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ABSTRACT

This thesis describes the design and implementation of an extended

knowledge-based modeling and simulation environment, in which the management

of continuous-time models in DEVS-SCHEME is realized to meet the requirements

of the modeling and simulation of a robot-managed laboratory aboard the forth-

coming Space Station Freedom.

The modular hierarchical modeling scheme is preserved in the continuous

models by using DYMOLA, a continuous modeling language, as a bridge between

the abstracted DEVS models and the continuous simulation language code (in DE-

SIRE). Through operations on the System Entity Structure (SES), a knowledge

representation scheme, models at different granularity levels can be generated.

Time-windows can be obtained by manipulating a pruned SES. These time

windows can be used to automatically generate a discrete-event model which, at a

coarser granularity, exhibits a behavior equivalent to the original continuous-time

model.

Therefore, an event-based intelligent control strategy can be realized in

this knowledge-based multi-facetted modeling environment. Continuous-time and

discrete-event modeling and simulation can be merged with AI techniques.
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CHAPTER 1

INTRODUCTION

With the rapid advance of Space technology, a variety of scientific experi-

ments have been carried on in Space to overcome limitations of processes conducted

on Earth. The experiments performed during Space Shuttle missions in the past

were largely "canned experiments" , in that scientists on the ground had little con-

trol over the progress of their experiments. The forthcoming Space Station Free-

dom (SSF) is different from the Space Shuttle in this respect, because the SSF is

a multiple purpose user facility with a planned life-time of greater than 20 years.

Space-based laboratories or other facilities on the SSF require that many of the

functions be performed by intelligent robots, since man-power is limited and very

expensive. Astronauts in Space are very valuable resources, who should be used to

the best advantage. Automation and robots will enable the astronauts to function

more productively in Space by freeing them from tedious, repetitive chores so that

they can concentrate on congnitive tasks requiring humans.

Robots in today's market are primarily applied in the "heavier" manufac-

turing areas, such as automobiles and electric machinery, or in hazardous working

environments. The capabilities of these robots are limited by their prestored con-

trol strategies. They are not smart enough to act or react flexibly. One kind

of robot, called a teleoperator, operates in a tightly coupled mode with a human

operator. Such robots may have computers in their control loops to accomplish

remote control or to enable the human operator to sense the environment of the

robot. Theoretically, they are capable of running autonomously, but they are not
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designed to operate without a human in the control loop. On Earth, these systems

work well. However, for tasks aboard the SSF, the long communication time de-

lays (the SSF project managers talk about two seconds round-trip delay time, but

those numbers have not yet been confirmed) for the control signal to pass between

the human operator on Earth and the robot aboard the SSF will make the overall

system unstable.

In order to fulfil tasks in Space, a robot must know its surroundings, its

own duty, its limitations, etc., and must be able to communicate with other robots.

Thus, intelligent robots are coming to be needed to satisfy customers in Space. A

simulation environment capable of supporting the design of robot organizations for

managing laboratories aboard the SSF is under development in our Department

(Zeigler et al., 1988). The ultimate goals of the research are to employ a simulation

environment to develop robot cognitive system strategies for effective multi-robot

management of laboratory experiments. The research is based on a knowledge-based

simulation environment called DEVS-SCHEME (Zeigler, 1986; Kim 1988), which

combines discrete-event modeling and simulation with AI knowledge representa-

tion schemes. Robot models and laboratory environments are being constructed

on the basis of object-oriented and hierarchical models of robots and laboratory

components at multiple levels of abstraction.

To achieve greater autonomy, a robot must have knowledge about the world

around it. Using models is the main way to convey knowledge both in simulation

and in artificial intelligence techniques. A robot recognizes his environment also by

means of these models. Models are simplifications of reality. An important aspect

of modeling involves levels of detail, that is, granularity. The goal of modeling

drives the modeler to extract from the real system only those essential facts needed

to have the model be a valid basis for the decision making in question. This can
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easily be reflected by the traffic control field problem. One may study the problem

at three levels of detail:

"a) macroscopic models which are entirely continuous and in which the single ve-

hicle is not considered but only the traffic flow with accompanying densities

b) microscopic models which are entirely discrete with vehicles entering the con-

sidered system, traveling through it in discrete steps, e.g., from one corner

to the next with queuing situations in front of traffic lights, etc.

c) submicroscopic models (not often used in this context) which are continuous

with specific discontinuities describing the dynamic behavior of every single

vehicle (Cellier, 1976)"

It is shown from this example that different modeling and simulation techniques

can be selected for the same physical process. Even though several simulation

languages today, such as GASP-V, SYSMOD, ect., have the feature of combining

discrete-event models and continuous models, it is useful to search for a way that

helps in switching automatically from a model of one granularity to another model

of another granularity in order to meet the given objectives.

Research work done in this thesis focuses on the enhancement of DEVS-

SCHEME to the manipulation of continuous system models, by which the automatic

transformation of continuous models into equivalent discrete-event models can be

realized. An existing software CESS (Controlled Environment Simulation System)

is capable of managing continuous models in DEVS-SCHEME (Zhang, 1988; Kim et

al., 1988). However, CESS deals only with a special continuous simulation system,

TRNSYS, which is well suited for the analysis of energy systems. Now, a continuous

system modeling language DYMOLA (Elmqvist, 1979, 1981) has been selected as

an interface between discrete event simulation models and continuous simulation

languages. This approach is chosen mainly for two reasons: DEVS-SCHEME should
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be able to handle models of general purpose continuous simulation languages; on

the other hand, real modularity of continuous models is required for the hierarchical

modeling concept.

In DEVS-SCHEME, the continuous system models have now become sub-

classes of discrete event models. These models provide the knowledge level descrip-

tions of the continuous models and serve as pointers to corresponding continuous

models that are stored in a continuous system model base. The realization of mod-

ular and hierarchical modeling of continuous systems is captured by DYMOLA.

The real continuous simulation run takes place in either DESIRE or SIMNON,

two directly executing simulation languages. The DYMOLA preprocessor acts as

a program generator that can alternatively generate either DESIRE or SIMNON

programs. A knowledge representation scheme, the System Entity Structure (SES),

is employed for the organization of all the models at different levels of granularity.

The management of these models can be carried out by operations on SES. Simula-

tion trajectories will be produced to form the time information which can then be

automatically mapped to DEVS discrete-event models for future reference.

The following tasks have been done to achieve these objectives:

1. Migration of DYMOLA (originally coded in VAX PASCAL) from VAX/VMS

to PC (coded in TURBO PASCAL);

2. Enhancement of DYMOLA to generate DESIRE models; previous versions of

DYMOLA were able to generate SIMNON models only;

3. Enhancement of DYMOLA to generate DESIRE executable files;

4. Some minor enhancements of DYMOLA itself;

5. Creation of continuous classes in DEVSj

6. Defining methods, functions, and macros for the manipulation of continuous

models in DEVSj and
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7. Enhancement of the SES to manage continuous models.

The resulting enhanced implementation environment runs on IBM PC com-

patibles under MS-DOS. In Fig. 1.1, an SES visualizes the development of the re-

search work.

Hierarchical, modular specification of both discrete-event and continuous

models is very important in modeling and simulation. Chapter 2 is intended to pro-

vide some theoretical background on these concepts, and the differences between

discrete-event models and continuous models will be discussed there. To clarify the

software environment, brief introductions of DEVS-SCHEME, DYMOLA, and DE-

SIRE are given. In Chapter 3, the important role of DYMOLA in this research

will be explained, and its major proporties will be revealed. The two new classes

in DEVS-SCHEME, named "continuous-models" and "continuous-systems", are to

be presented in Chapter 4. The operations on SES, by which the management of

continuous models can be realized at different knowledge levels of granularity, are

described in detail in Chapter 5. The resulting knowledge-based modeling and simu-

lation environment, which encompasses the management of the continuous models,

will be presented there as well. Chapter 6 will illustrate the modeling and simula-

tion of a fluid-handling laboratory, which demonstrates how, in DEVS-SCHEME,

the SES is applied to manage continuous models of both discrete and continuous

descriptions, and simulation trajectories are produced to form the time information

needed by DEVS-SCHEME for further reference. In this case, the time-windows

are produced for event-based intelligent control (Appendix 5). The experimental

frame concept is also employed in this example. Chapter 7 concludes this thesis by

summarizing the results and suggesting future research topics.
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CHAPTER 2

THEORETICAL AND DESIGN CONSIDERATIONS

2.1 Modular Hierarchical Modeling

and Model Base Concepts

Modularity and hierarchy are important properties in software system de-

velopment. The same principles can be applied to model building processes.

Models may be developed as a set of independent modules. Each module

IS a single, well-defined component of the system. Such modules are said to be

in proper modular form if they are invariant to changes in their inputs. Their

interaction with the external world is through predefined input/output ports only.

If several models are in proper modular form, a new coupled model can be created

by specifying coupling relations between these models. The resulting coupled model

is always in the proper modular form as well, and it can therefore itself be employed

to construct yet larger models in the same manner. This property, called closure

under coupling, enables hierarchical construction of models (Zeigler, 1987, 1989-b).

The importance of modular hierarchical modeling lies in the re-usability of

its models. The re-usable models are stored in a model base. The models in the

model base represent knowledge of the dynamic behavior of the system under study.

New models can be saved in the model base, and saved models can be retrieved from

it. Modular hierarchical modeling greatly facilitates the modeling process (Zeigler,

1989-b, 1987; Oren 1984; Standridge 1986; Kim 1988).
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2.2 Experimental Frame

The experimental frame concept is a systematic approach to testing models.

It is a set of circumstances under which a model or real system is to be observed

and experimented with. The experimental frame specifies the input, output, control

variables, and constraints required by the experimentation (Zeigler, 1984; Rozenblit,

1985).

The modular construction of models ensures that any model in the model

base can be readily and independently tested by coupling an experimental frame

to it. The hierarchical construction of models enables such testing at each stage of

the hierarchy. This facilitates reliable and efficient verification of large simulation

models.

2.3 The System Entity Structure

With the existence of the model bases, effective techniques for organizing

and manipulating collections of component models are needed. The System Entity

Structure (SES) is a knowledge representation scheme that combines the decom-

position, taxonomic, and coupling relations of a system. SES provides the means

to organize and generate possible configurations of a system. It also directs the

synthesis of models in the model base (Zeigler, 1984, 1989-b).

The SES will be described further in Chapter 5.

2.4 Differences Between Discrete Event Systems

and Continuous Systems

Continuous system simulation requires a step-by-step generation of succes-

sive model states, while discrete event system simulation computes states only at

event times. For this reason, a discrete event model of a system can be simulated
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more efficiently than a continuous-time model of the same system (described by a

set of differential equations). However, the discrete event model is usually a more

aggregate representation of the system, and therefore, the trajectory behavior found

by simulating such a model is usually a more crude representation of the real sys-

tem's trajectory behavior than that found by simulating the continuous-time model.

Continuous models exchange information continuously, while discrete event

models only exchange information occasionally (at event times). Therefore message

passing is inefficient for continuous system simulation.

A system can be viewed differently according to the purpose of modeling.

For instance, to design a higher level controller for a system, a discrete event model

of this system will be more efficient; while in order to know when precisely the events

occur, the complete trajectory is needed, thus a continuous model is preferred.

Depending on the purpose of the simulation study, a continuous model or a

discrete model of the system may be better suited. In order to allow an easy tran-

sition between the two types of models, it is advantageous if both can be accessed

through the same mechanism. Therefore, it was decided to make continuous models

available within DEVS-Scheme.

However, simulation languages for continuous-time systems based on nu-

merical integration methods have become well established since the 1960's. Plenty

of research went into the design and development of such software systems. It seems

therefore to be a waste of time to reimplement a complete continuous system simu-

lation language in DEVS-Scheme unless such a reimplementation offers advantages

that cannot be obtained by utilizing tools that already exist.

DEVS-SCHEME supports the modular hierarchical modeling concept. It

requires a model with modular specification. Unlike in traditional simulation lan-

guages, a model in DEVS-SCHEME can be viewed as processing input and output
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ports, through which all, interaction with the environment is mediated. In the

discrete event case, events determine the values appearing on such ports. A sys-

tematic method to transform a non-modular discrete event model into a modular

one is provided by Zeigler (1984).

For continuous models, the situation is quite different. The differences be-

tween the continuous and the discrete event models will be discussed below. It will

also be shown that the current Continuous System Simulation Language (CSSL)

specification languages (Augustin, 1967) do not provide means for a modular spec-

ification of continuous models, as DEVS-SCHEME does for discrete event models.

Discrete event models are directed graphs of hierarchies; continuous models

are non-directed graphs of hierarchies. For example, Figure 2.1 and Figure 2.3 show

the same RLC network with different inputs. Figure 2.2 and Figure 2.4 show models

of this RLC network with these different inputs (Cellier, 1979). It is seen that,

because of the different environment (connected to a voltage source or a current

source), the input variable of the model must be changed (U1 or h) in order to

keep the differential equations in state-space form. As a result of this, the model

descriptions are varied. Consequently, by looking at a topological description of a

continuous model, connections between subsystems cannot be assigned directions.

In a block diagram representation, the direction of all paths is obviously

determined. Block diagrams are directed graphs. It is possible to generate a block

diagram representation for an electrical network. However, the required block di-

agram depends on the embedding of the subsystem, i.e. the same block diagram

cannot be used in the two cases shown above. Block diagrams do not preserve the

physical (topological) structure of the network. They are, in fact, only graphical

representation of the mathematical (computational) structure of the system.
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In present CSSL-type languages, the submodel concept is usually imple-

mented through the concept of a macro. Coupling of the two submodels is done

by use of formal parameters. Internal veriables of the macros are being renamed in

the macro replacement process to avoid naming conflicts. However, macros are not

truly modular for two reasons:

a) By using a macro, all parameter values must be passed onto higher and higher

hierarchical levels until the calling sequence becomes totally unmanageable.

The macro facility provides the ability to decompose the program structure

but not the data structure. Therefore, macros are not modular with respect

to the incorporation of their data structures.

b) From the example shown in Figures 2.1-2.4, it is clear that the same network

needs two different model descriptions for the two different environments.

Thus, macros are not truly modular with respect to the program structure

either.

It can therefore be concluded that macros are not modular (Cellier 1979, 1988).

In discrete event models, the coupling transmits the information among

submodels. In a physical system described usually by continuous models, the ter-

minal variables are either "across" variables, measured by placing a meter across

the terminals of the device, or "through" variables, measured by placing a meter

in series with the device so that the measured quantity is transmitted through the

meter. (The above definition is actually slightly simplified. For every network, there

exists an adjugate network in which the role of all across and through variables is

interchanged.) The coupling of continuous systems must obey physical laws. It is

not simply a matter of putting together the terminal ports of the elements when

their ports match. It seems to be a good idea to use a connection mechanism in
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the modeling environment that reflects the way how the physical system coupling

mechanism works.

In most CSSL-type languages, a modeler has to explicitly specify the phys-

icallaws to describe the coupling equations which relate variables of the individual

submodels to each other. This fact prevents models from being truly modular. A

clear separation between a model's internal description and its terminal coupling

description is paramount to any truly modular hierarchical modeling scheme.

There exist several graphical modeling software systems, such as EASE+

(Expert-EASE systems, Inc., 1988) EASY5 (Boeing Computer Services, 1988), and

SYSTEM-BUILD (Integrated Systems, Inc., 1985). In these systems, submodels

are maintained in a model library which is similar to a model base. Each of these

models is associated with an icon stored in an icon library. Selecting an icon will

invoke a submodel. Connections between submodels are done by drawing a line

between two terminals of. two icons. This is similar to the hierarchical modeling

idea. Nevertheless, most of these systems are based on the concept of block diagram

modeling. They do not provide for the representation of through variables. They

do not provide a hierarchical decomposition of data structures, either. The software

SPICE (MicroSim Corp., 1987) and its graphical front-end WORKVIEW (Viewlogic

Sytems, Inc., 1988) support the concept of truly hierarchical modeling. These

systems use the topological modeling approach. Models of subcircuits are modular

at the abstraction level of a topological circuit description (Cellier, 1988). However,

SPICE is restricted to simulating electrical networks only.

Zeigler (1984) described five levels of system specification. Among them,

level five, i.e., the coupling system specification, supports hierarchical modeling.

The current CSSL-type languages usually support the structured system specifica-

tion.
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From the above discussion, it becomes evident that CSSL's are not ap-

propriate for modular modeling, and that another tool is needed to represent con-

tinuous models in proper modular form. The continuous modeling language DY-

MOLA, which will be introduced later in this chapter, has been chosen to serve as a

generalized macro processor (program generator) for several continuous simulation

languages.

2.5 Software Environment

This section presents a brief introduction to the software environment that

this research project is based on.

2.5.1 DEVS-SCHEME

DEVS-SCHEME is a software environment for modeling and simulation of

discrete event models. DEVS-SCHEME is written in PC-SCHEME, a LISP dialect,

that runs on IBM or PC compatible TI microcomputers under MS-DOS. DEVS-

SCHEME implements the discrete event system specification formalism developed

by Zeigler (1984). It supports the modular hierarchical model specification of dis-

crete event models. The simulation of discrete event models is done by implementing

the abstract simulator principles developed as part of the theory (Zeigler, 1984).

The ESP-SCHEME software, underlying DEVS-SCHEME, realizes the System En-

tity Structure (SES) concept. Moreover, DEVS-SCHEME is implemented as a shell

in such a way that all the underlying LISP-based and objected-oriented program-

ming language features are available to the user. The result is a powerful tool for

combining symbolic and hierarchical modular discrete-event modeling approaches

(Zeigler, 1987).
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2.5.2 DYMOLA

DYMOLA is a continuous modeling language developed by Elmqvist (1978).

It is also a program generator which can be used to generate programs for several

different continuous simulation languages, namely SIMNON (Elmqvist, 1975) and

now DESIRE (Korn, 1989-b). It can also generate a FORTRAN subroutine for

general purpose usage. DYMOLA can therefore be used as a front end to simulation

languages. By using a concept called cut, DYMOLA realizes the modular and

hierarchical modeling of continuous models. DYMOLA has been implemented on

VAX/VMS and UNIVAC in the past. Now it can also be used on the PC under

MS-DOS.

2.5.3 DESIRE

DESIRE (Direct Executing Simulation In REal time) is a continuous system

simulation language. DESIRE has been designed for maximum interactivity and

extremely fast execution speed. It is not based on a target language. The time-

consuming differential equation part of the program is translated by a small and fast

compiler, which produces very efficient code for 8087 or 80287 math co-processors.

DESIRE runs on VAX and on PC compatibles. References for DESIRE are Korn

(1989-a, 1989-b).
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CHAPTER 3

THE ADVANTAGES OF DYMOLA AND ITS ENHANCEMENTS

3.1 Overview

In Chapter 2, the differences between continuous models and discrete event

models have been discussed. It has been shown that present CSSL-type languages

do not provide means for true modularity. From the perspective of hierarchy of

system specifications, model descriptions in CSSL-type languages are actually of

the structured system level (Zeigler, 1984). Therefore the coupling specification has

been absorbed into the resultant system description. In order to apply the hier-

archical modeling strategy to continuous systems, a higher level of coupled model

specification is required. Appropriate types of "wires" are needed for the continuous

models to connect the components. These "wires" enable the continuous models

to be raised from the structured system representation level to the coupled model

specification level. A modeling language, DYMOLA, developed by Hilding Elmqvist

(1978), has provided us with this type of powerful ''wires".

DYMOLA (Dynamic-modeling Language) is a continuous system modeling

language, but it is not a simulation language, as it does not have its own simulation

engine. Rather than being a simulation tool, DYMOLA provides the user with a

more readable and better modularized hierarchically structured model description

(Cellier, 1983, 1988).

DYMOLA acts as a front end to several simulation languages. The input of

the DYMOLA translator is the hierarchically structured model; the output will be

the flattened model equations. These equations are sorted and grouped into systems
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of equations. A switch instructs DYMOLA for what target language the output is to

be generated. At present, DYMOLA supports DESIRE, SIMNON, and FORTRAN

as target languages. It would not be a difficult task to modify DYMOLA to add

other simulation languages, such as ACSL, to the list of supported target languages.

DYMOLA uses the submodel concept. Coupling models in DYMOLA are

formed by first selecting the submodels, and then connecting the ports of the sub-

models together.

DYMOLA solves the drawbacks of the CSSL-type languages discussed in

Chapter 2 by introducing a new concept, the cut. Symbolic formula manipula-

tion sorts the model equations and converts the model equations into assignment

statements.

Two different versions of DYMOLA exist. One is coded in PASCAL, the

other in SIMULA. The SIMULA version runs on UNIVAC computers; the PASCAL

version runs on VAX/VMS and also on PC compatibles, using TURBO PASCAL

(Version 4).

The intention of this chapter is to emphasize the modular and hierarchi-

cal modeling features of DYMOLA. In addition, some augmentation in DYMOLA

will be discussed. For more detailed information about DYMOLA, please, refer

to Elmqvist (1978) and Cellier (1983, 1988). The DYMOLA syntax presented

in this chapter will be described using the Extended Backus-Naur Form (EBNF)

(Bongulielmi and Cellier, 1984) and the syntax diagrams will be illustrated in Ap-

pendix 6.
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3.2 Modular Hierarchical Model Description in DYMOLA

3.2.1 The "Cut" Concept

When considering a model, its boundaries are determined first. To describe

the interaction of a subsystem with its environment, it is necessary to introduce vari-

ables describing what happens at the boundaries. In recent CSSL-type languages,

submodels are connected through individual variables. This is done by hierarchi-

cally calling macros with a set of formal parameters representing the connection

variables. Since access is needed to these connection variables, the number of for-

mal parameters keeps growing when advancing to higher and higher levels of the

hierarchy. No mechanisms are foreseen to group variables together such as in real

systems where wires are grouped into cables, and cables are grouped into trunks or

buses.

In DYMOLA, this is accomplished by introducing a connection grouping

mechanism, called a "cut". Cuts, in DYMOLA, correspond to complex connection

mechanisms of physical systems like shafts, pipes, electrical wires, etc. (Elmqvist,

1978)

Variables declared as cut in DYMOLA are actually ports. Depending on

the coupling relations between the models, the individual variables forming these

ports are interpreted as either input or output. The declaration of cut takes the

form:
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syntax:

'cut' {cut - identifier [ cut 1 }.

where

cut - identifier = identifier.

cut = '(' variable - cut ')' 1'[' hierarchical - cut ']'

I cut - spec.

- [{ across - variable I'·' } ]
[ ,/' { through - variable I'·' } ].

across - variable = identifier.

variable - cut

through - variable= identifier.

hierarchical - cut = { cut }.

cut - spec = identifier.

semantics:

symbol "." represents a dummy variable.

Examples are:

cut A [vl v2 / v3 v4)j

cut B (v / .)j

cut C [vl v2 v3).

How does cut make a continuous model achieve the purpose of modularity?

Consider a very simple case, a model of a resistor. Figure 3.1 and Figure 3.2

illustrate the different model descriptions before and after using the concept of cut.

It is seen from the examples that switching the input and output variables

will not change the model description with cut declarations. However, this is not

the major advantage of cut, since an I/O variable could be declared as a terminal

variable in DYMOLA. The important advantage of cut is that, as in the real physical



32

model name resistor
input: I
output: V
parameter :R
equations: V I*R

or model name:
input : V
output :I
parameter:
equations:

resistor

R
I= VIR

Fig. 3.1 Models of a resistor using input output declaration

model name : resistor
cut : A(Va I I) B(Vb I -I)
local :V
parameter :R
equations : V=Va -Vb

V=I*R

Fig. 3.2 Models of a resistor using cut declaration
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connection mechanism, it associates with two kinds of variables, i.e., across variables

and through variables. The equations describing the physical laws at the connection

mechanism will be generated automatically from the declaration of cut and the

connection statements. For example, suppose there are three submodels defined as

"Rl", "R2" and "R3" (Figure 3.3). A and B are the cut variables declared in all

three models. VA and I are the across variable and the through variable associating

with cut A respectively. By connecting these three models at cut A,

connect Rl : A at R2 : A at R3 : A ,

the following equations will be generated

R1.V A - R2.V A (3.1)

(3.2)

(3.3)

R2.VA = R3.VA

R1.1 + R2.1 + R3.1 = 0

Equations 3.1, 3.2, and 3.3 describe what happens at the boundary of the subsys-

tems where two or more elements are connected.

Several cuts can be grouped together to form a hierarchical cut, which is

the same way as wires grouped together into a cable. For instance, in both model

"Ml" and "M2", the cuts and hierarchical cuts are declared as:

cut A ( vl ), B ( v2 ), C ( v3 )

cut G [A B C].

The hierarchical cut G groupes the three ports (A, B, and C). Using the statement

in the parent model

connect Ml : G at M2 : G,
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VA Rl VBA- c::J • B B••
I

VA R2
c::J VBA- • B••
I

R3
R3 I,\(VA c::J VBA- • B B B••
I

(a) Three submodels (b) Con nee ted at A

Fig. 3.3 Three submodels connected at port A

55

51 52 53

Fig. 3.4 A hierarchically structured system in DYMOLA
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results the same as using

and

connect Ml : A

connect Ml : B

connect Ml : C

at M2: A,

at M2: B,

at M2: C.

From the above examples, it is clear that by means of cut, a model in a

continuous system can avoid the model description change caused by the variation

of I/O variables. In addition, using cut separates the physical laws describing the

static or dynamic properties of the model itself from the physical laws dominating

at the connecting points of several subsystems. As a result, the interaction between

a model and its environment is done through these predeclared ports.

It can be concluded that by introducing the concept cut, models in DY-

MOLA can be described in proper modular form. This gives DYMOLA the special

power needed for building models in a hierarchical modular manner.

3.2.2 Formula Manipulation

The model description will not change with respect to the environment by

the use of cut declarations. An equation U = I * R can be coded as I = U / R

or U - I * R = O. The modeler has the freedom to choose any of the three

equations in a model coded in DYMOLA. This was already demonstrated in Figure

3.2 where the variable V appeared twice on the left hand side of the equal sign.

The DYMOLA preprocessor determines for which variable each of the equations

must be solved and performs this task automatically. In addition, DYMOLA al-

lows the syntax: expression = expression, instead of the commonly used syntax:

variable = expression. The question of what should be the input variables and

what should be the assigned variables is left to DYMOLA instead of the user. The
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Model SS
model Sl
end
model S2
end
model S3

model S31
end
model S32
end

end
end

Fig. 3.5 Description of the hierarchical structure of a system

Example1 : A RESISTOR
model resistor

cut A (VA / I) B (VB / -I)
local V
parameter R=l
V = VA-VB
R*I = V

end

Example 2 : A CAPACITOR
model capacitor

cut A (VA / I) B (VB / -I)
local V
parameter C=l
V = VA-VB
C*der(V) = I

end

Fig. 3.6 Examples of atomic models in DYMOLA
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formula manipulation routines in DYMOLA produce the required form of the equa-

tions automatically, depending on the context in which the equation is used. This

gives the language an important characteristic: it makes the models independent

from the operations that are performed on them.

3.2.3 Hierarchical Model Structure in DYMOLA

A system named "SS" is considered here as an example. It is composed of

three subsystems, "S1", "S2" and "S3". The subsystem "S3" is further decomposed

into "S31" and "S32". The configuration of "SS" is shown in Figure 3.4.

Figure 3.5 illustrates one way to describe the hierarchical structure of sys-

tem SS. Although Figure 3.5 presents a hierarchical structure, it has a serious

drawback. For instance, if two of the subsystems have the same model, the model

description will be duplicated. Section 3.2.5 will introduce an alternative approach

to representing the hierarchical model.

3.2.4 Submodels in DYMOLA

In DYMOLA, a submodel can be an atomic model, i.e., a model without

coupling, as well as a coupled model. The specification of atomic models has the

following syntax:

syntax:

'model' ['type'] model - identifier

declaration - of - variables

[declaration - of - connection - mechanism( *ports*)]

model - descriptions

'end'.
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where

model - identifier = identifier.

Examples of atomic models are illustrated in Figure 3.6.

On the other hand, the specification of coupled models in DYMOLA has

the syntax described below:

syntax:

'model' ['type'] model - identifier

declaration - of - subrnodel s

declaration - of - variables

[declaration - of - connection - mechanism( *ports*)]

connection - descriptions - and - equations

'end'.

where

model - identifier identi f ier.

model rcp
submodel resistor(20)
submodel capacitor(10)
cut A (VA / I)
cut B (VB / -I)
connect resistor:B at capacitor:B
connect resistor:A at capacitor:A
connect A at resistor:A
connect resistor:B at B

end

Fig. 3.7 Example of a coupled model rcp



R
A B
• CJ • RCP R

A B
C

A B C• II •

(a)

CU~ MB ~t2 CU~ MA ~t2

MC
cut! cut2

cutl ~ MA I •• I MB ~ cut2

(b)

Fig. 3.8 Coupled models in DYMOLA
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An example of a coupled model is shown in Figure 3.7. In this example,

the submodels are one resistor and one capacitor, which are in modular form. The

resistor's only parameter R (Figure 3.6) is assigned to be 20 (indicated by the (20) in

the submodel statement); the capacitor's only parameter C (Figure 3.6) is assigned

to be 10.

A coupled model "rcp" (parallel connected resistor and capacitor) is gen-

erated by coupling the two atomic models together. The result, a coupled model

"rcp", is once again in proper modular form, and can be employed to construct yet

larger models, in the same manner as with the "resistor" and the "capacitor". The

concept of coupled models in DYMOLA is depicted in Figure 3.8.

3.2.5 Model Type and Model Library

In Section 3.2.3, the shortcomings of the hierarchical description (Figure

3.5) have been discussed. A method to describe coupled models was shown in Sec-

tion 3.2.4. By coupling the models recursively, a large system can be represented in

a hierarchical manner. In order to avoid duplicated descriptions of similar submod-

els, DYMOLA employs a term "model type". A model specified as "model type"

represents a generic model of a general class of objects. In some cases, several mod-

els have different parameters, but these models are of the same type. In some other

cases, a superior model needs several submodels which are the same. The user can

declare a "model type" in DYMOLA. This "model type" can be used to generate

several models with a submodel statement so that duplication will be avoided.

For example, model types can be defined for the "resistor" and the "capaci-

tor" presented in Section 3.2.4. In the model specification, the "model resistor" and
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"model capacitor" are changed to "model type resistor" and "model type capaci-

tor", respectively. The simplified model specification for "rcp" using model types

is shown in Figure 3.9.

model type rcp
submodel (resistor) rtwo (20)
submodel (capacitor) cone (10)
cut A (VA / I)
cut B (VB / -I)

connect rtwo:A at cone:A
connect rtwo:B at cone:B
connect A at rtwo:A
connect rtwo:B at B

end

Fig. 3.9 Model specification for rcp using model type

At this point, it is natural to establish libraries of models, each one con-

taining all the model types of a system. When a system is modeled, the library is

set up first, then the hierarchy of the coupling relations can be specified.

3.3 DYMOLA ON PC

One version of DYMOLA has been coded in Pascal to run under VAX/VMS.

In the first phase of this project, DYMOLA has been ported onto PC compatible

computers. The compiler used is Turbo Pascal Version 4.0 or higher. In addition

to the porting, some enhancements and modifications were made to meet some

new challenges which have arosen in the current research. These changes will be

discussed in this section.
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3.3.1 Enhancement of DYMOLA to Generate DESIRE Models

The DYMOLA commands, "output simnon model" and "output fortran

model", will generate Simnon and Fortran models, respectively. Now, DYMOLA

has been enhanced to be able to generate DESIRE models by the command

output desire model.

Note that before outputting the models, the user has to issue the command "par-

tition" , that manipulates all the equations generated by the model description and

the connection mechanism, in the following fashion. The partitioning starts with

structure information, i.e., whether a variable is present in an equation or not. It

then determines for which variable each equation must be solved, then partitions the

equations into minimal systems of equations that must be solved simultaneously. At

last, partition sorts the equations into the correct computational order. An example

in Figure 3.11 demonstrates how this works. Suppose there are two files "trivial.lib"

and "trivial.sys", with "trivial.lib" containing the type models (here, a capacitor,

shown in Figure 3.6 before) needed for the system trivial, and "trivial.sys" being

the system description. The file "trivial.sys" is shown in Figure 3.10

model trivial
Bubmodel (capacitor) cc(10)
input u
output y
cc.VB = 0
u = cc.!
Y = cc.V

end

Fig. 3.10 File "trivial.sys"
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DYMOLA
> enter model
- etrivial.lib
- etrivial.sys
> output equations

cc

trivial

v = VA - VB
C*derV = I
cc.VB = 0
u cc.I
Y = cc.V

> partition
> output sorted

trivial
cc
trivial
cc
trivial

> output solved
trivial
cc
trivial
cc
trivial

> output desire

equations
[cc.VB] = 0
V = [VA] - VB
u = [cc . I]
C*[derV] - I
[y] - cc.V

equations
cc.VB = 0
VA = V + VB
cc.I = u
derV = IICY ••cc.V

model
-- CONTINUOUS SYSTEM trivial

STATE V
DER dV
OUTPUT Y
INPUT u
PARAMETERS and CONSTANTS:

C = 10
-- INITIAL VALUES OF STATES:
V = 0

DYNAMIC

-- Submodel: trivial
VB = 0
-- Submodel: cc
VA = V + VB
-- Submodel: trivial
I = u
-- Submodel: cc
d/dt V •• IIC
-- Submodel: trivial
y = V

note: 1. ">" is the system prompt for users to type in a command.
2. "_" is the system prompt for users to type in the file name of

the models. Users have to type "e" for the input of model files.
3. The system outputs of this example are shown on the screen.

they can also be saved into files.

Fig. 3.11 Example of system trivial
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With these two files existing, the user then runs DYMOLA by typing in

"dymola". The result is shown in Figure 3.11.

3.3.2 Creation of a DESIRE Simulation Program

Running the simulation of a continuous system requires at least the basic

information for simulation control, such as simulation step, communication points,

simulation time, etc. It can be seen that the "output desire (fortran, simnon) model"

only generates the program of the model itself, since the DYMOLA preprocessor

compiles only the model body. Thus, an executable simulation program cannot be

produced without the user's additional work on the output model from DYMOLA.

In our Knowledge Based Modeling and Simulation Environment, it was expected

that the output of DYMOLA should be directly executable. For this purpose,

a special type of model called simulation control model has been introduced in

DYMOLA.

3.3.2.1 Description of the Simulation Control Model

The simulation control model must be stored into a file with the same

filename as that of the system being controlled. The file extension "ct" indicates a

simulation control model. This control model consists of three parts:

1. basic part;

2. run control block;

3. output block.

The structure of the control model is as follows:

syntax:

'cmodel'

basic - part
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['ctblock'

control - descriptions

'ctend']

['outblock'

output - descriptions

'outend']

'end'.

As specified, ctblock and outblock are optional. The information contained in the

basic part is:

1. simulation time;

2. simulation step size;

3. number of communication points;

4. inputs (optional) .

The format for the basic part is depicted as follows:

syntax:

'simutime/ simulation - time

'step' step - size

'commupoints' number - of - communication - points

[input - specification].

where
simulation - time = number.

step - size = number.

number - of - communication - point - integer.

integer = {digit}.

number = ['+' I ' -' ] unsigned - number.

unsigned - number = integer ['.' [integer II ['E' ['+' I ' -'] integer].
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Note that the definition for number and integer will remain the same throughout

this thesis. If the input of a system is not specified in the model, it should be

provided in the simulation control model. The format is:

syntax:

'input' number - of - inputs I,' {variable ( 'depend' I
'independ' ',' expression) $ [',' 1 }.

where
number - of - inputs = integer.

variable = identifier.

and depend/independ specifies whether the input variable is time dependent or not;

expression specifies the input expression.

For example:

input 2, ul(depend, sin(3*t)), u2(independ, 10).

means that there are two inputs, ul and u2. ul is a function of time (equals

sin(3*t)); while u2 is a constant (equals 10). The DYMOLA compiler puts the time

dependent input into the DYNAMIC segment part of a DESIRE program and a

constant input into the job control block of a DESIRE program. The inputs pro-

vided in the simulation control model should be consistent with the inputs declared

in the system model.

The run control block encloses the run control statements which can appear

in the run-time output part of a DESIRE program (section 2.3.3; Korn 1989-a).

Simulation output requirements should be placed in the output block. The

supported output statements are "dispt", "dispxy", "type", and "stash", with the

syntax described below:
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(a) Run-time CRT graphs can be obtained with

syntax:

'dispt' {var$','}.

where

var identifier.

semantics:

number of var is up to 4, versus t.

or

syntax:

'dispxy' var',' {var $ ','}.

where

var - identifier.

semantics:

number of var is up to 3, versus the first one.

These definitions will remain the same in this section.

(b) The statement

syntax:

'type' {var$','}.

where

var identifier.

semantics:

number of var is up to 4.
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produces runtime tabulated output with respect to the independent variable t on

the screen.

Note that only one "dispt", "dispxy" or "type" statement is allowed in each

program.

(c) The statement

syntax:

'stash' {var $ ','}.

where

var - identifier.

semantics:

number of var is up to 20.

stores successive values of t, vi ... at each communication point into a file with

the name of the current running file and the file extension "tim". (Refer to Korn,

1989-a.)

All the statements in the output block are interpreted only at communica-

tion points. This reduces the computation time significantly.

3.3.2.2 Obtaining Executable DESmE Programs

The command:

output desire program

is used to create executable DESIRE programs. The program will first verify the

existence of the simulation control model associated with the system. If this model

exists, an executable DESIRE program will be generated; otherwise an error mes-

sage will be displayed. Figure 3.12 continues the example of system "trivial". It is

demonstrated how an executable DESIRE program for this system is generated.
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1. The simulation control model of trivial (file "trivial. ct ") contains:
cmodel

simutime 20
step 0.1
commupoints 50
input l,u(depend,sin(O.5*t»
outblock
dispt u,y
outend

end

2. In DYMOLA (after partition):
> output desire program

-- CONTINUOUS SYSTEM trivial
STATE V
DER dV
OUTPUT Y
INPUT u
PARAMETERS and CONSTANTS:

C=10
-- INITIAL VALUES OF STATES:
V=O
TMAX=20 I DT=O.l I NN=50
drun
DYNAMIC
u = sin(0.5*t)

Submodel: trivial
VB ••0

Submodel: cc
VA ••V + VB
-- Submodel: trivial
I = u
-- Submodel: cc
d/dt V = I/C
-- Submodel: trivial
y •• V

dispt u,y
/--
/PIC 'tri.PRC
/--

Fig. 3.12 Example of system trivial (continued)
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3.3.3 Other New Features

3.3.3.1 Initial Conditions

The initial conditions of all integrators in DYMOLA are zero by default.

Originally, a state variable could only assume an initial value different from zero if

the state variable had been declared as a local variable, e.g., "local V=2.0". This

however meant that the values of the initial conditions could not be changed in

submodel invocations.

The syntax of the submodel has therefore been changed to the form shown

below which overcomes this disadvantage of DYMOLA:

syntax:

'submodel' [ '(' model - type - identifier ')' I {model - identifier

[ '(' parameter -list ')' I [ '( ic' initial - condition - list' )' ]}.

where

model - type - identifier = identifier.

model - identifier = identifier.

parameter -list = {number $ [',']} I {(parameter' =' number) $ ['.']}.

parameter = identifier.

initial - condition -list {(variable' =' number) $ ['.']}.

variable = identifier.

Examples are:

submodel (capacitor) cl (5.6) (ic V=O.5), c2 (1), c3(10) (ic V=lO)i

submodel inductor (ic 1=9).
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The parameter list or initial condition list following the model identifier sets or

changes the default values of parameters, or the initial conditions of this model,

respectively.

3.3.3.2 Special Functions

The syntax for the statement description in DYMOLA is

expr essioti expression,

To increase the compatibility of DYMOLA with modern simulation languages, a

second form of statement was introduced which will be discussed below. This mod-

ification contributes to DYMOLA the flexibility of managing various kinds of func-

tions that appear in the target languages.

1. The Tabular Function

syntax:

'func' variable' =' expressson,

When "func" is specified, the function expressed in the statement denotes a function

generator operation.

Example:

func y = TAB(x)

in which x is the independent variable; while y is dependent on x. The values of TAB

are given in the simulation control model by the declaration of an array with the

dimension n, where n must be even. The array contains n/2 breakpoint abscissas

from TAB[l] to TAB [n/2], followed by n/2 breakpoint ordinates from TAB[(n/2)+1]
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to TAB[n]. The values of yare produced by table look up and linear interpolation

between function breakpoints, and

y = TAB[(n/2)+l] when x :s; TAB[l]i

Y = TAB[n] when x 2: TAB[n/2].

2. The Storage Functions

syntax:

'store' variable' =' expression,

and

'get' variable' =' expression,

can store and get the time history of certain variables into and from prespecified

one dimensional arrays, which must be declared in the simulation control model.

Examples:

store tabl = x

stores the values of x, at each communication point, into the array tabl, which can

then be reused for further processing, printing, etc. The dimension of tabl should

be the same as the number of communication points.

get y = tab2

makes the value of y at and between successive communication points equal to the

successive elements of the one-dimensional array tab2, which is predefined in the

simulation control model, such that
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y = tab[k]

when (k-1)*cornmunication-interval :::;t-to < kecommunication-interval,

where

t = simulation time;

to = the initial simulation time;

k = 1,2,3, ...

If the time exceeds the dimension of the array multiplied by the communication

interval, y keeps the last value of array tab2.

get is a fast time-function generator (without linear interpolation); it also

permits computations involving stored time histories (Korn, 1989-a).

3.4 Unsolved Problems

As previously stated, DYMOLA uses a different approach from other con-

tinuous modeling and simulation languages to the modeling of continuous systems,

which enables the user to invoke reusable models without studying the details of

the submodels when building a large system. It also has been furnished with more

properties that fulfil the purpose of the ongoing project, which shall be presented

in the coming chapters. A fair amount of program development and study are still

needed to make DYMOLA a productional code. Listed below are some suggestions

for future research (Cellier, 1988):

1. DYMOLA has the ability to eliminate equations of type a = b by replacing

all occurrences of a by b. There exists a problem that if variable a is to be

displayed, which is specified in the output block of the simulation control

model, it is expected that b will be eliminated instead of a. DYMOLA has

not taken this situation into consideration yet. Besides, "DYMOLA should
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also be able to eliminate variables from equations of type a ± b 0."

(Cellier, 1988).

2. "DYMOLA should be able to recognize equations that have been specified

twice, and eliminate the duplication automatically to avoid redundant equa-

tions." (Cellier, 1988). This property is especially important for hierarchically

connected submodels. Meanwhile, special care must be taken when relating

through variables. For instance, one of the node equations for current is

redundant when connecting electrical components. In one of the submodels,

a dummy through variable must be used, such as cut A(Va / I) B(Vb /.),

to solve this problem. This necessity somewhat jeopardizes the generality of

the model descriptions.

3. "DYMOLA should be able to handle superfluous connections," i.e., suppose

w1, w2 are two angular velocities and b1, b2 are their corresponding angles;

"if we specify that b2 = -b1, it is obviously true that also wI = -w2.

However, DYMOLA will not let us specify this additional connection at the

current time. Superfluous connections should simply be eliminated during

model expansion." (Cellier, 1988)

4. "DYMOLA should recognize that connections of outputs of integrators can

always be converted into connections of inputs of these integrators, i.e., if we

have specified that ia3 = ia2, it is obviously true that iadot3 = iadot2.

This reformulation can help to eliminate structural singularities." (Cellier,

1988)

5. Groups of linear algebraic equations are currently grouped together and printed

out by DYMOLAwithout being solved. DYMOLA should be able to rewrite

the system of equations into a matrix form, since DESIRE can handle matrix

expressions efficiently and future versions of DESIRE will include efficient
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algorithms for inverting matrices. For simple algebraic loops, it might be a

good idea to shift to the interactive model and ask the user for help (Cellier,

1988).

6. In nonlinear equations like

X2 + y2 + 2 * Z - 5 = 0,

problems will arise if DYMOLA wants to solve for X or Y. Cellier provides

several possible solutions for handling nonlinear equations. (Cellier, 1988)

7. Since DESIRE can solve discrete time systems, it would be good if DYMOLA

could handle discrete time models as well.

8. DYMOLA should have the ability to manage statements like:

identifier expression,

where the identifier would be one of the keywords in DESIRE or other simu-

lation languages. These kinds of statement are now treated in the output

block of the simulation control model in order not to affect partitioning the

model equations. It would be more flexible if these statements could also be

compiled together with the model body.

9. More powerful user interfaces, such as manual driven and graphic modeling, are

needed. Most of the existing graphic modeling software tools, such as EASY5

(Boeing Computer Services, 1988), SYSTEM-BUILD (Integrated Systems,

Inc., 1985), etc., are based on the concept of block diagrams. They do not

provide the data structures needed for hierarchical decomposition (like cuts),

and they do not provide the representation of through variables. A graphic

preprocessor of DYMOLA, HIBLITZ, exists which supports all the modeling

concepts of DYMOLA (Elmqvist, 1982). HIBLITZ currently runs on Silicon
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Graphics (IRIS) machines only. It is hoped that HIBLITZ can be converted

for use on 386 compatibles (Cellier, 1988).
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CHAPTER 4

CONTINUOUS SYSTEM MODELS IN DEVS-SCHEME

4.1 Introduction

Models are multifacetted in nature and modeling is goal driven. The goal

of the modeler directs the process of model construction (Zeigler, 19S4; Rozenblit,

19S5). Constructing models to meet new objectives can be accelerated by the so-

called multifacetted modeling methodology, which is based on the combination of the

System Entity Structure and Model Bases (Zeigler, 19S9-b). In this approach, the

lower layers of models, which are less important to the objective, are aggregated into

atomic (or even coupled) units residing in a model base (Cellier, 19S5). The System

Entity Structure, which was previously introduced as a knowledge representation

scheme in Chapter 2, and which will be discussed in more detail in Chapter 5,

can be used to organize models and facilitate model synthesis. DEVS-SCHEME,

a Knowledge Based Modeling and Simulation Environment, is a realization of the

theory of multifacetted modeling methodology.

Several approaches to the modeling of continuous systems using DEVS

formalism have been proposed (Zeigler, 19S9-a). The discrete event description

of a continuous model relates the continuous system counterpart by abstraction.

The abstraction plays an important role in advanced robot and intelligence control

where a continuous process must be interfaced with a symbolic reasoning system

(Zeigler, 19S9-a).

Furthermore, building a robot model in the "Simulation Environment for

Laboratory Management by Robot Organization" involves the design of Model-Plan
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Units (MPU), which in turn involves modeling of continuous processes by discrete

event models. The MPU plans sequences of operations. For each action on the real

processes, a normal state trajectory would be obtained by the continuous models.

The normal process window, which indicates the range of the simulation time under

normal conditions, would also be determined from running series of continuous

process simulations with different parameters and initial conditions (Zeigler, Cellier

and Rozenblit, 1988). DEVS-SCHEME should be, but was not, able to execute

continuous simulation runs and to generate time histories, which can be referred to

by a model in DEVS-SCHEME to determine appropriate thresholds for switching

from one state to another state in an equivalent discrete event model. In order to

manage continuous models in DEVS-SCHEME, two new classes, named continuous-

models and continuous-systems, have been created in DEVS-SCHEME.

4.2 Classes in DEVS-SCHEME

As stated in Chapter 2, DEVS-SCHEME is built upon the object-oriented

programming paradigm. Every object has its own variables and methods. A class

definition in an object-oriented programming environment provides a template for

generating any number of instances, each one being an identical copy of a basic

prototype (Booch, 1986; Zeigler, 1989-b).

In DEVS-SCHEME, the root class is called entities. This class provides

tools for manipulating objects within this class and all its subclasses. All other

classes in DEVS-SCHEME are subclasses of this universal class. Scheme's "Scoop"

facility offers inheritance mechanisms that are sufficiently strong to ensure that such

general facilities be defined only once.
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Models and processors, the two main subclasses of entities, offer the basic

constructs for modeling and simulation. The major subclasses of models are atomic-

models and coupled-models, which are further specialized into more specific classes.

On the other hand, the class called processors has three specializations, namely

simulators, coordinators, and root-co-ordinators (Appendix 1), which handle all the

simulation processes.

M - <X. S. Y. 8 ext. 8 int. A.'t>

X _ set of external events received as input

Y _ set of outputs. external events generated output

S _ set of states

8 ext _ external transition function

8 int _ internal trans ition function

A _ output function

't _ time of next event

The atomic-models class realizes the atomic level of the DEVS model for-

malism (Figure 4.1) by declaring variables corresponding to each of the parts in the

formalism. The coupled-models class embodies the hierarchical model composition

constructs of the DEVS formalism. Diqraph-rnodels and kernel-models (Appendix

Fig. 4.1 Formalism of atomic models of discrete event system
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1), the two main subclasses of coupled-models, enable descriptions of coupled mod-

els in particular ways. In the DEVS formalism, a coupled model is defined by its

component models and through coupling relations which establish desired commu-

nication links.

The continuous-models class, representing the atomic continuous system

models in DEVS-SCHEME, is a subclass of the atomic-models class, and the

continuous-systems class is a subclass of the digraph-models class.

Figure 4.2 illustrates the overall taxonomic hierarchy of classes in DEVS-

SCHEME. Brief explanations of some of the classes are given in Appendix 1. De-

tailed descriptions, usages, and studies about various classes in DEVS-SCHEME

can be found in Zeigler (1986, 1987, 1989-b), Kim (1988), Zhang (1988), and Chris-

tensen (1989).

4.3 The Class of Continuous-models

The continuous-models class is a specialization of atomic-models. An in-

stance of continuous-models in MBASE (the DEVS model base) serves mainly as

a pointer, pointing to its corresponding continuous model in DYMOBASE (the

DYMOLA model base).

The continuous behavior knowledge of a model is captured by a DYMOLA

model. On the other hand, a DEVS continuous model is the abstraction of the

dynamic model from the continuous behavior into a different kind of event-based

behavior according to the requirement.

Note that throughout this thesis, the DEVS models, with filenames such

as "modelname.m", are stored in the discrete event model base MBASE, while

DYMOLA models, with filenames the same as the model file name but without the

file extension, are stored in the dynamic model base DYMOBASE.
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ENTITIES

1....----1'-----1
MODELS PROCESSORS

R R
I

I
CON TINUO US- FORWARD-

MODELS MODELS

COUPLED-MODELS

I

I
ATOMIC-
MODELS

~

1
DIGRAPH-MODELS

R
CONTINUOUS-SYSTEMS

SIMULATORS ROOT-CO-
co- ORDINATORS

ORDINATORS

I
KERNEL-MODELS

R
BROADCAST- HYPERCUBE- CELLULAR- CONTROLLED-

MODELS MODELS MODELS MODELS

Fig. 4.2. Class hierarchy of DEVS-SCHEME



62

4.3.1 Descriptions of Continuous-models

It was explained in Chapter 3 that the term "type model" refers to a generic

model of a general class of components or devices, such as resistor. Then a model

of class continuous-models might be an instantiation of one of the type models (a

particular resistor), or it might be a model which has no type model. The instance

variables show which of the categories a model belongs to. Instance variables also

hold the knowledge about the declaration part of a model in DYMOLA.

The instance variables associated with continuous-models are:

1. name: the name of the continuous-models component, inherited from entities;

2. tflag: indicates whether this model is a type model. Its value can only be true

or false;

3. tname: If the model is a type model, its tname is the same as name, which

is the generic type. If the model is a specific instantiation of a type model,

then its tname is the name of that type model. If the model is neither a

type model nor a specific instantition of one type, then its tname is "nil";

4. ind-vars: a structure. The name of the structure is state, and the default fields

of this structure are sigma and phase, both inherited from atomic-models,

and· cut, mcut, path, mpath, node, parameter, local, terminal, input, and

output, which represent the types of variables declared in DYMOLA.

To clarify the meanings for name, tflag, tname, suppose that a system in-

cludes two resistors, say "rl" and "r2", which are all instantiations of the "resistor"

model type, and a model "ml". Then the instance variables are assigned as follows:
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model name tflag tname

resistor resistor true resistor

r1 r1 false resistor

r2 r2 false resistor

m1 m1 false nil

Other instance variables, such as int-trans/n, ext-trans/n, outputfn and

time-advancefn, are inherited from atomic-models (Zeigler, 1986, 1987, 1989-b; Kim,

1988; Christensen, 1989).

;-- Class continuous-models
(define-class continuous-models

(classvars)
(instvars

tflag
tname
(ind-vars •(sigma phase

cut mcut path mpath node
parameter
local terminal input output)

)
)

(mixins atomic-models)
(options

gettable-variables
settable-variables
inittable-variables)

)

;--define states for continuous-models
(define-structure state sigma phase

cut mcut path mpath node
parameter
local terminal input output)

Fig. 4.3 Class definition of continuous-models
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The definition of the continuous-models class (Figure 4.3) indicates that this

class has the newly created/defined instance variables tjlag, tname and ind-var. It

inherits all the attributes from its parent class atomic-models (defined by mixins in

Figure 4.3), and all the instance variables of this class can be assigned with initial

values, readable and modifiable (indicated by options). "(define-structure ... )"

defines the structure named state for the instance variable ind-vars.

4.3.2 Methods for Continuous-models

The methods for continuous-models are:

1. set-sv (vname vvalue) j

2. get-sv [vname};

3. set-type (tf tn}:

4. valid? (tf tn};

5. make-new (mname) j

6. change-parameter [p-list}:

7. change- ic (ie-list);

A detailed explanation of these methods is given in Appendix 2.

Sending a method to an instance of a class in DEVS-SCHEME is done by

(send name-of-method name-of-object parameter1 parameter2 ... )

Suppose there is a DYMOLA model named "resistor" in DYMOBASE (Figure 3.6),

and a corresponding DEVS model "resistor.m" in MBASE as defined in Figure 4.4.
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(make-pair continuous-models 'resistor)
(send resistor valid? #t 'C»~
(send resistor set-s (make-state 'cut '«A (VA / I» (B (VB / -I»)

'parameter '«R 1»
'local '((V 0»

)
)

Fig. 4.4 An example of continuous-models

In this example, "(make-pair ... )" creates an entity called "resistor" of class

continuous-models in DEVS-SCHEME, and attaches a simulator for this entity.

Then the method valid? is sent to resistor to check whether it is a valid model of

this class. Method valid? has two parameters, tfiag specifying wether the model is

a type model in DYMOLA, and tname specifying the type this model belongs to if

it is not a type model itself. If a model is a type model then tname can be set to

nil. Model "resistor" is a type model so its tfiag equals true, and tname is nil. If

the type model "resistor" is not residing in DYMOBASE, then this DEVS model

is not valid and an error message will be displayed. The method set-s is inherited

from the class atomic-models. "(set-s ... )" generates a structure named state by

(make-state ... ), and fills the values of the slots for the instance variable ind-vars.

It can be seen that the description of the "resistor" in MBASE written

In DEVS contains the knowledge about its counterpart model in DYMOBASE.

Furthermore, the instance variables int-transfn, ext-transfn, outputfn, and time-

advance can still be assigned to this model upon necessity. The conclusion can be
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drawn that a DYMOLA model is considered a "base model", by Zeigler's definition

of the five elements: the real system, the experimental frame, the base model, the

lumped model, and the computer, in the theory of modeling and simulation (Zeigler,

1985) providing a relatively "complete explanation of the behavior of a real system";

while a DEVS continuous model plays the role of a "lumped model" constructed

from the base model.

4.4 The Class of Continuous-systems.

Continuous-systems is a subclass of digraph-models. Instances in class

continuous-systems are generated by applying the structural knowledge of the par-

ticular systems. Inherited from digraph-models, it provides means to specify explic-

itly couplings between the components. A coupled model of the continuous-systems

class will be generated by specifying:

1. the internal coupling, structural relations between components, i.e., compo-

nents and their influencees;

2. the external coupling, structural relations between the coupled model and the

outside world including:

a. the external input coupling, i.e., inputsfrom the outside world to the cou-

pled model;

b. the external output coupling, i.e., outputs from the coupled model to the

outside world.

At the same time, a coupled DYMOLA model will also be automatically generated

and stored in DYMOBASE.

4.4.1 Descriptions of Continuous-systems

The instance variables of the continuous-systems class are:
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1. name: the name of the continuous-models component, inherited from entities;

2. tflag: indicates whether this model is a type model. Its value can only be true

or false;

3. tname: If the model is a type model, then its tname equals its name. If the

model is not a type model but is an instantiation of a type model, then its

tname equals its type model's name. If the model is not a type model, nor

does it belong to any type then its tname equals "nil";

4. tylist: a list of names of the type models needed for the coupled model;

5. oars: a structure. The name of the structure is estate and the default fields of

this structure are cut, mcut, path, mpath, node, parameter, local, terminal,

input, and output. These fields represent the types of variables declared in a

DYMOLA coupled model.

Listed below are the instance variables inherited from digraph-models (and

coupled-models). However, some of them are reassigned, and therefore, have a

different meaning from those in the parent classes digraph-models and coupled-

models:

1. children: specifies all the subcomponents of the coupled model (inherited from

class coupled-models).

2. receivers: specifies the children which will receive an external input event from

the parent coupled model (inherited from class coupled-models).

3. influencees: determines which siblings one component will be connected to,

without considering the I/O direction. In contrast, in the coupled-models

class it determines which siblings the output of one component will be sent

to.

4. composition-tree: represents the structure of the hierarchical model. The root

of the composition-tree is a coupled model. The children who are atomic
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Fig. 4.5 Influence digraph of a model of class continuous-systems

8 is influenced by linflunce A

A influences B. and 8 influences A

In general, it does not have to be
a bidirectional influence

Fig. 4.6 Influence digraph of a model of class digraph-models
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models become leaves in the tree. The children who are not atomic models

are further decomposed into their children. All the leaves in the composition-

tree are atomic models (inherited from digraph-models).

5. influence-digraph: represents the non-directed information flow graph between

one component and its siblings. In contrast, in the parent class digraph-

models, it represents the directed I/O graph between one component and

its siblings. Therefore, the influence-digraph of a continuous-systems model

reflects only the physical structural relations. It does not include the com-

putational structural relations, i.e. the I/O directions between submodels,

as the models of the parent class digraph-models do. This difference is illus-

trated in Figure 4.5 and Figure 4.6.

;--Class Continuous-systems
(define-class continuous-systems
(classvars)
(instvars

tflag
tname
tylist
(vars (make-cstate

)

'cut '0
'mcut '0
'path' 0
'mpath '0

)
)
(mixins digraph-models)

(options
gettable-variables
settable-variables
inittable-variables)

)

;--define structure cstate for continuous-systems
(define-structure cstate cut mcut path mpath node

parameter
local terminal input output)

Fig. 4.7 Class definition of continuous-systems
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The definition of the class continuous-systems is presented in Figure 4.7. This class

inherits all the attributes from digraph-models with the newly defined instance

variables.

4.4.2 Methods for Continuous-systems

The methods for the class "continuous-systems" are listed below. Expla-

nations for these methods can be found in Appendix 2:

1. make-new (mname);

2. change-parameter (p-list);

3. change-ic (ie-list);

4. set-xxx (vvalue) and get-xxx;

5. build-composition-tree (m list-of-children);

6. build-system-tree (m list-of-children);

7. set-inf-dig (list-of-influencees);

8. set-int-coup (chI ch2 list-of-port-pairs);

9. set-ext-inp-coup (child list-of-port-pairs list-of-variable-pairs);

10. set-ext-out-coup (child list-of-port-pairs list-of-variab le-pairs);

11. valid? (tf tn);

12. set-type-model;

13. set-system;

14. set-tylist (children) j

15. set-lib (children) j

16. set-subcomponent(children);

17. write-connection (chI ch2 list-of-port-pairs);

18. write-ext-inp (child list-of-port-pairs list-of-variable-pairs) and

write-ext-out (child list-of-port-pairs list-of-variable-pairs) j
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19. write-statement.

It should be noticed that using set-ext-inp-coup or set-ext-out-coup would have iden-

tical results unless the I/O ports need to be specified explicitly for a continuous-

systems model. Since a DEVS continuous model is an abstraction of a DYMOLA

model, the question of whether a particular coupling is an input coupling or an

output coupling is of no importance. DYMOLA will take care of this question,

and automatically assign the computational structure to the model. As indicated

in Chapter 3, I/O variables of a DYMOLA model can be iniplicitly declared as

(non-directed) terminal variables.

4.4.3 Building Continuous-systems Models

In this subsection, a coupled model, named "net" , is illustrated as an exam-

ple of the way in which a continuous-systems model is built. The electrical network

"net" is depicted in Figure 4.8.

rone

loneeone

I cone
I
I

common

Fig. 4.8 The electrical network net
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This network will also be used in Chapter 5 as an aid in explaining the

System Entity Structure (SES) management of continuous models.

To clarify the hierarchy of model construction, the process of building a

coupled type model "rcp" will be explained first. Then the model "net" will be

built using "rcp" as one of its components.

Model "rcp" consists of an "rtwo" of type "resistor" and a "cone" of type

"capacitor". The DEVS models for all the atomic components of "net" are shown in

Figure 4.9. These models are separate files, with names of the form "modelname.m" ,

e.g., resistor.m, capacitor.m, rone.m, etc., in the modelbase MBASE. For instance,

in file "rone.m", it is first checked whether the type model "resistor" is already

in the working memory by "(bound? ... )". If this is not the case, it loads the

type model from MBASE into the working memory first. "(string-append ... )" is

a function in SCHEME, concatenating several strings together. ml here is a defined

global variable, representing the string of the directory of MBASE. Then a new

model named "rone" which is the same as "resistor" is created by sending model

"resistor" method make-new. change-parameter changes the value of parameter R

of model "rone" from the default value of 0 (defined in resistor) to 10.

To define model "rcp" in DEVS-SCHEME (Figure 4.10), the component

models are loaded first. make-pair generates a continuous-systems model in DEVS-

SCHEME and attaches a coordinator (Appendix 1) to this model. After the model

"rcp" is created, method set-oars is used to specify the variables for this model.

Then method build-composition-tree is sent to "rcp" to establish its composition-

tree and to begin setting up a type model named "rcp" with its subcomponents in

DYMOBASE. Function write-declare writes the declaration part of a model into its

DYMOLA model file. The influence-digraph of "rcp" is set by the method set-in/-

dig, i.e., the information of submodel "rtwo" influences or is influenced by submodel



73

;-- RESISTOR --
(make-pair continuous-models 'resistor)
(send resistor valid? #t 'C»~
(send resistor set-s (make-state 'cut '«A (VA / I» (B (VB / -I»)

'mcut '«C "[A B]"»
'path '«PP "<A - B>"»
'parameter '«R 0»
'local '«V 0»)

COIL --
(make-pair continuous-models 'coil)
(send coil valid? #t 'C»~
(send coil set-s (make-state 'cut '«A (VA / I» (B (VB / -I»)

'mcut '«C "[A B]"» .
'path '«PP "<A - B>"»
'parameter '«L 0»
'local '«V 0»)

CAPACITOR --
(make-pair continuous-models 'capacitor)
(send capacitor valid? #t 'C»~
(send capacitor set-s (make-state 'cut '«A (VA / I» (B (VB / -I»)

'mcut '((C "[A B]"»
'path '«PP "<A - B>"»
'parameter '«C 0»
'local '«V 0»)

)

;-- VOLTAGE
(make-pair continuous-models 'voltage)
(send voltage valid? #t 'C»~
;-- COMMON --
(make-pair continuous-models 'common)
(send common valid? #t 'C»~

RONE --
(if (unbound? resistor)

(load (string-append ml "resistor.m"»)
(send resistor make-new 'rone)
(send rone change-parameter '«R 10»)

Fig. 4.9 Examples of continuous-models in MBASE (for model net)
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RTWO --

(if (unbound? resistor)
(load (string-append ml "resistor .m"»)

(send resistor make-new 'rtwo)
(send rtwo change-parameter '«R 20»)

LONE --
(if (unbound? coil)

(load (string-append ml "coil.m"»)
(send coil make-new 'lone)
(send lone change-parameter '«L 10»)

CONE --
(if (unbound? capacitor)

(load (string-append ml "capacitor .m"»)
(send capacitor make-new 'cone)
(send cone change-parameter '«C 10»)

EONE --
(if (unbound? voltage)

(load (string-append ml "voltage .m"»)
(send voltage make-new 'eone)

Fig. 4.9 Examples of continuous-models in MBASE (for model net)

(continued)

"cone". The coupling relations between submodels, and between "rcp" and its sub-

models, are done by methods set-int-coup and set-ext-inp-coup/set-ext-out-coup,

respectively. Besides, method set-int-coup also converts the internal coupling re-

lations into the connect statements of the corresponding DYMOLA model, while

method set-ext-inp/out-coup writes onto the DYMOLA model file the external con-

nect statements if the parameter list-of-variable-pairs is set to be nil; otherwise it

writes the external coupling equations. To end the DYMOLA model file, method

write-statement is used.
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;-- Load the component models from model base

(load (string-append ml "rtwo.m"))
(load (string-append ml "cone.m"))

;-- Create the continuous-systems model rcp and its coordinator

(make-pair continuous-systems 'rcp)

;-- Define variables for rcp

(send rcp set-vars (make-cstate 'cut '«A (VA / I) (B (VB / -I»)
'mcut '«C " [A B]"))
'path '«PP "<A - B>")

)

Specify the components for rcp
(send rcp build-composition-tree rcp (list rtwo cone»
;-- Write declaration parts

(write-declare rcp)
;-- Specify the influencees of the model

(send rcp set-inf-dig (list (list rtwo cone»)
;-- Specify the internal couplings
(send rcp set-int-coup rtwo cone (list (cons 'A 'A)

(cons 'B 'B)
)

)

Specify the external couplings

(send rcp set-ext-inp-coup rtwo (list (cons 'A 'A» 'C»~
(send rcp set-ext-out-coup rtwo (list (cons 'B 'B» 'C»~

;-- Close up the model

(send rcp write-statement)

Fig. 4.10 A continuous-systems model rcp
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;-- Load the component models from model base

{load (string-append ml "eone.m"»
(load (string-append ml "common.m"»
(load (string-append ml "rone.m"»
{load (string-append ml "lone.m"»
(load (string-append ml "rcp.m"»

;-- Create the continuous-systems net and its coordinator

(make-pair continuous-systems 'net)

;-- Define variables for net

(send net set-vars (make-cstate 'input '«U 'C»~)
'output '((Yl '0) (Y2 '0»

)
)

Specify the components for net

(send net build-system-tree net (list eone common rone lone rcp»
;-- Write declaration parts

(write-declare net)

;-- Specify the influencees of the model
(send net set-inf-dig (list (list eone rone lone rcp common)

(list rone rcp)
)

)

Specify the internal couplings

(send net set-int-coup eone rone (list (cons 'B 'A»)
(send net set-int-coup eone lone (list (cons 'B 'A) (cons 'A 'B»)
(send net set-int-coup eone rcp (list (cons 'A 'B»)
(send net set-int-coup eone common (list (cons 'A 'COMMON»)
(send net set-int-coup rone rcp (list (cons 'B 'A» )

;-- Specify the external couplings
(send net set-ext-inp-coup eone (list (cons 'in 'B» (list (cons 'U 'VB»)
(send net set-ext-out-coup rcp (list (cons 'A 'out1» (list (cons 'VA 'Y1»)
(send net set-ext-out-coup lone (list (cons 'A 'out2» (list (cons 'VA 'Y2»)

;-- Close up the model
(send net write-statement)

Fig. 4.11 A continuous-systems model net
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net

eone common r one lone rcp

conertwo

net

~
common

rcp

~

Fig. 4.12 Composition tree of net
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eone

rone

lone

rtwo

•rcp
cone

•
common

rone • • rcp

(a) Influence digraphs
of net

(b) Influence digraph
of rep

Fig. 4.13 Influence-digraph of net

A) File net.lib:
{ VOLTAGE }
model type voltage

cut A (VA / I) B (VB / -I)
main cut C [A B]
main path P <A - B>
terminal V
V = VB-VA

end
{ COMMON }
model type common

main cut COMM'ON (V / .)
V = 0

end
{ COIL }
model type coil

cut A (VA / I) B (VB / -I)
main cut C [A B]
main path P <A - B>
local V
parameter L
V = VA-VB
L*der(I) = V

end

Fig. 4.14 Model net in DYMOBASE
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{ RESISTOR }
model type resistor

cut A (VA / I) B (VB / -I)
main cut C [A B]
main path P <A - B>
local V
parameter R
V = VA-VB
R*I = V

end

{ CAPACITOR }
model type capacitor

cut A (VA / I) B (VB / .)
main cut C [A B]
main path P <A - B>
local V
parameter C
V = VA-VB
C*der(V) = I

end

model type rcp
submodel (resistor) rtwo (20)
submodel (capacitor) cone (10)
cut A (VA / I)
cut B (VB / -I)
main cut C [A B]
path PP <A - B>
connect rtwo:A at cone:A
connect rtwo:B at cone:B
connect A at rtwo:A
connect rtwo:B at B

end

B) File net.sys:

model net
submodel (voltage) eone
submodel common
submodel (coil) lone (10)
submodel (resistor) rone (10)
submodel rcp
input U
output Yl
output Y2
connect eone:B at rone:A
connect eone:B at lone:A
connect eone:A at lone:B
connect eone:A at rcp:B
connect eone:A at common:COMMON
connect rone:B at rcp:A
eone.VB = U
Yl rcp.VA
Y2 = lone.VA

end

Fig. 4.14 Model net in DYMOBASE (continued)
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Loading this coupled model from MBASE into DEVS results in a coupled

model both in DEVS-SCHEME and DYMOBASE. The resultant DYMOLA model

is the same as the one shown in Figure 3.9.

Model net consists of components "rone", "lone", "rcp" (the coupled

model), "eone", and a common-point. The building procedure is explained in Fig-

ure 4.11. It should be noticed that, for model "net" , the method build-system-tree is

used instead of build-composition-tree used in "rcp". Both generate the composition-

tree of the DEVS model. build-system-tree starts building a coupling model in DY-

MOLA, while build-composition-tree starts building a coupling type model.

In Figure 4.12 is the composition-tree of "net", and in Figure 4.13 arethe

influence-digraphs. Comparing the network (Figure 4.8) with its influence-digraphs

(Figure 4.13), it can be seen that the influence-digraphs depict the structural re-

lations of "net" (not associated with ports). Also notice that different influence-

digraph can be chosen as long as they are consistent and not repeated, so the ones

in Figure 4.13 are not the only possible choice.

The outcome of loading model "net" is the generation of a coupled DY-

MOLA model consisting of two files, "net.lib" (library file for model "net") and

"net.sys" (system file for model "net") (Figure. 4.14). With the existence of these

two files and a simulation control model for "net", the executable DESIRE program

can be generated.

4.5 Summary

In this chapter, two classes of continuous system models, as well as their

instance variables and methods, have been introduced. The basic means for the

management of continuous models in DEVS-SCHEME have been created. An ex-

ample, model "net", is used to show the general approach of building a continuous
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coupled model. Appendix 3 provides information about functions and macros for

managing continuous models in DEVS-SCHEME, which are not included in this

chapter.

Even though it seems more involved to generate a coupled DYMOLA model

from DEVS, the significant point is that, in DEVS-SCHEME, continuous models

can be managed and then controlled. Moreover, it will be discussed in the next

chapter that the user's work for generating a continuous coupled model will be

considerably reduced by the System Entity Structure approach.
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CHAPTER 5

THE SYSTEM ENTITY STRUCTURE MANAGEMENT

OF CONTINUOUS SYSTEM MODELS

5.1 Introduction

A brief introduction of the System Entity Structure (SES) was given in

Chapter 2, and the basic means for handling continuous models in DEVS-SCHEME

was discussed in Chapter 4. In this chapter, a more detailed discussion of SES and

its extension to the management of continuous models is being presented.

As stated in Chapter 2, the system entity structure is a knowledge repre-

sentation scheme. While models possess the behavior knowledge of a system, the

system entity structure holds the structural knowledge of a system. Furthermore,

the system entity structure organizes the models in model bases in a systematic

manner and provides means for retrieving and (re)using these models.

SES is a labeled tree with attached variable types. It satisfies the following

axioms (Zeigler, 1984, 1989-b)

"a. uniformity: Any two nodes which have the same labels have identical attached

variable types and isomorphic subtrees.

b. strict hierarchy: No label appears more than once down any path of the tree.

c. alternating mode: Each node has a mode which is either 'entity', 'aspect',

or 'specialization'; if the mode of a node is entity then the modes of its

successors are aspect or specialization, if the mode of a node is aspect or

specialization, then the modes of its children are entity. The mode of the

root is entity.
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d. valid brothers: No two brothers have the same label.

e. attached variables: No two variable types attached to the same item have the

same name.

f. inheritance: every entity in a specialization inherits all the variables, aspects

and specializations from the parent of the specialization"

The SES is completely characterized by its axioms (Zeigler and Zhang, 1988).

Entity, aspect, and specialization are three kinds of nodes in SES to repre-

sent three types of structural knowledge about a system. An entity node corresponds

to a model component that represents a real world object. The entity can have sev-

eral aspects and/or specializations. An aspect node represents one decomposition

of an entity out of many possibilities. A specialization node is used to represent the

taxonomy of the system being modeled.

As DEVS-SCHEME realizes the DEVS formalism, ESP-SCHEME, underly-

ing DEVS-SCHEME, realizes the SES formalism in the object-oriented environment.

With operations defined in ESP-SCHEME, the creation, pruning and transforma-

tion of an SES are achieved.

Many descriptions of SES, its realization and applications may be found

in Zeigler (1984~1989-b), Rozenblit and Zeigler (1985) Rozenblit (1985), Rozenblit

and Huang (1987), Rozenblit, Sevinc and Zeigler (1986), Kim (1988), Kim, Zeigler

and Zhang (1988), Zeigler and Zhang (1988), Zhang (1988).

5.2 SES Representation of the Knowledge of a System

The simple electrical network "net" (Figure 4.8) is also used here to illus-

trate the SES representation of a system (Figure 5.1). In the SES tree, a single

vertical line represents an aspect node, and a double vertical line represents a spe-

cialization node.
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variables:
(input U)
(output Yl)
(output Y2)
internal couplings:
((source resistor (B A))
(source coil (B A))
(source coil (A B))
(source rcp (A B))
(source common (A COMMON))
(resistor rcp (B A)))

external couplings:

((net source (in U) (B VB))
(rcp net (A outl) (VA Yl))
(coil net (A out2) (VA Y2)))

I
coil

II
coil-spec
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net
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resistor-spec

rone rthree
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I
lone

I
ltwo
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I
resistorl

II
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rone rtwo

variables:

((cut A) (cut B)
(mcut C) (mpath P))
internal couplings:

((resistorl capacitor (A A))
(resistorl capacitor (B B)))

_ external couplings:

((rcp resistorl (A A) (0 0))
(resistor! rcp (B B) (00»)

)

I
capacitor

II
capacitor-spec

JL
cone

I
ctwo

Fig. 5.1 The SES tree of net
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In this example, the root entity is "net" and it has an aspect called phy-

dec (short for physical decomposition). "net" is decomposed into five parts, i.e.,

"source", "common (point)", "resistor", "rcp" (parallel resistor and capacitor), and

"coil". "source" is a generic type of the special types "voltage (source)" and "cur-

rent (source)". "voltage" and "current" have their own distinctive attributes and

inherit all the attributes (variables and structures) that "source" has. "voltage"

and "current" are in turn the generic types with their specializations voltage-spec

and current-spec, which are specialized into "eone", "etwo" and "ione", "itwo", re-

spectively. The entity "rcp" has an aspect rcp-dec, specifying that it consists of

"resistor!" and "capacitor", which are all generic types specialized into specific en-

tities. "resistor" and "coil" are also generic types with entities "rone", "rthree" and

"lone", "ltwo", respectively.

The coupling relationship defines how the entities (models) communicate

with each other. Since aspects define the hierarchical decomposition of a system,

the coupling relationship must be associated with aspects. In the example of the

SES tree, it is shown that coupling relations are defined with the aspect nodes.

Specialization is a powerful way to represent many different variations of

the same object. By specifying specializations, the SES organizes all possible alter-

natives of a system. The inheritance ensures that the specific individuals have the

same coupling specification as their parents have.

The process pruning traverses the SES tree and selects one alternative

among all according to the design objectives. A pruned entity structure (the one

produced after pruning) is defined as an SES without specializations and with at

most one aspect for each entity.

The creation of this SES tree in DEVS-SCHEME will be shown after dis-

cussing the operations for constructing an SES in the coming section.
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5.3 Constructional Operations for the SES

The SES in ESP-SCHEME is realized by a module named entity-structure

(Figure 5.2). A module is a package of local variables and operations. items-list

and branches-list are main variables representing the tree structure of the SESe The

variable current-item stands for the current node in the tree. Each item in the

items-list is a structure (Figure 5.3), representing a node in the tree. Each branch

in the branches-list is an ordered pair of items, specifying a node and its parent.

Basic operations for the user to construct an SES are set-current-item, add-item,

and add-coupling. Explanations and usages of these operations will be illustrated

through an example. Other operations of constructing an SES for different classes

of models can be found in Kim (1988) and Zeigler (1989).

As shown in Figure 5.3, the slots (fields) of an item structure are:

1. name: the name of a node;

2. type: the type of a node; this can be entity, aspect, or specialization (Section

5.1);

3. coupling: coupling relations associated with a node;

4. priority-list: sets up the priority of the node's children to deal with the situation

that they can simultaneously send external events to their parent node.

The fields sub-type, muli-coup-tupe, and num-mult-children, which are related to

the kernel-models (Appendix 1) will not be explained here. Interested readers are

referred to Kim (1988) and Zeigler (1989).

Two new slots, variable and em-type (shown italized in Figure 5.3) have been

added to the structure item. Slot variable specifies the variables to be declared in

DYMOLA models. Since there are two kinds of coupled DYMOLA models, a type



ENTITY -STRUCTURE
set-current-item ~

items-list
add-item ~

delete-item
~ branches-list

add-coupling

current-item? current-item~

87

Fig. 5.2 Module entity-structure

ITEM

name

priority-
list

sub-type

Fig. 5.3 Structure of item
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model and a non-type model (Chapter 3 and Chapter 4), slot cm-type declares to

which of the two a continuous coupled model in DYMOLA belongs.

Corresponding to the modified structure of an item, two new constructional

operations, add-variable and set-c-system-type have been added to the original op-

erations.

set-c-system-type - ENTITY-STRUCTURE
set-current-item

items-list
add-item

add-coupling -
add-ext-coup branches-list

add-variable
current-item

•
•
•

Fig. 5.4 Extended module of entity-structure

couplings, i.e.,

Originally, the add-couple was used to declare both internal and external

(add-couple e:example 'nodel 'node2 'out 'in),

where example is the name of the SES with the required prefix e:. nodel and node2

are a pair of nodes; out is a port of nodel, and in is a port of node2. The difference
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between the internal and external coupling can be distinguished by the existence of

a parent node in the pair. However, models of the class continuous-systems treat

the external coupling differently from the models of class digraph-models (Chapter

4). The operation add-ext-coup has been introduced to specify the external coupling

relationship for continuous-systems models. Figure 5.4 depicts the extended module

of entity-structure.

Shown in Figure 5.5 is the realization of the SES of "net" (Figure 5.1) in

DEVS-SCHEME. By first using make-entstr, the object "e:net" and the root entity

"net" are created. The current item is now "net". At the root entity, cm-type is set

to be system by set-c-system-type. This means that the model being built is not a

type model. Then an aspect node called phy-dec is added by add-item. Operation

add-item adds a new node to the tree, one parameter of this operation specifying

the type of the node, the other giving a name to the node. set-current-item moves

the pointer to a node. Notice that the pointer is moved to phy-dec first, then five

new entity nodes of type ent, "source", "common", "resistor", "coil" and "rcp" , are

added to this node. A tree structure is built by using set-current-item and add-item

repeatedly. Also notice that this tree must satisfy the axioms of the SES (Section

5.1).

As mentioned in the previous section, coupling specifications are associated

with aspect nodes. Thus, adding couplings requires the current item be set to

an aspect node first. The coupling specifications are accomplished by add-couple

(for internal) and add-ext-coup (for external). The variables to be declared in the

DYMOLA model are also added at the aspect node. Since these variables belong

to the coupled model, they should be added in by add-variable before the system is

decomposed.
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;-- Entity Structure for NET

(make-entstr 'net)
(set-c-system-type e:net 'system)

(add-item e:net asp 'phy-dec)
(set-current-item e:net 'phy-dec)
(add-item e:net ent 'source)
(add-item e:net ent 'common)
(add-item e:net ent 'resistor)
(add-item e:net ent 'coil)
(add-item e:net ent 'rcp) ;rcp is a coupling model
;-- for source
(set-current-item e:net 'source)
(add-item e:net spec 'source-spec)
(set-current-item e:net 'source-spec)
(add-item e:net ent 'voltage)
(add-item e:net ent 'current)

;-- for voltage
(set-current-item e:net 'voltage)
(add-item e:net spec 'voltage-spec)
(set-current-item e:net 'voltage-spec)
(add-item e:net ent 'eone)
(add-item e:net ent 'etwo)

;-- for current
(set-current-item e:net 'current)
(add-item e:net spec 'current-spec)
(set-current-item e:net 'current-spec)
(add-item e:net ent 'ione)
(add-item e:net ent 'itwo)
;-- for resistor
(set-current-item e:net 'resistor)
(add-item e:net spec 'resistor-spec)
(set-current-item e:net 'resistor-spec)
(add-item e:net ent 'rone)
(add-item e:net ent 'rthree)
;-- for coil
(set-current-item e:net 'coil)
(add-item e:net spec 'coil-spec)
(set-current-item e:net 'coil-spec)
(add-item e:net ent 'lone)
(add-item e:net ent 'ltwo)
;-- for rcp
(set-current-item e:net 'rcp)
(add-item e:net asp 'rcp-dec)
(set-current-item e:net 'rcp-dec)
(add-item e:net ent 'resistor1)
(add-item e:net ent 'capacitor)

Fig. 5.5 The SES of model net
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(set-current-item e:net 'resistor1)
(add-item e:net spec 'resistor1-spec)
(set-current-item e:net 'resistor1-spec)
(add-item e:net ent 'rone)
(add-item e:net ent 'rtwo)

(set-current-item e:net 'capacitor)
(add-item e:net spec 'capacitor-spec)
(set-current-item e:net 'capacitor-spec)
(add-item e:net ent 'cone)
(add-item e:net ent 'ctwo)

;-- Coupling and Variable specifications
;-- for NET
(set-current-item e:net 'phy-dec)

;-- Internal coupling

(add-couple e:net 'source 'resistor 'B 'A)
(add-couple e:net 'source 'coil 'B 'A)
(add-couple e:net 'source 'coil 'A 'B)
(add-couple e:net 'source 'rcp 'A 'B)
(add-couple e:net 'source 'common 'A 'COMMON)
(add-couple e:net 'resistor 'rcp 'B 'A)
;-- External coupling

(add-ext-coup e:net 'net 'source 'in 'B 'U 'VB)
(add-ext-coup e:net 'rcp 'net 'A 'out1 'VA 'Y1)
(add-ext-coup e:net 'coil 'net 'A 'out2 'VA 'Y2)
;-- Variable

(add-variable e:net 'input 'U 'C»~
(add-variable e:net 'output 'Y1 'C»~
(add-variable e:net 'output 'Y2 'C»~
;---- for RCP
(set-current-item e:net 'rcp-dec)
(add-couple e:net 'resistor1 'capacitor 'A 'A)
(add-couple e:net 'resistor1 'capacitor 'B 'B)
(add-ext-coup e:net 'rcp 'resistor1 'A 'A '() 'C»~
(add-ext-coup e:net 'resistor1 'rcp 'B 'B '() 'C»~
(add-variable e:net 'cut 'A '(VA / I»
(add-variable e:net 'cut 'B "(VB / .)")
(add-variable e:net 'mcut 'c "[A B]")
(add-variable e:net 'mpath 'p "<A - B>")

END --

Fig. 5.5 The SES of model net (continued)
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The SES of "net" (Figure 5.1 and Figure 5.5) organizes all the knowledge

about the electrical network "net". The "net" shown in Figure 4.8 is one possible

realization of the SES which can be generated by pruning the SES.

5.4 SES Organization of Model Bases

The SES representation of a system was illustrated by the example "net". It

has been shown that the SES provides means to organize all structural knowledge

about a system. The composition of a model using the SES approach requires

that the leaf entities in the tree, related to the real atomic models, must be built

previously and reside in model bases. Two model bases, MBASE and DYMOBASE,

were introduced in the previous chapters. These bases store the continuous DEVS

and DYMOLA models in such a way that the DEVS models point to the DYMOLA

models and have the declarative knowledge of the DYMOLA models. Besides these

two model bases, there are yet other knowledge bases, ENBASE, DEBASE, and

TRAJECT, in the knowledge based modeling and simulation environment.

Here are some explanations of all the knowledge bases mentioned above:



1. ENBASE

2. MBASE:
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: the entity structure base. All entity structure files

are in this data base. The names of these files are

xx.s (an entity structure source file),

xx.e (a compiled entity structure file),

and xx.p (a pruned entity structure file).

the model base. The DEVS model files xx.m are

stored in this data base.

3. DYMOBASE: the DYMOLA model base. It stores the DYMOLA

files The file names are:

xx. (a model file with no extension),

xx.lib (a library file for a coupled model),

xx.sys (a coupled model file which needs its

model library be loaded first),

and xx.ct (a simulation control model file)

4. DEBASE: the DESIRE model base. The executable DESIRE

files xx.lst are saved in this data base.

5. TRAJECT: the trajectory base. The resultant simulation

trajectories with file names like xx.tr are saved

in this data base.

These bases are all subdirectories of a directory named DEVS.

With the existence of the component models in MBASE and DYMOBASE,

effective management and manipulation of these models is necessary for them being
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used in many different systems. Also a proper tool is desired to organize these

model bases. Operations performed on a once constructed SES, as presented in the

following section, provide approaches to organizing information among these model

bases as well as to synthesizing, managing and manipulating the (re)usable models

in the model bases.

5.5 Operations on a Constructed SES Tree

5.5.1 General Procedures

Once an SES tree file is set up (Figure 5.5), it is saved in ENBASE with a

file name such as "net.s". The command (load-ents "net.s") searches the file "net.s"

in ENBASE and loads it into the working memory. The command save-entstr will

save the compiled SES, pruned or complete, into ENBASE. A compiled complete

SES is saved with a file name, e.g., "net.e". A pruned SES is saved with a file name

like "net-a.p", "net-b.p", etc., where "-a" and "-b" denote different pruned versions

(different choices). load-entstr loads the compiled SES, pruned or complete, into

the working memory. For example, [load-entstr e:net) loads the file "net.e", and

(load-entstr p:net-b) loads the file "net-b.p". The procedure print-entstr prints out

the entity structure on the screen, for instance, (print-entstr e:net) or [print-entstr

p:net-b).

5.5.2 Pruning: Generating Alternatives

An operation called prune can be applied to a complete SES to generate

alternatives. pruning traverses the SES in the depth-first manner, interactively

querying the user to select one entity if there is more than one choice under a

specialization. It continues until all leaf entities have been visited. An example of

pruning the SES tree net is shown in Figure 5.6.
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1. (load-entstr e:net)
2. (prune e:net)

give extension for pruned-entstr name :
3. a

select starting entity from the following:
(CTWO CONE RTWO CAPACITOR RESISTOR1
LTWO LONE RTHREE RONE ITWO lONE ETWO EONE CURRENT
VOLTAGE RCP COIL RESISTOR
COMMON SOURCE NET)

4. net
working from entity NET
make this a leaf? (y/n)
5. n

select an aspect from the following: (PHY-DEC)
aspect PHY-DEC selected
working from entity SOURCE
select a specialization from the following: (SOURCE-SPEC)
specialization SOURCE-SPEC is selected
select an entity from the following: (VOLTAGE CURRENT)

6.voltage
entity VOLTAGE from specialization SOURCE-SPEC selected
working from entity VOLTAGE
select a specialization from the following: (VOLTAGE-SPEC)
specialization VOLTAGE-SPEC is selected
select an entity from the following: (EONE ETWO)

7. eone
entity EONE from specialization VOLTAGE-SPEC selected
working from entity COMMON
working from entity RESISTOR
select a specialization from the following: (RESISTOR-SPEC)
specialization RESISTOR-SPEC is selected
select an entity from the following: (RONE RTHREE)

8. rone
entity RONE from specialization RESISTOR-SPEC selected
working from entity COIL
select a specialization from the following: (COIL-SPEC)
specialization COIL-SPEC is selected
select an entity from the following: (LONE LTWO)

9. lone
entity LONE from specialization COIL-SPEC selected
working from entity RCP
make this a leaf? (y/n)

10. n
select an aspect from the following: (RCP-DEC)
aspect RCP-DEC selected
working from entity RESISTOR1
select a specialization from the following: (RESISTOR1-SPEC)
specialization RESISTOR1-SPEC is selected
select an entity from the following: (RONE RTWO)

11. rtwo
entity RTWO from specialization RESISTOR1-SPEC selected

Fig. 5.6 Pruning the SES to construct one choice of net
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working from entity CAPACITOR
select a specialization from the following: (CAPACITOR-SPEC)
specialization CAPACITOR-SPEC is selected
select an entity from the following: (CONE CTWO)

12. cone
entity CONE from specialization CAPACITOR-SPEC selected
save the pruned entity structure? (y/n)

13. y
Pruned entstr P:net-a made.

Fig. 5.6 Pruning the SES to construct one choice of net

(continued)

In this example, line 3 gives the extension of a pruned entity structure

to denote one of the many possible choices. It is also shown in the example that

whenever there is more than one choice, the user is asked to make a decision, e.g.,

line 6, 7, 8, etc. At last, the pruned entity structure is saved in ENBASE by the

user answering y(es) (line 13).

It is seen that the purpose of the modeler directs the pruning procedure.

The pruned SES tree is called a pure entity structure, in which each entity node has

no more than one aspect and no specializations. The resultant tree in this example

represents the specific net depicted in Figure 4.8. This pure entity structure is

printed by [print-entstr p:net-a) as shown in Figure 5.7.

Currently, the pruning choices are made by the user. It is expected that

rules can be associated with the entity structure and the automatic pruning will be

realized by the help of a rule-based expert system. Work is being done to integrate
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[5] (print-entstr p:net-a)
-ENT : NET
--ASP : PHY-DEC

,:::::coupling -> «LONE NET (A . OUT2) (VA. Y2» (RCP NET (A
. OUT1) (VA. Yl» (NET EONE (IN. B) (U . VB» (RONE RCP (B . A) (» (EONE
COMMON (A . COMMON) (» (EONE RCP (A . B) (» (EONE LONE (A . B) (» (EONE
LONE (B . A) (» (EONE RONE (B . A) (»)

,:::::variable -> «OUTPUT Y2 (» (OUTPUT Yl (» (INPUT U (»)
---ENT EONE
---ENT COMMON
---ENT RONE
---ENT LONE
---ENT RCP
----ASP : RCP-DEC

,:::::coupling -> «RTWO RCP (B . B) «») (RCP RTWO (A . A) «»)
(RTWO CONE (B . B) (» (RTWO CONE (A . A) (»)

,:::::variable -> «MPATH P <A - B» (MCUT C [A B]) (CUT B (VB /
.» (CUT A (VA / I»)
-----ENT : RTWO
-----ENT : CONE
end of display
o

Fig. 5.7 One pruned entity structure for net

[6] (transform p:net-a)
Do you want to continue the transformation of the models

-- to get the executable continuous system simulation files? (y/n)
y

root-co-ordinator: R:NET
-model: NET---> processor: C:NET
--model: EONE---> processor: S:EONE
--model:. COMMON---> processor: S:COMMON
--model: RONE---> processor: S:RONE
--model: LONE---> processor: S:LONE
--model: RCP---> processor: C:RCP
---model: RTWO---> processor: S:RTWO
---model: CONE---> processor: S:CONE============= #<ENVIRONMENT>

Fig. 5.8 The composition tree net built by transform
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a rule base system assisting in the pruning process (Rozenblit and Huang, 1987;

Huang, 1987).

5.5.3 Transform: SES Approach to Building Continuous-systems Models

The operation transform is applied only to a pure entity structure. trans-

form traverses the pruned entity structure from the top of the tree and calls upon

a retrieve processor to search for a model of the current entity. A model is used if

it is found, and the transformation of its subtree is aborted. Otherwise, the trans-

formation continues. A construct-continuous-systems procedure will be invoked if

the model of a non-leaf node cannot be found in the working memory, MBASE or

ENBASE. In this way, a hierarchical continuous-systems model is constructed in the

working memory, which is identical to the model built by the procedure discussed

in Section 4.4.3.

In summary, the transformation does the following for continuous-systems

models:

a. It constructs the DEVS continuous-systems model.

b. For a non-type model, it retrieves (or, if its coupled type submodels do not

exist then constructs) the coupled type submodels needed for this model,

collects all of them into the library file of this model, and saves this library

file into DYMOBASE.

c. It constructs the corresponding DYMOLA model file and saves it into DY-

MOBASE.

d. It interactively asks whether the user wishes to continue the transformation to

obtain an executable DESIRE program. If the answer is yes, transform will
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-- CONTINUOUS SYSTEM net
STATE lone$I cone$V
DER dloe$I dcoe$V
OUTPUT Y1 Y2
INPUT U
PARAMETERS and CONSTANTS:

L=l
rtwo$R=2
C=l
rone$R=l
-- INITIAL VALUES OF STATES:
lone$I=O
cone$V=O

TMAX=15 I DT=O.Ol I NN=256
scale=l
XCCC=l
label TRY
drunr I if XCCC<O then XCCC=-XCCC I scale-2*scale I go to TRY

else proceed
DYNAMIC
U = sin(t)
-- Submodel: common
coon$V ,.0
-- Submodel: net
eoe$VA - coon$Veoe$VB ,.U
loe$VA '"'eoe$VB
roe$VA ,.loe$VA
rcp$VB ,.coon$V
-- Submodel: rcp
coe$VB '"rcp$VB
-- Submodel: rcp::cone
coe$VA = cone$V + coe$VB
-- Submodel: rcp
rto$VA = coe$VA
rcp$VA = rto$VA
-- Submodel: net
roe$VB = rcp$VA
-- Submodel: rone
rone$V ,.roe$VA - roe$VB
rone$I ,.rone$V/rone$R
-- Submodel: net
eone$I = lone$I + rone$I
-- Submodel: eone
eone$V = eoe$VB - eoe$VA
-- Submodel: net
loe$VB = rcp$VB
-- Submodel: lone
lone$V = loe$VA - loe$VB
d/dt lone$I '"lone$V/L

Fig. 5.9 DESIRE program for net
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-- Submodel: rcp
rto$VB = coe$VB
-- Submodel: rcp: :rtwo
rtwo$V = rto$VA - rto$VB
rtwo$I = rtwo$V/rtwo$R
-- Submodel: net
rcp$I = rone$I
-- Submodel: rcp
cone$I = rcp$I - rtwo$I
-- Submodel: rcp::cone
d/dt cone$V = cone$I/C

Submodel: net
Yl = rcp$VA
Y2 = loe$VA
OUT
dispt Yl, Y2
/--
/PIC 'net.PRC
/--

Fig. 5.9 DESIRE program for net (continued)

call on DYMOLA and execute a DYMOLA batch file which has been gener-

ated during the transformation. Finally, an executable DESIRE program is

generated and stored in DEBASE.

After all this work, transform creates a root-coordinator for the root entity and

initializes it to the root entity's co-ordinator.

Figure 5.8 shows the composition tree generated by the transformation of

the pruned entity structure "p:net-a". Figure 5.9 presents the generated DESIRE

program for "net".

It has been shown that there are two methods to build a continuous-systems

model: the bottom up method discussed in Chapter 4, and the top down approach

using the SES. The SES, a knowledge representation scheme, reduces the mod-

eler's amount of work significantly. More important, it systematically organizes the
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knowledge of a system and serves as an effective tool to manage information of the

system among the model bases.

5.5.4 Simulation from the SES

The pruned entity structures are stored in ENBASE, for instance file "net-

a.p". Simulating the model net directly from this pruned SES needs first (load-

entstr p:net-a), then (transform p:net-a). The command (run p:net-a) will execute

DESIRE, in which the user loads the program file "net-a.lst" and types "run" to

simulate. The required simulation result, which was specified in the simulation

control model of DYMOLA, will be saved in the TRAJECT data base.

5.5.5 Some Utilities to Simplify the Use of the SES

The simulation of a laboratory in a Space Station managed by robots re-

quires that the continuous simulation results can be directly mapped into the DEVS

model in a desired way. This can be achieved by assigning appropriate internal tran-

sition, external transition, and time advance functions to the DEVS models.

Some useful macros are provided in this subsection to facilitate the genera-

tion of a DEVS (discrete event) model that incorporates the continuous simulation

results. These macros help to determine a time-window, which is selected by exe-

cuting various continuous simulation runs using different parameter values and/or

initial conditions, and/or disturbances. The time-windows concept employed by

Zeigler (1989-a) in the event-based control is explained briefly in Appendix 5.

The macro get-p-time runs a continuous simulation from a pruned entity

structure and returns its process time. This time information is also saved in a

model state p-time.
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qet-p-list runs a continuous simulation from a pruned entity structure and

returns the parameter (value) list and process time. The parameter list and the

time information are also saved in a model state p-list.

get-p-table runs series of simulations from a pruned entity structure and

returns a table of parameter lists and simulation times of each simulation run. This

table of parameter lists and simulation times is also saved in a model state p-table.

get-p-window runs series of simulations from a pruned entity structure and

returns a time-window. The table of parameter lists and simulation times is saved

in a model state p-table.

States p-iime, p-list, and p-table are generated when the corresponding

macros are called. When calling a macro, the user has to specify one of the models

on the pruned entity structure tree, in which these states can be stored.

A system can be simulated by different simulation requirements. The con-

ditions are provided in different simulation control models of the same system.

Various simulation control models are distinguished by a numbered suffix. For in-

stance, "net.1", "net.2", etc. While calling these macros, the user has to specify by

number the simulation control model he/she wants. These macros will select the de-

sired control model and rename it to the file name of the simulation control model,

e.g., "net.ct". The termination condition for the simulation can also be specified in

these macros. This helps a DEVS model, e.g., that of a robot, to control the real

simulation in DESIRE.

The time-windows information generated by use of the above described

macros can then be fed back into the DEVS (discrete event) models to allow DEVS

to perform a qualitatively similar, more highly aggregated discrete event simulation

of the formerly continuous model. Such a simulation can be executed using the
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ENTITY STRUCTURE

.---ENBASE------------~

xxx.s
xxx.e

xxx.p

or load-entstr
load-ents load-entstr

save-entstr
save-entstr

MODEL BASES
r-MBASE--...,

r~xx.m

I
I '-------------'
I
I rDYMOBASr-~
-I~xx.

xxx. lib ~
xxx.sys ~

-DEBAS~t:-------,
xxx.1st ~

TRAJECTOR¥--

xxx.tr~-----,

run

retrieve

restart
or

get-p-window

WORKING MEMORY

,

ENTSTR')Prune PRUNED
ENTSTR

ESP-SCHEME

1

WORKINGMODELS:
I

atomic-models
trensrorm r-e« continuous-models

~ digraph-models
I ---t-.- continuous-systems
I .
I

DEVS-SCHEME

Fig. 5.10 The knowledge-based modeling and simulation environment
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(restart r:net) command once the transition functions of the atomic discrete models

(coded inside the continuous-models) are defined.

Detailed formats and explanations for each of these macros are provided in

Appendix 4.

5.6 The Extended Knowledge-Based Modeling

and Simulation Environment

The system entity structure and model base together form a knowledge-

based modeling and simulation environment (Kim, 1988; Zeigler, 1989). With the

research done in this thesis, an extended knowledge-based modeling and simulation

environment has been realized, which encompasses the management of continuous

system models. Figure 5.10 visualizes the resultant environment into a picture.

In this environment, the SES organizes models in the model bases; pruning

produces a desired system in ENBASEj trans! orm converts the pruned SES into

a coupled DEVS model as well as a hierarchical DYMOLA model, and calls upon

DYMOLA to flatten the hierarchy into a monolithic description, generating a DE-

SIRE program; finally, run executes the DESIRE program which generates time

histories to be stored in the trajectory base. Several macros are also provided to

assist in simulating a continuous system model directly from a pure entity structure

and mapping the time information into DEVS models.
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CHAPTER 6

GENERATING TIME- WINDOWS FOR

EVENT-BASED INTELLIGENT CONTROL

In designing a simulation environment capable of supporting the study of

robot organizations for managing chemical, or similar, laboratories aboard Space

Station Freedom, a thorough study of the problems to be encountered in assigning

the responsibilities of managing a non-life-critical, but mission-valuable, process to

an organized group of robots is needed. For instance, handling fluids in orbit will

be essential to many experiments being planned in manufacturing and biotechnol-

ogy. Therefore, fluid handling in microgravity has been chosen as the focus of the

laboratory environment (Zeigler, Cellier and Rozenblit, 1988).

In the project, a robot model consists of three parts: a motion-system, a

sensory-system, and a cognition-system. The cognition-system contains one selector

and several Model-Plan-Units (MPUs). The selector is a controller which controls

MPUs. MPUs are task specialists which are activated under the appropriate cir-

cumstances (Zeigler, 1989-c). For instance, one MPU is specialized for the task

of fluid handling. The instruments needed are a pressurized bladder bottle and a

syringe (Sarjoughian, 1989). To monitor and thus control the process, the robot

has to have knowledge about certain states of the model of the bottle. In order to

model the robot's recognition of the process, several models of the same bottle are

needed. These models are related by abstraction (Zeigler, 1989-c).
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Figure 6.1 shows that a MPU is decomposed into two parts, an "operator"

and a "diagnoser". There are three models of the bottle: "btl-e", "btl-o", and "btl-

d", for the fluid handing MPU. "btl-e" is the bottle model external to the MPU,

representing the real bottle. Since the simulation of the process is continuous, "btl-

e" is an abstraction of the model bottle in DYMOBASE. "btl-o" is the operational

model of the bottle, similar to the way that a human being views a bottle being

operated on. "btl-d" is the bottle model to be diagnosed, mimicking the way that

a human being checks the states of the bottle when something abnormal happens.

"btl-o" and "btl-d" are different abstractions from "btl-e" (Zeigler, 1989-c).

I
btl-o

I
diagn

I
btl-d

IMrU
mpu-dec

I

blt-e

I
oper

I
operldec

I
contro 1

Fig. 6.1 SES for testing a bottle handling mpu

The application to be explained in this chapter demonstrates how the con-

tinuous models for the fluid handling process are organized and manipulated in the

modeling and simulation environment, and how the continuous simulation results

of the fluid handling process are mapped into a DEVS model. Here, time-windows
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will be generated from the series of simulations and will be referred to by the DEVS

model "btl-e".

6.1 The Fluid Handling System with Experimental Frame

The model of a fluid handling process operated by a robot aboard the Space

Station Freedom consists of a model of the physical equipment, and the experimental

frame operating on that equipment (Section 2.2).

The equipment consists of a syringe (Figure 6.2) and a pressurized bladder

bottle (Figure 6.3). Since air/liquid interfaces are not allowed under microgravity

conditions (unless they are controlled by surface tension), standard earth-bound

containers, such as beakers, cannot be used. The bottle, a space adapted "beaker",

contains an inflatable bladder. Two processes, filling and emptying, are considered.

Liquid is injected from the syringe into the bladder during the filling process, and

extracted from the bladder into the syringe during emptying. The air pressure

between the bladder and the wall of the bottle indicates the volume of the liquid in

the bladder.

The experimental frame consists of a generator and a transducer. The

robot pushes the plunger of the syringe with velocity V during the filling process,

and pulls the plunger with velocity -V during emptying. The generator generates

this input, i.e., the velocity of the system, and the transducer gathers the outputs

and analyzes the results. Different generators and transducers can be used for

different experimental environments.

Shown in Figure 6.4 is the diagram of the system "fh" (fluid handling

system with experimental frame).
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Fig. 6.3 The pressurized bladder bottle
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FH
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Fig. 6.4 The fluid handling system with experimental frame

FH
I

phy-dec

I
'1

S,S
SYS-dec

I
I

transducer
lL

Isyringe
lL

Ibottle
lL

generator
lL

I I
sb ba

I
bb I I I

gsa taasa ga

Fig. 6.5 The system entity structure of system fh

I
tb
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6.2 The System Entity Structure of FH

The SES of system "fh" is depicted in Figure 6.5, and its textual description

is shown in Figure 6.6. It can be seen that all the component models in the system

have two specializations. For instance, the generator "ga" generates a constant

input to the system while the generator "gsa" generates a sine wave input to the

system.

Figure 6.7 shows the pruned SES of "fh". The original and the pruned

entity structures of "fh" are saved in ENBASE.

6.3 Component Models in the Model Bases

Only those models selected during pruning will be shown in this section.

6.3.1 Models in DYMOBASE

The component model files in DYMOBASE are listed below:

bottle.

syringe.

gen.

transedu.

To simplify the modeling process, it is assumed that the input, the nominal

velocity V of the syringe plunger, is constant (in the pruned SES, "sa" is chosen).

Accordingly, also the nominal flow rate of the syringe is constant during the process.

To demonstrate the flexibility of the modeling scheme of extracting time-windows

from continuous simulation runs which represent variations in simulation time due to

parameter changes of a model, the model allows the actual flow rate into the bottle

(actually into the bladder) to vary in a nonlinear fashion with the fluid volume in

the bladder, with the nominal flow rate that is specified as an input parameter, and
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;-- Entity Structure for FH

(make-entstr 'fh)
(set-c-system-type e:fh 'system)
(ai e:fh asp 'phy-dec)
(sci e:fh 'phy-dec)
(ai e:fh ent 'sys)
(ai e:fh ent 'ef)

;-- for sys
(sci e:fh 'sys)
(ai e:fh asp 'sys-dec)
(sci e:fh 'sys-dec)
(ai e:fh ent 'syringe)
(ai e:fh ent 'bottle)
(sci e:fh 'syringe)
(ai e:fh spec 'syringe-spec)
(sci e:fh 'syringe-spec)
(ai e:fh ent 'sa)
(ai e:fh ent 'sb)

(sci e:fh 'bottle)
(ai e:fh spec 'bottle-spec)
(sci e:fh 'bottle-spec)
(ai e:fh ent 'ba)
(ai e:fh ent 'bb)

;-- for ef
(sci e:fh 'ef)
(ai e:fh asp 'ef-dec)
(sci e:fh 'ef-dec)
(ai e:fh ent 'generator)
(ai e:fh ent 'transducer)

(sci e:fh 'generator)
(ai e:fh spec 'generator-spec)
(sci e:fh 'generator-spec)
(ai e:fh ent 'gal
(ai e:fh ent 'gsa)

(sci e:fh 'transducer)
(ai e:fh spec 'transducer-spec)
(sci e:fh 'transducer-spec)
(ai e:fh ent 'taa)
(ai e:fh ent 'tb)

, Coupling and Variable specifications
, for FH
(sci e:fh 'phy-dec)

;-- Internal coupling
(acp e:fh 'ef 'sys 'OUTl 'IN)
(acp e:fh 'sys 'ef 'OUT 'IN)
;-- External coupling
(acpx e:fh 'ef 'fh 'OUT2 'OUT 'Y2 'Y)

Fig. 6.6 SES file of fh
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;-- Variable
(av e:fh 'output 'Y 'C»~
;---- for sys
(sci e:fh 'sys-dec)
(acp e:fh 'syringe 'bottle 'IOLET 'IOLET)
(acpx e:fh 'sys 'syringe 'IN 'VPORT 'U 'V)
(acpx e:fh 'bottle 'sys 'PPORT 'OUT 'P 'Y)
(av e:fh 'cut 'IN "(U / .)")
(av e:fh 'cut 'OUT "(Y / .)")
;---- for ef
(sci e:fh 'ef-dec)
(acpx e:fh 'ef 'transducer 'IN 'IN 'U 'U)
(acpx e:fh 'generator 'ef 'OUT 'OUTl 'Y 'Yl)
(acpx e:fh 'transducer 'ef 'OUT 'OUT2 'Y 'Y2)
(av e:fh 'cut 'IN "(U / .)")
(av e:fh 'cut 'OUTl "(Yl / .)")
(av e:fh 'cut 'OUT2 "(Y2 / .)11)

;-- END --

Fig. 6.6 SES file of fh (continued)

-ENT : FH
--ASP : PHY-DEC

,:::::coupling -> «EF FH (OUT2 . OUT) (Y2 . Y»
(OUT. IN) (» (EF SYS (OUTl .
((OUTPUT yO»

(SYS EF
IN) 0»

,:::::variable ->
---ENT : SYS
----ASP : SYS-DEC

,:::::coupling ->

,:::::variable ->
-----ENT : SA
-----ENT : BA
---ENT : EF
----ASP : EF-DEC

,:::::coupling ->

«BA SYS (PPORT . OUT) (P . Y» (SYS SA (IN
. VPORT) (U . V» (SA BA (IOLET . IOLET) (»)
«CUT OUT (y / .» (CUT IN (U / .»)

«TAA EF (OUT. OUT2) (Y . Y2» (GA EF (OUT
. OUTl) (Y . Yl» (EF TAA (IN. IN) (U . U»)

,:::::variable -> «CUT OUT2 (Y2/ .» (CUT OUTl (Yl/ .» (CUT
IN (U / .»)

-----ENT : GA
-----ENT : TAA
end of display

Fig. 6.7 Screen printout of the pruned SES of fh

(one alternative)
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with other extraneous influencing factors. Three specific extraneous effects were

considered. One was that the bladder could have a leak, the fluid would then leak

out of the bladder into the space between the bladder and the wall of the bottle.

The second effect involved the angle at which the needle of the syringe penetrated

the diaphragm covering the opening of the bottle. It was thought that if this angle

were very obtuse (the needle of the syringe is almost parallel to the diaphragm), the

needle would not penetrate the diaphragm completely, and therefore, a fraction of

the fluid ejected from the syringe would escape, instead of being injected into the

bottle. The third consideration was that the flow rate of the liquid into the bottle

would slow down when the bladder was almost full. These assumptions might

or might not be realistic; they were included to show the ability of the modeling

scheme to handle situations of this kind. For simplicity, all these effects are included

in the bottle model rather than the syringe model. The effects are implemented by

changing the parameters of the bottle model, as described next.

The model descriptions in DYMOLA are shown in Figure 6.8. All these are

generic models declared as model type (Section 3.2). Text enclosed between curly

braces are comments.

In the model "bottle", it is shown that the ports of the bottle illustrated in

Figure 6.4 are declared as cuts. Variable VOLl denotes the volume of the bladder,

and VOL2 denotes the volume between the bladder and the wall of the bottle.

VOL, a constant, denotes the total volume of the bottle. Fluid can flow in or

out through the port IOLET. The input/output variable at port IOLET is the

nominal flow rate W. The actual flow rate W REAL is influenced by the factors

mentioned above. The effect of the angle on the flow rate is described as a tabular

function T ABl, and that of the fluid volume in the bladder is a tabular function

T AB2 for filling, and another tabular function T AB3 for emptying. The effect of
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{ MODEL BOTTLE }
model type bottle

cut IDLET (W /.)
cut PPORT(P /.)
local VOLl VOL2
local FA FVF FVE RATE WREAL
{ SC = 1 : Filling }
{ SC = 0 : Empty }
parameter R=8.314 M=O.00224 TEMP=273.15 VOL=50.24
parameter ANGLE=90 LR=O SC=l
RATE = VOL1/VOL
func FA = TAB1(ANGLE)
func FVF = TAB2(RATE)
func FVE = TAB3 (RATE)
WREAL = W*FA*(SC*FVF + (l-SC)*FVE) - LR
der(VOL1) = WREAL
VOL2 = VOL - VOLl
P = R*M*TEMP/VOL2*lOOOOOO

end
{ MODEL SYRINGE }
model type syringe

cut VPORT (V / .)
cut IOLET (-W / .)
parameter A=3.14
local VOL=50
W = -A*V
der(VOL) = W

end
{ MODEL GEN }
model type gen
{ SC > 1 : Y > 0 }
{ sc = 1 : Y = 0 }
{ sc < 1 : Y < 0 }

cut OUT(Y /.)
parameter X=5 SC=1.5
Y=sgn(SC-l)*X

end
{ MODEL TRANSOU }
model type transdu

cut IN(U / .)
cut OUT(Y / .)
parameter X
Y=X*U

end

Fig. 6.8 Component models of fh in DYMOBASE
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leakage is described through the variable LR. Values of these tabular functions are

declared in the simulation control model. According to the gas law, the pressure of

the gas is proportional to the mass of the gas and the temperature, and is inversely

proportional to the volume of the gas. The variable P at port P PORT indicates

the pressure between the bladder and the wall which is related to the volume of

the fluid in the bladder. The generator "gen" generates the nominal velocity of

the syringe plunger. The nominal flow rate of the syringe is the product of its

cross-section area and the velocity of its plunger. The transducer "transdu" in our

example simply rescales its input variable which is the pressure P.

A more detailed study of these models could be performed. Modifications

can be made to the individual models, and different types of models can be chosen

without changing the system entity structure.

6.3.2. Models in MBASE

Component model files in MBASE are:

bottle.m

ba.m

syringe.m

sa.m

gen.m

ga.m

transdu.m

taa.m

Figure 6.9 shows their model descriptions in DEVS.



(make-pair continuous-models 'bottle)
(send bottle valid? #t 'C»~
(send bottle set-s (make-state 'sigma ,-

'phase #t
'tflag #t
'tname 'bottle
'cut '«PPORT '(P» (IOLET '(W»)

'parameter '«R 8.314) (M 0.00224) (TEMP 273.15) (VOL 50.24)
(Se 1) (ANGLE 90) (LR 0»

'local '«VOLl 0) (VOL2 'C»~
(FA '0) (FVF '0) (FVE '0)
(RATE' 0»)

)

, MODEL BA --
(if (unbound? bottle)

(load (string-append ml "bottle.m"»)
(send bottle make-new 'ba)
;-- MODEL SYRINGE --
(make-pair continuous-models 'syringe)
(send syringe valid? #t 'C»~
(send syringe set-s (make-state 'sigma ,-

'phase #t
'tflag #t
'tname 'syringe
'cut '«VPORT '(VI.» (IOLET '(-WI.»)
'parameter '«A 3.14»
'local '«VOL 50»)

)

, MODEL SA --
(if (unbound? syringe)

(load (string-append ml "syringe.m"»)
(send syringe make-new 'sa)
;-- MODEL GEN --
(make-pair continuous-models 'gen)
(send gen valid? #t 'C»~
(send gen set-s (make-state 'sigma '

'phase #t
'tflag #t
'tname 'gen
'cut '«OUT '(Y»)
'parameter '«X 5) (Se 1.5»)

)

, MODEL GA --
(if (unbound? gen)

(load (string-append ml IIgen.mll»)
(send gen make-new 'ga)

Fig. 6.9 Component models of fh in MBASE
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;-- MODEL TRANSOU --
(make-pair continuous-models 'transdu)
(send transdu valid? #t '(»
(send transdu set-s (make-state 'sigma'

'phase #t
'tflag #t
'tname 'transdu
'cut '«IN '(U» (OUT '(y»)
'parameter '«X '(»»

)

, MODEL TAA --
(if (unbound? transdu)

(load (string-append ml "transdu.m"»)
(send transdu make-new 'taa)
(send taa change-parameter '«X 0.1»)

Fig. 6.9 Component models of fh in MBASE (continued)

6.4 Getting Time-windows from Simulations of the System

With the existence of a pruned entity structure in ENBASE and the compo-

nent models in MBASE and DYMOBASE, the utility macros introduced in Chapter

5 can be used to manage the continuous simulation and obtain the desired time tra-

jectories.

In this application, different parameter values within the range of normal

operating conditions are assigned to the model "syringe" and the model "bottle".

Time-windows are then determined by the maximum and minimum simulation time

recorded for various values of a model parameter. Two examples are shown in this

section that were used to obtain the time-windows for the filling and emptying

processes.

To make the simulation more efficient, i.e., save the time needed for trans-

forming the pruned entity structure, the parameter changes were specified in the



cmodel
simutime 10
step 0.01
commupoints 100

ctblock
connect 'fh.tr' as output 2
dimension TAB 1[12] ,TAB2[10] ,TAB3[10]
data 0, 25, 45, 80, 85, 90
data 0, 0, 0.2, 0.8, 1, 1
data 0, 0.9, 0.95, 0.99, 1
data 1, 1, 0.9, 0.1, 0
data 0, 0.01, 0.05, 0.1, 1
data 0, 0.1, 0.9, 1, 1
read TABl
read TAB2
read TAB3
dimension Ira[5]
data 0, 0.1, 0.04, 0.06, 0.08
read Ira
dimension angle[5]
angle[l] '"90
angle[2] '"65
for i=3 to 5

angle [i]=abs(ran(O»*30+70
next
for i=l to 5
ANGLE=angle[i]
LR=lra[i]
drun
write #2,ANGLE,LR,t
reset

next
disconnect 2
ctend

outblock
OUT

Fig. 6.10 Simulation control model fh.l
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simulation control model (Figure 6.10). The file name of this simulation control

model is "fh.1". Other simulation control models of the same system were named

"fh.2", "fh.3", etc. When calling the macro get-p-window, a test number is speci-

fied to indicate the particular simulation control model to be used. The macro then

renames the selected test to "fh.ct" which makes it the simulation control model

used during the simulation (Chapter 3). In file "fh.1", array T AB1 specifies the in-

fluence of the angle of the syringe needle on the flow rate into and out of the bottle,

and arrays T AB2 and T AB3 specify the influence that the volume of the liquid in

the bladder has on the flow rate during fillying and emptying. Different values of

parameter LR (leakage rate) are assigned in array Ira. Different values of parameter

ANGLE (angular influence) are randomly generated within the acceptable range

(Monte Carlo technique).

In example 1 (Figure 6.11), the initial conditions and parameters for the

component models of system "fh" are set to meet the requirements of filling. Macro

get-p-window (Chapter 5 and Appendix 4) sets the initial volume of the bladder

to zero, the test number to 1 (file "fh.1" is chosen to be the simulation control

model), and executes five separate simulation runs the parameter values of which

are specified in "fh.L". The simulation terminates when the system output reaches

a value of 2.14E + 6. The system output is the output of "transdu" , which is the

resealed pressure of bottle "ba" (refer to Figure 6.4). The value 2.14E + 6 of the

resealed pressure indicates that the bladder in "ba" is full.
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;-- Get filling time window

(define (example-l)
loading the model into working memory

(if (unbound? ba)
(load (string-append ml "ba.m"»)

(if (unbound? sa)
(load (string-append ml "sa.m"»)

(if (unbound? ga)
(load (string-append ml IIga.mll»)

for filling the generator generates V > 0
(send ga change-parameter '«Se 1.5»)

set the initial volume of liquid in syringe to be full
(send sa change-ic '«VOL 50.24»)

set the parameter se of bottle to be 1 for filling
(send ba change-parameter '«Se 1»)

set the initial condition for VOLl of bottle to be zero and
get time window

(eval '(get-p-window p:fh-a ba '«voll 0»
'(ad lr) 1 5 "fh$Y-2.14E+6"»)

Fig. 6.11 Procedure to get filling time-window

Typing "(example-I)" sets the necessary parameters and initial conditions

for the component models and calls upon the macro. The macro does the trans-

formation and simulation of the pruned entity structure and finally returns the

time-window. The result is shown in Figure 6.12. To get the parameter values of

the model for every simulation and the simulation time, method get-sv can be sent

to model bottle (Figure 6.12).

Example 2 (Figure 6.13) shows the procedures for getting the time-window

of emptying. For emptying, the same system is used without changing the cornpo-

nent models. The initial conditions and some switching parameters have to meet

the emptying conditions. Other parameter changes, which influence the flow rate,

are chosen to be the same as for filling, so that the same simulation control model



[2] (example-l)
(FH ROOT-ASP)
(SYS PHY-DEC FH ROOT-ASP)
(SA SYS-DEC SYS PHY-DEC FH ROOT-ASP)
(BA SYS-DEC SYS PHY-DEC FH ROOT-ASP)
(EF PHY-DEC FH ROOT-ASP)
(GA EF-DEC EF PHY-DEC FH ROOT-ASP)
(TAA EF-DEC EF PHY-DEC FH ROOT-ASP)

Do you want to continue the transformation of the models
-- to get the executable continuous system simulation files? (y/n)
y

root-co-ordinator: R:FH
-model: FH---> processor: C:FH
--model: SYS---> processor: C:SYS
---model: SA---> processor: S:SA
---model: BA---> processor: S:BA
--model: EF---> processor: C:EF
---model: GA---> processor: S:GA
---model: TAA---> processor: S:TAA

Do you want to save another trajectory
besides the basic one ?
(y/n)

n

(3.64 6.97)
[3] (send ba get-sv 'p-table)

«(ANGLE 9.00000E+Ol) (LR O.OOOOOE+OO) 3.64000E+00)
«ANGLE 6.50000E+Ol) (LR 0.1) 6.97000E+00)
«ANGLE 7.00000E+Ol) (LR 0.04) 5.S6000E+00)
«ANGLE 7.00010E+Ol) (LR 0.06) 5.96000E+00)
«ANGLE 7.66445E+Ol) (LR O.OS) 5.06000E+00)

)

Fig. 6.12 Result from extracting filling time-window
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(fh.1) can be used. The simulation terminates when the system output has de-

creased to a value of 1.0125E + 4 (the bladder is now considered empty). Figure

6.14 shows the result, i.e., the returned time-window.

Besides returning the time-window, the macro also produces model files of

the system, simulation files, and trajectory files in DYMOBASE, DEBASE, and

TRAJECT. These results are shown in Figure 6.15, 6.16, and 6.17, respectively.

In this chapter, only the results of the filling process are shown. The emp-

tying process generates similar files.
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;-- Get emptying time window
(define (example-2)

loading the model into working memory
(if (unbound? ba)

(load (string-append ml "ba.m"»)
(if (unbound? sa)

(load (string-append ml "sa.m"»)
(if (unbound? gal

(load (string-append ml "ga.m"»)
for emptying the generator generates V<O

(send ga change-parameter '«SC 0.5»)
set the initial volume of liquid in syringe to be zero

(send sa change-ic '«VOL 0»)
set the parameter SC of bottle to be 0 for empty

(send ba change-parameter '«SC 0»)
set initial conditions as full for VOLl of bottle and get time-window

(eval '(get-p-window p:fh-a ba '«voll 50»
'(ad lr) 1 5 "-fh$Y+l.0125E+4"»)

Fig. 6.13 Procedure to get emptying time-window

[5] (example-2)
(FH ROOT-ASP)
(SYS PHY-DEC FH ROOT-ASP)
(SA SYS-DEC SYS PHY-DEC FH ROOT-ASP)
(BA SYS-DEC SYS PHY-DEC FH ROOT-ASP)
(EF PHY-DEC FH ROOT-ASP)
(GA EF-DEC EF PHY-DEC FH ROOT-ASP)
(TAA EF-DEC EF PHY-DEC FH ROOT-ASP)

Do you want to continue the transformation of the models
-- to get the executable continuous system simulation files? (y/n)
y

root-co-ordinator: R:FH
-model: FH---> processor: C:FH
--model: SYS---> processor: C:SYS
---model: SA---> processor: S:SA
---model: BA---> processor: S:BA
--model: EF---> processor: C:EF
---model: GA---> processor: S:GA
---model: TAA---> processor: S:TAA

Do you want to save another trajectory
besides the basic one ?
(y/n)

n
(1 7.58)

Fig. 6.14 Result from extracting emptying time-window
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Result in DYMOBASE:
(Generation of file "fh.lib", "fh.sys" and coupling type model files "sys.",

"ef. II)
A) File fh.lib
{ MODEL SYRINGE }
model type syringe

cut VPORT (V / .)
cut IOLET (-W / .)
parameter A=3.14
local VOL=50
W = -A*V
der(VOL) = W

end
{ MODEL BOTTLE }
model type bottle

cut IDLET (W /.)
cut PPORT(P /.)
local VOLl VOL2
local FA FVF FVE RATE WREAL
{ SC = 1 : Filling }
{ sc = 0 : Empty }
parameter R=8.314 M=O.00224 TEMP=273.15 VOL=50.24
parameter ANGLE=90 LR=O SC~l
RATE z VOL1/VOL
func FA a TAB1(ANGLE)
func FVF a TAB2(RATE)
func FVE = TAB3(RATE)
WREAL = W*FA*(SC*FVF + (l-SC)*FVE) - LR
der(VOL1) = WREAL
VOL2 = VOL - VOLl
P ~ R*M*TEMP/VOL2*1000000

end
model type sys

submodel (syringe) sa(ic VOL=50.24 )
submodel (bottle) ba
cut IN (U / .)
cut OUT (Y / .)
connect sa:IOLET at ba:IOLET
sa.V = U
Y = ba.P

end
{ MODEL GEN }
model type gen
{ SC > 1 : Y > 0 }
{ sc '" 1 : Y = 0 }
{ sc < 1 : Y < 0 }

cut OUT(Y /.)
parameter X=5 SC=1.5
Y=sgn(SC-l)*X

end

Fig. 6.15 Generated models in DYMOBASE
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{ MODEL TRANSDU }
model type transdu

cut IN(U / .)
cut OUT(Y / .)
parameter X
Y=X*U

end
model type ef

submodel (gen) ga
submodel (transdu) taa(O.1)
cut IN (U / .)
cut OUT1 (Y1 / .)
cut OUT2 (Y2 / .)
taa.U = U
Y2 :.taa.Y
Y1 = ga.Y

end
B) File "fh.sys"
model fh

submodel sys
submodel ef
output Y
connect sys:OUT at ef:IN
connect ef:OUT1 at sys:IN
Y = ef.Y2

end
C) File "sys."
model type sys

submodel (syringe) sa(ic VOL=50.24 )
submodel (bottle) ba
cut IN (U / .)
cut OUT (Y / .)
connect sa:IOLET at ba:IOLET
sa.V = U
Y = ba.P

end
D) File "ef."
model type ef

submodel (gen) ga
submodel (transdu) taa(O.1)
cut IN (U / .)
cut OUT1 (Y1 / .)
cut OUT2 (Y2 / .)
taa.U = U
Y2 taa.Y
Y1 = ga.Y

end

Fig. 6.15 Generated models in DYMOBASE (continued)



Result in DEBASE:
(Generation of file "fh.lst")

-- CONTINUOUS SYSTEM fh

STATE sa$VOL VOLl
-- DER dsaVOL dVOLl
-- OUTPUT fh$Y
-- PARAMETERS and CONSTANTS:
A=3.14
R=8.314
M=0.00224
TEMP=273.15
ba$VOL=50.24
ANGLE=90
LR=O
ba$SC=l
ga$X=5
ga$SC=1.5
taa$X=O.l
-- INITIAL VALUES OF STATES:
sa$VOL=50.24
VOL1=0

TMAX=10 I DT=O.Ol I NN=100
connect 'fh.tr' as output 2
dimension TAB 1 [12] ,TAB2[10] ,TAB3[10]
data 0, 25, 45, 80, 85, 90
data 0, 0, 0.2, 0.8, 1, 1
data 0, 0.9, 0.95, 0.99, 1
data 1, 1, 0.9, 0.1, 0
data 0, 0.01, 0.05, 0.1, 1
data 0, 0.1, 0.9, 1, 1
read TABl
read TAB2
read TAB3
dimension lra[5]
data 0, 0.1, 0.04, 0.06, 0.08
read Ira
dimension angle[5]
angle[l] = 90
angle[2] = 65
for i=3 to 5
angle [i]=abs(ran(0»*30+70

next
for i=l to 5
ANGLE=angle[i]
LR=lra[i]
drun
write #2,ANGLE,LR,t
reset

next
disconnect 2

Fig. 6.16 Generated program in DEBASE
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DYNAMIC
-- Submodel: ef::ga
ga$Y = sgn(ga$SC - l)*ga$X
-- Submodel: ef
Y1 = ga$Y
-- Submodel: fh
sys$U = Y1
-- Submodel: sys
V = sys$U
-- Submodel: sys: :sa
sa$W = -A*V
d/dt sa$VOL = sa$W
-- Submodel: sys
ba$W = -sa$W
-- Submodel: sys::ba
VOL2 = ba$VOL - VOLl
P = R*M*TEMP/VOL2*1000000
func FA = TAB1,ANGLE
RATE = VOL1/ba$VOL
func FVF = TAB2,RATE
func FVE ,.TAB3,RATE
WREAL '"ba$W*FA*(ba$SC*FVF + (1 - ba$SC)*FVE) - LR
d/dt VOLl - WREAL
-- Submodel: sys
sys$Y '"P
-- Submodel: fh
ef$U = sys$Y
-- Submodel: ef
taa$U = ef$U
-- Submodel: ef::taa
taa$Y = taa$X*taa$U
-- Submodel: ef
Y2 = taa$Y
-- Submodel: fh
fh$Y = Y2
OUT
term fh$Y-2.14E+6
/--
/PIC 'fh.PRC
/--

Fig. 6.16 Generated program in DEBASE (continued)
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Result in TRAJECTORY:
(Generation of file IIfh. tr")

9.00000E+01 O.OOOOOE+OO 3.64000E+00
6.50000E+01 1.00000E-01 6.97000E+00
7.00000E+01 4.00000E-02 5.86000E+00
7.00010E+01 6.00000E-02 6.96000E+00
7.66445E+01 8.00000E-02 5.06000E+00

Fig. 6.17 Simulation results in TRAJECT
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CHAPTER 7

CONCLUSIONS

An extended knowledge-based modeling and simulation environment has

been demonstrated in this MS thesis. The management of continuous models in

DEVS-SCHEME is realized to meet the requirements of the modeling and simula-

tion of a robot-managed laboratory aboard Space Station Freedom.

By exploiting DYMOLA, a hierarchical structured continuous modeling

language, it was possible to relate the abstracted DEVS models and the target

continuous simulation language code (in DESIRE) to each other. This enables the

user to switch back and forth between the discrete event and the continuous system

modeling concepts, exploit the advantages of both, and ensure the consistency of

his modeling effort across the barrier between the two modeling methodologies.

The system entity structure organizes all the models at different repre-

sentation levels. Operations on the system entity structure provide a systematic

way to synthesize and prune the system entity structure in accordance with the

user's needs, to automatically generate the continuous system model in DYMOLA,

to produce a continuous simulation program in DESIRE, and finally to execute

the DESIRE simulation program, generate time histories for state and/or algebraic

model variables, and store the time histories in the TRAJECT data base.

DESIRE simulations can be guided to automatically explore a set of param-

eter values, and generate time-windows for use in a subsequent equivalent discrete

event DEVS simulation of the same model.
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An event-based intelligent control can be realized in this knowledge-based

multi-facetted modeling environment. Details can be found in Appendix 5. Thereby,

a continuous process control can be interfaced with a symbolic rea,soning system.

Continuous and discrete event system modeling and simulation can be

merged with AI techniques in this environment.

The following is suggested for future research:

1. Elaboration of DYMOLA to make it a more powerful hierarchical continuous

system modeling tool and simulation language generator (Section 3.4).

2. Realization of the automatic transformation of continuous models into equiva-

lent discrete event models or vice versa, at different levels of the hierarchy,

even at the atomic model level.

3. A more user-friendly interface.
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APPENDIX 1

BRIEF EXPLANATIONS OF SOME CLASSES IN DEVS-SCHEME

Entities: the root class in DEVS-SCHEME, providing basic tools for manipulating

objects in DEVS classes. All classes in DEVS-SCHEME are subclasses of this

class.

Models: subclass of entities, providing basic means for modeling.

Processors: subclass of entities, providing basic means for simulation.

Atomic-models: subclass of models, realizing the atomic level of the DEVS model

formalism (Zeigler, 1984).

Continuous-models: subclass of atomic-models. A continuous-models model is

another level of representation for a real continuous atomic model written in

DYMOLA.

Coupled-models: subclass of models, embodying the hierarchical model compo-

sition constructs of the DEVS formalism.

Digraph-models: subclass of coupled-models, providing ways of specifying a finite

set of explicitly given components with explicitly specified coupling relations.

Methods are available to build the composition-tree and influence-digraph

which encode the external and internal coupling relations respectively.

Continuous-systems: subclass of digraph-models, providing means to manage

continuous coupled models in DEVS.
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Kernel-models: subclass of coupled-models, providing convenient facilities for

constructing models with arbitrary numbers of components, which are all

generated from a prototype, the kernel, and coupled in a uniform manner.

Broadcast-models: subclass of kernel-models. All children of a broadcast coupled

model communicate directly with each other and with the outside world.

Cellular-models: subclass of kernel-models, providing means for coupling of a

fixed or variable set of geometrically located cells, each of which is connected

to other cells in a uniform way.

Hypercube-models: subclass of kernel-models. The number of a hypercube

model is 2 to the order of n, and n is the dimension of the hypercube. Each

child has its cell-position. Both internal and external couplings have to be

specified explicitly, with the external coupling having two choices, broadcast

or origin-only, which specify different coupling strategies.

Controlled-models: subclass of kernel-models, enabling the modeler to impose

centralized control over a class of components in a dynamic fashion.

Simulators: subclass of processors. Simulation in DEVS is done by message

passing. In order to perform simulations, simulators are attached to the

atomic models. The simulators record the time-of-last-event and determine

the time-of-next-event. They receive messages, process them by computing

the transition functions of the associated atomic models, and then response

by sending out messages.

Co-ordinators: subclass of processors. Co-ordinators are assigned to the coupled

models. When a co-ordinator receives a message, it transmits the message

to the processors of its associated coupled model's receivers or to one of its

children, or to its parent, depending on the type of the message.
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Root-co-ordinators: subclass of processors. A root-co-ordinator manages the

overall simulation and is linked to the co-ordinator of the outermost coupled

model.

More details about the definitions given in this Appendix can be found in

Zeigler (1986, 1987, 1989-a).
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APPENDIX 2

METHODS FOR CLASS CONTINUOUS-MODELS

AND CLASS CONTINUOUS-SYSTEMS

A) Methods for Continuous-models:

1. set-sv (vname vvalue): sets the value of vvalue to one of the ind-vars named

vname (inherited from atomic-models).

2. get-sv (vname): gets the value of one of the irul-vars named vname (inherited

from atomic-models).

3. set-type (tf tn): assigns the value of the instance variable tflag as tf and

tname as tn. The value of tf can only be true or false, otherwise an error

message is generated. If the model is neither a type model, nor of a certain

type, tn should be assigned to nil.

4. valid? (tf tn): checks whether this model is valid or not. If the model does not

belong to any type, its counterpart model should exist in DYMOBASE. Or,

if the model is of a certain type, its type model should exist in DYMOBASE.

Otherwise an error message will be displayed.

5. make-new (mname): makes a copy of the original model with a name of

mname.

6. change-parameter (p-list): Changes the value of parameters. p-list is a list

of pairs, each pair containing a parameter-name and the value the parameter

is to assume. It is sufficient to use change-parameter for those parameters

only the values of which need to be altered.
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7. ehange-ie (ie-list): ie-list is a list of pairs, each pair containing a variable-name

and a value of the initial condition to be set. change-ic changes the initial

condition of variables that are declared as local, input, output, terminal, or

that are associated with cuts.

B) Methods for Continuous-systems:

1. make-new (mname): makes a copy of the original model with a name of

mname.

2. change-parameter (p-list): Changes the value of parameters. p-list is a list

of pairs, each pair containing a parameter-name and the value the parameter

is to assume. It is sufficient to use change-parameter for those parameters

only the values of which need to be altered.

3. change-ic (ie-list): ie-list is a list of pairs, each pair containing a variable-name

and a value of the initial condition to be set. change-ic changes the initial

condition of variables that are declared as local, input, output, terminal, or

that are associated with cuts.

4. set-xxx (list), and get-xxx: xxx stands for cut, mcut, path, mpath, node,

parameter, local, terminal, input, or output. The method set-xzx assigns a

list to the field, while get-xxx reads out the current list from the field. The

list consists of pairs of names and values that are associated with the field.

5. build-composition-tree (m list-of-children): establishes the composition-

tree of a type model, showing that the children are component models of

model m. It also sets up a type model m, built from its subcomponents, in

DYMOBASE.

6. build-system-tree (m list-of-children): establishes the composition-tree of a

model showing that the children are component models of model m. It also
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sets up a model, built from its subcomponents in DYMOBASE. The library

of the system will be generated in DYMOBASE.

7. set-inf-dig (list-of-influencees): establishes the influence-digraph. This

method is inherited from digraph-models.

8. set-int-coup (chI ch2 list-of-port-pairs): couples the ports of ch/): with

the ports of ch2, where ch/): and ch2 are children of the coupled model.

Corresponding ports are specified in the list-of-port-pairs. In addition, the

connection relations between submodels in the DYMOLA model are set.

9. set-ext-inp-coup (child list-of-port-pairs list-of-variable-pairs): couples

the input ports of the model with the input ports of its child. In addition,

the relations between the ports will be converted into the DYMOLA model.

Relations between variables associated with these ports will also be set up

in the DYMOLA model if the list-of-variable-pairs is not nil.

10. set-ext-out-coup (child list-of-port-pairs list-of-variable-pairs): cou-

ples the output ports of a child with the output ports of the parent model.

In addition, the relations between the ports will be converted into the DY-

MOLA model. Relations between variables associated with these ports will

also be set up in the DYMOLA model if the list - of - variable - pairs is

not nil.

11. valid? (tf tn): If the user wants to use a coupled (type) model in mbase,

valid? will check wether the coupled DYMOLA (type) model is available or

not. If not, an error message is displayed.

12. set-type-model: starts setting up a coupled type model in DYMOLA.

13. set-system: starts setting up a coupled model in DYMOLA.

14. set-tylist (children): searches among the children for the type models needed

for building a coupled model in DYMOLA.
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15. set-lib (children): sets up the model library in DYMOLA for a model to be

simulated.

16. set-subcomponent (children): sets up submodel statements for the DY-

MOLA model.

17. write-connection (chI ch2 list-of-port-pairs): sets up the connection

mechanism in the DYMOLA model.

18. write-ext-i,np (child list-of-port-pairs list-of-variable-pairs): writes the

external coupling relations/equations for the DYMOLA model.

19. write-ext-out (child list-of-port-pairs list-of-variable-pairs): writes the

external coupling relations/equations for the DYMOLA model.

20. write-statement: closes up a DYMOLA model.



138

APPENDIX 3

FUNCTIONS AND MACROS

IN DEVS-SCHEME FOR MANAGING CONTINUOUS MODELS

A) Functions:

1. (compare-parameter ma mb): compares two models ma and mb of the same

type for common parameters. Common parameters with different values will

be put into the result list.

2. (compare-local ma mb): compares two models ma and mb of the same type

for common local variables. Common variables with different values will be

put into the result list.

3. (write-par plist one fv): writes the parameter list for the submodel statement

into the DYMOLA model, where plist is a list of parameter pairs (name

value) j one indicates if there is just one element in plist; Iv is the name of

the result file.

4. (write-ic iclist fv): writes the initial condition list for the submodel statement

into the DYMOLA model, where iclist is a list of state variable pairs (name

value) j Iv is the name of the result file.

5. (write-subm tname list-of-models fv): writes DYMOLA submodel state-

ments, where tname is a type model name; list-of-models is a list of models

of type truime; Iv is the name of the result file.

6. (write-declare mn): writes the declaration part from the model mn to its

DYMOLA model, where mn is the model name.

7. (to-devs): returns the control to DOS in directory DEVS.
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8. (to-enbase): returns the control to DOS in directory ENBASE.

9. (to-rnbase): returns the control DOS in directory MBASE.

10. (to-dyrnobase): returns the control to DOS in directory DYMOBASE.

11. (to-debase): returns the control to DOS in directory DEBASE.

12. (to-traject): returns the control to DOS in directory TRAJECT.

13. (to-dev): changes the current directory to DEVS.

14. (to-en): changes the current directory to ENBASE.

15. (to-rn): changes the current directory to MBASE.

16. (to-dyrno): changes the current directory to DYMOBASE.

17. (to-des): changes the current directory to DEBASE.

18. (dym-to-des stnarne): transfers a file from DYMOBASE to DEBASE.

19. (des-to-tr-ent stnarne): transfers a file from DEBASE to TRAJECT.

20. (create-dyrnola- batch pp): creates a DYMOLA batch file for automatically

running DYMOLA on system pp (generated from the pruned SES) in DEVS.

21. (save-trajectory): saves trajectories into TRAJECT.

22. (dyrnola): runs DYMOLA.

23. (dyrnola stnarne): runs DYMOLA in batch on system stname.

24. (desire): runs DESIRE.

25. (run stnarne): executes a DESIRE simulation for a pruned entity structure

system stname.

B) Macros:

1. (write-state rnnarne snarne): writes the variables from the continuous-

systems (DEVS) model to its DYMOLA counterpart, where mname is the

name of a model; sname is the name of the model's state variable.
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C) Other Library Functions:

1. (file-clear fn): clears a file.

2. (file-append fresult fin): appends the file with the file variable fin to the file

with the file variable fresult.

3. (member? a Is): checks wether a is in the list Is.

4. (atomize Is): flattens out the hierarchical list Is.

5. (purge Is): purges a list so that elements which appear several times in the list

are eliminated except for one single occurrence.

6. (differ Is1 Is2): returns a list of the different elements of the two lists Is1 and

ls2.

7. (string->number string): converts a character string representing a number

with or without expononential form into this number.
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APPENDIX 4

MACROS TO MANIPULATE SYSTEM ENTITY STRUCTURES

1. (get-p-time ename mname ic par ith-test tc): returns the simulation time

from running a continuous simulation of a pure entity structure. It first

transforms the pruned entity structure, generating a DYMOLA model and

the corresponding DYMOLA command file, then runs DYMOLA in batch

mode and produces a DESIRE program. Finally, it executes the DESIRE

program. The simulation results are saved in the TRAJECT base. It also

generates a state variable p-time for model mname and saves the simulation

time in this state variable,

where

ename: name of the entity structure;

mname: name of a model;

sc: list of pairs of initial conditions. Each pair includes the name of a variable and

its initial value;

par: list of pairs of parameters or list of parameter names. If pairs are specified,

each pair includes the name of a parameter and its value;

ith-test: a number, specifies a particular simulation condition;

tc: termination condition for the simulation, or list of simulation termination con-

ditions if more than one. If the termination condition has already been

specified in the simulation control model then tc is nil.

2. (get-p-list ename mname ic par ith-test tc): returns a list of parameters

and the simulation time from running a continuous simulation of a pure
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entity structure. It first transforms the pruned entity structure, generating

a DYMOLA model and the corresponding DYMOLA command file, then

runs DYMOLA in batch mode and produces a DESIRE program. Finally,

it executes the DESIRE program. The simulation results are saved in the

TRAJECT base. It also generates a state variable p-list for model mname

and saves the simulation time in this state variable,

where

ename: name of the entity structure;

mname: name of a model;

z.c: list of pairs of initial conditions. Each pair includes the name of a variable and

its initial value;

par: list of pairs of parameters or list of parameter names. If pairs are specified,

each pair includes the name of a parameter and its value;

ith-test: a number, specifies a particular simulation condition;

tc: termination condition for the simulation, or list of simulation termination con-

ditions if more than one. If the termination condition has already been

specified in the simulation control model then ic is nil.

3. (get-p-table ename mname ic par ith-test times tc): returns a table

of lists of parameters and their simulation times from running several con-

tinuous simulations of a pure entity structure. This macro helps to study

the process of running simulations with different parameters. The values of

the parameters are generated in the simulation control model. They can be

values taken from an array, or generated from functions. It first transforms

the pruned entity structure, generating a DYMOLA model and the corre-

sponding DYMOLA command file, then runs DYMOLA in batch mode and

produces a DESIRE program. Finally, it executes the DESIRE program.



143

The simulation results are saved in the TRAJECT base. It also generates

a state variable p-table for model mname and saves the simulation time in

this state variable,

where

ename: name of the entity structure;

mname: name of a model;

zc: list of pairs of initial conditions. Each pair includes the name of a variable and

its initial value;

par: a list of parameter names;

ith-test: a number, specifies a particular simulation condition;

times: a number, specifies how many simulation runs are required;

tc: termination condition for the simulation, or list of simulation termination con-

ditions if more than one. If the termination condition has already been

specified in the simulation control model then tc is nil.

4. (get-p-window ename mname ic par ith-test times tc): returns the time

window, i.e., the minimum simulation time and the maximum simulation

time from running several continuous simulations of a pure entity structure.

Besides the returned value, get-p-window functions the same way as get-p-

table does. Its parameters are also the same as in get-p-table.
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APPENDIX 5

TIME-WINDOWS CONCEPT

IN EVENT-BASED INTELLIGENT CONTROL *

Event-based control is a discrete eventistic form of control logic, in that

the controller expects to receive conforming sensory responses to its control com-

mands within definite time-windows determined by its DEVS model of the system

under control. With this control paradigm, the classical control process can be

readily interfaced with rule-based symbolic reasoning systems in advanced robotic

and intelligent automation.

Continuous models can be advantageously mapped into DEVS represen-

tations. Such DEVS models provide a basis for the event-based control. Figure

A5.1 shows the concept of event-based control, and Figure A5.2 presents the DEVS

description of event-based control. /

threshold

error,.. contra 1 comm~d

.....• process
sensors

Fig. A5.1 Event-based control

* Most of the information given in this Appendix was extracted from

Zeigler (1989-a).
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initial phase: WAIT
initial sigma: tmin(Pi)
initial checkstate: Pi
------ external transition
when receive value on sensor-port

case of: phase
WAIT: hold-in EARLY 0
WINDOW: if value = expected(Pi)

then hold-in SEND-COMMAND 0
else hold-in ERROR 0

internal transition ------
case of: phase

WAIT: hold-in WINDOW window(Pi)
WINDOW: hold-in LATE 0
SNED-COMMAND: set checkstate = next(checkstate)

hold-in WAIT tmin(next(Pi» .
ERROR: passive

------ output function ------
case of: phase

EARLY: send "(Pi) input arrived too early" to error-port
SEND-COMMAND: sends control command(Pi) to command port
ERROR: send "(Pi) error in sensor value" to error-port
LATE: send "(Pi) input arrived too late" to error-port
else: send null message

Fig. A5.2 DEVS description of event-based control

It shows that the model starts in some checkstate PI with sigma set to tmin(PI).

This means that it will stay in phase WAIT for a duration tmin(P1). If a sensory

input is received during this period, the external transition function recognizes

this as an error, since it is too early for the expected sensory response. Once

tmin(PI) has elapsed without external interruption, the internal transition causes

the model to change to phase WINDOW. The model is scheduled to stay in this

phase for a duration given by window(PI). If a sensory input is received during this

period, the external transition function tests it for validity. If the test succeeds, an

appropriate control command is issued from a transient phase SEND-COMMAND,
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checkstate is updated to P2, the WAIT phase is entered, and the model is scheduled

to remain there for the appropriate duration, tmin(P2). If the test fails, an error is

reported. Finally, the internal transition function causes an error transition if the

period, window (P1), has elapsed without receipt of the expected sensory input (any

subsequent input would arrive too late). It is seen that the model of event-based

control moves through its checkstates in concert with the received input, as long as

that input arrives in the expected time-windows.

Time-windows can be determined from series of continuous simulation runs

caused by the parameter changes of a process model under normal conditions. It

is the time duration from the minimum allowed simulation time to the maximum

allowed simulation time of a process. A macro in DEVS can help to determine a

time-window directly from simulation runs (Section 5.5.5). Time-windows can also

be derived by the DEVS models of the process. Let the DEVS model state (q, x)

represent a process state q which resides on a boundary, and an input z which the

controller wishes to exert to drive the state to a second boundary. Then the value

ta(q, x) returned by the DEVS time-advance function is the time required to reach

the desired boundary from state q under input regime x. Since the controller knows

the process state only up to its being on the given boundary (Le., only from the

sensory outputs), the time to wait for a sensory response can only be narrowed

down to lie between the smallest ta(q, x) and the largest ta(q, x) for states q on

the boundary. Thus the window given by the DEVS models is the interval:

[min{ta(q, x)}, max{ta(q, x)}],

where the min and max operators are taken over states q on the boundary III

question.
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(a) The evolution of the process
is shown by diverging lines;
the sensor window at time T
is Smax - Smin

Fig. A5.3 Comparison of conventional and event-based control

event based
controller

PID controller

process

(a) Event-based controller supervising
a conventional controller

I planner
DEVS Imodels

schedule

linterpreter diagnoser I
~

command sensor feedback

lower level control systems

(b) Event-based control in a layered archi-
tecture for intelligent control

Fig. A5.4 The role of event-based concepts in intelligent control



148

Figure A5.3 shows the difference between conventional control and the

event-based control strategy. Figures A5.4 shows the role of event-based concepts

in intelligent control.



APPENDIX 6

SYNTAX DIAGRAMS

OF DYMOLA DESCRIPTIONS IN CHAPTER 3

CUT DECLARATION
cut-dClclarDtion

------~.~r------~(--~.{I~cu~t~-~id~en~tIi(Glier~lr_-,~ ~ -1) --.
~

·cut-identi fier

.1 identi fie,..!

cul

vo~iobLe-cut
hierarchicaL-cut

cut-s ee

verieble-cut

r -v ri throu -v r i La

DCro.c-v•••.•iebl.

.1 identi fier I ..
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-I identi fiar I

hiercrchicD~-cut

------------------~--------~.~r---------L)------------------+

cut-apee

.1 identi fiar I

ATOMIC MODEL and COUPLED MODEL

model-identi ier decleretion-of-veriebles

model-daacri tiona
r n- (- nne t ion-rn h~ni m

oood8~-identi (iar

.1 identi fiar I

coup ~1Od-toode~

-------.~Mod.~)---~-----------r~~M~o~di.[~-~IG·de~n~t~ilfIie~r~-----.~diec£l~D~r~D~tJi~o~n=-ogrf-~.~u~b~m~o~di8r~.!r--

decleretion-of-veriebla.
de l r tion-of-connecti n-mecn niam

~--------~£c~on~n.~c£t~iGo~n~-~diei.c~r~i~tDi£o~n~.=-a~n~d~-~a~u~a~tIi~on~---------------------4{.ndl)---------~
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CONTROL MODEL

cont.ro~-lIIOd8~

CMod.l bee ic- llIrt ctbLoclc controL-descri tiona

BASIC PART of CONTROL MODEL

ailftulalion-tim.

'" r- - "' in
in ut-a ecificetion

.iIMJLation-ti_

--------------------------------------~.~~-.------------------------------------~

alap-aiza

--------------------------------------~·~r---------------------------------------·
nuoober-o f~n iCO t ion-po int

-I integer I

inl·S••.•

---------------~(------~.~r--------)~-------------
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number

-I unsigned-number I

un. ign.d-nutOber

-...j inte!O.r~c:r;:;:in~te!OeE)r I-----rJ 11='_<O_s=i?__ : __ "_int_eSle_r'~1

INPUT SPECIFICATION

input-'p.cification

------------~in number-of-in ute

v i

inde end ex rsasion

nuoob••..-a f- inpute

.1 integer 1

vet'iabl.

.1 identifi.r!
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DISPT,DISPXY,TYPE,STASH STATEMENTS

-------.~~----~(------~.~~------~)-------------

v •••.•

.1 identi fier I

--__.~~------~.~~------~.Qr--~(--~.~~---)~-----

v••••

.1 identi (iar I •

-------.~~------~(------~.~~----~)--------------

v••••

-I identi fier I

------~.~~------~(------~.~~------~)--------------

v•••••

.1 identi fier I
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SUBMODEL DECLARATION

.ub_odel-decloretion

.ublftod.l
l

model-tvne- j dent i {i er-

f
J

[ (
1

(~-------~l~<JI£)G(Ui~----~{IiunIit~i~~'l=_~rn'n~rli]tli~n'n~-3lJi~8It}-----~a:--r--~(------~

aodel-lype-identifier

.1 idenli fier!

aodel-identifier

., identi fie r- I

.1 identifier!

initiel-conditieo-t iat

______ ~[L~.GlvD~rie~bl.~ll~=~~~~=~--~J~.~~-)~------

vorieble

.1idenlifier I



FUNC, STORE, GET STATEMENTS

funo-ate ta••." t

~------------~.I~vi,,~~~i,,~bLl.~I----------~.~~------------~.[1e~.ip~~e~s~s~i~on~I------•

• t~.-a te teM"" t

----~.~~-----------..[lv~,,~~Ii,,~b~l~.}I----------~.~~------------~.IGe~x~e~~e~8~.Lio~nUI,------

gat-at"t."ant

------·~~r------------ ••I~v~,,~~Li,,~b~li.}I------------~.~r------------+.IGe~x~e~~e~9~8Lio~nulr_----.
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