIIC(4) have the same
structure incidence matrix. The procedure is similar for inlining with any integration

algorithm.

32

2.3 Sorting

Before the inlined model can be simulated the equations must first be sorted and
causalized. For an acausal equation, the equal sign is used in the sense of equality.
Looking at Eqs.(2.77) and (2.82), both have the same variable, wy, on the left hand
side of the equal sign, but only one of the equations can be used to compute wy. The
remaining equation must be used to solve for another variable. The variable that was
selected to be solved for in a particular equation can by marked by enclosing it in
square brackets [-]. Since that variable is now computed it can be considered as known
in the remaining equations and is denoted by underlining. Unfortunately, inlining
with an implicit integration algorithm leads to algebraic loops. Thus, the equations
cannot be completely sorted and using the Rad3 example above, the partially sorted

equations are:

[vo] = f (tk - g) (2.113)
v1 = Ry -1 (2.114)
vy = Ry - s (2.115)
vy = L-[djir] (2.116)
Jo =C"dvc (2.117)
vy = v1 + Vo (2.118)

[vr] = v1 + v (2.119)
ve = vy (2.120)
ol = J1 +jz (2.121)
J1=7J2+Jjc (2.122)

[uo] = f(tx + D) (2.123)

uy = Ry - i (2.125)
up = L - [dig] (2.126)
ic = C - duc (2.127)
Ug = Uy + Uc (2.128)
[ur] = w1 + us (2.129)
ue = g (2.130)
[io] = i1 + ir (2.131)
i = iy + ic (2.132)
] = it o diy 0 iy (2133)
lir) =ir, . —i—% d]_L—l—Zdﬂ (2.134)
Vo = Uc, , + % ~dve — % ~duc (2.135)
uc = uc, , + % ~dve + % ~duc (2.136)

There is only one variable in Eq.(2.113) so this equation must be used to compute vy
and is then underlined in Eq.(2.118). The variable ¢y only appears in Eq.(2.131) so this
equation must be used to compute 75. Only 10 of the equations can immediately be
sorted and the remaining 14 equations must be solved together. Although the model
is linear, a Newton iteration may still be used to solve the remaining equations. For
linear models, a Newton iteration will converge in one iteration step but this is still
not efficient since more iteration variables are being used than necessary. To improve
simulation efficiency, a method called tearing can be used to find a smaller set of
iteration variables. With tearing, the remaining equations can be causalized and the
number of iteration variables will be reduced. After all of the equations have been
sorted and made causal, the equal sign is now used in the sense of assignment, where

there is an individual equation to compute each variable.

34

2.4 Tearing

Physical system models, such as those that describe electrical circuits, may contain
algebraic loops that are large. However, the subset of equations to be solved simulta-
neously that form the algebraic loop usually only have a small number of variables in
each equation. In this case, by reducing the dimensionality of the system of equations
to be solved, a solution can be found more efficiently. This is done by a technique
called tearing in which the reduction can be done symbolically and then passed to
the numerical solver [8]. In practice, the model may possibly contain thousands of
equations in thousands of unknowns. For the numerical solver, a Newton iteration is
efficient when there is a small set of iteration variables but becomes inefficient when
there is a large number of iteration variables. Here, large describes systems with
thousands of equations in thousands of iteration variables. With tearing, the number
of iteration variables needed can be reduced.

Once the equation sorting algorithm stalls, the tearing algorithm needs to make
assumptions about one or more variables to be known. The solution of the system
is not changed by tearing; it only makes finding the solution more efficient. After
inlining with an implicit Runge-Kutta algorithm, and only after inlining, tearing can
be used to reduce the size of the Jacobian making the problem more efficient to solve.

For the Rad3 example given in the previous section the equations can be completely

[vo] = f (tk + g)

v = Ry - []1]

sorted after tearing:

(2.137)

(2.138)

va = Ry - [s] (2.139)
v, =L - [dj] (2.140)
jo = C - [duc] (2.141)
(2.142)

v = [v1] +vo

[vr] = v1 + v (2.143)
ve = [va] (2.144)
ol = j1+Ji (2.145)
J1 = ja + ljc] (2.146)
[uo] = f(tx + D) (2.147)
[wy] = Ry - i (2.148)
g = Ry - [is] (2.149)
ug = L - [dig] (2.150)
ic] = C - duc (2.151)
U = Uy + [uc] (2.152)
[ur] = w1 + uy (2.153)
uc = [ug] (2.154)
[io] =11 +ir, (2.155)
1] =12 +ic (2.156)
[j]ziLkﬁ%dﬂ—%dﬂ (2.157)
lir] = ip,, + % ~djp + Z - diy, (2.158)
lvel = ue,_, + % dve — % duc (2.159)
Uc =Uc, , t % - dve + % - [duc] (2.160)

In this set of equations, the variables v, and 7; are assumed known and are called
tearing variables. These two variables are the iteration variables for this problem. The
tearing variables are computed from Eqs.(2.156) and (2.159) which are called residual

equations. The tearing variables were found using a heuristic procedure [2] that always

36

results in a small number of tearing variables, but not necessarily the smallest number
of tearing variables. A heuristic procedure must be used since finding the minimum
number of tearing variables is an np—complete problem. After tearing, the size of the
Jacobian for this set of equations has been reduced from a 24 x 24 matrix to a 2 x 2
matrix. While this set of equations can now be used for simulation, the simulation

efficiency can again be improved by using step—size control.

2.5 Step—Size Control

One last piece for efficient simulation is step—size control of the integration algorithm.
In general, smaller step sizes result in smaller integration errors and larger step sizes
tend to lead to larger integration errors. However, choosing a smaller step size comes
at the cost of a higher computational load. For this reason, using a variable—step
integration algorithm may be desirable.

The concept for step size control is simple. First, perform the same integration
step using two integration algorithms. Next, take the difference between the two
computed values to find the estimated error €. If € is bigger than some specified error
tolerance tol, then reject that step and repeat the same step with a smaller step size.
Finally, if after a some number of consecutive integration steps the estimated error
remains smaller than the tolerated error, then the step size is increased. For step
size control, it is always possible to use a second separate integration algorithm in
parallel and independent of the first algorithm. This is hardly efficient because the
solver would then have the additional computational load of the second independent
algorithm.

Traditionally, for explicit Runge-Kutta algorithms, an embedding method was
found and used for step—size control. An embedded method is a second integration
algorithm that has stages in common with the integration algorithm that it is embed-

ded in so that the computational load is shared between them. Since fully implicit

37

algorithms like Radau ITA are so compact and optimized there doesn’t exist any
freedom to find an embedding method with the existing information. In [2], using in-
formation from two steps, embedding methods that can be used for step—size control
of Rad3, Rad5 and Lobatto IIIC(4) have been found.

It should be mentioned that order—control is not even considered because accuracy
is typically reduced by a factor of 10 when the order of the method is decreased by
one [2]. Hardly any efficiency is gained and its impact on the accuracy of the solution
does not justify the use of order—control. In addition, some implicit Runge-Kutta
algorithms are not suited for use with order—control, since an integration algorithm
within the same family may not exist at all one order lower. For instance, if a fifth
order accurate Radau ITA method is used, there doesn’t exist a forth-order accurate

Radau ITA method to drop to [11].

2.5.1 Radau ITA

For Rad3, the embedding method found in [2] turned out to be 3"-order accurate
and is given by:

1 2 14 2 11h 3h .
Xict1 = — 13 %k-1 + T3%k-2 + T35k ~ Tg%krl + 13 Xt + 13Xk (2.161)

While the embedding method found for Rad5 turned out to be 5%'-order accurate
and is given by:
Xk41 = C1Xk—1 + C2hXq, | + Cc3Xg, | + cahXg, | + c5Xk
(2.162)

+ CeX1, + C7h).(1k + CgXa, + Cgh).(zk + Clgh).(k+1

where the coefficients are:

c1 = —0.00517140382204 coy = —0.00094714677404
cs = —0.04060469717694 ¢y = —0.01364429384901

c; = +1.41786808325433 ce = —0.17475783086782

38

cr = +0.48299282769491 cs = —0.19733415138754

cog = +0.55942205973218 c1o = +0.10695524944855

2.5.2 Lobatto ITIIC

The embedding method found in [2] for Lobatto IIIC(4) is 4""~order accurate and is

given by:
o 63 9lh . 1381h. 3101 393
T ds52 M UB1936 T 81936 T 22760 4552 % (5 16
T75h, 165 62179h, 12881h '

T3 T 5697 T R1936 > T §1936 <
With these error methods, the step size can only change after two consecutive steps.

This is a minor restriction as stated in [2] and the new step can be computed using

a standard rule:

Tol 1/(h+1)
—0) (2.164)

err

hnew = hold 0 - (
where Tol is the specified tolerance, ¢ is a safety factor, err is the estimated error,

and 7 is the order of the error estimate [10, 11]. The estimated error is given by:
err = ||X — x|, (2.165)

where x is computed by the integration algorithm and X is computed from the em-
bedding method. To prevent the step size from changing drastically, the new step

size can be limited to values between [h/2, 2h].

2.6 HW-SDIRK and Lobatto ITIC(6)

In this thesis, two different implicit Runge-Kutta algorithms will be studied: HW-
SDIRK(3)4 and Lobatto IIIC(6). Following the idea of using data from a previous
step, it may be possible to find an alternative embedding method for HW-SDIRK
and to find an embedding method for Lobatto IIIC(6). Together with the above
techniques, all of the integration methods will then be compared with each other

using benchmark ODEs [12].

39

Chapter 3

HW-SDIRK

A diagonally implicit Runge-Kutta (DIRK) algorithm contains zero elements above
the main diagonal of the Butcher tableau. A method of this type that has non—zero
elements of equal value on the main diagonal is called a singly diagonally implicit
Runge-Kutta (SDIRK) algorithm.

An SDIRK algorithm containing third and fourth order accurate methods is HW-
SDIRK(3)4 [11]. The Butcher tableau describing these algorithms is shown in Ta-
ble 3.1 with the third order accurate method denoted by z.

3.1 Numerical Stability

Plugging the HW-SDIRK algorithm into the standard test problem of Eq.(1.5), the

following set of equations in ODE form results:

5Ah 5(AR)2 5(Ah)® 5(Ah)* (AR
_ g . B
ka [I i T8 32 256 1024
3(Ah)2 (Ah)® (Ah)
(1™ — A — — A 1
< ht =5 16 256 h (3:-1)

TaBLE 3.1. HW-SDIRK(3)4

1 1
L1 g 0 0 0
3 1 1
) 5 1 0 0 0
1| 17 1 1
20 | 50 % 1 0 0
1|3 -7 15 1
2 | 1360 2720 544 14
1 25 —49 125 =85 1

24 8 6 12 4
~ | 59 —17 225 —85
T | 4 96 32 1 0
25 —49 125 =85 1
24 8 6 12 4

e e e e
Ah AhR)3 AR
. <I(n)_7_ (32) B (256))Ah
o = [- 240 SRR SLE SO (R
_ <I<n> _TAh 13(AR)* | 3(AR)* (Ah)4) .
10 100 800 492
e T e e 1
2 3 A
(o= 25 2 2 -
o = [- 240 BRI SLE SO ()
2 3 A
- <I<n> AR (A (AR? | TAR)) N
R G
s (- et

where:

k; = the state derivative 1/4 into the step
k, = the state derivative 3/4 into the step
ks = the state derivative 11/20 into the step
k4 = the state derivative 1/2 into the step

ks = the state derivative at the end of the step
These equations can be expressed in the form of a discrete time system:

Xpe1 = F - xy

40

(3.2)

(3.3)

(3.4)

(3.8)

where F is the new discrete state matrix and the simulation time is now indexed.

41

Therefore, the third-order accurate HW-SDIRK method is characterized by the

following F-matrix:

A AR)® 5(AR)? 5(AR)* (AR
4 8 32 256 1024 (3.9)
[_ 3AR N (Ah)> (AR)® (AR Al '
4 6 768 439
A Taylor series can be developed around h = 0:
An)?2 (Ah)3 13(Ahn)*
F a1 4 Ah+ 1
+ + 5 + 6 + 256 (3.10)
Comparing this equation with the Taylor series of the analytical solution:
2 3 4 5 6
_ _) (Ah)* (Ah)" (Ah)* (Ah)° (Ah)
F =exp(At) =1T" + Ah + 5 + 5 + 71 + 120 + 20 +... (3.11)

it can be seen that this method is indeed third—order accurate and that the error

coefficient is:

7(Ah)?
= 12
T (3:12)
The fourth-order accurate HW-SDIRK method is characterized by the following F—
matrix:
2 3 4 571
Fo1® 1o 5Ah n 5(Ah) B 5(Ah) n 5(Ah) B (Ah)
4 8 32 256 1024 (3.13)
2 3 4 :
o 3AhR n (Ah) B (Ah) n (Ah) A
4 6 96 1024
A Taylor series can be developed around h = 0
2 3 4 5
~ T (Ah) (Ah) (Ah) 23(Ah)
F~I"™ +Ah+ 5t 5 t— 1 2072 (3.14)
giving an error coefficient of:
_ 13(Ah)°
€= —r360 (3.15)

The stability domains of the third— and fourth—order methods are shown in Fig-
ures 3.1-3.2, respectively. Evidently, despite being part of an overall implicit algo-

-14 -12 -10 -8 -6 -4 -2 0 2
O{ACh}

FIGURE 3.1. Stability domain of HW-SDIRK(3)

15

-5 0 5 10 15 20 25
O{ACh}

FIGURE 3.2. Stability domain of HW-SDIRK (4)

30

42

43

rithm, the 3'%-order accurate embedding method behaves like an explicit method as
the stability domain loops in the left half of the Ah—plane. In this case, the region
inside the curve of Figure 3.1 is the stable region and everything outside the curve is

the unstable region.

3.2 Numerical Damping

In order to judge the accuracy of an integration algorithm, a damping plot can be
used [2]. Again using the standard linear test problem of Eq.(1.5), and choosing the

initial conditions such that ty = t; and xg = X, the solution for ¢t = t;,; is:
X1 = exp(Ah) - xx (3.16)
The discrete system then has the analytical F-matrix:
F = exp(Ah) (3.17)

with eigenvalues:
Aa = eig(F) = exp(eig(A)h) (3.18)
or since the eigenvalues are complex:
Aa = exp(\;h)
= exp((—o; + jw;)h) (3.19)
= exp(—o;h) - exp(jw;h)
In the continuous system, the damping ¢ is the distance of an eigenvalue from the
imaginary axis in the A-plane. This damping maps in the discrete system to a distance
from the origin in the exp(\-h)-plane. This can be recognized as the z—domain, where

z = exp(A - h). In [2], the analytical discrete damping is then defined as o4 = o;h.

The F-matrix is then related to the numerical discrete damping 6,4 by:

0q = log(max(] eig(F)|)) (3.20)

44

(@)

0 T
_l SR ~ -
T e~ HW-SDIRK(3) e
o - fwmspiRks)
s 2 . .
Q
g HW-SDIRK(4)
o _3F .
1
_4 — -
-5 1 1 1 1 1 1 1 1 1
=5 -45 -4 -35 -3 -25 -2 -15 -1 -05 0
g
d
(b)
S5pr T T T T T T T
HW-SDIRK(3)
0 —_— =
<
o -
£
£
[-5 B
[a)
. HW-SDIRK(4)
_lo S N N -
-5l IR — T T P IR — T T
-10° -10° -10* -10° -10° -10" -10° -10" -107
log(o,)

FI1GUure 3.3. HW-SDIRK(3)4: a) Damping plot; b) Logarithmic damping plot

where F is now the F-matrix of the numerical solver.

The damping plot is then given by plotting both —o; and —&4 against —o4. The
damping plots of of the third— and fourth—order methods are shown in Figure 3.3 with
o4 shown as the dotted line. From Figure 3.3 it can be seen that the fourth—order

method is L-stable while the damping for the third—order method becomes negative.

3.3 Step—Size Control

Although HW-SDIRK already has a proper embedding method, it behaves like an
explicit method. For step—size control, using such an embedding method to compute
the error estimate may unnecessarily restrict the step size when solving a stiff system.
While the simulation should proceed without incident, this may not be efficient as
the solver may need to take more integration steps than required. Perhaps the same

idea from [2] can be used to find an alternate embedding method for HW-SDIRK.

45

Since HW-SDIRK is not a compact algorithm, needing five stages to generate a fourth
order accurate method, it should be possible to search for an alternate implicit em-
bedding method. Solving a stiff system together with an implicit embedding method
to compute the error estimate should allow for the use of larger step sizes. A single
step of HW-SDIRK has the following 10 data points: Xy, Xit1/4, Xk+3/4, Xk+11/20
Xkt1/25 Xkt1/4, Xkt3/4s Xi11/205 X172, and Xyp1. Looking for a 5™ order polyno-
mial requires 6 of the 20 available data points giving 38760 different methods to be
evaluated. The first four stages of this method are only 1% order accurate, so none
of the 5" order polynomials are expected to be greater than 1% order accurate. By
blending, the approximation order is increased by one for each additional method.

Therefore, at least 3 of these methods need to be blended:
X1 ! = Xy + Oy + (1 — o — B)xi 4y (3.21)

to create another 3'%-order accurate method. A decent 3"-order accurate method

that can be used for step—size control is the following:
Xk+1 = C1X1, 4 + CaX3, 4 + C3Xk + C4h).(1k + C5X2,
(3.22)
+ Cﬁh).(zk + C7X3, + Cgh).(g,k + CoX4q, + Clgh).(4k + C11 h).(k+1

where the coefficients are:

¢ = 0.03987986285618 ¢y = —0.01359695108066
c3 = —3.64539939561975 cy = —1.87066547933118
c; = —2.52317069157776 ce = —0.38422673936017
¢y = 57.03714503309798 cg = 1.43334998089280

cog = —49.89485785767970 c1o = —2.92514906283553

e = 0.23985974910811

In this equation, x;, , represents the state vector computed for the first stage of

HW-SDIRK from the previous integration step, xs,_, represents the state vector

46

10} .
5h]
5
|
_5 - .
_10 - .
-5 0 5 10 15 20
O{ACh}

FIGURE 3.4. Stability domain of the HW-SDIRK alternate error method

computed for the third stage of the previous step, x3, represents the state derivative
vector computed for the second stage of the current step, and so on.

The stability domain and damping plots of this method are shown in Figures 3.4—
3.5, respectively. This method is not L—stable, however, it is implicit and is better
suited for the purposes of step size control when solving stiff systems than the original

embedding method.

3.4 Inlining

The various stages of this integration algorithm can be written as:

Xl = Xk + 1 'Xk+% (3.23)
. h .
X3 =Xk + 9 "Xkt + 1 Sktg (3:24)
17h h . h .
Xk_i_%:Xk—l—ﬁ-Xk_’_%—Q—is'Xk_i_%—l—Z' k—i—% (325)

@

— Damping

1

o

o
T

|
[EN
T

— Damping
AN
o
T

-2k

2.5 i

-10°

-10

-10

-10° -10° -10 -10
log(o,)

-10°

47

F1GURE 3.5. HW-SDIRK alternate error method: a) Damping plot; b) Logarithmic

damping plot

371h , 137h , 150 .,
Xy = Xk F 3607kt T o700 ki T Baa ks T
B 25h 49h 125h 85h .
M XTI R O T g R 1

. o9h . 17h 225h 85h
Mokt = T g N T g e T gy e T g e

Xyl + R

48

(3.26)
(3.27)

(3.28)

As before, using the same circuit shown in Figure 2.1 the model equations need to be

replicated once for each stage of the integration algorithm. For HW-SDIRK(3)4, the

first two of the five sets of equations are reproduced here:

U(]:f(t—F%)

v =R
vy = Ry ja
v, =L-djy
Jo=C-dvc

UQZUl+UC

’UL:U1—|—U2

Vo = U2
Jo=n+JjL
J1=7J2+ Jjc

Ulle"il

UQ:RQ"éQ
uL:L-dz'L
iC:C'dUC

Uy = U1 + UC

uL:ul—l—u2

wWoow W W W W W w
J & TR L R~ S

49

Uc = Us (3.46)
iy = i1 + i, (3.47)
i = iy +ic (3.48)

: : ho
Jp = pre(ie) + 4 - dji (3.49)
: : h . h
ir :pre(zL)+§ -djL—I—Z ~dig, (3.50)
h
ve = pre(uc) + 1 dve (3.51)
h h
uc = pre(uc) + 5 dve + i duc (3.52)
(3.53)

The complete set of inlined equations consists of 60 equations in 60 unknowns. As
mentioned before, the procedure is similar for inlining with any integration algorithm.
The structure incidence matrix for the HW-SDIRK set of inlined equations can be

written as:

Shwsdirk = (3.54)

aaoaQaQw
ONONOR NN
QQ VNN
Q®»nNNN
N NNN

where Z is the zero matrix. The structure incidence matrix after inlining is lower
block-triangular even before sorting, but this is only true for HW-SDIRK. The ad-
vantage of this is that one Newton iteration per stage can be used instead of one
Newton iteration across all stages. As model complexity grows it should be obvious
that this process of inlining, sorting and causalizing, tearing, and setting up the New-
ton iterations must be automated. The number of equations can become quite large

and this process can no longer be done by hand.

50

Chapter 4

LoBATTO IIIC(6)

Another Lobatto IIIC method has also been published that is sixth order accurate
[11]. This algorithm uses four stages but also has the potential disadvantage of
irrational coefficients and time steps. The Lobatto IIIC(6) algorithm is described by
the Butcher tableau of Table 4.1.

4.1 Numerical Stability and Damping

Again using the standard linear test problem, x = Ax, with the ODE description of

Lobatto ITIC results in the following set of equations:

2Ah (AR (AR (AR
k, = [T®™ — —
! { 3 5 30 360
2Ah (AR)? (Ah)3
-(I(“)— 2 +(5) —(30>)Ah (4.1)
2Ah (AR (AR (AR
_ |y _ _
kz [I 3 5 30 360
329Ah 61(Ah)>
N
<I TERRARTET)Ah (4.2)
2Ah (AR (Ah)?® (AR)*]
Ka = [T — —
3 { 3 5 30 360

TABLE 4.1. Lobatto IT11C(6)

0 1 =6 V5 =1
12 12 12 12
5-v5 | 1 1 10-7v5 /5
10 12 4 60 60
54v5 | 1 10475 1 -5
10 12 60 4 60
1 1 5 5 1
12 12 12 12
1 5 5 1
Lol 12 12 12 12

51

16Ah 24(Ah)?2 (AhR)?
(1 — — A 4.
(T 281 1165 30 h (4.3)
2Ah (Ah)2 (Ah)® (AR
k, = |T® — _
* { 3 5 30 360
Ah (Ah)?
I = Ah 4.4
< T3 TR) (4.4)
h
Xk+1 = Xk + E (kl + 5k2 + 5k3 + k4) (45)

The sixth order accurate Lobatto IIIC method is characterized by the following F—

matrix:
2A 2 3 47-1
F o1 4 o _ h+Ah AR +Ah
3) 30 360 (4.6)
A 2 3 ’
(o (AR (AR (AR
6 30 360
Developing a Taylor series around hA = 0
Ah)? (AR (Ah)* (AR (AR)S (AR)T
Fa I 4 Ah+ :
* * 2 * 6 * 24 * 120 * 720 * 5400 (+7)

and comparing this with the Taylor series of the analytical solution gives an error

coefficient of:

(4.8)

4.2 Step—size control

Using the same idea as in [2], let us look for an embedding method for the sixth
order accurate Lobatto IIIC algorithm, since no embedding method currently exists.
A single step of Lobatto ITIC(6) has the following data points: Xy, Xkio, Xy, 5-v5)
10
X\, 5575) Xk, Xk+05 X L5-VE; X, . 5+v5, and Xyi1. This algorithm unfortunately has
o o 550
the same problem as the 4'"-order accurate method, namely, there is a zero time
advance from the fourth stage of a step to the first stage of the next step. The

data points x and Xy, represent the state vector at the same time instant so no

-8 i i i i
O{ACh}

FIGURE 4.1. Stability domain of Lobatto IIIC(6)

(@)
0 T
1k |
o
£ -2r .
=
1S
IS
:
4 |
-5 ! ! ! ! ! ! | | |
-5 -4.5 -4 -3.5 -3 -25 -2 -15 -1 -0.5 0
-0

— Damping

-10° -10 -10 -10 -10° -10 -10 -10° -10°
log(o,)

FIGURE 4.2. Lobatto IIIC(6): a) Damping plot; b) Logarithmic damping plot

93

single error method can use them both simultaneously. The first three stages of this
algorithm are only 3'%-order accurate so none of the polynomials being searched for
are expected to be of greater accuracy. To find a 5"-order accurate method, three
suitable polynomials will need to be blended by Eq.(3.21). The following 5®"-order

accurate method can be used for step size control:
Xk+1 = C1Xk-1 + CghX1k71 + C3X2, 4 + C4hX2k71 + C5XKk
(4.9)
+ C6X1, + C7hX1k + CgX2, + Cgthk + CthXSk +c11 th+1

where the coefficients are:

¢ = 0.02061173185679 co = 0.00133204868429
cs = —0.00704709981316 ¢y = 0.00908420357588
cs = 0.83597287802675 ce = 0.03506343063678
cr = 0.07743334426486 cg = 0.11539905929277
co = 0.39352639145014 c1o = 0.41959151135295

¢ = 0.08264938766485

Similarly in this equation, x;, , represents the state derivative vector computed for
the first stage of Lobatto IIIC(6) from the previous integration step, X, , represents
the state vector computed for the second stage of the previous integration step, Xa,
represents the state derivative vector computed for the second stage of the current
integration step, and so on.

This method has a nice stability domain shown in Figure 4.3 and damping char-
acteristics shown in Figure 4.4. This error method is not L-stable but has a large
asymptotic region and should be well suited for step—size control when solving stiff
systems. In Figure 4.4a, the asymptotic region is the area near the origin where g4

follows o4 until about o4 = 3.4 [2].

C{ACh}
o

O{ACh}

FIGURE 4.3. Stability domain of Lobatto IIIC(6) error method

o4

FIGURE 4.4. Lobatto IIIC(6) error method: a) Damping plot; b) Logarithmic damp-

ing plot

- Damping

— Damping

(@)
0 T
_l -
_2 -
_3 -
_4 -
-5 1 1 1 1 1 1 1 1 1
-5 -45 -4 -35 -3 -25 -2 -15 -1 -05
o,
(b)
0 T
_l fo-
_2 L
_3 -
[/ P N T R N R A
-10° -10 -10 -10° -10° -10" -10"
log(a,)

95

o6

Chapter 5

NUMERICAL EXPERIMENTS

In this chapter, the different integration algorithms and respective error methods
will be evaluated using selected test ODEs found in Appendix A. These ODEs were
selected, along with considerations from [17], from a larger set suggested by [12].
For reference, the solution of these ODEs have been plotted in Figures 5.1- 5.8.
These solutions were all found using the MATLAB command ode15s. This command
invokes a stiff system solver based on Numerical Differential Formulae (NDF) which

are closely related to the BDF techniques [18].

1

09}

0.8}

0.7}

0.6

> 057

04f

0.3}

0.2}

0.1f

X

FIGURE 5.1. ODE set A solution

10 T T : :
st "2 -
Y, :
NJIBSNAN
-5 Yo . - i
_10 L .
_15 L — y4 .
_20 ! 1 1 1
0 1 2 3 4 6
X
FIGURE 5.2. ODE set B solution
Ya
6 10

FIGURE 5.3. ODE set C solution

o7

>

0.6} i
0.4r1 1
0.2 i

Y3

0 ! |
0 5 10 15
X
FIGURE 5.4. ODE set D solution
0.2 0.4 0.6 0.8
X

FiGURE 5.5. ODE set E y; solution

o8

99

2.5 T T T T

0 0.2 0.4 0.6 0.8 1

FIGURE 5.6. ODE set E ys solution

5.1 Implementation

The methods presented in the previous chapters have been implemented using the
Modelica language [21]. One software package that implements Modelica is called
Dymola [22]. Due to the large number of difference equations resulting after inlining,
sorting and tearing operations can no longer be done by hand. Since Modelica is an
acausal language, Dymola can perform automated sorting and tearing. An example
Rad3 implementation in pseudo—Modelica code is shown in Listing 5.1. As an ex-
ample, the implementation of ODE set A inlined with Rad5 used can be found in
Appendix B. The Modelica implementations are similar for the various algorithms.

After inlining Dymola can then just loop over the model equations to find a solution.

60

LisTING 5.1. Inlining Rad3 in pseudo-Modelica

model inlinerad3
parameter Real <parameters: tol, initial step size>
constant Real <Time instants>
constant Real <Radau IIA(3) coefficients>
constant Real <Step size control coefficients >

//variable for states and state derivatives
Real <stagel variables with initial conditions>
Real <stage2 variables with initial conditions>
Real <variable history>
algorithm
when time >= pre(NextSampling) then
compute stagel state derivatives
end when;
when time >= pre(NextSampling2) then
compute stage2 state derivatives
compute stagel states
compute stage2 states
compute error , new step size
store state history
end when;
end inlinerad3;

61

100

0 0.2 0.4 0.6 0.8 1

FI1GURE 5.7. ODE set E y3 solution

5.2 Simulation Results

Shown in Figures 5.9-5.14 are the simulation results for ODE set A. Each of the
various algorithms with associated error estimate have been inlined with this ODE set.
For this set, the Radau algorithms reach a step size of about 8 x 10~* before constantly
changing. One drawback to this implementation is that rejected steps are not repeated
but propagated to the next step as the integration continues. Despite having data
with a large error propagated, the Rad3 algorithm is able to continue. For the Lobatto
family, the solutions are not correct when compared with the accurately computed
solution of Figure 5.1 but the error estimate stays fixed and the step size remains
small. The solution with the original embedding method of HW-SDIRK determines
a step size of about 8 x 10~* and stays unchanged until the end of the simulation. Using

the alternate embedding method causes a slightly larger step size, on average, of 8.7 x

62

F1GURE 5.8. ODE set E y, solution

10~ to be selected. The alternate error method allows more aggressive step sizes to be
chosen but in this implementation has a hard time keeping the error near the specified
tolerance. The errors in the resulting trajectory of yg are apparent when comparing
Figure 5.14 with that of the accurately computed solution shown in Figure 5.1. The
CPU-time needed using an Intel Pentium-M! processor running at 1.8 GHz and
the total number of steps computed for the various algorithms are summarized in
Table 5.1. The data given for ode15s is only for reference and cannot be used for
direct comparison. One difference is that the implicit Runge-Kutta algorithms are
single-step methods while ode15s is a multi—step method. Another difference is that
odel5s offers a mature and optimized implementation while additional development
and optimization needs to be performed on the still immature implementation of

IRKs and associated error methods presented.

Lwith SpeedStep disabled

63

The solutions for ODE set B for the various algorithms are shown in Figures 5.15—
5.20. Again the trajectories produced by the Lobatto family are incorrect. Both error
estimates for the Radau solutions stay near the specified tolerance of 10~° and the step
size shrinks before the error grows too large. Rad3 completes the simulation using
13,737 steps while Radb needs 35,811 steps. Using the included embedding method
of HW-SDIRK, one of the trajectories is oscillating even though the estimated error
stays around 1073 after the initial spike. This could suggest that the explicit method
is not stable when solving this problem. The errors produced by HW-SDIRK with
the alternate error estimate are similar to those produced by the Radau algorithms
in that these three algorithms keep the error near the specified tolerance of 1073.
With the alternate embedding method the step size for HW-SDIRK is chosen more
appropriately.

ODE set C solutions are shown in Figures 5.21-5.26. Yet again the trajectories
produced by the Lobatto algorithms are incorrect. Both Radau solutions run into
a bit of trouble as the step size grows too large. The problem is caused by the
restriction that the step size not change too dramatically. By the time the step size
drops sufficiently, too many steps have occurred and the data being propagated during
the subsequent steps is completely incorrect such that a different problem is now being
solved. HW-SDIRK with the included embedding method has similar problems but
is able to recover without completely changing the trajectories. For this ODE set,
HWSDIRK with the alternate error method is the winner when looking only at the
solution trajectories. Evidently, the error estimate became equal in magnitude to the
specified tolerance, so the step size remained small and unchanged for a longer period
than in the other algorithms.

Interesting results, shown in Figures 5.27-5.32, are produced for ODE set D. When
inlined with Rad3, the errors cause the step size to shrink but in this implementation
Rad3 and the error estimate cannot recover from bad data being propagated. The

errors become so bad that the integration terminates itself. On the other hand, Radb

64

is able to solve this system while the estimated error changes wildly between 10~* and
1075, The Rad5 algorithm tries to keep the step size around 5 x 10~%. Surprisingly,
without working for any of the other test problems, the Lobatto algorithms are able
to solve this problem. Perhaps this is only because there is little change, in this case
less than £0.2, from the initial value to the final values of y; and y,. Both Lobatto
algorithms try to keep the step size around 6.4 x 10~

As noted in [17], this problem is badly scaled, so the trajectories are plotted
individually and shown in Figures 5.33-5.44. Inlining doesn’t seem to mind this
ill-posed problem and even for tol = 107% the resulting trajectories still resemble
the accurately computed trajectories of Figures 5.5-5.8. The relative magnitudes for
each of the solutions are |y;| < 1078, |yo| < 3 x 1077, |y3] < 2 x 1072, |y4| < 1073,
Again, the Lobatto algorithms incorrectly compute the trajectories, but this time
HW-SDIRK with the alternate error method allows for a step size larger than that of
Rad) as seen in Figures 5.35 and 5.44. Even though a bigger step was taken, Radb
completes this problem using 933 steps whereas HW-SDIRK and the alternate error
method needs 9,514 steps. For improved trajectory results, the specified tolerance
could be increased to at least 1072, one order of magnitude smaller than the smallest
component, and rejected integration steps must not be propagated to the next step.
In this test case, it is also evident that limiting the step size to h/2 causes problems

since the integration algorithms cannot keep up with the dynamics of the system.

TABLE 5.1. Cost Summary

65

ODE set Algorithm CPU Time (sec) | Total Steps
odelb5s 0.04 86
Rad3 1.29 30110
Radb 4.68 63250
A Lob4 4.43 55970
Lob6 8.62 68034
HW-SDIRK 5.03 25354
HW-SDIRK w/alt. error 5 22893
odelb5s 0.12 346
Rad3 0.551 13737
Radb 2.32 35811
B Lob4 12 175817
Lob6 6.78 77156
HW-SDIRK 0.24 1104
HW-SDIRK w/alt. error 48.6 396890
odelb5s 0.04 124
Rad3 1.84 45264
Radb 0.751 11350
C Lob4 2.08 30441
Lob6 6.25 68364
HW-SDIRK 0.16 627
HW-SDIRK w/alt. error 8.09 73311
odelb5s 0.04 24
Rad3 0.2 1861
Radb 2.05 30501
D Lob4 0.981 15910
Lob6 1.58 16818
HW-SDIRK 3.37 32252
HW-SDIRK w/alt. error 9.85 93748
odelb5s 0.05 66
Rad3 0.08 665
Radb 0.15 933
E Lob4 0.341 3051
Lob6 0.701 6102
HW-SDIRK 0.17 442
HW-SDIRK w/alt. error 1.11 9514

> 0.5

[N
o

|
I

Estimated Error
H
\ o

[N
o

|
oo

-
o
o

5 10 15 20

Step Size

‘h ':Ol0006642'4 """""""
avg L I I

5 10 15 20

FIGURE 5.9. ODE set A inlined with Rad3

66

> 0.5

Estimated Error

Step Size

(SN
o

|
(&)

5 10 15

h=0.0003L62L -
avg i

5 10 15

FIGURE 5.10. ODE set A inlined with Radb

20

67

> 0.5

|
w

Estimated Error
H
o

Step Size
|_\
o

FIGURE 5.11.

10 15

ODE set A inlined with Lob4

20

68

> 0.5

Estimated Error

Step Size
H
o

FIGURE 5.12. ODE set A inlined with Lob6

69

> 0.5

=
oI
&)

Estimated Error
= =
o o

|
N
o

=Y
o

=
o|
N

Step Size
H
o

-4

10

|
=
o

|
=
(53]

L.e. . =1.1297e-005 R } } } } o
avg

e ~0.00078883
0 5 10 15 20

FIGURE 5.13. ODE set A inlined with HW-SDIRK

70

71

0.9
0.8
0.7 | ‘
061/ T
>05f

HEEEE

Estimated Error

Step Size

-6 av

0 5 10 15 20

FIGURE 5.14. ODE set A inlined with HW-SDIRK and alternate error method

Estimated Error

Step Size

0.014
0.012

0.01
0.008

0.006
0.004 |

0.002

FIGURE 5.15. ODE set B inlined with Rad3

72

Estimated Error

1ze

Step S

0.01
0.009
0.008
0.007 |

0.006
0.005|
0.004

0.003
0.002
0.001

FIGURE 5.16. ODE set B inlined with Radb

73

Estimated Error

Step Size

-8

10

FIGURE 5.17.

ODE set B inlined with Lob4

74

Estimated Error

Step Size

10

_10 L

_15 L

=20

10

10

10

10

10

10

10

10

FIGURE 5.18.

ODE set B inlined with Lob6

75

76

Estimated Error

-4

10

€ v fo.012522
0 1 2 3 4 5 6

0.014 ! ! ! ! !
0.012
0.01
0.008
0.006 f il
0.004
0.002
0

10

Step Size

h_ =0.0054353
avg | i
0 1 2 3 4 5 6

FIGURE 5.19. ODE set B inlined with HW-SDIRK

77

10 ! ! ! ! !

107 f

Estimated Error
H
o

O 2f vt

10_ 1 1 1 1 1

10 :

10 "} §

Step Size

10° '
0 1 2 3 4 5 6

FIGURE 5.20. ODE set B inlined with HW-SDIRK and alternate error method

0.8

> 0.6

0.4y

0.2}

Estimated Error

Step Size
o
H

FIGURE 5.21.

ODE set C inlined with Rad3

78

> 0.6

Estimated Error

Step Size

0.8

0.4y

0.2}

1072

10

10

0.16
0.14
0.12

0.1
0.08
0.06
0.04
0.02

FIGURE 5.22.

ODE set C inlined with Radb

79

0.8

> 0.6F

04y

0.2}

Estimated Error

10

0.01

0.009
0.008 |
0.007 |
0.006 |
0.005|
0.004 |r
0.003

1ze

Step S

0.002
0.001

2

FIGURE 5.23.

4 6 8

ODE set C inlined with Lob4

10

80

81

1f i
0.8 i
> 0.6 .
0.4} R
0.2}
0 1 1 1 1
0 2 4 6 8 10
10°
5
i
] —
2 10"
©
E
S
0
0 2 4 6 8 10
0.01 f f f f
0.000F s
0.008F o
LO007F
Soooer
2 Q005F
L0004
0.003F
00021+
0.00L ff v
0
0 2 4 6 8 10

FIGURE 5.24. ODE set C inlined with Lob6

0.8

> 0.6

0.4y

0.2}

Estimated Error

Step Size

FIGURE 5.25.

ODE set C inlined with HW-SDIRK

82

83

0.8

> 0.6

0.4y

0.2}

1072

Estimated Error

10

10

8 10
8 10

0.18
0.16
0.14
0.12

0.1r
0.08
0.06
0.04
0.02

Step Size

0
0

FIGURE 5.26. ODE set C inlined with HW-SDIRK and alternate error method

Estimated Error

Step Size

1.

0.
0.
0.
0.

2

8
6
4
2

40

10

20

10

[N
o

(SN
o

=
oI

|
(&)

(2]

84

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0.2 0.4 0.6 0.8 1 1.2 14

o

FIGURE 5.27. ODE set D inlined with Rad3

Estimated Error

Step Size

o o
N D
T T

15

=
oI
w

10

-4

avi

€ g =2.0802e-005 -

h =0.00049179
avg

0

5 10

FIGURE 5.28. ODE set D inlined with Rad5

15

85

Estimated Error

Step Size

[N
o

10

15

|
w

-4

avi

€ g =2.3137e-005 -

h =0.0006285

avg 1 1

0

5 10

FIGURE 5.29. ODE set D inlined with Lob4

15

86

Estimated Error

Step Size

o o
N D
T T

1 1

h =0.00066893
avg

10°

0 5 10 15

FIGURE 5.30. ODE set D inlined with Lob6

Estimated Error

Step Size

4 - 4
2 - 4
0 1 1
0 5 10 15
0
-5
-10| i
-15| |
-20 i i
0 5 10 15
-33 |
-3.4 |
-35] |
0 5 10 15

FIGURE 5.31.

ODE set D inlined with HW-SDIRK

Estimated Error

Step Size

10°
10_6 1 1
0 5 10 15
10—3.6 | |
10—3.7 | |
- M
10 38 - X |
0 5 10 15

89

FIGURE 5.32. ODE set D inlined with HW-SDIRK and alternate error method

y 1*10_8

y2*10_7

y3*10_6

90

1.5

0.5

0.6

0.8

0.2 0.4

0.6

0.2 0.4

FIGURE 5.33. ODE set E inlined with Rad3

0.6

0.8

91

15
1
0.5

4
¢ 0T« A

-0.5

10113 parewnsy

0.06

0.05f

1
o™
o

0.01f

< N
S 9 o9
o o o
9zIs daig

0.4

0.2

FIGURE 5.34. cont) ODE set E inlined with Rad3

y 1*10_8

y2*10_7

y3*10_6

92

1.5

0.5

0.8

0.2 0.4 0.6

0.8

v

0.2 0.4 0.6

FIGURE 5.35. ODE set E inlined with Rad5

Estimated Error y 4*10_3

Step Size

93

0 1 1 1 1
0 0.2 0.4 0.6 0.8 1

FIGURE 5.36. cont) ODE set E inlined with Radb

y 1*10_8

y2*10_7

y3*10_6

0.2 0.4 0.6 0.8

FIGURE 5.37. ODE set E inlined with Lob4

94

Estimated Error y 4*10_3

Step Size

95

0 0.2

0.4 0.6 0.8

0 0.2

FIGURE 5.38.

0.4 0.6 0.8

cont) ODE set E inlined with Lob4

y 1*10_8

y2*10_7

y3*10_6

0.2 0.4 0.6 0.8

FIGURE 5.39. ODE set E inlined with Lob6

96

y 4*10_3
o
(6)]

97

Estimated Error
|_\
o

0 0.2

0.4

0.6

0.8

Step Size

0 0.2

FIGURE 5.40.

0.4

cont) ODE set E inlined with Lob6

0.6

0.8

y 1*10_8

y2*10_7

y3*10_6

98

0 0.2 0.4 0.6 0.8

FIGURE 5.41. ODE set E inlined with HW-SDIRK

y 4*10_3

Estimated Error

=
o
T

Step Size

15

0.5

|
=
o

=
o
T

=
o

(SN
o

[N
o

(SN
o

I
=
ul

o

=
oI

10

N

EN

o

-8

|
[
o

o

0.2

0.4

0.6

0.8 1

0

0.2

0.4

0.6

0.8 1

FIGURE 5.42. cont) ODE set E inlined with HW-SDIRK

99

100

y 1*10_8

y2*10_7
H

0.5

0.2 0.4 0.6 0.8

y3*10_6
O N O

| ——

_6 1 I I I

0 0.2 0.4 0.6 0.8

FIGURE 5.43. ODE set E inlined with HW-SDIRK and alternate error method

101

2 T T T T
15 1
1 .
b
S 05 :
< .
>
0 —f
-05f |
_1 1 1 1 1
0 0.2 0.4 0.6 0.8 1
10” : : : :
S
L
]
(]
5
£
7
(1]
(O]
N
n
o
3
n

0 0.2 0.4 0.6 0.8 1

FIGURE 5.44. cont) ODE set E inlined with HW-SDIRK and alternate error method

102

Chapter 6

CONCLUSIONS

Two new error methods that can be used for step size control of HW-SDIRK and
Lobatto IIIC(6) have been presented. Both methods have good damping and stability
properties and are well suited for use when solving stiff systems. The Lobatto ITIC
family seems to produce dubious results but both algorithms and associated error
methods perform consistently with each other.

Together with inlining, implicit Runge-Kutta algorithms can be implemented with
relative ease. Symbolic manipulations further add to the efficiency as tearing can be
used to reduce the number of iteration variables. The problem of step size control with
implicit Runge-Kutta algorithms is effectively solved by using data from a previous
step. With embedding methods the computational load of the error estimate is now
shared with the main integration algorithm. The biggest advantage with step size
control and implicit Runge-Kutta algorithms is that with larger step sizes fewer
integration steps are necessary. Thus, fewer iterations will be performed and the
overall computational cost will be reduced.

The Radau ITA family performs well and has good resistance to bad initial (or
propagated) data from taking too large of a step. The Lobatto IIIC family seems to
produce correct results only for ODE set D, so evidently this family may not lead to
a good general purpose stiff system solver.

A different step size control algorithm, such as a predictive control [23], may
also be used to improve step size selection. Depending on the application this may
further avoid the occurrence of rejected steps. The restriction to limit the step sizes
from drastically changing is not needed since implicit Runge-Kutta algorithms are

single-step algorithms. This was seen in the results for ODE set C and E as the

103

integration algorithms could not keep up with the dynamics of the systems being
solved. By allowing the step size to drastically change, the Radau ITA algorithms
may be suitable for use in real-time applications. In this application, much like the
in the numerical experiments performed, there isn’t time to reject and recompute a

step.

104

Appendix A

TEST PROBLEMS

In this section are the 5 test problems selected from [12] with considerations from
[17]. The complete set of 25 test problems were separated into five different classes
and have been widely used to test the performance of stiff system solvers. The initial

step sizes for each of the problems are given by hy.

A.1 Class A — Linear with real eigenvalues

(A2; circuit theory)

Yy, = —1800y; + 900y, y1(0) =0 (A1)

Yi = Yio1 — 2Yi + Yin yi(0) =0 1=2...8 (A.2)

yh = 1000ys — 200059 + 1000 Y9(0) =0 (A.3)
ho="5x 107"

A.2 Class B — Linear with non-real eigenvalues

(B1)
Y=~y + 9 y1(0) =1 (A4)
yh = —100y; — vo y2(0) =0 (A.5)
ys = —100ys + y4 y3(0) =1 (A.6)
vy = —10000y3 — 100y, v4(0) =0 (A7)

hog=7x 1073

A.3 Class C — Non-linear coupling

(C1)
Y= =y + Y5+ Y5+ y1(0) =1
yh = =10y, + 10(y2 + 2) y2(0) =1
ys = —40ys + 40y3 ys(0) = 1
Yy = —100y, + 2 ya(0) =1
ho = 1072

A.4 Class D — Non-linear with real eigenvalues

(D4; chemistry)

y1 = —0.013y; — 1000y, y3 y1(0) =1

Yo = —2500y2y3 12(0) =1

y5 = +0.013y; — 1000y1y3 — 2500y2y3 y3(0) =0
ho=2.9 x 107*

A.5 Class E — Non-linear with non-real eigenvalues

(E1; control theory)

Y1 =92 yl(o)
Ys = Y3 y2(0)
Ys = Ya yg(O)
/ 2 : 4 Ya2Y3 3
= — sin — K + — 4K
s = (ui (y1)) v <y% 1)yz
+ (1= 6K?)y; + (10e ™% — 4K)y, + 1 y4(0)

ho = 6.8 x 1073 K =100

105

(A.12)
(A.13)
(A.14)

(A.15)
(A.16)
(A.17)

(A.18)

106

Appendix B
SAMPLE IMPLEMENTATION

Shown in the following listing is a Modelica implementation of ODE set A inlined
with Radau ITA(5) together with the embedding method. This is the same model
that was used for simulation. Although Modelica supports arrays, an implementation
using arrays doesn’t behave as expected in version 5.0 of Dymola.

LisTiNG B.1. ODE set A inlined with Rad5 in Modelica

model odeArad5b
parameter Real tol=1.0e—5 " Tolerated error”
parameter Real h0=5.0e—4 " Initial step size”;
constant Real til = (4 — sqrt(6))/10 ”"Time instant 17;
constant Real ti2 = (4 + sqrt(6))/10 ”"Time instant 27;
constant Real ti3 = 1 "Time instant 37;

//Butcher tableau A-matriz coefficients
constant Real all = (88 — Txsqrt(6))/360;

constant Real al2 = (296 — 169%sqrt(6))/1800;
constant Real al3 = (=2 + 3xsqrt(6))/225;
constant Real a2l = (296 + 169xsqrt (6))/1800;
constant Real a22 = (88 + Txsqrt(6))/360;
constant Real a23 = (=2 — 3xsqrt(6))/225;
constant Real a3l = (16 — sqrt(6))/36;
constant Real a32 = (16 + sqrt(6))/36;
constant Real a33 = 1/9;

//Rad5 error method error coefficients
constant Real ¢l = —0.00517140382204;
constant Real ¢2 = —0.00094714677404;

constant Real ¢3
constant Real c4
constant Real c¢b

—0.04060469717694;
—0.01364429384901;
+1.41786808325433;

constant Real ¢c6 = —0.17475783086782;
constant Real ¢7 = +0.48299282769491;
constant Real ¢8 = —0.19733415138754;

constant Real c9 = +0.55942205973218;

constant Real ¢l10 = 4+0.10695524944855;

//State variables with initial conditions

Real
Real
Real
Real
Real
Real
Real
Real

Real y62
Real y72(start =0
Real y82(start =0

start =0);

y1(

y2(=0);
y3(start=0);
yd(start=0);
y5(start=0);
y6 (start=0);
y7(start=0);
y8(start=0);
Real y9(start—»)
Real yl12(start=0

Real y22(start =0
Real y32(start =0
Real y42(start =0

);

()

()

()

Real yb52(start=0);
()

()

()

)

start =0

Y

I

I

I

I

I

I

I

Y

Y

Y

I

Y

Y

Real y92(start=0

output
output
output
output
output
output
output
output
output

Real y73e
Real y83e
Real y93e

Real
Real
Real
Real
Real
Real
Real
Real
Real

start =0
start =0
start =0

start =0
start =0
start =0

)
)
)
)
start =0);
)
)
)
)

y13
y23
y33

y43(start =0

(
(
(
(
yb3(start =0
(
(
(
(

y63

y83

)
)
)

)

)
)
)

)

Real yldot(start=0);

start =0
start =0
start =0

start =0
y73(start =0
start =0
y93 (start =0
Real yl3e(start=0
Real y23e(
Real y33e(
Real y43e(
Real yb53e(
Real y63e(start=0
(
(
(

)i
)i
)i
)i
)i
)i
)i
)i
)

Y

107

Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real

y2dot (start =0
y3dot(start =0
yddot (start =0
ybdot (start =0
y6dot (start =0
y7dot (start =0
y8dot (start=0);
y9dot (start=0);
yl2dot(start =0)
y22dot (start=0)
y32dot (start =0)
y42dot (start =0)
yh2dot (start=0)
y62dot (start =0)
y72dot (start =0)
y82dot (start =0)
y92dot (start=0);
yl3dot(start=0)
()
()
()
()
()
()
()
()

)i
)i
)i
)i
)i
)i
)i
)i

y23dot(start=0
y33dot(start =0
y43dot (start =0
yb3dot (start =0
y63dot (start =0
y73dot (start =0
y83dot(start =0
y93dot(start =0

//State history with

Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real

ylold (start=0);
y2old (start =0
y3old (start =0
y4dold (start=0);

()
()
()
yhold (start =0);

()
()
()

)

)

)

y6old (start =0
y7old (start =0
y8old (start =0
y9old (start =0
y1l2old (start=0)
y22old (start=0);
y32old (start=0);
y42old (start =0)

)
)
)
)

9

Y

initial

conditions

108

Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real

Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real

Real
Real
Real
Real
Real
Real
Real

9

y52o0ld
y620ld
y72o0ld
y82o0ld
y920ld

(start =0)
(start =0)
(start =0)
(start=0)
(start=0)
y13old (start=0)
y23old (start=0);
y33old (start=0);
(0)
(0)
(0)
(0)
(0)
(0)

9

9

Y

Y

9

y43old (start =
y53old (start =
y63old (start =
y73old (start =
y83old (start =
y93old (start =

Y

Y

Y

Y

I

Y

y120ld2
y2201d2
y320ld2
y420ld2
y520l1d2
y6201d2
y720ld2 (start =
y820ld2 (start =

yv920ld2 (start =0);

(start=0)
(0)
(0)
(0)
(0)
(0)
(0)
(0)
(0)
y130ld2 (start =0);
(0)
(0)
(0)
(0)
(0)
(0)
(0)
(0)

start =
start =
start =
start =
start =

Y

9

9

Y

Y

Y

9

9

y230ld2 (start =
y330ld2 (start =
y430ld2 (start =
yH3o0ld2 (start =
y630ld2 (start =
y730ld2 (start =
y83o0ld2 (start =
y930ld2 (start =

Y

9

9

9

Y

Y

Y

9

yldotold (start =0)
y2dotold (start =0)
y3dotold (start =0);
y4dotold (start =0);
(0)
(0)
(0)

)

I

yHdotold (start =
y6dotold (start =
y7dotold (start =

)

I

I

109

110

Real y8dotold(start=0);
Real y9dotold(start=0);
Real yl2dotold(start=
Real y22dotold(start=
Real y32dotold(start=
Real y42dotold(start=

9
Y

Y

0)
(0)
(0)
(0)’
Real yb52dotold(start=0);
Real y62dotold(start=0)
(0)
(0)
(0)

I

Real y72dotold(start=
Real y82dotold(start=
Real y92dotold(start =

Y

Y

Y

Real yldotold2(start=0)
Real y2dotold2(start=0)
Real y3dotold2(start=0)
Real y4dotold2(start=0);
Real ybdotold2(start=0);
(0)

(0)

(0)

0)

9
Y

Y

Real y6dotold2(start=
Real y7dotold2(start=
Real y8dotold2(start=
Real y9dotold2(start =
Real yl2dotold2(start=
Real y22dotold2(start=
Real y32dotold2(start=
Real y42dotold2(start=

I

Y

Y

Y

9
9

9

0)
(0)
(0)
(0)7
Real yb52dotold2(start=0);
Real y62dotold2(start=0)
(0)
(0)
(0)

9

Real y72dotold2(start=
Real y82dotold2(start=
Real y92dotold2(start=

9

9

Y

output Real e(start=0);

output Real er(start=0);

output Real h(start=h0);

Integer count(start=0);

discrete Real NextSampling(start=til=h0);

discrete Real NextSampling2(start=ti2xh0);

discrete Real NextSampling3 (start=ti3h0)
algorithm

//Compute first stage state derivatives

when time >= pre(NextSampling) then

I

111

yldot := —1800%xyl + 900xy2;
y2dot = yl — 2xy2 v3;
y3dot = y2 — 2xy3 v4;
yddot = y3 — 2xy4 yo;
yodot =

y6dot := y5 — 2xy6 y7;

y7dot = y6 — 2xy7 yv8;

y8dot = y7 — 2xy8 v9;

y9dot := 1000xy8 — 2000xy9 + 1000;
end when;

|
|
+
vd — 2xy5 4+ yb6;
l
l
l
2

//Compute second stage state derivatives
when time >= pre(NextSampling2) then
yl2dot := —1800xy12 4+ 900xy22;

y22dot = yl12 — 2xy22 4 y32;
y32dot := y22 — 2xy32 4 y42;
y42dot = y32 — 2xy42 4+ yb2;
yb52dot = y42 — 2xyb2 + y62;
y62dot := ybH2 — 2xy62 + yT72;
y72dot = y62 — 2xy72 + y82;
y82dot = y72 — 2xy82 + y92;

y92dot := 1000xy82 — 2000xy92 + 1000;
end when;

//Compute last stage state derivatives and states for time+h
when time >= pre(NextSampling3) then
y13dot := —1800xy13 + 900xy23;

y23dot := yl13 — 2xy23 + y33;
y33dot := y23 — 2xy33 + y43;
y43dot := y33 — 2xy43 + ybH3;
y53dot := y43 — 2xyb3 + y63;
y63dot := ybH3 — 2xy63 + y73;
y73dot := y63 — 2xy73 + y83;
y83dot := y73 — 2xy83 + y93;

v93dot := 1000%xy83 — 2000%y93 + 1000;

//States

yl := yl3o0ld + allxhxyldot + al2xhxyl2dot + al3xhxyl3dot;
y2 = y23o0ld + allxhxy2dot + al2xhxy22dot + al3xhxy23dot;
y3 = y33o0ld + allxhxy3dot 4+ al2xhxy32dot + al3xhxy33dot;
y4 = y430ld + allxhxy4dot + al2xhxy42dot + al3xhxy43dot;

yb = ybH3old
y6 = y63o0ld
y7 = y730ld
y8 = y83old
y9 = y930ld
y12 = yl3old
y22 = y23o0ld
y32 = y33o0ld
y42 = y43o0ld
yb2 = ybd3old
y62 = y63o0ld
y72 = y73o0ld
y82 := y8&83old
y92 = y93o0ld
y13 = yl3old
y23 = y23o0ld
y33 = y33o0ld
y43 = y43old
yb3 = ybd3old
y63 = y63o0ld
y73 = y73o0ld
y83 := y&83old
y93 = y93o0ld

+

e i

++ 4+t

//Compute error
clxyl3o0ld2 + c2xhxyldotold2 + c3xyl20ld2 +
cdxhxyl2dotold2 + chxyl3old + c6xylold +
c7xhxyldotold 4+ ¢8xyl120ld 4+ c¢9xhxyl2dotold +
c10xhxyl3dot;
clxy230ld2 4+ c2xhxy2dotold2 + c3xy220ld2 +
cdxhxy22dotold2 + chxy230ld + c6xy2o0ld +
c7xhxy2dotold + ¢8xy220ld 4+ c9xhxy22dotold +
c10xhxy23dot;
clxy330ld2 4+ c2xhxy3dotold2 + c3xy320ld2 +
cdxhxy32dotold2 + c¢bxy330ld + cb6xy3old +
c7xhxy3dotold + ¢8xy320ld + c9xhxy32dotold +
c10xh*xy33dot ;
clxy430ld2 4+ c2xhxy4ddotold2 + c3xy420ld2 +
cdxhxyd2dotold2 + cbxyd3old + c6xydold +

y13e

y23e :

y33e :

y43e :

allxh*xybdot
allxh*xy6dot
allxh*xy7dot
allxhxy8dot
allxhxy9dot

a2lxhxyldot
a2lxhxy2dot
a2lxhxy3dot
a2lxhxy4ddot
a2lxhxybdot
a2lxhxy6dot
a2lxhxy7dot
a2lxhxy8dot
a2lxh*xy9dot

a3lxhxyldot
a3lxhxy2dot
a3lxhxy3dot
ad3lxhxy4ddot
a3lxhxybdot
a3lxhxy6dot
ad3lxhxy7dot
a3lxhxy8dot
a3lxh*xy9dot

estimate

+

R i

R i

al2xhxyb2dot
al2xhxy62dot
al2xhxy72dot
al2xhxy82dot
al2xhxy92dot

a22xh*xyl2dot
a22xh*xy22dot
a22xhxy32dot
a22xhxy42dot
a22xhxyb2dot
a22xhxy62dot
a22xhxy72dot
a22xhxy82dot
a22xhxy92dot

a32xh*xyl2dot
a32xh*xy22dot
ad32xhxy32dot
ad2xhxy42dot
ad2xhxyb2dot
ad32xhxy62dot
ad32xhxy72dot
a32xhxy82dot
ad32xhxy92dot

+

R i

e e

112

al3xhxyb3dot ;
al3xhxy63dot ;
al3xhxy73dot ;
al3xhxy83dot;
al3xhxy93dot;

a23xh*xyl3dot ;
a23xh*xy23dot ;
a23xhxy33dot;
a23xhxy43dot;
a23xhxyb3dot;
a23xh*xy63dot ;
a23xh*xy73dot ;
a23xhxy83dot;
a23xhxy93dot;

a33xh*xyl3dot ;
a33xh*xy23dot ;
a33xhxy33dot;
ad33xhxy43dot;
a33xhxyb3dot;
a33xh*xy63dot ;
a33xh*xy73dot ;
a33xh*xy83dot ;
a33+xhxy93dot;

113

c7xhxyddotold + c¢8xy420ld 4+ c9xhxyd2dotold +
c10xh*xy43dot ;

yh3e := clxyH30ld2 + c2xhxybdotold2 + c¢3xy520ld2 +
cdxhxyb2dotold2 + c¢bxyb3old + cbxybold +
c7xhxybdotold 4+ ¢8xyb20ld + c9xhxyb2dotold +
c10xh*xy53dot ;

y63e = clxy630ld2 + c2xhxy6dotold2 + c¢3xy620ld2 +
cdxhxy62dotold2 4+ c¢bhxy630ld + cbxy6old +
c7xhxy6dotold 4+ ¢8xy620ld + c9xhxy62dotold +
c10xhxy63dot;

y73e = clxy730ld2 + c2xhxy7dotold2 + c3xy720ld2 +
cdxhxy72dotold2 + c¢bhxy730ld + cbxyTold +
c7xhxy7dotold + ¢8xy720ld + c9xhxy72dotold +
c10xhxy73dot;

y83e := clxy830ld2 + c2xhxy8dotold2 + c¢3xy820ld2 +
cdxhxy82dotold2 + c¢bxy830ld + cb6xy8old +
c7xhxy8dotold 4+ ¢8%xy820ld + c9xhxy82dotold +
c10xh*xy83dot ;

y93e = clxy930ld2 + c2xhxy9dotold2 + ¢3xy920ld2 +
cdxhxy92dotold2 + ¢bxy930ld + cb6xy9o0ld +
c7xhxy9dotold 4+ ¢8xy920ld + c9xhxy92dotold +
c10xh*xy93dot ;

e = sqrt((yl3e — y13)"2 + (y23e — y23)°2 + (y33e — y33)"2 +
(y43e — y43)"2 4+ (y53e — y53)"2 + (y63e — y63)°2 +
(y73e — y73)"2 4+ (y83e — y83)"2 + (y93e — y93)"2);

er := if e > tol/10 then e else tol/10;

//Keep step size constant for 2 steps

if count = 2 then
h := max(h/2, min(2xh, (tol/er) " (1/6)*h));
count = 1;

else
count := count + 1;

end if;

//Next integration time instants
NextSampling := time + hxtil;
NextSampling2 := time + hx*xti2;
NextSampling3 := time + hxti3;

114

//Remember state and state derivative history
y120ld2 := yl12o0ld;
y220ld2 := y22o0ld;
y320ld2 := y32o0ld;
y420ld2 := y42o0ld;
y520ld2 := yb2o0ld;
y620ld2 := y620ld;
y720ld2 := yT720ld;
y820ld2 := y82o0ld;
y9201d2 := y92o0ld;

y130ld2 := yl13o0ld;

y230ld2 := y23o0ld;
y330ld2 := y33o0ld;
y430ld2 := y43o0ld;
y530ld2 := y53o0ld;
y630ld2 := y630ld;
y730ld2 := y730ld;

y830ld2 := y&83o0ld;
y930ld2 := y930ld;

yldotold2 := yldotold;
y2dotold2 := y2dotold;
y3dotold2 := y3dotold;

y4dotold2 := y4dotold;
ybdotold2 := ybdotold;
y6dotold2 := y6dotold;
y7dotold2 := yT7dotold;
y8dotold2 := y8dotold;

y9dotold2 := y9dotold;

y12dotold2 := yl2dotold;
y22dotold2 := y22dotold;
y32dotold2 := y32dotold;
y42dotold2 := y42dotold;
y52dotold2 := yb52dotold;
y62dotold2 := y62dotold;
y72dotold2 := y72dotold;
y82dotold2 := y82dotold;
y92dotold2 := y92dotold;

115

ylold := yl1;
y2old := y2;
y3old := y3;
ydold := y4;
y5old := yb;
y6old := y6;
y7old = y7,;
y8old := y8;
y9old := y9;
y12o0ld = yl12;
y22o0ld = y22;
y320ld = y32;
y42o0ld = y42;
y52o0ld = yb2;
y620ld = y62;
y720ld = y72;
y820ld = y82;

y92o0ld := y92;

yl3old := y13;
y23o0ld := y23;
y33o0ld = y33;
y43o0ld = y43;
y53o0ld := yb3;
y63o0ld = y63;
y73o0ld = y73;
y83o0ld y83;
y930ld = y93;

yldotold := yldot;

y2dotold := y2dot;
y3dotold := y3dot;
y4dotold := y4dot;
ybdotold := ybdot;
y6dotold := y6dot;
y7dotold := yT7dot;

y8dotold := y8dot;
y9dotold := y9dot;

yl12dotold := yl2dot;

116

y22dotold := y22dot;

y32dotold := y32dot;
y42dotold := y42dot;
yH2dotold := y52dot;
y62dotold := y62dot;

y72dotold := y72dot;
y82dotold := y&82dot;
y92dotold := y92dot;

end when;

end odeArad5;

1]

[10]

[11]

[12]

[13]

117

REFERENCES

M. Minsky, “Models, Minds, Machines,” Proceedings IFIP Congress, pp. 45-49,
1965.

F. E. Cellier and E. Kofman, Continuous System Simulation, Springer, New
York, 2005. In preparation.

G. D. Byrne and A. C. Hindmarsh, “Stiff ODE Solvers: A Review of Current
and Coming Attractions,” J. Comput. Phys. 70, pp. 1-62, 1987.

L. F. Shampine, “Measuring Stiffness,” Appl. Numer. Math. 1, pp. 107-119,
1985.

F. E. Cellier, Continuous System Modeling, Springer, New York. 1991.

J. C. Butcher, The Numerical Analysis of Ordinary Differential Equations:
RungeKutta and General Linear Methods. John Wiley, Chichester, United King-
dom, 1987.

H. Elmqvist, M. Otter, and F. E. Cellier, “Inline Integration: A New Mixed Sym-
bolic/Numeric Approach for solving Differential-Algebraic Equation Systems,”
Proc. SCS European Simulation Multiconference, pp. xxiii—xxxiv, Prague, Czech
Republic, 1995.

H. Elmqvist and M. Otter, “Methods for Tearing Systems of Equations in
Object—Oriented Modeling,” Proc. SCS European Simulation Multiconference,
pp- 326-332, Barcelona, Spain, 1994

C. W. Gear, “Simultaneous Numerical Solution of Differential-Algerbraic Equa-
tions,” IEEE Trans. Circuit Theory, CT—18(1):89-95, 1971.

E. Hairer, S. P. Ngrsett, and G. Wanner, Solving Ordinary Differential Equations
I: Nonstiff Problems, Springer, Berlin, 2nd rev. ed., 2000.

E. Hairer and G. Wanner. Solving Ordinary Differential Equations II: Stiff and
Differential-Algebraic Problems, Springer, Berlin, 2nd rev. ed., 2002.

W. H. Enright, T. E. Hull, and B. Lindberg, “Comparing Numerical Methods
for Stiff Systems of ODEs,” BIT 15, pp. 10-48, 1975.

W. H. Enright, and T. E. Hull, “Comparing Numerical Methods for the Solu-
tion of Stiff Systems of ODEs Arising in Chemistry.” In: Numerical Methods for

[14]

[15]

118

Differential Systems, Recent Developments in Algorithms, Software and Appli-
cations, Ed. L. Lapidus and W. E. Schiesser, New York: Academic Press, pp.
45-66, 1976.

T. E. Hull, W. H. Enright, B. M. Fellen, and A. E. Sedgwick, “Comparing
Numerical Methods for Ordinary Differential Equations,” SIAM J. Numer. Anal.
9, pp. 603-637, 1972.

T. E. Hull, W. H. Enright, B. M. Fellen, and A. E. Sedgwick, “Erratum to
‘Comparing Numerical Methods for Ordinary Differential Equations’,” SIAM J.
Numer. Anal. 11, pp. 681, 1974.

L. F. Shampine, “Ill-Conditioned Matrices and the Integration of Stiff ODEs,”
J. Comput. Appl. Math. 48, pp. 279-292, 1993.

L. F. Shampine, “Evaluation of a Test Set for Stiff ODE Solvers,” ACM T. Math.
Software 7, pp. 409-420, 1981.

L. F. Shampine and M. W. Reichelt, “The MATLAB ODE Suite,” SIAM Journal
on Scientific Computing 18, pp 1-22, 1997.

L. Lapidus and J. H. Seinfeld, Numerical Solution of Ordinary Differential Equa-
tions, Academic Press; New York, 1971.

W. L. Miranker, Numerical Methods for Stiff Equations and Singular Perturba-
tion Problems, D. Reidel Publishing, Holland, 1981.

Modelica Association,Modelica — A Unified Object-Oriented Language for Phys-
ical Systems Modeling, Language Specification, Modelica Association, 2002.

Dynasim AB,Dymola — Dynamic Modeling Laboratory, Users Manual, Dynasim
AB, 2002.

K. Gustafsson, “Control-Theoretic Techniques for Selection in Implicit Runge-
Kutta,” ACM T. Math. Software 20, pp. 496-517, 1994.

