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ABSTRACT

This thesis presents backinterpolation (BI) methods for the numerical solution
of ordinary differential equations (ODE) and their applications. Compared with
conventional numerical integration algorithms, BI methods are more effective in
handling marginally stable and stiff problems. A detailed analysis of various prop-
erties of BI methods has been conducted. Stability properties of BI methods have
been investigated and a method for calculating the stability domain of a BI algo-
rithm has been developed. Issues related to accuracy considerations of BI algorithms
have been addressed. Procedures for constructing accuracy domains for BI methods
have been given. A study of damping and frequency properties of BI algorithms
has been conducted. Programs for comparing analytical and discrete damping and
frequency along an arbitrary axis (not just the real axis) have been specified. A
scheme of stepsize control for BI methods has been proposed. Two algorithms of
adjusting stepsizes have been evaluated through simulations.

To demonstrate the effectiveness and efficiency of Bl methods in solving marginally
stable and stiff problems, ODE models for dynamic responses of one-link flexible
manipulators have been developed and solved using BI methods. For both open-
loop (marginally stable) and closed-loop (stiff) configurations, numerical results
have demonstrated the effectiveness of BI methods for solving marginally stable

and stiff problems.



Both Matlab and C codes for analysis of BI methods and their application for

finding numerical solutions for flexible manipulators have been developed.
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CHAPTER 1

Introduction

1.1 Motivation and Objective

1.1.1 Why We Need an ODE Solver ?

As a mathematical form, the ordinary differential equation (ODE) is a very
important tool. It is used in the modeling of a wide variety of physical phenomena—
chemical reactions, satellite orbits, vibrating or oscillating systems, electrical net-
works, and so on. In many cases, the independent variable represents time so that
the differential equation describes changes, with respect to time, in the system being
modeled. The solution of the equation will be a representation of the state of the
system at any point in time and one can use it to study the behavior of the system.
Consequently, the problem of finding the solution of a differential equation plays
a significant role in scientific research, particularly, in the simulation of physical

phenomena [15].
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Simulation is a powerful alternative to practical experiments. It provides a fast,
convenient, and economic tool for system design, assessment, analysis, and evalua-
tion. However, it is usually impossible to obtain a closed form solution of differential
equations for systems to be modeled, especially complex ones encountered in real-
world problems. A simulation program therefore has to implement some numerical
integration method to solve equations that describe system behavior. Since most
of these equations are, or can be approximated by, ODEs, a fast, accurate, and

efficient ODE solver is much needed.

1.1.2 Why We Need a Bl-based ODE Solver ?

Numerous ODE solvers have been developed and implemented since the digi-
tal computer was introduced four decades ago. Among them, Runge-Kutta (RK)
Methods are probably the most popular and widely used ones. Many commercial
simulation packages use RK-based ODE solvers, e.g., Matlab. Therefore, one must
ask why do we need another ODE solver, especially, the backinterpolation (BI)
techniques studied in this thesis ?

To answer this question, we need to know the criteria used to assess an ODE

solver. To this end, we use three criteria, namely, that an ODE solver should
1. Give an accurate approximation;

2. Use less computation time;
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3. Be easy to implement.

In addition, it must obtain a unique (numerical) solution.

Most conventional ODE solvers, including RK methods, are easy to implement
and also meet the first two criteria in normal circumstances. However, they become
much less efficient and accurate when dealing with either marginally stable problems
or stiff problems, especially when the number of state variables involved is large. In
terms of eigenvalues, a system is marginally stable if many of its eigenvalues are on
the imaginary axis of the complex plane. A system is stiff if its eigenvalues are widely
spread over the complex plane, i.e., the ratio of its largest and smallest eigenvalues is
very large. But a wide range of physical phenomena, such as structural vibrations,
chemical processes, feedback control, and so on, are described by marginally stable
or stiff systems.

Therefore, we need new ODE solvers that can handle marginally stable and stiff
problems effectively. Our previous study has indicated that BI-based methods are
a good selection for this purpose [5]. The objective of this thesis is to conduct
a detailed analysis of various properties of BI methods, and to demonstrate their

effectiveness and efficiency in solving marginally stable and stiff problems through

applications.
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1.2 Contributions

The following major results have been accomplished in this thesis for the analysis
and application of backinterpolation methods for numerical solutions of ordinary

differential equations:

1. Stability properties of BI methods have been investigated and a method for
calculating the stability domain of a BI algorithm has been developed. De-
tailed numerical results of stability domains for BI45 and BI55 have been

obtained.

2. Issues related to accuracy considerations of BI algorithms have been ad-
dressed. Procedures of constructing accuracy domains for BI methods have
been given. Numerical examples of accuracy domains for BI45 and BI55 have

been presented.

3. A study of damping and frequency properties of BI algorithms has been con-
ducted. Programs for comparing analytical and discrete damping and fre-
quency along an arbitrary axis (not just the real axis) have been specified.

Detailed numerical results for BI45 and BI55 have been given.

4. A scheme of stepsize control for BI methods has been proposed. Two al-

gorithms of adjusting stepsizes have been evaluated through simulations. A
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numerical comparison of the BI45 algorithm and the RK-based ode45 imple-
mented in Matlab has been made with a simple marginally stable problem
and a stiff problem. The results have shown that Bl methods are indeed more

effective in solving these two classes of problems.

5. ODE models for solving dynamic responses of one-link flexible manipulators
have been developed using both Euler-Bernoulli and Timoshenko beam theo-
ries. Original partial differential equations of flexible manipulators have been
derived and approximated by ODE using the method of lines. Numerical
results have indicated clearly that modeling of flexible manipulators has pro-
vided an ideal application for testing BI methods with real-world complicated
problems. This is due to the fact that the ODE system of flexible manipu-
lators is marginally stable in the open loop simulation and becomes strongly
stiff in the closed loop simulation. Both BI45 and ode/5 have been used and
compared in obtaining numerical dynamic responses of flexible manipulators.
Again, numerical results have demonstrated the effectiveness of BI methods

for solving marginally stable and stiff problems.

In addition, Matlab and C codes for analysis of BI methods and their application
for finding numerical solutions for flexible manipulators have been developed in this

thesis.
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1.3 Organization of This Thesis

In Chapter 2, we discuss briefly the principles and properties of numerical ODE
solvers and introduce the concepts and procedures of BI methods.

A detailed analysis of various aspects of BI methods is given in Chapter 3.
Procedures of constructing stability domains and accuracy domains are developed.
Discrete damping and frequency are calculated and compared with analytical ones.
Algorithms for controlling the stepsize in BI methods are proposed.

Chapter 4 presents a detailed procedure of developing ODE models for one-link
flexible manipulators based on the Euler-Bernoulli beam theory for link deflection.
Numerical simulations are conducted for solving dynamic responses in both the open
and closed-loop cases. To take the effect of link shear deformation into account, the
results presented in the chapter are generalized to the case of a Timoshenko flexible
manipulator model in Chapter 5.

Chapter 6 concludes the thesis with a summary and suggestions for future work.

Finally, Matlab and C codes developed in this thesis are given in Appendix A.

Appendix B provides a C-code implementation of the BI methods.
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CHAPTER 2

Backinterpolation Methods for Numerical Solutions of

ODE Systems

This chapter introduces backinterpolation techniques for finding numerical so-
lutions of continuous-time differential equations [5]. To explain basic concepts and
methods in numerical techniques, we start our discussion in Section 2.1 with the
simplest numerical integration schemes: the first-order Forward and Backward Eu-
ler algorithms. In Section 2.2 we introduce the concept of stability of numerical
integration algorithms and give several stability definitions. Section 2.3 presents
the motivation for backinterpolation methods and the basic ideas for their con-
struction schemes. Explicit forms of various F-stable and L-stable backinterpola-
tion algorithms are described in Sections 2.4 and 2.5. These algorithms provide the
background material for analysis and evaluation of backinterpolation in the next

chapter. Finally, Section 2.6 summarizes the discussion of this chapter.
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2.1 ODE Solvers: Forward and Backward Euler Methods

Consider a linear ordinary differential equation (ODE) of n state variables,
ii:ZA'CIJ, .’II(tQ)Z.’Eo, toStStf (21)

where A, called the system matriz, is of size n X n, xg is the initial state, and to,%
are initial and final times, respectively.

The simplest way of finding the numerical solution of Eq. (2.1) is by approxi-
mating the time derivative with numerical differences. To this end, we discretize
the time interval [to, t¢] uniformly by stepsize h and denote the state vector at time
instance ty = to + k- h by zi, i.e., zr = z(tx).

Now, approximating & by the left difference, we get,

Ti4+1 — Tk

E(ty) = -

and, correspondingly, we convert the ODE (2.1) into the following difference equa-

tion,

Zipr = [I + A - by, (2.2)

where I is the n x n identity matrix. Eq. (2.2) is called the Forward Euler Method
[6]. Integration schemes similar to this method are called ezplicit type.

Alternatively, approximating & by the right difference, we get,

Thi41 — Tk

(1) = ——
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and, correspondingly, we convert the ODE (2.1) into the following difference equa-

tion,
zgr=[—A-hlzgpror zpy1 =[I—A- h]_lxk (2.3)

which is called the Backward Euler Method [6]. Integration schemes similar to this
method are called implicit type.

Egs. (2.2) and (2.3) are the two simplest numerical integration schemes ever
developed. These two methods are not widely used as numerical ODE solvers
because of their low accuracy. Generally speaking, a numerical ODE solver converts
the original linear continuous-time system (2.1) into an equivalent discrete-time

system,
Tpty = F.’I}k, k= 0,1,2,--- (24)

where F' is a system matrix generated by the integration scheme used by the ODE
solver. For example, explicit Runge-Kutta algorithms of orders 2 to 4 are charac-

terized by the following matrices,

2

FQ:I+A-h+(A2'h)

_ (A-h)*  (A-h)
Fo=I+A-h+ 4

_ (A-h)?  (A-h)P  (A-R)
Fa=ItA-h+ ==+ =+

and the corresponding implicit Runge-Kutta algorithms are characterized by,

29-1
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Fy {FA. - (Aé!hf B (Aé!h)s}—l

(A1) (AR (4w
o 3 4l }

F, = [I—A-h—}—

Clearly, once F' is given, difference equation (2.4) can be solved easily by means

of finite iteration starting with the specified initial condition .

2.2 Numerical Stability of Integration Schemes

The most important property of an ODE solver is its numerical stability. Let
A represent an eigenvalue of the original linear continuous-time system, i.e., an
eigenvalue of matrix A, then each ODE solver is characterized by a numerical sta-
bility domain in the A - 2 plane. All eigenvalues A; of an analytically stable linear
continuous-time system (i.e., the real parts of all \; are negative) multiplied by
the integration time step h must lie within the numerical stability domain. Other-
wise, the integration scheme used is numerically unstable, and thus may produce
incorrect numerical results.

To see this, consider a simple scalar equation & = az, where a is a scalar. Figs.
2.1 and 2.2 present the numerical stability domains of the Forward and Backward
Euler schemes. A detailed procedure of finding the stability domain for a numerical
integration scheme is described in Section 3.1 of Chapter 3. Using the Forward

Euler scheme, in order to make a - h lie within the numerical stability domain, we
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must choose the integration step size h such that

1 +ak]l <1 (2.5)
4 i ] { i I I I
3 T —
2 e T T =

B L R B R RE T PR PR -
-4 1 1 { | | i 1
-4 -3 -2 -1 0 1 2 3 4
Real{ah}

Figure 2.1: Stability Domain of Forward Euler Method
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_2_ ............. ................................................. —

SO OSFUPSINE FOOS O SO N i

-4 1 ] 1 | I i !

-4 -3 -2 -1 0 1 2 3
Real{ah}

Figure 2.2: Stability Domain of Backward Euler Method

Fig. 2.3 shows the comparison of the analytical solution and the two numerical

solutions obtained by the Forward Euler method using A = 0.05 and A = 0.5

for @ = —5. Initial condition zg 1 is assumed. The original continuous-time

system is stable in this case. Clearly, when A = 0.05 is used, a - h lies within
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To clarify these situations, we introduce three additional definitions of numerical

stability: A-stability, F-stability and L-stability.

2 T ,|" T R T | ™ LA L ™
I ) ] | i I 1 | I
! \ I i ] ! | I I
1.5F ,’ splid line: analytical solution : Il : ll : .
I |
[ l\ ] | | | [ I [
: ! b o | 1 | !
déshdot line; FE sojution with h=0.05 [ | P
\ [ } | | | I I
, | | | l ! | |
dashed line: FE solltion with h=0.5 | ! : S
‘l I | I | I | |
\ ! | ! | | | |
T 1 | - ! | 1 1
\ ] | I ! I I I
\ | | ! i | i |
\ ! \ I | [ i | | !
0.5 [ \ I | | | I | I
\ ! \ I i | | | | |
v ] | I I | i |
i
\ I
i \ I ! | | | | ]
- Vol I { | i | | i
W ‘
I } | I I | i
Vi ‘
| I | [ ! 1 ] |
15k v L | | | | | -
L i | i | { |
P | I | | | I
Lot i { { | I I
_2 1 | 1 1 1 1 I [ !
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time in seconds

Figure 2.3: Numerical Solutions by Forward Euler Method
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solid line: analytical solution . .

dashdot line: BE solution with h=0.05 -

dashed line: BE solution with h=0.5 -

10 0.5 1 1.5 2 2.5 3 3.5 4 45 5
Time in seconds

Figure 2.4: Numerical Solutions by Backward Euler Method

Definition 2.1: A numerical integration scheme that contains the en-

tire left half (X - h)-plane as part of its numerical stability domain is

called absolute stable, or, more simply, A-stable.
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Clearly, the Backward Euler method is A-stable, while Forward Euler is not.

Definition 2.2: A numerical integration scheme that contains the en-
tire left half (X - h)-plane and nothing else as its numerical stability

domain is called faithfully stable, or, more simply, F-stable.

Neither the Forward nor Backward Euler method is F-stable.

Definition 2.3: A numerical integration scheme that is A-stable, and,
in addition, whose damping properties increase to infinity as R{\} —

—00, is called L-stable.

The Backward Euler method is L-stable, whereas the Forward Euler method is not.
More discussion about L-stability is given in the next chapter.

When dealing with stiff systems, it is not sufficient to demand A-stability from
the integration algorithm. We truly need an L-stable algorithm. Evidently, F-stable

algorithms are also A-stable, but never L-stable.

2.3 Backinterpolation Methods: Motivation and Basic Ideas

In many engineering problems, we have to solve partial differential equations
(PDEs) by converting them to ODEs. However, many of these PDEs, such as wave
equations and flexible manipulator equations, are of the hyperbolic type, which will
lead to ODEs that are marginally stable and whose solutions exhibit undamped os-

cillations since all their eigenvalues are entirely located on the imaginary axis. This
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has presented a serious problem to many conventional ODE solvers: they trans-
fer this type of ODEs into either unstable numerical systems or stable numerical
systems with damped oscillation responses.

To see this, consider the simplest case of a harmonic oscillator equation, §+w?y =

0, or in state variable form, z1 =y and z; =y,

1 0 1 zy

To —w? 0 g
Using the Forward Euler algorithm to solve the discretized oscillator equation, both
eigenvalues will always be outside the numerically stable domain however small the
time step A is chosen, and thus, the numerical solution is unstable. Using the
Backward Euler algorithm, both eigenvalues will always be inside the numerically
stable region however small the time step & is used, and thus, the numerical solution
shows damped oscillations.

Fig. 2.5 presents specific numerical solutions obtained by the two types of algo-
rithms (Fy is used in both cases), in which w = 10,21(0) = 1,2z, = 0, and h = 0.01 is
used for both the forward and the backward algorithms. Clearly, in this case, both
algorithms give unacceptable numerical solutions for the simple oscillator equation.

Generally, all explicit integration algorithms give numerical solutions that resem-
ble those of the Forward Euler algorithm, and some implicit integration algorithms
obtain numerical solutions that are similar to those of the Backward Euler algo-

rithm, whereas others behave like Forward Euler. Thus, new integration schemes



28

must be developed to find accurate numerical solutions for marginally stable ODE

systems. This was the main motivation for the development of the backinterpolation

algorithms.
] 1 1 { i 1 ,' 1 | l [ I ] l
, o ro Loy !
dashdot line: FRK4 solution with h=0/01 P L
1 o I L I
. . . ! :
dashed line: BRK4 solutios;with h=0.01 P! : ! . :
I L ! | : | ! | !
: 1 o ; ; i
~ P ' P! P P !
I\ Pl b P o o !
A I S T S R
N\ 78\ in '“Ni N IAY I T
A /A i/ \! AR i\ o\ oy !
‘ A /, =\ -~ | ' | l
\ / A -~ ~\ -\
A ~ ] ~ [ \ i
\ N _7 S \~ | I | | | |
A - [] . ! . . .
‘ NN/ : N\ 1 N/ A AN N\
\ /! N\ /! N\ /1 : i i ! . | : ! :
N, W 1 PN 7 1! P 1~
V! U v o I
7 Vo Vo L b . P
\/ . C bl P! I
' L Lo Lo Lo L
. . ‘ ‘ . . ! . N .
Vol L P Lo P
\; - Lo b S
' L P! bl bl
o . ) .o | [ | | |
solid line: analytical solution V! Lo Lo Lo
L 1 ! 1 1 vy Ll P L L
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time in seconds

Figure 2.5: Marginally Stable Problem: Runge-Kutta Method
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Actually, the basic idea behind the backinterpolation methods is quite simple.
From Eq. (2.3), it is very clear that the F' matrix of the Backward Euler method
can be realized by integrating backward through time from ¢, to time t; with a
negative step size of —h. This observation gives rise to a straightforward imple-
mentation of backinterpolation algorithms: while the overall integration proceeds
forward through time from initial time £y to final time ¢s, each individual step is
integrated backward through time from time ;. to time #.

Specifically, a backinterpolation algorithm starts with the known initial state,

xg. This state is projected forward to ¢, i.e.,
«f =z (2.7)

Using this predictor for z;, the algorithm proceeds by integrating one step of size
—h backward through time. This generates a new value for the initial state, 5. At
this point, a Newton iteration can be applied to iterate on the (unknown) “initial”
state z1, until the (known) “final” state z, is hit with sufficient accuracy. For a
linear system, no iteration is needed since z; can be found immediately by matrix
inversion, which leads to the Backward Euler algorithm.

The last value of the “initial” state is then taken as the final value of the first
step of the overall integration. It is again projected forward through time and used

as the first estimate of the next step, zZ.
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Clearly, each backward integration step can be performed with any explicit algo-
rithm of arbitrary order. The overall algorithm belongs to a special kind of implicit
algorithms.

Now the question is, how can we use the backinterpolation techniques to con-
struct numerical integration schemes that avoid the drawbacks of the conventional
explicit and implicit integrations method when dealing with marginally or stiff ODE

systems 7 We shall discuss these issues in the next two sections.

2.4 F-Stable Backinterpolation Algorithms

An F-stable BI algorithm can be generated by conducting the one-step integra-
tion from time ¢j to time tx4; in two half-steps. The first half-step is a forward
step, whereas the second half-step is a backward step.

Specifically, let’s use the FE as the integration scheme. Starting with the initial
state o, two steps of FE of length h/2 are performed. The first step produces the
true state z1/,, the second step gives the estimate 2¥’. The algorithm proceeds by
integrating backward from the (unknown) “initial” state z¥ to the (known) “final”
state 215 using a step size of -h/2. Newton iteration can be applied to the unknown
“initial” state, until the known “final” state is hit with sufficient accuracy. The last
value of the “initial” state is then taken as the final value of the first step of the

overall integration. The process continues to the next integration step.
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For a linear system, the backward half-step can be considered as a BE step. Due
to the symmetry between the stability domains of the FE and BE, the resulting
integration scheme is of higher order and F-stable [7].

Higher order Runge-Kutta algorithms can also be used in this process. For a

linear systems, the F matrices of the resulting F-stable algorithms are listed as

follows,
Py = -I ~ Aﬁ] h [I + Aﬁ] (2.8)
] 2 2
F, = :1 ~ Ag + (A—g)—z] B [I + Ag + (A:)2] (2.9)
R e ]
1yl O (A7 1)

Obviously, F} is also the F matrix of the trapezoidal rule [6], which has second
order accuracy. Since F} is also of order 2 accurate, but requires more computation,
it is not very useful. One can show easily that all these matrices are F-stable.

Fig. 2.6 presents specific numerical solutions for the harmonic oscillator using Fy
and Fy, where h = 0.05 is used for both algorithms. Clearly, both algorithms give
acceptable numerical solutions for the simple oscillator equation. Note that when

h = 0.01 is used, the error from either algorithm is not visible.
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F-stable BI matrices can also be generated using other methods. Note that every

numerical ODE solver tries to somehow approximate the true F' matrix which is,

F =exp(A-h) (2.12)
| 1 1 1 T T ] ] 1
dashdot line: F1 solution with h=0.05
dashed line: F4 solution with h=0.05
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Figure 2.6: Marginally Stable Problem: BI Method
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The formulae presented in Egs. (2.8-2.11) look very similar to Pade approximants

of a matrix exponential. To see this, we rewrite Eq. (2.12) as

h h h 7 h
F= exp(AE) : exp(A-2—) = exp(A(—E)) : exp(A—2-). (2.13)
According to [17], this can be approximated by,
F = D(p,g)”" - N(p,q) (2.14)
where,
q p o
(p+q—J)gt (p+q—3)p!
Ah Ah)(2.15
fi‘;p+q (g — )'( Z=:P+Q)'J( )( Y215
which, for p = ¢, leads to the following set of F' matrices,
i hl ™ h
Fy, = |I—A=| |I+AZ (2.16)
- 2 2 -
[ ho (AR h  (Ah)?
_ |y 4t _ A 1
Fy _I A2+ 5 ] I+A 2+ 5 (2.17)
[ b (AR? (AR b (AR (AR)®
Fo = [I-4z+ 55— | |"+43+ 55 T 10 (2.18)
[k 3(AR)® (AR)® (AR
= — A= _
Foo = [I=Ag+ 75 84 T 1680
L 3(Ah)*  (Ah)® (AR)*
I+ A2 + 98 + Y + 1630 (2.19)

As the subscripts indicate, these formulae are all accurate to the double order, i.e.,
while the individual half-steps are no longer proper Runge-Kutta steps, the overall
method attains a considerably higher order of accuracy. Due to the symmetry

between D(p, q) and N(p,q) when p = g, all these methods are still F-stable.
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These techniques have been intensively studied in 7, 13]. The problem with them
is that an accuracy analysis is only available for the linear case. When exposed to
nonlinear sysems, the methods may drop several orders of accuracy. Thereby, Fy

may degenerate to an algorithm of merely second order.

2.5 L-Stable Backinterpolation Algorithms

The previous set of F-stable backinterpolation techniques has exploited the sym-
metry of the stability domains of its two half-steps. However, there is no compelling
reason why the two semi-steps have to meet exactly in the middle. The explicit
semi-step could span a distance of « - h, and the implicit semi-step could span the
remaining distance (1 — &) - h. The resulting algorithm would still be at least of the
same accuracy order as its two semi-steps. Thereby, the stability domains can be
shaped by varying «.

The case with o > 0.5 is of not much interest since it will not lead to an L-stable
algorithm. But the case with o < 0.5 is very useful. This case can generate a series
of L-stable backinterpolation algorithms that may be well suited for the numerical

solution of stiff systems. From Egs. (2.8-2.11), F matrices in this case are,

Fi = I-A-(1—a)h] "I+ A-ah (2.20)

F, = [I—A-(l—a)h—%—(A.(l;a)h)zl—l{l—l-A-ah—i—-(Az—h)z] (2.21)

Fy = [I—A-(1_a)h+(A‘(12—a)h)2 _(A'(lﬁ—a)h)‘o’]_
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(2.22)

] (Aah)®  (Aah)®  (Aah)®
[ A ah T e

[ (A-(1-a)h) (A (1-ah)’ K (A-1-ah)']"
Fy = [I-A-(1-a)h+ > - = + 51
(Aah)? N (Aah)® N (Aah)‘*]

2 6 24

I
I+A-ah+ (2.23)

The stability domains of these matrices will be discussed in the next chapter (see
Figs. 3.1-6). Note that except for Fy, all the matrices could be L-stable for some
value of a < 0.5. F; will become L-stable when a smaller « is used. More detailed
discussions on stability domains are given in the next chapter. Clearly, these meth-
ods result in very nice stability domains with large unstable domains in the right
half plane. The selection of a good value for « is a compromise: it should be cho-
sen large enough to generate meaningfully large unstable domains in the right half
plane, yet small enough to damp out the high frequency components appropriately
in the left half plane.

Note that the Backward Runge-Kutta (BRK) algorithms listed in Section 2.1
are special cases of this new class of algorithms with o = 0, the explicit Forward
Runge-Kutta (FRK) algorithms are special cases of this class of algorithms with «
= 1, and the F-stable BI algorithms are special cases with o = 0.5.

However, there is no value of « that will raise the order of accuracy of the overall
algorithm for any order of the semi-step algorithm higher than 1. In the special
case of order 1, oo = 0.5 raises the overall order of accuracy of F;, given by Eq. (2.8)

(the trapezoidal rule), to 2.
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2.6 Summary

This chapter summarizes some basic concepts and algorithms for numerical in-
tegration techniques. Section 2.1 discussed the Forward and the Backward Euler
algorithms. Section 2.2 introduced the concept of numerical stability and illus-
trated its importance. Section 2.3 explained the motivation for backinterpolation
techniques and the basic ideas of their construction methods. Sections 2.4 and 2.5

presented several I-stable and L-stable backinterpolation algorithms.



38

CHAPTER 3

Analysis and Evaluation of BI Methods

In this chapter, we shall look at various aspects of the proposed BI methods.
We start in Section 3.1 with stability analysis and investigate stability domains of
BI algorithms. Next in Section 3.2 we address issues related to accuracy consider-
ations of BI algorithms. We then study damping and frequency properties of BI
algorithms in Section 3.3. Finally, we present simulation results of two step-size

control methods for BI methods in Section 3.4.

3.1 Stability Analysis of BI Algorithms

The discrete-time system of Eq. (2.12) is analytically stable if and only if all
its eigenvalues are located inside a circle of radius 1.0 about the origin, the so-
called unit circle. For a specific numerical integration scheme, the unit circle will
be mapped into a stability domain in the A - A plane. Take FE as an example, from
Eq. (2.5), we conclude that all eigenvalues of A multiplied by the step size, h, must

lie inside a circle of radius 1.0 about the point (-1.0, 0) on the A - & plane.
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We define that the linear time-invariant continuous-time system integrated using
a given fixed-step integration algorithm is numerically stable if and only if the
“equivalent” linear time-invariant discrete-time system is analytically stable [T7].
Notice that the numerical stability domain is, in a rigorous sense, only defined
for linear time-invariant continuous-time systems, and applies only to fixed-step
algorithms. Nevertheless, it is appealing that the numerical stability domain of an
integration algorithm can be computed and drawn once and for all, and does not
depend on any system properties other than the location of its eigenvalues.

There exist analytical techniques to determine the domain of numerical stability,
however, they are somewhat cumbersome and error prone. Therefore, we use a
general purpose computer program that can determine the domain of numerical
stability of any integration algorithm [7].

To find the stability domain for a BI algorithm, we start out with a second-order
system with a pair of complex conjugate eigenvalues along the unit circle. For
example,

T = ASB, .’K(to) = Zo, A= (31)
—1 —2cosf

represents such a system, where 6 denotes the angle of one of the two eigenvalues
counted counterclockwise away from the negative real axis.

Now the stability domain for a BI algorithm can be found as following,

1. For a given o and for # from 0 to 180 degree:
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a) Calculate A matrix for given 0 using Eq. (3.1);
b) Calculate F' matrix for given A using Eqgs. (2.20-2.23);

c) Determine the largest possible value of h, denoted as homaz, Tor which all

eigenvalues of F' are inside the unit circle.

2. Stability domain is obtained by plotting hp., as a function of 6 in polar

coordinates.

Matlab subroutines, i.e., Fmat, CalMazH, Stab, PlotStab, for these calculations are

given in Appendix A.

Using this procedure, next we discuss in detail the effect of o on stability for two

specific BI algorithms, BI45 and BI55, whose F matrices are given as,

Fys = ll - (1 _ a)hA + ((1 — (;)hA)2 _ ((1 — z)hA)3 + ((1 _;L)hA)‘l_ (32)
(1 — a)hA)°]™" (ahA?  (ahAP  (ahA)*
T] [I Fohd T T ]

By = ll_(l _aypat @ —;)hA) _ ((1—Z)hA)3 N ((I_Z)hA)4“ (3.3)
(1 — )hA)®] ™ (ahA?  (ahAP  (ahA)*  (ahA)®

125 ] [I+ ehdt+ =t gt ot ]

Figs. 3.1 to 3.3 give the stability domains of BI45 for various o ranging from
0.1 to 0.5. As indicated by these figures, the stability domains become smaller
as « increases. When o = 0, it becomes a pure implicit Runge-Kutta algorithm.
However, when 0 < o < 0.3 or 0.47 < a < 0.5, BI45 is no longer A-stable since a

small portion of the left half plane becomes unstable in these cases. Therefore, we
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have to choose o between 0.3 to 0.47 in order to maintain the L-stability of BI45.

As we can see in the next section, the accuracy domain increases with the value of

o. Therefore, it is recommended that o = 0.47 should be used for BI45 in numerical

integration.
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Similarly, Figs. 3.4 to 3.6 give the stability domains of BI55 for various . As
for BI45, the stability domains of BI55 become smaller as « increases. When 0 <
a < 0.3, BI35 is no longer A-stable. To maintain the L-stability of BI55, we must

have 0.3 < a < 0.5. Note that when o = 0.5, BI55 become F-stable.

Re(lambda*h)

Figure 3.4: Stability Domain of BI55: oo = 0.1 — 0.4
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3.2 Accuracy Analysis of BI Algorithms

To gain more insight and detailed information on the aspect of approximation
accuracy for BI methods, in this section we determine the accuracy domain for a
BI algorithm using our standard linear test problem (3.1).

For a given initial state zo, the analytical solution of (3.1) is

Tanal(t) = exp(A - t)zo. (3.4)

Let Zgimwu be the solution obtained by a BI algorithm, we define the global error of

the BI algorithm as,

Eglobal = Il Zanal — Tsimul ||oo (35)

where || (-) ||, represents the maximum value of (-) over all discrete time instances
used by the BI algorithm during its numerical solution process.

Now the accuracy domain of a BI algorithm is defined as the upper bound of
| A- R || in order to achieve a specified global accuracy requirement. For a given

initial state, the accuracy domain can be obtained by the following steps:
1. Prescribe a tolerance for the global error;
2. For 0 from 0 to 180 degree:

a) Calculate the analytical solution;

b) Calculate the numerical solution using the BI method;
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c¢) Determine the largest possible value of h, denoted as hpas, for which the

global error matches the prescribed tolerance;

3. The accuracy domain is obtained by plotting hma. as a function of 6 in polar

coordinates.

Similar to our stability discussion, we study the effect of o on accuracy for two
specific BI algorithms, i.e., BI45 and BI55.

For o = 0.1,0.2,0.3,0.4, Figs. 3.7-9 show the accuracy domain of BI45 for initial
conditions zo = (1,0),(0,1), and (1,1), respectively, while Figs. 3.10-12, presents
the corresponding accuracy domains of BI55. Clearly, the accuracy domains become
larger as « increases. The specified accuracy is 10e-4 and an evaluation time of 10
seconds is used for error calculation in Eq. (3.5).

As we have seen from these figures, the accuracy domain of an algorithm de-
pends heavily on the specified initial condition. Therefore, accuracy domains of BI
algorithms are not very useful. Approximately, the largest step size that can be
chosen for a prescribed tolerance is inversely proportional to the largest gradient in
the simulation, and thus for a linear system & = Az, since the gradient is propor-
tional to the norm of the state vector if the system is stable, the largest step size is
also inversely proportional to the norm of the initial condition for stable systems.
This can be used as a rule of thumb when one has to use the accuracy domain to

determine an upper bound of step sizes for an algorithm.
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3.3 TFrequency-Domain Analysis of BI Algorithms

As we have discussed, accuracy domains are not as convenient as one would hope
for due to their strong dependence on the chosen initial conditions. To avoid this
problem, we investigate the damping and frequency properties of BI algorithms.
The basic idea is to see how close the numerical frequency domain properties ob-
tained by BI algorithms are to the analytical ones of the original systems.

Consider our standard linear test problem of Eq. (3.1) and its analytical solution
(3.4). Obviously, the analytical solution is correct for any value of zo and any value
of ¢, and in particular, it is true for zo = z} and ¢t = tg41. This substitution leads

to:

Tit1 = exp(A-h) -z (3.6)

Therefore, the analytical F-matrix of this system is:

Finai = exp(Ah) (3.7)

Let A\ = —o % jw be the eigenvalues of A. One form to represent the general

solution of a second-order system with complex eigenvalues is:

z(t) = ¢ exp(—ot) cos(wt) + ¢, exp(—ot) sin(wt) (3.8)

where o is the distance of the eigenvalues from the imaginary axis and is called

the damping of the eigenvalues, and w is called the frequency of the eigenvalues.
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From the above solution, it is clear that damping and frequency determine the

characteristics of a solution.

Now let us introduce the discrete eigenvalues by the following equation:
/\d: Ah= —adijwd (39)

where 04 = 0 - h and wy = w - h are discrete damping and discrete frequency,

respectively.

Mapping the A-plane to the z-plane, the corresponding eigenvalues of F,,; are

found by:
z = exp(Aq) (3.10)
In other words,
|z| = exp(—04), Lz = wy (3.11)

Now, let us replace the analytical F,,q.;-matrix by the one that is obtained by
a BI algorithm, F,.. The numerical Fj;,,-matrix is a rational approximation
of the analytical F,,,-matrix. Letting 2 be the eigenvalue of Fi;.i, we define

approzimate discrete eigenvalues of Fgipqy by:
2 = exp(\yg) (3.12)

Assume Ay = —q £ jdq, then,

N>

I

£
a.

|2| = exp(—64), L (3.13)
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Clearly, as 2 approximates z, so must &4 be an approximation of o4, and &g must
be an approximation of wy.
To see the performance of BI45 and BI55 in terms of approximate discrete eigen-

values, we consider the case where
A=r(—cosf*jsinf)

For a =0.1 and 0.4, Figs. 3.13-17 show o, (solid line) vs &4 and wy vs &g (dotted
line for o« = 0.1 and dotdashed line for o = 0.4) when r changes from 0 to 20 for § =
0,15,45,75, and 90 degrees, respectively, while Figs. 3.18-22 give the corresponding
results for BI55. From Eq. (3.8), since a solution is characterized by its damping
and frequency, it is clear that a good approximation is possible only when r < 4.

Also, the approximation result is better when 6 is not close to 90 degree.

3.4 Stepsize Control for BI Algorithms

An integration method is supposed to produce a numerical solution within a
specified error tolerance tol. Ideally, the global error should be used to select a step
size so the given tolerance is satisfied. But the global error is difficult to estimate
and most integration methods confine themselves to keeping an estimate of the local
truncation error close to €, where € is chosen in relation to tol. This is achieved by

controlling the stepsize during the integration.
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Figure 3.14: Damping and Frequency Plots for BI45: 6 = 15°
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Figure 3.21: Damping and Frequency Plots for BI55: 6 = 75°
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For a single-step integration method, the standard stepsize control is given as,

€ 1/7)
hz-:(—) hios (3.14)

i
where p is the order of the truncation error and r; is the error estimate. If the error
in a step is too large, e.g., r; > p tol, the step is rejected, and a new attempt is
made with a smaller stepsize. By having € <tol and p > 1, typically, 0.2¢0] < € <
0.8tol and 1 < p < 1.3, a safety factor is introduced in the choice of the stepsize,
and the risk for a rejected step is reduced [12].
No work is available for stepsize control of BI methods yet. The following pro-

cedure is suggested by Professor F. E. Cellier.

1. During the forward half-step, estimate the error using (see SBI45 in Appendix
A)
err = ZROW(n,1);
FOR:=1:k, ..
err = err + v(¢)*f(:,4); ...

END

where « is a weighting coefficient vector for error estimation. Then the error

estimate for the forward half-step is computed as,

err(h/2)left = err(h/2)
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2. During the backward half-step, the error is not estimated until the iteration
is completed and z(k + 1/2)right is calculated. After the iteration is com-
pleted, the error from the backward half-step is then estimated using the same

algorithm:

err = ZROW(n,1);
FORi=1:F, ..
err = err + gamma(¢)* f(:,7); ...

END
and
err(h/2)xight = err(h/2)

3. In the best case, these two errors will compensate. Therefore, then the total

error from k to k + 1 would be:
err(h) = | err(h/2)deft - err(h/2)xight |

4. Once the total error of the entire step has been estimated, the new stepsize

can be computed as either [12],

T \ Pow
fnew = min{hm,o.sho,d( ) } (3.15)

err

or

err err

powl pow?2
hrew =mm{hmw,o.8hou( a ) <6T’"‘l“3t) }; (3.16)
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where Apqz is the maximum allowable stepsize, 7 = tol max{|| z(k+1) ||,1.0},
errlast is the previous error estimate, pow=1/5, powl=3/50 and pow2=4/50

are used in our BI implementation.

Figs. 3.23-3.27 present maximum errors achieved for each state and the number
of iterations required for BI with stepsize control (3.14) (dash lines) , BI45 with
stepsize control (3.15) (solid lines), and the standard Matlab ODE solver odef5 (a
fifth order RK algorithm using stepsize control (3.14), dashdot lines), respectively.
Clearly, BI45 algorithms can achieve higher accuracy with a much smaller number
of iterations, especially when the specified tolerance is small. Stepsize control (3.15)
is better than (3.14) in this case.

Figs. 3.28-3.32 give the corresponding results for a stiff problem (a third order
system, with poles (-100, -1 + 0.5j, -1 - 0.5j), so its characteristic equation is:
(5+100)[(s + 1)* +1/4] = 0). In this case, ode45 can achieve a better accuracy for
state 1 = y with a much larger number of iterations than the BI45 algorithms.

Actually, all three algorithms have achieved a very good accuracy for state z;
and their difference is negligible. For states z2 = § and z3 = §, the maximum errors
are much larger and the two BI45 algorithms perform much better than ode45. In
this case, BI45 with stepsize control (3.14) is a little better than with (3.15), but

(3.15) has achieved a much better accuracy than (3.14) for state zs.
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3.5 Broyden-Newton Iteration for Nonlinear Systems

For nonlinear problems, during the backinterpolation a numerical method must
be used to iterate on the (unknown) “initial” state until the (known) “final” state is
hit with sufficient accuracy. To this end, Newton iteration can be applied. Since the
commonly used Newton-Raphson iteration requires information of the Hessian ma-
trix (the evaluation of which is usually costly), in our implementation of BI methods
we use the Broyden-Newton iteration method that replaces the true Hessian by a
much cheaper approximation thereof. To solve equation f(z) = 0, starting from an
initial guess z0, a given maximum number of iterations (Numlter) and a specified

accuracy (tol), the iteration process can be described as follows:

Let i=0, iteration = true, B=I, f0={(x0);

WHILE iteration & (i < Numlter)

ds= inv(B)*f0; x1=x0 - ds; f1=f(x1);

% X-test and F-test

xnorm=max(abs(x0)), dnorm=max(abs(ds)), fnorm=max(abs(fl));
if (dnorm > tol*(1 4 xnorm)) or (fnorm > tol)

% Update

ds=ds/norm(ds); df=(f1 - {0)/norm(ds);

B = B + (df - B*ds)*ds7;

f0=1f1; x0=x1; 1=1+1;
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else

iteration = false;
END

if (1 > Numlter)

display(’Broyden-Newton Method Fails’);

The detailed implementation of this algorithm has been given in Appendix A.

To test the nonlinear implementation, let us consider the Lotka-Volterra Equa-

tion [6]:
(i?l = —axr1+ kb.’El.’Eg, 532 = Crg — bx1x2 (317)

where z;,z; are insect populations (of predator and prey), and a,b,c are model
parameters.

Figs 3.33-34 represent the simulation results with ¢ = b = ¢ = 1,k = 0.1 and
initial populations z; = x5 = 10, using both matlab ode45 and BI45 with o = 0.4
and stepsize control (3.15). Note that in this case, there is no visible difference
between the ode45 and BI45 solution. Also note that the Lotka-Volterra model
does not approach a constant steady-state value (z1 = ¢/b, 22 = a/(bk)). Instead,
it approaches a periodic steady-state value, i.e., the solution oscillates. This is a
well-known characteristic of Lotka-Volterra equations [6]. Both facts indicate the

correctness of our nonlinear implementation of the BI methods.
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CHAPTER 4

Dynamic Responses of Flexible Manipulators:

Euler-Bernoulli Model

The link flexibility of a robotic manipulator must be considered in modeling and
control when the manipulator is of large dimension or light weight. Large manipu-
lators play important roles in many applications, such as construction automation,
environmental robotics, and space engineering. Lightweight arms are one of the
major goals in design of high-performance industrial robotic manipulators, which
will lead to higher speed and better energy consumption. Howeverb, due to the
complexity involved with link deformation and the characteristics of distributed
parameter systems, modeling and control of flexible manipulators still remain as a
major challenge in robotic research [2].

Over the last decade, a significant effort has been made in modeling and control of
one-link flexible manipulators, which are essential for link design and understanding
of multiple-link flexible manipulators. The most commonly used deformation model
in the current robotic literature is the Euler-Bernoulli beam theory. Based on

this theory, various dynamic equations have been formulated for one-link flexible
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manipulators [1, 4, 8, 16, 18, 20, 23, 24, 26]. Complete studies of different dynamic
equations under various boundary conditions for flexible manipulators were carried
out in [1, 25].

However, numerical modeling, especially numerical dynamic responses of a flex-
ible manipulator under various load conditions or control algorithms have received
very little attention so far. A major reason is that most researchers have used
modal shape approximation methods in the past. Since 1) the derivation of the ex-
act modal shape functions is very complicated, 2) numerical values of higher order
modal shape functions cannot be computed easily, and 3) modal shape functions
and the corresponding vibration frequencies depend nonlinearly on payloads. In ad-
dition, no efficient numerical solutions for flexible manipulators have been presented
until now.

The purpose of this chapter is to establish an ODE model for one-link Euler-
Bernoulli flexible manipulators using the method of lines and apply BI algorithms
to solve them. As we shall show, flexible manipulators provide an ideal case for BI
application since their ODEs are marginally stable in the open loop case and stiff
in the feedback control case. We have also compared BI methods with the popular

ode45, an ODE solver based on RK45 in Matlab.
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4.1 Basic Equations

Consider a flexible manipulator carrying a tip load. It consists of a flexible beam
fixed on a rigid hub in the horizontal plane, as shown in Fig. 4.1, where (zq, yo),
(z1,y1), and (z3,y2) are the coordinate systems attached to the base, the hub and
the tip load, respectively. It is assumed that initially the neutral longitudinal axis
(z1-axis) of the beam and the z5-axis of the tip load coincide with the zg-axis. We

also use the following differentiation notation:

Yo, -
Tip Load Closeup
51 (ac, be)
T2
Y2 6,
Lo

’ o

Neutral Axis of Link

Figure 4.1: Coordinate Systems of a Flexible Manipulator.



88

0 -0
=2 5=

The motion of the manipulator system is described by rigid rotation 8 of the hub,
flexible displacement w and rotation ) of the beam. In the FEuler-Bernoulli theory,
the so-called normal plane assumption is used, i.e., it is assumed that the entire
transverse section of the beam, originally plane, remains plane and normal to the
longitudinal axis of the beam after deformation [22]. In this case ¢ = Jw/dz=w’

and the shear deformation of the beam is completely neglected.

From Fig. 4.1, the base coordinate of a point (z,y) on the beam can be found
as,
zy = zcosf— wsinf — ysin(y + 6),
ys = xsinf +wcosb + ycos(y + 0).
Similarly, the base coordinate of a point (a,b) on the tip load is,
z, = Lcosf —w(L)sind+ acos(yp + 0) — bsin(¢p + 6),
yp = Lsin®+ w(L)cosf + asin(y + ) + bcos(yp + 6);

where L is the length of the beam.
The derivation of dynamic models for flexible manipulators is carried out by

using Hamilton’s Principle [19], i.e.,

4
s [ (T+wW-Pydt=0
1o
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where T', P, and W are the total kinetic energy, potential energy, and work per-
formed by external forces of the manipulator system, respectively.

The total kinetic energy is calculated as follows,
1. 5
T = EIHG —I—Tb—f-Tp (41)

where Iy is the rotational inertia of the hub, and T} and T, are the kinetic energies

of the beam and tip load, respectively. For T;, we have,

Faed }_ L *2 .2 . l L 2 2 . . 2
n=5 [/ p(&} + i) dasdysds = 5 [ o2+ k4 56 +0)as (42

in which p is the mass density per unit length of the beam, Sy the domain occupied
by the beam cross section, S = I /A, I and A are the moment and area of the beam

cross section, and
Ag(z) = 20 + i(z, 1), Ay(z) = w(z, ). (4.3)

Note that parameter S reflects the effect of rotatory inertia, i.e., the rotational
effect of the cross section of the beam. Ignoring the rotatory inertia (set S = 0)
implies that one has assumed that the velocity of every point on the same transverse
section is identical and equal to the velocity of the point at the neutral axis on that

transverse section. For T,,, we have,

To= 5 [, e+ ey, = THNUD) + AL + ZEHD) + 0

2
2

+ M,[(L) + 0)(Gy cos tp + G, sinp) (4.4)
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in which p, is the mass density per unit area, S, is the domain occupied by the tip

load, and

M, = / [ peas,  gp=[[ pola*+82)ds,
SP SP
are the mass and inertia of the tip load, respectively, and

Go = aclg(L) + b.ALL), Gy = ach,(L) — bA(L).

where (a, b.) is the mass center of the tip load with respect to the local tip load
coordinate system. G, and Gy represent the size effect of the tip load. If one
assumes that the tip load is a point of mass M, and inertia J,, then G, = G, = 0.

From beam theory [22], the total potential energy can be found as,

_ % /0 " Dy?ds (4.5)

in which D is the bending rigidity of the beam.

Finally, the work performed by external forces to the manipulator system is,
W =10 (4.6)

where 7 is the torque applied on the hub.

4.2 Dynamical Equations of Flexible Arms

Substituting Eqs. (4.1-4.6) into Hamilton’s Principle, we can get the dynamic

motion equations of flexible arms. Note that we drop all deformation terms that are
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higher than first order. This is justified since the small deformation assumption,
in which all the second or higher order displacement and strain terms are ignored
[22], has been used in the Euler-Bernoulli beam theory. These simplifications have
been adapted in almost all the published literature on modeling of flexible manip-
ulators. As we can see later from the simulation results, experiments indicate that
nonlinear terms have noticeable effects on dynamic responses of flexible arms only
when motion speeds are extremely high [2].

To make the form of the dynamic equations simpler, we further define the total

deflection v of the manipulator as,
v(z,t) = w(z,t) + 26(t). (4.7)

After a tedious process of simplification, we arrive at the following dynamic

equations in terms of the total deflection,

(Dv"Y" — (pS?") + pp = 0, (4.8)

Iz — Dv"(0) = 7, (4.9)
with boundary conditions,

z = 0, v=0, v =6; (4.10)
x = L,Dv" + J,3' + a.M,p = 0,(Dv") — pS%' = My(0 + act’). (4.11)

Note that in the dynamic models presented in [1], neither the rotatory inertia nor

the size of the tip load had been considered (i.e., S = 0 and a, = 0 were assumed).



92

For the sake of numerical computation, we introduce the following dimensionless

functions, variables, and parameters,

T told . M0L3
§=7 tew="—", = N (4.12)
LEYL D(L S(L
z(€) = %, a(é) = p(]wi) , B&) = E)Oé), 6(¢) = (Lf)’ (4.13)
My _ 1 /N = %
H = E’ ’]7 = M0L2, K = M0L2, C = L . (4.14:)

where My and Dg are nominal values of beam mass and bending rigidity.

In terms of these new functions, variables, and parameters, the dynamic equa-

tions can be rewritten as follows,

(B2")" — (oz62')' +az = 0, (4.15)
08— 800 = T (4.16)

with boundary conditions,

z(0) =0, 2 =6; (4.17)

B2 (1) + rZ(1) + CuE(L) = 0, (82"Y(1) — a62(1) = ulE(1) + CZ(1)]. (418)
A prime now indicates the differentiation with respect to coordinate ¢, and a dot

now indicates the differentiation with respect to time ...

4.3 Discretization by the Method of Lines

The method of lines is used to approximate partial differential equations de-

scribed in the previous section with a set of ordinary differential equations. In this
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method, we substitute space derivatives by finite differences. To this end, the in-

terval 0 < £ < 1 is divided into n uniform segments with A¢ = h = 1/n, and space

derivatives are approximated by

S = %—[z(f +hyt) — 2(&,1)],

S %[z(g + hyt) — 22(€,8) + 2(€ — R, 1)),

2 = la(E 4 2hyt) = 32(E + hyt) + 82(6,1) — 2(6 — By 1),
. glz[z(f +2h,t) — 4z(€ + b, t) + 62(€,1) — 42(6 — b, 1)

+2z(§ — 2h,1)].

(4.19)
(4.20)

(4.21)

(4.22)

Define ¢; = th, and z; = 2z(ih,t), ;i = a(ih), B; = B(ih), & = 6(ih),71 =0,1,...,n.

Clearly, from the first two boundary conditions (4.17),
2z = 0, z_1 = —0/n.

Therefore, Eq. (4.16) can be approximated by

B} I
n6 + nPob — n?Poz = =
Dy

For i = 1, we have,
W'[Bazs = 262 + Bu)2s + By + 461 + o)1 + o]
+Hou + n?(a16y + apdo))Zy — nlanéi, = 0,
for 7 = 2, we have,
n*[Baz4 — 2(Bs + Ba)zs + (Bs + 4Bz + B1)z2 — 2(B2 + B1) 2]

g + n?(asbs + y6,)])3, — n? [a36375 + a26271] = 0,

(4.23)

(4.24)

(4.25)

(4.26)
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and for : = 3 to n — 2,
n*[Biy1zire — 2(Biv1 + Bi)zivr + (Bigr + 48 + Bi—1)zi — 2(Bi + Bi—1)zi-1 + Pi-17zi-2]
-I—[Ol,' + nz(ai+15,'+1 —+ a,&)]z, — nz[ai+16i+1zz~'.'|.1 —+ ai&z{'_l] = 0. (427)
Since we have n + 1 unknowns, Z = [0, z,... ,zn]T. We still need two more
equations. The difference equation for (4.15) at ¢ = n — 1 and the last boundary
condition (4.18) can be written as,
nz[ﬂnz'x - 2/8n-—1z;:_1 + /Bn—zz//_Q] + [an—1+

nz(an—16n—1 + ay—26p-2)}En—1 — n2[an—15 —1Zn F Qp—20n_2%2,—2] = 0,(4.28)

i

Brzi + &2, + Cpzy 0, (4.29)
nPnzl — nBu_12n_y — 06 (Zn — Zn1) — plZn + nC(Zn — 2,—1)] = 0.(4.30)
From Eq. (4.29) we have,

Brzy = —KzZy — (pin.
Substituting this equation into (4.28) and (4.30), we get the last two equations we
need,
N[ —Bn-12n + (4Bn-1 + Bu=2)2n-1 — 2(Bn-1 + 4Bn-2)Zn—2 + Prn—22n-3]
—n2[nk + (o + an16n-1)%n + [one1 + 22 (0n_16n1 + n_26n_2)nK] 31
—n20p_36n_2in_y =0 ,(4.31)
n°Bn-1(2n — 22n_1 + 2Zn_2) + (n*k 4+ 2nCp + nan, b, + 1)z,

—(n’k + na b, + nul) 32— = 0.(4.32)
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Eqgs. (4.24-4.27, 4.31-4.32) can be written in a matrix form as,

M-Z+K-Z=B=, (4.33)
Dy
where
Z=10,21,22 1201, %0l (nyryy B =1[1,0,0,...,0,0],
n 0 0 0
0 a1+ n?(caé1 + o) —n2a16; 0
0 —n?016; az + n?(aby + ar6y) —nlazd,
M =
0 0 0 0
0 0 0 0
0 0 0 0




0 0
0 0
0 0
0
0
0
—nlay 96,2 Qn_a + n?(p_26n—2 + Ap_36n-3)
0 — — %0, 90,2
0 0
0 0
0 0
0 0
~n20—16p—1 0

Qn-1 + n?(nk + oy_26,—5 + 18 ~1) —n?*(nk+(p+ ap-16,-1)

—n(nk + nand, + (@) n(nk + 2¢p + anbn) + p

L

(n+1,n41)

96
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by ~& 0 0 0 0
“%Q Bo+ 4P+ B2 —2(B1+ P2) B 0 0
0 —2(B1+ B2) Pr+4Ba+Bs —2(B2+ Bs) B3 0
0 B —2(B2+ B3) B2+ 4Bs+ B —2(B3+ Ba) Pa
1
K = 7-7,;
0 0 0 0 0 0
0 0 0 0 0 0
! 0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

ﬁn—3 —'2(:371.——2 + ﬂn—3) ﬂn—l + 4187»—2 + :Bn—S _2(671—1 + ﬂn—Z) ﬁn—l
0 /Hn—z _2(ﬂn—1 + 6’/&—2) 4ﬂn—l + ﬂn—2) _Qﬂn—l

0 0 By _2&l Bn—1
" " no ] (n+1,n+1)
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The state vector is defined as,

91 V/
q= — (4.34)
q2 Z

and the corresponding state variable equations are,

g = Aq+bu (4.35)

where

0 I 0 L
A= b= u== (4.36)

~M71K 0 M—'B
4.4 Open-Loop Responses: Marginally Stable Problem

For the sake of simplicity, we use a uniform link for the flexible arm. In other
words, we have assumed «, 4, and ¢ as constants in our simulation.

For open-loop responses, i.e., control u(t) is a predetermined function and no
feedback is used, Eq. (4.35) is a marginally stable system since all its poles are on

the imaginary axis. For example, when

n = 0.01; w = 0.01; k = 0.01; ¢ = 0.001;

a=10, f=10, §=001, n=20 (4.37)



The poles of the flexible arm are computed as:

(1.0e + 02) x

0.0000 — 0.0830¢
0.0000 + 0.0830:
0.0000 — 0.2071
0.0000 + 0.20712
0.0000 — 0.3391:
0.0000 + 0.3391:
0.0000 — 0.5643:
0.0000 + 0.5643:
0.0000 — 0.8726¢
0.0000 + 0.87262
0.0000 — 1.1987:
0.0000 + 1.1987:
0.0000 — 1.51842
0.0000 + 1.5184:
0.0000 — 1.8234:
0.0000 + 1.82342
0.0000 — 2.1113¢
0.0000 + 2.1113:

0.0000 — 2.3805:

0.0000 + 2.3805:
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(1.0e + 02) x

—-

0.0000 — 2.6302:
0.0000 + 2.6302:
0.0000 — 2.8595:
0.0000 + 2.8595:
0.0000 — 3.06772
0.0000 + 3.0677:
0.0000 — 3.2539:
0.0000 + 3.2539:
0.0000 — 3.4172:
0.0000 + 3.41722
0.0000 — 3.5570:
0.0000 + 3.55702
0.0000 — 3.6725¢
0.0000 + 3.6725¢
0.0000 — 3.76312
0.0000 + 3.7631:
0.0000 — 3.8282:
0.0000 + 3.8282:
0.0000 — 3.86752
0.0000 + 3.8675:

0.0000 — 4.9455:

] 0.0000 + 4.9455:

100
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Since BI55 with o = 0.5 is good for marginally stable problems, we have used BI55
and stepsize control (3.15) to solve Eq. (4.35).

Figs. 4.2-4.3 represent the hub rotations and tip deflections using BI45 and Mat-
lab ode45 when the input is 1) a pulse: u(t) = 0.1 for 0 < ¢t < 0.5 and u(t) = 0
otherwise; 2) a step: u(t) = 0.1; 3) a ramp: u(t) = 0.1¢, respectively. The tolerance
is set as tol=10e-7, and n=10. Although the difference between BI45 and ode45
are invisible from these figures, they do give different results. Note that ode45 will
not converge if the simulation time is long (say > 100 seconds), while BI55 still
does. Since the exact solution is not available for the flexible arm, no accuracy
comparison is conducted. However, we can consider the number of steps used to
find a solution. From Table 1, we can see that BI55 uses fewer steps to find its
solution than ode45 does. However, since BI55 requires more computation at each

step, CPU times used by the two methods are about the same.

pulse | step | ramp

BI55 | 151 | 112 39

ode45 | 358 | 338 | 125

Table 1: Number of Integration Steps: Open Loop, Euler-Bernoulli Model
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Figure 4.2: Open-Loop Hub Rotations under Various Inputs: Euler-Bernoulli Model



0.06

0.04

0.02

Tip Deflection

-0.04

-0.06

-0.08
0

Impact Response

-0.02 1

|

0.06

0.04

0.02

-0.02

-0.04

-0.06

~-0.08
0

Step Response

102

Ramp Response

. 0.06

. 0.04

. 0.02

. -0.02

T -0.04

. -0.06

time

Figure 4.3: Open-Loop Tip Deflections

Model

-0.08
0

under Various Inputs:

Euler-Bernoulli



104

4.5 Closed-Loop Responses: Stiff Problem

For the closed-loop responses, i.e., control u(t) is determined from feedback, Eq.
(4.35) is a stiff system since some of its poles are much larger than others. From
physics, this can be understood due to the fact that the rigid hub rotation is much
faster than the flexible link deformation. The coexistence of fast and slow motion
within the same system makes it stiff.

For example, consider the following simple PD control based on hub rotation

and tip deflection feedback (since both can be measured):
u(t) = ko(8a — 0) + k;(0a — 8) — kyw — kuti (4.38)

where 6y is the desired hub position, and w = z, — 0 is the tip deflection (therefore,
the desired value is zero).
Assume the same link and payload parameters as in the previous section, and

the following feedback gains are used to make the arm stable:
kg = 18.6550; k; = 5.5285; k., = 1.5000 k. = 0.0050.

The closed-loop poles in this case become:

- -

—5.4579

—0.0369
(1.0e + 02) x

—0.0021 — 0.1244.

—0.0021 + 0.1244,




(1.0e 4 02) x

—0.0017 — 0.2955:
~—0.0017 + 0.29552
~0.0019 — 0.5415:
—0.0019 4 0.5415:
~0.0017 — 0.8610:
—0.0017 + 0.8610:
~0.0014 — 1.1919:
—0.0014 + 1.1919.
—0.0012 — 1.51402
—0.0012 + 1.51402
—0.0010 — 1.8204:
—0.0010 + 1.8204:
—0.0008 — 2.1091¢
—0.0008 + 2.10912
—0.0007 — 2.3789:
—0.0007 + 2.3789:
—0.0005 — 2.6290:
—0.0005 + 2.6290:
—0.0004 — 2.8587:

—0.0004 + 2.858T:

|
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—0.0003 — 3.06713
—0.0003 + 3.0671:
—0.0003 — 3.2534i
—0.0003 + 3.2534i
—0.0002 — 3.4169;
—0.0002 + 3.4169;
~0.0001 — 3.5568:
—0.0001 + 3.5568i
—0.0001 — 3.6724i
(1.0e +02) X | —0.0001 + 3.6724s
~0.0000 — 3.7630i
—0.0000 + 3.7630;
—0.0005 — 2.6290:
—0.0000 — 3.8282;
—0.0000 + 3.8282:
—0.0000 — 3.86744
—0.0000 + 3.8674:

—0.0000 — 4.9455:

—0.0000 + 4.9455:

Note that the real parts of the last 4 conjugate pole pairs are -2.1074e-03, -4.7697e-

03, -5.2912e-04 and -2.2514e-07, respectively. In terms of real parts, the ratio of the
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largest and the smallest is 2.4242e+09 ! In terms of the magnitude of the poles, the
ratio of the largest and the smallest is still 147.9106. Therefore, we have a real stiff
problem in this case.

Figs. 4.4-4.5 represent the hub rotations and tip deflections using BI45 with
a = 0.47 and stepsize control (3.15) (solid lines) and Matlab ode45 (dotted lines)
when the initial hub position is 90° while the desired position is 0. The tolerance
is set as tol=10e-7, and n=10. Note that ode45 will not converge with tol<10e-7
or simulation time longer than 10 seconds, while BI45 still does. As one can see
from these figures, the difference between BI45 and ode45 is quite visible in this
case. Note that the BI45 solution is smoother that the ode45 solution. From the
mechanics point of view, the BI45 solution is much more reasonable. Again, since
the exact solution is not available for the flexible arm in this case, no accuracy
comparison is conducted. The numbers of integration steps used to find a solution

by BI45 and ode45 are 853 and 1367 respectively.
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CHAPTER 5

Dynamic Responses of Flexible Manipulators:

Timoshenko Model

In this chapter, we continue to study the numerical solution of dynamic responses
of flexible manipulators when one has to take their shear deformation into account.

In this case, we must use the Timoshenko beam model to describe the flexible arms

3, 9, 10, 21, 25].

5.1 Basic Equations

Again, consider the flexible manipulator given in Fig. 4.1. The motion of the
manipulator system is described by rigid rotation 6 of the hub, flexible displace-
ment w and rotation 1 of the beam. In Euler-Bernoulli theory, the normal plane
assumption is used and we have ¢ = Qw/dz=w'. The Timoshenko theory takes the
effect of shear deformation into account by replacing the normal plane assumption
by a more accurate one, the plane assumption. The plane assumption states that
the entire transverse section of the beam, originally plane, remains plane but may

not be normal to the longitudinal axis of the beam after deformation [22]. As a
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result, ¥ # Jw/0z=w', thus beam rotation ) remains as an independent function
of deformation.
All basic equations in section 4.2 are still valid here, except that the total po-

tential energy now become,
_ 1 L 12 n2
P= 2/0 (DY’ + C(4p — w')?]ds (5.1)

in which D and C are the bending and shear rigidities of the beam. For a beam of
uniform cross section, D = EI and C' = kG A, where E is Young’s modulus, G the

shear modulus, and k the shape factor [11, 22].

5.2 Dynamical Equations of Flexible Arms

Using Hamilton’s Principle, we can get the dynamic motion equations of flexible
arms based on the Timoshenko model. To make the form of the dynamic equations

simpler, we introduce the total deflection v and rotation o of the manipulator as,
v(z,t) = w(z,t) + z0(t), #(z,t) = P(z,t) + 0(2). (5.2)

In terms of the total deflection and rotation, the Timoshenko dynamic equations of

flexible manipulators can be written as follows:

(D¢') = C(¢p—v")~pSé = 0,  [C(p—)] +pb =0, (5.3)

Iy — D' (0)

!
si

, (5.4)
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with boundary conditions,

z = L, D¢ +Jpp+aMp=0, C(¢—v)=M(5+ad). (56)

Besides the dimensionless functions, variables, and parameters introduced in

section 4.3, we introduce

as the dimensionless shear rigidity function. The dynamic equations now can be

rewritten as,

(BY) —4(p—2)—abp=0, [y(¢—2)+az = 0, (5.7)
76— BO)F(0) = 55 (5.8)

boundary conditions,

2(0)=0,  4(0)=90 (5.9)

B(1)S(1) + [ké(1) + Cuz(1)] = 0,9(1)[$(1) — 2'(1)] = u[2(1) + ($(1)]. (5.10)

5.3 Discretization by the Method of Lines

Similar to section 4.4, using the method of lines, we can approximate PDEs

(5.7-5.10) by a set of ODEs.
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Define & = ih, and z; = z(ih,t), ¢; = ¢(ih), c; = a(th), Bi = B(ih), &; = 6(ih),

v = v(ik), it = 0,1,...,n. From the first two boundary conditions (5.9),

=0, do=0. (5.11)

Therefore, Eq. (5.8) can be approximated by

. I
10 + nPo(6 — ¢1) = %— (5.12)
0
For : = 1, Eqgs. (5.7) is approximated by,
n®[Bads — (B2 + B1 + 1 /n*)d1 + B18] + 1z — arbiy =0, (5.13)
n[y2d2 — Y1¢1] — n2[72z2 — (12 + M)z + a2 =0, (5.14)

and forz=2,...,n—1,

n[Bis16is1 — (Bigs + Bi 4+ %i/n2) i + Bidia] + nyizi — nyizios — cubii = 045.15)

n[Yir1dir1 — Yidi] — n*[Yigrzipn — (Virr + %)z + vizio1) + i = 0. (5.16)

Since we have 2n + 1 unknowns, Z = [0,2,...,2,, $1, - ,¢n]T. We still need

two more equations, which can be obtained from the last two boundary conditions

in (5.10). That is,

1Bu(bn — $not) + K¢n + Epza = 0, (5.17)



Egs. (5.12-5.18) can be written in a matrix form as,

M-Z+ K Z=Bp,

As in section 4.3, one can find M, K, and B easily.

Define the state vector as,

The corresponding state variable equations are given by,
g = Aq+bu

where

0 I 0 ILr
A: b: g —
U DO

—~M7K 0 M—B
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(5.19)

~—~

5.20)

(5.21)

(5.22)

5.4 Open-Loop Responses: Marginally Stable Problem

For the sake of simplicity, we have used a uniform link for the flexible arm. In

other words, we have assumed «, 3, § and ~ as constants in our simulation.

For open-loop responses, Eq. (5.21) is a marginally stable system since all its

poles are on the imaginary axis. For example, when

n = 0.01; pu = 0.01; & = 0.01; ¢ = 0.001;

a=10, B=10, §=001,y=100, n=10.

(5.23)



The poles of the flexible arms are computed as:

(1.0e + 02) x

0.0000 — 0.0714:
0.0000 + 0.0714¢
0.0000 — 0.16522
0.0000 + 0.1652:
0.0000 — 0.2590:
0.0000 + 0.25902
0.0000 — 0.3506:
0.0000 + 0.3506:
0.0000 — 0.4497:
0.0000 + 0.4497:
0.0000 — 0.5437:
0.0000 + 0.54372
0.0000 — 0.6406¢
0.0000 -+ 0.64062
0.0000 — 0.7307-
0.0000 + 0.7307:
0.0000 — 0.8204:
0.0000 + 0.8204z
0.0000 — 0.9027

0.0000 + 0.9027:

0.0000 — 0.9820
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(1.0 + 02) x

0.0000 -+ 0.9820:
0.0000 — 1.0538:
0.0000 + 1.0538:
0.0000 — 1.1207.
0.0000 + 1.1207:
0.0000 — 1.1797:
0.0000 + 1.1797:
0.0000 — 1.2325¢
0.0000 + 1.2325:
0.0000 — 1.2771.
0.0000 + 1.2771.
0.0000 — 1.3144:
0.0000 + 1.3144z
0.0000 — 1.3435:
0.0000 + 1.3435:
0.0000 — 1.36452
0.0000 + 1.3645:
0.0000 — 1.3771z
0.0000 + 1.3771»

0.0000 — 3.2985¢

0.0000 + 3.2985:

]
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Note that the poles are smaller than the poles calculated from the Euler-Bernoulli
Model.

Figs. 5.1-5.2 represent the hub rotations and tip deflections using BI55 (o = 0.5)
and Matlab ode45 when the input is 1) a pulse: u(¢) = 0.1 for 0 < ¢ < 0.5 and
u(t) = 0 otherwise; 2) a step: u(t) = 0.1; and 3) a ramp: u(t) = 0.1¢, respectively.
The tolerance is set as tol=10e-7, and n=10. Again, the differences between BI45
and ode4b are invisible but do exist. No accuracy comparison is conducted since
the exact solution is not available for the flexible arm. From Table 2, we can see

that BI45 uses fewer steps to find its solution than ode45 does.

pulse | step | ramp

BI55 | 137 [ 109 | 63

ode45 | 342 | 313 | 195

Table 2: Number of Integration Steps: Open Loop, Timoshenko Model

5.5 Closed-Loop Responses: Stiff Problem

For closed-loop responses, Eq. (5.21) is a stiff system. For example, consider the

following simple PD control based on hub rotation and tip deflection feedback:



Hub Rotation (Deg)

Impact Response Step Response

Figure 5.1: Open-Loop Hub Rotations under Various Inputs: Timoshenko Model

Ramp Response




1ip Deflection

0.04

0.03

0.02

0.01

-0.01

-0.02

-0.03

-0.04

-0.05

Impact Response Step Response

¥ T

. 0.04

1 0.03r

0.02+

0.01f

- -0.01

. -0.021

- -0.03f

. ~0.04}

. -0.05

0.04

0.03

0.02

0.01

-0.01

-0.02

-0.03

-0.04

-0.05

Ramp Response

118

Figure 5.2: Open-Loop Tip Deflections under Various Inputs: Timoshenko Model
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u(t) = kg(8a — 0) + k(04 — 0) — kyw — kgt (5.24)

where 6y is the desired hub position, and w = z, — 0 is the tip deflection (therefore,
the desired value is zero).
Assume the same link and payload parameters as in the previous section, and

the following feedback gains:
kg = 16.3225; k; = 4.2234; ky, = 1.4012; ky = 0.0061.

The closed-loop poles in this case become:

—4.1243

—0.0454

—0.0028 — 0.1025
~0.0028 + 0.1025¢
—0.0026 — 0.2136:
(1.0 + 02) x
—0.0026 + 0.2136:
—0.0024 — 0.3153
—0.0024 + 0.3153;

—0.0023 — 0.4228:

—0.0023 + 0.4228:

- -



(1.0e + 02) x

—0.0021 — 0.5228:
—0.0021 + 0.52282
—0.0020 — 0.6239:
—0.0020 + 0.6239:
—0.0018 — 0.7177:
—0.0018 + 0.71772
—0.0016 — 0.8097:
—0.0016 + 0.8097:
—0.0014 — 0.8944:
—0.0014 + 0.89442
—0.0012 — 0.9753¢
—0.0012 4 0.9753:
—0.0010 — 1.0487.
—0.0010 + 1.0487.
—0.0008 — 1.11662
—0.0008 + 1.11662
~—0.0006 — 1.1768:
—0.0006 + 1.17682
—0.0005 — 1.2303:

—0.0005 + 1.2303:
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(1.0e + 02) x

—0.0003 — 1.27572
—0.0003 + 1.2757:
—0.0002 — 1.31352
—0.0002 + 1.3135:
—0.0001 — 1.34302
—0.0001 + 1.3430:
—0.0001 — 1.3643:
—0.0001 + 1.36432
—0.0000 — 1.3771z
—0.0000 4 1.37712

—0.0000 — 3.2985:

—0.0000 + 3.2985: ]
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Note that the real parts of the last 2 conjugate pole pairs are -1.4045¢-03 and -

7.4071e-05, respectively. In terms of real parts, the ratio of the largest and the

smallest is 5.5680e406 ! In terms of the magnitude of the poles, the ratio of the

largest and the smallest is still 90.8123. Again, we have a real stiff problem in this

case.

Figs. 5.3-5.4 represent the hub rotations and tip deflections using BI45 with

o = 0.47 and Matlab ode45 when the initial hub position is 90° while the desired

position is 0. The tolerance is set as tol=10e-7, and n=5. As we have seen in the

Euler-Bernoulli model, the difference between BI45 (solid lines) and ode45 (dotted
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lines) are quite visible in this case. Again, the BI45 solution is much smoother that
the ode45 solution. The numbers of integration steps used to find a solution by

BI45 and ode45 are 784 and 1273 respectively.
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Figure 5.3: Hub Rotation under PD Feedback: Timoshenko Model
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Figure 5.4: Tip Deflection under PD Feedback: Timoshenko Model
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CHAPTER 6

Conclusion and Future Work

This thesis has investigated backinterpolation (BI) techniques for finding numer-
ical solutions of continuous-time differential equations. We have looked at various
aspects of the proposed BI methods, such as stability domains, accuracy domains,
damping and frequency properties, and stepsize control problems. For BI45, it has
been found from the stability domain that we have to choose o between 0.3 to 0.47
in order to maintain the L-stability of BI45. We have also found that for BI45 its
accuracy domain increases with the value of . Based on these observations, we
conclude that o = 0.47 should be used for BI45 in the numerical integration.

Our computer simulation results have indicated that the BI methods are very
efficient in solving marginally stable and stiff problems.

For applications, we have first established a numerical model for one-link flexible
manipulators based on both Euler-Bernoulli and Timoshenko theories. The partial
differential equations for flexible manipulator motion are approximated by the cor-
responding ordinary differential equations using the method of lines. As indicated

by numerical examples, the dynamic equations of flexible manipulators become
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marginally stable in the open loop case and stiff in the closed loop case. Simulation
results show that both cases can be solved efficiently using the BI methods.

Future research for the BI methods could include:

1. Finding an efficient method for backward iterations that does not need to
inverse a matrix or use Gaussian elimination. For example, in [14], an iterative
scheme for calculating the inverse of the B matrix in the Broyden-Newton

method is suggested as:

B} = B} + (df — By}ds)ds™

new
However, we can show that this is not correct numerically.

2. Developing interface programs to implement BI methods in simulation lan-
guages, such as ACSL, as special ODE solvers for marginally stable and stiff

problems.
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APPENDIX A

Matlab Programs



0. 0.00.0.0 0000000000 0000000000000000000000000C0
T T 5555529592 2522%%
Q Q.
% Fat.m %
00000000000000000C0 000000 0 0.0 0000000000000
TS AL 5299%%%%

function F = Fmat (A,h,algor,alpha)

This function computes the F-matrix for different integration algorithms
55 = BI55
45 = BI45

0P 0P 0P dP oP

= eye{size(A));

Ahl=A*(l-alpha) *h; Ah2=A*alpha*h;

if algor==55,
Fl=I - Ahl*(I - Ahl*(I/2 Ahl*(I/6 Ahl1*(I/24 - Ahl1/120)))
F2=I + Ah2*(I + Ah2*(I/2 + Ah2*(I/6 + Ah2*(I/24 + Ah2/120)))
F=inv(F1l) *F2;

elseif algor==45,
F1=I - Ahl*(I - Ahl*(I/2 Ah1*(I/6 Ahl*(I/24 - Ah1/120))));
F2=1 + Ah2*(I + Ah2*(I/2 + Ah2*(I/6 + Ah2/24)));
F=inv (F1l) *F2;

else

F=I;

end

)}
)

l
1

20000000000000000000000000000090000 00000000
R R R A R R A e Rt T L e L
[+ o)
3 CalMaxH.m %
0.9000000000000000000000000000000000 00000000
R R R  E e L L e L L T L L L LT

%
% This function computes the maximal step size for an
% arbitrary algorithm, and a given alpha value.

%

radtheta = theta*pi/180;
A = [0 1l; -1 +2*cos{(radtheta)];

maxerr = le-6;

err = 100;
hmn = hmno;
hmx = hmxO0;

while err > maxerr,
h = (hmn + hmx)/2;
F = Fmat (A,h,algor,alpha);
lmax = max(abs(eig(F)));
err = lmax - 1;
if err > 0,

hmn = h;
else,

hmx = h;

end,

err = abs(err);
if ((hmx-hmn) < 1.0e-6) & (err > maxerr)

h = -10.0;
err = 0.0;
end,

end

hmax = h;
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algor=45;

al=[0.1,0.2,0.3,0.41; %,0.45,0.49];
%$al={0.41,0.42,0.43,0.44,0.45]; %,0.45,0.49]
%$al=[0.46,0.47,0.48,0.49,0.501; %,0.45,0.49]
savefile=['save stab01t04’ num2str(algor) '
%savefile=['save stab041t045’ num2str (algor)
$savefile=['save stab045t049’' num2str (algor)
num=length(al) ;

XX=[1];

YY=[1;

for i=1:num
alpha=al(i);
x=[1; y=[1;
[x,y]=stab(algor,alpha) ;
XX=[{XX,x1:
YY= [YYIY] H

end

xmax=max (max (XX)) ;
ymax=max (max (YY) )+10;

plot (XX,YY) %,[0 0], [-ymax ymax]);

i

°
i

al XX YY'];

al XX vYvY’'];
al XX YY'];

title([’Stability Domain of BI’ num2str(algoxr)]);

gaxis ([-5 xmax -ymax ymax]);
grid;

xlabel (‘Re(lambda*h) ’);
vlabel ('Im(lambda*h) ) ;

%gtext ([’alpha=0.1,0.2,0.3,0.4"1); % num2stx(al(l))]);

ggtext (['alpha=0.41,0.42,0.43,0.44,0.45"'1);
$gtext (["alpha=0.46,0.47,0.48,0.49,0.50'1);
gtext ([ 'alpha=' num2str(al{(1l))]);
for i=2:num
gtext (num2str (al(i)));
end

eval (savefile);

function [x,y]=Accuracy (algor, alpha, x0)
Find accuracy domain for BI

%
%
% Loop over theta
%

hvec = [];
avec = [];
hmn = 0;
hmx = 1;
tol=10e-6;

for theta =0:5:180

(
%
%

num2str (al(l))]
nun2str (al (1))]

hmax = FindMaxH (alpha,algor,hmn, hmx,theta, x0, tol);
avec = [ avec ; theta 1;
hvec = [ hvec ; hmax 1;
if hmax > 0
hmx = 2*hmax;
else
hmx = 1;

Y
)i



end;
end,

Convert to carthesian coordinates

00 de de

radtheta = avec*pi/180;
= + hvec .* cos{(radtheta);
= 4+ hvec .* sin{(radtheta);

X
Y
%
% Duplicate to get third guadrant also
%
ln = length(x);

bie

X = + x(1In:-1:1);
vy = - y(ln:-1:1);
x =[x ; xx1;
y=01y vy 1l:
end
$%%% T35 353535%%%

function hmax = FindMaxH (alpha,algor,hmn0O,hmx0,theta, x0,

%
% This function computes the maximal step size for an
% arbitrary algorithm, a given alpha value, a given

% initial condition, and a given accuracy (tol).

%

radtheta = theta*pi/180;
cc=cos (radtheta) ;
ss=sin(radtheta);

A = [0 1;-1 2*cc];
tf=10;

if ss ~= 0
cl=x0(1); c2=(x0(2)-x0(1)*cc)/ss;
dcl=cc*cl+ss*c2; dc2=cc*c2-ss*cl;
else
cl=x0(1); c2=x0(2)-x0(1) *cc;
dcl=cc*cl+c2; dc2=cc*c2;

end

err = 100;
hmn = hmnoO;
hmx = hmx0;

while err > 10e-6
h = (hmn + hmx) /2;
F Fmat (A, h,algor,alpha);

(1

n=round{(tf/h) ;
MM=F;
acc=0;
for i=1:n
if ss ~= 0
et=exp (cc*h*i); ct=cos(ss*h*i); st=sin(ss*h*i);
else
et=exp (cc*h*i); ct=1; st=h*i;
end

anal=et*[cl*ct+c2*st; dcl*ct+dc2*st];
ddd=norm{(MM*x0 - anal);

tol)



$DDDDDDD=ddd
if ddd > acc
acc= ddd;
end
MM=MM*F;
end;

if acc > tol,
hITD(:h;

else

hmn = h;

end;

o

treat stepsize less than 10e-6 as zero.
if h < 10e-6
hmn=0; hmx=0;
end;
err=hmx-hmn;

end

hmax = (hmn + hmx)/2;

0.0000000000000000000000000000000000C0000.00.00
I 552535355255 %%%%%%%%%%

Q
% PlotAcc.m %
000000000 00000000000000 0000000000000 0000040
3555555522255 55%5%%%%%

algor=55;

%al=[0.11;

al=[0.1,0.2,0.3,0.4]; %,0.45,0.49];
%al=[0.41,0.42,0.43,0.44,0.45]); %,0.45,0.49];
%$al=[0.46,0.47,0.48,0.49,0.50]; %,0.45,0.491;

savefile=[’'save acc01t04_x001' num2str(algor) ' al XX YY'];
%$savefile=['save stab041t045’ num2str(algor) ’ al XX YY'];
$savefile=[’'save stab045t049’ num2str(algor) ' al XX YY'];
num=length(al) ;
x0=[0;1];
XX=[1;
Yy=[1];
for i=1:num
alpha=al(i);
x=[1: v=I[1:
[x,v]=Accuracy (algor,alpha,x0);
XX=[XX,x]1;
YY=[YY,v]:
end

xmax=max (max (XX) ) ;
ymax=max (max (YY) )+10;

plot (XX,YY) %,[0 0], [-ymax ymax]l);

title([’Accuracy Domain of BI’ num2str(algor) ’ (x0=(0,1), esp=10E-4)‘]1);
%axis ([-5 xmax -ymax ymax]);

grid;

xlabel ('Re(lambda*h) ’);

yvlabel ('Im(lambda*h)’);

$gtext (['alpha=0.1,0.2,0.3,0.4"]1); % num2str(al(1l))1):;

$gtext (['alpha=0.41,0.42,0.43,0.44,0.45"]); % num2str(al(l))]):

$gtext (['alpha=0.46,0.47,0.48,0.49,0.50'1); % num2str(al(l))]):



gtext (["alpha=’ num2str(al(1l))]):
for i=2:num
gtext (num2str(al(i)));
end

eval (savefile);

e85 5255%522202552%2525355%222%%%%3%
% DampFreqg.m %
555255 E LSS5 5%%5%%%
R=20;

N=50;

algor=55;

ang=[{90 75 45 15 01];
alp=[1 47];

for i=1:length(ang)

an=num2str{ang(i));

theta=ang (i) *pi/180;

for j=1l:length(alp)

al=num2str(alp(j));

alpha=alp(j)/10;

[S8d,Wd, S,W,RR]=damp (algor, alpha, theta, R, N);

savefile=[’'save res55_~’ an '_0’ al * sd Wd S W RR'];
eval (savefile);

function [Sd,Wd,S,W,RR]=damp(algor, alpha, theta, R, N)

damping and frequency plots for algorithm # "algor" with alpha
for pole=r{(cos(theta) + j sin(theta)), where 0 <= r <= R;

N: discretizaation of [0, R]

Note: we require 0 <= theta <= pi/2;

o0 0P o oC

dr=R/N;
cc=cos (theta) ;
ss=sin(theta);

Sd=[]; wd=[1; S=[]1; W=[]; RR=[];
for i=0:N

r=1i*dr;

S=r*Ccc; w=r*ss;
z=eig_of_F(alger, alpha, s, w);

sd
wd

-log(abs(z));
angle(z);

S=[S, s]; W=[W, wl; RR=[RR, rj};
Sd=[sd, sd]; wd=[wd, wd];

end

W=W - 2*pi*floor(W/(2*pi));
transfer W to [0 2*pi] in order to compare with Wd.

[)
S



L35 55%%38355555%%2%5%5%5%5%%2%25%%%%%%%3%%%%%
% eig of F.m %
LIRS 2%%%S

A=[0 1;-8"2-w"2 -2*g];

h=1.0;

F = Fmat (A,h,algor,alpha);

zz = elg(F);

z = zz(1,:);

T3 32999222229959%%%%%2%%%
% plotdamp.m %
T T T

ang=[90 75 45 15 0];
alp=[1 41;

for i=1:length(ang)
an=num2str{ang (i) );

loadfilel=[’load resd45_’ an ’'_01'];

loadfiled=[*load resd45_’' an '_04°'];

dampname=[ 'Damping Plot for BI45 (theta=' an ')’];
fregname=['Frequency Plot for BI45 (theta=’ an ‘')’'];
plotname=['print BI45_’ an];

figname=[‘’!1lpr -PPS1 BI45_’ an ’'.ps’];

eval (loadfilel) ;
5d1=5d;

wdl=wd;

eval (loadfiled);
sd4=sd;

wWdd=wWd;

subplot (1,2,1),
title (dampname) ;
xlabel('r’');
vlabel ( 'damping’) ;

plot (-RR,S,’'-',-RR,8d1,'--', -RR, Sd4,’'-.");

subplot (1,2,2), plot(-RR,W,’'-’,-RR,Wdl,'--', -RR, Wdd,'-."');
title (fregqname) ;

xlabel('r’);

vlabel (' frequency’) ;

eval {(plotname) ;

eval (figname) ;

end

end

end

R R R R R A R R L PR P P T T T

% oded5.m %
R T T T LT

function [tout, yout] = oded5(FunFcn, t0, tfinal, y0, tol, trace)
%ODE45 Integrate a system of ordinary differential equations using
% 4th and 5th order Runge-Kutta formulas. See also ODE23 and
% ODEDEMO .M.



% C.B. Moler, 3-25-87.

% Copyright (c¢) 1987 by the MathWorks, Inc.

% All rights reserved.

% The Fehlberg coefficients:

alpha = [1/4 3/8 12/13 1 1/2]1°';

beta =1 [ 1 0 0 0 0 0
[ 3 9 0 0 0 0
[ 1932 -7200 7296 0 0 0
[ 8341 -32832 29440 -845 0 0
[-6080 41040 -28352 9295 -5643 0

gamma = [ [902880 0 3953664 3855735 -1371249
[ -2090 O 22528 21970 -15048

pow = 1/5;

if nargin < 6, trace = 0; end

if nargin < 5, tol = l.e-6; end

% Initialization

t = t0;

hmax = (tfinal - t)/5;

hmin = (tfinal - t)/20000;

h = (tfinal - t)/100;

y =vy0(:);

f = y*zeros(1,6);

tout = t;

yout =y.';

tau = tol * max(norm(y, ‘'inf’), 1);

if trace

cle, t, h, vy
end
% The main loop
while (t < tfinal) & (h >= hmin)
if £t + h > tfinal, h = tfinal - t; end

% Compute the slopes

temp = feval (FunFcn,t,v):;
£f(:,1) = temp(:);
for j = 1:5
temp = feval (FunFcn, t+alpha(i)*h, yv+h*

% [T,Y] = ODE45('yprime’, TO0, Tfinal, Y0) integrates the system
% of ordinary differential equations described by the M-file

% YPRIME.M over the interval T0 to Tfinal and using initial

% conditions YO.

% [T, Y] = ODE45(F, TO0, Tfinal, Y0, TOL, 1) uses tolerance TOL
% and displays status while the integration proceeds.

%

% INPUT:

% F - String containing name of user-supplied problem description.
% Call: yprime = fun(t,y) where F = "fun’.

% t - Time (scalar).

% v - Solution column-vector.

% yprime - Returned derivative column-vector; yprime(i) = dy (i) /dt.
% to - Initial value of t.

% tfinal- Final value of t.

% v0 - Initial value column-vector.

% tol - The desired accuracy. (Default: tol = 1l.e-6).

$ trace - If nonzero, each step is printed. (Default: trace = 0).

%

% OUTPUT:

% T - Returned integration time points (row-vector).

% Y - Returned solution, one solution column-vector per tout-value.
%

% The result can be displayed by: plot (tout, yout).

1/4

1/32

1/2197

1/4104

1/20520 17;
277020]/7618050
-273601/752400 1~

f*betal(:



£f(:,J+1) = temp(:);
end

% Estimate the error and the acceptable error
delta = norm{h*f*gamma(:,2),’inf’);
tau = tol*max(norm(y,’inf’),1.0);

% Update the solution only if the error is acceptable
if delta <= tau
t = t + h;
v =y + h*f*gamma(:,1);
tout = [tout; tl:
yout = [yout; y.'];
end
if trace
home, t, h, vy
end

% Update the step size
if delta ~= 0.0
h = min(hmax, 0.8*h*(tau/delta)“pow);
end
end;

if (t < tfinal)
disp( SINGULARITY LIKELY.')

function [tout,xout]=bid5 (FunFcn,t0,tf,x0,alpha,tol);

% BI45 with stepsize control (3.14) on my thesis
%

% The Fehlberg coefficients:

omega = [1/4 3/8 12/13 1 1/21';
beta = [ I 1 0 0 0 0 01/4
[ 3 9 0 0 0 01/32
[ 1932 -7200 7296 0 0 01/2197
[ 8341 -32832 29440 -845 0 01/4104
[-6080 41040 -28352 9295 -5643 01720520 1';

]
—

{902880 0 3953664 3855735 -1371249 277020]1/7618050
[ -2090 O 22528 21970 -15048 -273601/752400 1';

gamma

pow=1/5;
if nargin < 5, alpha = 0.45; end
if nargin < 6, tol = l.e-6; end

% Initialization
x1 = x0(:);

fd = x1l*zeros(1l,6):;
hmax = (£f-t0)/16;
ghmin = hmax/64;
hmin=0.0;

h=hmax/8;

tout [1;

xout [1;

tout [tout;t07];

o n



xout = [xout;x0'7;
tl = tO;
% The main loop

while (tl < tf) & (h >= hmin)
if £t1 + h > tf, h tf - tl;

end

aho

1

h*alpha;
ahl h*(l-alpha);
Calculate x(k+alpha);
temp = feval (FunFcn,tl,x1);
£f4(:,1) temp (:);
for j = 1:5
temp = feval (FunFcn,
£4(:,3+1) temp(:);
end
xa
ta

%

tl+omega (j)*ah0, xl+ahO*fd*beta(:,j));

-

7

x1 + ahO*f4*gamma(:,1)
tl+ahoO;

It n

[+

% Calculate e(alpha*h)_left

err_left = ahO*fd4d*gamma (:,2);

2
5

Calculate the initial value of x(k+1)
temp = feval (FunFcn, ta,xa):

f4(:,1) = temp(:);

for j = 1:5
temp = feval (FunFcn, ta+omega(j)*ahl, xa+ahl*fd*beta(:,3)):
f4(:,3+1) = temp(:);

end

x20 = xa + ahl*fd*gamma{:,1);

t2 ta+ahl;
x2=BroydenNewton (FunFcn, t2,ahl,xa,x20,tol);

temp = feval (FunFcn,t2,x2);

f4(:,1) = temp(:);

for § = 1:5
temp = feval (FunFcn, t2-omega(j)*ahl, x2-ahl*fd*beta(:,J)):
£4(:,j+1) = temp(:);

end

)

% Calculate e(h-alpha*h)_right;

err_right ahl*fd*gamma(:,2) ;

[
K]

Calculate error
err =err_left - err_right;
error = normierr,’inf’);
tau tol*max (norm(x2,’inf’),1.0);

[
5

Update the solution only if the error is acceptable
if error <= tau
x1

£l

tout

xXout
end

o)

% Update the

X2;

t2;
[tout;tl];
[xout;x2'1;

step size

if error ~= 0.0

h
end

end

min (hmax,

0.8*h* (tau/error) “pow) ;

% end of while loop

if (£l < tf)



disp (’Backward Interpolation Method Fails at')

end
end
200000 0.0 0 [+3 0.0000000000000000000000000
3% %2553 %25%%%2%%3223333%5%%%8%%%%%%
o .
% sbid5.m
00000000000000000000800000000000000000.0
5555525555322 %%%%%%%

function [tout,xout]=sbid45(FunFcn,t0,tf

BI45 with stepsize control (3.15)

0P o o

N

The Fehlberg coefficients:

<

omega = [1/4 3/8 12/13 1 1/21’;
beta = [ [ 1 0 0 0
[ 3 9 0 0
[ 1932 -7200 7296 0
[ 8341 -32832 29440 -845
[-6080 41040 -28352 9295
gamma = [ [902880 0 3953664 3855735
[ -2090 0O 22528 21970
pow=1/5;
powl=0.3/5;
pow2=0.4/5;
pow=1/5;
if nargin < 5, alpha = 0.45; end
if nargin < 6, tol = l.e-6; end
% Initialization
x1 = x0(:);
f4 = xl*zeros(l1l,6);
hmax = (t£-t0)/16;
ghmin = hmax/64;
hmin=0.0;
h:hmax/8;
tout = [];
xout = [];
tout = [tout;t0];
xout = [xout;x0'};
£l = t0;
first_step=1;
% The main loop
while (tl < tf) & (h >= hmin)
if t1 + h > tf, h = tf - tl1; end
ah0 = h*alpha;
ahl = h*(l-alpha);
% Calculate x(k+alpha);
temp = feval (FunFcn,tl,x1);
f4(:,1) = temp(:);
for j = 1:5
temp = feval (FunFcn, tl+omega
f4(:,4+1) = temp(:);
end
xa = x1 + ahO0O*f4*gamma(:,1);
ta = tl+aho;

,x0,alpha,tol);

on my thesis

0 01/4
0 01/32
0 01/2197
0 0174104
-5643 01/20520 1;

-1371249
-15048

277020]1/7618050
-273601/752400 17;

(7j)*ah0, xl+ahO*fd4*beta(:,j));



% Calculate e(alpha*h)_left
err_left = ahO*f4*gamma(:,2);

%

> Calculate the initial value of x(k+1)
temp = feval (FunFcn,ta,xa);

f4(:,1) temp (:);
for j = 1:5

temp = feval(FunFcn, ta+omega(j)*ahl,

f4(:,5+1) temp(:);
end
%20
t2

xa+ahl*fd4*beta(:,3));

xa + ahl*fd*gamma(:,1);
ta+ahl;

x2=BroydenNewton (FunFcn, t2,ahl,xa,x20,tol);

temp = feval(FunFcn,t2,x2);

fd4(:,1) = temp(:):

for j = 1:5
temp = feval (FunFcn, t2-omega(j)*ahl, x2-ahl*fd4*beta(:,3)):
fa(:,j+1) = temp(:);

end

o

Calculate e(h-alpha*h)_right;
err_right ahl*fd*gamma(:,2) ;

$ Calculate error
err = err_left - err_right;
error = normf{err, 'inf’);
tau = tol*max (norm(x2, 'inf’),1.0);
% Update the solution only if the error is acceptable
if error <= tau
x1l = X2;
tl = t2;
tout = [tout;tl];
xout = [xout;x2'];
end

oe

Update the step size
if error ~= 0.0
if first_step

h = min (hmax, 0.8*h*(tau/error) “pow):;
first step=0;
else
h = min(hmax, h*(0.8*tau/error) “powl* (error_last/error) pow2);
end
error_last=error;
end

end
% end of while loop

if (£l < tf)
disp (' Backward Interpolation Method Fails at')

end

end

00000000000 0000000000000000000000000000000C0
OB 000000 C600C00C00000000006CC000000000600063
Q Q.

% BroydenNewton.m %
0.0.0000000000000.0000000600000000000000000C20CC0
BECEOCCECCCE600CCE0C0CC00C00660080060086006088%380C



function xroot=BroydenNewton (Fun,t,h,xa,x0,tol,nn,B,InvB);

AC P OC P I d° P o°

oe

Fun: function whose root are to be found;
t: time in the BI algorithm
h: step size in the BI algorithm

xa: target value of x (from forward step in BI algorithm)

x0: initial quess of zero;
tol: accuracy specification;
nn: maximum number of iterations.
B: B is Brovden’ maxtrix and InvB is the inverse of B;

The Fehlberg coefficients:

omega = [1/4 3/8 12/13 1 1/21';
beta = [ [ 1 0 0 0 0 0]/4
[ 3 9 0 0 0 01/32
[ 1932 -7200 7296 0 0 0]1/2197
[ 8341 -32832 29440 -845 0 0]1/4104
[-6080 41040 -28352 9295 -5643 01720520 ]17;
gamma = [902880 0 3953664 3855735 -1371249 277020]17/7618050;
if nargin < 8, B eyve(length(x0)); invB = B; end

if nargin < 7, nn = 10000; end
if nargin < 6, tol = 1l.e-6; end
N=0;

f = x0*zeros(1,6);

9
)

f

i

Calculate £0:
temp = feval(Fun, t, x0);
f(:,1) = temp(:);
for j = 1:5
temp = feval (Fun, t-omega(j)*h, x0-h*f*beta(:,J));
£(:,7+1) = temp(:);
end
0 = x0 - h*¥f*gamma (:,1) - xa;

teration = 1;

while (iteration & (N <= nn)) ,
N=N + 1;

[}
S

Calculate xroot:

xroot = x0 - invB*f0;

[
k)

£

%

Calculate f1:

temp = feval(Fun, t, xroot);

f(:,1) = temp(:);

for 7 = 1:5
temp = feval (Fun, t-omega(j)*h, xroot-h*f*beta(:,j));
f(:,3+1) = temp(:);

end

1 = xXroot - h*f*gamma(:,1l) - xa;

X-tegt and F-test

ds = xroot - x0;

xnorm=max (abs (x0))
dnorm=max {abs (ds) )
fnorm=max (abs (£f1))

i

%
i

7
I

I

teration = (dnorm > tol*(l + xnorm)) | (fnorm > tol);

update everything
f iteration,



aa =1.0/norm(ds);
ds =ds*aa;
df =(f1 - £0) *aa;

B = B + (df - B*ds) *ds‘;
%invB = invB + (df - invB*ds) *ds’;
invB=inv (B) ;

end;

f0=f1;
x0=xXroot;

% end of if

end;
% end of while loop;

if (nn < N)
disp ('Broyden-Newton Method Fails at’)

t
end
end
R R R T T L
% EulerMain55.m %
5555533322 55%5%322552222%2%%%222%29922%%%%

oP

this is the main program for the dynamic simulation of one-link flexible arm

global A matrix b_vector t_duration amp_pulse

Q

% A _matrix and b_vector will be used in DynOpen.m (impact.m, step.m, or ramp.m)

% define system parameters
eta=0.01;

mu=0.01;

kappa=0.01;

zeta=0.001;

define number of segements
n:lO;

oP o

oe

define cross section
alpha=ones (n+1,1);
beta=ones (n+l1,1);
delta=0.0l*ones (n+1,1);

% calculate A _matrix and b_vector in the state-variable representation.
[A_matrix, b_vector]=ABmat (n, alpha, beta, delta, eta, mu, kappa, zeta);
freg=eig(A_matrix);

% state vector=[theta, displacement, their time derivatives];
% initial conditions
x0=zeros (2* (n+1),1);

% simulation period [t0, tfl;
t0=0;

tf=2;

% pulse duration and amplitude
t_duration=0.5;

amp_pulse=0.1;

alpha=0.5;
tstart=cputime;
(tt,xx]=bi55(’impact’, t0, tf, x0,alpha);



texecution=cputime-tstart;
Step=length{tt) ;

theta=xx(:,1);
$dtheta=xx(:,n+2);
tipdef=xx(:,n+1)-theta;
gdtipdef=xx(:,2* (n+1))-dtheta;

% convert rad to degree
theta=theta*180/pi;
plot (tt, theta);

xlabel ("time’);

ylabel ('theta (deg)’);
pause

$plot (tt, dtheta);
$xlabel ('time’);
$vlabel ('dot_theta’);
%pause

plot (tt, tipdef);

xlabel (‘time’);

vlabel ('tip deflection’):;
pausge

$plot (tt,dtipdef) ;

gxlabel (‘time’) ;

gvlabel (‘dot_tip deflection’);
savefile={'save BIlimpact’ num2str(n)];

eval (savefile);

end

0. 0 0.000.00000000000000000000000000000000000s
6/0%'66'66666666666'6'6'666'66'66666666666666666666
[ Q
% FulerMaind5.m %
00000000000 000000000000000000000000000000040
R R AR R R R R R A R A A R A R A R A R R A R A R A A -

o

this is the main program for the dynamic simulation of one-link flexible arm
global A_matrix

% define system parameters
eta=0.01;

mu=0.01;

kappa=0.01;

zeta=0.001;

% define number of segements
n=10;

% define crogs section
alpha=ones (n+1,1);
beta=ones (n+1,1);
delta=0.0l*ones(n+1,1);

% calculate A_matrix and b_vector in the state-variable representation.
[A_matrix, b_vectorl=ABmat (n, alpha, beta, delta, eta, mu, kappa, zeta);

% feedback control

% tau=ktp*theta + ktv*dtheta + kwp*tipdef + kwv*dtipdef=kvector#*x;
ktp=18.6550;

ktv=5.5285;

kwp=1.50;

kwv=0.005;



kvector=[ktp-kwp, zeros(l,n-1), kwp, ktv-kwv, zeros(l,n-1), kwv];
A _matrix=A_matrix - b_vector*kvector;
g$pole=eig(A_matrix);

% state vector=[theta, displacement, their time derivatives];
% initial conditions

dn=1.0/n;
zO:dn:dn:l;
x0=[1; z0'; zeros(n+l,1)]*pi/2;

$ simulation period [t0, tfl;
t0=0;
tf=5;

alpha=0.47;

tstart=cputime;

[tt,xx]=bi45('DynClose’, t0, tf, x0, alpha);
texecution=cputime-tstart;

Step=length(tt) ;

theta=xx(:,1);
sdtheta=xx(:,n+2);
tipdef=xx(:,n+1)-theta;
$dtipdef=xx(:,2* (n+1))~-dtheta;

% convert rad to degree
theta=theta*180/pi;
plot (tt, theta);

xlabel (‘time’);

ylabel ('theta (deg)');
pause

$plot (tt, dtheta);
$xlabel ('time’) ;
$ylabel ('dot_theta’);
¥pause

plot (tt, tipdef);

xlabel ('time’);

yvlabel (‘tip deflection’);
pause

gplot (tt,dtipdef) ;

gxlabel ('time’) ;

$ylabel ('dot_tip deflection’):
savefile=['save B2Close’ num2str(n)];

eval (savefile);

end

00000000000 00000000000000000000000000000000
EE00BC0DE0000CC00000C6006000600806006000C6633D
Q Q
% ABmat.m %
0000000000000 00000000000000000000000.0
BB O0000060C00000C06C606000006000006060
0000000000000 0000000000000000000000000000.0

%555 %%5%%%%3%%5%5%%%5%5%555T553%58%5%5%%%%

[+)

% ABmat .m

o .

% Euler-Bernoulli Model

unction [A,B]=ABmat {(n, alpha, beta, delta, eta, mu, kappa, zeta)
% this program gives A and B matrices for a flexible beam in state variable
% form:

% dot (g) = A*g + B**(tau*L/D 0)



o

where g=[2;dot(Z)]; Z=[{theta; v_1; v .2; ...; v.nl, n > 3.

% Note: alpha=[alpha(0); alpha(l); ...; alpha(n)];
% beta=[ beta(0); beta(l); ...: Dbeta(n)l]:;
% delta=[delta(0); delta(l); ...; delta(n)];

[mm, kk,bb]=MKBmat (n, alpha, beta, delta, eta, mu, kappa, zeta);

imm=inv (mm) ;
A=[zeros (n+l,n+1l),eye(n+l,n+l1l);-imm*kk, zeros (n+l,n+1)1;
B=[zeros(n+l,1) ;imm*bb] ;

oe

end of the subroutine

% MKBmat.m
% Euler-Bernoulli Model
function [mm,kk,bb]=MKBmat (n, alpha, beta, delta, eta, mu, kappa, zeta)

this program gives mm, kk, and bb matrices for a flexible beam:
mm*ddot (Z) + kk*Z = bb* (tau*L/D_0)
where Z=[theta; v_1; v_2; ...; v.n], n > 3.

Note: all difference equations have been divided by n*n.

o de oP oe

% Note: alpha=[alpha(0); alpha(l); ...; alpha(n)];
% beta=[ beta(0); beta(l); ...; beta(n)];
% delta=[delta(0); delta(l); ...; delta(n)];
if n < 3,

disp (‘number of segments is too few (n > 3)7)

else
% calculate bb input vector;
bb=[1; zeros(n,1l)];

nz2=n*n;
nd=n2*n2;
in2=1.0/n2;

% calculate mm mass matrix;

% initialization

mm=1[];

% 1i=0;

mm=[mm; eta, zeros(l,n)];

% i=1;

ad0=n2*alpha(l)*delta(l);
adl=n2*alpha(2) *delta(2);

aa =alpha(2)+ad0+adl;

mm=[mm; 0, aa, -adl, zeros(l,n-2)];

% i=2 to n-2;

for i=2:(n-2)

ad0=n2*alpha (i) *delta(i);
adl=n2*alpha(i+1l) *delta (i+1);

aa =alpha(i+l1l)+ad0+adl;

mm=(mm; zeros(l,i-1), -ad0, aa, -adl, zeros(l,n-i-1)];
end

% i=n-1;

ad0=n2*alpha(n-1) *delta (n-1);

adl=n2* (alpha(n)*delta(n)+n*kappa) ;

aa =alpha (n)+adO0+adl;

mm=[mm; zeros{l,n-2), -adld, aa, -adl-n2*zeta*mul];



Q »

s 1=I;
ad0=n* (alpha (n+l) *delta (n+l) +mu*zeta) +n2 *kappa;
aa =adl0+n*mu*zeta+mu;

mm=[mm; zeros(l,n-1), -ad0, aal;
% calculate kk stiffness matrix;
% initialization

kk=[1];

% 1=0;

kk=[kk; n*beta(l), -n2*beta(l), zeros(l,n-1)];

% i=1;

b0=—n2*n*beta (1) ;

bl=nd*2* (beta(2)+beta(3));

b2=n4* (beta(l)+4*beta(2)+beta(3));
b3=nd*beta(3);

kk=[kk; b0, b2, -bl, b3, zeros(l,n-3)]1;
% i=2;

b0=n4*beta(2) ;
bl=nd*2* (beta (2)+beta(3));

b2=nd* (beta(2)+4*beta (3)+beta(4));
b3=nd4*beta(4d);
b4d=n4*2* (beta (3)+beta(d));

kk=[kk; 0, -bl, b2, -b4, b3, zeros(l,n-4)]1;

% i=3 to n-2;

for i=3:(n-2)

b0=nd*beta (i) ;

bl=n4*2* (beta (i) +beta(i+l));

b2=n4* (beta(i)+4*beta(i+l)+beta (i+2));

b3=nd*beta(i+2);

bd=nd*2* (beta(i+l)+beta(i+2));

kk=[kk; zeros(l,i-2), b0, -bl, b2, -bl, b3, zeros(l,n-i-2)1;
end

% i=n-1;

b0=nd*beta(n-1);
bl=n4*2* (beta (n-1)+beta(n));

b2=n4* (beta(n-1)+4*beta(n));
b3=n4*2*beta(n);

kk=[kk; zeros(l,n-3), b0, -bl, b2, -b3i;

% i=n;
b0=n2*n*beta(n);
kk=[kk; zeros(l,n-2), b0, 2*b0, b0];

mm=mm*in2;
kk=kk*in2;
bb=bb*in2;
end

% end of if

end
% end of the subroutine

function xdot=impact(t, x)
global A matrix b_vector t_duration amp_pulse



-
r
-
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duration amp_pulse

x)

duration)
A_matrix b_vector t

step(t,

-
r

A_matrix*x + b_vector*tau

A_matrix*x + b_vector*tau

amp_pulse* (t < t
amp_pulse

function xdot
global

tau
xdot
end
tau
xdot
end

o0 JP oe

P
oe
o
oe
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o
oP
Qe
o
o0
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o0
a0
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oe
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oe
oe
oe
o
oe
oe
a0

7

duration amp_pulse

X)

x)

A_matrix b_vector t

-
I
.
I

DynClose(t,

A_matrix

ramp (t,
*xX + b_vector*tau

iX

4

A_matrix*x

amp_pulse*t
A_matr

function xdot

function xdot
global

global

tau
xdot
end
xdot
end
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APPENDIX B

C Program



#include <stdio.h>
#include <math.h>
#define R sizeof (double)
#define L sizeof (tx_list)
#define MAXTX 2

typedef struct TTXX {double t; double *x;
tx_list *tx;
double omegal5],
double *xa, *x20,
double *ds, *df,
int mmn, 1n;

betaf6][5], gamal6][2],
*pxl, *err_1, *err;
*f(), *f1, *f, *b, *invb,

void main ()

{ tx_list *sbid5 (),
double t0, tf, tol, alpha, nnorm();
double x0[4], aalphall7], ttol[l7]:;
double eerrl[7]1[17], eerx2[7]1[17];
double *pl, *p2, *errl, *err2;
int i, j, nxout, stepl[7]1([171.

*pp;
data();

.0;
0;

.

struct TTXX *p;} tx_list;

*newv () ;

*temp;

/¥ 11D x0(n) HLo*/

x0[0)= 0.0; x0[1}l= 1.0; x0[2]= 2.0; x0[3]= 0.0;

for (i=0;1<1i7;i++)
tol=0.1;
for (i=0;i<7;i++) {
tol=t0l/10.0;
printf ("\ntol=%e\n",
for (3=0;3<17;j++) {
nxout=0;
alpha = aalphaijl:;
printf ("\n alpha=%f", alpha);
tx = sbid5(t0,tf,x0,alpha,tol);
if (tx == NULL)
pp=tx;
while (pp
pp = tx;
errl = (double *)newv(nxout*R);
err?2 = {(double *)newv(nxout*R);
pl=errl; p2=err2;
while (pp != NULL) {
/*printf ("\n
*pl = pp->%x[0]
*p2 = pp->x[1] - cos(pp->t):
PP=pP->p;Pl++;P2++; }
1if((1i == 4)&(]J == 16)){

aalphal[i] =

tol);

= NULL) {nxout++; pp =

t(i)=%£",

{printf ("\nprogram fails in sbid5...");

0.1 + 0.025*1;

PP->p;}

pp->t);*/
- 2.0*sin(2* (pp->t));

printf("\nSome thing about X1 X2 E1 E2...");}

printf ("\n Step (or S§)=%d,",
printf ("\n ErrMaxl=%e,",
printf (" ErrMax2=%e.\n",
step[i] [j]=nxout;
/*free(errl); free(err2);*/}

ttol[i]=tol;

printf ("\n");

}
}

int data()

nxout) ;
eerrl(i] [j]l=nnorm(nxout,errl));
eerr2[i] [j]=nnorm({nxout,err2));

exit (1) ;}



{

}

i, 3:
bi[6]
bdl5]
gil6]
gdl2]

int

long
long
long
long

omegal[0]=0.
bi[0][01=1;
bi[1]1[0]=0;

[5]1;
121;

.
14

25;
bi[0][1]1=3;
bi[1][1]1=9;

omegall]=

0.375;
bi[0]1[21= 1932;
bi[1l]1[2]1= -7200;

bi[2]1[0]1=0; bi[2][1]1=0; bi[2][2]= 7296;
bi[3]1[0]1=0; bif3]1[11=0; bi[3]1{2]= 0;
bi[4]1[0]1=0; bi[4]1[1]1=0; bi[41([2]= O;
bi{5][0]=0; bi[5]1[1]1=0; bi[51[2]1= O;
bd[0]=4; bd[1]1=32; bd[2]1=2197;
gi[0][0]= 902880; gif0][1l]l= -2090;
gi[11[0]l= O; gi[l][1]1= 0;:
gil[21[0]= 3953664; gi[2][1]= 22528;
gi[3]1[0l1= 3855735; gi[31[1]1= 21970;
gil4][0]1= -1371249; gil[4][1l]l= -15048;
gif{5][0]= 277020; gi[5][1]= -27360;
gd[0] = 7618050; gdf1] = 752400;
for (i=0; i<6; i++)

{ gama[i] [0] =
gamal[i]l [1] =

(double)gi[i]1[01/(
(double)gi[i][1]/ (double)gd[1l];
] = (double)bi[i][j]/ (double)bdl[jl;}

omegal2]=12./13.;

for(j=0; Jj<5; j++) betalil[]
1’1:4;
mmn=MAXTX;
px1l = (double *)newv(R*n*mmn) ;
xXa = {(double *)newv(R*n);
x20 = (double *)newv{(R*n);
f = (double *)newv (R*n*6);
err_1 = (double *)newv(R*n);
err = (double *)newv(R*n);
temp = (double *)newv(R*n*n);
f0 = (double *)newv(R*n);
f1l = (double *)newv(R*n);
ds = (double *)newv(R*n);
at = (double *)newv(R*n);
b = (double *)newv(R*n*n);
invb = {(double *)newv(R*n*n);
tx = (tx_list *)newv (L*mmn) ;
return(0) ;

tx_list *sbid5(t0,tf,x0,alpha,tol)

{

double x0[], alpha, tol, t0, tf;
tx_list *tp, *ptx, *append tx();

int next_x(), pass_£f (), broyden();
double *x1, *x2, error_last, norm();
int i, k, nn, first;

double

ptx = tx;

x1l = pxl;

x2 = x1 + n;

pow = 0.2;

powl= 0.06;

pow2= 0.08;

nn = 10000;

for(k=0; k<n; k++) x1{k] = x0[k];
for(k=0;k<6*n;k++) £f[k] = 0.0;

tl = t0;

hmax = (¢tf - t0)/16.0;

hmin = 0.0;

h = hmax/8.0;

tx->t = tl;

bi[0]1[3]= 8341;

bi[1]1[3]= -32832;
Pi[21[3]1= 294490;
bi[31[3]= -845;
bi[41[3]1= 0;
bi[5][3]1= 0;

bd[3]1=4104;

double)gd[0];

omegal[3]=1.

; omegald4]=0.5;
bi[0][4]= -6080;

bi[1l]1[4]= 41040;
bi[2][4]= -28352;
bi[31[4]1= 9295;
bi[4][4]= -5643;
bi[5][4]1= 0;

bd[4]1=20520;

pow,powl,pow2,tl,ta,t2,ah0,ahl,h, hmax, hmin,xnorm, error,tau,c;



tx->x = x1;
tx->p = NULL;
first = 1;

while((tl<tf) & (h>=hmin)) {
/*printf ("\n t(i)=%f",tl);*
if(tl+h>tf) {h=tf-tl;return(tx);}
if(mmn < 2) {

x2 = pxl = (double *)newv(R*n*MAXTX);
tp = (tx_list *)newv (L*MAXTX):}

ah0 = h*alpha;

ahl = h - ah0;

pass_f(tl, x1, aho, f);

next_x(xa, x1, ahO, £, gama, 0, 6, 2);
ta = t1 + ahO;
next_x(err_1l, NULL, ahO, £, gama, 1, 6, 2);
pass_f(ta, xa, ahl, f);
next_x(x20, xa, ahl, £, gama, 0, 6, 2);
t2 = ta + ahl;
if (broyden(t2, ahl, xa, x20, tol, nn, /*b,invb, */x2) )
{printf ("\nprogram fails in broydennewton..."); return(NULL);}
pass_f(t2, x2, -ahl, £f);
next_x(err, err_1, -ahl, f, gama, 1, 6, 2);

error = norm(err);
Xnorm = norm(x2);
tau = tol*((xnorm>1.0)?xnorm:1.0);

if (error<=tau) {
tl = t2;
if(--mmn < 1) {
mmn = MAXTX;
xl = pxl;
tp->t = tl; tp->x = x1; tp->p = NULL;
ptx = ptx->p = tp;}

else {
x1 = x2;
ptx = append_tx(ptx, tl, x1);}
X2 += n;}
if(error != 0.0) {

if (first) {

c = pow*log(tau/error);
¢ = 0.8%h*exp(c);
h = (c<hmax)?c:hmax;
first = 0;}
else {
c powl*log(0.8*tau/error) + pow2*log(error_last/error);

c = h*exp(c);
= {c<hmax) ?c:hmax; }
error_last = error;

1f(tl < tf) {
printf ("\nBackward Interpolation Method Fails at %f:\n",tl);
return (NULL) ; )

return(tx);

}

int broyden(t, h, xa, x0, tol, nn, /**b,invb, */xroot)
int nn;
double t, h, *xa, *x0, tol, /**b,*invb, */*xroot;
{ int inv (), pass_f(), next_x();
double *newv (), norm(), norm2();
int mn, i, j, k, iteration;
double xnorm, dnorm, fnorm, aa;

for (i=0;i<n*n;i++) {b(i]=0; invb(il=0;}



for (1=0;i<m;i++) {(bl[(n+l)*il=1;

nn = 1000;
/*tol=1.0e-6;*/
mn = 0;
for (k=0;k<6*n;k++) f[k] = 0.0;
pass_f(t, x0, -h, f);
for(i=0;i<n;i++) fO0[i] = x0[i] - xalil:;
next_x(f0, £f0, -h, £, gama, 0, 6, 2);
iteration = 1;
while(iteration & {(mn++ <= nn)) {
next_x(xroot, x0, -1.0, invb, £0, 0, n,
for{(i=0;i<n;i++) {
f1{i] = xroot[i]l - xalil:;
def{i] = xroot[i] - x0[1i]; }
pass_f(t, xroot, -h, £f);
next_x(£f1, f£1, -h, £, gama, 0, 6, 2);
xnorm = norm(x0);
dnorm = norm(ds);
fnorm = norm(fl);
iteration = (dnorm > tol* (1l + xnorm)) |

dnorm = norm?2 (ds) ;
if (iteration) {
i1f (dnorm == 0)
aa = 1.0/dnorm;
for(i=0;i<n;i++) {
ds[i] *= aa;
df[i] = (£f1[i]
for(i=0;i<n;i++)
for (k=0;k<n;k++)
for(i=0;i<n;i++)
for (j=0;j<n;Jj++)
bli*n+j] += df[i]l*ds[3j];

- £0[1i]) *aa;}

df[i]

{printf ("\ndigital error...");

invb[(n+1)*il1=1;}

1)

(fnorm > tol);

return(l);}

-= bl[i*n+k]*ds[k];

if (inv (b, invb))
printf(".");}
for (i=0;i<n;i++) {
fO[1i] f1[1i];
x0[1] xroot [i]

}

if(nn < mn) {

{printf("\nfails to find inv b");

;)

printf ("\nBroydenNewton Method Fails at %f:\n",t);

/*return(l)*/;}
return(0) ;

}
int next_x(xt, x,
double *xt, *x, h,
{ double xi;
int i, k;
for (i=0;i<n;i++) {

xi = 0.0;

h, £, bg, v,

*f'

mx, my)

*byg;

for (k=0;k<mx;k++) xi = xi + flmx*i+k]*bglmy*k+y];

if(x) xt[i] = x[1i] + h*xi; else xt[i] = h*xi;}
return(0) ;
}
int pass_f(t, x, ah, f)
double t, *x, ah, *f;
{ int i, j, next_x(), fun();
double xx, *newv();
fun(t, x, temp);
for (i=0;i<n;i++) £[6*i] = temp[i];

return (1) ;}



for(j=0; j<5; j++) {

next_x(temp+n, x, ah, £, beta, j, 6, 5);
xXx = t + omegalj]*ah;
fun (xx, temp+n, temp):;
for (i=0;i<n;i++) f[6*i+j+1] = temp[i];}
return(0);
}
tx_list *append tx(tl, t, x)
tx_list *tl;
double t, *x;
{
while{tl->p != NULL) tl = tl->p;
tl = tl->p = £t1 + 1;
tl->t = t; tl-»>x = x; tl->p = NULL;
return (tl);
}
int inv(a,b)
double *a, *b;
{ int i,k,addij () ,onei(),zeroi();
for (i=0;i<n*n;i++) {temp[i] = alil; bl[il=0;}
for (i=0;i<n;i++) b[{(n+l)*i] = 1;
for (i=0;i<n;i++) {
k=1i;
while(temp[n*k+i] == 0) {
k++;

if(k >= n) {printf("\nB matrix singular.\n"):

if(k > i) addij(temp, b, i, k, 1.0);
if (temp[n*i+i]!=1) onei(temp, b, 1);
zeroil (temp, b, 1i);}

return(0);

}

int addij(bl, b2, i, 3, 4)
double *bl, *b2, 4;
int i,3;

{ int k,in, in;

in=1i*n; jn=j*n;
for (k=0;k<n;k++) {

bl[in] += d*bl[jn];

b2 [in++]1 += d*b2[in++1;}
return(0) ;

}

int onei(bl, b2, i)
double *bl, *Db2;
int i;

{ int k, in;
double e;

e = bl[i*(n+1)]1;

if(e == 0) return(l);

in = i*n;

for (k=0;k<n;k++) {
bllin] /= e;
b2[in++] /= e;}

return(0) ;

}

int zeroi(bl, b2, 1)
double *bl, *b2;
int i;

{ int k, in, addiij();

return(l);}}



in=i*n;

if(bl{in+i] == 0) return(l);

if(bl[in+il!=1) onei(bl,b2,i);

for (k=0;k<i;k++) addij (bl,b2,k,i,-bl[k*n+i]);
for (k=i+1l;k<n;k++) addij(bl,b2,k,1i,-bl[k*n+il):;
return(0);

}

double norm2 (x)
double *x;

{ int 1i;
double n2x;

n2x=0.0;

for(i=0;i<n;i++) n2x += x[i]*x[i];
n2x = sqgrt (n2x);

return(n2x) ;

}

double nnorm(mn,x)
int mn;
double *x;

{ int 1i;
double mx;

if (mn<0) return(l):
mx=fabs (x[0]):
for (i=0;i<mn;i++) {
if (fabs (x[i])>mx) mx=fabs(x[il); }
return (mx) ;

}

double norm(x)
double *x;

{ double nnorm();
return (nnorm{n, x) ) ;

}

double *newv(d)
int d;
{ double *p;

if ((p = (double *)malloc(d)) == NULL) {
printf ("Not enough memory to allocate buffer\n");
exit (l); /* terminate program if out of memory */
return(p) ;

}

int fun(t,x, fx)
double t, *x, *fx;
{ int funl();
return{funl (t,x,£x));
}

int funl(t,x, £x)
double t, *x, *fx;

{ double u;
u=1.0;
fx[{0] = 4.0*x[2] -4.0%*u;
fx[1l] = -4.0*x[3];
fx[2] = -1.0*x[0];
fx[3] = 0.25*x[1];

return(0);



