Diss ETH No 6483

COMBINED CONTINUOUS /DISCRETE SYSTEM
SIMULATION BY USE OF DIGITAL COMPUTERS:
TECHNIQUES AND TOOLS

A DISSERTATION

submitted to the
SWISS FEDERAL INSTITUTE
of
TECHNOLOGY ZURICH

for the degree of
Doctor of Technical Sciences

presented by
FRANCOIS EDOUARD CELLIER
Dipl. El.-Ing. ETHZ
born July 30, 1948
citizen of Duebendorf/ZH and La Neuveville/BE

accepted on the recommendation of
Prof. Dr. M. Mansour, referee
Prof. Dr. P. Henrici, co-referee

ADAG Administration & Druck AG

Zurich 1979



To my parents,
in appreciation for the opportunity which they provided
to enable me to reach this level of education, and

To Ursula, my wife,
in recognition of the many hours stolen from our
family life for this writing task.

ACKNOWLEDGMENTS :

The»work described herein has been carried out mainly during
the years 1974 to 1978 under the supervision of
Prof. Dr. Mohammed Mansour, who 1is the Director of the
Institute for Automatic Control. I wish to acknowledge my
deep indebtedness to him for all he has done for me., I wish
also to express my sincere thanks to Prof. Dr. Peter Henrici
of the Seminar for Applied Mathematics who consented to
examine this thesis.

Furthermore, I would 1like to express my thanks to
Prof. Dr. A. Alan B. Pritsker of Purdue University {(U.S.A.)
for the exceedingly valuable cooperation. Many of the ideas
expressed in this thesis originated from the pioneer work in
combined simulation carried out by Prof. Pritsker and his
group. I wish also to acknowledge my indebtedness to
Prof. Dr. Tuncer Oren of the University of Ottawa (Canada)
for the many good ideas he suggested in several long discus-
sions of the topic. I am not less grateful to
Prof. Dr. Bernard P. Zeigler of the Weizman Institute
(Israel) for the stimulating comments obtained as a reaction
to a paper [l1.4] published on the subject earlier this year.
I would, furthermore, like to thank Dr. Hilding Elmgvist of
the Lund Institute of Technology (Sweden) for his pertinent
remarks as to the MODULE concept.

Credit must also be given to my co-workers at the Institute
for Automatic Control, and also to other persons outside the
Institute who assisted me, either directly or indirectly,
during the execution of this work,

Many of my students have contributed remarkably to the de-
velopment of the software described in this thesis. Among
them, special credit must be given to Mr. André E. Blitz for
the implementation of the PDE software into GASP-V ({1.1},



and to Mr. Antonio P. Bongulielmi who has contributed signi-~
ficantly to the development of COSY in two different pro-
jects dealing with the language definition (1.2] and with
the compiler construction [1.3].

Finally, I should like to thank Mr. Neil J. Sullivan for his
careful review of this manuscript.

I am also grateful to the OTTMAR text editing system, run-
ning on our PDP-11/60 installation, for the nice preparation
of this manuscript.

Abstract .

Chapter.I:

Chapter.II:

Chapter.III

Chapter.1V:

TABLE OF CONTENTS:

s e » e 2 e e + e o 4 e ® e e s+ s e @«

Introduction . . . . . . . . . . . . ..
Historical Development . . . . . . . . .

Usefulness of Combined System Simulation

Numerical Aspects . . . « & v o o « « .

IV.1l: Structure of the Run-Time Package . . . . .

IV.1.1: Conditions for Changing to Continuous

Simulation when Executing Discrete
Simulation . . . . . . . . .. . . ..

IV.1.2: Conditions for Changing to Discrete

Simulation when Executing Continuous
Simulation . . . . . . . . . .

Iv.1.2.1: The Regula-Falsi Iteration
Scheme . . . . . . . ... ...

Iv.1.2.2: The Generalized Regula-Falsi
Iteration Scheme . . . . . . . .

Iv.1.2.3: The Inverse Hermite' Inter-

polation . . . . . . . . . . ..

10

16

23

53

53

54

54

55

58

60



IV.1.2.4: Transformation of General Dis-
continuity-Functions into
Special Discontinuity-Functions

IV.1.2.5: Location of Short-Living Dis-
¢ontinuities . . . . . . . . .

IV.1.3: Selection of the Initial Subsystem .

IV.2: Program FIOW . v o v « o o o o o o o o o

Chapter.V: GASP~V . & v ¢ ¢ o o o o o o o s o o
V.1l: The GASP Program Family . . « ¢ ¢« o« o & &
V.2: Improvements of GASP-V as Compared to GASP-
V.3: Example - Simulation of a Heating System .

V.3.l: Statement of the Problem . . . . . .
V.3.2: Simulation Objectives . . . . . . . .
V.3.3: Special Features . . . « « « « « o« .

V.3.4: The Method-of-Lines Approach to PDE
Problems . . ¢ v v o o o o s s o & &«

V.3.5: Simulation Procedure . . . . « « o .
Ve3.6: ReSULES & v v & 4 v v o o o o o o o o

V.4: Unsolved Problems . . . & ¢« v o o o « o «

Chapter.vI: Software RobUStNess . . . + . . . . .

v

72

74

74

80

80

82

88

88

90

91

91

91

106

112

VI.1l:

VI.2:

VI.3:

VI.4:

VI.S5:

VI.6:

VI.7:

VI.7.1: Statement of the Problem . . . . . .

Definition « . . « v v v v v v 4 v . .

Automated Selection of Integration Algorithm
Adaptive Selection of Integration Algorithms

Verification of Simulation with Respect to
Modeling . . . . . . . . . . .

T e e s e e

Validation of the Model with Respect to the
System under Investigation . . . . . . . . .

Determination of Critical States . . . . . .

Robust Methods for the Numerical Solution
of PDE Problems . . . . +v v v 4 o « &

VI,7.2: Grid-Width Control . . . . . . . . . .

VI.7.3: Order Control . . . «v v v o & »
VI.7.4: Other Methods . . . . . . . . . ..

VI.7.5: Conclusions . . . . . . .

Chapter.VII: Aspects of Information Processing .

VII.l: Statement of the Problem . . . . . . . .

VII.3.1: Flexible Structures . . . . . . . .

VII.2: The Elements of the Language . . . . . . .

VIiI.3: Requirements of the Language . . . . . .

143

145

148

149

151

154

155



VIii.3.2:

VII.3.3:

VII.3.4:

VII.3.5:

VII.3.6:

VII.3.7:

VII.3.8:

VII.3.9:

- 8 ~

Extendability . . . + ¢ ¢« 4 ¢ 4 4 o &

Transparency and the Access to
Primitives . . . . . « « . « « . . .

One—-to-one Correspondence between
System and Model . . .+ & 4 o o« &« o &«

Ease of Learning Syntax and Semantics

Few Language Elements . . . . . « « «

Short Users' Programs . . . « « + « &

Provisions for Error Detecting . . .

Well-Conditioned Run-Time Code . . .

VII.3.10:RODUSENESS . « « « o o o o o o o o

VIT.3.11:Discussion . .« & ¢ v o o « s o o s

VII.4: The Structures of the Language . . . . . .

VII.4.1:

VIiI.4.2:

VII.4.3:

VII.4.4:

VII.4.5:

The Overall Structure . . « « o o » &
The MODULE and MACRO Segment . . . .

Declaration and Data Definition
Segments . . . . . 4 e e 4 e .. .o

The EXPERIMENT and OQUTPUT Segments .

The SYSTEM Segment . . . . + « « « &

VII.5: Global Versus Local Variables . . . . . ., .

169

185

186

189

189

190

190

191

191

191

191

191

193

197

198

199

201

- 9 -

Chapter.VIiI: Discussion of Existing Software . . .

Chapter.IX:

COSY o v v v v v v s o o v 4 e e e e

IX.1l: General COoNCeptsS v v + 4 & 4 o o o« o« o +

IX.2: Restrictions . . . . . & ¢« &« ¢ ¢ v v « + .

IX.3: Examples . . & v ¢ ¢ ¢ ¢ ¢ o o «

IX.3.1: Continuous Simulation -~ Van~der—Pol's

EQUAtion .+ « 4« 4 v s e e s e o 4 0

IX.3.2: Discrete Simulation (Event-Oriented)

-~ Joe's Barbershop . . . . . . . .

IX.3.3: Discrete Simulation (Process~Oriented)
-~ Joe's Barbershop . . . . « « .+ . .
IX.3.4: Combined Simulation -- Pilot Ejection

SEUAY v v v e e e e r e e e e e e .

IX.3.5: Combined Simulation -- SCR Control

Problem . ¢ . ¢ &« ¢ 4 & o o o o &

IX.3.6: Combined Simulation (Variable

Chapter.X:

Chapter.XI:

Chapter.XII:

Structures) -- DOMINC game . . . . .

Interactive Simulation and Real-Time
Programming . « « o o « 4 « « « o & &

Discussion and Qutlook . . . . . . . .

Remarks Concerning Notations . . . . .

208

216

216

218

220

221

224

229

232

239

242

260

262



_10_.

ABSTRACT:

This thesis describes new techniques for simulating systems
with complex structures by use of a digital computer, as
well as the requirements of tools (simulation languages) to
cope with the problem in a user-friendly way. Emphasis is
given to a general applicability of the software, that is,
the described software is meant to be able to handle broad
classes of problems in a sub-optimal way rather than to be
able to treat any specific application problem in a truly
optimal manner. The increased software robustness and the
highly reduced costs in coding any application problem com-
pensate, however, for the sacrifice of efficiency in exe-
cuting a particular simulation project.

Although many problems of numerical mathematics and infor-
mation processing which are discussed in this thesis had to
be considered and solved, the approach to them has been from

the viewpoint of an engineer rather than from that of a
mathematician.

Combined system simulatjon as it is described in this thesis
is a relatively new technique for the simulation of a class
of systems having properties suitable to both conti-
nuous system simulation and discrete event simulation, two
techniques well known to the simulation community. This com-
bined technique has first been proposed by Fahrland
("Simulation", vol.1l4, no.2, February 1970).

Major techniques and methodologies involved in this simu-
lation approach are surveyed. Special aspects considered
are numerical behaviour and information processing. It is
shown that this -technique is applicable to a much larger
class of problems than originally suggested by Fahrland.

Simulation techniques are a very broad topic., The subject

- 11 -

dealt with in this thesis covers many facets —-- numerical
analysis, ordinary and partial differential equations, for-
mal languages, and software design. Since most readers will
have the level of familiarity required with only some of
these facets, the thesis tries to provide the reader with
all the information necessary for understanding the nume-
rical and information processing aspects involved. However,
a basic knowledge of continuous system modeling and discrete
event modeling are a prerequisite to the understanding of
this thesis. Knowledge of simulation 7languages (like
CSMP-1II and/or GASP) eases the reading of the  sample pro-
grams as presented in this thesis, but is not indispensable
since one of the highlights of good simulation software is
its documentation value.



_12_

ZUSAMMENFASSUNG:

Diese Dissertation beschreibt neue Techniken zur digitalen
Simulation von Systemen, welche eine komplexe Struktur auf-
weisen. Ebenfalls beschrieben werden die Werkzeuge (Simﬁla—
tionssprachen), welche zur Verfuegung gestellt werden
muessen, damit der Benuetzer seine Probleme in moeglichst
bequemer Weise formulieren kann. Der Schwerpunkt der Ueber-
legungen geht dahin, allgemein verwendbare Software zu er-
stellen. Die beschriebene Software soll daher primaer in der
Lage sein, breite Klassen von Problemen in suboptimaler
Weise zu bearbeiten. Die Loesung jedes beliebigen Problems
wird dadurch langsamer und somit teurer, als wenn ein opti-
maler, dem Problem angepasster Algorithmus zu diesem Zweck
entwickelt wuerde, Der allgemeinen Verwendbarkeit und
Robustheit der Software wird daher ein gewisses Mass an
Effizienz bei der Behandlung eines speziellen Probleﬁs ge—~
opfert. Die dadurch erreichte erhoehte Systemsicherheit und
die wesentlich reduzierten Kosten bei der Programmierung
eines Anwenderproblems wiegen jedoch diesen Nachteil bei
weitem auf.

Obwohl viele Probleme der numerischen Mathematik sowie der
Informatik erwaegt und geloest werden mussten, zeugt die
verwendete Methodik doch eher von einer ingenieurmaessigen
als von einer streng mathematisch exakten Betrachtungsweise.

Der Begriff gemigchte Simulationstechnik, wie er in dieser

Arbeit verwendet wird, umschreibt eine relativ junge Technik
zur Simulation einer Klasse von Systemen, welche Eigen-
schaften sowohl der kontinuierlichen Simulationstechnik wie
auch der ereignisorientierten digskreten Simulationstechnik

aufweist, beides Techniken, wie sie seit langem in der
digitalen Simulation Verwendung finden. Diese neue gemischte
Simulationstechnik wurde erstmals von Fahrland
("Simulation", Bd.14, Nr.2, Februar 1970) beschrieben.

_13...

Die in der gemischten Simulation hauptsaechlich verwendeten
Techniken und Methoden werden diskutiert. Speziell stehen
die Probleme der Numerik und Informatik im Vordergrund. Es
wird aufgezeigt, dass die hier beschriebenen Methoden auf
wesentlich breitere Problemklassen Anwendung finden koennen,
als dies urspruenglich von Fahrland vorgeschlagen worden
war,

Die Simulationstechnik ist ein sehr breites Gebiet. Viele
Aspekte der numerischen Mathematik, der Behandlung gewoehn-
licher sowie partieller Differentialgleichungen, der Theorie
formaler Sprachen sowie des Softwareentwurfs finden in
dieser Dissertation Beachtung. Da die meisten Leser nur mit
einigen dieser Aspekte vertraut sein duerften, will diese
Dissertation alle zum Verstaendnis der Numerik sowie der In-
formatik notwendigen Grundlagen vermitteln, Ein Grundwissen
betreffend die Modellierung kontinuierlicher sowie diskreter
ereignisorientierter Systeme wird allerdings vorausgesetzt.
Kenntnisse in Simulationssprachen (wie CSMP-III und/oder
GASP) sind nuetzlich fuer das Verstaendnis der Beispiel Pro-
gramme, die in dieser Dissertation praesentiert werden. Sie
sind jedoch nicht unbedingt erforderlich, liegt doch einer
der wesentlichsten vorzuege von Simulationssprachen in deren
dokumentarischem Wert.



- 14 -

RESUME:

La présente thése décrit de nouvelles techniques pour la
simulation digitale de systémes & structure complexe. Les
outils (langages de -simulation) qui doivent &tre & dis-
position pour permettre & celui qui s'en sert de formuler
ses problémes aussi aisément que possible sont é&galement
Gécrits., Le but poursuivi consiste & produire de la software
généralement utilisable, c'est-a-dire que 1la software
décrite doit en premier lieu Plutdt permettre de résoudre de
maniére sous-optimale des classes étendues de problémes que
de résoudre de manidre optimale certains problémes spéciaux.
C'est pourquoi on préfére renoncer & un certain degré
d'efficience dans le traitement d'un probléme particulier
pour augmenter 1le champ d'application et la solidité de la
software. Ce désavantage est cependant largement compensé
par l'augmentation de la sécurité du systéme qui en résulte
et le colit fortement réduit de 1a programmation d'un
probléme d'application.

Bien que de nombreux problémes de mathématiques numériques
et d'informatique aient d 8tre posés et résous, la méthode
utilisée considére 1les choses plus dans 1l'optique d'un
ingénieur que dans celle d'un calcul mathématique stricte-
ment exact. )

La notion de technique de simulation mixte dont Ffait usage
la présente étude décrit une technique relativement jeune
pour la simulation d'une classe de systémes qui ont des
propriétés &manant aussi bien de 1la technique de gimula-
tion continuelle que de la technique de simulation d'&véne-
ments discrets, techniques qui sont toutes deux utilisées
déja longtemps dans la simulation digitale. Cette nouvelle
technique de simulation mixte a &t& dicrite pour la premiére
fois par Fahrland ("Simulation", tome 14, no 2, Février
1970).

- 15 -

Les techniques et méthodes principalement utilisées en simu-
lation mixte sont décrites. Les problémes des mathématiques
numériques et de 1'informatique sont en particulier placés
au premier plan, I1 est démontré que les méthodes décrites
dans cette thése peuvent &tre appliquées & des classes de
problémes beaucoup plus é&tendues que celles proposées a

l'origine par Fahrland.

La technique de simulation est un domaine trés &tendu. De
nombreux aspects des mathématiques numériques, de la solu-
tion d'équations différentielles ordinaires et partielles,
de la théorie des langages formels et du développement de
software sont pris en considération dans la présente thése.
La plupart des lecteurs ne connaissant probablement que
quelques-uns de ces aspects & fond, cette thése s'efforce
d'exposer les bases nécessaires 3 1la compréhension des
mathématiques numériques et de 1'informatique. Des connais-
sances fondamentales au sujet de la dérivation de modéles
pour des systémes continuels et d'événements discrets sont
toutefois présumées, La connaissance des langages de simula-
tion (tels qﬁe CSMP-III et/ou GASP) est utile pour com-
prendre les exemples de programmes que cette thése présente.
Mais elle n'est pas absolument indispensable, car un des
avantages les plus importants des langages de simulation git
dans leur valeur documentaire,



_16_

I) INTRODUCTION:

The term "combined simulation” is not yet sufficiently well
understood in the literature to mean one and only one spe-
cific methodology or problem class. For example, one can
find references where combined simulation is used as a
synonym for hybrid simulation. This term, therefore, first
requires some definition to clarify how it is going to be
used in this thesis.

If one speaks of simulation as a technique one usually
thinks of a specific solution tool (digital simulation, ana-
log simulation, hybrid simulation). On the other hand the
term "system simulation" refers to a specific class of
systems under investigation (continuous system simulation,
discrete system simulation). However, as early as 1967
Kiviat [1.7, p.5] stated that it is common to find the terms
"simulation" and "system simulation" used interchangeably.
In this thesis we do not primarily have a specific simu-
lation methodology in mind, but rather the simulation of one
specific class of problems which we call combined_systems.
However, restricting ourselves to fully digital solutions
only, simulation of this class of problems does suggest the
use of a specific simulation methodology which we are going
to discuss in detail. Although the term "combined system
simulation" is thus appropriate, we will use the term
"combined simulation" as well for simplicity.

It remains to define what the term "combined systems" means
pPrecisely. It can be paraphrased as follows:

- 17 -

Combined systems are systems described, either du-
ring the whole period under investigation or during
a part of it, by a fixed or variable set of diffe-
rential equations where at least one state variable
or one state derivative is not continuous over a
simulation run.

Using this definition, the famous pilot ejection study
(which is probably the best known test case for continuous
system simulation) will also fall into this class of
problems, since the acceleration of the ejector seat and the
first time derivative of its angular position (both state
derivatives in the system's definition) are discontinuous at
the moment when the ejector seat is disengaged from the
mounting rails,

The most comprehensive volume on combined simulation
published to date [1.8] cites two examples of continuous
systems -- the above mentioned pilot ejection study and an
analysis of a slip clutch. Both belong to the class of com-
bined systems according to our new definition. This shows
that the definition used here is not entirely in accordance
with the "common" use of this term (as a matter of fact, a
proper definition for this term has never been given!). We
must redefine the term "continuous system" as well to Kkeep
it consistent with our definition for combined systems.

Continuous systems are systems described by a fixed
set of differential equations with state variables
and first state derivatives both being continuous
over the whole simulation run.

This definition restricts the term "continuous system” to a
more narrow sense than is commonly used. The motivation for

redefining these terms will be given in due course,

Considering the different types of systems to be modeled,



- 18 -

one may find that models arising in engineering applications
usually show the most complex structures of all. The reason
for this comes from the following fact. Physicists and
mathematicians, on one hand, often try to idealize their
problems as much as poésible to be able to obtain analytical
results beside of the purely numerical ones (or tend to con-
centrate on those problems where such an idealization seems
legitimate). Natural scientists and economists, on the other
hand, usually have bnly very bad, unreliable, and irrepro-
ducible data available to represent their systems, out of
which a sophisticated model may not be faithfully postu-
lated [1.6]. In addition to this, economists face often the
problems that their systems change their modes of behaviour
as they find out that they are modeled ("keep-smiling" ef-
fect). They, therefore, normally use models which show a
relatively simple structure. However, these are often high
order models (models consisting of a large number of coupled
differential equations). As examples we may mention the
Lotka-Volterra type models which are frequently cited in
Biology and Chemistry, or Systems Dynamics models mostly
used to describe socio-economic systems. The goal of such
models is to gain a qualitative insight into the system's
possible modes of behaviour rather than to obtain a precise
quantitative information as to how a "real" system will re-
spond to specific control strategies.

Models in engineering, finally, are mostly used for the de-
sign of "new" systems, e.g. because constructing the system
without a priori knowledge as to whether the system will be-
have as expected may be too expensive or too dangerous, or
because some of the system's parameters are unknown and have
to be evaluated by a "try-and-error" strategy which also can
be profitably automated (nonlinear programming techniques).
For this task, the simulation is supposed to supply a pre-
Cise quantitative information about the system's behaviour
under given experimental conditions. The available data for
these systems are usually reliable and reproducible enough

_19_

to allow such conclusions to be drawn, The postulated models
show complex structures in general. For this reason, most of
the so called "continuous™ engineering problems belong to
the class of "combined systems" according to the definitions
stated above,

Simulation packages are usually categorized into one of
three classes according to the problems which can be handled
by them. These are:

i) continuous-time systems described by ordinary d4if-
ferential equations (ODE's),

ii} continuous-time systems described by partial differen-
tial equations (PDE's) and

iii) discrete-time systems, described either by difference
equations, by sequences of time-events or by mixtures
of both,

It is to be stated that the partitioning of simulation
packages into these three classes results from the different
simulation techniques involved rather than from the physical
world being dividable into three classes of dynamic systems.
This can easily be shown viewing the different types of
models wused in traffic control {1.5]). There one can distin-
guish between the following three types of models.

a) Macroscopic models which are entirely continuous models,
in which the single vehicle is not represented at all.
State variables are traffic flow and its accompanying
densities, Such models involve sets of coupled PDE's
(possibly approximated by ODE's). Appropriate tools for
these models can be found in classes (i) or (ii){



_20_

b) Microscopic models which are entirely discrete models
with vehicles entering the considered system, traveling
through it in discrete steps, e.g. from one intersection
to the next with queuing situations in front of traffic
lights etc.. These models will clearly be coded by use
of tools out of class (iii).

c) Sugmicrgscoéic models (not often used in this context)

which are continuous with specific discontinuities
describing the dynamic behaviour of every single vehicle
in detail. These models will require tools showing at-
tributes of both classes (i) and (iii), that is a com-
bined continuous/discrete approach.

The physical system, however, is identical in all three
cases., The different simulation techniques have been selec-
ted in accordance with the model of the system and not with
the system itself. The model of the system has been de-
veloped in a way suitable for optimal fitting the given
simulation objectives. Suitability of one simulation tech-
nique is, therefore, an attribute of the selected model
rather than of the underlying physical system, and we should
thus better talk of "combined models" instead of "com-
bined systems”. As explained in [1.9], one should, in any
event, not expect to simulate a physical system but a model
derived from the physical system via an experimental frame,
within which data can be collected representing the beha-
viour of the real system under specified experimental condi-~
tions. Hopefully, under novel experimental conditions, the
constructed simulation program will produce data representa-
tive of the data to be observed when the real system is ob-
served under these new conditions. However, since we will
disregard the problem of modeling in this thesis entirely,
we shall use the terms "model" and "system” interchangeably.

In a first part of this thesis, the requirements of a run-
time package to carry out simulation runs of combined models

- 21 -

will be discussed. Of major interest in this context are the
numerical requirements to guarantee correct system's respon-
se, and the structural requirements to guarantee robustness
of the software. The former aspect accounts for credibility
of results when executing a particular case study, whereas
the latter accounts for software reliability under varying
system structures and/or experimental frames. In a second
part of this thesis, the required tools (simulation lan-
guages) enabling the user to code his combined models in a
user-friendly manner, will be discussed. In that context, we
will concentrate on the aspects of information processing.

References:

[1.1] A.E.Blitz: (1976) "Entwicklung eines universell ver-
wendbaren Simulationspaketes". BS thesis. Internal
Report: ATE~76-8263. Institute for Automatic
Control, The Swiss Federal Institute of Technology
Zurich, ETH - Zentrum, CH-8092 Zurich, Switzerland.

[1.2] A.P.Bongulielmi: (1978) "Definition der allgemeinen
Simulationssprache COSY". Senior Project. Internal
Report: AIE-78-8325. Institute for Automatic
Control, The Swiss Federal Institute of Technology
Zurich. To be obtained on microfiches from: The main
library, ETH - Zentrum, CH-8092 Zurich, Switzerland,
(Mikr. 5637).

[1.3] A.P.Bongulielmi: (1979) "COSY Preprocessor --—-—
Deklarationen Parser". BS thesis. Internal Report:
AIE-79-8346. Institute for Automatic Control, The
Swiss Federal Institute of Technology Zurich,
ETH -~ Zentrum, CH-8092 Zurich, Switzerland.



[1.4}]

[1.5]

[1.6]

[1.7]

[1.8]

[1.9]

- 22 -

F.E.Cellier: (1978) "Combined Continuous/Discrete
System Simulation Languages =--- Usefulness, Ex-
periences and Future Development"™., Proc. of the Sym-
posium on Modeling and Simulation Methodology,
Rehovot, Israel. Published by North-Holland Publi-
shing wompany (Editors: B.P,Zeigler, M.S.Elzas,
G.J.Klir, T.I.Oren); pp. 201 - 220.

F.E.Cellier, Blitz A.E.: (1976) "GASP-V: A Universal
Simulation Package". Proc. of the 8th AICA Congress
on Simulation of Systems, Delft, The Netherlands.
Published by North-Holland Publishing Company
(BEditor L.Dekker); pp. 391 - 402.

W.J.Karplus: (1976) "The Spectrum of Mathematical
Modeling and System Simulation"., Proc. of thé 8th
AICA Congress on Simulation of Systems, Delft,
The Netherlands. Published by North-Holland Publi-
shing Company (Editor: L.Dekker); pp. 5 - 13.

P,J.Kiviat: (1967) "Digital Computer Simulation:
Modeling Concepts". Form: RM-5378~PR,
The Rand Corp., Santa Monica, CA, U.S.A..

A.A.B.Pritsker: (1974) "The GASP-IV Simulation Lan-
guage". John Wiley.

B.P.Zeigler: (1976) "Theory of Modelling and
Simulation". John Wiley.

_23_

II) HISTORICAL DEVELOPMENT:

Program packages for the treatment of problems of
class (iii), e.g. simulation of inventory systems or of
queuing situations, have existed for more than 20 years. The
most commonly used discrete simulation languages today are:
GPSS-V [2.16], SIMSCRIPT-II.5 [2.5], and SIMULA-67 [2.4].
Programming languages for class (iii) problems are ' surveyed
in [2.9].

Problems of type (i) have been solved by use of digital com-
puters for the last 15 years, Currently used continuous
simulation 1languages evolved from the early digital-analog-
simulators which tried to imitate analog computers' capa-
bilities under digital environment. They obtained a more or
less standardized form in 1967 by the CSSL-committee [2.21].
All currently used continuous simulation languages follow
more or less these recommendations. These languages are e.g.
surveyed in [2.3,2.11]. Typical examples are: ACSL [2.10],
CSMP-III [2.22] and DARE-P [2.8,2.19].

Packages for the numerical solution of problems of
class (ii) were first announced about 9 years ago. However,
an optimal package for this purpose has not been developed
since these problems are numerically much more delicate than
ODE problems. This can be shown by the following:

Let us define the efficiency of an integration algorithm to
solve a particular problem as:

CPU-time (A*,P)
n(AsP) = m=mememmmeeee
CPU~-time (A, P)



- 24 -

vhere: A = algorithm in question
A*

best suited algorithm

o)
]

problem to be solved.

For the solution of ODE problems n very rarely takes a
value less than 0.01 for any application problem and any
available integration aigorithm except for the case of ex-
tremely stiff or highly oscillatory problems. Moreover, in
considering ODE problems, possible techniques simply involve
different integration algorithm. Otherwise the structure of
the simulation program remains unchanged. In the PDE case,
the situation is quite different. Looking, for example, only
at those methods which are commonly used for the solution of
elliptic PDE problems [2.14]1, one can see that p easily can
take values on the order of 1073 to 10~°%. Moreover, the ap-
plied methods are so much different from each other that it
seems almost impossible to integrate them into one single
computer program. Thus, in problem class (ii) there exists a
much stronger link between the problems to be solved and the
optimal algorithms to be used than in problems of
classes (i) or (iii), and selection of the optimal algorithm
becomes vital.

For the reasons mentioned above, it is very doubtful whether

it will be possible at all to develop a package which could "’

truly be called a "general purpose” package for the solution
of PDE problems. An optimal state, however, has certainly
not yet been achieved, Development goes on with the increa-
sed possibilities of new computer technologies (shorter
cycle time, larger memory). Packages for certain subclasses
of (ii) are e.g.: DSS [2.20] and LEANS-III [2.15].
FORSIM~-VI [2.2]) can be used for the solution of cohbined ODE
and PDE problems, Surveys are given in [2.1,2.11].

Prior to 1968 it was believed that all problems to be solved
could be properly classified into the three classes (i)
to (iii). As recently as 1969 an eminent specialist of simu-

_25_

lation techniques wrote: "It is the considered opinion of
the author that at present there is relatively little need
for a combined discrete event simulation/continuous-system
simulation language facility" [2.18]. The first articles
proposing a combined continuous/discrete simulation approach
were [2.6,2.7]. To date there already exist references to
more than 30 different software packages for combined simu-
lation. These will be discussed later in this thesis.
Looking at their historical background, one may £find that
most of the languages and packages for combined system simu-
lation available on the software "market" are extensions of
existing "pure" discrete simulation languages/packages. As
examples we may mention:

GASP-II [2.13] ==> GASP-1IV [2.12]
SIMSCRIPT-II.5 [2.5] —-~> C-SIMSCRIPT [2.5]
SIMULA-67 [2.4] -~> CADSIM [2.17].

The reason for this is the following: Although a numerically
well performing package for continuous system simulation is
much more difficult to achieve than one for discrete system
simulation, the structural concepts for the latter are much
more complex than for the former. Thus, extending discrete
simulation packages to encompass combined problems is a much
easier task to achieve than extending a continuous simu-
lation package for that purpose.

Extensions of discrete simulation packages have been imple-
mented, in most cases, either by the original designers or,
at least, by former users of the original software. However,
these people, usually having a background in operations re-
search, normally do not consider the requirements of
systems' analysts for continuous systems from either the
numerical or information point of view. For example, one may
find that one specific integration algorithm has been coded
into the control routine, or that no provision has been
made for parallel structures, adequate run-time control pro-



_26-.

cedures, etc.,

We have already seen that most so-called "continuous" sgys-
tems (at least in engineering) are really "combined" systems
according to our definition. On the other hand there ‘exist
many systems, which may be conveniently described by purely
discrete simulation elements. As a result there is a much
greater impact of combined simulation on the treatment of
continuous systems than of discrete systems. This allows one
to conclude that the state-of-the-art of combined system
simulation languages is by no means satisfactory.

References:

[2.11 M.B.carver: (1975) "Simulation Packages for the
Solution of Partial Differential Equation Systems".
Proc. of the SIMULATION'75 Symposium, Zurich,
Switzerland. To be ordered from: ACTA Press,
P.0.Box 354, CH-8053 Zzurich, Switzerland;
Pp. 57 - 64.

[2.2] M.B.Carver: (1978) "The FORSIM-VI Simulation Package
for the Automated Solution of Arbitrarily Defined
Partial and/or Ordinary Differential Equation Sys-
tems", Form: AECL-5821. Atomic Energy of
Canada, Ltd.; Chalk River Nuclear Laboratories,
Mathematics & Computation Branch, Chalk River,
Ontario, Canada K0J 1J0.

[2.3] F.E.Cellier: (1975) "Continuous-System Simulation by
Use of Digital Computers: A State-of-the-Art Survey
and Prospectives for Development". Proc. of the
SIMULATION'75 Symposium, Zurich, Switzerland. To be
ordered from: ACTA Press, P.0.Box 354,
CH-8053 Zurich, Switzerland; PpP. 18 - 25,

[2.4]

[2.5]

[2.6]

[2.7]

[2.8]

[2.9]

[2.10]

- 27 -

0.J.Dahl: Nygaard K.: (1966) "SIMULA; A Language for
Programming and Description of Discrete Event
Systems". Oslo, Norwegian Computing Center.

C.M.Delfosse: (1976) "Continuous Simulation and Com-
bined Simulation in SIMSCRIPT-II.5". To be ordered
from: C.A.C.I., Inc., 1815 North Fort Myer Drive,
Arlington VA 22209, U.S.A..

D.A.Fahrland: (1968) "Combined Discrete Event / Con-
tinuous System Simulation", MS Thesis, Systems Re-
search Center Report SRC-68-16, Case Western Reserve
University, Cleveland, Ohio, U.S.A..

D.A.Fahrland: (1970) "Combined Discrete-Event Con-
tinuous System Simulation”. Simulation vol.l4
no. 2 : February 1970; pp. 61 - 72.

G.A.Korn, Wait J.V.: (1978) "Digital Continuous-Sys-—
tem Simulation". Prentice Hall.

W.Kreutzer: (1976) "Comparison and Evaluation of
Discrete Event Simulation Programming Languages for
Management Decision Making". Proc. of the 8th AICA
Congress on Simulation of Systems, Delft,
The Netherlands. Published by . North-Holland Pub-
lishing Company (Editor: L.Dekker); pp. 429 - 438.

E.E.L.Mitchell, Gauthier J.S.: (1976) "ACSL:
Advanced Continuous Simulation Language - User/Guide
Reference Manual". To be ordered from: Mitchell and
Gauthier, Assoc., 1337 01d Marlboro Road,

Concord MA 01742, U.S.A..



[2.11]

[2.12]

[2.13]

[2.14]

[2.15]}

[2.16]

[2.17]

[2.18]

—28_

R.N.Nilsen, Karplus W.J.: (1974) "Continuous-System
Simulation Languages - A State—of-the-Art Survey".
Annales de 1l'Association Internationale pour le Cal-
cul Analogique (AICA), no. 1, January 1974;
pp. .17 - 25,

A.A.B.Pritsker: (1974) "The GASP-IV Simulation Lan-
guage". John Wiley.

A.A.B.Pritsker, Kiviat P.J.: (1969) "Simulation with
GASP-II". Prentice Hall.

J.R.Rice: (1976) "Algorithmic Progress in Solving
Partial Differential Equations". SIGNUM-Journal,
vol. 11, no. 4, December 1976, (Special Interest
Group on Numerical Mathematics of ACM); pp. 6 - 10.

W.E.Schiesser: (1971) "LEANS-III: Introductory Pro-
gramming Manual". To be ordered from: Computing
Center, Lehigh University, Bethlehem PA 18015,
U.S.A..

T.J.Schriber: (1974) "Simulation using GPSS". John
Wiley.

R.J.W.Sim: (1975) "CADSIM - User's Guide and
Reference Manual®™. To be ordered from: Department of
Computing and Control, Imperial College,

London SW7 2BZ, England.

J.C.Strauss: (1969) "Discrete Event and Continuous
System Simulation Languages: A Critical Comparison”,
In E.Sevin, Editor, Computational Approaches in
Applied Mechanics (American Society of Mechanical
Engineers), New York; pp. 50 - 59,

[2.19]

[2.20]

[2.21]

[2.22]

_29_

J.V.Wait, DeFrance Clarke III: (1976) "DARE-P User's
Manual". (Version 4.1). To be ordered from: Depart-
ment of Electrical Engineering, University of
Arizona at Tucson, Tucson A%Z 85721, U.S.A..

M.G.Zellner: (1970) "DSS: Distributed System Simula-~
tion". Ph.D. Thesis, Department of Chemical En-
gineering, Lehigh University, Bethlehem PA 18015,
U.S.A..

(1967) "The SCi Continuous System Simulation Lan-
guage (CSSL)". Simulation, vol. 9, no. 6
December 1967; pp. 281 - 303.

(1972) "Continuous System Modeling Program IIX
(CSMP-III) =~ Program Reference Manual". Program
number: 5734-X89, Form: SH19-7001-2. To be ordered
from: . IBM Canada Ltd., Program Produce Centre,
1150 Eglington Ave. East, Don Mills 402, Ontario,
Canada.



_30_

I1I) USEFULNESS OF COMBINED SYSTEM SIMULATION:

In references [3.5,3.6] it has been shown, that there exist
problems which cannot be modeled in a proper way by either
purely discrete or purely continuous simulation elements.
Examples given in the above references include a steel soa-
king pit and slabbing mill, and also a chemical batch pro-
cess. The arguments given in these references to justify the
new combined approach to these systems are certainly
correct. However, we shall show that the needs for combined
simulation languages are even more evident and elementary
than explained in these references.

References [3.13,3.14] describe control of the motion of
trains by SCR's (silicon controlled rectifie;s). For this
task, a current has to follow a sine wave within a prespe-
cified tolerance range. This was achieved by controlling the
SCR's by a chopper in a way that the simulation always
switches back and forth between basically two different
models where the condition for switching from one to the
other médel is expressed by the current reaching its upper
or lower limit resp.. When the sine wave crosses through
zero, the commutation of the diode rectifier must be taken
into account. The full set of equations and state~conditions
as used in [3.13,3.14] to model this situation involves a
linear, time-variant 5th order system and 12 state-condi-
tions (describing all possible discontinuities). As long as
we are only interested in the time-solution for the first
half period of the sine wave, we may neglect commutation ef-
fects and use a reduced linear time-variant model of
4th order with one state-condition only, describing the con-
ditions of the chopper when to switch from non-conducting to
conducting status and vice-versa. '

_31—

The following set of equations models the system:

IL' = (1/X)*(ULD*sin(wt) - AZ*UZ)
ISP' = (1/XSP)*(Uz - UC)
UC' = XCSP*ISP
Uz' = XCS*(AZ*IL -~ ISP - Cl)
where: IL = line current
UL = line voltage ( = ULD*sin(wt)
Uz = DC link voltage
ISP = draining circuit current
uc = voltage at draining circuit capacitor
and: X = 16.25 mQ
XSP = 96.0 mQ
XCSP = 384.0 mQ
XCs = .318.,3 mQ
ULD = 1060.66 V
Cl - =6294.2 A
AZ : determines the number of non-conducting

choppers which is always either 0.0 or
1.0.

All quantities are related to the secondary
winding of the transformer.

Derivatives are taken with respect to wt, therefore, all
X-values have their dimensions specified in 8 (at
16 2/3 Hz). To obtain standardized results which are inter-
pretable also at line frequencies used in other countries
w takes a value of 1.0 (sec ) in all computations.

The folloﬁing circuit diagram illustrates the system.



_32_

1

Fig. 3.1: Diagram of the SCR control problem

The line current (IL) is controlled in such a way that it
remains always in the neighbourhood of the curve:

Y(t) = (15000000/ULD) *sin{wt)

For AZ = 0.0 the 1line current (IL) grows rapidly until it
crosses (Y+BT) in the positive direction. At this moment, AZ
takes a new value of 1.0, and IL now approaches (Y¥-BT),
where AZ takes a value of 0.0 as before,

BT = 200.0 A

determines the allowed tolerance bound around Y, within

which IL is supposed to operate.

AZ can be modeled in the following way. First we compute an
auxiliary variable (H) by the back-lash function depicted in
Fig. 3.2.

_33_

Fig. 3.2: Graph of back-lash function

The auxiliary variable (H) remains always constant as long
as this does not force H to leave the area between the two
bounds. If the right bound is reached, H moves upward along
this border 1line., If the 1left bound is reached, H moves
downward along this border line. A physical interpretation
of this multivalued function could be the loose of a gear.

Some simulation languages (CSMP-III, GASP-V) call this a
hysteresis function

H = hstrs - -
(IL-Y, -BT, BT, Hinitial)

AZ can be computed from H with the help of an input-switch
function

AZ insw (H, x1, x2)

which is defined as:

X1 , H<O0.0

X2, H>0.0

where x1 = 0.0 and x2

i
[
.
<
.



- 34 -

This control problem may be used as a good bench mark for
the ability of an integration algorithm to "digest" nasty
discontinuities as illustrated in Fig. 3.7a which depicts
some of the state variables of this system plotted versus
time. Fig. 3.3 shows the 1listing of a GASP-V program
[3.2,3.3] to simulate the situation outlined above. This
program required 75.9 sec of CPU-time  for execution on a
CDC 6000 series installation. In this example, we used the
functions HSTRS and INSW as explained above. Modeling is,
thus, done in the same way as if one would use a purely con-
tinuous simulation language [3.2]. This is called cop-
tinuous modeling technique, and the discontinuous functions
are called GASP-functions in GASP-V. There exists neverthe-
less an important difference in the way these functions are
handled in GASP-V as compared to a continuous simulation
language. GASP~V interprets discontinuities internally'as
discrete events, and resolves them by iteration. This proce-
dure is further explained in chapter IV of this thesis.
Since GASP-V locates discontinuities within GASP-functions
through bi-section, this modeling technique does not prove
very efficient for solving the stated problem. Fig. 3.4
shows the listing of a modified GASP-V program in which the
discontinuities are modeled directly as state-events, and in
which an inverse Hermite' interpolation formula
(cf. chapter IV) is used to locate the unknown event times.
Here the required CPU-time reduces to 10.5 sec. Fig. 3.5
shows the listing of a CSMP-S/360 program [3.16] for the
same problem. As one can see, the coded model looks very
similar to the GASP-V program of Fig. 3.3. In this case the
required CPU-time was 408.0 sec (on the same installation as
above) and the obtained results were rubbish (Fig. 3.9a).
They were, by the way, produced without any notification of
the (credulous) user that they might be incorrect. We will
come back to this point later when discussing the aspect of
software robustness.

The CSMP program was coded using only standard features of-

..35._

fered by the CSMP language, and in all three programs we
used the same Runge-Kutta—Simpson integration algorithm of
4th order. This variable step length integration algorithm
compares a 4th order Runge-Kutta algorithm to a second order
Simpson rule for error estimation. This is the default algo-
rithm offered in CSMP-III (METHOD RKS). A mathematical de-
scription of this algorithm can be found in [3.16]. The
reduction factor in computing time for GASP-V compared to
CSMP was 5.4, when the same continuous modeling technique
was used (Fig. 3.3), and 38.9, when the most efficient
state—event iteration mechanism available in GASP-V was
accessed (Fig. 3.4). The reason for this reduction in
CPU-time arises from the fact that CSMP utilizes the
step-size control mechanism of the integration algorithm for
event location which is a rather inefficient method for
location of state-events and even less efficient for the
location of time-events. Time-events are scheduled events
whose realization time is known in advance. They may,
however, be either exogenous time-events, if the event time
is known throughout the program, or endogenous time-events,
if the event time is computed only during execution of the
simulation run as a result of a previous time- or state-
event, State-events, on the other hand, are events triggered
by the system status fulfilling certain conditions (so
called state-conditions) e.g. crossing of a state variable
through a prescribed threshold. These events cannot be
scheduled in advance, and their unknown realization time
must be iterated [3.11].

With respect to the inability of CSMP to solve the posed
problem efficiently and correctly, it should be stated that
any other continuous simulation language would behave in the
same way as CSMP. This is not a shortcoming of the parti-
cular 1language CSMP, but a problem of the inadequate solu-
tion technique applied.



SUBROUTINE STATE

COMMON /GCOM1/ ATRIB(25) 4 JEVYNTMFA,MFEC100),NLE (100) yHSTOP,NGROR,N
1NAPO,NNAPT,NNATR, NNFIL,NNQ(100) ,NNTRY,NPRNT ,PPARM(50Q, 4} 4 TNOH, TTBEG
2y TTCLRyTTFIN, TTRIB125) TTSET

COMMON /GCOHM2/ DD{100),0DL(100),DTFUL,DYNOW, ISEES,LFLAG(50},NFLAG,

FACTOR(,2.052.0) 1NNEQD,NNEQS, NNEQY » SS (1001 ,SSL (1003 , TTNEX

* SCR - CONTROL CIRGUIV (CONTINUOUS MODELING TECHNIGUE) COMMON /70COM1/ STEP,T,UFS,ULS,UZS
SR;PNY'TIHE'ILyULnUFyuZ 1 :g::ONliucgg:/ gI[')g% .ng;g;u,x,xcs,xcsp.XL,xsp.VP

® STEP SIZE (CONTINUOUS MODELINE® TECHNIQUE} y ' 3

GRAPHY, TIME,STEP . EQUIVALENCE (SS(1},IL), {SS(2),ISP),(SS(3},UC),(S5(4),U2),
END 1€0D(17,IL00T) ,(DD(2) ,ISPDOT), (DD (3),UCDOT), {DD(L) ,UZOOT)

c
C¥%*¥3SCOMPUTATION OF LINE VOLTAGE
PROGRAM MAIN {(INPUT,QUTPUT,HONITR,¥INE,CROSS,SAVE,TAPEL=HONITR, TAP c

1E2=TIME,TAPE3=CROSS, TAPEL=SAVE, TAPES=INPUT, TAPE6=0UTPUT) Hi = SIN (W®TNOW)
COMMON /GCOML/ ATRIB(25) ,JEVNT,MFA,HFE(100) , MLE (1007 ;HSTOP4NCRDR,N UL = ULD*H1
1NAPO,NNAPT,NNATR,NNFIL, NNQ{100) JNNTRY ,NPRNT yPPARM (50 443 s TNOW, TTBEG 3
2, TTCLR, TTFIN, TTRIB(25), TTSET C**S3ECONPUTATION OF NUMBER OF NON-CONDUCTING CHOPPERS (AZ)
NCROR = 5 . C***s2By CONTINUOUS MODELING TECHNIGUES
NPRNT = & c
CALL GASP Y = YPeHL
CALL BYE SS(5) = IL - Y
END $$(6) = HSTRS (5, -8Y/2.0, -BT, BT, 1.0E-3, 1)
SS(7) = 0.0
SS(8) = 1.0
SUBROUTINE INTLC AZ = GINSN (6, 7, 8, 1.0€-3, 2}
COMMON /GCOM2/ DD (100),00L¢100) ,0TFUL,DTNOR, ISEES,LFLAG(50) ,NFLAG, [
1NNEQD, NNEQS, NNEQT , SS (100 ,SSL (100) , TTNEX C*¥**#STATE SPACE DESCRIPTION OF THE SYSTEM
COMMON /UGON1/ BT,C1,PI,ULD,HyX+XCSyXCSPyXL 4 XSP 4YP c
REAL IL, ISP ILOOT = (1.0/X)%(UL - AZ*UZ)
EQUIVALENCE (SS(1),IL), {SS(214ISP) ,ESS(3),UC) 4 (SS14) 4UZ) ISPDOT = {1.0/XSP)*(UZ - UC)
c UCDOT = XCSP*ISP
Co**»eDEFINITION OF MATHEMATICAL NUMBER PI UZDOT = XCS®(AZ*IL - ISP - C1}
c [
PI = 4.0%ATAN (1.0) CH¥¥¥ESTORE DATA FOR OUTPUT
c c
C*****0EFINITION OF SYSTEMS PARAMETERS T = 30.0%TNOW/PI
c ULS = 10.0%L
UE = 20.0 LUF = UL - ILDOT®XL
ECTR = 5.0 UFS = 10.0%UF
ECXS = 10,0 UzS = 10.0%0Z
XLi = 2.0 STEP = DTFUL
INZ = 0,975 RETURN
VE = 1.0 END
US = 1.0
BT = 200.0
W= 1.0 SUBROUTINE INTEG

c
c Ge®*S¥SELECT INTEGRATION NETHOD
C*®***DEFINITION OF AUXILIARY VARIASLES c
c

. CALL RKS
WF = 100, 0*PI/3.0 RETURN
XL = XL1/UE*UE) END
XST = ZN2*EGTR/100.0
XN = XL + XSI
XS = ZN2®ECXS/100.0 STIHULATION PROJECT NUMBER 1 ar CELLIER
X = XN + XS DATE 11/ 16/ 1978 RUN RUMBER 1 OF 1
XCSP = 1,0/(0.024868%HF) LL5UP=000000000000000 GASP ¥V VERSION 25HMAY?S
XSP = XCSP/{4.0%VE) . N N -
XCS = 1.0700. 03%HF) :::g:: : ::z;' : HHONT: 1 IICRS: 3 TISAY: . EITINs 2
3;D==7Z;gagz?§;335‘f 2. 3) NNANS=STEP TINE uF w vz n
= NNCLT= [] NNSTA 23 = - -
. C1 = (YP + BT/2.0)%ULO/ 12.0%0Z0) v NWATR:  §  MMRIL 5 MwseTs B NNERbe o hweees o o -8
ce®»*®DEFINITION OF INITIAL CONDITIONS ITEVTe 1 LLERR® L ARERR= <1000E-02 RRERR=
. OTNIN +1000E-06 DTMAX= «6000E-02 oT5AV=:
ILp:_n.g :::l;: : JJCLR= L] JJBEG= 1 IICROD= L] TI3EG= 9o TIFINa +3J800E+N1
U3 = 140840 Tiseor -0
Uz = uzo R s s
RETURN Fig. 3.3: Listing of a GASP-V program for the SCR
END

control problem involving GASpP-functions
(continuous modeling technique)



- 38 -

FACTOR(42.0,2.0}

® SCR ~ CONTROL CIRCUIT {COM3INFD MODELING TECHNIQUE}
GRAPHY» TIME, IL,UL,UF,UZ

* STEP STZE (COMBINED MOQELING TECHNIQUER

GRAPHY, TIME,STEP

END

PROGRAM MAIN (INPUT,QUTOUT,MONITR,TIMEsCROSSsSAVE, TAPEL=MONITR, TAP
1E2=TIME 4 TAPE3=CROSS, TAPEL=SAVL, VAPES=INPUT, TAPE6SOUTPUT)

COMNON /GCOM1i/ ATRIB{25)},JEVNTMFA,MFEC(100) yMLE(1G0} ,MSTOP,NCRORyN
ANAPO, NNAPT HNATRe NNFILy NNN{18 0D, NNTRY, NPRNT+ PPARM{50+4) , THOW, TTBES
2y TTCLR, TTFIN, TTRIB(25), TYSET

NCROR = S

NPRNT = 6

CALL GASP

CALL BYE

€END

SUBROUTINE INTLC

COMMON /GCOMZ/ DD{1007,7DL(180),0TFUL,DTNON, ISEESsLFLAG{50) 4NFLAG,
ANNEQD,NNEQS,NNEQT 4SS (1032 ,SSL 100}, TTNEX

COMHON /UCOHL/ BY.CL4PT ULDHsXoXCS¢XCSP XL yXSP,YP

COHMON /UCOM2/ AZ

REAL. IL, ISP

EQUIVALENCE (SS{1)4IL) ¢ (SS(2) ISP}, (SS(3),UCI,(SS(4),UZ}

c
Ce»»»30EFINITION OF MATHEMATICAL NUMBER PI
G
PI = 4,0%ATAN (1.0}
c
Ge##»»*DEFINITION OF SYSTEMS CARAMETERS
4

UE

Wo=1.0
uze = 1200.¢

c
C*****DEFINITION OF AUXILIARY VARIABLES
1

100.0*PI/3.0

XL = XL1/{UE*UE)
IN2¥ECTR/180.0

= XL + XSI

XS = ZN2Z®ECXS/10¢.0

X = XN + XS5

= 1.,0/00.026868*WF)
XCSP/{4.0*VE)
1,0/(0.03"KF}
750.0*US*SQRT (2,9}
7.5E6%2. 0/ULD

{YP ¢ BT/2.0)*ULD/{2.0%UZ0}

c
C*®»3#DEFINITION OF INITIAL GONMITIONS
c

IL = 0.0
ISP = ~C1
uc = 1400.0
uz = uzo
S5(5) = IL

Cc
CvesseSELECT INITIAL MOOEL
c

AZ = 0.0
RETURN
END

SUBROUTINE EVNTS{IX?
COMMON /UCOM2/ AZ

c

Ce»#*SEYENT HANDLINGS THE ONLY REQUIRED ACTIVITY IS TO SET AZ TO 1.0
CPC¥SERHHEN IT IS 0.0 AND VICE-VERSA

c

AZ = 1.0 - AZ
CALL EFCRE
RETURN

END

SUBROUTINE INTEG
c
Cee*s**SELECT INTEGRATION HMETHIN
[

CALL RKS

RETURN
END

SUBROUTINE STATE

COMMON /GCOM1/ ATRIB(25),JEVNT,HFA,MFE(100) , NLE 100} 1 MSTOP,NCROR,N
1NAPO, NNAPT,NNATR, NNFIL,NNQ€200) yNNTRY ,NPRNT +PPARNI50,4) s TNOW, TTBEG
2+ TTGLRy TTFINy TTRIB(2S), TTSET

COMNON /GCOM2/ DD(106),00L(100),DTFUL,DTNDN, ISEESsLFLAG(50) 4 NFLAG,
INNEQD sNNEQS, NNEQT . SS (1001 ,SSL {1000, TTNEX

COMNON /OCONL/ SYEP,T,UFS,ULS,UZS

COHMHON /UCOM1/ BT,CLsPI4ULD¢HsKyXCSsXCSP4XL ¢ XSP VP

COMMON /UCOM2/ AZ

REAL KL, ISP,y ILDOT, ISPDOT

EQUIVALENGE (SS(1),IL}, (SS(2),ISP}, (SS(3),UC) 4{SS14) [1i74
1(0D (1), ILDOT) 4 (DD (2) ,ISPDOT), (OD(3) ,UCDOTY, CODL4) ,UZDOT)

c
C*#**2COMPUTATION OF LINE VOLTAGE
c
UL = ULDSSIN (H*TNOW)
¢
C¥8**8STATE SPAGE DESCRIPTION OF THE SYSTEM
c —

ILOOT = [1.07X)%(UL - AZ*UZ)
ISPDOT = {1.0/XSP)*(UZ - UC)
UCgOT = XCSP*ISP

UZDOT = XCS*(AZ*IL - ISP - C1)

c

C*e3¢*ADQ ADDITIONAL STATE EQUATION TO ENABLE FOR
CH»*%INVERSE HERMITE® INTERPOLATION

c

DD{S) = ILDOT - YP*COS (HW*TNOW}
C®e*8sSTORE DATA FOR QUTPUT
4

¥ = 30.0*TNOW/PL
ULS = 10.0%UL

UF = UL -~ ILDOT*XL
UFS = 18,0%UF

UZs = 10.9%02
STEP = DTFUL
RETURN

END

SUBROUTINE SCOND

COMMON /GCOHZ2/ DD(100),NOLC100) ,0YFUL,DTNON, ISEES,LFLAGI50) 4 NFLAG,
1NNEQD,NNEQS, NNEQT ,SS (189),SSL {100}y TTNEX

COMMON /GCOM14/ AAZ{1D),ITZ(10),JJZ110),KKZ(10) WNNZ,ZZ 0100

COMMON /UCOMi/ BT4C1,PI,ULD1HyXsXCSsXCSPsXL o XSP 4YP

COMHGN /UCOM27 AZ

c
CP»®347 HAY BE USED TD DETERMINE THE ACTIVE MODEL
c
IF (AZ.EQ.1.0) GO TO 1
CeeR*sAZ = 0.0 1 CHOPPER CONDUCTING
c
ZZ(1) = SSt5) =~ BT
I1Ze1) = 5
JIZOLY = 1
RETURN
C¥es23A2 = 1.0 1 CHOPPER NON-COMDUCTING
c

1 2201) = S5(5) + BY
=5

IIZ¢1)
JJZEL) = g
RETURN
END
SIMULATION PROJECT NUMBER 2 BY CELLIER
DATE 21/ 16/ 1978 RUM WUMBER 1 OF 1
LLSUP=0000080000 6/ GASP ¥ VERSION RSNAYTS
NCROR= 5 HPRNTs 6 MMONTx 1 IICRS= 3 TI5AVs - IITIN 2
HNOTP= 5 NNMXSs 1
NNANSSSTEP TINE o u uz n
HHCLT= [ NNSTAR e NNMISs € NNPRE= ¢ MNPRLTe [) NNSTR= 1 MNTRY= [
NHATR= 0 HNFIL [ NNSETx € NNEQD= 5 NNERS= ] NFLAGS 1 NKPDE= -0
IIEVT= 1 LLERRx ° ANERR= ~1000€-02 RRERRS: E-92
DTHIN= «1090E-08 OTHAX= ~6000E-02 DTSAY= E-82
WNZ = 1 11DIS= L] EEPS = S1080EL3 HMINT=  SERE NHITR= 184
ARZC 3)= +1000E-13 AAZL 20w - AZL 3w -l ARZC &)= -
AAZC B)= -R LT S -R MZE Tin “R MZU 0m -=
AAZC 9b= -R RAZ 10N> -r
NSTOP= 1 SICLR= L] JIBEGE 1 1ICRD= L] TYDEG= L TIFIN= Pl L]}
JJFIL= .
TISED= -0

Fig. 3.4: Listing of a GASP~V program for the SCR
control problem involving state-events to be
iterated by inverse Hermite' interpolation
(combined modeling technique)



- 40 - -4 -

TITLE SCR - CONTROL GIRGUIT (CSMP-S/360)
FIXED K, IC, IN, IP

’ DIMENSION TAB(1000,6), X1(1002), Y1(1082), IG(6), IN(5) NOSORT
’ DATA  C(INUI)I=1,6)72HIL 2 2HUL s ZHUF  ZHUZ , SHT LMEL MS 1, 4HSTEP/ .
CONSTANT H = 1.0 €*3¥XESTORE DATA FOR LATER PLOT
PARAMETER UE = 20.0, ECTR = 5.0, ECXS = 1040, XLL = 240y ses ‘ .

ZN2 = 0.075, VE = 1.0, US = 1.0, BT = 200.0 SH = IMPULS (0.0, TPLOT)
INGON ILD = 0.0, UCO = 1400.0, UZO = 1200.0 IF (ISH.NE.1.0).OR.{KEEP.NE.1)) 6O TO 1
. IF (K.GE.1000) FLAG = 1.0
* K=K+ 1
INITIAL : TAB(K,1) = IL
LTS TAB(Ky2) = 10.0%UL
LTI UF = UL - ILDOT*XL
M TABIK,3) = 10.,0%UF
*wxxes INITIALIZATION OF PLOTTER TABIK,4) = 10.0%UZ
. TAB(K,5) = 30.0*TIME/PI
NOSORT TAB(K,6) = DELT

CALL PLTFIN 1 CONTINUE

SORT .
* L d
*xsvsxDEFINITION OF MATHEMATICAL NUMBER PI TERMINAL
. L2 22332
PI = 4 OFATAN (1.0) wrrsaren
¥ »
ex**5%DEFINITION OF AUXILIARY VARIABLES NOSORT
- L3 .
WF = 100.0%PT/3.0 SSU¥SIREDUCE TABLE IF NOT FULL
XL = XL1/(UE*UE) .
XST = ZNZ*ECTR/100.0 IF (K.LT.1000) CALL RED (TAB, 1000, 6, K)
XN = XL + XSI .
XS = ZNZ*ECXS/100.0 s33saeFIRST PLOT
X = XN + XS >
XCSP = 1.07(0.0248668%HF) 00 1000 TI=1,4
XSP = XGSP/(4.0*VE) ICD = -1
XCS = 1.07(0.03%HF) 1000 GONTINUE
ULD = 750.0%US*SART (2.0) 1Ic(5) = 1
YP = 7.5E6%2.0/ULD ICt6) = 0
Ci = (YP + BT/2.00*ULD/ (2. 0%UZD) v 1ee
. CALL FIGUR (TAB 1
swxx33DEFINITION OF COMPUTED INITIAL CONDITION FOR ISP . v Ko 8y TG INs 14 1, IPs X1, YO
M SE3EL¥SECOND PLOT
ISPO = -C1 .
.

00 1001 1I=1,4
w2 *x3DEFINITION OF AUXILIARY COUNTER K

Ic(n =0
sxxex2as WELL AS OF THE COMMUNICATION INTERVAL (TPLOT) 1001 CONTINUE
®XEFEXAND OF A FLAG FOR DYNAMIC RUM TERMINATION ICGt6) = ~1
» . CALL FIGUR (TAB, K, 6y ICy INy 1, 1, IP, X1, Y1)
K =2
FLAG = 0.0 ¥RSS3SCLOSE PLOT FILE PROPERLY
TPLOT = 0.006 =
» CALL PLOT (0.0, 0.0, 399)
» ) *
DYNAMIC *
(XXX 21T TINER FINTIM = 3.0, PRDEL = 0.006
sensrvy FINISH FLAG = 0.5
Y

PRINT 1IL, ISP, UG, UZ

¥ Exx¥COMPUTATION OF THE LINE VOLTAGE EMD

. STOP
H1 = SIN (W*TIME} -ENDJOB
UL = ULD*H1

»
**¥¥exCOMPUTATION OF THE NUM3ER OF NON-CONDUCTING CHOPPERS (AZ)
.

Fig. 3.5: Listing of a CSMP-S/360 program for the SCR

Y = YP*Hi
SS5 = IL - ¥ control problem
SS6 = HSTRSS (-BT/2.0, -BT, 3T, SS5)

AZ = INSW (SS6y 0.0y 1.0}

.

¥¥#¥¥2STATE SPACE OESCRIPTION OF THE SYSTEM
.

ILDOT = (1.0/X)*(UL - AZ*UZ}

IL = INTGRL {(ILO0, ILDOT)

ISP = INTGRL (ISPO, (1.0/XSP)*{UZ - UG)}
UC = INTGRL (UCO, XCSP*ISP)

UZ = INTGRL {(UZ@, XCS*(AZ*IL ~ ISP - Ci)}



_42.—

Fig. 3.6 depicts schematically what happens to the integra-
tion step-size at event times.

t
ZS'(CSMP): i ! |
; - l {
| I | :
b |
|
| ! 1 I
| T |SIMULATION
| | CLOCK
| b |
|
At{easp) ! I : I
| ' i :
l
| [ a |
T
I
|
I |
1
' - ;
h t t, 1, SIMULATION
(¢] 1 2 3 q CLOCK

Fig. 3.6: Integration step~sizes of continuous and combined
languages versus the simulation clock.

Using a continuous simulation language, the step-size will
be considerably reduced when a discontinuity is encountered
since the integration algorithm is unable to compute a step
properly over discontinuities. This fact has been used in
these languages to "localize" event times. However, since
the program cannot know that a discontinuity is occuring (no
language element is provided to explain this to the system),
the algorithm will "think" that the set of equations sudden-
ly became extremely stiff, and reduce the step-size to cope
with the new situation. (A discontinuity can be considered
as a local point of infinite stiffness.) For this reason

...43_

originators of continuous simulation packages always claim
that their software is able to handle discontinuities.

Having located the event, the algorithm will carefully ex-
plore the possibility to make the step-size larger again,
but is not allowed to enlarge the step-size immediately
since this would lead to instability behaviour in an actual
stiff case.

A combined simulation language, on the other hand, will pro-
vide for a language element to describe discontinuities. Now
the step-size will be reduced by an event iteration proce-
dure inherent in the program to locate the unknown event
time in case of state-events (events 1, 2 and 4 in Fig. 3.6)
taking place, whereas the step-size will simply be reset to
the known event time in case of a time-event (event 3 in
Fig. 3.6) taking place. Afﬁer accomplishment of the event
the integration algorithm will be restarted and will use the
internally provided (and hopefully efficient) algorithm to
obtain a good guess for the new "first" step-size to be
used, Note that the independent axis on the graph denotes
the simulation clock and not CPU-time.

This technique has first been described in [3.12]. In this
reference, it has been applied to a very specific applica-
tion problem. [3.7,3.8] describe this technique from a some-
what more general point of view. A detailed discussion of
this technique shall be presented in chapter IV of this
thesis.

Fig. 3.7a depicts the behaviour of some variables of the
above outlined control problem versus simulation clock, and
Fig., 3.7b shows the integration step-size (dt) versus simu-
lation clock for the first GASP-V program of Fig. 3.3.
Fig. 3.8a and Fig. 3.8b show the same quantities output by
the second GASP-V program of Fig. 3.4, and Fig. 3.9a and
Fig. 3.9b resp. are produced by the CSMP program of
Fig. 3.5.



SCA - CONTRAL CIRCUIT (CONTINUBUS MEDELING TECHNIQUE!
1=IL 1.80x10%

o Leo

0.20

-0.00

-0.20 T T T T — T La— T 1
~1.00 -0.50 0.00 0.50 1,00 1.50 2,00 2.50 3.00 3.50 4.00x10!
TIME

Fig. 3.7a: Time response of the GASP-V program of Fig.

STEP SIZE (CONTINUGUS M@DELING TECHNIGUE)
teSTER £,00510°3 :
7.00 ]
600 -
- 50D 4
4.00 R
3.00 -
2.00 E

1.00 h

e.eg A———b—— 3

-1.00 hi

~2.00 T T T T T T —T T T 1

-1.06 -0.50 0.00 0.50 1,00 150 2,00 2.50 300 3.50 4, 00510
TIHE

Fig. 3.7b: Step~size versus simulation clock
for the GASP-V program of Fig. 3.3.

SCR - CONTROL CIRCUIT (COMBINED MBDELING TECHNIQUE)
1.80x10% N

1.08

0.80

0,60

Q.40

0.20

-0.00

-0.20
~1.00 -0.50 0,00 0,50 1,00 1.50 2,00 2.50 3.00 3.50 4000
TIKE

L.

Fig. 3.8a: Time response of the GASP-V program of Fig,

3.4.

STEP SIZE (CBMBINED MBDELING TECHNIQUE)
1=5TEP 8, Qux1073;

.00
6,00
5.00
4.00
3.00
200
1.00

0.00 ——r—t——t L

-1.00

-2.00

-§»00 -0.50 0.00 0,50 3.00 1.50 2.00 2.0 3.00 3.50 Y4,00M0°

TIME

S

Fig. 3.8b: Step-size versus simulation clock
for the GASP-V program of Fig. 3.4.




- 46 -

14,00

10,00

x10°
300

%

0 B0

Lo

1800

¢

a8
F

o 518 2 ws 2% [ XA TR TR T Y I Y X

TIMELMS T

s F x
+ ou

Fig. 3.9a: Time response of the CSMP~S/360
program of Fig. 3.5.

960

s

STEP ®10°
om R &3 &%

o1

om

[40) (433 [ W25 1230 3 60 16% DS 2SS

TIMELMS ]

Fig. 3.9b: Step-size versus simulation clock for

the CSMP-S/360 program of Fig. 3.5.

_47_

The incorrect results obtained using the CSMP program arise
from the following:

Let us assume that at time (t*) the auxiliary variable (H)
has a negative value and is approaching zero. The crossing
will usually take place at any intermediate computation of
the state derivatives within an integration step. AZ will
now immediately change its value from 0.0 to 1.0. Since the
integration algorithm cannot compute values over dig-
continuities, its inherent error estimation procedure will
detect that something went wrong, and will reject the
current integration step. IL and Y will resume their values
at the beginning of the integration step and the step is re-
peated with a smaller dt.

During execution of one integration step, it is even pos-
sible that AZ changes its value several times since the
first time derivative of the line current (IL') will imme-
diately change its sign as soon as A7z switches from 0.0 to
1.0 or vice-versa. Since the memory of the HSTRSS-function
may only be updated at the end of successfully accomplished
integration steps (KEEP = 1), the output of the
HSTRSS~function (H) will also cross back and forth through
zero, and thus Az will also change its value from 0.0 to 1.0
repeatedly. The step-size (DELT) will be reduced until the
error estimation algorithm is satisfied. This will be the
case as soon as the two integration algorithms, which are
compared with each other to obtain an estimate for the local
integration error (RK4 and Simpson in this example), show
similar results. That is, either when the analysis is cor-
rect, or when both algorithms agree to the same incorrect
result (!), Since the analysis can never be correct over
this discontinuity, the step-size reduction will go on until
both algorithms, by chance, produce a similar (incorrect)
result. (For sufficiently small step-sizes any integration
algorithm will behave 1like Fuler and, thus, produce com-
parable results.)



- 48 -

The future trajectory will now depend heavily upon whether
AZ takes (by chance) a value of 0.0 or 1.0 at the end of the
finally accepted (but nevertheless incorrect) integration
step. If the threshold has been passed, the HSTRSS-function
can update its memory correctly, and integration proceeds as
it should. If the threshold has not been passed, the next
integration step will face the same problem as the one
before, namely, that the trajectory will again try to
surmount the threshold without success, and the program
starts c¢reeping. This is a well known phenomenon when using
continuous simulation languages to simulate discontinuous
models.

Fig. 3.9a shows that, during computation, AZ sometimes takes
the correct value and sometimes the wrong value at the end
of an integration step. Initially there exists a time
interval in which the program gives incorrect results. This
is followed by an interval during which the program proceeds
correctly and produces valid results. Following this inter-
val, one can again observe a long time interval during which
the program, using an incredibly small step-size
(Fig. 3.9b), creeps along producing erroneous results. Then
another interval follows during which the correct time
response is produced.

As shown in [3.4] the only proper way to surmount this dif-
ficulty is to inhibit discontinuities to take place within
integration steps.

Discontinuous functions are composed of continuous branches.
Instead of allowing a discontinuity to take place within an
integration step, we only describe the conditions when to
switch from one continuous branch to another (state con-
ditions), but remain on the first (prolongated) continuous
branch throughout the whole iteration procedure. At event
time only, after the iteration procedure has successfully
converged, we will switch from one branch to the other.

- 49 -

After event handling, before we continue to integrate the
system further over time, we will then reinitialize the
integration algorithm. With this technique we can guarantee
purely continuous trajectories throughout integration.

In using GASP-functions (continuous modeling technique) this
splitting-up procedure is hidden to the user, but neverthe-
less takes place precisely as described above resulting in
series of hidden state- and time-events which are taking
place and are properly handled by the system without deman-—
ding any further consideration by the user of the software
[3.3].

Considering the numerical aspects of the problem one should
describe the above mentioned control system by combined
simulation techniques rather than by purely continuous simu-
lation. However, this problem would definitely belong to the
class of continuous systems according to the "common" use of
the term. This gives the required motivation for our redefi-
nition of the terms combined and continuous simulation as
stated in the introduction.

Considering the aspect of information processing CSMP ob-
viously offers modeling elements (such as a switch function)
which it is unable to preprocess 1into properly executable
code. Again this is not a problem of the language CSMP, but
holds for all CSSL-type languages. Some of the languages
(like DARE-P [3.9]) are somewhat more modest in the facili-
ties they offer in this respect, for which they are cri-
ticized by many users. We, however, believe that it is more
degsirable to offer few facilities than to write a beautiful
manual, offering many nice features, which effectively
cannot be properly used. On the other hand, the reaction of
these wusers proves that the facilities are useful and
needed. For this reason, we feel that in a future revision
of the CSSL specifications [3.15], combined simulation

facilities should be taken into account, opposing herein to



...50_.

the opinion expressed in [3.1]. A revision of the CSSL spe-
cifications will be necessary anyway, if for no other reason
than the original definition contains over 40 syntactical
errors as shown in [3.10].

As can be seen from the above discussion: The problem of
combined simulation can be subdivided into the numerical as-
pects (executability of the run-time system) and the aspects
of information processing (definition of the descriptive
input language). These two problems shall subsequently be
considered in greater detail.

References:

[3.1] P.R.Benyon: (1976) "Improving and standaidizing Con-
tinuous Simulation Languages". Proc. of the SIMSIG
Simulation Conference, Melbourne, Australia,
May 17-19, 1976; pp. 130 - 140.

[3.2] F.E.Cellier: (1978) "The GASP~V Users' Manual". To
be ordered from: Institute for Automatic Control,
The Swiss Federal Institute of Technology Zurich,
ETH - Zentrum, CH-8092 Zurich, Switzerland.

[3.3] F.E.Cellier, Blitz A.E.: (1976) "GASP-V: A Universal
Simulation Package". Proc. of the 8th AICA Congress
on Simulation of Systems, Delft, The Netherlands.
Published by North-Holland Publishing Company
(Editor: L.Dekker); pp. 391 - 402.

[3.4] F.E.Cellier, Rufer D.F.: (1975) "Algorithm Suited
for the Solution of Initial Value Problems in En-
gineering Applications”. Proc, of the SIMULATION'75
Symposium, Zurich, Switzerland. To be ordered from:
ACTA Press, P.O.Box 354, CH-8053 Zurich,
Switzerland; pp. 160 - 165.

[3.5]

[3.6]

[3.7]

[3.8]

[3.9]

[3.10]

[3.11]

D.A.Fahrland: (1970) "Combined Discrete-Event Con-
tinuous System Simulation". Simulation wvol. 14
no. 2 : February 1970; pp. 61 - 72.

D.G.Golden, Schoeffler J.D.: (1973) "GSL - A Com-
bined Continuous and Discrete Simulation Language".
Simulation vol. 20 no. 1 : January 1973; pp. 1 - 8.

J.L.Hay, Crosbie R.E., Chaplin R.I.: (1974) "Inte-
gration Routines for Systems with Discontinuities".
Computer Journal, Vol. 17, No. 3; pp. 275 - 278.

J.L.Hay, Griffin A.W.J.: (1979) "Simulation of Dis-
continuous Dynamical Systems"™, Proc. of the 9th
IMACS Congress on Simulation of Systems, Sorrento,
Italy. Published by North-Holland Publishing Company
(Editors: L.Dekker, G.Savastano,
G.C.Vansteenkiste); pp. 79 - 87.

G.A.Korn, Wait J.V.: (1978) "Dpigital Continuous-Sys-—
tem Simulation". Prentice Hall.

T.I.0ren: (1975) "Syntactic Errors of the Original
Formal Definition of CSSL 1967". Technical Report
TR75-01 (IEEE Computer Society Repository
no. R75-78), Computer Science Department, University
of Ottawa, Ottawa, Canada.

A.A.B.Pritsker: (1974) "The GASP-IV Simulation Lan-
guage, John Wiley.



[3.12]

[3.13]

[3.14}

[3.15]

[3.16]

- 52 -

B.Ramer, Ramer U.: (1969) "Digitale Untersuchung
einer halbgesteuerten Dreiphasenbrueckenschaltung”.
Senior Project. Internal Report: AIE-69-8041. Insti-
tute for Automatic Control, The Swiss Federal Insti-
tute of Technology Zurich, ETH - Zentrum,
CH-8092 Zurich, Switzerland.

H.Schlunegger: (1977) "Untersuchung eines netzrueck-~
wirkungsarmen, zwangskommutierten Triebfahrzeug-
Stromrichters =zur Einspeisung eines Gleichstrom-
zwischenkreises aus dem Einphasennetz”,
Ph.D. Thesis, no. DISS.ETH.5867: The Swiss Federal

Institute of Technology Zurich, Switzerland.

H.Schlunegger: (1977) "Digital Simulation of a
Forced-Commutated Converter for Single-Phase for AC
Locomotives". Proc. of the IFAC - Symposium on
Control in Power Electronics and Electrical Drives,
Duesseldorf, FRG. Published by Pergamon Press
(Editor: M.A.Kaaz); pp. 759 ~ 767.

(1967) "The sCi Continuous System Simulation
Language (CsSsL)". Simulation, vol. 9 no, 6 :
December 1967; pp. 281 - 303.

(1972) "Continuous System Modeling Program III
(CSMP-I1I) - Program Reference Manual™. Program
number: 5734-XS9, Form: SH19-7001-2. To be ordered
from: IBM Canada Ltd., Program Produce Centre,
1150 Eglington Ave. East, Don Mills 402, Ontario,
Canada. ’ '

_53_

IV) NUMERICAL ASPECTS:

Iv.1) Structure of the Run-Time Package:

The previous example shows that for the execution of com~
bined system simulation, the following concept 1is to be
used. A combined model must be subdivided into the following
parts:

a) a discrete part consisting of elements known from dis-

crete event simulation

b) a continuous part consisting of elements known from con-
tinuous system simulation

¢} an interface part describing the conditions when to
switch from (a) to (b) and vice-versa

During the execution of a combined system simulation we are,
therefore, performing either entirely discrete event simu-
lation (with its well known properties) or entirely con-
tinuous system simulation (with its also well known proper-—
ties), whereas execution of simultaneously combined con-
tinuous and discrete simulation does not exist. Thus a com-
bined simulation run-time package must be composed of:

a) a discrete event simulation run-time package

b) a continuous system simulation run-time package

c) some algorithms describing the activities to be taken,
when branching from (a) to (b) or vice~versa is

required.

The numerical requirements for the subsystems (a) and (b)
are both well known and discussed on many occasions



- 54 -~

[4.1,4.3,4.6,4.8] and, thus, need not be considered here
again. Once this structure has been understood, we can re-
strict ourselves merely to combining previously developed
software for discrete and continuous simulation to obtain a
good run-time package for combined simulation as well.

In the following, we will restrict our view on subsys-
tem (c).

Iv.1.1) Conditions_ for Changing to_ Continuous Simu-
lation when Executing Discrete Simulation:

Let the simulation clock be advanced to event time tl.
Executing discrete simulation means that the system is about
to perform event handling at time tl. We have to execute
discrete simulation until all events scheduled for time tl
have been performed. We have then to switch to continuous
simulation if there are differential equations currently in-
volved in the combined simulation (for some intervals of
time there may be none). Otherwise we advance the simulation
clock to the next event time, and continue executing dis-
crete simulation until there are no events left to be per-
formed for this new event time. Therefore, no special algo-
rithms need to be developed for this case. After event
handling has been performed, the integration algorithm needs
to be restarted. This is especially important in case multi-
step methods are being used.

Iv.1.2) Conditions for Changing to Discrete Simula-
ti cuti tinuous_Sim tion:

Continuous simulation has to be performed either up to the
next scheduled event time (for time~events), or until a
state-condition is met which triggers execution of a state-
event, whichever comes first. In both cases, the step-size

- K5 -

control mechanism of the integration algorithm has to be
disabled. In the former case (handling of a time~event), the
step-size simply has to be reduced to the scheduled event
time, in the latter case (handling of a state-event) a new
step-size control algorithm must be activated for iteration
of the solution to the unknown event—time. Again, these
algorithms are not really new. Any good iteration procedure
(like Newton-Raphson) can solve the problem [4.2,4.5,4.7}.
On one hand the iteration procedure should converge as fast
as possible to minimize computing time. This calls for an
iteration procedure with a quadratic or cubic convergence
ratio. On the other hand, our requirement of software
robustness (as discussed later) call for an iteration proce-
dure with an infinite convergence range. For this reason, we
recommend a combination of the inverse Hermite' interpola-
tion (fast convergence) with Regula-Falsi (unlimited conver-
gence range). This scheme is discussed in the following.

IV.1.2.1) The Regula-Falsi Iteration Scheme:

Fig. 4.1 shows how the Regula-Falsi algorithm may be used to
detect the crossing of a state-condition (any function of
state and time) through zero,



_56_

fk t k+dt

Fig. 4.1: Iteration of a zero crossing with Regula-Falsi

We can formulate all types of state-conditions as zero cros-
sings without restriction in generality, since any state-
condition can be brought into this form by simple subtrac-
tion of the two sides. In this special form the state-con-
dition will be called a discontipnuity function (d.f.) [4.2].

Integration goes on until a d.f. changes its sign for the
first time. At this moment, we know that a state-event is
supposed to take place within the last executed integration
step. The step-size control mechanism of the integration
algorithm is now disabled and the step is repeated with a
new step-size computed by the iteration scheme. The interval
is reduced by always keeping the d.f. at one interval bound
above and, at the other, below the zero level. The advantage
of this iteration scheme is that it will converge under all
circumstances (unlimited convergence range), The disadvan-
tage is that it only provides a linear convergence speed.

A bi-section law (repeated halving of the step size until

_57_

the zero crossing is located) has been used in [4.10] to
iterate state-conditions, since Pritsker felt that the
demands of software robustness would be jeopardized by any
other means of iteration (A.A.B.Pritsker: Private communica-
tion). When using the Regula-Falsi scheme, we, indeed, face
problems which do not exist in bi-section, These are
illustrated in Fig. 4.2a and Fig. 4.2b resp..

-t

1 1
fy +dt t t +dt

2: Difficulties of iterating

ero crossings with Regula-Falsi

a) As can be seen in Fig. 4.2a, the left interval bound re-
mains  here always the same. The step-size will,
therefore, not necessarily converge to zero in this
algorithm. As a matter of fact it is here the difference
between step-sizes, following each other during itera-
tion, which converges to zero. Bi-section on the other
hand halves the step~size during each iteration step.
This must, therefore, converge to zero. In using an
algorithm like Regula-falsi special care is, thus, re-
quired to terminate the iteration correctly.

b) In Fig. 4.2b the right interval bound remains always un-
changed. At this interval bound the allowed tolerance

-t



_58_

range of the d.f. is not met. The left interval bound
approaches the zero «crossing instant rapidly, but the
d.f. can never cross through zero there. When we con-
tinue to integrate the system over time after event
handling has been accomplished, it may well happen that
the previously iterated d.f. is again "discovered"
during the first new integration step, and the algorithm
finds itself iterating the same zero crossing again and
again. Unfortunately, the package has no means to dis-
cover what happened since, at event time, the whole
system structure may change. For this reason, the itera-
tion algorithm cannot decide whether this is really
"the same" d.f. as before or not. The meaning of the
i-th d.f., which led to the iteration, may (but need
not) have changed completely after event handling. The
package must, therefore, ask the user to supply informa-
tion as to whether a possible =zero crossing of the
i-th d.f., within the first integration step after event
handling, is to be regarded or ignored.

Iv.1.2.2) The Generalized Requla-Falsi Iteration Scheme:

So far we have discussed how zero crossings of a d.f. can be
iterated. The first zero crossing of any d.f. will be found
by these means. It may, however, happen that several d.f.'s
cross through zero within the same integration step. The
iteration scheme must, therefore, be generalized in such a
way that the first zero crossing can be found. (There is,
however, no a priori information available on which of the
candidates is crossing first.) The iteration scheme applied
is very simple. We compute a "new" step-size for all cros-
sing d.f.'s independently of each other, and use their
arithmetic mean value as the next step-size. Most probably,
some of the d.f.'s still have a crossing within the reduced
interval whereas others have not. We continue with this
algorithm until just one crossing is left within the con-

_59_

sidered interval, From then on, we may proceed as in section
iv.1l.2.1.

Problems may arise if thevuser (unconsciously) has specified
the same d.f. twice. In this case, the deneralized scheme
has to be used until "both" d.£f.'s lie within the specified
tolerance range. The user is, therefore, required to test at
event time for possible realizations of all d.f.'s seguen-—
tially.

A further rule which must be remembered when formulating
d.f.'s is that no d.f. may be equal to zero over a finite
time interval. This is obvious from the definition of the

d.f., since zero crossings determine event times.

Fig. 4.3 depicts the generalized Regula-Falsi iteration

—

scheme.

17A

4
1d.f

24d.1,

< ' ! 3d1, |

3

Fig. 4.3: Iteration of zero crossings
using generalized Regula-Falsi

Let the end points of all d.f.'s be stored in two arrays
ZL(i) for the left (last) end point and ZN(i) for the right



_60-.

(new) end point. The array KKzZ(i) is supposed to contain
information whether a crossing of the i-th d.f. took place
within the current integration step (KKZ(i) # 0) or not
(RKZ (i) = 0). NNZ denotes the number of active d.f.'s. The
next step~size (DTNEX) can be computed by the algorithm
coded in Fig. 4.4. ’

S5 =20.0

IA=0

DO 1000 1I=1,NNZ

IF (KKz(1)) 1, 2, 1

1 HA = ABS (ZL(I))
HB = ABS (ZN(I}))
S = 5 + BA/(HA + HB)
IA= IA + 1

2 CONTINUE

1000 CONTINUE
DTNEX = S*DTFUL/FLOAT (IA)

Fig. 4.4: Program segment for the gene-
ralized Regula-Falsi rule

If only one crossing takes place, this algorithm degenerates
to the normal Regula—Falsi‘rule.

Iv.1.2.3) e_Invers ermite' Interpolation:

This iteration scheme generates a cubic polynomial through
the two boundary values of a d.f. and their first time deri-
vatives. For the generation of the polynomial, the two axes
(d.f. and time) are exchanged. This has two advantages:

g 4

..61_.

a) There always exists exactly one time instant (t*) for
which the interpolation polynomial is zero, whereas the

direct (not inverse) polynomial has either one or three
real solutions, and

b} it is not necessary to determine the root of a cubic
polynomial to find the solution, that is the inverse

interpolation will be faster.

Fig. 4.5 illustrates this iteration scheme.

2 3 1 2 3 4

‘Fig. 4.5: Iteration of a discontinuity function

using inverse Hermite' interpolation

A very elegant and simple algorithm can be determined for
this iteration procedure., This algorithm is subsequently de-
scribed.

Let the same two quantities ZL and ZN be given as before.
This time, however, they are not indexed since we assume
that not more than one crossing takes place within one
iteration step. This is no restriction in generality since
we may utilize the generalized Regula-Falsi algorithm until
the interval is sufficiently reduced to contain one crossing



- 62 - - 63 -

only. Furthermore we use the two quantities DZL and DZR to t I z I 4
denote dz/dt at the left and at the right end of the inter- - + +
val resp.. Also the two time instances TL and TN of the two TL I 2ZL I .0
interval ends are known. ™ I ZIN I .0
t* 1 0.0 1 ¢
The interpolation polynomial can be written as: sk Attt Fo—————
t(z) = a*z?® + b*z2 + c*z + d For v and w we find the values:
The four unknown parameters a, b, c, and d of the polynomial v =1.0/(2N-2L) ; w = -ZL/(ZN-ZL) = ¢ .

can be computed from the four equations:
Now we can construct four auxiliary polynomials in

a*zL° + b*zL” + c*zL + d

TL =

TN = a*zZN° + b*ZN% + c*ZN + 4 Pi(T) = a;*T® + B.*T% + y ¢ 4 &,

TL' = 3a*zL? +2b*ZL + ¢ p,' (1) = 30Li*c2 + 2B *T 4 Y,

TN' = 3a*ZN? +2b*IN + c

such that
where TL' and TN' denote the derivatives of t with respect
to z at the left and at the right end of the interval resp.. p(0) =1 ; py(l) =0 ; py'(0) =0 ; p;p'(1)
P,(0) =0 ; p,y(l) =1 ; Pp,y,(0) =0 ; p,y"(1)

The four equations are to be solved for the unknown para- 93(0) =0 3 P3(1) =0 ; P3'(0) =1 ; p3'(1)
meters a, b, ¢, and d. These can then be substituted back p,(0) 0 7 Py =0 5 pJ(0) =0 ; p,' (1)
into the interpolation polynomial. Finally, we set z to zero )
to find the time of the zero crossing (t*). These polynomials are illustrated in Fig. 4.6.

To simplify this computation, let us apply a linear trans-
formation to the polynomial:

= v*z + W
where v and w are determined in such a way that ¢ is equal

to 0.0 where z is equal to ZL, and ¥ is equal to 1.0 where 2z
is equal to ZN.

nwonon
H o © o



_64_

Py P

—-

Fig. 4.6: Graph of the four auxiliary polynomials

Bach of these auxiliary polynomials has four unknown para-
meters which can be determined in a unique manner out of the
four imposed conditions. The resulting polynomials are:

Py(2) =2%° - 3*% + ]

P,z) = =2%z + 3%¢?
P, (D) = g? - 2%r% + 1
P, (2 = g? ~ g?

as it is easy to check.
The inverse Hermite' interpolation polynomial:
t(z) = e*z® + £*z? 4+ g*T + h ,

which we are looking for, can be rewritten in terms of the
four auxiliary polynomials as:

t(g) = TL*p, (T} + TN*p, (L) + DTL*p;(T) + DIN*p,(T) .

_65_

DTL and DTN denote the derivatives of t with respect to g at
the left and at the right end of the interval resp.. They
are computed as:

at ac dz  ZN-ZL
DT, = == = 1.0/~~ = 1.0/ (v*—) = ————n .
ag ac dt  dz/at

This is easily verified by evaluating this polynomial and
its derivative dt/dz at ¢= 0.0 and L = 1.0 resp.. Due to the
uniqueness of this representation (the four p(Z) form a
base), this is the polynomial we were looking for.

To obtain the crossing time (t*), we simply evaluate this
polynomial attz = £,

This iteration scheme has a cubic convergence ratio but
finite convergence range. To be sure that the solution of
the interpolation polynomial 1lies within the considered
interval, we require that the first time derivative of the
d.f. at both interval bounds points "into" the interval (as
illustrated by the arrows on Fig. 4.5). Mathematically, this
rule can be expressed as:

ZL*DZL < 0.0
ZN*DZN > 0.0 .

If one of these two conditions is not fulfilled, it is safer
to perform one step using Regula-Falsi and.then again check
as to whether the conditions are fulfilled within the newly
obtained reduced interval., The two algorithms are perfectly
compatible with each other, and there .is no problem in
switching back and forth between them. (This is one of the
reasons why inverse Hermite' interpolation seems more
favourable than the previously used Newton-Raphson algorithm
[4.5], which has also a finite convergence range and shows
quadratic convergence speed, but is much less compatible to



_66.—

Regula-Falsi than the inverse Hermite' interpolation
scheme.)

The combination of the two algorithms (inverse Hermite'
interpolation and Regula-Falsi), thus, guarantees fast con-
vergence within an unlimited convergence region. This is il-
lustrated in Fig. 4.5b.

A-prerequisite for applying this scheme is that the first
time derivative of the d.f. is available. If the derivative
is not analytically computable, it would theoretically be
possible to approximate it numerically by computing

Lest-steps. This, however, usually does not pay off in terms’

of computer time, and, under these circumstances, it is, in
most cases, faster to apply the Regula-Falsi algorithm. We
require, therefore, that the d.f. takes a special form when
the inverse Hermite' interpolation is to be used:

¢({x,t) = x[i] + const

where x[i] is the i-th state variable, and ¢(x,t) denotes
the discontinuity function. A state-event takes place when
x[i] takes a value of +const.

In this case the first time derivative can be written as:

$(x,t) = x[i]

x[i] denotes the left side of the i-th state equation and is
computed anyhow. This type of d.f. is called special dis-

continuity function. Fig. 4.7 shows how an inverse Hermite'
interpolation algorithm can be coded.

_67_

C*****CHECK WHETHER SIGN OF DERIVATIVES ALLOWS
C*****POR COMPUTATION, ELSE DO REGULA-FALSI

IF ((2L*DZL).GT.(-EEPS)) GO TO 1

IF ((2ZN*DZN) .LT.EEPS) GO TO 1
C*¥%** INVERSE HERMITE' INTERPOLATION ALGORITHM

HA = ZN - 3ZL

DTN = HA/DZN

DTL = HA/DZL

HA = -ZL/HA

HB = HA*HA

HC = HB*HA

PB = 3.0*HB - 2.0*HC

PA = 1.0 - PB

PC = HC - 2.0*HB + HA

PD = HC ~ HB

TE = TL*PA + TN*PB + DTL*PC + DTN*DPD
C*****xCHECK WHETHER THE COMPUTED VALUE OF TIME (TE)
C*****|,TES WITHIN THE INTERVAL [TL,TN], ELSE DO RF

HA = TN - TL

HB = TE - TL

BC = TN - TE

IF ((HA*HB) .LT.EEPS) GO TO 1

IF ((HA*HC).LT.EEPS) GO TO 1
C*****EVERYTHING IS OKAY. COMPUTE STEP SIZE

DTNEX = TE - TL

RETURN
C*****SOMETHING WENT WRONG. DO REGULA-FALSI

1 CALL RGFLS (ZN, 2L)
RETURN

Fig. 4.7: Inverse Hermite' Interpolation

This algorithm has been coded in a straight forward manner.
However, there may be derived numerically better behaving
codes for this iteration scheme. It is feasible (and would
be more suitable) to code the inverse Hermite' interpolation
scheme as a Regula-Falsi with a correction term (P.Henrici:



_68_

private communication). This can be easily achieved by ana-
lytically substituting the expressions for P and H into
the expression for TE, and finally separating the
Regula-Falsi rule out of the resulting expression for TE.

The iteration procedures, as presented so far, are not the
only means to solve the problem. They constitute, however,
the most general solution to it since they operate inde-
pendently of the integration algorithm in use. The same
piece of code can, thus, be modularly combined with any
numerical integration software in question.

However, for some special integration methods there exists
another solution to this problem which is more elegant. This
concerns modern multi-step integration algorithms and is
subsequently described. )

The classical explicit multi-step algorithm extrapolates the
next state of the system out of the values of the state
variables and their first time derivatives at previous mesh-
points

x(t+dt) = h(x(t), x(t-d4dt), esey X{t-k#*dt),
' k(t), x(t-dt), ..., x(t-k*dt))

The classical multi-step method usually operates with a
fixed step-size throughout‘ the integration since, by
changing dt, one obviously misses the required information
at the appropriate meshpoints (which makes these algorithms
inattractive for use in a robust general purpose simulation
software). To overcome this difficulty, modern multi-step
integration algorithms transform the values of the state
variables collected over k meshpoints into values of the
state variables and their k time derivatives at one mesh-
point (time t). This method has been described by Nordsieck
[4.9]. These values are composed to form the vector:

_69_.
N' = (%, %, ¥, ..., x&}

which is called the Nordsieck-vector. The information con-
tained in the Nordsieck vector is equivalent to the pre-
viously used information.

Integration to the new time (t+dt) is done by a simple
Taylor series expansion around time t, an algorithm which is
obviously applicable for any step size dt. For this reason,
the Nordsieck vector grants an easy mean to modify the step
size of multi~step integration algorithms. If, at the end of
one integration step, we detect that a special d.f. has
crossed through zero, we may interpolate the affected state
variable to its threshold by using the Nordsieck vector.
This has been shown in [4.2.] By these means, the interpola-
tion algorithm is characterized by the same order of ac-
curacy as the numerical integration itself. A more accurate
interpolation does not make much sense anyhow. In this way
we can replace the (expensive) iteration by a simple inter-
polation. The only disadvantage of this method is its depen~
dency on the integration algorithm.

IV.1.2.4) Transformation of General Discontinuity Func—

tions into Special Discontinuity Functions:

For d.f.'s which cross through zero often during a simula-
tion run, it is important to use the fastest iteration pro-
cedure available. For this reason we want to show how a
large group of general d.f.'s can be transformed into

special d.f.'s.

Let a system description be given as:

X[i] = £[i](x,t) ;
x[i] (£=t0) = x0[i] ; i=1l,...,n



- 70 -
together with a set of general d.f.'s:

¢131(x,t) = gl[31(x,t) & J=1,...,m
for which g(x,t) shall exist,

This problem can be transformed into the following equi-
valent one:

X[i] = £[i](X,t) ;

x[i] (t=t0) = x0[{i] ; i=1,...,n

x(n+3] = g3l (x,t) :

x[n+3] (£=t0) = g[j] (x=x0,t=t0) ; j=1,...,m

together with the new set of special d.f.'s:
¢[31 (x,t) = x[n+3] ; =1,...,m

The price for this transformation is an enlargement of the
state space by m additional state equations. Whether this
transformation pays off in terms of computing time depends
on the problem. For d.f.'s crossing through zero only occa-
sionally, it will certainly not be justified to integrate
additional state variables to save iteration time. For other
d.f.'s which have zero crossings at short time intervals,
this transformation can save a remarkable amount of
CPU-time. This technique has been applied in the GASP-V pro-
gram coded in Fig. 3.4.

Warning:
This transformation can be numerically harmful as illustra-
ted in Fig. 4.8.

Fig. 4.8: Danger of transforming a general d.f.
into a special d.f.

After the transformation, g[j]l(x,t) is no longer explicitely
specified by the wuser, but is obtained through numerical
integration out of §[jl{(x,t). In this way, numerical inte-
gration errors which' are unavoidable and which cannot be
compensated are introduced. If the slope of g[j](x,t) in the
neighbourhood of the zero crossing is small, the resulting
error in t* is much larger than the error in g{j}{(x,t) as
illustrated in Fig, 4.8, and it does not help at all to ite-
rate the new ¢[j] (x,t) down to a very small value (!).

Using a one step integration algorithm, this problem can be
overcome by resynchronizing x[n+j] with g[j](x,t) after each
integration step or at least once per communication interval
(constant interval for data storage). Using a multi-step
integration algorithm, this procedure is not recommended
since we would have to restart the integration algorithm
thereafter. Use of this transformation has been demonstrated
in. the SCR control problem (Fig. 3.4). In this example, the
concerns, as expressed above, are irrelevant since all cros-



_72_

sings have a sufficiently large slope.

Iv.1.2.5) Location of Short-Living Discontinuities:

So far we have assumed that an interval in which the d4.f.
crosses through zero has already been found. To obtain this
interval, we compute the value of the d.f. once after each
successfully accomplished integration step.

However, it may happen that a d.f. crosses through zero
several times within one integration step. If the number of
crossings is even, the algorithm has no chance to detect the
crossings at all, otherwise one crossing is detected but all
others will most probably be lost. Such d.f.'s are called
short-livi iscontinui i .

If we assume, that, for example, no d.f. crosses through
zero more than twice during any integration step, we can use
the following procedure to guarantee detection of all cros-
sings:

Given a set of general 4.f.'s:
¢l3l (x,t) = g[jl(x,t) 7 3=l,...,m

Assuming that é[j](g,t) exists, we can enlarge this set by
additional m d.f,'s of the form:

olm+il (x,t) = gl (x,t) ; 3=1,...,m

The actions to be taken when one of the additional (arti-
ficial) d.f.'s crosses through zero is none. However, if the
k—-th original d.f. ¢[k] crosses through zero twice within an
integration step, the partner-d.f. ¢[mtk] crosses through
zero precisely once in between as illustrated in Fig. 4.9.

- 73 ~

[

1

" 2 4 3 t o+ dt

Fig. 4.9: Detection of short-1living discontinuity Ffunctions

The algorithm which checks for possible realizations of
d.f.'s will notice the crossing of the additional d4.f. and
enable iteration, During the step-size reduction procedure,
the "true" d.f. must be located, since the crossing of the
partner-d.f. lies between the two crossings of the original
one.

When three crossings are allowed within one integration
step, the second time derivative must also be added to the
set of d.f.'s, etc..

When detection of short-living d.f.'s is to be guaranteed,
the user must be able to make an assumption concerning the

highest frequency present in the Fourier analysis of each
d.f..

The price for properly detecting short-living d.f.'s are
additional d.f.'s which must be watched and possibly
iterated for nothing.



- 74 - - 75 =

IV.1.3) Selection of the Initial Subsystem:

Having discussed the conditions for branching from the dis- START{I

crete to the continuous subsystem and vice-versa, it remains

to determine the subsystem to be used first at initializa-
tion time, t0. The rule is simply to start with the discrete

subsystem. This will then check whether there are any events
to be treated at time t0 and if not transfer control to the
continuous simulation package in which case there would be
no action taken (this under the assumption that differential
equations form part of the system's description at time

entry from
ent queue

[afscrete ~ 71
| avane !
wetmulacion 4

(t0+dt), otherwise proceed as described in section IV.1.1).

step size
freduction

due to gut-
IV.2) program Flow: +—
iteration
lprﬂmﬂurl lil

put time or
From the previous statements, it can be concluded that the

time event
ahead

print
Summary
report

only new structural elements in combined continuous/discrete
system simulation are the state-events and their associated
state-conditions. Concerning the numerical aspects these
structural elements result in additional step-size control
algorithms which must replace the ordinary step-size control
mechanism (for error control) during location of the
(unknown) event time of a state-event. Once this event time

has been located, a state-event is an event as any other and

no longer requires any special treatment.

eontinuoas
| cgacen
Lsimutation |

Fig. 4.10 illustrates the general program flow in a combined

simulation package. Two dashed squares denote the discrete

event simulation package and the continuous system simula-
tion package,. i

Fig. 4.10: Program flow in a combined
system simulation package



- 76 -

First the discrete simulation square is entered, and the
question 1is posed whether there are events scheduled for
initialization time. If yes, the first event will be im-
mediately executed. Event execution involves:

a) removing of the event from the event queue,

b) event handling (which is user coded and may include any-
thing from scheduling of new future time-events to col-
lection of statistics and modification of the structure
of the ODE set for the next integration period) and

¢) determination of the next event time (which may be the
current time again if more than one time-event is sche-
duled to take place at the same time instant).

As soon as there are no events left for handling at the
current (initialization) time, the question is asked whether
there are any ODE's currently involved in the simulation. If
this is not the case, the current time is set to the next
event time and a normal discrete event simulation is carried
out., If there are currently active ODE's in the system's de-
scription, control is transferred to the continuous system
simulation package.

The continuous system simulation package will first deter-
mine whether there are currently data to be stored for later
printout. After that, it will check whether the next inte-
gration step can be performed with the proposed step-size or
whether the step-size has to be reduced due to a scheduled
event time or a data sampling instant or final time. of the
simulation run being shortly ahead. This is necessary since
such time instants are not to be bypassed. Now one step of
integration can be performed. If no state-event iteration is
in progress, and if a variable step-size integration algo-
rithm is used, the program will now compute an estimate for
the local integration error, and propose a new step-size for

_77._

the next step to be taken. Now the program must check
whether the current step is acceptable or has to be repeated
with a smaller step-size because of accuracy requirements
not being met. If the step can be accepted, the program will
determine whether a state-event has been bypassed during the
last completed integration step. If so, the iteration pro-
cedure will be activated to locate the state-event pre-
cisely, and the ordinary step-size control is disabled
during iteration. As soon as the event has been found,
control is returned to the discrete event simulation package
for event handling. If no state-event took place during the
actually completed integration step, the program has to de-
termine whether a time-event ends the current integration
step. If this should be the case, control is also imme—
diately returned to the discrete event simulation package
for event handling, whereas otherwise the next integration
step can be performed.

One additional test is required to determine when the actual

'simulation run is to be terminated. Once this has been de-

tected, the simulation run will be interrupted, and the
question is asked whether additional runs are to be per—
formed or not. Accordingly, the system will be reinitialized
or the program will be terminated.

In the following chapter we shall describe a software pro-
duct (GASP-V [4.4]) in ‘'which all the algorithms described in
the current chapter have been successfully implemented and
tested. GASP-V has been released in May 1978 and has been
implemented meanwhile on about a dozen installations of dif—
ferent computer makes throughout the world.



[4.1]

[4.2]

[4.3]

[4.4]

[4.5]

_78_
References:

P.R.Benyon: (1976) "Improving and Standardizing Con-
tinuous System Simulation Languages". Proc, of the
SIMSIG Simulation Conference, Melbourne, Australia,
May 17-19, 1976; pp. 130 - 140.

M.B.Carver: (1977)'“Efficient Handling of Disconti-
nuities and Time Delays in Ordinary Differential
Equation Simulations", Proc., of the SIMULATION'77
Symposium, Montreux, Switzerland. To be ordered
from: ACTA Press, P.0.Box 354, CH~-8053 Zurich,
Switzerland; pp. 153 - 158.

F.E.Cellier: (1975) "Continuous-System Simulation by
Use of Digital Computers: A State-of-the-Art Survey
and Prospectives for Development”, Proc. of the
SIMULATION'75 Symposium, Zurich. To be ordered from:
ACTA Press, P.0.Box 354, CH-8053 Zurich,
Switzerland; pp. 18 - 25.

F.E.Cellier: {1978) "The GASP-V Users' Manual". To
be ordered from: Institute for Automatic Control,
The Swiss Federal 1Institute of Technology Zurich,
ETH ~ Zentrum, CH-8092 Zurich, Switzerland.

F.E.Cellier, Rufer D.,F.: (1975) "Algorithm Suited
for the Solution of Initial Value Problems in En-
gineering Applications"., Proc. of the SIMULATION'75
Symposium, 32urich, Switzerland. To be ordered from:
ACTA Press, P.0O.Box 354, CH-8053 Zurich,
Switzerland; pp. 160 - 165,

[4.6]

[4.7)

[4.8]

[4.9]

_79_

W.Kreutzer: (1976) "Comparison and Evaluation of
Discrete Event Simulation Programming Languages for
Management Decision Making". Proc, of the 8th AICA
congress on Simulation of Systems, Delft,
The Netherlands. Published by North-~Holland Publi-
shing Company (Editor: L.Dekker); pp. 429 - 438.

R.Mannshardt: (1977) "Simulation of Discontinuous
Systems by Use of Runge-Kutta Methods Combined with
Newton Iteration". Proc. of the SIMULATION'77 Sym-—
posium, Montreux, Switzerland. To be ordered from:
ACTA Press, P.0.Box 354, CH-8053 zurich,
Switzerland; pp. 163 - 167.

R.N.Nilsen, Karplus W.J.: (1974) "Continuous-System
Simulation Languages - A State-of-the-Art Survey".
Annales de l'Association Internationale pour le Cal-
cul Analogique (AICA), no. 1, January 1974;
pp. 17 - 25.

A.Nordsieck: (1962) "on the Numerical Integration of
Ordinary Differential Equations”. Journal of Mathe-
matics and Computers, Vol. 16; pp. 22 - 49.

[4.10] A.A.B.Pritsker: (1974) "The GASP-1IV:Simulation Lan-

guage". John Wiley.



_80_

V) GASP-V:

V.1) The GASP Program Family:

Fig. 5.1 illustrates the major members of the GASP program
family tree:

Fig. 5.1: The GASP program family tree

The first widely used program package in the GASP family of
programs was GASP-I1 ([5.15] which was a purely discrete
event simulation package released in 1969 by Pritsker and
Kiviat. This program was later augmented by some elements
from continuous system simulation to form GASP-IV,

GASP-IV [5.14] was released in 1974 and was the first com-
bined continuous/discrete system simulation package which
reached a sufficiently high status of software reliability
and documentation to allow unlimited external distribution.
Previously announced programs (e.g. GSL [5.9]) never reached
this level, and consequently have not been used at many
installations other than at the site where they originated.
GASP-1IV soon became very popular and is the widest used pro-
gram for combined simulation to date., This is probably be-
cause of to its excellent documentation and maintenance.

..81..
Out of GASP-IV, several programs have emerged.

GASP-PL/T [5.16] is a PL/I coded version of GASP-IV which
takes advantage of the far better data structuring capa-
bilities of PL/I as compared to FORTRAN-IV, the
"mother tongue" of GASP-IV.

SMOOTH [5.18] has a topological input description language
(network simulator), and will be discussed later. This is
one of the programs which has never really become widely
used (as it is the case with most of the programs on the
software or, at least, software manual(!) "market").

GASPPI [5.20] is a true descendant of GASP-IV. Its discrete
simulation capabilities have been augmented by a process de-
scription facility which may be used in addition to the
event description philosophy formerly used by = GASP~IV. Its
continuous part remained unchanged. These additional
elements bring the level of medeling comfort c¢loser to the
standards reached by discrete event simulation languages
like GPSS-V [5.17] or SIMULA-67 [5.6]). A disadvantage of
using these modeling facilities, however, lies in the fact
that ‘the transparency of the program becomes greatly re-
duced. If something "goes wrong", the user will usually find
it much more difficult to determine the bug. GASPPI has seen
some : external implementations, but also never reached an
"adult" status so far.

Although GASP-IV has been widely accepted and used, it is
certainly not optimal from the continuous system analysis
point of view. One easily. notes that GASP-IV was born out of
a discrete event simulation family, and that the package ob-
tained its continuous system simulation capabilities only
through marriage. For this reason we tried to overcome these
shortcomings by developing another descendant of GASP-IV
which is called GASP-V [5.4,5.5]}. This package is entirely
upwards compatible with GASP-IV. In this package, the dis-



_82_

crete simulation part has been left as it was defined in
GASP-1V, whereas the continuous part has been remarkably im-
proved and enhanced. GASP-V is, furthermore, the first simu-
lation package which is able to simulate systems out of all
three problem classes (ODE's, PDE's and discrete events).
This will be illustrated subsequently in an example. The PDE
facilities offered have merely been adopted for use in
GASP-V from another program package, FORSIM-V (which was the
predecessor of FORSIM~VI [5.2]).

In the following section we .will present the major high-
lights of GASP-V.

V.2) Improvements of GASP-V_as Compared to GASP-IV:

A) GASP-V offers many new rupn-time control cilities. Due
to its input/output philosophy GASP-IV is somewhat un-
wieldy when used for optimization studies.

In GASP-IV, it is possible to carry out a dynamic number
of simulation runs (as used e.g. in an optimization
study) by reinitializing the system by hand from within
the terminal section of the application program (that is
from subroutine OTPUT). This has been illustrated in an
example in [5.14]. To do this, one requires, however, a
profound insight into the structure of the simulation
package itself -- an understanding which lies far beyond
the capabilities of the average user. It seems,
therefore, more favourable to outwit the package by in~
crementing the number of remaining runs by one
(NNRNS = NNRNS + 1) within subroutine OTPUT each time an
additional run is to be caused. In this way, the re-
initialization can be 1left to the package. This is,
however, a trick, and application programs making use of
it will lack readability. GASP-V, therefore, offers ad-
ditional subroutines (RERUN, CONTN and FINIS) for

_83_

run—time control. These subroutines have similar meaning
as subroutines RERUN, CONTIN and FINISH offered in
CSMP-III [5.23]. (For reasons of software portability,
no GASP variable takes more than five letters.)

In most cases, however, the user might find it bother~
Some to code the optimization strategy by himself. He

would prefer to fall back upon a precoded noplinear pro-
dramming package (which, in itself, may be of similar

size as the simulation package!). Fig, 5.2 illustrates
how a program to carry out a dynamic parameter optimiza-
tion study should be structured.

State
m Equations
v isf.;: st
2 3 Function ] e
i L;;i Evaluati
Pr:;'r‘am * Nontinear Pr valiztion Pl Simulation 1” l5
Programing PI=PIip)

Package Performance
Package Index
Evaluation

PP

Fig. 5.2: Structure of a program for dynamic
parameter optimization studies.

The user first specifies an initial guess for the para-
meter vector (pf), and calls the optimization package.
This program will call another user-supplied subprogram
in which the performance index (PI) is to be computed as
a function of a given parameter set (p).

PI = PI(p)
Each function evaluation involves one whole simulation
run, since in reality PI is not directly specified as a

function of p, but as a function of the state vector x:

PI = PI(x)



- 84 -
where x is determined by a set of first order ODE's:
X = £(X,R,t) 5 X(t=t0) = x0(p)

The optimization package will contain one or several
strategies to modify p in such a way as to minimize (or
maximize) the performance index (PI). Finally the opti-
mal parameter set (p*) is returned to the calling
program,

As can be seen, the user. is supposed to call the non~
linear programming package from the main program, where-
as the simulation package must be called (and thus
callable) from within a subroutine.

This can be realized in GASP-IV by calling the nonlinear
programming package from the main program and by calling
subroutine GASP from within the function evaluation rou-
tine of the nonlinear programming package. Unfortunately
GASP-IV prompts the user to supply the whole set of GASP
data cards each time subroutine GASP is called, which is
certainly inconvenient during an optimization study.
These reflections led to a slight modification of the
effect of calling subroutine GASP in GASP-V. Here the
user will be asked to supply only those data cards of
which he had declared in the previous run that they
would change, as if he would have initiated the new run
from within subroutine OTPUT. (This, as a matter of
fact, comprises the only incompatibility between GASP-IV
and GASP-V.)

Comparing the two possible ways of initiating an opti-
mization study, the only advantage of using subroutine
RERUN 1lies in the fact that GASP-V in that case will
automatically suppress all intermediate output until the
final run is executed, whereas this remains the re-
sponsibility of the user when calling subroutine GASP

B)

C)

D)

_85.-

from within a loop., (In that case the package has no
means to find out whether an additional run will be due
or not.) On the other hand, the optimization strategy
will have to be user coded when subroutine RERUN is uti-
lized, whereas any good nonlinear programming package
may eventually solve the problem in the former case.

In GASP-1IV, integration is performed by a
Runge-Kutta-England algorithm of 4th order [5.14] built
directly into the execution subroutine GASP. This re—
stricts the use of GASP-IV to such systems for which a
~unge-Kutta integration is adequate. In GASP-V, integra-
tion has been separated from the simulation control
mechanisms (for this purpose the control routine GASP
has been entirely recoded), and a library of good inte-
gration algorithms is now at the user's disposal (inclu-
ding, among others, a Runge~Kutta-Fehlberg algorithm of
5th and one of 8th order [5.7] as: well as the
Gear-Kahaner package for the solution of stiff systems
[5.8,5.10,5.11]). This facility is demonstrated in the
programs of Fig. 3.3 and Fig. 3.4 (Runge-Kutta-Simpson
of 4th order being used), and in Fig., 5.6 (where the
Gear~Kahaner package is called). A further motivation
for providing this facility in GASP-V will be given in
the discussion of the heat diffusion example (section
v.3).

GASP-V allows for forward and backward integration

(which may be, for example, useful for the solution of
Riccati equations).

GASP-V contains additional subroutines for comfortably
simulating systems . described by sets of partial dif-
ferential equations eventually coupled to ODE's as well.



E)

F)

_86_

PDE's are reduced to sets of ODE's by the
method-of-lines approach [5.1,5.2,5.3]. This will be de-
monstrated in an example in section V.3.

As described preéviously, GASP-V provides for more
sophisticated techniques for the location of state-
events than GASP-IV, which always uses bi-section.
GASP-V leaves it up to the user to decide whether a par-
ticular state-condition is to be iterated by inverse
Hermite' interpolation, by Regula-Falsi, or by
bi-section. This feature has been outlined in detail in
section IV.1l, and is demonstrated in Fig, 5.4b and
Fig. 5.4c.

GASP~V offers a comprehensive library of run-time fupc—

tions including hysteresis~function, pulse generator,
delays, algebraic loop solver etc. (very much like the
run-time library offered by CSMP-III). This enables the
user to model his system by continuous modeling tech~
niques as he would in utilizing a language like CSMP. In
GASP-V, however, all discontinuities of built~in
run-time functions (so called "GASP-functions") will be
resolved by "hidden" time and/or state-events, although
the user need not to be aware of this fact. By these
means all creeping effects, which are well known from
CSSL-type software, are automatically avoided. Examples
of the use of GASP-functions are presented in the SCR
control problem coded in Fig. 3.3.

Although it is as easy to make use of this continuous
modeling technique in GASP-V as in any CsSL-type lan-
guage, the library is not as easily extendable by the
user. Though provisions have been made to expand the
library, and the manner in which such GASP-functions are
to be coded is fully documented [5.4,5.5], the user re-

G)

H)

_87_

quires a profound understanding of the software to make
proper use of this possibility.

GASP-1IV possesses very limited output representa-
tion facilities £for continuous systems. The reason is
simply that comfortable plot routines consume a quite
remarkable amount of core memory.

For this reason it seems more advisable to store data in
a file at run-time and let them be transformed into gra-
phical representations later by a separate output pro-
gram. Since such output packages already exist in the
literature, it seems unproductive to6 "reinvent the
wheel"” by coding a new one. In GASP-V, we have chosen to
use the DARE-P postprocessor [5.12,5.19] for output re-
presentation since the facilities offered by this soft~
ware are very generous, and because the programming
style of DARE-P is as strict and cautious as in the GASP
software. For this purpose, a E-P compatibility mod

has been created in which data are written onto a file
at sampling instances in such a way that the DARE-P
postprocessor must "think" that they have been generated
by the DARE-P run-time system. This postprocessor inter-
prets commands coded in a very simple command language,
and includes modules for cross~plots, over-plots, high
quality plots for (x;y) plotting devices, etc..

Since the DARE-P language has no provisions for PDE's,
the original DARE-P postprocessor does not contain mo—
dules for three dimensional graphical representations. A
new version has, therefore, been coded for use with
GASP~V which contains some additional modules (and com-
mands). These include print plots similar to the
PAGE SHADE and PAGE CONTOUR options offered in CSMP-III
[5.23] as well as 3-dim. plots with hidden lines removed



- 88 -

and moveable viewing position (central projection) for
(x,¥) plotting devices. Also these output facilitiesg are
illustrated in the heating example which follows.

V.3) Example - Simulation of a Heating System:
V.3.1) Statement of the Problem:

To illustrate the capabilities of GASP-V let us consider as
an example the central heating system of a building., The
building is modeled by a stick of length unity. The left end
of it represents the center of the building with the heating
source, whereas its right end denotes the walls. The tem-
perature distribution in the building is modeled using the
diffusion equation:

3u 3%u
—— = 0.5%-—

at ox 2

The heating of the central room is modeled by a first order
ODE of the following form:

Z = 4.0%(35.0 - z) ; z(t=t0) = 0.0
z represents the temperature in the center of the building
where the heating system is situated. The ODE constitutes at
the same time one of the two required boundary conditions

for the PDE specified at the left end of the stick:

u{x=0.0,t) = z(t)

- 89 -

The second boundary condition may be specified by the radia-—
tion at the walls, which is valid at the right end of the
stick:

du
—=(x=1,0,t) = 4.0E-9* (UA(t)**4 - u(x=1.0,t)**4)
oxX

where UA(t) denotes the outside temperature. In this equa-
tion, UA(t) and u(x,t) must be expressed in absolute tem—
perature (degrees Kelvin), whereas centigrades (degrees
Celsius) are wused otherwise as a measurement unit for all
temperatures throughout the program.,

The model, as it has been described so far, is, however,
applicable only when the heating is "on". During times where
the heating is "off", the ODE no longer holds, and the left
boundary condition of the PDE is replaced by a symmetry con-
dition of the form:

du
~-=(x=0.0,t) = 0.0
ax

Each time the heating is turned "on", the number of dif-
ferential equations (NNEQD) is incremented by one (to model
the additional ODE z) and z obtains as initial condition the
actual value of the temperature in the heating room:

z{t=t*) = u(x=0.0,t=t*)

When the heating is turned "off", the number of differential
equations must be decremented again by one.

Conditions for heating are the following: At night time
(between 7 p.m. and 7 a.m.) the heating is always "off".
This determines two different alternating time-events,



_90_

During day time the heating is turned "on", as soon as the
temperature at the walls falls below 19.5C and is turned
"off" when the temperature at the walls raises above 22.5C.
This is specified by two state-conditions. The simulation is
said to start at 6 a.m, with a temperature of 0.0C through-
out the building. '

Fig. 5.3 illustrates the model of the building.

Fig. 5.3: Model of the central heating system of a building

This concludes the description of the problem.

V.3.2) Simulation Objectives:

This example éhows how, by use of the GASP modeling philo-
sophy, a rather complicated model can be partitioned into
small functional blocks which are much easier to understand
and to code. All different modeling elements (ODE's, PDE's,
time-events and state-events) are present in this example
and operate together,

The model, although quite realistic, is not meant to be a
valid model of a real heating system. It is artificially

- 9] -

constructed to illustrate the capabilities of the GASP-V
software to tackle combined problems.

V.3.3) Special Features:

This example demonstrates the modeling of PDE's in GASP-V,

and how these may coexist beside of ODE's and discrete
events.

Furthermore, it is shown how data can be stored in the
DARE~P compatibility mode to obtain two and three dimen-
sional high quality graphs on (x,¥) plotting devices.

An additional feature which is demonstrated is the use of
different integration algorithms.

Finally, the number of differential equations (NNEQD) in-
volved in this simulation is time-dependent.

V.3.4) The Method-of-Lines Approach to PDE Problems:

Let a system of n PDE's of the following type be given:

du(x,t) du(x,t) a2u(x,t)
_______ = f£{u(x,t), = rX, £}
3t 9x ax?
u e Rn
t € [0.0,%)

X e [x1,xu]



_92...
with boundary conditions of the form:

ou(x,t)
Bl(t)*===mmem + B2(t)*u(x,t) = B3(t)

t e [0.0,w)

x = {x1},{xu}
and initial conditions:

u(x,t=0.0) = ud(x) .
The system of n PDE's can now be converted to a system of
n*m ODE's by means of a differential gquadrature, repre-
senting the solutions u at m grid points by approximating
polynomials:

x =-=> £ = {1,2,...,m} (indices)
leading to:
Ut(t) = F{U(t)lux(t)luxx(t)lglt}
U ¢ RVM

t e [0.0,%)
£ {1,2,...,m}

In this new formulation, the problem can be divided into
three easier-to-solve sub-problems:

a) computation of the spatial derivatives, Ux(t) and
Uxx(t), from U(t) by difference schemes for any given
values of time t,

b) computation of the state derivatives, Ut(t)' from the
state space description of the problem and,

- 93 -

c) computation of U(t+dt) from U(t) by means of numerical
integration.

Using this formulation, it is evident that there is no
methodological difference between simulating only one PDE or
systems of several coupled PDE's eventually accompanied by
ODE's., (There is, of course, a 1large influence on core
memory requirements, computing time, etc.!)

An advantage of this methodology lies in the fact that we do
not have just one specific algorithm available for the solu-
tion: of PDE problems, but may select an appropriate scheme:

a) by choosing the best suited integration algorithm from
the available library,

b) by choosing the optimal differentiation scheme for the
computation of the spatial derivatives and,

c) by optimizing the grid width of the spatial discretiza-
tion,

V.3.5) Simulation Procedure:

For detailed understanding of the GASP-V program presented
in this section, knowledge of the GASP software as described
in [5.4,5.14] will be useful. Most of the statements are,
however, properly explained, to make this thesis as
self-documentary as possible.

In our heat diffusion problem, the PDE
du 3%u

- = 0.5%-—
3t ox?



...94_
is transformed into a set of NNDIV first order ODE's
uli] = 0.5*%UXX[i] ; i=1,...,NNDIV

At initialization time (t0), all U[i] are known from initial
conditions, By use of these values we can compute the second
spatial derivatives using any valid differentiation scheme.
This is done in GASP-V by a call to subroutine PRSET:

CALL PRSET (MSET, NNDIV, U, UT, UX, UXX)

where MSET denotes the number of active PDE's involved in
the simulation (which is one in our example), and NNDIV de-
termines the number of grid points used in space (correspon-
ding to the number of ODE's obtained per PDE).

Through GASP data cards (variable NNDIF), the user can
specify the difference scheme to be used by subroutine PRSET
(like 3, 5 or 7 point central formulae),

The boundary conditions (b.c.'s) are specified through a
master scheme as presented for the general case above, where
BBL(i,k) represents the boundary function Bi(t) for the k-th
PDE specified at the lower bound, and BBU(i,k)'denoting the
same quantity at the upper bound (i=1,2,3). NNL(k) and
NNU(k) determine the form the associated b.c. takes, where
NNi(k)=0 means that the b.c. takes precisely the form as
specified in the general case above, and NNi(k)=-2 means
that no b.c. is imposed.

When the spatial derivatives at time t0 have been computed,
we may use the state space description of the problem to
next compute the first time derivatives:

DO 1000 I=1,NNDIV
UT(I) = 0.5*%UXX(I)
1000 CONTINUE

—95_

Now we can integrate the state equations over time to obtain
new values for U[i] at time t=t0+dt. The integration algo-
rithm will adapt its step size according to the largest gra-
dient in the system. Since this is often found to be at the
interval bounds where integration really is not needed (the
newly obtained value for u(x=xl,t) or u(x=xu,t) will be im-
mediately overwritten again by the specified boundary
value), we want to avoid controlling the step-size by this
gradient. This is accdﬁplished by calling subroutine PRFIN:

CALL PRFIN (MSET, NNDIV, U, UT, UX, UXX)

at the end of the description which will nullify these gra-
dients. This subroutine c¢all has no other effect than
(hopefully) to reduce the execution time. It could as well
have been omitted. As for the computation of the spatial
derivatives, any of the available integration algorithms may
be used.

It can be seen from the description that the method-of-lines
is not really one particular algorithm for the solution of
PDE problems, but a specific solution methodology describing
a whole class of different algorithms out of which the best
appropriate may be chosen (which is not a trivial problem at
all).

The method-of-lines approach to the solution of PDE problems
can be thought of as a philosophy in which a n-dimensional
PDE is solved for the highest derivative in one of the
n dimepsions (usually time). The other (n-1) dimensions
(usually space) will then be discretized, and all associated
derivatives will be computed by means of numerical differen-
tiation, The description of the PDE can then be used to com-
pute the highest derivative in the "last" dimension. This is
left pseudo-continuous, and the solution vector is obtained
by means of numerical integration in this "last" dimension.



...96_.

From this procedure results either an initial value ODE
problem or a boundary value ODE problem depending on the
type of b.c.'s imposed on the original PDE problem, and de-—
pending on the dimension the PDE is solved for.

The subroutines PRSET and PRFIN (as well as some further
internally used subroutines) have been adopted from FORSIN-V
as has the whole PDE description philosophy. More details
can be found in [5.2,5.4].

-.97..
Subroutine STATE is shown in Fig. 5.4a.

SUBROUTINE STATE

COMMON /GCONL/ ATRIB(25),JEVNT,MFA,MFE {1003, HLE(1OD) +MSTOP,NCRDR, N
ANAPO,NNAPT,NNATR, NNFIL,NNO(100) \NNTRY,NPRNT , PPARH (50, 42 + THON, TTBEG
2y TYOLR, TTFIN, TTRIB(25), TTSET

COMMON /G0GM2/ D0(100),00L(100),DTFUL,DTNON, ISEES,LFLAG(50) 3 NFLAG,
ANNEQD,NNEQSsNNEQT 4SS {1007 ySSL (1202 , TTNEX

COMMON /GCOM7/ ARUX, AAUXX,DDX s NNDIFoNNDIV,NNEGXyXX(300) 4 XXL o XXU

LOGICAL AAUX, AAUXX, NNEDX

COMHON /GCOMB/ BBL (3,10),R3BU(3,1034NNL{10),NNUL10)

COMMON /OCOM1/ SNS

COMMON /UCOM1/ PI,SW,STATEV,TIMEV,UZERO

DIMERSION U(11), UT(11), UX{11), UXX(11}

EQUIVALENCE (SS{1},U(1)),(SS(12),2), (OD(21,UT(1}),(0D¢12),2T)

c

Ce»***SELECT APPROPRIATE MODEL FOR LEFT BOUNCARY CONDITION OF PDE
CH#%*3%AS A FUNCTION OF SH=TIMEV®STATEV

c

IF (SH.EQ.1.0) GO TO 1
Ce*¥%¥s5H=0,0 * BUILOING IS COOLING DOHN
4

BBL(3,1) = 0.0
60 0 2

g“"'s'ﬂi.ﬂ t RUILDING IS HEATED
C*ee2%COMPUTE FIRST AGCOMPANYING ODF
1 27 = 4.0%(35.0%SH - 2)
C®®¥**CONPUTE NOW THE BOUNDARY CONDITION AS A FUNCTION OF Z
BAL(3,1) = 7
C*S¥8200MPUTE OUTSIOE TEMPERATURE AS A FUNCTION OF TIME
2 VA = S,D*SIN (PI*TNOW/12.0)

C*®»®3COMPUTE NOW THE GTHER J0UNDARY CONDITION, WHICH IS IDENTICAL
Ce#P9¢3FOR BOTH MODELS
c

UK = UINNDIV) + UZERO
UAK = UA + UZERO
BBUL3,1) = 1.0E-9%(UAK**4 - UK**4)
c
CP#***COMPUTATION OF SPATIAL OERIVATIVES
CALL PRSET (1, NNDIV, U, UT, UX, UXX)
CY3***STATE SPACE DESCRIPTION OF THE POE
c
D0 1808 I=1,NNDIV
UTLI) = 0.5%UXX{I)
1000 CONTINUE
C®*3¥¥CORRECTION OF THE TIME DERIVATIVES
CALL PRFIN (1, NNOIV, U, UT, UX, UXX)
C*P*#+*STORE DATA FOR LATER OUTPTY
c .
SHS = 10.0%SH
RETURN
END

Fig. 5.4a: FORTRAN listing of subroutine STATE
for the heat diffusion problem.

This subroutine is used to code the state space description
of the model. State variables are automatically stored once
per communication interval for later use by the DARE-P post-—
processor. This has been specified on GASP data cards



_98_

(Fig. 5.5). Additional quantities (as SWS in our example)
must be collected in a special COMMON block (/ocomMi/) .

Fig. 5.4b shows the listing of subroutine SCOND for the
specification of the state-conditions.

SUSROUTINE  3€0ND

COMHON /GCOM2/ DD(l’}D)v')nL(111').'\TFUL.UTMUN.ISEES|LFLIG(5B).NFLAG,
INNEQD,NNEGS sHNEGT , SS (1371,5SL (1003, TTNEX

COMMON /GCOMZ7/ AMIX,AAU‘XvDDX,NN’JIF,NNDIV.NNEQK.XXllﬂﬂ)'XXL'XX\J
LOGICAL  AAUX, AAUXX, INEDX

COMMON /GCOM1 4/ ARZUL0),TITZ(10),4JZC10) +1XKZ{10) yNNZ,ZZ{10)

COMMON /ULOM1/ STATEV,TIMEYV,uR

DIMENSION U(311}

EQUIVALENCE (SS{11,Ut1))}

2211 = UINNDIV) - 19,5

IIZ(1) = NNDIV

JIZO1) = -1

ZZ(2) = UINNDIV) - 22.5
IIZ{(2) = NHDIV
JJIZ(2) = g
RETURN

END

Fig. 5.4b: FORTRAN listing of subroutine SCOND

Here we demonstrate how the new iteration schemes as pre-
sented in section IV.1.2 can be used. ZZ(1) determines the
i-th discontinuity function (d.£.) which is to be iterated
to zero. 2zZ(I) is accompanied by some additional quantities:

IIZ(I) determines the iteration scheme to be used, If
IT1Z(I) = 0, the Regula-falsi rule is to be used. If
I1z2(I) = k where: 1 < k < NNEQD, the inverse Hermite®

interpolation algorithm will be used to iterate the i-th
special d.f., which takes the form:

¢[I] = x[k) * const
or in terms of GASP-V:

2zZ(I) = SS{K) + CONST
to zero,

JJZ(I) determines the direction of crossings to be de-
tected and iterated. It is possible to detect positive

_99_

or negative crossings or both. This is equivalent to the
LDIR parameter of the KROSS function offered in GASP-IV
(which is, of course, still accessible in GASP-V as
well) .

BAZ(I) corresponds to the TOL parameter of the KROSS
function to denote the accuracy requirements to be met
by the iteration. Since these iteration schemes tend to
converge far faster than the bi-section rule as it is
used in the KROSS function of GASP-IV, the required
tolerance range may be specified much more stringently
without leading to unduly high computational costs.

KKZ(I) is a flag corresponding to LFLAG(I) in GASP-IV to
tell the user, at event time, whether a particular cros-
sing took place.

NNZ finally determines the number of active d.f.'s (cor-
responding to NFLAG).

Fig. 5.4c shows the listing of the EVNTS subroutine for
event handling.



- 100 -

SUBROUTINE EWNTS. (IX)

COMMON /GCOM1/ ATRIB(25),JEVNT,MFA,HFEC100) ,MLE (100} +HSTOP,NCRORyN
ANAPONNAPT ,NNATRyHNFIL, NNG(100) sNNTRY,NPRNT , PPARH (50 .4}, TNOW, TTBEG
25 TTCLRy TTFINy TTRIB(25) 4 TTSET

COMHON /GCOH2/.DD(100),00L8100) 4 DTFUL,0TNOW, ISEES,LFLAG(5D) *NFLAG,
1NNEQD,NNEQS, NNEQT, SS (2009 4S5L €100}, TTHEX.

COMHON /GCOM?/ AAUXy AAUXX,DDXNNDIF,NNDIV,NNEQX XX (300} » XXLy XXU

LOGICAL  AAUX,AAUXX, NNEQX

COMMON /GCOMS8/ BBL{3410) yBBUI3,10),NNLCL10},NNUCLD)

COMMON /GCOM14/ AAZ(10),TTZE100,JJ2Z010) ,KKZ{10) ,NNZ,22(10)

COMMON /UCOM1/ PI,SH,STATEV,TIMEV,UZERD

DIMENSION U (11}

EQUIVALENGE (SS{1),U€1)),(55(12),2)

c
Ce»23¥BRANCH TO APPROPRIATE EVENT
GO TO (1,2,3), IX

C®®S*®EVENY CODE 1t GOOD HORNING

Ce=**»SET TIHEV TO BUSY AND SCHEDULE NEXT *GO-TO-BEB® EVENT To TAKE
C¥**»*»PLACE IN 12 HOURS FROM NOW

c

1 ATRIB(1) = ATRIB{1} + 12.17
ATRIB(2) = 2.0
CALL  SCHED
TINEV = 1.0
IF (STATEV.EQ.0.0) GO TO 3
B8BL(1,44) = 0.0
BBL{2,1) = 1.0
SH = 1.0
Z = Uty
NNEQD = NNOIV ¢ 1
RETURN
c
CH**3®EVENT CODE 21 GOOD EVENING
C¥®*2SSET TIMEV TO IDLE AND SCHEOULF NEXT *HAKE-UP® EVENT TO TAKE
C*****PLACE IN 12 HOURS FROM NOW
¢

2 ATRIB(1} = ATRIB{1} + 12.0¢
ATRIB{Z) = 1.4
CALL SCHED
TIMEV =

BBL (1,1)
13

= 0.0

SH = €,0
NNEQD = NNDIV
RETURN

c

GCU®***EVENT CODE 31 STATE EVENT CODE

CH**®e¥CHECK WHICH OF THE DISCANTINUITY FUNCTIONS HAS ACTUALLY GROSSED
C¥®P**THROUGH ZERQ AND SET STATFV AGCORDINGLY.

c

3 CONTINUE
IF (KKZ(1).GE.0) GO TO &
AAZI1) = -RAZIL)

STATEY = 1.0
IF (TIMEV.EQ.0.0) RETURN

BBL(1,1) = 0.0
BBL(Z2,3) = 1.0
SH = 1.0
Z=uln
NNEQD = NNOIV + %
RETYURN
& CONTINUE
IF IKKZ(2).LE.0) RETURN
AAZI(2) = -AAZ(2)

STATEV = 0.0
BBL(1,1) = 1.0
BBLE2,1) = 0.0
SH = 0.0

NNEQD = NNDIV
RETURN

END

Fig., 5.4c: FORTRAN listing of subroutine EVNTS

- 101 -

Three event codes are used in this example:

event event flag definition and name
code type indicator
1 time-event ——— switching from night

to day service

2 time-event — switching from day
to night service

3 state-event KKZ(1)<0 temperature at the
' walls has decreased
below 19.5C.

KKz (2)>0 temperature at the
walls has increased
above 22°5C.

Event activities are the following for:

event 1 ("morning" event):

A)

B)

<)

Schedule a new event to take place in 12 hours from
now (ATRIB(1) = TNOW + 12.0) with event code 2
(ATRIB(2) = 2.0) to switch to night service again.

Turn the time switch (TIMEV) "on".

Detect whether the model must be changed. If the state
switch (STATEV) is in "off" position, nothing really
happens. Otherwise the heating must now be turned ‘“on",
that is:



- 102 -
a) the new b.c.'s must be specified,
b) the model switch (SW) must be reset to 1.0,

c) the initial condition for the accompanying ODE (%)
is to be established and,

d) the number of differential equations is to be incre-
mented by one for the additional ODE.

event 2 ("evening” event):

A) schedule a new "morning" event to happen in 12 hours

£rom now.
B} Turn the time switch "off".
C) Use, in any event, the "heating = off" model, that is:
a) reset the b.c.'s,
b) set the model number (SW) to zero and
c) set the number of ODE's accordingly.

event 3 (state-event):

A) If the first state-event is realized (KKZ(1l) < 0), the
temperature at the walls has fallen below 19:5C, and we
must:

a) turn the state switch (STATEV) "on".
b) Since the same state-condition is modeled to be
valid for the next integration period as well, and

since we cannot guarantee that the temperature is
really below 19°5C when using inverse Hermite'

- 103 -

interpolation or Regula-Falsi (cf. section
Iv.1.2.1), there is a risk that the iteration proce-
dure "detects" the same d.f. immediately again. The
statement:

ARZ (1) = -ARZ(1)

tells the package to close its eyes during the first
integration step for possible crossings of the d.f.
number 1.

c) As in event 1 (C) 'we must now detect whether the
heating is to be enabled. This is the case if the
time switch (TIMEV) is currently in “"on" position.

B) If the temperature has risen above 22.5C (RKZ(2) > 0),

a) the state switch has to be turned "off".

b} The package must now close its eyes for possible
crossings of the d.f. number 2 during . one integra-
tion step.

c¢) The heating must be in "off" position.

It is not necessary to test the two state-events conse-
cutively here, since they are disjoint (the temperature

cannot be less than 1975C and greater than 22°5C simul-
taneously) .



- 104 -

Fig. 5.4d shows the 1listing of subroutine INTLC for
establishment of the initial conditions.

SUBROUTINE INTLC

CONMON /GCOM1/ ATRIB(25} yJEVNT JMFA,MFE(100) 4HLE (100) 4HSTOP,NGROR,N
AHAPO.NNAPT,NNATRyNNFIL,NNG(100) 4 NNTRYNPRNT ,PPARM(50 141, TNOH, TFBEG
2y TTCLR, TTFIN, TTRIB(25},FYSET

COMHON /GCOM2/ DO(180),0DL(100},0TFUL,DTNOK, ISEES,LFLAG(50) 4NFLAG,
1NNEQD, NNEQS,NNEQT, S5 (130),SSL(100} 4, TTNEX

COMMON /GCOM?7/ AAUX» AAUXX,00XNNDIF,NNOLY,NNEQX,XX (300} o XXL s XXU

LOGICAL AAUX,AAUXXs NNEQX

COMMON /GCOM8/ BBL{3,10) ,ABU(3,10) 4NNL(10},NNUL10)

CONHMON /UGOML1/ PI,SW,STATEV,TINEV,UZERD

DIMENSION U(11)

EQUIVALENCE (SS{1),U(1)},(55(12),2) -

c
CT#¥®sCOMPUTE MATHEMATICAL NUMRFR PI
.

PI = H.O¥ATAN (1.0)

4

C*®3*sSCHEDULING OF FIRST TIMS EVENT TO TAKE PLACE AT TNOW=1.0
C*****RITH EVENT CODE 1 (TURNIHG ON DAY SERVICE}

c

ATRIBI1) = 1.0
ATRIB(2) = 1.0
CALL SCHED

[

C*e***yUpSETTING OF BOUNDARY CANNITIONS FOR THE PDE, AS FAR AS THESE ARE
C¥PS¥ETIME INKVARIANT

c

NNL{1) = 9
BBL(1,1) = 1.0
BBL{2,1) = 0.0
NNu(1Y 9
BBU(L,1) = 1.0
BBU(2,1) = 0.0

c
C*****UPSETTING OF INITIAL CONDITIONS FOR POE
c

DO 1000 I=1,NNDIV
Ut = t.¢
1000 CONTINUVE

c
C*®P¥¥SINCE ONLY THE SECONUD SPATIAL DERIVATIVE IS NEEDED, AAUX IS SEV
C*P¥*¥¥FALSE YD SAVE GOMPUTING TIME

AAUX = oFALSE.
Ce*S*eSETTING OF FLAGS (SHITCHES) AND OF OUTSIDE TEMPERATURE

C*¥***4HICH IS 0.0 DEGREES CENTIGRADE, BUT IS TO BE CONPUTED IN
C®®¥*2DEGREES KELVIN FOR THE RAZIATION
c

TIMEV = 0.0
STATEV = .0
SH = 0.0
UZERD = 273.3
RETURN

END

Fig, 5.4d: FORTRAN listing of subroutine INTLC

This" subroutine 1is self explanatory. No initial conditions
are specified for the ODE, since the heating is always "off"
at 6 a.m., and since z, for this reason, has no meaning at
initialization,

- 105 -

Fig. 5.4e shows the listing of the main program.

PROGRAM MAIN {INPUT, OUTPUT,MONITR,TIME,GROSS ,SAVE,TAPEL=HONITR, TAP
1E2=TIHE, TAPEI=CROSS, TAPE4 =SAVE, TAPES=INPUT, TAPE6=0UTPUT}

COHMOK /GCOM1/ ATRIB(25)+JEVNTMFA,MFE{100),HLE (100) ,MSTOP,NCROR,N
ANAPO,NNAPYT +NNATRyNNFILyNNQ{100) s NNTRY,NPRNT,PPARH (50,4}, TNOM , TTBEG
2, TTCLR, TTFIN, TTRIB(25), TTSET

COMMON QSET (8)

NCROR 5

NPRNT &

CALL GASP

CALL 8YE

END

Fig. 5.4e: FPORTRAN listing of the main program

As is usual in GASP, this program consists of three exe-
cutable statements only,

a) to set the input device to logical file number 5,
b) to set the output device to logical file number 6 and,
Cc) to call the simulation (CALL GASP).

This will be true as long as no optimization is performed by
the program.

Subroutine BYE is used instead of the ordinary FORTRAN
"STOP" statement for proper closing of the output storage
files used in the DARE-P compatibility mode :(MONITR, TIME,
CROSS and SAVE). This cannot be automated since the package
has no means to determine whether another simulation run
will follow when returning control to the calling program.



- 106 -

Fig. 5.5 shows the GASP-V echo check for the input data to
this problem.

SINULATION PROJECT NUMBER 3 BY CELLIER

BATE 11/ 15/ 1378 RUN HUMBER 1 OF 1
LL5UP=000000000000000 GASP ¥ VERSION 25MAYTA

HCROR= 5 NPRNTE [3 HMONT= g 11CRS= 3 II54V= “ IITIN= 2
HROTP= 1 NNHXS= 12

HNANSaSK u vz u3 [ us
NHANS=UG ur us ug e e
NNANS=Z

NNGLT=
NRATR=

HHSTA=
HNFIL=

NNHIST [) NNFRH= @ NNPLT=
NMSET= 8 NNeop= 11 NNEQS=

[}

H
NNDIFa 3 NNDIV= 1 NNX
XXe = ° xxu

NNSTR= 1 NNTRY= 2
NFLAGS 0 NNPOEx 1

[
~1000E+01
KXRNK= 1)

N = ¢ 1)

11EVT= 3 LLERR= 0 ARERR= -1000E-02 RRERR= +1000E-02
OTHIN= «1000E-03 DTHAR= +25D0E+400 DTSAVE +25Q0E¢00

NNZ = 2 110IS= EEPS = +1800E-13 NHINT=  s00Q NNITR= 300
AAZC 13= <1200E~05 AAZ( D= «1000E-05 AZL 3pe -0 AAZU W)e -3,

ARZL 5)= -0, )= -1 ML Ti= =R AAZL 8 -R
AAZE D= -R azun= -R

HSTOP= 1 JJCLR= 1) JIREGE 1 116RD= o TTEEG= [N TTFIN= +3600E+02
JSFIL= 1
11SED= -0

PARTIAL DIFFERENTIAL EQUATION 1 WILL BE OISCRETISED USING 3 POINT FORNULAE AND 11 EQU. SPATIAL DIVISIONS

Fig. 5.5: GASP-V echo check of input
data for the heating system

In addition to the normal data cards used in GASP-IV
programs, there are additional data cards found:

a) for the specification of the DARE-P compatibility mode,
b} for proper initialization of PDE's and,

¢} for the specification of d.f.'s,

This concludes the description of the GASP-V program to
simulate the heat diffusion problem.

V.3.6) Results:

When this program is computed as formulated above, a Runge-
Kutta~-Fehlberg integration algorithm of 5th order will be

- 107 -

used (default method). Using a 3 point central formula for
computation of the spatial derivatives, one run of the heat
diffusion problem consumes 39,7 sec of CPU-time.

Fig. 5.6 shows the 1listing of an additionally supplied
subroutine INTEG which is added to replace the default inte-
gration method by the Gear—Kahaner package [5.11].

SUBROUTINE INTEG
DIMENSICN WORK (2o4)

c
C*¥*¥ITHIS SUBROUTINE IS USED TO SELEGT THE APPROPRIATE

C*®**>INTEGRATION ALGORITHM

c
CALL GEAR (U, 264, 5y 2, 12, HORK)
RETURN
END

Fig. 5.6: FORTRAN listing of subroutine INTEG

Using this algorithm the same problem requires only 8.3 sec
of CPU-time. A gain of 4.8 can, thus, be achieved by these
means.

When 33 discretization points are used and a 7 point central
formula is applied for computation of the spatial deriva-
tives, the Runge-Kutta algorithm requires 620.0 sec of
CPU-time, whereas the Gear algorithm can solve the problem
now within 26.9 sec of CPU-time. In this case there results
a gain of 23.0 in favour of the Gear algorithm.

This shows that the problem is obviously stiff, and becomes
even stiffer for smaller values of the grid width (dx).

How can this result be explained? Considering the scaled PDE
problem

du  3%u

ot ax?



- 108 -

and using a 3 point central formula for the computation of
the spatial derivatives, the resulting ODE system will have
a Jacobian of the form

J = (1,-2,1)*(dx~?)

This is a time-invariant tri-diagonal matrix. The eigen-
values of this matrix are known to be all negative and real.
For dx sufficiently small, the largest of the eigenvalues,
(Al), approaches -rv? and the smallest eigenvalue, (An), ap-
proaches minus infinity as -dx~2? which is in accordance with
the obtained results {5.13].

How can this special result be of general interest? It is
obviously difficult to predict, in a mathematically proper
way, how stiff an ODE system resulting from conversion of
any PDE using any particular differentiation scheme will be.
We want to show, however, that any PDE problem will usually
be transformed into a stiff ODE system by the
method-of-lines approach.

Let us consider any PDE of the type presented in
section V.3.4. It is certainly legitimate to express neigh-
bouring solutions (that are solutions at neighbouring grid
points) as

U[k] = 0.5%(U[k=-1] + U[k+1]) + o(dx) .

That is, for dx sufficiently small, an almost 1linear rela-
tionship results for neighbouring solutions. This will then
lead to an almost singular Jacobian which is equivalent to a
stiff problem formulation. For the solution of almost any
PDE problem, Runge-Kutta algorithms will, therefore, not be
suitable., This is another reason why we have made the de-
cision to separate integration from simulation control.

Many PDE problems have already been coded in GASP-V and this

- 109 -

intuitively formulated statement has been found to be true
in almost all of the cases. In the heat diffusion problem,
for instance, the resulting ODE system is as stiff for the
7 point formula as for the 3 point formula.

Fig. 5.7 shows the listing of DARE-P output commands speci-
fied for the heat diffusion problem.

¥ HEAT OIFFUSION PRUBLEM ( GEAR =~ NNDIV=11 - NNDIF=3 }
OPLOT,U(G,0.C,0.0,11)

NULLIFY

FACTOR(,2.0,2,0)

GRAPH,U,yU11,SH

ALTERNATE(,15.0,5-13.0,50.0)

CALCOMP,U{C,0.050.0,11)

END

Fig. 5.7: DARE-P output commands for the heating system

Fig.  5.8a to Fig. 5.8c show the output produced by these
commands.



~ 110 =

HEAT OIFFUSION PROBLEM ( GEAR ~ NNDIVZil = NNDIFx3 )
OPLOT,ULG. 0,040,012

CONTOUR PRESENTATION FOR U SCALE VALUES  "L°= 0.0000 TO 1.6558 OR LESS
s1ex 337 T 4.9675 s2r= 6.6233  TO 8.2192 "¥Tx 9.9350 TO 11.5908
“h'x 13,2867  TO 14,9025 "S*= 16,5583 TO 13,218 *6e=  19.8700 TC  21.5258
STex 23,4846 TD 29.B37% *8's 26,4933 IO 25,3491 *9%e 79,8050 TO 31,4608

*He= 331466

[N
«7450E400
«1830E402L
22305E2DY
+2860E401
«3575E¢01
«4290E4 01
«5005E¢01
»ST20E401
«6435E401
< T150E481
<TBGSESDY
~8580E¢01

+1073E402
<13MREs 02
<$216E+07
21287E+02
+1359E402
«1430€002
+1502E+02
«1573E402
~16LSEe02
~A748E0 02
«1788E¢ 02
+1859E402
«1931Ee02
+2002E+02
~2074E002
«2105E¢02
«2217E402
+2200E402
<2380E40Z
<2431E402
« 25038402
«25THESD2Z
«2606E¢02
S274TECDZ
-2789E4D2
+Z860E+D2
+2932E¢02
~3003E402
+3075E¢02
-3546E¢ 02
+3218E202
<J289E+02
«33p1E¢02Z
+ 34326402
+3504Ee02
+3575E002

10 34,7725 OR WORE

LLULLLLLELGLLLLLLLLLELLALALRLLLLLLLLLLELE LLLLLLLLE LELELLLMALELLLLLZLLLLELLRLLLLEEELLLLLELELLLLLLLRLLLL

LULLLLLLLLLLLERL AL ELLLLLLLELELALLLLLLLLLLLLLLLE LLLELLLLLLRLLEELLLLELLLLELLLLLELLELLLLLLLELLLLELELLL
777 666 5555 Prreey 333333 22222222 113141111182111111334

HRMHHR 93999939 58888008 rrTIITIIT 666666E66666656666

FITTIIXTIITIIITTIIICITIINIT
LSRRt R AR AAARARARERRAR RN SR ELALEERAARERAARRSASRRLAREACERLRALRLREAIELEOLAL
TIIIIIN I N T T TR I TN I T AT T I IR I I R IR VAT LTI AT AN T T TN ITA I IR I I TITTINTIIINIA NI TRIIITIANNY
Ediaedeesidddeatintesastotesititasasitetdritsseesaidssdtscitecasssasiteitad

TITINIIIITTITIINT 66566

TITTIIIIITRTIIINILILINY
TN I I I I T T T R I T P T T T T AT I T T R R A T T T I I R IV IT AT TILI AT TIVITITINVIINY
TIIYTII I NI I I T IR I T I R TR T TTRTITIIINIITAITINITITTIINAITOIIITINIIIIINY

5555555555555555 5555555

33333333333333
3333333333333333333333
$55555555655555555555565555

993399 as88as 7TITITT 6656666665

TTTTTITTITIIINIT
TR TN T I I I T  T I I T IR R T T T T AT I TR P IR TN NI NI NATAANTTNTX NI IATXTIIALIITIXANATAT
RS S AR AL AAR AR AR AE AL SERRASARRARAERCARIALACNARAAALARREEREEREECETTcERE AL E0RARAELS
TN TN T I T NI T T I T T I T I I I AT TN I I IO T ITIITINIINTIIINY

9999999339999 828548383368 TITTIITITITINITIIIT

Legigtadicteidssid

Fig., 5.8a: Output obtained by the DPLOT command

DPLOT will produce output on a line printer similar to that

obtained

by using the PAGE CONTOUR or PAGE SHADE option

offered in CSMP-III [5.23].

- 111 -~

HEAT OIFFUSION FROBLEM ( GEAR - NNDIV=il - NNOIF=3}

1=u 4, 00%10 4

201

3=5H 150 4
100

|
i l\
v | :é\& SN W

1.50 4 [ \\
.00 | N
056 1 |
X ! [
-0.50 !
|
-1.00 —— T T T T T T —
-0.50 0.00 0.S0 1.00 1.50 2,00 250 3.00 3.50 .00 4.50%i0'
TIME

Fig. 5.8b: Output obtained by the GRAPH command

GRAPH is a command to obtain 2-dim. plots. In this example,
the temperatures in the heating room (U) and at the walls
(Ull), as well as the switch function (SW) denoting "on" and
"off" status of the heating system, are plotted versus the
simulation clock.

The heating system seems to be somewhat overdimensioned for
this building and reacts very hectically (no wonder, if we
tell the program that the heating system is able to heat the
central room from 0.0C:to 3550C within 15 min!). When the
heating is turned "off", the temperature will quickly equa—
lize throughout the building. There is obviously hardly any
thermal insulation between the rooms. Later on, the tempera-
ture decreases smoothly. due to the radiation at the (much
better insulated) walls.



- 112 -

Fig. 5.8c: Output obtained by the CALCOMP command

Fig. 5.8c shows a 3-dim. plot with hidden lines removed as
obtained by the CALCOMP command. The viewing position is
determined by the previously specified ALTERNATE command.
The FACTOR command determines the size of the graphs and the
commands starting with '*' denote titles.

This concludes the analysis of the heating system.

V.4) Unsolved Problems:

Many problems have been tested using the GASP-V software and
the results were quite promising. There are still two un-
solved problems:

- 113 -

A) Taking the definition of Pritsker [5.14] for event
times:

"An event occurs- at any point in time beyond
which the status of a system cannot be projected
with certainty”

it is clear that an infinite density of events must not
occur. This may, however, happen in at least the follo-
wing two cases:

a) A system is modeled by a set of PDE's and disconti-
nuities exist. In this case the discontinuity may
"walk" through space with time and can no longer be
localized in the way proposed in section IV.1. As an
example, let us consider a long electric wire where
a current is imposed at one end which ' suddenly (at
time tl1) changes its value. This discontinuity will
remain in the system for some time and “"flow"
through the wire. If the effects of reflection at
opposite ends are taken into account, the distur-
bance caused by the introduction of the discon-
tinuity may even remain in the system "forever".
Thus, in this example, we will find that for any
instant of time, t>tl, the system will be disconti-
nuous at one particular point in space (x1) which is
variable with time. ’

b) The behaviour of the continuous subsystem ig
stochastic in nature. The spectrum of a random num-
ber stream has infinite frequencies which has the
effect that it is nowhere differentiable. If such a
random number is superposed to the input of an inte~
grator, we face the problem mentioned above. This
holds, of course, only for stochastic behaviour of
the continuous subsystem and not for the discrete
subsystem. Stochastic interarrival times of cus-



- 114 -

tomers to a queue, for instance, will not effect the
numerical behaviour of the system, since new samples
for the random numbers are only computed at event
times. Between event times these variables are con-
stant.

Zeigler [5.21, Chapter 9] has shown that the existence
of an infinite density of events always results in an
illegitimate model. In the case of (a), it is, theore-
tically, always possible to respecify the model so that
the new equivalent model is no longer illegitimate. 1In
this new formulation, the propagation of discontinuities
will follow the axes of the coordinate system. This is
well known as the "method-of-characteristics”. In the
case of the linear wave equation, we Kknow that the
characteristics are straight parallel lines and the re~
quired variable transformation is easy to achieve. For
complex situations (nonlinear cases), however, to find
the characteristics of the problem (which are now curves
bended in time and space) is almost equivalent to sol-
ving the entire problem. Thus while we can solve the
problem (a) theoretically, in practice, the required
computations for obtaining the variable transformations
are extremely tedious and may prevent us from doing so.

Therefore, we wusually f£find another solution for this
problem, In using the method-of-1lines approach
[5.2,5.3], we found that the integration over time is
not notably effected in most applications by these dis-
continuities, whereas the computation of the spatial de-
rivatives is greatly disturbed. Therefore, for each
step, we first try to identify the discretization inter-
val in which the discontinuity is situated at that par-
ticular instant in time, We then split up the region,
and compute the spatial derivatives independently for
the two parts lying to the left and to the right of the
discontinuity. This procedure can easily be expanded for

- 115 -
several space dimensions as well.

The case of (b) is, in principle, more difficult to
treat. Zeigler's characterization of illegitimate models
was developed only for discrete event models. However,
his discussion of the intrinsic limitation of the class
of continuous systems which can be simulated by digital
computers [5.21, Chapter 5] and [5.22] may be applied to
the present problem. According to this analysis, there
must always be a non-zero interval separating computer
updates of the model's state., Thus, the computer must
guess what the behaviour of the model is in the interval
separating computational instants =-- the problem of
"bridging the gap". Since the computer is given a de-
scription of the model components and their coupling, it
can guess correctly only if certain conditions enabling
perfect interpolation in the gap hold. Polynomial tra-—
jectories, commonly assumed in integrating differential
equation models, serve this purpose.

In the case of stochastic continuous models, it is not
easy to justify the assumption of polynomial trajec-
tories. For example, if the model contains a white noise
component then no means of bridging the gap exist in
principle. This is because, by definition, the correla-
tion between sample values, however closely spaced in
time, is zero. Even if the noise is not white, current
numerical methods are not geared to exploiting autocor-
relations specified by the model for optimum choice of
the integration step., As a result, most step-size
control algorithms will produce extremely pessimistic
guesses for the step-sizes to be used, resulting in high
computational costs.

We found the following approach useful in many applica-
tions: First we compute one run by setting the noise to
zero using variable step integration (the continuous



B)

- 116 -

subsystem is now deterministic). In this rumn, we collect
statistics (histogram) of the utilized step-sizes dt.
From the cumulative frequency curve we select the
0.1 level point (10% of the step-sizes fall below this
point). Now we compute a new run, this time with inclu-
sion of the noise, where we keep the step-size dt fixed
at this 0.1 level point. A disadvantage of this solution
is, of course, that we now have no measurement for the
quality of the approximation, Thus, we must be very
careful in the interpretation of results obtained in
this way. Furthermore, the proposed method can be ap-
plied only if the signal/noise ratio is high. For a low
signal/noise ratio, we do not know any good numerical
technique to get around this problem.

The user of a simulation package wishes either to obtain
reliable results or have a "bell" ring when an algorithm
is unable to perform proper work. Under no circumstances
does he want to obtain results which are incorrect
(problem of software robustness). To date, this can be
guaranteed with a high confidence in the case of ODE
problems only. For PDE problems, numerical difficulties
need not necessarily be detected by the package, re-
sulting in inaccurate or even entirely incorrect re-
sults, The problem arises from the fact that we always
use a fixed grid width for the spatial approximation,
and thus have no control on the error resulting from
this discretization.

The following chapter will discuss this problem in more
detail.

[5.1]

[5.2]

[5.3]

[5.4]

[5.5]

- 117 -

References:

M.B.Carver: (1975) "Simulation Packages for the
Solution of Partial Differential Equation Systems".
Proc, of the SIMULATION'75 Symposium, Zurich,
Switzerland. To be ordered from: ACTA Press,
P.0.Box 354, CH-8053 Zurich,
PpP. 57 - 64.

Switzerland;

M.B.Carver: (1978) "The FORSIM-~VI Simulation Package
for the Automated Solution of Arbitrarily Defined
Partial and/or Ordinary Differential Equation
Systems", Form: AECL-5821. Atomic Energy of
Canada, Ltd.; Chalk River Nuclear Laboratories,
Mathematics & Computation Branch, Chalk River,
Ontario, Canada K0J 1J0.

F.B.Cellier: (1977) "On the Solution of Parabolic
and/or Hyperbolic PDE's by the Method-~of-Lines
Approach". Proc. of the SIMULATION'77 Symposium,
Montreux, Switzerland., To be ordered from:
ACTA Press, P.0.Box 354, CH-8053 zZurich,
Switzerland; pp. 144 - 148,

F.E.Cellier: (1978) "The GASP-V Users' Manual". To
be ordered from: Institute for Automatic Control,
The Swiss Federal Institute of Technology Z%urich,
ETH - Zentrum, CH~-8092 Zurich, Switzerland.

F.E.,Cellier, Blitz A.E.: (1976) "GASP-V: A Universal
Simulation Package". Proc. of the 8th:AICA Congress
on Simulation of Systems, Delft, The Netherlands.
Published by North-~Holland Publishing Company
(Editor: L.Dekker); pp. 391 - 402.



[5.61]

[5.7]

[5.8]

[5.9]

[5.10]

[5.11]

[5.12]

- 118 -

0.J.Dahl, Nygaard K.: (1966) "SIMULA: A Language for
Programming and Description of Discrete Event

Systems". Oslo, Norwegian Computing Center.

E.Fehlberg: (1968) "Classical 5th-, 6th~, 7th~, and
8th-order
NASA TR R-287.

aunge-Kutta Formulas". Report:

C.W.Gear: (1971) "Numerical Initial Value Problems
in Ordinary Differential Equations", Prentice Hall,
Series in Automatic Computation,

D.G.Golden, Schoeffler J.D.: (1973) "GSL ~ A Com-
bined Continuous and Discrete Simulation Language”.
Simulation vol., 20 no. 1 : January 1973; pp. 1 —- 8.

A.C.Hindmarsh, Gear C.W.: (1972) "Ordinary Differen-
tial Egquation System Solver®, To be ordered from:
Lawrence Livermore Laboratory; Report: UCID 30001,
Rev.2.

D.Kahaner: (1977) "A New Implementation of the Gear
Algorithm for Stiff Systems”. This is a new version
of the well known Gear-Hindmarsh program [5.10].
Unpublished private communication. For further de-
tail contact: Dr. David Kahaner, University of Cali-
fornia, Los Alamos Scientific Research Laboratory,
Contract W-7405-ENG—-36, P.0.Box 1663,
Los Alamos NM 87545, U.S.A..

G.A.Korn, Wait J.V.: 7(1978) "Digital Continuous-
System Simulation”. Prentice Hall.

[5.13]

V[5.14]

[5.15]

[5.16]

[5.17]

[5.18]

[5.19]

[5.20]

- 119 -

N.K.Madsen: (1975) "The Method of Lines £for the
Numerical Solution of Partial Differential Equa-
tions". SIGNUM-Journal, vol. 10, no. 4
December 1975, (Special Interest Group on Numerical
Mathematics of ACM); pp. 5 - 7.

A.A.B.Pritsker: (1974) "The GASP-IV Simulation Lan-
guage"., John Wiley.

A.A.B.Pritsker, Kiviat P.J.: (1969) "Simulation with
GASP-II". Prentice Hall.

A.A.B.Pritsker, Young R.E.: (1975) "Simulation with
GASP-PL/I. A PL/I Based Continuous/Discrete Simula-
tion Language". John Wiley.

T.J.Schriber: (1974) "Simulation Using GPSS". John
Wiley.

C.E.Sigal, Pritsker A.A.B.: (1973) "SMOOTH: A Com-—
bined Continuous/Discrete Network Simulation Lan-
guage”. Proc, of the 4th BAnnual Pittsburgh Con-
ference on Modeling and Simulation. Pittsburgh,
Penn., U.S.A., April 23-24, 1973; pp. 324 - 329,

J.V.Wait, DeFrance Clarke III: (1976)- "DARE-P User's
Manual®. (Version 4.1). To be ordered from: Depart-
ment of Electrical Engineering, University of
Arizona at Tucson, Tucson AZ 85721, U.S.A..

W.B.Washam, Pritsker ALA.B.: (1976) "Introduction to
GASPPI". Unpublished private communication. For
further detail contact: A.A.B.Pritsker, Ph.D.,
Professor, Pritsker & Assoc., Inc., Consultants in
Systems Engineering, P.0O.Box 2413,

West Lafayette IN 47906, U.S.A..



- 120 -

{5.21] B.P.Zeigler: (1976) "Theory of Modeling and Simula-

[5.22]

[5.23]

tion", John Wiley.

B.P.Zeigler: (1977) "Systems Simulateable by the
Digital Computer™, Logic of Computers Group Report,
University of Michigan, Ann Arbor, U.S.A..

(1972) "Continuous System Modeling Program III
(CSMP-III) - Program Reference Manual". Program
number: 5734-X89, Form: SH19-7001-2. To be ordered
from: IBM Canada Ltd., Program Produce Centre,
1150 Eglington Ave. East, Don Mills 402, Ontario,
Canada.

- 121 -

VI) SOFTWARE ROBUSTNESS:

VI.1l) pefinition:

The term "robust"™ has, in the past, often been used and
misused as an attribute to almost everything because it is
considered elegant to call something "robust". The term (as
well as others like "automated" or “adaptive") is, there-
fore, a slogan which very often has been used for no other
reason than for marketing, since it seems to increase the
number of items sold remarkably, if one assigns this attri-
bute to a product. Consequently, this term is not too well
defined, and we must first specify in which context we are
going to use it,

In connection with simulation software, this attribute - can
be assigned to language definitions, to compilers and to
run-time software [6.5,6.6].

A) One can talk of a robust simulation lanquage definition
in two senses:

a) It can be robust with respect to modeling, in that
it provides for a general scheme for partitioning
any application problem in such a way that the re-
sulting submodels are easier to formulate. By these
means, the risk for formulating erroneous models can
be notably reduced.

In combined simulation, the concept of subdividing a
combined system 'into a discrete and a continuous
subsystem, as described in chapter IV of this
thesis, will definitely increase modeling safety. As
an example for this let us cite a solar energy
heating system. This is a typical combined problem
with time-events (sunrise, sunset, good weather, bad



b)

- 122 -

weather) and state-events (the pump for the circula-
tion of the liquid is either "on" or "off™" depending
on the temperature at the collector, the additional
0il heating can be in "on" or "off" status depending
on the temperature in the building). We guided
several groups ‘of students who were supposed to
model such a system during one semester term of
16 weeks length. One student used ordinary FORTRAN
programming for the task, and called subroutines for
numerical integration and output representation from
a library of FORTRAN routines. After sixteen weeks,
this student ended up with a tremendous program for
which he was unable to draw a proper flow chart. He
had entirely lost the overvue of his program, and it
never worked. The program was very badly structured
from the beginning. Other groups used the GASP soft-
ware for this modeling task, and found it much
easier to construct running (although not
necessarily valid (!)) simulation programs.

Another possibility to improve robustness in this
respect 1is to provide facilities for hierarchical
constructs,

A language definition can, furthermore, be robust
with respect to modeling in that it contains ad-
ditional redundancy. If the user, for instance, is
required to supply dimensions for all variables in a
declaration block of his application program, the
software can perform an automated dimensional
analysis for all equations. If the user is requested
to supply ranges for all variables, the software can
check whether trajectories during simulation behave
as expected.

The language definition can be robust with re-
spect to programming. For this purpose, the language

- 123 -

definition must contain enough redundancy so that
the software 1is able to detect as many programming
(e.g. typing) errors as possible. The user can, for
example, be asked to declare all variables in a
declaration block of his program. This will enable
the compiler to detect most of the typing errors
(like misspelled variables or keywords). The danger
of "programming by exception" has been noticed years
ago, and most of the modern computer languages take
this into account. This knowledge, however, has not
yet reached most of the simulation software de-
signers, because in todays simulation languages such
features are hardly ever offered. This is probably
because most software designers stick too closely to
the CSSL-definition [6.21] which was defined before
one paid too much attention to questions of software
robustness.

By such measures, the user code will become longer
than necessary, and user programs will be somewhat
"verbose”. This may bother some of the inveterate
CSSL programmers in the beginning, but modeling
safety can, by these means, be remarkable improved.

B) On a second level, one can talk of .robust simula-
tion compilers in three senses.

a) A compiler can be robust with respect to program-

ming. This aspect is closely related to the previous
one. The simulation compiler should perform ex~
tensive error testing while parsing the application
program,

This must be done because simulation software is
ever increasingly being used by non-specialists in
computing, and because the complexity of the
application program is dictated by the complexity of



b)

c)

- 124 -

the system under investigation rather than by pro-
gramming experience and sophistication of the simu-
lation user,

It can be done, because the underlying simulation
package (run-time system) is a large program anyhow,
consuming quite a lot of core memory for its execu-
tion. GASP-V, for example, uses 100.0008 core memory
locations on a CDC 6000 series installation. it,
therefore, does no harm to allow the same size for
the simulation compiler as well, whereas this cannot
be tolerated in a general task language like FORTRAN
or PASCAL. Moreover, a "small" student's job in
simulation, involving 10 to 20 statements, will cost
for its execution at least 10 times as much as a
comparable FORTRAN student's program (e.g. to
determine the largest element in an array). For this
reason we can also allow the simulation compiler to
execute about 10 times slower compared to a general
task compiler to grant more extensive error checking
during compilation. Finally. the possible structures
in a dedicated task language are much more rigid
than in a general application language. For this
reason, additional tests in the compilation phase
are feasible.

A compiler can be robust with respect to implementa-

tion. This aspect of robustness involves insensiti-
vity to alterations in the operating system, the
underlying computer hardware, and peripheral equip-
nent.

A compiler can be robust with respect to main-
tenance. If a compiler failure has been detected, or

if a person wants to improve the language definition
by adding additional features to it, this should be
implementable as easily as possible in the simula-

- 125 -

tion compiler, and it should result in as few
"dirty" side-effects as possible with respect to the
compilation of previously implemented language fea-
tures.,

All these requirements for compiler construction have
their implications in how the simulation language must
be defined.

The best way to guarantee that a compiler is easily
maintainable, for instance, is to define the language as
a deterministic left-to-right 1language for which a
one-pass compiler without needs for backtracing can be
coded (so called LL(1l) language). This has been outlined
in [6.3]. It is unavoidable that a complex program like
a compiler has some "bugs” in it which are not detected
until somebody stumbles upon them by chance. At that
time, it is most likely that the programmer of the com-
piler has left the place already, and is no  longer ac-
cessible. In such a situation, it is extremely important
that somebody else is able to read and understand the
compiler to be able to remove the bug. It is then very
cumbersome if the software engineer is forced to read
and understand the compiler as a whole. In most cases it
is not too difficult to identify and isolate the bug
within the compiler. A local patch, however, bears the
risk of unexpected side effects creating new bugs which
are often worse than the removed one (!). Such side ef-
fects result mostly from GOTO-statements pointing back-
ward from below to beyond the patch position. If the ef-
fect of such a GOTO-statement is not taken into account,
the patch creates often troubles which are difficult to
explain and to correct. Since LL(1) grammars allow com—
pilers to be written in an almost linear. top-down struc-—
ture, the robustness of such a compiler with respect to
its maintainability : is remarkably better than in the
case of other types of grammars being used.



- 126 -

Robustness with respect to implementation can only be
guaranteed if the simulation compiler is realized as a
preprocessor. The target language, as well as the 1lan-
guage in which the preprocessor is coded, must be
high-level languages for which there exist compilers for
many different types of computers. This, again, has its
implications in the simulation language definition, in
that only such features can be offered in that language
which are realizable in the target language as well. If,
for example, the target language is FORTRAN (as this is
the case for most simulation languages at present), the
newly defined simulation language must be somewhat re-
strictive in the data structuring capabilities it
offers.

If a compiler should, finally, be robust with respect to
programming, the language definition must contain enough
redundancies to allow for proper error testing during
the parsing procedure. Beside of provisions for a suf-
ficiently high redundancy, also the use of LL(1l) gram-
mars can again improve the compiler robustness with re-
spect to programming. Since user programs, if coded in a
LL(1) language, can be parsed from left to right by
looking only one symbol ahead, illegal symbols must be
recognized immediately as such, and may be reported to
the user. Bu using LL(l1) languages, we can, thus,
guarantee that no syntactically incorrect user program
is accepted by the compiler.

It cannot be expected that a designer of simulation
software produces optimal solutions to all problems all
at a time. It is quite common that language definitions
are revised after some time, They are modified because
of wusers complaining that some of the formerly offered
language structures or simulation features are incon-
sistent or awkward, They are extended because of the
software being exposed to problems it was originally not

=127 -
designed for.

For this reason, it makes sense to discuss the robust-
ness of a simulation system with respect to its up-
datability (which includes maintainability as a subset).
A simulation system is a new term denoting the union of
simulation language, simulation compiler, simulation
run-time system, and (last not least!) the documenta-
tion volume. Experience has shown that program code is
much faster and easier updated than the documentation
material. For this reason, it is extremely important to
make the documentation as easily updatable as possible.
For this task, it is very convenient if the documenta-
tion 1is also developed by use of the computer. The text
itself should (as this thesis) be composed by use of a
powerful text editing system. It is moreover very useful
if the syntactical rules of the language are described
by syntax diagrams [6.20] which must form an intrinsic
part of the documentation. In [6.3] we have described a
general purpose table driven parser program which can
process any context-free grammar specified in an ex-
tended Backus-Naur form (EBNF) notation, and which can
check for LL(1) parsibility. Another program [6.4] can
then access the same input file, and can. produce syntax

‘diagrams of the language definition on any

(x,y) plotting device. By use of the parser program, we
can check that the suggested modifications of the lan-
guage are correct (that is consistent with the rest of
the language definition), and that the modified language
definition is still LL(1) parsible (and thus deter-
ministic and unambiguous). This can be done, before the
compiler is touched. With the help of the syntax diagram
drawing program, we can automatically draw new syntax
diagrams of the modified language definition which can
replace the previous diagrams in the documentation
volume. By these means, we can guarantee that the docu-
mentation material is as easily updated as possible.



- 128 -

C) On a third level, one can talk of a robust simula-

tion run—~time system in twe different senses.
a) A run-time system can be robust with respect to pro-

b)

The
how

cedures., The user should never be required to pro-
vide any kind of information which he does not have
at his disposal. He should be able to concentrate on
those factors which have to do with the statement of
his problem, and should be relieved, as much as pos-
sible, of all aspects which have to do with the way
his problem is executed on the machine. He should be
able to describe his system as easily as possible in
terms which are closely related to his common 1lan-
guage, but must not be required to provide a
step-size for the numerical integration or to speci-
fy the integration algorithm to be used.

A run-time system can be robust with re-
spect to algorithms. The run~time software itself
must be able to check whether the produced time re-
sponses are "correct" (within a prescribed tolerance
range). The user, normally,‘has a more or less pre-
cise (although often not mathematically formulated)
knowledge of the systeém he is investigating. He has,
however, hardly any "insight information" into the
tool he is using for that task. He is, usually, very
credulous (the obtained results must be correct
because the computer displays 14 digits!), and he
has no means to judge the correctness of the pro-
duced results. For this reason, it is vital that
each algorithm in the system has its own "bell"
which rings as soon as it is unable to properly pro-
ceed., Under no circumstances are incorrect results
allowed to be displayed to the user.

aim of this chapter is to focus on such aspects of
to improve run-time system robustness.

- 129 -

VI.2) Automated Selection of Integration Algorithm:

A huge step towards robust simulation software has been
taken in the development of step-size controlled integration
algorithms. Before these algorithms existed, the user of
digital simulation software was required to supply informa-
tion concerning the step-size to be used -- an information
item which he clearly did not have at his disposal. Now, the
user can simply provide a tolerance range for the accuracy
of the results. This is identical to requesting the user to
identify the smallest number in his problem which can be
distinguished from zero. This guestion can certainly be
answered by any user, independently of whether he is an
expert in numerical mathematics or not, since it is closely
related to the physics of the problem, and not to the
numerical behaviour of the algorithm.

Available simulation software, up to now, usually offers a
comprehensive selection of different integration algorithms.
It does, however, not tell the user which would be the most
appropriate one for his particular application. In this way,
the user is again confronted with making a decision on some-
thing he does not really understand. Experience has shown
that the majority of the average users always operate with
the default integration method implemented in the package
which, in most cases, 1is a Runge-Rutta algorithm of 4th
order. Since he does not know what to specify, he simply
ignores that question, :and after some time of using the
software he has even forgotten that the language provides
him with the facility to select among different integration
algorithms. So far, no integration algorithm could be found
which would be able to handle all kinds of problems equally
well, and it is more than doubtful whether such an algorithm
could: be found at all.:The user, who does not make use of
the facility to select among different integration rules,
will, consequently, often waste a lot of computing power.
Although much research has been devoted to the development



- 130 -

of different integration methods for the different classes
of application problems [6.8,6.10,6.15], the user has,
however, no means to easily determine, from the state space
description, the problem class to which his particular ap-
plication belongs. For this reason, the selection of the ap-
propriate integration algorithm should also be automated.

For this purpose, we try to extract features from an ap-
plication problem during its execution which are supposed to
characterize the numerical behaviour of that particular
problem as completely as possible. These features are then
combined in a feature space in which we can identify spe-
cific clusters for which a particular integration method is
optimally suited. The proposed methodology for the solution
to this problem originates from pattern recognition.

What features may be used for this purpose? A first feature
can be associated with the accuracy requirements for the
problem. It can be found that the CPU-cost to execute a par-
ticular problem can be graphed versus the required relative
accuracy as shown in Fig. 6.1.

4§ CPU-time
100 low order
algorithm
104 high order
algorithm

-
100 o8 10° 104 102 relative
accuracy

Fig. 6.1: CPU-time versus relative accuracy requirements
for different integration algorithms

- 131 -

According to Fig. 6.1, low order algorithms are appropriate
for the treatment of systems from the T"gray-" and
"black box" area where the available data and models are so
vague that a precise numerical integration does not make
much sense, whereas higher order algorithms are appropriate
for the handling of systems from the "white box" area, e.g.
from celestrial mechanics. Since the user is requested to
specify the wanted relative accuracy, this feature can be
extracted from the input data.

A commonly cited "rule of thumb" states that, 107k being the

relative accuracy required, a k-th order algorithm would be
close to optimal.

Fig. 6.2 shows the accumulated CPU-cost graphed versus the
simulation clock for one-step and multi~-step integration.

A accumulated
CPU-time

pm——

multi-step
method

one~-step
method

" ——-
simulation clock

Fig. 6.2: Accumulated CPU-time versus simulation clock
for one-step and multi-step integration

As can be seen from Fig. 6.2, multi-step methods require
more CPU-time during their initial phase, but are more
economic than one-step methods if integration goes on over a
longer interval of simulated time. This can be explained by
the fact that one~step methods are self-starting whereas



- 132 - - 133 -

multi-step methods need to be initialized. picting one particular integration algorithm, where now the

. stiffness of the problem is the parameter of the graph.
This leads to a second feature. Since the integration has to

be restarted after event times, mﬁlti-step integration is in
favour for purely continuous problems or for problems with
few event times (smooth problems), whereas one-step integra- 100
tion is appropriate for combined problems where events occur
with a high density.

‘CPU—ﬁme

stiff problem

\Wder of stability

10—
Each integration algorithm has associated with it a domain
of numerical stability. This is outlined in Fig. 6.3 for a noq;sﬁﬁ
Runge-~Kutta algorithm. 1 - problem
“"{A"} Yo Te ts lq T2 i
A 3 & relative
10 10 10 10 10 accuracy

Fig. 6.4: CPU-time versus relative accuracy require-

Ah ments for varying problem stiffness
DOMAIN |
OF —_— Re{>\h}

NUMERICAL -

STABILITY s : . :
Fortunately, special integration algorithms could be found
for which this restriction no longer holds, since they show
a stability region as outlined in Fig. 6.5 [6.8].

N N . 2 A lm{Ah}
Fig. 6.3: Domain of numerical stability

for a Runge-Kutta algorithm
[ An]
DOMAIN
The stiffer a particular problem is (the more the different oF _>Re{xh}
eigenvalues (Ai) of the Jacobian are separated), the smaller gﬁgﬁg} -
the step-size (h) must be in order to keep all (Ai*h) within
the stability region of the algorithm. For this reason,
Fig. 6.1 is an idealization, since the step~size to be used
(and with it the required CPU-time to execute the problem)
depends not only upon the required relative accuracy for the
problem, but also upon the boundary of stability of the
integration method. Fig. 6.4 is a refinement of Fig. 6.1 de-

Fig. 6.5: Stability region for a
stiffly-stable integration rule



- 134 -

If such an algorithm is used, the step~size need not be re-
duced due to restrictions imposed by stability demands, but
is determined exclusively by the requirements of accuracy.

For this reason the eigenvalue distribution of the Jacobian
determines a third feature which must influence our decision
as to which integration algorithm to use for the execution
of a particular problem.

These three features can now be combined to a feature space
as depicted in Fig. 6.6.

‘ Accuracy

//|/I/I
/h— —_— -—-L -
P |
<1 |
//’T d -t —
- ] // |
i
[
N L ] -1 |
_FKi -
- | - P Stiffness
i - 7
,J‘ﬁ— alak Pl
~ ~
e ~
Smoothness

Fig. 6.6: Feature space for selection '
of integration algorithm

18 clusters have been distinguished in Fig. 6.6, and
Fig. 6.7a and Fig, 6.7b show integration rules which can be
associated with them.

- 135 -

lAt:cur‘acy ﬂ\ Accuracy
: Runge- Runge-
Ada“ﬁ A:?mﬁ Kutta- Kutta-
(nig (hig 2 Fehlberg | Fehiberg 4
order) order) & (2} {8th ord.}{ (Bth ord.) > ()
Runge-
Adams Gear Gear Kutta-
(medium {medium {medium Fehlberg 2 2
order) arder) arder) (5th ord.) “ (b) 7 (b)
Adams Gear
Euler (Tow {low Euler
order} order) a(b) 2 (b)
Stiffness * * Stiffness

o ——

Fig. 6.7: Integration algorithms to be used for smooth
(left) and non-smooth (right) problems

As can be seen from Fig. 6.7, some of the assignments are
still open.

Concerning (a): A Gear algorithm [6.8] would be appro-
priate, but it should be of about 8th order {at least
for a CDC 6000 series installation -- this depends' on
the length of the mantissa), whereas, in the Kahaner im-
plementation [6.12] we use, we have only up to 5th order

available.
Concerning (b): For these clusters, a one-step algorithm

with a stiff stability behaviour would be most suitable.
So far, we have experimented with IMPEX-2 [6.16], and
with DIRK [6.2], but . the programming style of these
algorithms, as they:are at our disposal at the moment,
is not sufficiently elaborate to allow for a fair com~
parison with the extremely careful and sophisticated
Kahaner implementation of the Gear algorithm.



- 136 -

Concerning (¢): For this cluster, a high-order
stiffly-stable one-step method would be most appro-
priate, Such an algorithm is, however, unknown to date.

As a matter of fact, the feature space as depicted in
Fig. 6.6 is still a simplification. To show this, let us
consider a system with complex dominant poles close to the
imaginary axis. For the treatment of such a system, a
stiffly-stable method as outlined in Fig. 6.5 cannot be pro-
perly applied. The system has, however, fast transients,
making a Runge-Kutta algorithm not suitable either, Thus,
these types of systems, which are called "highly oscilla-
tory" systems, will again require special methods (like
stroboscopic methods) for efficient handling (C.W.Gear:
Private communication). This establishes a fourth feature
which is to be used for the determination of the integration
method. The reason for the primary simplification 1lies in
the fact that a 3-dim. feature space can be graphed easier
than a 4-dim. one (!).

The information provided by these four features is suf-
ficient to determine the best suited integration algorithm
for most application problems.

There are even two more features which can be extracted from
the eigenvalue distribution of the Jacobian. These are used
for other purposes, and will be presented in due course.

So far we have defined features, and we have associated
intégration methods with them. It remains to determine how
these features can be extracted from the state space de-
scription of the problem. The first feature (relative ac-
curacy) is user specified on data input. The second Ffeature
(smoothness) could also easily be user provided. It is,
however, a simple task to detect automatically whether a
problem is continuous or combined. If the problem turns out
to be combined, one can count the number of event times

- 137 -

during a certain period of simulated time, and decide then
whether it is a smooth or a non-smocth combined problem.
Concerning the third and fourth features (stiffness / highly
oscillatory behaviour) one has to compute the Jacobian out
of the state space description of the problem. This can
either be numerically approximated at run—-time, or one can
compute it algebraically by means of formulae manipulation
at compile-time. This is rarely done by available simulation
compilers but it is feasible, and seems to be a promising
approach. The wanted features can now be computed by estima-
ting the critical eigenvalues. The eigenvalues with the lar-
gest and smallest absolute values can be approximated by ap-
propriate matrix norms [6.19, Chapter 6.8], whereas the real
part of dominant poles can be found by estimating the
"margin of stability" [6.11,6.14]. However, since several
quantities are needed, we found that it is .in most cases
faster to compute the whole set of eigenvalues directly by
use of the EISPACK software [6.7]. EISPACK is the best
tested eigenvalue software as available of today. The re-
quired CPU-time turned usually out to be neglectable com-
pared to the time spent for numerical integration.

According to this discussion, there seems. to exist a
straight forward approach to code this into an algorithm.
However, there exist some hidden problems which deserve to
be mentioned here.

The stiffness of a system is commonly defined as:

Max |RefA }]
1
§ = mEmmmmmem o .
Min |Re{Ai}]

Both, . the stiffness (S), and the eigenvalue notation were
originally defined for linear time-invariant stable systems
only, . that is for systems which have constant eigenvalues
all lying to the left of the imaginary axis of the A-plane.



- 138 -

If this is the case, the definition for S as stated above
makes sense since the numerator denotes the fastest
transient (smallest time constant), and the denominator de-
notes the slowest transient (largest time constant) in the
system. It is assumed that the aim of the simulation is to
integrate the model over its entire "transient period", that
is until even the slowest transient has settled. Therefore,
the length of the simulation is determined by the largest
time constant:

1.0 1.0
T ~ Max(Ti) = qu =
© |Re{r,}| Min |Re{A }]
1 i : 1

whereas the step size is a function of the fastest
transient:

1.0 1.0
dt ~ Min(Ti) = Min = .
[Re{Ar,}| HMax |Re{r }|
i i B A

The CPU-cost to execute one simulation run is proportional
to the number of steps to be executed:

Max |Ref{A;}]
- 1
CPU " n_, = T/8t = —Fem—mm——— =5.

st .
Min |Re{x, }|

The assumption concerning run-length determination, however,
is justified for some standard input functions (like the
step function) only. What happens if the dynamics of the
simulation are introduced through the input function, as
this is common use in control systems? In this case, we can
no longer assume that the largest time constant of the
system has anything to do with the duration of the simula-
tion run. The slowest transient does not influence the beha-
viour of the numerical integration at all. It constitutes

- 139 -

just a slowly varying signal superposed to the solution. For
this reason, it has been proposed in [6.18] to replace the
common definition of S by a new definition:

S = T*Max |Re{X }]|
i i

where T denotes the (user specified) run-length of the simu-
lation. This new definition seems useful for the prediction
of the CPU-cost as long as the fastest transients are not
introduced through an input function (driving force).

For a linear combined simulation, we may modify this defini-
tion as follows:

S=(t* -

* *
next tcurrent) Mix IRe{}‘i}' N

S is reevaluated after each event time (t*). The eigenvalues
are then recomputed since they may have entirely changed due
to event handling, and, instead of using the run-length, we
multiply by the time span to the next scheduled event.

This definition gives a valid prediction for the CPU-cost
involved in the execution of one simulation run. However,
S was -meant for a different purpose. We would like to
utilize S as an indicator 'to determine which integration
algorithm to wuse for the solution of a given problem,
e.g. by some rule like:

IF 8 < S* THEN use adams ELSE use gear

where S* could be somewhere around 100.0. However, our new
definition for S produces a value which is highly depending
on the run-length. Our new definition of S will suggest use
of the Gear algorithm for eventually any problem, if the
run-length is just made sufficiently large. Such a decision
would, however, not be in accordance with our (intuitive)
understanding of how the algorithm works! 1In reality, the



- 140 -

run-length has only an influence in that it accounts for the
fixed cost involved in getting the algorithm started (as il-
lustrated in Fig. 6.2). This discussion encourages again an-
other definition of S to be given:

§ = (1.0 - exp(-c*T))*Max [Re{n,}]
1

where ¢ 1is a constant still to be determined. This defini-
tion, on a first glance, seems to overcome all deficiencies
of previous definitions. However, it is not difficult to
show. that also this new definition has its own drawbacks.

Given the problem:
k= £(x,8) ; x(t=0) =x0 .
Let us rescale this problem in time by introducing:
T = const*t ,
By substituting Tt into the state equation, we obtain:
z = Z(z,1) 5 z(t=0) = z0 .

It is evident that, for this new formulation of the problem,
the same CPU~cost must result, and that the same integration
algorithm must still be appropriate. However, our new de-
finition of S8 produces two different values for S when ap-
plied to the two formulations.

Most references which enlighten the numerical integration of
stiff differential equations <£from an engineering point of
view make use of the term "stiffness" without bothering
themselves to give a formal definition for what they mean by
it, stating that this term is sufficiently well introduced
and understood, and, therefore, requires no further
explanation (!). However, the true reason is that any de-

- 141 -

finition of the (rather artificially constructed) qguantity
"stiffness" may be criticized from one point or another.

Mathematical references (like [6.13]), on the other hand,
restrict their view to small subclasses of problems (by
avoiding utilization of 8) £for which they can derive
suitable integration algorithms usually after many pages of
complicated analytical calculations. This approach is cer-
tainly honourable, and it is very wuseful for a deepened
understanding of the mechanisms of numerical integration. It
is, however, not directly applicable to the problem of co-
ding robust general purpose simulation software.

Let us assume now that one of the definitions given above
suits our purpose. This definition will still be restricted
to linear stable systems. We have to consider the question
whether and how this definition can be expanded to encompass
nonlinear systems as well. A possible answer may be that all
nonlinear systems behave like linear systems in. the neigh-
bourhood of any working region. Therefore, we can restrict
our discussion to the linear part of the system:

X = £(X,t) = A*X + £,(x,t)
where the Taylor series expansion of ﬁz(x,t) has no" linear
component. A is the linear part of the system which is com-

monly called the Jacobjan:

af(x,t)

In the .case of nonlinear systems, A will generally be a
function of time, and so will all eigenvalues:

Ai = Ai(t) .



- 142 -

That means that also the stiffness (according to any of the
previously given definitions) must be considered a function
of time:

5 = s(t) .

Such a definition of S can be meaningful as 1long as the
Jacobian is stable throughout the integration. It may well
be that one particular integration algorithm is suitable
during one part of the simulation whereas another integra-
tion algorithm is better appropriate during some other time.
However, even very simple nonlinear problems (like the
vVan-der-Pol equation discussed later in this chapter) do not
fall into this class since their Jacobians have eigenvalues
with a positive real part during some period of time. 1In
such a case, none of the previously given definitions for S
makes any sense. It is entirely unclear how numerical inte-
gration errors propagate in this case, and which step size
or integration algorithm would be most appropriate. In cur-
rently available simulation systems, numerical integration
techniques are blindly applied to the solution of such
problems without notifying the (credulous) user that --
frankly spoken -- we have no idea at all on how to interpret
the results which are produced in this way (!).

For this reason, many to date open research problems must be
solved until we can automatically select the most appro-
priate integration algorithm for all practically arising ap-
plication problems. For the time being, any of the defini~
tions of S may be used, keeping in mind that the approach
must be considered rather heuristical. Indeed, éxperience
has shown that an automated selection basing on such a de-
finition of S determines an appropriate integration method
fbr many (but not for alll) problems. As a matter of fact,
such an algorithm has much better means to determine the
integration method to be used than the (unskilled) simula-
tion user.

- 143 -

Vi.3) Adaptive Selection of Integration Algorithms:

In a nonlinear case, the Jacobian will usually be time de-
pendent, and, with it, also its eigenvalues, This has been
shown above. Since the classification is, in general, de-
fined for linear systems, it may well be that in a nonlinear
case it would be best to assign the integration algorithm
dynamically to the problem. For this purpose, one has to re-
compute the eigenvalues from time to time to find out
whether the integration method in use is still appropriate.
It seems a good idea to recompute the eigenvalues as soon as
the step-size, which is controlled by the integration rule,
has changed by an order of magnitude, but not before a
minimum time span of maybe 0.01 times the run length has
elapsed. This can then be used to obtain an adaptive selec~
tion of the appropriate integration scheme.

VI.4) Verificati of Simulation wit spect to Modeli

Let us assume that a valid model has been derived from the
physical system under investigation, and let us question
what assurance we have that the time responses which we ob-

tain through simulation represent the (valid) model cor-
rectly.

For a variable-step integration method being used, we nor-
mally trust in the step-size control mechanism which is
equivalent to confiding in the error estimation procedure.
This will usually be justified as long as the local error
which we control can be used as a valid estimate for the
global error in which we are interested.

Experience has shown that local errors will not usually ac-
cumulate as long as the system is numerically stable. In a
nonlinear case, it may, however, happen that some eigen-
values "walk" into the right half-plane for a short period



- 144 -

of simulated time., Let us consider, as an example, the well
known Van-der-Pol equation., Fig. 6.8 shows how the eigen-
values "walk around" during one limit cycle.

3
"
Im ()}

]

E

"

o

8

5

Re(y

3

B

2

+

]

3

]

- ."-LW -%10 -~ 8 210 ~1.60 -0 ~oe0 ~o10 [ £ 1e%0 1% 2% £ =40

o m

o m2

Fig. 6.8: Eigenvalue movement of the Van-der-Pol
equation during one limit cycle

As can be seen, the system becomes periodically unstable.
During such time intervals, errors will accumulate, and,
consequently, - we must be careful in the interpretation of
the obtained results, This fact should be reported by the
software to the user.

For this purpose, we define another feature (stability). A
variable STAB is set equal to zero when all eigenvalues lie
in the 1left half-plane and is equal to one as soon as at
least one of the eigenvalues moves into the right
half-plane,

- 145 ~

o
.
o
.

Re{Ai}<0.0 ; i=l,...,n
1.0 : otherwise

We now collect statistics on STAB as for
variables,

time-persistent
In this way we obtain the integral of STAB over
time divided by the run length:

TTFIN
1.0
3 R —— *I(STAB) dt
[ TTFIN-TTBEG |
TTBEG

The fifth feature (FF5) is a real number between 0.0
1.0.

and
If it is close to 0.0, the results obtained by simula-
tion have a good chance to be reliable. If it is close to
1.0, the obtained results are most probably nonsense, and
they must be cautiously verified.

VI.5) Validation of the Model with Respect

to the System under Investigation:

Another non-trivial question is whether a model, for
experimental conditions, properly represents the

under investigation. Some possible answers to this question
have already been mentioned (like dimensional analysis). In
this section we want to show that the eigenvalue distribu-
tion can also help to answer this question to some extent.

given
system

It has been shown in {6.9] that only those eigenvalues of a

matrix can be properly computed which fulfil the following
inequality:

(1/n)

*
IAiI > o,*e



- 146 -

where 9 is the largest singular value of the matrix, € is
the machine resolution (e.g. ~107!"* on a CDC 6000 series
installation), and n is equal to the order of the model. For
higher order models gln approaches 1.0 and hardly any eigen-
values will then be properly computable, Smaller eigenvalues
can take any value and sﬁall modifications of the elements
of the matrix can place them almost anywhere within the band
of incertainty.

If we now assume that the matrix under investigation is a
Jacobian of a state space description for a real physical
system, then the elements of the Jacobian are extracted from
measurements, and cannot be computed more accurately than g,
which is a relative accuracy of measurement. We, therefore,
must assume that, within that relative accuracy &, the
elements of the matrix can take any values. In this case, we
must also assume that eigenvalues of the Jacobian which do
not fulfil the more stringent inequality:

(1/n)
IAi[ > o, *E

can take any value within that broader band, although they
can be much more accurately coﬁputed as soon as any par-
ticular values have been assigned to all elements of the
Jacobian. This means that as soon as there exist eigenvalues
for which the second (more stringent) inequality does not
hold, small variations in the systems parameters which lie
within the inaccuracy of the measurement can make the model
non-stiff or stiff or even unstable (according to the
original definition of stiffness). Physically seen, these
eigenvalues correspond to merely constant modes which could
as well be eliminated from the equation set resulting in a
model reduction. Numerically seen, these eigenvalues can
lead to accumulation of errors so that these modes can drift
away over a longer span of simulated time, again resulting
in incorrect simulation trajectories.

- 147 -

Together with the eigenvalues, we

compute the following
quantity:

(1/n)
BORD = o, *&

and the number k indicating those eigenvalues whose absolute
value is smaller than BORD:

n 0 : |, |>BORD
k=2 (3,0 5 3, = .
1 1
i=1

1: JAi|<BORD

k represents an integer between 0 and n.

We now .collect statistics on the quantity (k/n) as for
time-persistent variables, and obtain a sixth feature:

TTFIN
1.0
FF6 = =———o—mm—meee */(k/n)dt
| TTFIN-TTBEG |
TTBEG

Also the sixth feature (FF6) is a real number between 0.0

and 1.0. If it is close to 0.0, the model has' some chance to
be valid., If it is close to 1.0, the model is most probably
invalid, and it should be further investigated. Most
probably, information has been taken into account for the
construction of the model which cannot be validated with the
available measurements. In this case, one should either try
to simplify the model (by model reduction techniques) or use
another measurement technique to obtain better data.

Evaluation of features FF5 and FFé requires computation of

the eigenvalues of the Jacobian once per integration step.

Since this can be expensive, it should not be done auto-



- 148 ~

matically, but the user must have a switch at his disposal
to turn computation on and off. In this way he can use these
features during the development of a new model, whereas he
can turn computation off during production runs.

Since, even in a nonlinéar case, the eigenvalues are most
likely to change only slowly with time (except during
events), it would be most appropriate to use an iterative
method for the computation of the eigenvalues which takes
advantage of the knowledge that the eigenvalues are expected
to lie in the neighbourhood of some starting values {which
are the true solutions at the previous computational in-
stance). Unfortunately, EISPACK does not provide such
methods, and no such methods are known to the author.

VI.6) termination of itica tat

In section VI.5 we have discussed the case where single
eigenvalues were situated close to the imaginary axis, and
we have seen that in such a case it may be possible to re-
duce the order of the model.

it is, however, as interesting to discuss the opposite case
where single eigenvalues are located in the A-plane far to
the left. We call these modes the "critical states"™ of the
system. Very often one is not really interested in these
fast transients. In such a case one could eliminate these
modes from the equation set. If the fast transients are im-
portant one could at least try to utilize special integra-
tion techniques (like using singular perturbations) to ex-
pedite integration.

one can, of course, again compute the eigenvalue distri-
bution for the solution of this problem. However, it is not
always easy to see which state equations are responsible for
such an eigenvalue. For this reason we recommend the fol~-

- 149 -

lowing procedure.

We reserve an integer array of length n i (n) which is
initialized to zero. Each time an integrationnétep has to be
rejected due to accuracy requirements not being met, we in-
crement each element of the array in(k) for which the ac-

curacy is not met by one. This implies, of course, that the

local truncation error is estimated for all state variables
independently. At the end of the simulation run we divide
each element of the array by the total number of rejected
integration steps and obtain in this way another set of
n real numbers between 0.0 and 1.0. Elements with the
largest value indicate critical states.

VI.7) Robust Methods_ for the Numerical
Solution_of PDE Problems:

VI.7.1) Statement of the Problem:

So far, we have discussed methods to improve the robustness
of software for the solution of ODE problems, and we have
shown that with the help of ideas commonly used in pattern
recognition, we can improve the robustness of this kind of
software remarkably without any reduction in generality.

As we have discussed in chapter II of this thesis, the PDE
case 1is much more difficult to handle, since there exists a

far stronger link between the problems to be solved
hand,

on one
and the algorithms to be used on the other hand. The

solution of slightly different types of PDE problems often
requires the development of separate and different numerical
algorithms., The development of adequate numerical algorithms
is by no means a trivial problem, and the average user has
hardly any chance to succeed in this.

For this reason, the demand for robust PDE software is even



- 150 -
more urgent than that for robust ODE software.

Since the ODE problem has been thoroughly considered, modern
sophisticated PDE software tries to take advantage of this
knowledge by transforming the PDE problem into an equivalent
ODE problem which is easier to solve. This leads to the
method-of-lines approach as has been discussed in
section V,3.4 of this thesis.

In the o0ld days, each person who wanted to solve PDE
problems numerically.on a digital computer had to become a
specialist of numerical mathematics, or had to consult such
a specialist to let him propose the appropriate algorithm.
Application of the method-of-lines makes the formulation of
PDE problems so simple that any person is able to use it and
to produce results. However, this is also the most serious
fault of the method, since the above problem is not at all
solved, It is just hidden to the user and nicely packed up!
The user is provided with a menu of different integration
procedures, and different differentiation schemes, etc., out
of which he must decide:

a) which is the best suited integration algorithm for the
numerical integration over time,

b) which is the appropriate differentiation scheme for com-
putation of the spatial derivatives and,

c) which is the optimal grid-width to be used for the dis-
cretization of the spatial variables.

That is, the user must select among different kinds of algo-
rithms communicating with each other., Here the situation is
even worse than in the ODE case, where the user is requested
£o choose an integration algorithm, since here there exists
an almost infinite choice of combinations of integration,
differentiation and grid-width selection. A strategy of

- 151 -

"blind search" to detect an optimal combination is, there~
fore, rather hopeless.

The situation is even more tragic, since a bad choice does
not necessarily result in an error indication. On the con-
trary, there will often results be produced which look very
promising (for all kinds of time responses it is usually
possible to find, a posteriori, a theory to explain them!),
but which are, nevertheless, entirely incorrect. The reason
for this is that there can be no guarantee that any par-
ticular combination of integration, differentiation, and
state space description will lead to a finite difference
scheme which is consistent, convergent, and stable.
Stability will wusually be taken care off by the step-size
control of the numerical integration, but resulting incon-
sistencies or divergence will not necessarily be detected.
This means that the user normally obtains "correct" time re-
sponses with respect to the formulated ODE problem, but it
is not guaranteed that

a) the resulting difference equation properly approximates
the original differential equation (consistency), and
that

b) the obtained time responses at discrete points smoothly
approximate the continuous time responses which we are
looking for (convergence).

We want to discuss, in the following, what can be done to
improve the robustness of PDE software.

VI.7.2) Grid-width Control:
A first measure which we can consider to improve robustness

is to establish a grid-width control in space which is
similar to the step-size control in time.



- 152 -

We can formulate the following error estimation procedure:
We compute the spatial derivatives once with k and once with
(2k~1) grid points, and compare the results. This works
well, but has a disadvantage which we are going to show im-
mediately.

Let us consider again the heat transfer equation
du 92u

= K

3t x?

as an example. We will now use a fixed-step Euler integra-
tion

ou
u(x,t+dt) = u(x,t) + dt*——(x,t)
3t

in time, and a 3-point central formula
3%u u{x+dx,t) - 2*u(x,t) + u(x-dx,t)

-——(x%,t) =
2 dx

9x
in space.
Let us write for the discretized system:
u(x,t) as ul[j,n]
u(x,t+dt) as ul[j,n+l]

u(x+dx,t) as u[j+l,n]

etc..

- 153 -

Combination of the above three formulae constitutes the fol-
lowing difference scheme:

ulj,n+l] = (1-2*))*ulj,n] + A*(u[j+l,n] + ul[j-1,n])
where:
A = o*dt/(dx %)
This is a well known difference scheme for which has been

shown (e.g. in [6.17, chapter 12 by H.B.Keller]) that it is
stable for

AL 0.5

only.

Let us assume that the accuracy requirements for the problem
are not stringent so that we can integrate with the maximum
value of dt which grants a stable difference scheme

dt = (dx)?/2%) .

Computation of the problem for k grid points is said to cost
x unjts of CPU-time. If we now recompute the problem for
(2k-1) grid points, we find a new maximum grid width

dx' = dx/2 .

Accordingly we have the double quantity of ODE's which have
to be integrated over time using one fourth of its former
step-size

at' = dt/4 .

This time the required amount of CPU-time, consequently, is

8*x units.



- 154 -

Although the error indication which is obtained by comparing
the two solutions is normally very good, the proposed method
is useless, since we cannot tolerate paying 8 times as much,
just to obtain a better software security.

A grid-width control of' the spatial discretization (in
analogy to the step-size control of the numerical integra-
tion) 1is, therefore, obviously not attractive since reducing
the grid-width goes together with an intolerable increase in
execution time,

VI.7.3) Qrder Control:

Another possibility would be to 1let the number of grid
points remain unchanged, and to compare, instead, the spa-
tial derivatives computed from different differentiation
formulae (e.g. once from a 3-point central formula and once
from a 7-point central formula) for error estimation. This
does not result in unduly high computational costs, but, so
far, we were unable to find an error indicator which would
work well for all kinds of application problems. More re-
search needs to be devoted to this topic.

Let us assume now that a good error indicator has been
found. Would it then be feasible to use this error indicator
for an automated order control? Unfortunately, we have not
much freedom in selecting different differentiation formulae
since increasing the order is equivalent to involving more
neighbouring grid points in the evaluation of the spatial
derivatives, Together with this, those boundary ‘regions
where biased, instead of central, formulae must be used will
also grow which is not very favourable either,

From all this it can be concluded that an indicator to im~
prove the robustness would be very useful if not too much
additional CPU-time is needed for its computation. An

- 155 -

"adaptive" algorithm, as for the numerical integration over
time, seems infeasible at the moment .

VI.7.4) Other Methods:

Coming back to the heat transfer problem, one could find
that the appropriate way to solve this problem would be to
replace the Euler integration by a backward Euler algorithm:

3u
u(x,t+dt) = u(x,t) + dt*——(x, t+dt)
a9t

This results in an implicit difference scheme:
(1+2*3)*u[j,n+1] = A*(u[j-1,n+1] + u[j+l,n+1]) + u{j,n]

This: scheme is also well known. It is stable independent of
the actual value of A [6.17].

This is, however, a specific remedy to this particular ap~
plication problem, and we do not see any way to automate
this analysis.

VI.7.5) Conclusions:

As can be seen, we are now exactly where we started in the
beginning, namely, that if problems arise, a specialist in
numerical mathematics must be consulted to lead us out of
them. The method-of-lines approach has not given any final
answers, it has just helped to make the formulation of
problems easier, and it provides for a large variety of dif~
ferent algorithms for numerical integration and differentja-
tion which can be modularly combined to form almost any ima-
ginable finite difference scheme for the solution of para-



- 156 -

bolic and hyperbolic PDE problems. Furthermore, the
step-size control of the numerical integration over time
improves the robustness of the algorithm. Experimentation is
simplified, and, since the algorithms are precoded, the user
can primarily concentrate on problem-specific rather than on
procedure~specific questions. The time spent in the formula-
tion of any particular application problem as well as the
probability that the algorithm contains coding errors are
both remarkably reduced.

For these reasons, the method-of-lines approach to the solu-
tion of PDE problems is a very powerful tool which helps to
increase the software robustness, although it is no
cure-all, as has been demonstrated. Robustness of modern PDE
software can be further improved by providing a better error
indication concerning error accumulation resulting from the
spatial discretization. For this purpose, different dif-
ferentiation formulae are to be compared with each other
where optimal pairs are still to be evaluated. Grid-width
controlled or order controlled adaptive algorithms com-
parable to the ODE case seem, however, infeasible,

References:

[6.1] A.V.Aho, Ullman J.D.: (1972/73) "The Theory of
Parsing, Translating and Compiling -- Volume I:
Parsing". Prentice~Hall, Series in Automatic Com-
putation.

[6.2] R.Alexander: (1977) "Diagonally Implicit Runge-Kutta
Methods for Stiff 0.D.E.'s", SIAM Journal on Numeri-
cal Analysis, vol. 14, no, 6 : December 1977;
pp. 1006 - 1021,

[6.3]

[6.4]

[6.5]

[6.6]

[6.7]

[6.8]

- 157 -

A.P.Bongulielmi, Cellier F.E.: (1979) "On the Use-
fulness of Deterministic Grammars for Simulation
Languages". Proc. of the Sorrento Workshop on Inter-
national Standardization of Simulation Languages
(SWISSL), Sorrento, Italy.

K.J.Bucher: (1977) "Automatisches Zeichnen von Syn-
taxdiagrammen, welche in spezieller Backus-Naur Form
gegeben sind: Benuetzeranleitung". To be ordered
from: Institute for Informatics, The Swiss Federal
Institute of Technology Zurich, ETH - Zentrum,
CH-8092 Zurich, Switzerland.

F.E.Cellier, Moebius P.J.: (1979) "Towards Robust
General Purpose Simulation Software"., Proc. of the
ACM SIGNUM Symposium on Numerical Ordinary Differen—
tial Equations. April 3-5, 1979, University of
Illinois at Urbana-Champaign; pp. 18.1 - 18.5.

M.S.Elzas: (1978) "What is Needed for Robust Simula-
tion"., Proc. of the Symposium on Modeling and Simu-
lation Methodology, Rehovot, Israel. Published by

North-Holland Publishing Company (Editors:
B.P.Zeigler, M.S.Elzas, G.J.Klir, T.I.0ren);
pp. 57 ~ 91,

B.S.Garbow, Boyle J.M., Dongarra J.J., Moler C.B.:
(1977) "Matrix Eigensystems Routines = EISPACK Guide
vxtension". Springer Verlag, Lecture Notes in Com~
puter Science, vol. 51.

C.W.Gear: (1971) “Numerical Initial Value Problems
in Ordinary Differential Equations". Prentice Hall,
Series in Automatic Computation.



[6.9]

[6.10]

[6.11]

[6.12]

[6.13]

[6.14]

[6.15]

- 158 -

G.H.Golub, Wilkinson J.H.: (1976) "Ill-Conditioned
Eigensystems and the Computation of the Jordan
Canonical Form". SIAM Review, vol. 18, no. 4
October 1976; pp. 578 - 619.

P.Henrici: (1964) "Elements of Numerical Analysis".
John Wiley.

P.Henrici: (1970) "Upper Bounds for the Abscissa of
Stability of a Stable Polynomial®™. SIAM Journal on
Numerical Analysis, vol. 7, no. 4 : December 1970;
pp. 538 - 544,

D.Kahaner: (1977) "A New Implementation of the Gear
Algorithm for Stiff Systems"™. Unpublished private
communication, For further detail contact:
Dr. David Kahaner, University of California, Los
Alamos Scientific Research Laboratory, Contract
W-7405-ENG-36, P.0.Box 1663, Los Alamos NM 87545,
U.S.A..

H.O.Kreiss: (1978) "Difference Methods for Stiff
Ordinary Differential Equations", SIAM Journal on
Numerical Analysis, Vol. 15, No, 1, February 1978;
pp. 21 - 58.

J.D.Lambert: (1973) "Computational Methods in
Ordinary Differential Equations". John Wiley.

B.Lindberg: (1973) "IMPEX 2 - A Procedure for Solu-
tion of Systems of Stiff Ordinary Differential Equa-
tions", Report TRITA-NA-7303 . To be ordered from:
The Royal Institute of Technology, Stockholm,
Sweden.

[6.16]

{6.17]

[6.18]

[6.19]

[6.20]

[6.21]

- 159 -

M.A.R.Mansour, Jury E.I., Chapparo L.F.: (1979) “"Es-
timation of the Margin of Stability for Linear Con-
tinuous and Discrete Systems", International Journal
of Control, Vol. 30, No. 1l; pp. 49 - 69.

A.Ralston, Wilf H.S.: (1960) "Mathematical Methods
for Digital Computers". John Wiley.

D.F.Rufer: (1977) "Numerik zur Systemtheorie®". Lec-
ture Notes. To be ordered from: Institute for Auto-
matic Control, The Swiss Federal Institute of Tech-
nology Zurich, ETH - Zentrum, CH-8092 Zurich,
Switzerland.

J.Stoer, Bulirsch R.: (1973) "Einfuehrung in die Nu-
merische Mathematik II". Heidelberger Taschen—
buecher, Bd. 114. Springer Verlag.

N.Wirth: (1973) "Systematical Programming: An Intro-
duction". Prentice-Hall, Series in Automatic Com-
putation.

or:

N.Wirth: (1972) "Systematisches Programmieren".
Teubner Studienbuecher, Informatik, Vol. 17.

(1967) "The SCi Continuous System Simulation
Language (CSSL)". Simulation, vol. 9, no. 6 :
December 1967; pp. 281 - 303.



- 160 -

VII) ASPECTS OF INFORMATION PROCESSING:

VII.l) Statement of the Problem:

So far, we have discussed the numerical behaviour of a run-
time system able to perform combined simulation. Now the
question remains: What is the easiest and most convenient
way for the user to formulate combined problems to the com-
puter so that the computer will be able to produce properly
executable run-time code? For this purpose, we will have to
identify the structural elements of combined simulation lan-
guages.

VII.2) The Elements of the Language:

A combined simulation language will primarily consist of the
well known elements of continuous and discrete simulation
languages. There are few additional elements required to

weld these two subsystems together.

A) The state-event and its associated state-conditions:

The only essential new element is the state-condition
describing conditions of the continuous subsystem status
required to branch to the discrete subsystem. The
associated state-~event, whose execution is triggered by
a state-condition, 1is an event as any other. A typical
situation is illustrated in the following:

When the angular velocity of a DC-motor <crosses
a threshold of 1500 RPM in the positive direc-
tion, the motor has to be loaded.

The crossing of the threshold by the velocity is a

B)

- 161 ~

typical state-condition, whereas loading the motor is
the associated state-event,

The state-condition, in the above problem, could be
coded using a 'CONDIT'-statement in the continuous sub-
system:

CONTINUOUS
CONDIT EV1: OMEGA CROSSES 1500.0 POS
TOL=1.0E-3 END;

and the reaction to this could then be coded by an event
description in the discrete subsystem:

DISCRETE
EVENTS
EVli: TL := 200.0 END;

(the torque load (TL) is to be reset to 200.0). The
CONDIT-statement is similar to a CSMP FINISH condition,
except that the time of the crossing is iterated until a
prespecified tolerance is met (TOL=1.0E-3), and in that
the simulation run is not terminated, but control is
handed over to the discrete simulation system. After
event handling, as described by the discrete subsystem
(DISCRETE), control is returned to the continuous sub-
system (CONTINUOUS) where the new value of TL will be
used somewhere in one or several equations on the right
hand side of the equal sign.

ations of continu s tem the dis-
cret tem:

There are none.



- 162 -

f the dis ubsystem
ti us system:

It is most commonly found that not only parameters of
the continuous subsystem (as the torque 1load TL above)
change their values at event times but that some of the
equations are replaced by others. This situation can be
taken care of by the following language elements:

a) The "one-out-of-n" situation:

There are n possible "models" out of which one is
always active. This situation can best be expressed
by a CASE-statement:

CASE NMOD OF

where NMOD is an integer number pointing to the cur-
rently active model. This language element is used
in general to describe n different functional ways
of behaviour of one model component, e.g.
n continuous branches of a discontinuous (but
piece-wise continuous) functional block.

b) The "k-out-of-n" situation:

Another frequently found situation is illustrated by
the following example:

There are n cars in a system, out of which
k are moving around and (n-k) are parked
somewhere,

This situation can be represented by the following
syntactical construct:

c)

- 163 -

FOR I:=1 TO N DO
IF CAR[I] THEN

where CAR is a boolean array with the values "true"

for cars moving around and "false" for parked cars.

For n =1 this case degenerates to a
IF-clause.

simple

Example:

Let us consider a mechanical system with a dry fric-
tion torgue (TFR) modeled somewhere in the system.
The functional relationship which models the fric-
tion torque (TFR) as a function of the angular
velocity (OMEGA) and of the driving torque (T)

be shown by the following graph:

can

TFR
LER ®j tg Q= CM
T '

* OMEGA

_o—1

Fig. 7.1: Dry friction torque versus angular velocity

In this example we face the typical "one-out-of-n"

situation, where n =3 are the three continuous

branches of the discontinuous TFR-function. Each of
them is represented by a different equation and by a



- 164 -
different set of state-~conditions.

This situation can be coded as shown in Fig. 7.2.
Using this formalism for describing a combined sys-
tem, the resulting description is not much more com-
plicated than using a normal CSSL-~type language, but
it allows the preprocessor to produce properly exe-
cutable run-time code.

- 165 -

SYSTEM
CONTINUOQOUS

MODEL DRYFRICTION (TFR <- T, OMEGA) ;
(* COMMENT: <- SYMBOLIZES A LEFT ARROW AND IS USED
TO SEPARATE INPUT FROM OUTPUT VARIABLE LISTS *)
CASE NL OF
1: TFR = Tl + CM*QOMEGA;
CONDIT MOD2: OMEGA CROSSES 0.0 NEG TOL=1.0E-3
END
END;
2: TFR = T;
CONDIT MODl: T CROSSES T2 POS TOL=1.0E-3 END;

CONDIT MOD3: T CROSSES -T2 NEG TOL=1.0E-3 END
END;

3: TFR = -T1 + CM*OMEGA;
CONDIT MOD2: OMEGA CROSSES 0.0 POS TOL=1.0E-3
END
END
(* DRY FRICTION *)

END (* CONTINUOUS SUBSYSTEM *)
DISCRETE
EVENTS
MOD1: NL := 1 END;
MOD2: NL := 2; OMEGA := 0.0 END;
MOD3: NL := 3 :END
END (* STATE-EVENTS DESCRIPTION *)
END (* DISCRETE SUBSYSTEM *)

END (* SYSTEM DESCRIPTION *)

Fig. 7.2: Combined description of a dry friction torgque



- 166 -

The mode selector switch NL determines the three continuous
branches of the discontinuous dry friction torque. Con-
tinuous simulation, as described by the CONTINUOUS block,
goes on until one of the state~conditions associated with
the currently active mode is met., At this moment, integra-~
tion is interrupted, and control is transferred to the dis-
crete subsystem modeled by the DISCRETE block. The as-
sociated state-event is executed which basically changes the
selector switch NL, in the above example, to point to an-
other mode. Now, the control is transferred back to the con-
tinuous subsystem, and the integration algorithm is re-
started to integrate the model over the next inter-event
time span.

VII.3) Reguirements of the Language:

The following section shall describe the requirements which
are to be met by a good language for combined system simula-
tion. These can be summarized in the following 10 points and
will be discussed thereafter.

a) The language should provide for flexible structures.

b) It should be extendable (open-ended operator set).

c) The language should be transparent, and the user should
have access to its primitives.

d) It should provide structures which allow the user to
achieve, as completely as possible, a "one-to-one" cor-
respondence between model and system.

e) Both syntax and semantics of the language should be easy
to learn and to remember,

- 167 -~

f) The language should contain as few elements as possible
but as many as are required.

g) Models should be codable by as few elements as possible.

h) The preprocessor should contain provisions for faith-
fully detecting coding errors.

i) The language must contain all elements required to en-
able the preprocessor to produce numerically well-condi-
tioned run-time code,

j) The . language should be "robust" in the sense outlined in
section VI.1,

Some of. these requirements are contradictory, If we want to
enable .the preprocessor to detect as many errors as pos-
sible, introduced by the user in formulating his model, the
language must contain some redundancy. This certainly com-
petes with the wish to have user's programs as short as pos-
sible.

VII.3.1) Flexible Structures:

Two different aspects can be mentioned in this context,

a). The: language should be generally applicable. It should
contain elements for proper formulation of all ima-

ginable problems., For this purpose, the language must be
constructed in such a way as to let its "atoms" {un-~
dividable building blocks) be basic primitives. All more
complex- language elements must be generated out of these
primitives. Basic primitives are the integral operator
of -the continuous subsystem and the event operator of
the discrete subsystem.



b)

- 168 -

In particular, any "master scheme" offered by the lan-
guage to simplify the coding of special situations will
be restrictive and must, consequently, reduce the fle-
xibility of the software, Typical examples of master
schemes, as they are frequently found in simulation
software, are predefined versions of PDE's for which the
user must simply provide appropriate coefficients to
formulate his particular model.

The language should provide facilities for modular pro-
gramming. One should be able to declare a part of the
system's description as an autonomous submodel which
communicates with its environment through a programmable
interface (usually a 1list of formal parameters). This
can e.g, be realized by a "MODEL"-element as shown in
Fig. 7.2 above., In the context of its environment, a
MODEL behaves in the same way as the PROCEDure construct
proposed in the CSSL definition. It is a sandwich state~
ment which is regrouped as a whole within the other
parallel statements. As in the case of the PROCEDure
construct, the formal parameters must be separated in
lists of inputs and outputs of the MODEL. They are re-
quired only to enable proper sorting of the MODEL with
respect to its environment. Global constants and state
variables need not be listed, and can be accessed impli-
citly. Contrary to the PROCEDure construct, the state-
ments of the MODEL are again parallel code, that is,
they are sorted among each other. As a matter of fact,
all modeling elements apply to a MODEL in the same way
as to the whole continuous subsystem (CONTINUOUS). It
is, in particular, possible to define MODELs in a
hierarchical manner. This language element is not iden-
tical with the CSSL-type MACRO either, as shall sub-
sequently be shown. As a matter of fact, MODEL is a new
language element which is not accessible in today's
CSSL-type languages, and which is most useful for struc-
turing problems, especially when a Lteam of several

- 169 -

scientists is involved in modeling a complex system
jointly.

VII.3.2) Extendability:

This requirement also has two different aspects.

A) The user of the software should be able to extend the

available simulation operators by his own problem—
specific ones (open-ended operator set). Such language
extensions can take place on four different levels.

a) On a very basic level, the language operators can be
extended by coding (e.g. FORTRAN) SUBROUTINES. Also
the CSSL-type PROCEDure construct belongs to this
category, and can be treated in the same manner.

b) On a second level, the language operators can be ex-—
tended by formulating CONTINUOUS and DISCRETE
PROCESSes (equivalent to the CLASS concept offered
in SIMULA-67 [7.6]). These PROCESSes can also be
preprocessed into subprograms. In the definition of
such PROCESSes, the user must include all inter-
acting variables and constants as formal parameters
of the PROCESS. Variables not included will be local
to the PROCESS when it is reused. A precompiled
PROCESS can be called in by declaring it to be an
EXTERNAL PROCESS. This is very similar to calling
EXTERNAL SUBROUTINEs. However, to allow for proper
bookkeeping, the user must, in addition, specify how
many state variables (for ODE's and difference equa-
tiqns) and how many history functions [7.23] (re-
quiring a unique identifier each) are internally
used in the PROCESS definition body.

A CONTINUOUS PROCESS is a natural extension to the
previously discussed MODEL concept. Again, parallel



<€)

- 170 -

statements are internally sorted whereas the dif-
ferential equations defined in the
CONTINUOUS PROCESS are never intermixed with others.
CONTINUOUS PROCESS bodies, however, are precompiled
into SUBROUTINEs, and calls to CONTINUOUS PROCESSes
are precompiled- into calls to SUBROUTINEs, whereas
MODELs are defined where they are used, and the re-
sulting code is directly inserted as in the case of
a CSSL-type PROCEDure., For this reason, all communi-
cating variables of CONTINUOUS PROCESSes must be in-
cluded in the list of the formal parameters (local
variable concept). The parameter list of MODELs is
required for sorting purposes only. Constants which
are used in a MODEL, but which are defined outside
of it, need not necessarily be included into the
list of the formal parameters.of-that MODEL (global
variable concept).

On a third level, the language should provide for a
MACRO facility. Formally this looks very similar to
the previously  presented MODEL and  PROCESS
facilities. It is, however, treated differently by
the compiler. All MACRO calls are first replaced by
their MACRO definition bodies, before any further
preprocessing (like sorting) takes place. 1In this
way, the statements which form a MACRO definition
can be spread throughout the system's description,
once an executable sequence of statements has been
found. Consequently, MACROs must always be kept in
source form in a "symbolic"™ 1library. The MACRO
facility is needed since it is often not pbssible to
avoid mixing equations from different MACROs to ob-
tain an executable sequence of statements. This has
been shown in [7.5]. Thus, the MACRO construct
grants a higher degree of modularity compared to the
MODEL and PROCESS constructs, but it requires each
MACRO definition body to be preprocessed together

d)

- 171 -
with the environment in which it is used.

Since the MACRO replacement must preceed all further
preprocessing activities, the MACRO feature need not
form an intrinsic part of the language definition.
It can as well be taken care of by a separate MACRO
handler which is called prior to preprocessing. In
this way, one can be more generous in the capa-
bilities offered by the MACRO definition language
(like offering interpretative MACRO handling) while
saving core memory requirements. The additionally
required computation costs are comparatively small
[7.2].

On a fourth level, the language can provide a pro-
grammable topological input description combining
the advantages of a petwork formulation with those

of an eguation oriented language. This can actually
be thought of as an extension to the previously dis-
cussed MACRO construct. When coding a MACRO, the

-modeler must declare which are its inputs and which

are its outputs. This has some disadvantages, as
will be illustrated in the following example.

Let us consider a small electrical network as de-—
picted in Fig. 7.3. The RC-circuit is to be modeled
by a MACRO.



- 172 -

Fig. 7.3: RLC-network with voltage source

Under the assumption that all differential equations
are solved for state derivatives (which is rea-
sonable, since integration is numerically much
better conditioned than differentiation), there
exists only one valid formulation for the required
MACRO. This is coded in Fig. 7.4.

- 173 -

MACRO RC1 (U2, I1 <~ Ul, 12, R, C);
MACVAR
STATE UC;
ALGEBR IR;
MACCONTIN
uc' = 11/C;
I1 = I2 + IR;
IR U2/R;
U2 = Ul - uC
MACEND (* CONTINUQUS *)
MACEND (* RCl1 *);

]

CONTINUOUS
UQ = F(TIME);
RC1 (UL, IQ <- UQ, IL, R, C);
IL' = UL/L;

Fig. 7.4: Model of a RLC-network with voltage source

UQ must be specified as an input to the MACRO since
it is an externally computed control signal. Also,
IL must be an input to the MACRO since it is a state
variable of the system which, consequently, cannot
be a computed quantity.

Let us now replace the voltage source by a current
source as depicted in Fig. 7.5.



- 174 -

-

b —————o——

Fig. 7.5: RLC-network with current source

Again, just one valid model can be specified for the
MACRO which is depicted in Fig. 7.6.

- 175 -

MACRO RC2 (U1, U2 <- I1, I2, R, C):
MACVAR
STATE UC;
ALGEBR IR;.
MACCONTIN
uc' = 11/C;
IR I1 - 12;
U2 = R*IR;
Ul =02 + UC
MACEND (* CONTINUQUS *)
MACEND (* RC2 *);

CONTINUOUS
I0 = £(TIME);
RC2 (UQ, UL <~ IQ, IL, R, C);
IL' = UL/L;

Fig. 7.6: Model of a RLC-network with current source

This time, the source current (IQ) must be an input
to the MACRO since it is an externally computed
control signal.

As one can see, two different MACROs are needed to
describe one and the same module. In both MACROs the
same equations are represented, but rearranged to
meet the demands of the required inputs and outputs.
This simple example illustrates that the MACRO ele-
ment is not really modular either. For this reason,
we define a new language element, which we call a
"MODULE", as shown in Fig. 7.7a.



- 176 -

MODULE RC (U1, U2, I1, I2, R, C);

VAR
STATE UC;
ALGEBR IR;
CONTINUOUS
uc' = 1C/Cs
I1 = IR + I2;
U2 = R*IR;

U2 = U1 - UC
END (* CONTINUOUS *)
END (* RC *);

Fig. 7.7a: MODULE for a RC-circuit

This MODULE can be used in both networks. If a
voltage source feeds the RC-circuit, the MODULE can
be called as shown in Fig. 7.7b.

CONTINUOUS
UQ = £(TIME);
RC (UL=U2, IQ=I1 <- UQ=Ul, IL=I2, R, C);
IL' = UL/L;

Fig. 7.7b: Model of a RLC-network with voltage source

If the RC-circuit 1is fed by a current source, the
same MODULE can be used as shown in Fig. 7.7c.

- 177 -

CONTINUOUS
IQ = £(TIME);
RC (UQ=U1, UL=U2 <- IQ=I1, IL=I2, R, C);
IL' = UL/L;

Fig, 7.7c: Model of a RLC-network with current source

In a MODULE, equations may be solved for any
variable, as 1long as their number is correct
(problem neither wunder- nor overspecified), and as
long as no contradictory assumptions are made. The
same variable may appear several times to the left
of the equal sign as U2 in Fig., 7.7a. Formal para-
meters of a MODULE definition need no longer be
separated into inputs and outputs. Only upon usage
of a MODULE, one has to specify which are its inputs
and which are its outputs. The logical mapping of
actual to formal parameters is no longer implicit,
but is specified by the names of the formal para-
meters as expressed in the MODULE definition header.
UL=U2, for example, specifies that the actual
parameter UL 1is to replace the formal parameter U2
of the MODULE definition header.

When defining more complex networks in this way, it
is almost unavoidable that algebraic loops result.
These are groups of algebraic equations which cannot
be sorted into any executable sequence. The simplest
example of such a loop is:

X = fctl(y)
fctz(x) .

(%
[}

This set of equations constitutes an algebraic loop

if neither fct1 nor fct2 are memory functions.



- 178 -

Memory <functions are functions whose outputs depend
only on values of inputs at past instances of time.
Typical examples of memory functions are the
DELAY-function and any explicit numerical integra-
tion scheme, Memory  functions are, thus, loop
breakers.

" True algebraic loops can be solved numeri-
cally at run-time by applying an implicit loop sol-
ver to the set of unsortable equations as it is com-
monly offered in many CSSL-type simulation systems
(e.g. in CSMP-III). This can be specified by coding
the set of equations as:

IMPLICIT (X, Y <- ; MAX = 30);
TOLERANCE X = 0.01, Y = 1.0E-3;
START Y = 1.0;

BEGIN
X = FCT1 (Y);
Y = FCT2 (X)

END (* IMPLICIT LOOP *);

which will be translated into an appropriate itera-
tion scheme by which the affected equations are
iterated to their correct solution during each
evaluation of the state derivatives, that is once or
even several times per integration step. A tolerance
can be specified for each of the implicit variables.
Starting values may be supplied for the "inputs" of
the implicit 1loop body. Finally, the number of
iterations may be limited. Even, if the previously
iterated values are used as starting vector for the
next iteration (which should always be done), this
solution can become extremely expensive. It is,
therefore, to be avoided where ever possible.

Another feasible way would be to modify equations

- 179 -

analytically at compile time to form an executable

set of modified statements. If, for instance, the
two equations have the form:

]

X
Yy

3y - 5u
-2x + 3u

the compiler can generate out of this specification
the statements:

220001 = U/7.0;
X 4.0%220001;
Y 13.0*%27z0001;

which will no longer require any iteration to be
carried out. This can be achieved by generalizing
the sorting algorithm of currently available simula-
tion compilers. The required methods can be taken
from structural algebra, at least for sets of equa-
tions which are linear in the implicit variables,
This has been shown in [7.7,7.8]1.

Only in cases where the compiler is unable to do the
required analytical manipulations of the model
structure, it should generate a call to the implicit
loop solver by notifying the user that execution of
this program may be costly.

The MODULE definition language is more general than
the MACRO definition language in two senses.

1) Besides replacement of parameters, it uses
structural algebra and formulae manipulation to
reorganize the statements.

2) A MODULE definition may contain an INITIAL
block, a TERMINAL block and also a DISCRETE



- 180 -

block in addition to the CONTINUOUS block. When
the MODULE is called from within the continuous
subsystem (CONTINUOUS), these blocks will auto-
matically be transferred to their correct loca-
tions.

The MODULE definition language is less general than
the MACRO definition language in that it does not
allow any interpretative execution, as we want to
allow it for MACROs. (This feature will be
illustrated at an example in Fig. 7.13.).

The MODULE definition language is similar to the
MACRO definition language in that all involved acti-
vities must be performed prior to any further pre-
processing, Also, the MODULE handler can (and
should) be separated from the preprocessor.

This idea has first been formulated in two
Ph.D. theses by Elmgvist [7.7] and by Runge [7.18].
Both scientists came to quite similar constructs in-
dependently. In both languages, DYMOLA [7.7,7.9] and
MODEL [7.18], there exist language elements com-
parable to the MODULE presented herein. DYMOLA pro-
Ceeds by using structural analysis of the equations
and formulae manipulation techniques, whereas MODEL
leaves the statements as they are, and uses implicit
numerical integration techniques during execution,
as has been done for years in linear network
analysis programs. Implicit integration is somewhat
more general since there exist legitimate system's
descriptions which cannot be rearranged to form an
executable set of statements (if equations cannot be
solved for a particular variable in a closed form,
or if algebraic loops are involved which inhibit
proper grouping of statements to form an executable
sequence). Using formulae manipulation is, on the

- 181 -

contrary, somewhat more robust since illegitimate
models will be automatically detected whereas this
is not necessarily the case when implicit integra-
tion is wused. Implicit integration will result in
lower compilation and higher execution cost compared
to the proposed solution technique. A combination of
both techniques could possibly be the final answer.

A MODULE can be thought of as a network element with
as many legs as there exist formal parameters of the
MODULE. Elmgvist and Runge describe their "MODULEs"
in a quite similar way to the one proposed except
that their "MODULEs" are only intended for purely
continuous simulation. However, both apply a pro-
grammable topological description to "plug” dif-
ferent MODULEs together, whereas we use an equation
oriented approach for that purpose as for the de-
scription of MODULEs. (This feature exists as an op-—
tion in DYMOLA as well,)

Let us return once more to the simple RLC-network
presented earlier. Fig. 7.8 shows how this network
can be further decomposed.



- 182 -

MODULE RES (U, I, R);
U = R*I
END (* RES *);
MODULE CAP (U, I, C);
u' = 1/C
END (* CAP *);
MODULE IND (U, I, L):
I' = yu/L
END (* IND *);
MODULE RC (Ul, U2, I1, 12, R, C);
VAR
STATE UC;
ALGEBR IR;
CONTINUOUS
CAP (UC, IC, C);
I1 = IR + I2;
RES (U2, IR, R);
U2 = Ul - UC
END (* CONTINUOUS *)
END (* RC *);
CONTINUOUS
UQ = £(TIME);
RC (UL=D2, IQ=I1 <~ UQ=Ul, IL=I2, R, C);
IND (IL=I <~ UL=U, L);

Fig. 7.8: RLC-network further decomposed

In this program, the user must still know that the
IND-MODULE has to compute the current (IL) and not
the voltage (UL) to obtain a set of equations in
integral form.

He can, however, also automate this procedure by
specifying an additional MODULE OUT which has no

- 183 -

inputs and which defines as outputs precisely those
variables needed for printout (e.g. IL and UL). This
is demonstrated in Fig. 7.9.

MODULE QUT (UL, IL);
VAR
ALGEBR UQ,IQ:
REAL C,L,R;
CONTINUOUS
UQ = £(TIME);
RC (UQ, UL, IQ, IL, R, C);
IND (UL, IL, L)
END (* CONTINUOUS *)
END (* OUT *);
CONTINUOUS
OUT (UL, IL <-);
END (* CONTINUOUS SUBSYSTEM *)

Fig. 7.9: RLC-network finally modular

As one can see, the user must specify the inputs and
outputs at MODULE calls only if he uses them
directly in the continuous subsystem (CONTINUOUS) ,
but not if they are used within another MODULE defi-
nition. This is evident since, in the 1latter case,
one can first replace MODULE calls by their MODULE
definition bodies and then handle the already ex-
panded MODULE in globo. That is, MODULEs when called
from MODULEs are treated like MACROs. In the above
modeling technique, the continuous subsystem will
consist of one single statement only to call the
root-MODULE "OUT", and the user is entirely relieved
of solving any equation for particular variables.
This modeling technique combines the flexibility and
universality of equation oriented languages with



- 184 -
the convenience of network modeling techniques.

By using a programmable topological definition fa-
cility, as offered in DYMOLA or MODEL, the user can
define base networks through equations (as above),
whereas he is provided with topological description
elements to utilize previously defined MODULES in
the system description or for the definition of
(hierarchically higher) composed MODULEs. A typical
example of such a topological statement could be:

CONNECT speed(gear) TO velocity(motor)

where "motor" and "gear" are two previously defined
MODULES, and "velocity" and "speed"” belong to the
sets of their communicating variables (formal para-
meters). This is a very natural and convenient way
to formulate complex networks. A topological de-
scription element (like CONNECT) can involve quite
complex activities, in that, for instance, the
Kirchhoff' laws can be hidden behind such a topo-
logical description. They need@ not be explicitly
specified by the user. If a MODULE is called in an
equation oriented way (as proposed in Fig. 7.7b or
Fig. 7.7c), the Kirchhoff' laws must be specified by
the wuser through additional equations. This can be
seen in MODULE RC of Fig. 7.8.

Some disadvantages of topological descriptions (and
the reasons for which we do not currently exploit
such possibilities in our software) are diséussed in
chapter VIII.

B} The system engineer should also be given the possibility
to extend the basic language definition itself. For this
purpose, the preprocessor should be constructed in such
a way that it can be easily augmented to accommodate new

- 185 -

ideas. For this task, the most recent compiler building
techniques employing structured programming and struc-
tured data representation should be applied as de-
scribed, for instance, by Wirth [7.20]. The author sug-
gests, therefore, to design the language as much as pos-
sible as a LL(1) language {(cf. section VI.1l), for which
the syntax is to be described formally either by use of
a BNF-notation or by use of syntax diagrams. Compilers
for such languages can be written in a straight forward
manner and are, thus, easily readable. Modifications can
be established 1locally, wusually without leading to
"dirty" side effects.

VII.3.3) Transparency and the Access to Primitives:

The language should be defined in such a way that its pri-
mitives are accessible by the user directly, and that it is
transparent to him how more complex building blocks are com-
posed of these primitives.

On the continuous side, the essential primitive is the
integral operator (or the "'*-symbol as in our examples,
which are equivalent). The language can provide other
dynamical operators (e.g. lead-lag compensator, pipeline,
general transfer function, etc.), which are usually resolved
by system defined MACROs. The user should then be aware how
these are composed of the primitive integral operator. The
problem is, however, not so critical in this context.

On the discrete side, the essential primitive is the event.
By use of this primitive, all imaginable situations can be
formulated. It is, however, often more convenient to combine
frequently used specific sequences of events to so-called
discrete process descriptions. Different DISCRETE PROCESSes
and different process instances (transactions) are executed
"in parallel”, and it is left to the system to sort out



- 186 -

which 1is the appropriate sequence of events during execu-
tion. This description technique is more convenient since it
is closer to the manner in which the modeler is used to look
at his problems. In this way, physical units (like a barber-
shop) can be depicted in the language as independent
PROCESSes, and the active elements in that PROCESS can be
modeled either as FACILITies and STORAGES (like the barbers)
or as transactions "flowing" through the PROCESS (like the
customers) . This method of modeling allows for much better
structuring of the model, and it is much easier, in this
way, to first formulate a rough model of the PROCESS which
can then be improved by step-wise refinement.

However, if the program so constructed behaves incorrectly,
the modeler will find it, in general, much more difficult to
detect the reason for the malfunction than in the case where
an event description was used, In the latter case, he can
use event tracing to determine why the program did not exe-
cute as expected. (For each event, a control line is then
printed on output explaining the nature of the currently
executed event.) Although event tracing principally works as
well in the case where a process description is used, the
modeler will find it very difficult to decipher the control
output obtained since he has not programmed the events di-
rectly by himself. For this reason, it is extremely impor-
tant that the user understands the way in which the complex
building blocks of his process description (like ADVANCE,
SEIZE, SENDSIG, etc,) are decomposed into their primitives,
This, as a matter of fact, is often the simplest way to ex-
plain the intricate semantics of complex building blocks to
the user. An example for this will be given in chaptér VIII.

VII.3.4) “One-to-one" Correspondence between Svstem
and Model:

When developing a simulation language, one should try to

- 187 -

construct it in such a way that the modeler can represent
the single building blocks of the physical system under in—
vestigation by (eventually composed) building blocks of the
language, and to represent the modes in which the elements
of the system cooperate with each other by constructs of the
language to combine building elements to larger building
blocks and, finally, to a functional description of the
system. This "one-to-one" correspondence of system and model
will certainly lead to a much more methodical way of
modeling and, by these means, improve the robustness of the
model. Furthermore, there are often several system engineers
involved in the formulation of one model of a complex phy-
sical system (e.g. an atomic reactor). This modeling ap-~
proach is essential to allow for a subdivision of the model
into single entities which can be constructed and debugged
independently, and which cooperate only through interfaces
which can be properly described beforehand.

The single modeling element consists partly of structures
and partly of data, These should be separable within the
building block, but both should, nevertheless, be codable
within the same building block so that one physical building
element can be expressed by one building block of the lan-
guage as well. The building elements of the physical system
are connected by topological structures. Equivalent con-
structs must be made available in the language as well.
These should, furthermore, also be descriptive elements of
the building blocks themselves to allow for a hierarchical
structuring of building blocks. Physical "modules" can, of
course, consist of partly continuous and partly discrete
elements. For this reason, it is certainly useful if this
situation can be coded in one single building block of the
language as well,

This demand conflicts with the earlier expressed wish to
have a clear separation of the continuous and the discrete
subsystem. Therefore, we suggest that the user can specify



- 188 -

MODULEs which possibly consist of both a continuous and a
discrete part, whereas the MODULE handler regroups the de-
scription in such a way that, on output, all continuous sub-
systems and all discrete subsystems are merged to form a
system's description as the preprocessor should find it to
produce numerically well-conditioned run-time code.

When a model of a physical system has been constructed, it
remains to describe in terms of language elements, the
experiment which 1is to be performed on the model. It seems
essential that different experiments can be carried out
without need for redesigning the model of the system, as one
would do in a real-world experiment. It could prove useful
to let several experiments be executed by one simulation
program. For this reason, the language should be designed to
allow several experiments to be formulated subsequently.
These are called experimental frames, or simple FRAMEs. All
these FRAMEs form together the EXPERIMENT segment of the
simulation program.

The experiment description is composed of one part descri-
bing the control signals (input signals) to the model, and
one part describing the quantities which are to be measured
and output (output signals). It may be convenient to se-
parate these two parts from each other in that the
EXPERIMENT segment only describes modes of control whereas
an OUTPUT segment is used to describe quantities to be
sampled.

The considerations in this section are strongly influenced
by the pioneer work in modeling methodology as performed by
Zeigler [7.22] and Oren [7.15,7.16,7.17]. These were the
first scientists who tried only recently to conceptualize
modeling in a methodological manner.

- 189 -

VII.3.5) Ease of Learning Syntax and Semantics:

Two main goals are to be achieved: It should be easy to
write programs by one's self in that language, and it should
be easy as well to read programs coded by somebody else.
These two goals tend to compete with each other. To meet the
former goal, we want the different elements of the language
to use the same syntactical constructs as much as possible.
To meet the latter goal, we want to be as flexible as POB-

wikle in choosing appropriate mnemonics and close to con-
versational English constructs.

To give an example of the conflicting nature of the two
goals, let us consider, once again, the dry friction example
stated above (Fig. 7.2). To meet the second goal, we intro-
duce the '='-symbol in the notation of equations of the
parallel section and the ':='-symbol in the notation of
statements of the procedural section. By these means the in-
herent difference between parallel and procedural code is
clarified, in that, for instance,

I:=1I*+1;
is a meaningful statement, whereas

I=1I+1;
is a meaningless equation. This rule will, thus, help to im-
prove the readability of programs. However, it will, at the
same time, complicate the writing of programs since it
simply introduces an additional (not necessarily required)
syntactical construct to remember.

VII.3.6) Few Languade Elements:

The language should consist of as few elements as possible



- 190 -

to make it easily learnable. On the other hand, we require
many language elements to obtain short user's programs, If
there are not enough primitives offered by the language, the
coding of complex problems may become very cumbersome, and
the resulting source program will be long. This factor is
best considered by providing a hierarchical structure of
both language and documentation. By this means, the user can
first read an introductory manual which teaches him how to
utilize basic features required for modeling of simple
problems. This can be learned in a short time. Later on,
when he realizes that his problem is more intricate than he
originally thought, he may study another manual which en-
ables him to use advanced features of the language. The user
must be able to code simple situations in a simple manner,
but should be assisted when coding more complex situations.

VII.3.7) Short Users'® Programs:

The wuser should not be required to provide unnecessary
information (like typing FORTRAN COMMON-blocks). This point
must be balanced against the following considerations:

VII.3.8) Provisions for Error Detecting:

Some redundancy should be left to the program for error de-
tecting purposes. The author feels that a modern simulation
language should require that all variables be declared at
the beginning of the program. This enables the preprocessor
to detect many typing errors. This statement has been men-
tioned on many occasions (e.g. in the development of PASCAL
[7.11]). It is, therefore, amazing that none of the CSSL-
type simulation languages, to our knowledge, have adopted
this idea, and that this fact is even praised by many de-
velopers of new simulation software.

- 191 -

VII.3.9) Well-Conditioned Run-Time Code:

This point has been discussed in detail in previous
chapters.

VII.3.10) Robustness:

This aspect has also been discussed already, partly in
chapter VI, and partly in previous remarks of the current
chapter. There is no need to resume discussion of this as-
pect here.

VII.3.11) Discussion:

If we compare the requirements of the language with the
solutions presented in previous chapters in the discussion
of the GASP-software [7.3,7.4)], we can conclude that hardly
any of these requirements have been really taken into
account when GASP-V was developed. The reason for this comes
from the fact that GASP~-V is a FORTRAN-IV subroutine
package. FORTRAN-IV is an atrocious language with respect to
structuring capabilities and programming safety.

VII.4) Ihe Structures of the Language:
VII.4.1) The OQverall Structure:

Fig. 7.10 shows the overall structure of the language re-
sulting from the previously stated requirements.



- 192 -

MODULE AND MACRO DEFINITION SEGMENT
DATA DEFINITION SEGMENT

DECLARATION SEGMENT

EXPERIMENT SEGMENT

SYSTEM SEGMENT

OUTPUT SEGMENT

Fig. 7.10: Overall structure of the language

It may seem strange that the DATA DEFINITION SEGMENT
preceeds the DECLARATION SEGMENT, but the reason for this
can easily be explained by the following example.

data definition segment:

CONST
INTEGER MAXENT=10, MAXSTOR=20, ARRDIM=25;

declaration segment:

TYPE
ENTRY = RECORD REAL EVTIME; INTEGER EVCODE, REACTNBR;
REAL ACCBPROCT, LSTARTT END;
INFO = RECORD INTEGER DUMMY, EVCODE; REAL STORTIM END;

VAR
FILE OF MAXENT ENTRY: EVENTFILE;
FILE OF MAXSTOR INFO RANKED LVF ON STORTIM: PRIOQUEUE;
FILE OF MAXSTOR INFO RANKED FIFO: WAITQUEUE; .
ARRAY [ARRDIM] OF STATE CONC;

Fig. 7.11: Example of data definition and declaration

As this example shows, it may be valuable to use previously

- 193 -

defined constants in the declaration segment.

VII.4.2) The MODULE and MACRO Segment:

This segment consists of the following four blocks.

INVOCATION BLOCK
DEFINITION BLOCK
DISPOSITION BLOCK
DESCTRUCTION BLOCK

Fig. 7.12: Parts of the MODULE and MACRO Segment
MACROs and MODULEs cannot be translated off line since their
generated code depends on the environment in which they are
used, They can, however, be stored in a "symbolic" (source
code) 1library.

The statement

INVOKE macro- or module name

can be used to load a previously stored MACRO or MODULE from
the symbolic library.

Although such an option is directly available on most com—
puters ("INCLUDE" on IBM 360/370, "*CALL" on CDC 6000-series
UPDATE, the EXPAND program on PDP-11, etc.) it is more con-~
venient to define the option in the language itself to im-
prove portability of users' programs.

DISPOSE macro- or module name

is used to store a previously defined MACRO or MODULE body



- 194 -
in the symbolic library.
DESTROY macro- or module name

is used to delete a previously stored MACRO or MODULE body
from the symbolic library.

MACRO and MODULE definition bodies have been shown in
Fig. 7.4 and Fig, 7.6 to Fig. 7.9, and require no further
discussion.

One should be able to call previously defined or invoked
MACROs and MODULEs from the definition bodies of other
MACROs and MODULEsS. An example for this has already been
shown in Fig. 7.8 and Fig, 7.9. Nesting of MACROs and
MODULEs should, in fact, be possible to any depth.

If a MODULE is called from within the continuous subsystem
(CONTINUOUS) or from within a MACRO, its inputs and outputs
must be identified, whereas this is not the case if it is
called from within another MODULE, as it has previously been
shown.

MACROs (but not MODULEs) should be interpretative. It
should, for example, be possible to specify the following:

Generate a certain block of statements as many times
as indicated by the fifth formal attribute of the

MACRO.

This could, for instance, be realized as shown in Fig., 7.13.

= 195 -

MACRO HEAT (U <~ SIGMA, UUL, UUR, CONST NR);

MACVAR

ARRAY OF [VNRV] OF STATE U;
MACCONTIN

U[1]"' = SIGMA*(U[2] - 2.0*U[l] + UUL);

MACFOR 1I:=2 TO NR-1 DO

U[vIvV]' = SIGMA*(U[VI+1V] - 2.0*U[VIV] + U[{VI-1V]);

MACEND;

U[vNRv]' = SIGMA*(UUR - 2.0*%U[VNRv] + U[VNR-1v])
MACEND

MACEND (* HEAT *);
Fig. 7.13: Example for an interpretative MACRO

where "CONST NR" indicates that this attribute must be
entered by value when the MACRO is called, and v...v means
that the actual value must be inserted here. 1In principle,
one can use the notation of any general purpose
MACRO-language like ML/I [7.1], but a compromise must be
found between the competing versatility of the tool and the
readability of the MACRO code. The author believes that not
all of the features commonly offered by general purpose
MACRO-languages are really needed in a simulation environ-
ment.

A MODULE body can be composed of the following sections:

HEADER SECTION

DATA DEFINITION SECTION
DECLARATION SECTION
INITIAL SECTION
CONTINUOUS SECTION
DISCRETE SECTION
TERMINAL SECTION

Fig. 7.14: Sections of a MODULE body



- 1% -

As one can see, the MODULE definition body can consist of
almost the same structural components as the overall program
except that no experiment description section is foreseen.
This structural complexity is required to guarantee true
modularity., This is best illustrated at an example, Let us
try to write a MODULE for the previously demonstrated dry
friction torque. This could be realized as shown in
Fig. 7.15.

MODULE DRYFRICTION (TFR, T, OMEGA, CM, Tl, T2):
VAR
INTEGER NL;
MODEL DRYFRIC;
SEVENT MOD1,MOD2,MOD3;
INITIAL
NL := 2
END (* INITIAL *);
CONTINUOUS
MODEL DRYFRIC (TFR <- T, OMEGA);
END (* DRY FRICTION MODEL *);
END (* CONTINUOUS SUBMODULE *);
DISCRETE
EVENTS
END (* STATE EVENT DESCRIPTION *)
END (* DISCRETE SUBMODULE *)
END (* DRY FRICTION MODULE *);
CONTINUOUS

DRYFRICTION (TF=TFR <~ TMOT=T, PHID=OMEGA, CM, T1, T2);

Fig. 7.15: MODULE for a dry friction force

- 197 -

This MODULE can be used several times within the continuous
subsystem. All internally declared variables (NL, DRYFRIC,
MOD1, MOD2, and MOD3) obtain a new unique name during each
expansion of the MODULE. It is always to be called from
within a CONTINUOUS section. However, the MODULE handler
will split wup the definition body and place its different
sections where they belong.

VII.4.3) Declaration and Data Definition Segments:

These segments look very similar to those of any modern
general task language (like PASCAL [7.11]).

In the declaratjon segment, one will, however, find more
predefined types than in a general task language like

STATE, DSTATE, MEMORY, MODEL

to declare state variables (for differential and difference
equations), memory variables (loop breakers of the sorting
procedure, e.g. outputs of DELAY~functions), and MODELs of
the continuous subsystem, as well as

SEVENT, TEVENT, PROCESS, FACILITY, STORAGE, GATE

to declare events (state- and time-events), to declare
DISCRETE PROCESSes with their FACILITies, STORAGEs and GATEs
of the discrete subsystem (comparable to GPSS-V [7.19]), or
to declare CONTINUOUS PROCESSES as discussed above,

In the data definition segment, one will find special con-
structs like tabular function generators which are not pro-
vided in a general task language.



- 198 -
VII.4.4) The EXPERIMENT and QUTPUT Segments:

These two segments describe the experiments which are to be
performed on the model of the system, and the output repre-
sentations to be produced.

The EXPERIMENT segment can describe several independent ex-—
periments.

experimental FRAME 1

experimental FRAME k

Fig. 7.16: Blocks of the EXPERIMENT segment

to describe different case studies. Different experimental
FRAMEs are used to describe different experiments to be per-
formed, as, for example, the use of different INTEGRATion
METHODs. Each experimental FRAME must contain precisely one
SIMULATE statement, Each FRAME can, nevertheless, involve
several simulation runs, e.g. a whole optimization study, or
sets of PARAMETERs and/or INITial CONDitions.

This separation of experiment description from system de-
scription implies that experiments have to be formulated for
the system as a whole, and not for subunits of it. In such a
language, it will, for instance, not be possible to specify
that different state equations are to be integrated by use
of different integration algorithms during one and the same
simulation run. If this feature is wanted, one has to expand
the language in such a way as to let each PROCESS be accom~
panied by a rudimentary experiment description associated
with it. This has, however, intentionally not been con-
sidered up to now for two reasons:

- 199 -

a) This feature creates many additional difficulties for
the synchronization between different PROCESSes. GSL
[7.10], for instance, a simulation language which offers
this facility, spends approximately 50% of the whole
software documentation volume to deal with the problems
arising in using several integration rules for different
submodels, and how these difficulties are to be over-
come. We found, however, very few examples up to now
where the advantages of this additional feature were
able to compensate £for the overhead required for syn-
chronization purposes.

b) Even if such a system exists, the average user will
hardly have the knowledge to make proper use of this fa-
cility.

For these reasons, we will not discuss this facility any
further.

The situation must be judged differently as soon as the
simulation compiler is laid out to produce code for several
processors to work in parallel (e.g. each PROCESS to run on
a processor of its own). In that case it will not do any
harm to add this feature to the definition set of the
simulation language since then these synchronization
problems arise anyhow, and one will have to find a solution
to them.

VII.4.5) The SYSTEM Segment:

This segment contains the system's description. It can be
structured as follows:



- 200 -

INITIAL BLOCK
CONTINUOUS BLOCK
DISCRETE BLOCK
TERMINAL BLOCK

Fig. 7.17: Blocks of the SYSTEM segment

This looks very similar to the structure of commonly used
CSSL software except that the DYNAMIC block is replaced by a
CONTINUOUS and a DISCRETE block.

The CONTINUOUS block will, in principle, 1look like the
DYNAMIC block of any CSSL-type language (e.g. CSMP-III
[7.23])., Additional elements are the MODELs which can be
nested to any depth to allow for better and hierarchical
structuring of the systems' descriptions, and the CONDIT
statement to describe state-conditions, These have been pre-
viously demonstrated (cf. Fig. 7.2).

In such a language, NOSORT and PROCEDural sections are pos-
sible to code, but they are much less "useful" than in a so
called "continuous" simulation language since the compiler
should take care that no illegitimate discontinuities are
coded in such a section. (The main advantage of PROCEDural
or NOSORT sections as praised by CSSL software is the pos-
sibility to code discontinuities by writing
IF ... THEN ... ELSE. Precisely this must not be done in a
combined system simulation language since it deprives the
compiler of any fair chance to generate numerically well-
conditioned run-time code.

There are five legitimate ways to code discontinuities in a
combined system simulation language:

a) by using precoded discontinuous functions offered by the
language (like the GASP-functions of chapter V),

- 201 -

b) by modeling discontinuities as time- and state-events in
the discrete subsystem with associated CONDIT statements
in the continuous subsystem,

c) by coding subroutines (or function subprograms) which
are declared to be CONTINUOUS SUBROUTINES or
CONTINUOUS FUNCTIONs, and which, in fact, enlarge the
set of (a),

d) by coding CONTINUOUS PROCESSes as will be illustrated in
chapter IX in an example (DOMINOC game),

e} by coding MODULEs which are kept as source modules in a
symbolic library.

The usual ways to code discontinuities are (a) and (b),
whereas (c) and (d) require some sophistication and are not
recommended to the unskilled user. (e) is not really an ad-

ditional concept, but rather an extension to improve modu-
larity.

The DISCRETE block can look like any statement oriented dis-
crete simulation language (e.g. SIMULA-67 ([7.6]). Additional
elements are

CREATE, SUSPEND, RESUME, DELETE
to activate and deactivate instances of
CONTINUOUS PROCESSes, as will be illustrated in the DOMINO
example of chapter IX.
VII.5) Global Versus Local Variables:
In the old days of information processing, computer Ilan-

guages used to be constructed in such a way as to let each
independent programming unit have its own set of variables



- 202 -

assigned to it. We call this a concept of local variables. A
typical example of this type of language is FORTRAN-IV. Each
oUBROUTINE has its own variables assigned to it which keep
their values even over several calls to the routine. Data
communication between SUBROUTINEs is only possible through
lists of formal parameters or through COMMON variables.

Good modern computer languages like PASCAL [7.11] make use
of a global variable concept. By these means, the user can
declare new variables on each hierarchical level which are
then valid in the PROCEDURE in which they are defined as
well as in any PROCEDURE called by it. There is no need to
include any variable in the list of the formal parameters as
long as the PROCEDURE is not called several times by dif-
ferent actual arguments. PROCEDUREs which are on the same
hierarchical level can communicate data with each other only
by declaring variables on a hierarchically higher level for
that purpose.

This elegant concept is very clear and clean from the aspect
of information processing. It has, however, two major draw—
backs:

a) PROCEDUREs making use of global variables (and direct
exits) may not be precompiled. They must be stored, if
at all, in source form, 1In fact, PROCEDUREs are not
really meant to be compiled separately.

b) PROCEDUREs making use of these possibilities are much
more difficult to describe since they do not communicate
data through a distinct interface only ("back-door" pro-
gramming!) .

Such a concept is, therefore, not really modular. However,
modularity is an important requisite in a simulation en-
vironment. In the design of the concepts of a simulation
language, one has to take this aspect into account, and de-

- 203 -

sign the language in such a way that provisions exist to
precompile those structural blocks which can be stored in
compiled form, For this reason, a language like PASCAL is
very well suited for the coding of a simulation compiler
which is a "closed" program, whereas a FORTRAN-like language
is much better suited for the coding of a simulation
run-time system which is, principally, to be compiled once,
but to which different subprograms are to be added for each
application problem.

In the long run, it would be more consistent with our ideas
to use a PASCAL-like general task language for which the
PROCEDURE concept has been enlarged to a PROCESS- or CLASS
concept (which again would be modular) also for the simula-
tion run-time system. However, although these concepts have
been discussed on many occasions, and although there exist
implementations of such features (SIMULA-67 [7.6)], MODULA
[7.21], PORTAL [7.12,7.13,7.14]), there does not exist any
such language to date which is widespread and which has been
generally accepted. SIMULA-67 has certainly found many
"disciples”, but even for this language there does not exist
any good library of carefully debugged CLASSes for specific
applications like numerical integration which could, for
example, compete with the Kahaner implementation of the Gear
algorithm. Such libraries exist to date only for FORTRAN-IV
and for ALGOL-60.

Moreover, the main disadvantage of using FORTRAN-1IV, namely
its unsatisfactory programming safety, is not so critical in
our application since the target language code of the users'
programs is machine generated and not hand coded. -

MODULEs and MACROs must be stored in source form, as we have
seen. They can, therefore, easily use a global variable con-
cept. Variables which are 1locally declared obtain a new
unique name each time the MODULE (MACRO) is called.



- 204 -

Subprograms can syntactically look similar to PASCAL
PROCEDUREs, to grant safe programming, but effectively they
must be rather similar to FORTRAN SUBROUTINEs to satisfy the
requirements of modularity.

It may, furthermore, also be useful to precompile PROCESSes.,
Since the statements of a PROCESS are only sorted inter-
nally, but remain together as a block, this can be done. The
resulting code is again similar to a FORTRAN SUBROUTINE,
except that the number of internally used state variables
and predefined functions must be declared when a PROCESS is
called in as an EXTERNAL PROCESS. Consequently, PROCESSes
must also use a concept of local variables for that purpose.

This concludes the description of the useful language struc-
tures and of the semantics of variables, as they seemed to
be extractable from the requirements of the language as
postulated in section VII.3.

References:

[7.1] P.J.Brown: (1975) "Macro Processors and Techniques
for Portable Software". John Wiley.

[7.2] F.E.Cellier: (1976) "Macro-Handler for Simulation
Packages Using ML/I". Proc. of the 8th AICA Congress
on Simulation of Systems, Delft, The Netherlands.
Published by North~Holland Publishing Company
(Editor: L.Dekker); pp. 515 - 521.

f7.3] F.E.Cellier: (1978) "The GASP-V Users' Manual®". To
be ordered from: Institute for Automatic Control,
The Swiss Federal Institute of Technology Zurich,
ETH - Zentrum, CH-8092 Zurich, Switzerland.

{7.4]

[7.5]

[7.6]

[7.7]

[7.8]

[7.9]

[7.10]

- 205 -

F.E.Cellier, Blitz A.E.: (1976) "GASP-V: A Universal
Simulation Package". Proc. of the 8th AICA Congress
on Simulation of Systems, Delft, The Netherlands.
Published by North-~Holland Publishing Company
(Editor: L.Dekker); pp. 391 - 402.

F.E.Cellier, Ferroni B.A.: (1974) "Modular, Digital
Simulation of Electro/Hydraulic Drives Using CSMP".
Proc, of the 1974, Summer Computer Simulation Con-
ference, Houston, Texas, U.S.A.; pp. 510 - 514,

0.J.Dahl, Nygaard K.: (1966) "SIMULA; A Language for
Programming and Description of Discrete Event
Systems”. Oslo, Norwegian Computing Center.

H.Elmgvist: (1978) "A Structured Model Language for
Large Continuous Systems". Form: CODEN LUTFD2/ (TFRT-
1015) /1-226/(1978) . Ph.D. Thesis. Lund Institute of
Technology, Dept. of Automatic Control, Lund,
Sweden.,

H.Elmgvist: (1979) "Manipulation of Continuous
Models Based on Equations to Assignment Statements".
Proc. of the 9th IMACS Congress on Simulation of
Systems, Sorrento, Italy. Published by North-Holland
Publishing Company, (Editors: L.Dekker, G.Savastano,
G.C.Vansteenkiste); pp. 15 - 21.

H.Elmgvist: (1979) "DYMOLA - A Structured Model Lan-
guage for Large Continuous Systems". Proc. of the
Summer Computer Simulation Conference, Torronto,
Canada.

D.G.Golden: (1972) "A Generalized Language for Dis-
crete/Continuous Simulation™, Form: 72-18693.
Ph.D. Thesis. Case Western Reserve University,
Cleveland, Ohio, U.S.A..



[7.11]

[7.12]

[7.13]

[7.14]

[7.15]

[7.16]

[7.17])

- 206 -

K.Jensen, Wirth N.: (1974) "PASCAL User Manual and
Report". Lecture Notes in Computer Science, Springer
Verlag.

H.Lienhard: (1978) "PORTAL Language Definition". To
be ordered from: Landis & Gyr AG, Zug, Switzerland.
(Partly in German).

H.Lienhard: (1978) "Die Echtzeitprogrammiersprache
PORTAL, eine Uebersicht", Landis & Gyr Mitteilungen
25(1978); pp. 2 - 8. (Also available in English.)

H.Lienhard, Meyer M., Steinle B., Wehrli P.: (1979)
"Simulation and Process-Control with Parallel Pro-
cesses as Implemented in PORTAL - Experience and
Outlook"™. Proc. of the 9th IMACS Congress on Simula-
tion of Systems, Sorrento, Italy. Published by
North~Holland Publishing Company , (Editors:
L.Dekker, G.Savastano, G.C.Vansteenkiste.)

T.I.Oren: (1977) "Modelling, Model Manipulation and
Programming Concepts in Simulation: A Framework".
Proc., of the IFIP Working Conference on Modelling
and Simulation of Land, Air and Water Resources
Systems, Ghent, Belgium. Published by North-Holland
Publishing Company (Editor: G.C.Vansteenkiste).

T.I.Oren: (1978) "Concepts for Advanced Computer As-
sisted Modelling". Proc. of the Symposium on
Modeling and Simulation Methodology, Rehovot,
Israel. Published by North-Holland Publishing Com-
pany (Editor: B.P.Zeigler).

T.I.0ren, Zeigler B.P.,: (1978) "Concepts for Ad-
vanced Simulation Methodologies". Simulation,
vol. 30 no. 6 : June 1978.

[7.18]

[7.19]

[7.20]

[7.21]

[7.22]

[7.23]

- 207 -

T.F.Runge: (1977) "A Universal Language for Con-
tinuous Network Simulation". Form: UIUCDCS-R-77-866.
Ph.D. Thesis. University of 1Illinois at Urbana-
Champaign, Dept. of Computer Science, Urbana,
Illinois, U.S.A..

T,J.Schriber: (1974) "Simulation Using GPSS". John
Wiley.

N.Wirth: (1976) "Algorithms + Data Structures =
Programs"., Prentice Hall, Series in Automatic Compu-
tation.

N.Wirth: (1977) V"MODULA: A Language £for Modular
Multiprogramming”. Berichte des Instituts fuer In-
formatik, Nr. 18. To be ordered from: Institute for
Iinformation Processing, The Swiss Federal Institute
of Technology Zurich, ETH - Zentrum, CH-8092 Zurich,
Switzerland.

B.P.Zeigler: (1976) "Theory of Modelling and Simula-
tion", John Wiley.

(1972) "Continuous System Modeling Program III
(CSMP-III) - Program Reference Manual". Program
Number: 5734-XS9, Form: SH19-7001-2. To be ordered
from: IBM Canada, Ltd., Program Produce Centre,
1150 Eglington Ave. East, Don Mills 402, Ontario,
Canada.



- 208 -

VIII) DISCUSSION OF EXISTING SOFTWARE:

The existing software for combined simulation has recently
been reviewed in an excellent survey by Oren [8.10,8.11). He
has collected information on about 30 different simulation
systems for combined system simulation. A book is under pre-
paration by the same author which will describe the dif-
ferent software products for combined simulation in greater
detail. For this reason, there is no need to duplicate in
this thesis the excellent work done by Oren,

Due to the fact that the term "combined system simulation"
had never before been explicitly defined, the goal of many
of the software products discussed by Oren is gquite d&if-
ferent from what has been presented herein. Many of these
programs would not even belong to the class of combined
system simulation 1languages according to our definition of
the term.

Furthermore, most of the surveyed software products have ne-
ver been released. From the 18 programs discussed in [8.10]
only 8 are listed in Appendix B under "available on ...".
Out of these only 2 programs (GASP-IV [8.15] and HOCUS-III
[8.14]) are available on several different computer makes.
Out of these two, HOCUS-III takes a quite different approach
to achieve another goal than presented herein. For this rea-
son, considering only those programs being implemented at
several different installations and being widely used by
different people, very few of them remain under considera-
tion. Others must be considered to be collections of
valuable ideas rather than simulation languages. Among those
programs which have been implemented at several installa-
tions, GASP-IV has by far the largest distribution. Together
with its descendant, GASP-V, this program follows the ideas
mentioned 1in chapter IV of this thesis. The numerical beha-

viour of the GASP software is, in our experience, the best

- 209 -

of all existing run-time packages for combined simulation.
Unfortunately, there 1is no provision in GASP for a user-
oriented input definition (no preprocessor is involved).
Therefore, none of the ideas presented in chapter VII could
be realized in GASP.

From the information processing point of view, pioneer work
has beén done in the definition of the language GSL [8.7]
following the original ideas of Fahrland [8.5,8.6}. GSL has
the best language structure of all the languages published
so far. Unfortunately, GSL is one of the languages which has
never been really released. Moreover, even GSL has severe
shortcomings both concerning the underlying run-time struc-
ture and concerning the language definition itself (the re-
cent developments in the field of information processing and
especially compiler building have not sufficiently been
taken into account). Many of the ideas presented in
chapter VII have not been accommodated in GSL either.
vVariables are, for instance, not foreseen to be declared in
GSL.

A new simulation language, COSY [8.2,8.3] (standing for
COmbined SYstems), is under development by the author. It
involves a PASCAL-coded preprocessor which translates a new
input definition language (following the ideas developed in
chapter VII) into GASP-V executable code. Thus, GASP-V will
be used as a target language for COSY. This language,
however, will not be released before 1980.

Another promising language under development which has some
resemblance to COSY is GEST [8.9]. The original GEST lan-
guage has never been released. Meanwhile, the language de-
finition has significantly been improved, and an implementa-
tion of the new version, GEST'78 [8.12,8.13], is under de-
velopment.

An entirely different approach has been taken in the defini-



- 210 -

tion of SMOOTH {8.20] which uses a network approach com—
bining GERT networks for discrete simulation [8.16] with
STATE networks for the continuous subsystem. A new program
of this class, SLAM [8.17], has been released in 1979 by
Pritsker combining Q-GERT {8.16] with GASP-IV [8.15]. This
approach certainly results in extremely short application
programs, at least for such applications for which there are
elements provided in the language. However, a network ap-
proach cannot be as general as a structured language. Benyon
[8.1] states: "Such a diagrammatic approach to modelling can
be very useful in some instances, but experience with the
continuous languages has been that the diagrams soon grow
too complicated to be enlightening, once one advances beyond
quite simple models".

Moreover, it 1is often stated that network languages are
easier to learn than equation oriented structured languages.
We would deny this statement for two reasons:

a) The number of language elements (primitives) of such
block oriented languages required to obtain at 1least a
certain degree of flexibility is much larger than for
equation oriented languages. GPSS-V [8.19], for example,
consists of 41 building blocks and Q-GERT [8.16] offers
24 of them (Q-GERT requires a smaller number of blocks
for an even higher degree of flexibility, because the
single building blocks are more decomposable and recom-
binable). All of these building blocks must be under-
stood before a truly complex application program can be
coded,

b) Since the single building block describes a rather com-
plex entity compared to a simple event description, the
semantics required to describe such an element are much
more complex. (A complex situation can either be ex-
pressed by a complex syntax consisting of many "small"
building blocks with primitive semantics, or by a simple

- 211 -

syntactical construct consisting of few "large" building
blocks with complex semantics, but never by both simple
syntax and semantics.) This can be illustrated in an
example, Considering the GENERATE-block of GPSS-V, it
seems that the meaning of this block is very easily ex-
plained,

GENERATE A, B

means that a new transaction is to be generated with a
uniform distribution in the interval [A~B,A+B]. The
novice user of GPSS-V will take this definition for
granted, and let this block be followed by a SEIZE-block
to have the transaction occupying a FACILITY. In prac-
tice, if this FACILITY is already occupied when the
transaction is born in the system, this transaction will
remain in the GENERATE-block and inhibit the generation
of new transactions. This shows that the semantics re-
quired to describe this simple situation properly are
much more complex than might be thought. Very commonly,
an error occurs due to the fact that semantics are in-
volved which have not been reported to the user in the
introductory manual.

This last example unveils another weak point of network lan-
guages: The program, as specified above, will "work" which
means that output will be produced, although this output
will be incorrect. With a high probability, the user will,
thus, never detect that his program is erroneous. The reason
for the inability of GPSS-V to detect the error, lies in the
fact that hardly any redundancy has been left in the code
which could enable the system to detect errors in the source
program., The standard of programming robustness in such lan-
guages is, therefore, generally very low. We are, however,
convinced that a lot can still be done to improve software
robustness in this respect. The problem has simply not been
considered carefully enough to date.



- 212 -

Much more promising, it seems to us, is the new network ap-
proach as proposed by Elmgvist [8.4] and by Runge [8.18]
which is based on equation-oriented languages for the con-
struction of network elements. These are then connected by a
programmable topological description facility. Intended by
both authors for continuous system simulation only, their
concept can be extended to encompass discrete system simu%a—
tion as well. This has been shown in chapter VII in the dis-
cussion of the MODULE element. Also discrete network lan-
guages could (and should) enable the user to code his own
base networks by use of an equation-oriented language. In
this way, languages 1like Q-GERT would gain remarkably in
terms of flexibility. To our knowledge, none of the cur-
rently available discrete network languages offers such
facilities.

One final insufficiency of network description facilities,
as they are offered in today's network simulation languages,
is to be discussed. This concerns their restricted capabili-
ties with respect to welding different types of networks to-
gether., Different types of continuous networks (like elec-~
trical networks, mechanical networks, hydraulic networks,
pneumatic networks, and thermodynamic networks) may communi-
cate with each other in DYMOLA and MODEL. However, they may
not by graphically coupled. "Nodes", at which different
types of networks interfere with each other, must be modeled
as base (equation-oriented) MODULEs., These correspond then
to the transducers of a real equipment.

The only quantity being common to all of these network types
is energy. If, in the model, the energy flow is represented
rather than the si 1 _flow, we obtain an easy and elegant
mean to connect different network types. This is possible by
using the bond-graph modeling technique. However,
bond-graphs, as they are understood today, are not uni-
versally applicable yet. There exist systems (e.g. in
control) where one does not get around signal descriptions.

- 213 -

For this reason, a generalized bond-~graph theory [8.8] has
recently been suggested in which energy flows and signal

flows can be modeled simultaneously. This could become an
alternative network description facility for continuous
simulation languages in the future.

Connections between discrete and continuous networks, on the
other hand, are already possible in SMOOTH [8.20], but
further research will be required to make these 1links suf-
ficiently general and flexible.

References:

[8.1] P.R.Benyon: (1976) "Improving and Standardizing Con-
tinuous Simulation Lanquages”. Proc, of the SIMSIG
Simulation Conference, Melbourne, Australia,
May 17-19, 1976; pp. 130 - 140.

[8.2] A.P.Bongulielmi: (1978) "Definition der allgemeinen
Simulationssprache COSY". Semesterwork, Institute
for Automatic Control, The Swiss Federal Institute
of Technology Zurich. To be obtained on microfiches
from: The main library, ETH ~ Zentrum,
CH-8092 Zurich, Switzerland. (Mikr. S637).

[8.3] F.E.Cellier, Bongulielmi A.P.: (1979) "The Ccosy
Simulation Language", Proc. of the 9th IMACS
congress on Simulation of Systems, Sorrento, Italy.
Published by North-Holland Publishing Company.

[8.4] H.Elmgvist: (1978) "A Structured Model Language for
Large Continuous Systems". Form: CODEN LUTFD2/ (TFRT-
1015)/1-226/(1978). Ph.D Thesis. Lund Institute of
Technology, Dept. of Automatic Control, Lund,
Sweden,



[8.5]

{8.61]

[8.7]

[8.8]

[8.9]

[8.10]

[8.11]

[8.12]

- 214 -

D.A.Fahrland: (1968) "Combined Discrete Event / Con-
tinuous System Simulation". MS Thesis, Systems Re~
search Center Report SRC-68-16, Case Western Reserve
University, Cleveland, Ohio,

D.A.Fahrland:  (1970) "Combined Discrete-Event Con-
tinuous System Simulation". Simulation vol. 14
no. 2 : February 1970; pp. 61 - 72.

D.G.Golden, Schoeffler J.D.: (1973) "GSL - A Com-
bined Continuous and Discrete Simulation Language".
Simulation vol. 20 no. 1 : January 1973; pp. 1 - 8.

D.Karnopp: (1979) "Bond Graphs in Control: Physical
State Variables and Observers®™. To be ordered from:
Department of Mechanical Engineering, University of
California, Davis CA 95616, U.S.A.; to appear in:
Journal of the Franklin Institute.

T.I.Oren: (1971) "GEST: A Combined Digital Simu-
lation Language for Large Scale Systems". Proc. of
the AICA Symposium on Simulation of Complex Systems,
Tokyo, Japan, September 3-7, 1971;
pp. B-1/1 - B-1/4.

T.I.Oren: (1977) "Software for Simulation of Com-
bined Continuous and Discrete Systems: A State-of-
the-Art Review", Simulation, vol, 28 no, 2 :
February 1977, pp. 33 - 45.

T.I.Oren: (1977) "Software Additions". Simulation,
vol. 29 no. 4 : October 1977, pp. 125 - 126.

T.I.Oren: (1978) "Reference Manual of GEST'78 -
Level 1 (A Modeling and Simulation Language for Com-
bined Systems)}". Technical Report 78-02, Computer
Science bept., University of Ottawa, Ottawa, Canada.

[8.13]

[8.14]

[8.15]

[8.16]

[8.17]

[8.18]

[8.19]

[8.20]

- 215 -

T.I.Oren, den Dulk J.A.: (1978) "Ecological Models
Expressed in GEST'78". Technical Report Prepared for
the Dept. of Theoretical Plant Ecology, Dutch Agri-
cultural University Wageningen, The Netherlands.

T.G.Poole, Szymankiewicz J.%., Holme H.G.: (1974)

MSimulation: A Problem Solving Oriented Approach".

To be ordered from: P-E Consulting Group, Ltd.,
Surrey, U.XK..

A.A.B,Pritsker: (1974) "The GASP-IV Simulation Lan-
guage”, John Wiley.

A.A.B.Pritsker: (1977) "Modeling and Analysis Using

Q-GERT Networks". John Wiley, Halsted Press.

A.A.B.Pritsker: (1979) "iIntroduction to Simulation
and SLAM". John Wiley, Halsted Press & Systems
Publishing Corp..

T.F.Runge: (1977) "A Universal Language for Con-
tinuous Network Simulation". Form: UIUCDCS-R-77-866.
Ph.D Thesis. University of Illinois at Urbana-Cham-
paign, Dept, of Computer Science, Urbana, 1Ill.,
U.S.A..

T.J.Schriber: (1974) "Simulation Using GPSS". John
Wiley.

C.EB.Sigal, Pritsker A.A.B.: (1973) "SMOOTH: A Com—
bined Continuous/Discrete. Network Simulation Lan-
guage", Proc. of the 4th Annual Pittsburgh Con-
ference on Modeling and Simulation. Pittsburgh,
Penn., U.S.A., April 23-24, 1973, pp. 324 - 329.



- 216 -

IX) COSY:

IX.1l) General Concepts:

In the first chapters of this thesis, we have discussed the
numerical requirements which should be met by a good
run-time system for combined simulation. We came to the con-
clusion that GASP-V [9.2,9.3] satisfies these requirements
to a great extent.

Subsequently, we have discussed the requirements of combined
simulation languages from an information processing point of
view, If we compare these demands with the facilities
offered in GASP-V, we must come to the conclusion that
hardly any of them have been considered in the design of
GASP-V. In fact, GASP-V is very poor in this respect. This
is not really surprising since FORTRAN-IV is also very weak
in these aspects, and GASP-V (being a FORTRAN-IV application
program) cannot provide any facility which is not supported
by FORTRAN-1IV,

The aim of this chapter is to provide a remedy for these
evident shortcomings of GASP-V. For this task, we asked our-
selves which were the structural elements characterizing a
GASP application program, and what would be the safest and
most convenient way to formulate these elements for the com-
puter. By these means, we came to a new language definition,
COSY {9.1,9.4], which should be as general in its applica-
bility as GASP-V, but, at the same time, take into account
all the requirements formulated in chapter VII. As a matter
of fact, all examples given in chapter VII use the notation
of COSY. A PASCAL-coded preprocessor translates any COSY ap-
plication program into an equivalent GASP-V application
program by generating the required "user-supplied™\
GASP-subroutines 1like STATE, EVNTS, asf.. GASP-V is, thus,
used as target code for COSY, whereas FORTRAN-~IV is the real

- 217 -

target language of COSY.

In a first pass, a MODULE handler administers the symbolic
library and replaces calls to MACROs and MODULEs by their
definition bodies. The output of this pass is still a COSY
source program with all MACROs and MODULEs being expanded.
On this level, the terms "MACRO" and "MODULE" do no longer
exist, Upon request, a listing of the original program is
output.

In a second pass, COSY programs are analysed, and three
files are generated containing:

a) all required GASP subroutines, and all GASP data input,
except for the body of subroutine STATE,

b) a "C-code" in which the equations of the continuous
block are prepared, and

¢) (upon request) a 1listing of the COSY program with ex-
panded MACROs and MODULEs, and/or crossreference tables.

The third pass contains:

a) a program which sorts the equations of the continuous
block, as specified in the C-code, into executable
order, and generates subroutine STATE, as well as

b) a program to generate subroutine JACOB (for the Jacobian
of the system) out of the C-code by means of algebraic
differentiation (optional).

A fourth "pass" is used to decode previously collected error
numbers into meaningful error messages.



- 218 -
IX.2) Restrictions:

It is evident that only such features can be offered in CoOSYy
which are codable in GASP-V as well. This imposes some re-

strictions on the definition set of COSY which are to be
discussed.

a) The data structuring capabilities of COSY are as limited
as those offered in FORTRAN-IV. The TYPE statement may
be used only to define RECORDs of file entries where a
RECORD may consist of a variable number of attributes
which are adminstered by GASP-V as forward and backward
linked linear lists, No more complex RECORD structures
are available, and no pointer variables to link RECORDs
in a programmable manner are accessible to the user. No
symbolic TYPEs can be defined. All user variables must
be declared to belong to one of the (admittedly high
humber of) predefined TYPEs:

ALGEBR, BOOLEAN, DSTATE, FACILITY, GATE,
IN?EGER, LOGIC, MEMORY, MODEL, PROCESS, RANDOM,
REAL, SAMPLE, SEVENT, STATE, STORAGE, TEVENT

or ARRAYs of them, No SETs are available either.

b) Routines, although looking very much like PASCAL
PROCEDURES, are really SUBROUTINEs in that variables
which are locally declared keep their assigned values
over several calls. Routines may not be called recur-

sively, and it 1is forbidden to leave them by a GO TO

statement (which is a very doubtful option even

PASCAL (!)).

in

€) DISCRETE PROCESSes are not as versatile as they could
be. A more axiomatic approach to their semantics would
be wuseful, but FORTRAN SUBROUTINES are a very unwieldy
carrier of such a language element, and without heavy

- 219 -
constraints not applicable at all.

For these reasons, one may conclude that other languages
like SIMULA-67 [9.5] or PORTAL [9.9,9.10] are still more
useful for purely discrete simulation problems than COSY,
although these languages offer much fewer language elements
directly dedicated to simulation, and although their wuse
will, consequently, result in longer, less safe, and less
readable application code.

These obvious shortcomings of COSY cannot be overcome as
long as there does not exist any other generally accepted
language which could replace FORTRAN-IV as a target language
for COSY. We have seen that either FORTRAN-IV or PASCAL are
not suitable for this purpose. ALGOL-60 has drawbacks
similar to PASCAL., PL/I would be a;possible candidate, but
many people consider its definition set too large and its
semantics not axiomatic enough to make this language very
enlightening either. (PL/1 programs coded by others are
usually not easily readable. This can, for instance, be seen
in the PL/I-code generated of SIMPL/I programs {9.161, a
discrete simulation language on the basis of PL/I.) PORTAL
{9.9,9.10,9.11] would, in our opinion, be a promising can-
didate, but since this language is not administered either
by a computer manufacturer or by a non-profit organization,
we give it little chance to take the barrier of internatio-
nal acceptance in the near future. We 4o not see any chance
to overcome this problem, as long as the computer manufac-
turers find a market for their hardware without offering ap-
propriate software for it. Only the customer will, finally,
be able to force them to git together to come to an agree-
ment concerning a modern, widely supported general task lan-
guage for which not only an efficient and well tested com-
piler 1is developed, but for which also cautiously debugged
mathematical application software is made available. A pos-
sible answer to this may be ADA [9.17,9.18]. Since the lan-
guage definition of ADA is a product of a standardization



- 220 -

committee, many computer manufacturers are expected to come
up with compilers for this new language in relatively short
time from now. ADA shares many good ideas with PORTAL. How-
ever, 1its language definition is much larger. It is still
too early to predict whether ADA shall become a break
through. Meant for real-time applications, ADA is supposed
to execute on process computers, that 1is (currently) on
16 bit machines. Since the language definition is rather
large, it may be quite difficult to achieve reasonably ef-
ficient implementations of the full language definition for
this type of computers, However, the inaugurators of ADA
have forbidden any subsets (or supersets) of ADA to be im-
plemented under the name of ADA. This is a positive con-
tribution as it will certainly improve the portability of
the software. It may, however, jeopardize an implementation
on process computers, The success of ADA will, therefore,
largely depend on its implementability. For the time being,
no implementation of ADA exists yet,

IX.3) Examples:

This description of COSY (as well as the previous one of
GASP-V) is not meant to replace a users' manual. The aim of
this work is to illustrate the methodological concepts which
are to be used in combined system simulation software rather
than to describe in detail any particular piece of software.
The subsequent examples may clarify the previously discussed
concepts. A full explanation of the syntax, as it is used in
COsY, will not be given. For this purpose, we refer to
[9.1]. However, since one of the goals in the development of
this new simulation language was to let programs coded in it

be easily readable, most of the statements should be self
explanatory.

- 221 -
IX.3.1) Continuous Simulation —- Van-der-pol's Equation:
statement of the problem: There are few examples of truly

"gontinuous® systems beside of (more or less trivial) school
examples. Even most of the often cited benchmark problems
for continuous system simulation belong to combined system
simulation according to our terminology. The well known
van-der-Pol equation, however, is a real continuous example.
(Even this very simple problem is numerically difficult to
treat as it has been shown in chapter VI.)

Although this thesis deals with combined simulatio?, this
problem, as well as the following two examples on 'dlscrete
simulation, have been added to demonstrate that coding pufe—
ly continuous or purely discrete problems is not more dif-
ficult using a combined system simulation language than
using e.g. CSMP-III or GPSS-V.

System description: The following ODE describes the

van-der-Pol oscillator as we use it in our example:
§ - u(l.0 - yH)y + y* = 0.0

This second order ODE can be rewritten as a set of two first

order ODE's:

x[1] x[2]
%£[2] = u(1.0 - x[1]12)x[2] - x[1]3

where:

y = x[1] .



- 222 -
Experiment description: Two experiments are planned.

a) In a first experiment, the parameter is to be varied.
It is supposed to take the five values

v = {0.1}, {0-5}1 {1.0}, {2.0}, {5.0}
In all five cases the initial conditions are:

x[1] (£=0.0)
x[2] (t=0.0)

+0.5
-0.5

b) In a second experiment, we let » = 2.0 be constant,
whereas now the initial conditions are to be varied:

(x[11),x[2]) = {(0.0,0.5)}, {(0.0,1.0)}, {(0.0,2.0)1},
{(1.0,2.00}, {(2.0,2.0)}, {(3.0,2.0)}

Qutput description: For each of the 11 runs we want to pro-~

duce a high quality graph of x[2] plotted against x[1]
(phase plane plot) on a (x,y) plotting device.

This concludes the description of the Van—der-pol system,
Fig. 9.1 shows the COSY program for this problem.

- 223 -

(SR T R T T T Ry T Ty T Y

I .
i CONTINUOUS SYSTEM SIMULATION )
! *
I VAN-DER-POL* S EQUATION )
I .

[ L L e Y]

PROGRAM VANDERPOL (INPUT,0UTPLTI:

PROJECT %3 BY iCELLIIRES

HAGRO OUTGRAPH (<- CINST NRI?
MACFOR I:=1 TO vNv DO
MACBEGIN
TITLZ SVAN-DER-PIL EQUATICNI RUM vIvEs
GRAPH {vIv) VERSJS X113 X2%
MACEND
HACEND (* OUTGRAPH *):

CONST
INTEGEY NIRUNS = L1

VAR
REAL 4Y%
ALGE3R X150RS$
STATE X1, x2¢

STORE
X1e X23

EXPERIMENT
FRAME (t* 1 »)
PARAMETER MY = tOe1y 0.5, 1.0, 2.0, S5.00%
INITCOND X1 = 0.5 X2 = =0.5%
SIHULATE FROM 0,0 72 20,0 COMINT = 0.035
END (* FRAME 1 *)¢
FRAME (* 2 %)
PARAMETER My = 2,.0%
INITZOND
X1 = (0.0*3, 1,0%321.0),
X2 = (D5, 2404 2.0)3
STMULATE FROM 0.0 TO 20.0 COMINT = 0.05
END (* FRAME 2z *)
END  (* ZXPERIMENT A_OCK *)3

SYSTEM
INETIAL
SAVE (*® SYORE DATA ON SAVE-FILE ¥)
ENDS
CONTINJIUS
X3* = x23

X2* = HY®{1.0 - Y1SQR)*X2 - X1*X1SOR}
X15QR = Xi1®Xt
END {*® CONTINUOUS SUBSYSTEKH %)
END  (* SYSTEM ODESCRIPTION *):
ouTPUY
OUTGRAZH (<- NRRUN3)
END (* JUTPYUT DESCRIPTION BLCCK *)

END .

Fig. 9.1: COSY program for the Van-der-Pol oscillator.



- 224 -

IX.3.2) piscrete Simulation (Event-Oriented) —— Joe's
r hop:

This is a known benchmark problem in discrete simulation. It

is often referred to as the "single-server/single-queue"
example.

System description: A barbershop has one barber (Joe) and a
certain finite number of chairs in the waiting area. Cus-
tomers enter the shop with their interarrival times being
exponentially distributed (which is equivalent to a ©Poisson
distribution of the number of clients entering the shop per
time unit). If Joe is idle, the newly arriving client will
be served immediately, otherwise he joins the waiting queue
which is ranked first-in first-out (FIFO). The service time
for all clients is uniformally distributed.

This situation can be modeled by using an event-oriented ap-
proach., Two types of time-events can be distinguished.

a) Arrival of a new customer. Fig. 9.2 shows the flow-chart

for the activities which are involved with this type of
event.

b}

- 225 -

Set Joe busy,
Collect statistics on
availability of Joe.

Collect statistics on time, lns_a)"t customer into
the customer has spent in w?nmg'queue_and mark
the queue, to be zero. his arrival time.

1

Schedule end-of-service
event for new customer.

[
RETURRN

Fig. 9.2: Flow-chart of the arrival event.

P

An arriving customer has to check whether the server
(Joe) is idle or busy. If he is idle, the customer can
be served immediately, otherwise he has to join a wai-
ting queue,

The arrival of customers is modeled by letting each ar-
riving customer initiate the arrival of the next cus-
tomer. This is coded at the very beginning of the event
description since it has, in principle, nothing to do
with the logical behaviour of the arriving customer,
and, therefore, becomes easily lost. The first arrival
is scheduled in the INITIAL block.

The end-of-service event. Fig. 9.3 shows the appropriate
flow-chart for this type of event.



-~ 226 -

Collect statistics on time,
the customer has spent in
the system.

Increment number of
served customers by one.

100
customers
served?

FINISH

Are more
customers
waiting?

Remove first customer
from the waiting queue,

Collect statistics on time Set Joe idle.
the customer has spent in Collect statistics on
the queue. availability of Joe.

event for this customer.

e

Fig. 9.3: Flow-chart of the end~of-service event.

A customer has been served and leaves the shop. Joe must
now check whether another customer is waiting in the
queue. In this case, the first customer can be removed
from the queue, and a new end-of-service event can be
scheduled. Otherwise, Joe can relax until the next
client enters the shop.

Experiment description: Measurements have shown that the
average inter-arrival time is 15 minutes, and that Joe re-
quires between 12 to 18 minutes to serve a client. The

simulation is supposed to go along until 100 clients have
been served.

- 227 -

Qutput description: Statistics are to be collected with re-
spect to

a) the average waiting time of the customers in the queue,
b) the average time each user spent in the shop and,

¢) the utilization of Joe (equal to the percentage of time
Joe was busy).

Fig. 9.4 shows a possible COSY program for this problem.

LI I Yy e L A R e R L )

[ )
(8 DISCRETE SISTEM SIMULATION *)
A EVENT ORIENTECD *)
(44 *y
(34 JOE*S BARBERSHOP *)
(34 *)

LI LT L S T R R R I g S e e LN TR L Y

PROGRAM BARBERSHOP (INPUT,OUTFUT)

PROJECT 52 BY FCELLIZIRE:

CONST
INTEGER MAXCOUNT = 100%

TYPE
ENTRIES = RECORD RIAL EVTIMEY TEVENY EVCODE: RIAL ARRIVYIMI END3

VAR
FILE OF 3 ENTPIES: EVENTFILES
FILE OF 50 ENTRIES RANKED FIFO: WAITQUEUES
REAL TFISYS, TIQUES
INTEGER COUNT:
BOOLEAN BUSYS
TEVENT ARRIVAL, EVDSERVICE?:
RANDOM INTERARRT,SIRVICETING

EXPERIMENT
HISTOGRAM
TIQUE: 39 CELLS WIDTH = 2.0 FUPLIM
TISYS: 20 CELLS HWIOTH = 3.0 FUPLIM
COLLECT TIQUES TISYS END3
TIMEPERS BUSY START = FALSE END;
RANDONGEN
INTERARRTY EXPOVD AVYIM = 15.0 SEED = 235773
SERVICETIN:G UNIFIRMD MIN = 12.0 MAX = 18.0 SEID = 745]1 ENDY
SIMULATE FROM 0 TO FINISH
END (* EXPERIMERT %13

]

-
w
.
o
"
=z
©



- 228 -

SYSTEM

INITIAL

COUNE 1= 0%

SCHEJJLE ARRIVAL AT INTERARRT
END  (* INITIAL =)3

DISCRETZ
EVENTS
TEVENTS 3

ARRIVAL®
(# SCHEDULZ ARRIVAL OF NEXT CUSTOMER *)
SCHEDULE ARRIVAL AT TIME + INTERARRTS
IF BUSY THEN
{® JOF IS BUSY -> PUT NEW CUSTOMER INTO 4AITING UEUE ¥)
gNSERT HATTQUEUE KWHERE ARRIVTIME := TIME END
ELSE
IF NOT 3USY THEN
BEGIN (* JOE IS IDLE -> NEW CUSTDMER IS SERVED IMMEDIATELY #)
BUSY z= TRUES (*® SEY JOE BUSY *)
TIQUE 1= §.0%
(* SCHZDULE END-OF-SERVICE EVENT %)
SCHEDU_.E ENDSERVICE AT TIME + SERVICETIM
WHERE ARRIVYIME s$= TIME END
END
ELSE ERRIREXIT 1 $IMPOSSIBLE STATE 07 BARBERE
END  {* ARRIJAL EVENT *)3

ENDSERVICE:
TISYS 3= TINE - ARRIVTIME: (® TIME IN SYSTEM *)
COUNT 2= COUNT + 13
IF COUNT » MAXCOUNT THEN FINISH;
IF ENTRYNIRIMAITQUEUE) = 0 THEN
BUSY = ALSE (* SET JOE IDLE %)
ELSE
BEGIN (% EMOVE FIRST WAITING CUSTOMER FRIM QUEUE *)
REMOVE WAITQUEUES
FIQUE 2= TINE - ARRIVTIMES (* TIME IN QJEUZ *)
(* SCHEDJLE END-OF-SERVICE EVENT
FOR NIWLY SERVED CUSTOMER *)
SCHEDULE ENDSERVICE AT TIME + SEQVICITIM
N

EVg D(‘ END-)F-SERVICE EVENT ¥)
END (* TIME EJENTS DESCRIPTION *)
END (* SVENTS DISCRIPTION ¥)
END (* DISCRETE SIBSYSTEN ¥*)
END {* SYSTEM DESCRIPTION =)

END .

Fig. 9.4: COSY program for Joe's barbershop‘(event—oriented)

- 229 -

IX.3.3) Discrete Simulation (Process—Qriented} --
Joe's Barbershop:

Let us discuss the same problem once more. This time,
however, a process-oriented approach will be used. This ap-
proach will 1lead to a much shorter COSY program since the
language elements used are highly aggregated. This is a more
natural way of describing the system, although one may find
the flow of the simulation program somewhat less trans-
parent.

In this approach, the barbershop is modeled as a
DISCRETE PROCESS in which a maximum of 51 transactions {(pro—
cess instances) can reside simultaneously. These are the
customers of the shop. Each time, a new customer enters the
barbershop, he passes through the GENERATE statement which
causes a new arrival to take place after some time, Then he
passes through the SEIZE statement in which he tries to al-
locate the FACILITY Joe., If he is successful, he passes im-
mediately to the next statement, otherwise he is detained in
an automatically administered waiting queue associated with
the FACILITY Joe until he can be served. The ADVANCE state-~
ment detains the customer for the service time. Then the
FACILITY Joe is RELEASEd, and passing through the END state-
ment, the customer, finally, leaves the shop.

Notice the different semantics of a GENERATE statement in
COSY as compared to GPSS-V [9.15]. In GPSS-V, a GENERATE
block is a source of transactions which enter the system at
the GENERATE statement in stochastic time intervals. The
GENERATE block is the source~node for transactions. The
TERMINATE block 1is, accordingly, the sink-node for the
transactions., In COSY, the source-nodes and the sink-nodes
are the PROCESS statement and the END statement, resp.. The
GENERATE statement can appear anywhere in the PROCESS de-
scription, and causes precisely one transaction to enter the
assigned PROCESS (either immediately or later) each time a



= 230 -

transaction passes through it. Also, a TERMINATE statement
exists in COSY. This is infrequently required to take an-
other transaction of the same, or of another, PROCESS out of
the system prior to its reaching the END statement.

Fig. 9.5 shows a possible CcoOSY program for solving this
problen.

(I'lll!"!.-""""‘lIC""“."#’&¥IS'¥¥¥I~¥.)

it ¥)
(&4 DISCRETE SFSYEM SIMULATION ®)
18 PROCESS ORIENTED )
[ 84 ")
[ 84 JOE®S BARBERSHCP *)
L& ®)

(I'll.'l’.I“"'l‘-“'l"'-U‘U"""G-Ul'##l"-"l)

PROGRAN 3ARBERSHOP (INPUT,QUTPUT)

PROJECT 53 BY SCELLIZRS:

CONST
INTEGER HAXCOUNT = 1003

TVPE
CUSTOMERS = RECORD INTEGER TRANSNBR, BLOCKNBR, PRIDRN3R S
REAL GENTIM, MARKTIME ENDS

VAR
FILE 07 51 GUSTOMERS RANKED FIFD:z SHOPFILE}
INTEGER CDUNT, CUSTOMERS
REAL TIQUE, TISYSS
BOOLEAN BUSYS
PROCESS BARBERSHO® FILE = SHOPFILES
RANDOM INTERARRT, SERVICETIMS

- 231 -

DISCRETE PROZESS BARIERSHOP (VAR INTEGER COUNT; INTESER MAXCIUNTS
VAR RANDOM INTERARRI, SZIRVICETIYS
VAR REAL COLLECT HISTOGRAM TIQUZ, TISYS:
VAR BOOLEAN TIMEPERS BUSY;S
VAR FILE SHOPFILE)}

TYPE
CUSTIMERS = RECOID INTEGER TRANSNBR, BLOCKNBR, PITOINBR}
REAL GENTIM, MARKTIME END;

VAR
FILE OF 51 CUSTOYERS RANKED FIFOt SHOPFILES
INTEGER CUSTOMERS
FACILITY JOES

BEGIN
(* CAUSE NEXT CUSTOMER YO ENTER 3ARBERSHIP *)
GENERATE CUSTOMER FOR BARBERSHOP AT TIME + INTERARRFS
SEIZE JOES (* SZIZE JOE IF HE IS IDLE, ELSE AAIl IN QUEJE %)
TIQUE 3= TIME - SHOPFILE.TRANSNSR.GENTIM; (* TIME IN QUIUE *)
BUSY t= TRUES
ADVANCE SERVICETIM: (* SERVICE TIME IF JOE IS IJLE *)
RELEASE JOE? (* SET JOE IOLE *)
BUSY 3= FALSES
TISYS 2= TIME =~ SHOPFILE.TRANSNBR.GENTIM; (* TIME IN SYSTEM *)
GOUNT 3= COUNT + 15 (% CUSTOMER COUNT #)
IF  SOUNT > MAXCIUNT THEM FINISH €* ENO SIMULATIDN *)

END  (* DESCRIPTION )F THE OISCRETE PROCISS 3ARBIRSHIP *) 3

EXPERIMENT
HISTOGRAM
TIQUET 30 CELLS NWIDTH = 2.0 FUPLIM = Q.03
TISYS: 20 CELLS WIDTH = 3.0 FUPLIM = 13,0 INO}

COLLECT TYIQUES TISYS ENDS
TIMEPERS BUSY START = FALSE END?
RANDOMSEN
INTERARRT2 EXPOND AVTIM = 15.0 SEED = 235773
SERVICETIMZ UNISORMD MIN = 12,0 MAX = 18.) SZED = 74301 END3
SIMULATE FROM 0 YO FINISH
END (* IXPERIMENT B_OCK *)3

SYSTEM
INITIAL
COUNT 2= 0%
{(* CAUSE FIRSY CISYOHER TC ENTER BARBERSHOP *)
GENERATE CUSTOMER FOR BARBERSHOP AT INTERARRT
END (* INITIAL *):
DISCREYE
PROCESSES

BARBERSHOP (COJNT, MAXCCUNT, INTERARRT, SEIVICITIM, TIQUE,
TISYS, BUSY, SHOPFILE)

END (* PROCESS )JESCRIPTICN ¥)
END (* DISCRETE SJIBSYSTEM ¥)
END €* SYSTEM DESCRIPTION ¥)

END .

Fig. 9.5: COSY program for barbershop (process-oriented)



- 232 -

IX.3.4) Combined Simulation -- Pilot Ejection_sStudy:

This is a commonly cited benchmark problem for “continuous"
simulation. According to our new terminology, it belongs to
the class of combined problems.

System description: The pilot ejection system, when
activated, causes the pilot and his seat to travel along
rails at a specified exit velocity VE at an angle THETAR
(measured in radians) or THETAD (specified in degrees) back-
ward from vertical, After traveling a vertical distance Y1,
the seat becomes disengaged from its mounting rails and, at
this point, the pilot is considered out of the cockpit. When
this occurs, a second phase of operation begins during which
the pilot trajectory is influenced by the force of gravity
and atmospheric drag.

This problem belongs to the class of combined systems since
the model is discontinuous at the moment when the ejector
seat is disengaged from its mounting rails. Even the number
of state equations is time dependent. The system is of
second order (NNEQD := 2) during the first phase, but it is
of fourth order (NNEQD := 4) during the second phase of the
simulation run. During the £first phase, there exists a
state-condition to establish the condition when to branch to
the second phase. During the second phase, this
state-condition is no longer active,

Fig. 9.6a and Fig. 9.6b show a graphical description of the
pilot ejection model and of the trajectories.

- 233 -

Pilot Ejection Study: Geometry

Fig. 9.6a: Pilot ejection study: Geometry.

Pilot Ejection Study: Trajectory

Pilot and seat v
at time t

Aircratt at
time t

e x
Fig. 9.6b: Pilot ejection study: Trajectory.

Fig. 9.7 defines the variables which are used in the

model.



- 234 -

Variable I Definition I Units I Value

I ——=-1 I
CD I Coefficient I - I 1.0
D I Drag I kg*m/s2 I comp.
G I Gravity I m/s? I 9.81
H I Height above sea- I I

I level I m I par.
M I Mass of pilot and I I

I seat I kg I 150.0
RHO I Air-density I kg/m® I table
S I Active surface ex- I I

I posed to the wind I m2 I 1.0
THETAD I Angle of ejection I deg I 15.0
THETAR I Angle of ejection I rad I comp.
THETAS I Angle for pilot and I I

I seat movement I rad I state
v I Pilot and seat velo- I I

I city I m/s I state
va I Aircraft velocity I m/s I par.
VE I Ejection velocity I m/s I 18.0
X I Horizontal distance I I

I from point of ejec~ I I

I tion relative to the I I

I movement of aircraft I m I state
Y I Vertical distance I I

I from ejection point I m I state
Y1 I Vertical distance I I

I above ejection point I I

I where first phase I 1

I terminates I m I 1.2

Fig. 9.7: Variables of the pilot eject

Experiment description: The experiment is

ion model.

carried out to

analyse how large the maximum velocity of the aircraft (VA)
may be, as a function of the height above sealevel (H),

in

- 235 -

order to allow for a secure ejection. An ejection is said to
be "secure" if the ejection seat clears the vertical sta-
bilizer of the aircraft which is 9m behind and 3.5m above
the cockpit in a distance of at least 2.5m, For this pur-
pose, a first simulation run is carried out with a small
velocity (VA := 30.0) at ground level (H := 0.0). If this
ejection is successful (according to our rules (!)), the
velocity is increased by 15.0 m/s, and the experiment is re-
peated. If the ejection is not successful, the height is in-
creased by 150.0 m, and the experiment is repeated. In this
way we proceed until either the velocity has reached a value
of 270.0 m/s or until the height has reached a value of
16500.0 m above sealevel, which ever occurs first. The ex-
periment cannot start at =zero velocity since, for this
velocity, the specified model is not valid.

Usually, the simulation is terminated by a CSSL-type
FINISH-statement

FINISH X = -9.0;

to indicate that the critical portion of the pilot trajec-
tory is over, However, in this way, the simulation is con-
tinued over the last integration step and may end at a much
more negative value of X. Since we are interested in knowing
the value of Y at X = -9.0 to decide upon success or failure
of the ejection, we must compute this value with some ac-
curacy. For this reason, a continuous simulation language
will have to restrict the integration step-size artificially
whereas, in a combined system simulation language, we can
replace the FINISH-condition by another state-CONDITion to
locate the critical point, X =.-9.0, precisely. The as-
sociated state-event can then be used to terminate the
simulation run.

This specific experiment description has been taken from
[9.8], except that all data have been converted to metric



- 236 -

units.

Qutput description: After each successful ejection, the
actual values of the ejection level (B), and of the aircraft
velocity (VA), are to be stored for later graphical repre-
sentation of H as a function of VA, During the last run, we

want, furthermore, to store X and Y. These values are to be
plotted versus time.

Fig. 9.8 shows the listing of a possible COSY program for
this benchmark problem.

- 237 -

(A T L e R S I I T I IR Y Y Y T P Y

[ EY)
(04 CIMBINED SYSTEM SIVULATION *)
(. *)
«~ PILOT ZJECTION STUDY *)
= *)

[Rad it dd LR I At T L Ty Ty Y Y T S

PROGRAM PILOTEJECY (INPUT,OUTPUT)}
PROJECT 56 BY SCELLIIRES

MACRO ROTATE (X, Y <- ¥, THETA, CONST FLAG)S
HACIF vFLASv = 1 THEN
HACBEGIN

X = ¥*COS (THETA) 3
¥ = ¥®SIN (THETA
MACEND
MACELSS
MACBEGIN
X 1= Y*CIS (THETA) S
Y 3= YESIN (THETA)
MACEND
MACEND (* ROTATE *)%

LABEL
1003
CONST
REAL
VE = 12.0  (* WS %),
" = 100.0 (% K& *),
1 = 4.2 1= 0 vy,
YHETAD = 15,0 {* DEGREES %,
to = 1.0 (v -~ %,
s = 1.0 (v Hew vy,
5 = 9.81  {* M/(SIS) %3
VAR

REAL JIST, H, HEL®, RHO1, THETAR, VA, VECOS,
STATE X, ¥, V, THITASS

ALGEBR D, VX, VY, GX, GY2

INTEGER PHASES

BOOLEAN LASTS

SEVENT DISENGAGE, OVERS

MODEL INOIOUTS

STORE
He VA, X, V3§

FUNCTABLE
SPLINE RHO = ( 3.0 1.293) ¢ 300.0

( 50).0 0.815) ¢ 6000.0

VESINS

1.255) ( 600.8

0.675) ( 9000.0

2 3

( 1200.0 3 1.152) ( 1800.0 3 1.082) { 3000.0
t H
1 3

(12003.0 0.313) (1500040

EXPERIMENT

INITGOND X = D405 Y = 0.0%

LASY 3= FALSES STIREOFF3

THETAR 2= THETAD/S7.2957795%

ROVATE (VESOS, VESIN <~ VE, THETAR, 2)3%

H 3= 0,03 VA t= 3).0°2

SINULATE FROM 0.8 TO FINISH COMINT = Q.2
END (* EXPERIMENT B_0OCK *)3

0.195) (18000.0

1.220)
0.955)
0.476}
0.12233



- 238 -

SYSTEM

INITIAL
HELP ®= Y& « VESINS
¥ = SQRT (HELP*{ELP + VECOS*VEGDS):
THETAS ATAN (JECOS/HELF) S
RHD1 0.5%CD"SFRHO (H) 3
PHASZ &= 13 NNEAD 3= 2
END ¢* INITYAL SESTION *1:

CONTINUIUS
ROTATE (¥X, VY <- ¥, THETAS, 1)
X® = UX - yaA3 ¥" = yv:
HODEL INDROUY (GX4GY,D <-)3
CASE PHASE OF
i3 CONOIT DISENGAGE: Y CROSSES Y1 POS ¥O_=1,)E-3 END

INDS
22 ROTATE (G(, GY <- G, THETAS, 113
V* = -D/M - Gy
THETAS™ = -GX/V$

0 = RHOL¥J*y:

CONDIT OVIR: x CROSSES -9.0 NEG TOL=1.0E-3 END
END
END  {* MODEL IN-OR-DUT *)
END (* CONTINUOUS SUBSYSTEN ¥

DISCRETE
EVENTS
OTSENGAGEs PHASE t= 2; NNEQD 2= & END:
DVIR: FINISH END
END (* STATE-EVINT DESCRIPTION *)
END  (* DISCRETE SIBSYSTENM )2

TERMINAL
IF  NOT LAST THIN
BEGIN
IF  (t4 <= 16500.0) AND (VA <= 270.8)) THIN
3ESIN
IF ¥ > 6.0 THEN
3EGIN
DIST 3= ¥ - 2.5%
FORTRAN

WRIYE (0ITPUT,100) X, ¥, DIST
100 FORMAT {2 X = $,E12.44. Y = §,E12.44F DIST = 5931244}
ENI  (* FORTRAN *)%
CROSSPLOT; VA := VA + 15.0
END ELSE
H 1= H + 150.0
EN) ELSE
3ESIN
LAST $= TRUE; STOREOM
END?
RERUN
END
END (® TERMINAL SICTION *)
EMD  (*® SYSTEM BESCRIPTION #):

ourpPuT
TITLE BPILOT EJECTION STUDY$S
LISY (ZROSSF)2 VA, H3
PLOT (CROSSF) VERSIS VAt H:
FACTOR XFAK = 2.0 YFAK = 2.0¢
GRAPH (CROSSF) VER3US VAT HI
GRAPH {TIMEFY: X, 1

END  (* JUTPIT BLOCK *)

END .

Fig. 9.8: COSY program for the pilot ejection problem,

- 239 -

Fig. 9.9 shows the resulting graph of the ejection level de-
picted versus the aircraft velocity.

PIL@T EJECTION STUOY - HEIGHT VERSUS VELBCITY @F AIRCAAFT
1=H 1. 80x18Y .

1.60 -

L ///

120 b safe ejection f
1.00 E
0.80 1
0.60 9
unsafe ejection
0.40 b
0.20 b

-0.00 k!

~0.20 T T T T T T T T T 1

~1.00 -0.50 0,00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00%102
VA

Fig. 9.9: Safe and unsafe ejection.

IX.3.5) Combined Simulation -— SCR Control Problem:

This problem requires no further explanation since it has
already been discussed in chapter III when we presented the
GASP solution to this problem. Fig. 9.10 shows the COSY pro-
gram for the SCR control problem. In fact, this COSY program
may be used to generate the GASP-V program of Fig. 3.4.



- 240 -

[Sadd il Al R Rl A L Rl e LY YN

(L)

CUNBfNED SISTEM SIKULATION

SCR CONFROL PRCBLEM

)
*)
)
*)
*)

[Aada i d Al A R R Y e

PROGRAN SCR CINPUT,0JTPUT)

PROJECY 58 BY ICELLIZIRES

CONST

REAL JE = 2040, EZTR

VAR

5.0+ ECXS
1a0s US =

= 10,0
IN2Z = 0.075, VE 1.0, BT
H o= 1.0%

ALGEBR a7, DT, IL)OV, T, UF, UFS, UL, ULS,
STATE IL, ISP, SS5, UC, UZ}$
REAL 35i, °I, ULD, WF, X, XCS, XCSP, XL, XN,

XSSP, YP3

INTEGER NWODZ
SEVENT CONDUCT, NINCONDUCT$
MODEL SHOPPERS

STORE

Ty

IL, ULSs UFS, UZS, OT:

EXPERIMENT

INITCOND IL = 0.0, UC = 1400.0, UZ = 1200.0, 335 =
INTEGRAT METHOD R(S?

SI
END

HULATE FROM 0.0 7O 3.0 COMINT = 0,02
(% EXPERIMENT *) 3

SYSTEM

INIT¥IAL
(¥ DEFINITION OF THE MATHEMATICAL NUMBER PI ¥)

PI 2= 4,D*ATAN (L.0)3%

(* DEFINLTION OF AUXILIARY VARIABLES *)
WF 3= 100.0*PI/3.03%

XL 3= XLL/CUE*UE} §

XSI 2= ZN2*ECTR/100.0%

XN 1= XL # XSI?

XS t= ZN2*ECXS/100.0%

X 1= XN ¢+ XS3

XCSP 2= 1.0/7(0.024868%HF) 3

XSP 1= XCSP/(4.0*VE)$

XCS 2= 1.0700.03*WF)3

ULD 3= 750.0%US®3QRT (2.0)%

YP 3= 7.5E+6 * 2,0/ULD:

C1 2= (YP ¢ BYT/2.00*ULD/(2.0%UZ)}

(% COMPUYED INITLAL CONDITION FOR ISP *)
ISP 3= - C13

(¥ SELECT INITIA. MODEL *)

NMOD 3= 1

END (* INITIAL *)3

2 XL1 = 2.3,

203 .0,

UzZss

XSy X3I,

- 241 -

CONTINJIUS

{* CIMPUTATION OF LIME YOLTAGE uL ¥)
UL = ULD*SIN (W*TINE)S

(® STATE SPAGE DISCRIPTION #)

ILDOT = €1.0/X2*(UL - AZ*UZ);

IL® = ILDOTS

ISP® = (L.0/XSPI*(UZ - UC)S

UC* = XCSP*ISP;

UZ® = XCS¥{AZ*IL - ISP - C1)3

{* ADDITIONAL STATE VARIABLE TO ENABLE INVERSE HIRMITE®

SS5° = ILDOT ~ Y3>%C0S (H*TIME)?

MODEL CHOPPER (AL <-)3§
CASE NYOD OF
13 AZ = 0.03%

INTERPOLATION %)

CINDIV NONCONDUGT2 IHERMITE SS5-8T P03 TO.=1.0E-13 END

ENDS
23 AZ = 1.0%

CONDIY CONDUCT: IHERMITE SS5¢3T NEG TIL=1.DE-13

END
END (* CHOPPER #)3%

COMMJUNIC DAFASTORE (<~ UL, UZ, YLDOT)S
{* STORE DATA “OR LATER QUTPUT %)
T 2= 3D.0¥TINE/PIT DT 2= OTFULS
ULS 2= 10.0%UL} UZS 3= 10.0%UZ3
UF 3= DL - ILDIT*XLS UFS = 10,0%*UF

END (¥ DATA STORAGE AT CCMMUNICATION TIME *)

END (® CONTINUOUS SUBSYSTEM *33

DISCRETE

EVENTS
CONDUCTs NMOD t= 1 ENOS
NONCONDUCTS NMID 3= 2 EMND

END (* STATE EVINTS DESCRIPTION *)

END (¥ DISCRETE SJIBSYSTEM ¥)

END

{* SYSYEM DESCREPTION *)3

ouTePuT
TITLE 3SCR - CONTRIL CIRCUIT (COMBINED MODELIN3 TESHNIQUE)SS
FACTOR XFAK = 2.0 VYFAK = 2.0%
GRAPH VERSJS Tt 1L, ULS, UFS, UZS3

TITLE BDT SIZE (COMBINED MOGELING TECHNIQUE)3S

GRAPH VERSUS T2 0T

END

END

(* JUTPUT =

END

Fig. 9.10: COSY program for the SCR control problem,



- 242 -

If one compares the COSY program of Fig. 9,10 with the CSMP
program of Fig. 3.5, one notes that the COSY program is not
significantly more difficult to code than the CSMP program.
In fact, both programs look quite similar. However, since
the COSY program is translated into GASP-V executable code,
it will run correctly and as efficiently as the GASP-V pro-
gram of Fig. 3.4, except for the (neglectable) compilation
time required for the generation of the GASP-V program.

IX.3.6) Combined Simulation (Variable Structures) --
DOMINOQ Game:

Statement of the problem: This is a new benchmark problem
which can be used to test the capability of a simulation
language to digest variable structures. A variable struc-
ture simulation is defined as any combined simulation in
which the number of differential and/or difference equations
varies with time. According to this definition, even the
simple pilot ejection study belongs to this class of
problems. However, typical examples of variable structure
systems are traffic simulation studies with a variable
number of cars in the system, the steel soaking pit and
slabbing mill [9.6,9.71, or the chemical batch process
[9.12]. A new example of this class is the DOMINO game as
will be illustrated. This may, in the future, be used as a
new benchmark problem to evaluate the capability of a com-
bined simulation language to cope with variable structures.

System description: All (identical) stones of the DOMINO
game (NBRSTONES := 55) are placed in a sequence with a dis-
tance of D space units between any two consecutive stones.
If the first stone is pushed, all stones fall flat. Each
stone has one degree of freedom to move. According to
Newton's law, it is described by a second order differential
equation, The overall order of the system is,
therefore, 110. This is a typical k-out-of~n situation with

- 243 -

k stones simultaneously moving whereas (n-k) stones are not
moving, either because they have fallen already or because
they have not yet been touched. The number (k) depends on
the distance (D) between stones.

This situation could easily be expressed as suggested in
chapter VII:

FOR I:=1 TO NBRSTONES PO
IF STONE[I] THEN

However, by these means, we must keep the attributes of all
the stones in memory.

In GASP-V, the numerical integration is organized to proceed
array-wise starting from index one of the DD-vector (deno-
ting state derivatives). To let the numerical integration
execute as efficiently as possible, we would, therefore,
like to have the state derivatives of all currently active
stones dense and always occupying the first elements of the
DD-vector. This can be achieved by addressing the state
variables indirectly through computed indices:

Jd = f(TNOW)
DD(J) = ...
By these means, we arrange for a garbage collection of state

variables.

on the 1level of COSY programming, this procedure can be
automated, For this task, we can define a CONTINUOUS PROCESS
in which the behaviour of the single STONE is modeled.
Several instances (copies) of the CONTINUOUS PROCESS can be
active simultaneously with their individual attributes being
stored in entries of a PROCESS FILE. This can be declared as
follows:



- 244 -

CONST
INTEGER NBRSTONES = 55, SIMULT = 20;

TYPE
STONEATTR = RECORD INTEGER COPYNBR, COPYSTAT, POINTDD,
POINTSS, POINTGF; STATE PHI, OMEGA;

REAL OMEGAS; INTEGER PHASE; SEVENT CRASH,
DOWN END;

VAR

FILE OF SIMULT STONEATTR RANKED LVF ON COPYNBR: STONEFILE;
PROCESS STONE FILE = STONEFILE;

Individual copies of CONTINUOUS PROCESSes can be CREATEd,
SUSPENDed, RESUMEd, and DELETEd. A PROCESS FILE must accom-
pany the declaration of each PROCESS. The PROCESS FILE is
administered by the system automatically. Its first entry is
called the "PROCESS entry". It has six standard attributes:

ATRIB(1l) = 0.0

ATRIB(2) = number of attributes of the PROCESS FILE.

ATRIB(3) = number of differential equations of each
PROCESS copy.

ATRIB(4) = number of difference equations of each

PROCESS copy.

ATRIB(5) = number of GASP-functions used by the
PROCESS,

ATRIB(6) = maximum number of entries.

Subsequent entries are used to store the attributes of one
individual PROCESS copy each. Such entries have five
standard attributes:

- 245 -

ATRIB(1l) = copy number.
ATRIB(2) = copy status with the following meaning:
:=1 : INITIAL section of PROCESS

:=2 : CONTINUOUS section of PROCESS
:=3 : STATE-CONDITION section of PROCESS
:=4 : STATE-EVENT section of PROCESS

:=5 : copy is currently SUSPENDed
:=6 : TERMINAL section of PROCESS.
ATRIB(3) = pointer to section of state space used for
differential equations of the PROCESS
ATRIB(4) = pointer to section of state space used for
difference equations of the PROCESS
pointer to section of unique identifiers
used for the GASP-functions of the PROCESS.

ATRIB(5)

Individual attributes may follow. The pointers will,
normally, not be accessed by the user when programming in
Cosy.

In our example, each entry has 11 attributes (5 standard
attributes and 6 individual attributes). 19 out of the
55 STONEs can be simultaneously active (SIMULT := 20).

As one can see, the attribute administration mechanisms are
precisely the same as they are used in a discrete
pProcess-~oriented simulation.

" Simulation of a STONE involves two different PHASEs. In the

first PHASE, a state-condition (CRASH) is active to deter-
mine the angle (PHIPUSH) at which the current STONE touches
the next one. The associated state-event will CREATE a new
STONE-copy if there is a copy left to be CREATEd. During
execution of the second PHASE, another
state-condition (DOWN) is active to determine the
angle (PI/2.) at which the current STONE touches ground. The
associated state-event DELETEs the current STONE from the
system. In the TERMINAL section of the STONE PROCESS, we



- 246 -

check on the number of entries in the PROCESS FILE. If this
is equal to two, we are obviously about to DELETE the last
STONE from the system, and the simulation can terminate. It
would be incorrect to check whether the actual copynumber
(COPYNBR) is equal to the number of stones (NBRSTONES) since
the last STONE does not CRASH into any further STONE, and
may, thus, be DOWN earlier than some of the previous ones,

Fig. 9.11 shows a STONE of the DOMINO game,

A? 4z

/

.

Y

Fig. 9.11: STONE of the DOMINO game.

The motion of the STONEs is governed by Newton's law:
THETA*OMEGA' = T
where THETA denotes the inertia of the stone, and OMEGA de-

notes its angular velocity. The torque (T) can be computed
as:

=}
[]

m*g*R*sin(@
0.5*SQRT(X*X + Z*2)

-]
]

- 247 -

At the moment of the CRASH, the horizontal component of the
impulse is transferred to the newly CREATEd STONE, whereas
the vertical component remains with the previous STONE. 1t
can be easily computed that the initial angular velocity of
the CRASHed STONE (w,, .) must be:

k+1
o = **_
Oy = KO¥uy
i . = 2
with: KO c?s—§¢ ush)
where: ¢push = sin”*((D-X)/32)
m;“ : angular velocity of previous STONE

before CRASH.

The angular velocity of the CRASHing STONE is, thereby, re-
duced to:

*
Y
with: KR

il

KR*m;'
1.0 - cos(¢push)

Experiment description: The aim of the experiment is to de-
termine the distance (D) between consecutive STONEs which
maximizes the velocity of the chain. This constitutes a uni-
dimensional nonlinear programming problem with two in~
equality constraints since the distance (D) must obviously
lie in the interval

D ¢ [X,2+X) .

To avoid execution of a (more expensive) constraint opti~-
mization, we use a modified optimization parameter:

DMOD = tan [(PI/2)*(D - 2/2. - X)]
corresponding to:

D = (2/PI)*tan™! (DMOD) + 2/2. + X



- 248 -

D I DMOD

——T -

X I negative infinite
Z+X I positive infinite

We want to utilize the precoded nonlinear programming
package, NLP [9.13,9.14], which MINIMIZEs a performance
index (F) with respect to one or several parameters, pos-

sibly subject to additional equality and/or inequality con-
straints. The performance index can be defined as:

F =1.0/V
where V denotes the chain velocity, and can be expressed as:
V = D*(NBRSTONES-1)/ (TTFIN-TTBEG)

Qutput description: We want to produce a graphical repre-
sentation of the chain velocity (V) with respect to the
distance (D).

Fig. 9.12 shows a possible COSY program for this problem.

- 249 -

[Sadadasiddadd i il i e ISP T TR TE T LTS

L 44 »)
[4d COMBINED SfSTEM SIMULATION *)
" VARIABLI STRUCTURES *)
{ *)
{~ DOMIND GANE *)
* .

Lhadandad it d i i AR T R T T

PROGRAM DOMINO (INPUT,OUTPUT) 3
PROJECT 60 BY $CELLIIRSS

LABEL
100, 2013
CONST
REAL
G = 9.81 t® M7LS%s) *),
M = 0,02 (* K6 *3,
X = 0.008 (¥ M %),
Y = 0,024 (* i *),

z B.046 (* ¥y ¥)3
INTEGER NBRSTONES = 55, SIMULT = 323

TYPE
STONEATIR = RECORD INTEGER SYONENBR, STONESTAT, POINTOD, PIINTSS, Y0INTGF;
STATE PHIA, OMEGAS REAL OMIGAS; INTEGIR PHASE;
SEVENT CRASH, DOWN END3

VAR
FILE OF STMULT STOVEATTR RANKED LVF ON STONENBR: STONEFILES
REAL D, DMOD, HEI5HT, HELP1, HELPZ, HELP3, IM>, Kd, K3, KR, PHIPUSH,
PIy »I2y PIEJAs Ry STNRM, THETAA, V, XSQR, Z3QR3
INTEGER NEWSYONES
PROCESS STONE FILE = STONEFILES

STORE
Dy Vy, STNRNS



- 250 -

CONTINUQUS PROCESS STONE t<- REAL HELGHT, IMP, K4¥, K), R, P{IPUSH, PI, PIZ,
VHETAAZ INTEGER NBR3TONIS, SIMU_T; VAR FILE SF1%

TYPE

SA = RECORD INTESER SN, STONESTAT, POINTDD, 2DINTSS, POINTGES
STATZ PHIA, OMEGA? REAL OMEGAS: INFEGER PHASE;
SEVENMT CRASH, ODOWN END3

VAR
FILE OF SIMULT SN RANKED LVF ON SNt SF3
ALGE3R T3

INTEGER NEWSTONZ}
MODEL TERMINS

BEGIN
INITIAL
RIFTH SF.SN DD
AEGIN
PHIA = 0,.0%
IF SN = 1 THEN
OMEGA 3= HIIGHT*IFPP/THETAA
ELSE
OHEGA &= KI*OMEGASS
PHASE 2= 13 CRASH 3= 0% DOWN 2= 0
END  (* NITH STAYEHENT )
END (* INITIAL >ARYT OF FVHE CONTINUDUS PROCESS SCONZ *)3

CONTINUOUS
WITH SF.SN 00
BEGIN
T = KH®SIN (>HIAa)3
OMEGA® = T/THETAAS PHIA® = OMEGAS
MODEL  TERMIV €<- PHIA)Z
CASE PHASE OF
it CONDIT CRASHz PHIA CRDSSES PHIPUSY POS TOL = 1.0E-3 :ND
ENDS
21 CONDIf DOMN2 PHIA CROSSES PI2 POS TO. = 1.0€-3 END
END
IND (* MODEL TERMIN *)
END (" WITH STATEMENT #)
END (* ZONYINUDIS PART OF THE CINTINUOUS PRICESS STINE *)3

DISCRETE
CRASH?
RITH SF.SN D)
BEGIN
PHASE 3= 23
IF SN < N3RSTONES THEN
BEGIN
CREATE STONEINEWSTONE] WHERE OMEGAS t= O01EGA END3
OMEGA t= KR®OMEGA
END
END {* WITH STATEMENT »)
END (¥ CRASH *}3
DOHNZ DELETE S¥,SN  END
END  (* DISCREVE PART OF THE CONYINUBUS PROCESS 3TONZ *);

TERMINAL
IF  ENTRYNBRIS®I <= 2 THEN FINISH
END (¥ TERNINAL PART QF THE CONTINUDUS PROCISS STONE *)

END (% DESCRIPTION )F THE CONTINUOUS PROCESS STINE *)%

- 251 -

EXPERIMENTY

PI 3= &, 0%ATAN (1.3)5 PI2 3= PI/2.0% HEIGHT = Z/2.0% IM> 2= 1.03-53

XSQR 3= X¥X; ZSQR 1= Z¥Z3 HELP1 3= XSQR ¢ ZSIR3 .
ngfAA 5= H;NELPIIS.Ul R 3= 0.5%SQRT (HELP1135 KM 1= M®G®R3
MINIMIZE
PIEVAT DMOD 1= 3,05 7TOL = 1.0E-% ENDS
SIMULATE FROM 0.0 TD FINISH;
PIEVA 3= t.0/V
END (* OPTIMIZATIOIN *13
D = (Z/PIV®ATAN (OMOD) + Z/2.0 & X3
¥ 3= 1.0/PIEVAS
FDRTRAN 10ly vl D
HWRITZ (OUYPUT .
101 FORMAY (SiTHé CHAIN VELOCITY TAKES ITS MAXISAL WALUE OFE,E42.4,

T M/SE/E AT A DISTANCE OFB 4E12.4,f M BETWEEN TWO STONES.$)

END {* FORTRAN ¥*)
END (* EXPEITMENT B.OCK *)3

SYSTEM

IN:EE:; $= 0 - X3 HELP3I 3= ZSQR - HELP2®HELP2] K) 1= HEL>3/ZSQR}
PHIPJSH 2= ASIN CHELP2/Z)% KR t= 1.0 - SQRT (KO §
D $= (Z/PIV*ATAN (DMDOD) ¢ Z/2.0 ¢ X3
CREATE STONEINEWS TONE]

END (® INITIAL SESTION *)3

CONTINJOUS
STONE (<= HEIGHT, IMP, KM, KO, KR, PY4IPUSH, >I, 212, THETAA,
NBRSTOVESy SIMULT, STONEFILE)}
END (* CONMTINUDUS SUBSYSTEM *) 3

TERMINAL

V 3= D®FLOAT (NBISTONES- 1)ITIHE'

STNRY 1= FLOAT ({MAXQISTONE) - 1)/50.0%

CROSSPLOT 3

FOREtE UTPUT,100) O, ¥ STNPH

£ €0 ) + Vo .

xunuggznnr (2 D =B4E12.44% V =3,E12.4,9 STNRM =8,112.4)

END (* FORTRAN
END (* TERMINAL SECTIDN *)

ENB  (* SYSTEM DESCRIPYION %) 3

TPUT .
oUTITLE $CHAIN VELOSITY AND MAX. NR. OF STONES ¥ERSJS JENSITYS;

FACTOR XFAK = 2,0 YFAK = 2,0%
GRAPH {CROSSF) VERSUS D2 Vv, STNRM
END  €* JUTPUT BLOCK ¥}

END o

Fig. 9.12: COSY program for the DOMINO game.



- 252 -

Fig. 9.13 shows the GASP-V program which is produced by the

COSY preprocessor.

®CHAIN VELOCITY AND MAX. NR. OF STONES VERSUS DENSITY
FACTOR{+2.0,2.0)

CRAPHXY{CROSS)D,V, STNRY

END

PROGRAM MAIN (IN>UT,OUTPUT,MONITRyTIME,CROSS,SAVE,TAPE1=MONITR,
1TAPE2=TIME,TAPE3=CROSS, TAPEL=SAVE, TAPES=INPUT,TAPE6E=0UTPUT)

COMMON /GGCOM1/ ATRIB{25) ,JEVNT,MFA,MFEC100) 4, MLE (100) ,MSTOR,NCROR,N
ANAPOJNNAPTsNNATRy NNFIL, NNN(100) s NNTRY4NPRNT yPPARM(5 D44} , TNOW, TTBEG
24 TYCLP, TTFIN, TRI3(25),TTSETY

COMMON /NLP/ NP,2AC40),FHIN,FTOL,IDER,TOUNFE,FETOL {40} yNFI,FITOL(
1403 4FAC, IND, FRES,) FERES(40),FIRES (410)

EXTEINAL PIEVA

COHMON /UCOML/ GyM4X Y2 ,8BRSTO4STHULT,0,0M00,HEIGHT 4HELPL ,HELP 2, H
1ELP3s TH? , KMy KOy KXy PHIPUS 4 PI4RoSTNRM, THETA, ¥, XS2R, ZS QR4 NEWSTO 4 XSTON
2E

REAL M, IMP,KM,KO,KR
INTEGFR SIMUL ¥, XSTONE
COMMON QSETI(416)
NCRDR = &

NPRNT = &
¢
C**¥%*CONSTANTS
c

G
M
X

J.81
0.01
0.008

Y G.024

z 0.Cué
NBRSTD = 55
SIMU.T = 32

Wowonouon

c
CESPYSEXPEIIMENT
c

PI = L G*ATAN (1.0)
HEIGHT = Z/2.0
IMP = 1,0E-5

XSqrP = x*x
7SR = 7*Z
HELPL X30R + Z3QR

THETA = M®HELPL1/3.0
® = 0.5%*SORT (HE.P1)
KM = Me;ep

LEF¥vsMINIMTZATION

NP = 1
PAL1Y = 0.0
FMIN = 1.0E18
FTOL = 1.0E-4
IDER = 0
Iou
NFE
NFI
FAC 0ot
CALL NLP (PIEVA)
CALL SUMRY
IF (INDJNE.O) WRITE (NPRNT,13013) IND
10013 FORMAT (34HO¥****ERROR IN OPTIMIZATION: IND =,I5)

[T
oo w

D = (Z/PI)*ATAN (PA(1)) + (Z/2.0) + X
V = 1.0/FRES
WRITE (NPRNT,101) V, )
101 FORMAT {(46HLTHE CHAIN VELNCITY TAKES ITS MAXIMUM VALUE OF,
1E12.4,04H M/S/17TH AT A DISTANCE OF,E12.4,
223H M BETWEEN TAO STONES.)

CALL BYE
END

- 253 -

SUBROUTINE PIZyA

GCOMMON 7FUNCT/ IFUN'P(EU).FsFEI(bD).DF(bOl,DFEI(1600),IERR
COMMON /UCOMLi/ G.H,X.V,Z'NBRSTO,SIHULT,D,DiDD,HEIGHT;HELP1'HEL’2,H

1EL93.IHP,KH.K0.KR.PHIPUS,PI,R.STNRH,THETA'V,XSIR:ZSQRy‘EHSTO,XSTON
2E

REAL M, IMPy KM, K04 KR
INTEGER STMULT, XSTONE
CALL G5ASP

F = 1.07v

RETURN

END

SUBROUTINE INFLC

COMMON /FUNCY/ IFUN.P(bﬂ).F.FEI(bO).DF(bO).DFE[(iBDD)'[ERR
COMHON /UCOM1/ GnHvX,V,l-NBRSTOqSIHULT'D'D!DD'HEIGHT.HELPI.HEL’Z.H

;ELPS-IIP,KN.KO.KR,PHIPUS.PI;R,SYNRH,THETA,',XSlR,ZSQRyIEHSTO;XSTON

REAL My IMPyKM3KOoKR

INFEGER SIMULT, XSTONE

OIMENSION ATR2®)

HELP2 = D - X

HELP3 = ZSQR -~ HELP2¥HELP2

KD = HELP3/2SQR

PHIPUS = ASIN {(HELP2/2)

KR = 1.0 - SQRT (€KO)

D = (Z/PIV*ATAV (P(1)) + (2/2.0) + X
XSTONE = INITM (SINULT, 2, 0,y 4, 0)
NEHSTO = NEW (KSTONE)

CALL CREAT (XSTONE, NEWSTO, ATR)
RETURN

END

SUBROUTINE STATE

COMNON /UCONL/ G-H'XsY'Z'NBRSTO'SIIULTuDvD!DDydEIGHT.HELPI'MELPZ'H

;ELPS,IHP,KH.KD.KR,PHIPUS.PI,R'STNRH'THETA'V,XS]R,ZSQR,‘EHSTO,XSTDN

REAL Mo IMPy KMy <04 KR
INTEGER SIMULT, XSTONE
CALL GMODL (XSTONE)
RETURN

END

SUBROUTINE MOJEL (NNOD, NGOP, NSTAT)
COMMON 7UCOM1/ GaH-X‘Y'Z,NBRSTD,SIHULT.D,D!OD,HEIGHTgHELPi.HELPZ,H
:ELPS,IHP'KH,KO.KR.PHIPUS:PI'R'STNRHgTNETA'U.XSQRyZSQRp‘EHSTO,XSTON

REAL My INP,KMs<00KR

INTEGER SIMULT, XSTONE

CALL STONE (HZIGHT, IMF, KM, KO, KRy PHIPUS, PI, THETA, NBRSTI)
RETURN

END



- 254 - -~ 255 -

SUBROUTINE STONE (HEIGHT,IMP,KH,KOyKRePHIPUS,PT,THETA,KBRSTO}

REAL TMP,KH, KOs KR

INTESERY PHASE ,CRASH, DONN

COMHON /GCOM1/ ATRIB (2514 JEVNT,HFA, HFEC100) 5 BLE (100} 4 MSTOP,NCROR, N

INAPO, NNAPT ,NNAT R, NNFTL, NNQ (1001 s NNTRY JKPRNT , PPARM (50441 o TNOW, TTBEG

2, TYCLR, TTFIN, TTRIBL25), TTSET

GONHON /GCOM27 DI (1303,NDLIL00) «DYFUL+DTNOH, ISEES ;LFLAG(50) 4 NFLAG,

INNEQD,NNEQS, NNEQT , S5 (1301 ,S5L €100 , TTNEX

CONNON /HGOH1/ JIDD, JIGF 4 JJSS 1KKATR, HHE OP, NNGOP , NNDDy NNGF ,NNHOD NN

1SS,NNSTT,NNZZZE11)

DIMENSTON IIZZZ(11}

EQUIVALENCE {II2ZZ11),43003

DIMENSION ATRIZ0)
. GO T2 (10000,10001,10002,10003,10004,10005), NNSTT SUBROUTINE OT2UT
Ce®®s®INITIAL SECTION COMMON /GCOML/ ATRIB(25),JEVNT,NFA,MFEC130) ,MLT (100) +M3TOP,NCROR,N
c INAPO, NUAP T, NNAT Ry NNFIL,ANQ(1GE) o NNT RY ,NPRNT ,PPARM{50,4) , TNOW, TTBEG

10000 CONTINUE 2 TTCLRy TTFIN,YIRIBI25), TTSET

SS(JJDD+1) = 0.0
IF (NNCOP-1) 10007,20006,10007 COMNON /GCOM4/ DBTPLT(10),HHLON(25) 4 HHHI D (25) s IICRD, TITAP{10) ,JJCEL
O T obae2) = WEISHT™ NP/ THETA 10500 ,LLABGI25:2) «LLABH (25,2) sLLABP (11,2) 4LLABT 425, 2) yLLPHI{ 10} 4LL
60 T2 10008 2PLI(10) 4 LLPLY,_LSUP €15) ,LLSYM(10) ,MMPTS,NN3EL (25) s MNCLT y NNHIS I NPL
10007 ggr:::ggsm - oaTRIB®) ITyNNPTS(L10) yNNSTA NNVAR (10) yPPHI(10) 4PPLOELD)
L0008 comrrnoel © COMMON /GCOM6/ EENQ(100), IINN(10D) o KKRNK (100} 44MAXI (1007 ,00QT IN(100
PHASE = 1 1) ¢SSOBV(25¢5) ¢SSTPV 254 €3 ,YYNQ( 100}
é;:é:(?f FLOAT (PHASE) COMMON /GCOML37 BYFIX,OTNEX4EEPS,IIDIS, IIR: Y + IIRGA, TIR38, JJCRD, KKE
ATRIB(10} = FLOAF (CRASH) L1EP s KKILLy MMCNTy HMETH, MNINT,NNITR, NNREJ, NNSTP
2?:2;;2: = FLOAT (DOWN} COMMON /0COML/ XXX{3)
RETURN COMMON /UGOM1/ GeMyXsY929NBRSTO,SIMULT, D 1 DMODLHEIGHT yHELP 14 HEL22,H
[ LELP3 4 TP ¢ KMyKOy KRePHIPUS,PI,R,STNRM, THETA,¢ 3 XSIRWZSAR,NEUSTO, XSTON
g-----cnunuuous SECTION 2E
10001 CONTINUE REAL My IMP,KM,K0,KR
T = KH*SIN (SSCJJ00+1)) INTEGER STIMULT, XSTONE
DDCIID0e 4y = Sers0gens V = DYFLOAT (N3RSYO - 1)/TNOW
RETURN STNRM = FLOAT [MMAXQUXSYONE) - 13/50.0
c XXXt1) = D
Ce®wsrSTATT CONDITION SECTION
¢ XXX{2) = v
10002 CONTINUE XXX{3) = STNRM
PHASE = IFIX (ATRIBL(9))
60 T2 (10009,10010), PHASE CALL CROSS
10009 CONTINJE WRITE (NPRNT,110) D, V, STNRH
(g ROSS (44008l D4 0.0, PHIPUS, +1, 1.0E-3) 100 FORMAT (4H D =, E12.444H V =,E12.4,8H STRNM =,E12,4)
RETUIN JJCRD = TICRD
oo gg:;muimss (JJDD¢1y Ty 0.0, PI/2.0, #1, 1.0E=3) MMINT = 1
= #1439, 0.0, <0y #1, 1.0E-
ATRIB11) = FLOAT (DOWN) RETURN
RETURN END
c
Crese¥DISCRETE SECTION
¢
10003 ggx:"gExnx ATRIBC101) SIMULATION PROJECT NUMBER 60 BY CELLIER
IF (CRASH.EQ.0) 6O TO 10011 DATE 2/ 67 1379 RUN NUMBER 1 OF 1
ATRIZ(10) = 8.0 LLSUP=000080000000000 GASP V.2 VERSION 25JANT9
PHASE = 2 5
ATRIBI9) = FLOAT (PHASE) NCRDH: 5 MFmI‘: 6 RNONT= 1 1ICRs= 3 TISAV= o IITIM= 2
IF (NNCOP.GE.NARSTO) GO TO 10012 Hwore= 3 s ’
NEWSTO = NEW (NN4Y0D) RNAHS=D v STHRM
ATRU3) = SS{J20D¢2)
CALL CREAT {MNMID, NEWSTO, ATR) . - . - .
1onte SAHIIEZ) = RTSSCIIZ) ) S ST S S S+ L B T G
REYUIN KKRNK= ( 1
10011 CONTINUE
DOMN = TFIX (ATRIBI11)} = .
IF (DONN.EQ.G) IETURN IIEVTs 1 LLERR= [ AAERR= +1000E-03 RRERR= »1000E-03
ATRIB{11) = 0.0 DYNIN= +1000E-0S DTHAN= «2000£900 DYSAV= «2000E+00
gé';II;QNDLE'E {1HOD, WNGOP, ATR) NS TOP ‘l JICLR= 1 JJBEGE 1 TICRO= 13 TTREG= 0. TYTFINs O
SJFIL= 1
Ce®®vepASSIVE SECTION -ﬂfﬁﬁmni"- NEW VALJE COMPUTSD FORY HNFIL= 2
10004 CONTINUE = NEW VALJES FORE  NNATR= 1 NHTRY = 3
RETURN

SESSSUARNING - NEW VALJE COMPUTTD FORT WNSET=  &42
¢ @B BSSHAKE SURE YOU MAVI ENOUGH SPACE RESERVED FOR ARRAY QSET,
C®®¥S*TERMINAL SECTION
<

s TN .2y CALL FINIS Fig. 9.13: GASP-V program for the DOMINO game.
RETURN
END



- 256 -

Subroutine STONE may be precompiled and stored in compiled
form for later reuse. In this case, however, we would most
probably remove the "CALL FINIS" statement from its TERMINAL
section and replace it by setting a parameter which is re-
turned to the user to let him decide what he wants to do.

Fig. 9.14 shows a graphical representation of the chain
velocity as well as of the maximum number of concurrently
moving stones (divided by 50.0 to obtain compatible scaling

factors for both curves) plotted versus the distance between
stones.

CHAIN VELBCITY AND MAX. NA. BF STANES VERSUS DENSITY

1=V 8.00x1077
2=STNAH

o |
&.00 J
B

~

4
200
|

000  A—-— —_—

~1.00

~2.00 T T T U —r— T T T T

0.50 1.00 1.50 2.00 2,50 3.00 3.50 4,00 4,50 5.00 5.50010-2
0

Fig. 9.14: Chain velocity versus distance between stones.

The maximum chain velocity (V) for this problem is
0.6277 m/s. It is reached at a distance (D) of 0.02147 m
between stones (measured between centers of neighbouring

- 257 -

stones).

A real experiment would lead to larger vwvalues for V. The
model, as it has been formulated, does not account for the
additional weight originating from stones laying on each
other's "back". 1In a real experiment, one can observe that
the chain velocity accelerates during the early stages of
the experiment. A more realistic model would, however, be by
far more complicated, and, therefore, not very intelligible.

References:

[9.1] A.P.Bongulielmi: (1978) "pefinition der allgemeinen
Simulationssprache COSY". Semesterwork, Institute
for Automatic Control, The Swiss Federal Institute
of Technology Zurich. To be obtained on microfiches
from: The main library, ETH - Zentrum,
CH-8092 Zurich, Switzerland. {(Mikr. S637).

[9.2] F,E.Cellier: (1978) "The GASP~V Users' Manual". To
be ordered from: Institute for Automatic Control,
The Swiss Federal Institute of Technology Zurich,
ETH - Zentrum, CH-8092 Zurich, Switzerland.

[9.3] F.E.Cellier, Blitz A.E.: (1976) "GASP-V: A Universal
Simulation Package”. Proc. of the 8th AICA Congress
on Simulation of Systems, Delft, The Netherlands.
Published by North-Holland Publishing Company
(Editor: L.Dekker); pp. 391 ~ 402.

[9.4] F.E.Cellier, Bongulielmi A.P.: (1979) "The COSY
Simulation Language". Proc. of the 9th IMACS Con~
gress on Simulation of Systems, Sorrento, Italy.
Published by North-Holland Publishing Company.



[9.5]

[9.6]

[9.7]

[9.8]

[9.9]

[9.10]

[9.11]

[9.12]

- 258 -

0.J.Dahl, Nygaard K.: (1966) "Simula; A Language for
Programming and Description of Discrete Event Sys-
tems". Oslo, Norwegian Computing Center.

D.A.Pahrland: (1970) "Combined Discrete-Event Con-
tinuous System Simulation Language". Simulation
vol. 14 no. 2 : February 1970; pp. 61 - 72.

D.G.Golden, Schoeffler J.D.: (1973) "GSL. - A Com-
bined Continuous and Discrete Simulation Language”,
Simulation vol. 20 no. 1 : January 1973; pp. 1 - 8.

G.A.Korn, Wait J.V.: (1978) "Digital Continuous-Sys—
tem Simulation". Prentice Hall.

H.Lienhard: (1978) "PORTAL Language Definition". To
be ordered from: Landis & Gyr AG, Zug, Switzerland.
(Partly in German),

H.Lienhard: (1978) "Die Echtzeitprogrammiersprache
PORTAL, eine Uebersicht", Landis & Gyr Mitteilungen
25(1978); pp. 2 - 8. (Also available in English.)

H.Lienhard, Meyer M., Steinle B., Wehrli P.: (1979)
"Simulation and Process-Control with Parallel Pro-
cesses as Implemented in PORTAL - Experience and
Outlook". Proc. of the 9th IMACS Congress on Simula-
tion of Systems, Sorrento, 1Italy. Published by
North-Holland Publishing Company, (Editors:
L.bekker, G.Savastano, G.C.vVansteenkiste).

A.A.B.Pritsker: (1974) "The GASP-IV Simulation Lan-
guage". John Wiley.

{9.13]

[9.14]

[9.15]
{9.16]
{9.17]

[9.18]

- 259 -

D.F.Rufer: (1978) "General ©Purpose Nonlinear Pro-
gramming Package". Proc. of the 8th IFIP Conference
on Optimization Techniques, Wuerzburg, FRG.
Published by Springer Verlag, Lecture Notes in
Control and Information Science, vol. 7, part 2;
pp. 495 - 506.

D.F.Rufer: (1978} "Users Guide for NLP - A
Subroutine Package to Solve Nonlinear Optimization
Problems". Report No: 78-07. Institute for Automatic
Control, The Swiss Federal Institute of Technology
Zurich, ETH - Zentrum, CH-8092 Zurich, Switzerland.

T.J.Schriber: (1974) "Simulation Using GPSS", John
Wiley.

(1972) "SIMPL/I Program Reference Manual"”.
Form: SH19-5038-0, IBM Corp., New York, U.S.A..

(1979) "Preliminary ADA Reference Manual". BACM
SIGPLAN Notices, Vol. 14, No. 6, Part A, June 1979,

(1979) "Rationale for the Design of the ADA Program-
ming Language", ACM SIGPLAN Notices, Vol. 14, No. 6,
Part B, June 1979,



-~ 260 -

X) INTERACTIVE SIMULATION AND REAL-TIME PROGRAMMING:

When reading the reports of the Technical Committee on
Operating Systems (TC8) of the International PURDUE Workshop
on Industrial Computer Systems, Purdue Europe [10.3], it is
interesting to notice that the language elements which are
considered to be useful in programming real-time operating
Systems are precisely the same as those which are used in
discrete process-oriented simulation. Only the terminology
varies. For example, in RTOS one does not SEIZE a FACILITY,
but rather ALLOCATEs a RESOURCE, etc.. This resemblance is
not surprising since these people require 1list processing
(which is obviously application independent), and since
their interest is focused on job-shop scheduling which is a
closely related field to discrete simulation.

When reading about "High~Speed Block Diagram Languages for
Microprocessors and Minicomputers in Instrumentation,
Control, and Simulation® [10.1], one can find that also in
another field of real-time programming there exists ob-
viously some close relation to simulation, This time, it is
the continuous system simulation which is related to
real-time programming for applications of digital on-line
control. The software which is presented in [10.1] is called
MICRODARE-II [10.2]}, and is a co-product of a whole class of
continuous simulation languages (the "DARE family™).

Even these two real-time programming tasks are, however, not
too different from each other. One can easily imagine situa-
tions where a computer has to take continuous measurements
from a system which are to be filtereéd, and also execute
distinct actions if, for example, some thresholds are sur-
passed. 1In such a situation, one would again require a com-
bined continuous and discrete approach as has been presented

in this work. There are only few additional elements re~
quired for such purposes:

- 261 -

a) means to communicate data with the real-world environ-

ment and,
b) real-time synchronization mechanisms.

In some ultra-fast, real-time applications, parallel com-
putation may be necessary which would require additional

synchronization and data protection mechanisms.

In our opinion, this relationship between simulation and
real-time programming should be further investigated, and a
co-operation between the different standardization com-
mittees should be encouraged.

[10.1] G.A.Rorn: (1978) "High-Speed Block-Diagram Languages
for Microprocessors and Minicomputers in Instru-
mentation, Control, and Simulation". Private yet un-
published communication. To be ordered from: Depart-
ment of Electrical Engineering, The University of
Arizona at Tucson, Tucson AZ 85721, U.S.A..

{10.2] G.A.Korn: (1978) "MICRODARE-II User's Manual", To be
ordered from: Department of Electrical Engineering,
The University of Arizona at Tucson,
Tucson AZ 85721, U.S.A..

{10.3] (1978) "Up to Date Report - Intermediate Version”.
International PURDUE Workshop on Industrial Computer
Systems, PURDUE Europe, TC8. September 1978. To be
ordered from: Institute for Automatic Control, The
Swiss Federal Institute of Technology Zurich,
ETH - Zentrum, CH-8092 Zurich, Switzerland.



- 262 -

XI) DISCUSSION AND ObTLOOKﬁ

In this thesis we have compiled the multi-faceted theory of
simulation software. Starting from the discussion of numeri-

cal aspects (gimulation run-time systems), we went on to in-

formation processing considerations (simulation languages,
simulation compilers).

Although the term simulation system has been introduced as
well (chapter VI) , we did not pay much attention to it. 1In

future discussions of thisg topic, this term shall gain im-
portance as we shall subsequently show.

Taken the definition of Korn [11.1] for the term
"simulation”:

"simulation is experimentation with data"

it 1is obvious that simulation systems should provide a high

degree of interactivity. This is not the case in current
simulation systems. Indeed, one of the major advantages of
analog computers over digital computers for the solution of
simulation tasks (beside of their higher speed) is the ex-
tremely intimate interaction between program and Programmer
they provide for.

Why does current simulation software not provide such fa-
cilities? General purpose simulation programs are relatively
complex programs, and they shall become even more complex in
the future. They require a relatively large amount of core
memory for convenient implementation. Facilities for inten-
sive interactiveness, however, are not generally provided
for large computing jnstallations, but, on the contrary, for
brocess computers only. Most of those systems are currently
16 bit machines which allow 32k of core memory to be di-
rectly addressed. This is insufficient for reasonably con-

- 263 -

venient simulation software to run on. However, one can find
that the first 32 bit process computers became available re~
cently. In a few years only, even relatively inexpensive
32 bit microprocessors shall be on the market. This new
generation of hardware does no longer impose the previously
mentioned restrictions on the programmer. By that time, com-
plex and highly interactive simulation systems with com~
fortable graphical input/output facilities shall be offered.

As we have seen in this thesis, simulation is often just a
subtask of what has to be performed. We have, for instance,
seen that optimization is commonly used in connection with
simulation. Moreover, we have assumed so far that a model of
the system under investigation has already been found (by
any mysterious process). However, the computer may aid in
the determination of models as well. Parameter estimation is
just one of several possible ways to do so. Often, models
which have been derived from physical knowledge of the pro-
cess under investigation cannot be validated. We then must
apply model reduction techniques to these models to obtain
simpler and validatable models. Very often, however, a phy~
sical knowledge of the process to be investigated is absent.
In such a case, we must be able to construct models out of
series of measured or wanted input/output relationships. In
this way, the econometrical models are generated to mention
just one example, Finally, one should be able to trans-
form model representations (e.g. discrete-time models into
continuous-time models, and vice-versa). All these tasks can

be called gperations on models.

Moreover, also operations on data (e.g. comparison of real

data with simulated data, Fourier ahalysis, statistical ana-
lysis, etc.) are very important.

For all of these tasks, our future simulation system must
provide for a very powerful ta e m ement system in
which both structures (models) and data (real and simulated)



- 264 -

can be stored,

and which i i
o Ch provides for a highly standardized

interface such that several different
cess this data base to perform
data. These Programs

programs can ac-
operations on the stored
include nonlinear Programming, model

and data manipulation Programs beside
simulation software,

manipulation programs,
of the "pure"

The background for these programs should be a unifiegd

theory of modeling as it has been described by

. Zeigler
[11:3]. A rationale for and Some required attributes of such
@ simulation system have been recently outlined in an excel-

lent paper by Oren ang Zeigler [11.2].

References:

[11.1} G.A.Korn, Wait J.v.: (1978) "pigital Continuous—Sys—

tem Simulation", Prentice-Hall,

[11.2] T.I.Oren, Zeigler B.P.: (1979)
vanced Simulation Methodology".
No. 3, March 1979; pp. 69 - 82.

"Concepts for ad-
Simulation, Vol. 32,

[11.3) B.P.Zeigler: (1976) "Theory of Modelling and Simula-
tion". John Wiley.

- 265 -

XII) REMARKS CONCERNING NOTATIONS:

The field of combined system simulation, as it has been dis-
cussed in this work, is an interdisciplinary subject.
Continuous simulation has always been primarily used by
people with a background in Automatic Control. These people
have a specific terminology which they commonly use, and
which has been incorporated in the continuous simulation
languages. Discrete simulation has primarily been used by
people with a background in Operations Research. They also
have a distinct terminology which has been used in the de-
sign of discrete simulation languages. Unfortunately, these
two fields have many common elements, but use often a quite
different terminology.

Common elements use different names. In Automatic Control,
for example, one discusses the "Maximum Principle of
Pontrjagin", a theory which is useful in Operations Research
as well, but which is there referred to as the "Minimum
Principle of Pontrjagin®. Even the term "discrete system"
will easily lead to misunderstandings since researchers in
Automatic Control will implicitly assume that a "discrete
time system" is meant, that is a system described by sets of
difference equations. On the contrary, Operations Research
investigators will implicitly assume that one talks of a
"discrete event system" since this is much more common to
them.

Different elements use identical names. A "process", as it
is used in Automatic Control, is certainly different from
the use of this term in Operations Research.

For this reason, we were often forced to either use terms in
the sense of continuous simulation or in the sense of dis-
crete simulation, or even to invent new terms to avoid mis—
understandings. We tried, however, to keep the conflicting



- 266 -
sitvations at a minimum, and we sincerely hope that we have
not added to the Babylonian
means.

language confusion by these

Another source of confusion is the difference in notation as
compared to the common use in Information Science. These in-
vestigators use, for instance, the term "MODULE" to mean a
SIMULA-67 "CLASS" which is certainly incompatible with our
usage of this term. However, the same term "MODULE® is used
as well in Formal Algebra and in Reliance Analysis, and has
a quite different meaning in all of these fields. Our ter-
minology bases on the Engineering usage of the term. In any
event, it is difficult to find a large number of meaningful
new terms which should be as close as possible to conversa-
tional English.

This situation was not bothersome as long as the
groups

different
were disjoint from each other. However, since there
is a strong overlap between these fields, as it has been
shown in this thesis, a common terminology whould definitely
help to improve the information transfer, and we would,
therefore, emphasize to let a standardization committee pro-

pose a new terminology which is to include all important

terms out of all three fields (Automatic Control, Operations
Research, and Information Science).

Aho A.V.
Alexander R,
Benyon P.R.
Blitz ALE.

Bongulielmi A.P.
Boyle J.M.

Brown P,J.
Bucher K.J.
Bulirsch R,
Carver M.B.
Cellier P.E.

Chaplin R.I.
Chapparo L.P.
Crosbie R.E.
Dahl 0.J.

De France C, III
Dekker L.

Delfosse C.M.
Den Dulk J.A.
Dpongarra J.J.
Elmgvist H.

Elzas M,S.
Fahrland D.A,

Fehlberg E.
Ferroni B.A.
Garbow B.S.
Gauthier J.8,
Gear C.W.
Golden D.G.
Golub G.H.
Griffin A.W.J.
Hay J.L.
Henrici P.
Hindmarsh A.C.
Holme H.G.
Jensen K.

Jury E.T.
Kahaner D.
Karnopp D.
Karplus W.J.
Keller H.B.
Kiviat P.J.
Klir G.J.
Korn G.A.

Krelss H.Q.

78
204

118
119

204

180
157
27

136
118

67

210
22

157

117
205

205
50
205

181

51

157°

205

158

79
28

118

213
50
213

78
213

258

51
206

205

209

214

80
238

-AUTHOR INDEX

117
257

117
257

79
257
212

214

258

119
261

Kreutzer W.
Lambert J.D.
Lienhard H.
Lindberg B.
Madsen N.K.
Mannshardt R,
Mansour M.A.R.
Meyer M.
Mitchell E.E.L.
Moebius P.J.
Moler C.B.
Nilsen R.N.
Nordsieck A,
Nygaard K.
Oren T.I.

Poole T.G.
Pritsker A.A.B.

Ralston A,
Ramer B,

Ramer U.

Rice J.R.
Rufer D.F.
Runge T.F.
Savastano G.
Schiesser W.E.
Schlunegger H.
Schoeffler J.D.
Schriber T.J.
Sevin E.

Sigal C.E.

Sim R.J.W.
Steinle B.
Stoer J.
Strauss J.C.
Sullivan N.J.

Szymankiewicz J.2Z.

Ullman J.D.

Vansteenkiste G.C.

Wait J.V.

Washam W.B.
wehrli P.
Wilf H.S.

- Wilkinson J.H.

Wirth N,
Young R.E.
Zeigler B,P.

Zellner M.G.

78

258

159
258

78
181
205

118
119
215
258

205
264
258

185

22
188

205
214

28
113

159
207
206

214
207

206
51

206

114
206

258
215

51
119

259
212
258

258
215

258
118

207

115
207

lss
264

57
210

119

120
264



EXAMPLE INDEX

Domino Game

Dry Friction Torque
Heating System
Joe's Barbershop
Pilot Ejection Study
RLC-Network

SCR Control Problea
Traffic Control
Van~der-Pol Equation

-
IS
»

EEQ:EEEE

196
121¢

71
162
144

Compiler Desgign
BNF

LL(1)-PARSER
SYNTAX DIAGRAM DRAWING

Eigensystem
EISPACK

General Purpose
ALGOL~60
FORTRAN-IV
PASCAL

PL/1
SIMULA-67

Integration
ADAMS
DIRK
EULER
BACKWARD ™
GEAR

~ HINDMARSH

~ KAHANER
IMPEX-2
RUNGE~KUTTA

~ ENGLAND

~ FEHLBERG

- SIMPSON
STROBOSCOPIC METHOD

Interpolation
BI-SECTION
GENERALIZED REGULA-FALSI
INVERSE HERMITE' ~
NEWTON—RAPHSON
REGULA-FALSI
TAYLOR~SERIES EXPANSION

Nonlinear Programming
RNLP

Output

DARE-P POSTPROCESSOR
Real-Time Applications
ADA

MICRODARE-I1
MODULA
PORTAL

RTOS

Simulation
Combined ~
CADSIM

cosy
C-SIMSCRIPT
GASP

GASPPI
GasP-PL/I
GASP-1IV

GASP-V

GEST
GEST'78
GSL
BOCUS~I1I1
SLAM

SMOQTE
Continuous

ACSL

CSMP-111

SOFTWARE INDEX

157
157
157

148

185

157

124
197

27

139
118
129
118

122

28
6L
242
215

118

210

29

200

191
2028
81

157
135

135
47

259

10s5f£

258

208

43
257

213

34f
207

2028
206

118

158
136

85

En

79
50

215

221

216
209

169

203

86

78

214

43
242

218£
216

201

98t

82

258

49

218£
203

102

119
p 233

52

219

208
117

83

258

210
191

86f



CSSL

DARE-P
DYMOLA
MICRODARE-IX
MODEL
Discrete
GASP~1I
GPSS~V

Q-GERT

SIMPL/I
SIMSCRIPT-II.5
SIMULA-67

Distributed
DsSs
FORSIN-V
FORSIN-VI
LEANS~IXI

Text Editing
OTTMAR

212
259
25
29

28

127

235

49
205
212

119
81

215

27
27

82

52

81
212

119

81

86
91

197

118

123
97

207

165

159 164 168t 178
105f 1o9f 119

aim of ~
operation on data by ~
2106 215 221 220 aralysis of
statistical =
collection of ~
T parameter
~ state trajectory
~ statistical gquantity
~ as for collect statistics
~ as for histogram
~ as for time-persistent variable
generation of ~
~ disturbing function
~ random number
retrieval of ~
~ state trajectory
~ for comparison with measured data
© = for high quality graph
~ for 3-dim. graphical representation
~ ptatistical quantity
~ for comparison with measuzed data
~ for histogram

201 203 219 258

cumulative freguency curve of ~

storage of ~
optimization by ~
~ of data
~ by parameter estimation
of structure .
~ by state identification
run~length determination by ~
“ by FIRISB condition
~ with data

~ application from
~ biclogy, chemistry, and ecology
Lotka-volterra ~
~ economy, management, and social sciences
econometric ~
systems dynamics ~
~ engineering and physice

~ in control
~ bage
~ characterization
critical state of ~
eigenvalue of ~
iterative computation of ~
Jacobian of "
~ represented by state-space description
classification
combined =
discontinuous ~
" intermixed with PDE
nonsmooth - .
smooth =
variable structure -
continuous ~
deterministic ~
stochastic ~
discrete ~
activity-oriented ~
event-oriented ~
process-oriented ~
distributed =
elliptic ~
hyperbolic =
parabolic ~
illegitimate ~
operation on ~

SUBJECT INDEX

mmmm

188  Ja8f

B2f

£

113f

87

87
is

161

30
71

222

211

223
B2L

228

18
18

133
196

138

108
70

226f

222

237
198

231
30

i21f
221£
162

108

132
92¢£

2341
234f

236

240

18

215



et

decomposition
optimization
parameter estimatjon
reduction

state identification
structuring
transformation

~ order
~ stiffness

validation

aim of ~
~ approach
block-oriented ~

by use of master scheme

equation-oriented ~

modular ~

network-~oriented ~

bond-graph ~
generalized ~

~ description
~ element
topological ~

programmable ~

~ formulation

- type
continuous ~
discrete -

~ element
data for ~

st
~ meth
~ tech

ructure of ~
odology
nique

combined ~

co
theory

back-d
“ by e
~ data

ntinuous ~
of ~

oor ~
xception

~ base management
~ definition

st
~ file

file
ructured ~
handling

~ job shop scheduling

~ stru
Pa
pr

cture
rallel ~
ocedural ~

8equential ~

subprogram

struct
~ vari

(# procedural)

classification
class ~
function ~
procedure ~
process ~
subroutine -
continuous ~
diecrete -
external ~

ured ~

able

~ eclasgification

ga
me

glpulation

global
local =~
declaration
rbage collection of ~

mory

aim of ~

~ appl

ication
example
=> EXAMPLE INDEX

22
30

201

18

168
146

81

25

203%

1865

148

FE

37

126
192

169

218
169
122

130

222

N

W -
[~ m
PRONRO N
NGOG
NLUwOWWwWW

201

3

34
49

55 BE EE

»

03

ER

201€

234fF

181t

210
168
210f
212
213
184
184
184
181
171
212
187
187
264
39

264

“ methodology
operational mode

interactive ~
real-time

~ hardware
analog ~
digital -~

large computer installation ~
multi-processor ~
process computer

hybrid ~
~ software
data-base management for
~ documentation
historical development of ~
~ implementability
~ language

access to primitives of ~
applicability of ~
available ~
~> SOFTWARE INDEX
~ elaesification
combined system
continuous system ~
block-oriented ~
equation-oriented ~
network-oriented -~
bond-graph ~
discrete system ~
activity (network) oriented ~
event-oriented ~
process~oriented ~
distributed system ~
compiler
analytical computation of Jacobian by ~
error analysis by ~
~ parser
robustness of ~
~ with respect to implementability
~ by coding it as a preprocessor
~ with respect to maintainability
~ by use of LL(1) grammar
~ with respect to programming
~ by introducing redundancy
~ by use of LL{1l) grammar
sorting of equations by ~
deterministic ~
ease of learning ~
extendability of
~ by system engineer
~ by user
flexibility of ~
~ grammar
context-free ~
deterministic
LL(1) ~
unampiguous
LL(1) ~
LL(1) parsibility of ~
modularity of ~
~ preprocessor
{= compiler}
redundancy of ~
robustness of ~
~ with respect to modeling
~ by automated dimensional analysis
~ by introducing redundancy
~ by structuring
~ with respect to programming
~ by introducing redundancy
semanticas of ~
~ structure
hierarchical ~
~ of documentation
“ by network description

34

25

25

124

168

121£
122

16

24
135

80

120

126£

18R

3£

77
146

127
208¢£

167£

181

183

167

2108
187
1715

220

127
208
193
199
220
16
193f
190
220
216£E
190
212

201

221

23
185
131
125

124

197
125
198
183
1255

127

196

219
130£
180
184

261
262f
262

263F
1y9

262
210
216
208£%

221
210
210¢
2101

210f



band~graph -~
energy flow in =
generalized -
signal flow in ~
topological description of ~
. programmable ~
segment
combined ~
state-condition of ~
-continuous -
history function of ~
{mplicit laop block of ~
memory
~ functjon
~ variable
MODEL, block of ~
NOSORT section of ~
parallel section of ~
procedural section of ~
PROCEDure section of ~
~ process
sequ?gtial section of -
2 procedural s
SORT section of ~ ection)
data definition ~
function table of -
declaration ~
subprogram
~ classification
class ~
funcrion -
procedure *
process ~
subroutine =
continuous ~
discrete ~
external ~
variable ~
discrete -
T activiry
event
state -
state-condition for -

time
endogenous ~
. exogenous ~
_process
experiment descri -
initial - Fiption
macro ~ .
interpretative ~
module ~
output description ~
termipal -
syntax of ~
~ diagram
Bystem theory based ~
R transparency of ~
wacre handler
interpretative ~
maintainability of ~
“ module handler
alge?zaic locp solving by ~
through structural algebra
~ formula manipulation by ~
po5tprocessor
command
~ interpretation
DARE-P compatibility mode for ~
high quality graph produced by ~

3-dim. graphical representation produced by -

robugtness of ~
wishbrespect to updatability
_ by automated syntax diagram dr
. by use of text editing ¢ awing
:ug-time system
classification

161 165
18}

1a9f

169

la9f 201 20af 218

169

a5 77 86 101
a5
33

27
169£

179 183

125 193f

82 118 195 200
185

81

puly

171

180 188

87 11

87

2008
165

47F

185£
204

180
197

87

82,
239

S3f£  BOff 219f

212f

combined ~
creeping effect of ~
discontinuity function of ~
short-living ~
special ~
transformation of ~
discontinuous function of ”
Gasp~function of ~
stiffness resulting from ~
state-condition handling of ~
= by numerical interpolation
T accuracy
T convergence
~ range
= speed
~ method
-~ GOFTWARE INDEX
~ polynomial
continuous ~
communication interval of ~
implicit loop solver for -
initial condition of ~
numerical integration for ~
accuracy of ~
backward ~
efficiency of ~
error analysis of ~
~ method
auntomated selection of ~
~ classification
-> SOFTWARE INDEX
explicit ~
implicit ~
multi-step ~
classical =
modern
Nordsieck vector for ~
one-step ~
order of ~
stability of ~
stiffly-stable ~
synchronization of different ~
~ over discontinuity
polynomial trajectory for ~
~ step-size
= control
variable ~
state-space representation of
discrete ~
b £}

e
~ attribute
event
attribute of ~
~ scheduling
= sequence
~ handling
process "
attribute of ~
distributed =
poundary condition of ~
master scheme for ~
elliptic ~
hyperbolic ~
initial condition of ~
numerical solution of ~
~ glassification
~ by finite difference
~ by method-of-characteristics
= by method-of-lines
accuracy of ~
consistency of 7
convergence of
error analysis of ~
grid-width of ~
. - control
numerical differentiation for
accuracy of ~

43

29 102
42£
69 kL

35

70

a3
48
49 86
53€ £2
69
55£
55£
55§
86
104 198
85  l06f€
129f  134f
76 115
68
185¢
£8£
11
85 106
132£
133
42€
42f
92f  136f
192
s iy
18
230€
88f 92
92
117
92 94
24 85f
151 153
af
152
94 20718
114



system -

~ formula
biased ~
N central -
over discontinuity
order of ~
~ control
robustness of ~
spatial discret{zation of
s:g?ility of ~
a -
parsbolic - iffness resulting from
fange-test of -~
robustness of -
: with respect to algorithm
_ with respect to procedure
8structure

combined ~

variable structure -
continuous - .
discrete -
distributed =

terminology
221

~ verification

black-box -

(2 i1l-defined)

combined ~
continuous ~

deterministic -
discontinuous ~

discrete -~

distributed -
dynamics of -
ill~defined -~

~ field

biological -
chemical ~

ecological ~
economical -

keep smiling effect of ~
manag: .

ement

irceproducibility of data for ~

linear ~
nonlinear ~

30f

oscillatory =

etiff -
stochastic -

24

contipuous ~
signa}/noile ratio of -

discrete
well-defined
T field

celestrial mechanics ~

control .
engineering " L w on 138
mechanical ~ 18
physical -

~ example . 17£ RAL  121f 142 144

white~box

=>_EXAMPLE INDEX

(4 well-defined)

34
116

18

2321
114

43

162
30

116
107
151

117
116
128

—
-~
w

2
8

wa

REEE oF

access to primitives
accuracy

activity

activity-oriented
aim

algebraic loop solving

algorithm

analog

analysis

analytical computation of Jacobian
applicability

application

approach
attribute

automated syntax diagram drawing
automated selection

automated dimensional analysis
available
backward

back-door
base
batch
biased

biological

biology, chemistry, and ecology
black-box

block-oriented

bond-graph

boundary condition
celestrial mechanics
central

characterization
chemical
class

classical

clasaification

Alphabetical Index

->gimulation,system,software,language

->simulation,system,software,run-time system,classification,
combined, state-condition handling,numerical interpolation

->gimulation,system,software,run-time system,classification,
continuous,numerical integration

->simulation, system,software,tun-time system,classification,
distributed, numerical solution,classification,
method-of-lines

->simulation,system,software, run-time system,classification,
distributed,numerical solution,classification,
method~of-lines,numerical differentiation

=>simulation, system,software,language,structure,segment,discrete

discrete
->model,classification,discrete
=>simulation,system,software, language,classification,
discrete system
—>experimentation
->modeling
~>simulation
->simulation, system,software,module bandler
->simulation,system,software,run-time system,robustness
->simulation,system, hardware
~>experimentation,operation on data
=>simulation,system,software,language,compiler
=->simulation, system,software,language
=->model
->simulation
->modeling
~>simulation,system,software,run~time system,classification,
discrete,file
~>simulation,system,software, run-time system,classification,
discrete,file,event
~»simulation, system,software,run-time system,classification,
discrete,file,process
->sinulation,system,software, robustness,updatability
->simulation,system,software,run~time system,classification,
continuous,numerical integration,method
->simulation,system,software, language, robustness, modeling
->simulation,system,software,lanquage
->simulation,system,software,run-time system,classification,
continuous,numerical integration
=>programming
=->model
=>simulation,operational mode
~->simulation,system,software, run-time system,classification,
distributed, numerical solution,classification,
method-of~lines,numerical differentiation, formula
~>system,ill-defined, field
~>model,application
~>sysatem
~>modeling,approach
~>simulation, system,software,language,classification,
continuous system
~>modeling,approach,network~oriented
=>simulation, system,software, lanquage,classification,
continuous system,network-oriented
~>simulation,system,software, language, structure,
network description
~>simulation,system,software,run~time system,classification,
distributed
->system,well-defined, field
~>simulation,system,software,run-time system,classification,
distributed,numerical solution,classification,
method-of-lines,numerical differentiation,formula
=>model
->system, ill~defined,field
=->programming,structure,subprogram,classification
~>simulation,system,software, language,structure,segment,
declaration,subprogram,classification
->simulation,system,software, run~time system,classification,
continuous,numerical integration,method,multi-step
=->model
->programming, structure,subprogram
~>programming,variable .
~>sinmulation,system,software, language



collect gtatistics

collection
combined

combined system
command
communication interval

comparison with measured data

compiler
consistency

context-free
continuousg

continuoua syatem
control

convergence

creeping effect

critical state
cumulative frequency curve

DARE-P compatibility mode
data

data-base management

data definition
declaration

decomposition
definition
description
deterministic

—>simulation,system,softwate,language,structure,segment,
declaration,subprogram
—->simulation, system,software, run-time system
->simu1ation,system,software,run-time system,classification,
continuous, numerical integration,method
—>simu1ation,system,suftware,run-time system,classification,
distributed, numerical solution
~>experimentation,operation on data,collection,
statistical quantity
->expetimentation,operatlon on data
~>model ,classification
->modeling, technique
->simulation,system
->simu1ation,system,software,language,stzucture,segment
-)simulation,system,software,run-time system,classification
=>system
—>simu1ation,system,software,language,classification
->5imu1ation,system,softwa:e,postprocessoz
—>simu1ation,system,software,run—time system,classification,
continuous
—->experimentation,operation on data,retrieval,
state trajectory
~>experimentation,operation on data, retrieval,
statistical quantity
-)simulation,system,software,lanquage
—>simu1atiun,system,software,xun—time system,classification,
distributed, numerical solutien,classification,
method-of-lines
->simulation,system,softwa:e,lanquage,grammar
->model ,classification
—>mode1ing,app:oach,network-oriented,type
~>modeling, technique
~yprogramming, stxucture, subprogram
—>simulation, system
->simu1aticn,system,software,language,structu:e,segment
->simulation,system,software,langnage,structure,segment,
declatation,subprogzam
-)simulation.system,Sbftware,tun—time system,classification
->system .
~>system, stochastic
->simu1ation,system,software,language,classification
->model,applicaticn,enginee(ing and physics
-)simulation,system,soitwate,run-time system,classification,
continuous, numerical integration, step-size
~>simulation, system,software,run-time system,classification,
distributed, numerical solution,classification,
method-of-lines, grid-width
~>simulation,system,software, run-time system,classification,
distributed, numerical solution,classification,
method-of~lines,order
~>system,well-defined, field
->simulaticn,system,software,run-time system,classification,
combined, state-condition handling,numerical interpolation
->51mu1aticn,system,softwate,run—time system,classification,
distributed, numerical solution,classification,
method~-of-lines
->simu1ation,system,softwa:e,run—time system,classification,
combined
=>model,characterization
—~>experimentation,operation on data,retrieval,
statistical guantity,histogram
-)simulation,system,software,postprocessox
~>experimentation
~>experimentation,optimization
~>modeling, element
~>programming
~>programming
->simulation,system,software
-)simulation,system,software,language,structuze,segment
->programming,variable
->simulation,system,software,language,st:uctute,segment
=>model,operation
~>programming,data
~>model ing, approach, network-oriented
->model,classification,continuous
->simu1ation,system,softwaxe,language
—>simu1ation,system,software,lanquage,g:ummar

diagram
digital
discontinuity

discontinuity function
discontinuous
discontinuous function

discrete

discrete system
distributed

distributed system
disturbing function
documentation

dynamics
ease of learning
ecological

econometric

economical

~>system

~>simulation,system,software, language, syntax

~»simulation,system,hardware . . .

-;simulation:system:software,rug—txme system,classifiaction,
contipuous,numerical integratxcn‘ .

->simu1ation:system,software,run-txme gygtem!classxfxactxon,
distributed,numerical solutgon,clasgxf§catxon,
method-of~lines,numerical dxffergntxatxon Loati

->simulation,system,software, run-time system,classification,
combined .

~>model,classification,combined

=>system . .

->s{mulation,system,scftwate,run—tlme Bystem,classification,
combined

->model,classification N

-)modeling,approach,netwcxk-orxented,type

=->programming, structure, subprogram

~>simulation,system

->simu1ati0n:system,softwaxe,language,EtIHCture,segmenc

~>simulation,system,software,language,structure,segment,
declaration,subprogram

~>system .

->system, stochastic .

->s¥mu1aéion,system,software,language,classxfxcation

->model ,classification

~>simulation, system . L .

->simu1ation:system,software,run-txme system,classification

~>system X .

->s¥mu1ation,system,software,language,classgfxcatxon

->experimentation,operation on data,generation

->simulation,system,software

-)simulation:system,software,language,stzuctu:e,
hierarchical

~>system

—>simulation,system.software,language

->system,ill-defined,field

->model ,application, .
econoéy, management, and social sciences

~ysystem,ill-defined, field

econonmy, management, and social Bciences->model,application

efficiency

eigenvalue
element

elliptic

endogenous
energy flow
engineering

engineering and physics
equation-oriented

error analysis

event

event~oriented

example

exception
exogenous

experiment description
experimentation

->simu1ation,system,saftwaxe,ruq—time system,classification,
continuous,numerical integration

->model ,characterization

=->modeling

->mode1inq,appraach.netwatk-q;ienged,desc:1ption

~>model,classification,distribute )

—)simulétion,system,softuate,tun-time system,classification,
distributed

~>simulation,system,software, language, structure, segment,

- discrete,event,time

->simulation,system,software, language,structure,
network description,bond-graph

->system,well-defined, field

->mode1,app1icatio:

->model ing, approac! . .

-)simulatgsn,system,software,language,classxficatxon,
continuous system : 1 vage, compiler

->simulation,system,software,language, . .

—;z;:ui:tion:sgstem:software,run-txme system,classification,

ntinuous,numerical integration .

-)ggmuiation:system,software,zun-time §y§temeCLassif1cation,
distributed, numerical solution,classification,
method-of-lines

->simulation,system,software,language,structure,segment,
discrete .

->simulation, system,software,run~time system,classification,
discrete,file at .

-s>model ,,classification,discrete )

-)simulétion,system,software,language,classifxcation,
discrete system .

~>simulation,application

->system,well~defined

=>programming

->Zimalation,system,software,1 ge,structure, s5eg v
discrete,event, time

-)simulntlan,syséem,aoftware,language,thuctute,segment

->




explicit
extendability
external
field

_ file
file handling
FINISH condition
finite difference
flexibility

formula

formula manipulation
formulation

Fourier

function

function table

garbage collection
Gasp-function

generalized
generation
global
grammar
grid-~width
handling
hardware

hierarchical
high quality graph

histogram

historical development
history function

hybrid
hyperbolic

illegitimate
ill-defined
implementability
implicit

implicit loop block
implicit loop solver

initial
initial condition

interactive
intermixed with PDE
interpretation

->simulation,system,software, cun-time system,classification,
continuous,numerical integration,method

—)simulation,system,software,language

->programming, structure, subprogram

—>simu1ation,system,saftwaze,1anguage,stxuctuze,segment,
declaration, subprogram

~>system, ill~defined

~>system,well-defined

=>programming,data

~>simulation, system, software, run-time system,classification,
discrete

->programming

~>experimentation, run-length determination

~>simulation,system, software, run-time system,classification,
distributed,numerical solution,classification

-)simulation,system,softwa:e,1anguage

~>simulation, system,software, run-time system,classification,
distributed, numerical solution,classification,
method-of-1ines,numerical differentiation

->simulation, system,software, module handler

—>modeling,approach,network~oriented

—->experimentation,operation on data,analysis

~J>programming, structure,subprogram,classification

—>simu1ation,5ystem,software,1anguage,structure,segment,
continuous, memory

—)simulation,system,software,language,st:uctute,segment,
declaration, subprogram,classifiaction

->simu1ation,system,software,languaqe,structure,segment,
data definition

=>programming,variable

—>simu1ation,system,softwaze,tun—time system,classification,
combined, discontinuous function

—>modeling,approach,network-o:iented,bond—graph

—>simu1ation,system,software,language,structure,
network description,bond-graph

~>experimentation,operation on data

=>programming, variable,classification

=>simulation, system,software, language

~>simulation,system,s0ftware, run-time system,classification,
distributed,numerical solution,classification,
method-of-lines

~>simulation,system,software, run-time system,classification,
discrete, file

=>simulation,system

—>simulation,system,softwate,1anguage,structu:e

=>experimentation,operation on data, retrieval,
state trajectory

->simu1ation,system,software,postprocessoz

~Yexperimentation,operation on data,collection,
statistical quantity

=>experimentation,operation on data,retrieval,
statistical quantity

->simulation, system,software

->simu;ation,system,saftware,Ianguage,structure,segment,
continuous

~>simulation,system,hardware

~>model,classification,distributed

->simulation, system,sof tware, run-time system,classification,
distributed

~>model

->system

->simulation,system, software

->simulation,system,software,language,ccmpiler,robustness

->simulation,system,software,zun-time system,classification,
continuous, numerjcal integration,method

->simulation,5ystem,software,language.structu:e,segment,
continuous

->8imulation, system,software, run-time system,classification,
continuous

->simu1ation,system,software,language,scructure,segment

~>simulation,system,software, run-time system,classification,
continuous

->simulation, system,software, run-time system,classification,
distributed

->simulation,operational mode

->model,classification,combined,discontinucus

~>simulation, system,software, postprocessor, command

interpretative

irreproducibility of data
iterative computation
Jacobian

job shop scheduling

keep smiling effect
language

large computer installation
linear

EL(1}

LL(1l) grammar

LL(1) parsibility
local
Lotka-Volterra-
macro

macro handlex
maintainability
management
master scheme

mechanical
memory

method

method-of-characteristice
method-of-lines
methodology

model

MODEL block
modeling

modern

modular

modularity

module

module handler
multi-processor
multi-step

network description
network-oriented

nonlinear
nonsmooth
Nordsieck vector
NOSORT section

numerical differentiation

numerical integration
numerical interpolation
numerical solution
one-step

operation

->simulation, system,software,macro handler

—->simulation, system,software,language,structure,segment,
macro

->system,ill-defined

~->model,characterization,eigenvalue

->model,characterization

=>programming, file handling

->system,ill-defined, field, economical

~>simulation,system,software

->simulation,system,hardware,digital

->system

~>simulation,system,software, lanquage

->simulation,system,software, language,grammar

~>simulation,system,software, language,compiler, robustness,
majintainability

~>simulation,system,software, language, compiler, robustness,
programming

~>simulation,system,software,language

->programming,variable,classification

~>model,application,biclogy, chemistry, and ecology

~>simulation,system,software, language,structure,segment

~>simulation,system,software

~>simulation,system,software

->simulation,system,software, language,compiler, robustness

~>system,ill~defined, field

~>modeling, approach . )

~>simulation,system,software, run~time system,classification,
distributed,boundary condition

->system,well-defined,field

=>programming, variable

->simulation, system,software, language,structure,segment,
continuous

~>simulation,system,software, run-time system,classification,
combined, state-condition handling,numerical interpolation

~>simulation, system,software,run-time system,classification,
continuous, numerical integration .

->simvlation, system,software, run-time system,classification,
distributed,numerical solution,classification

~>simulation,system,software, run-time system,classification,
distributed,numerical solution,classification

~>modeling

=>simulation

-> .

~>simulation,system,software, language,structure,segment,
continuous

->

->simulation, system,software, run-time system,classification,
continuous,numerical integration,method,multi-step

~>modeling, approach,equation-oriented

~>simulation,system,software,language

->simulation, system, sof tware, language, structure; segment

=>simulation, system,software

~>simulation,system,hardware,digital

~>simulation, system,software, run-time system,classification,
continuous,numerical integration,method

~»simulation,system,software,language,structure

->modeling, approach

=~>simulation, system,software,language,classification,
continuous system

=>systenm

~>model,classification,combined,discontinuous

->simulation,system,software, run~time system,classification,
continuous, numerical integration,method,multi-step, modern

->simulation,system,software,lanquage,structure, segment,
continuous )

~>simulation,system,software,run-time system,classification,
distributed,numerical solution,classification,
method~of~lines . .

~>simulation,system,software,run-time system,classification,
continuous . .

->simulation, system,software, run-time system,classification,
combined, state-condition handling .

->simulation, system,software,run-time system,classification,
distributed . .

->simulation, system,software,run-time system,classification,
continuous,numerical integration,method

~>model



operation on data
operational mode
optimization

order

oscillatory
output description
parabolic

parallel
pParallel section

parameter
Parameter estimation

parser

physical

polynomial

polynomial trajectory
postprocessor
Preprocessor
Procedural

Procedural section

procedure

PROCFDure section

process

process computer
process-oriented

Programmable

programming

random number
range

range-test
real-time
reduction
redundancy

retrieval
robustness

->experimentation
=>simulation
=>experimentation
=>model ,ocperation
=>model
—>simu1ation,system,software,run-time system,classification,
continuous, numerical integration,method
->simulation,system,softwate,zun—time system,classification,
distributed, numerical solution,classification,
method~of-lines
=>system
-)simulation,syatem,software,language,structure,segment
->mode1,classification,dist:ibuted
—)simulation,5ystem,software,run-time system,classification,
distributed
=>programming, structure
->simu1ation,system,softwaze,1anguage,structute,segment,
continuous
->experimentation,operation on data,collection
->expezimentation,optimization,data
~>model ,operation
->simulation,system,softwaxe,language,compilet
-—>system,well-defined, field
->simu1ation,system,softwate,run-time system,classificaticn,
combined,state-condition handling, numerical interpolation
->simu1ation,system,softuare,run-time system,classification,
continuous, numerical integration
->simulation, system, software
-)simulation,system,scftwaze,language
->simu1ation,system,software,language,compiler,robustness,
implementability
=>programming, structure
->simulation,system,scftware,language,structure,segment,
continuous
-)programming,structu:e,subprogram,classification
-)simulation,system,software,language,structure,segment,
. declaration,subprogtam,classification
->simulation,system,software,xun-time system, robustness
-)simulation,system,software,language,sttuctu:e,segment,
continuous
—)pgogramming,structure,subp:ogram,classification
—>51mu1ation,system,software,1anguaqe,stxucture,segment,
. continuous
->simu1ation,system,software,language,atructute,segment,
declaratinn,subprogram,classification
->simulation,system,software,language,structuxe,segment,
discrete
->simulation,system,software,run-time system,classification,
. discrete,file
-)simulation,system,hardwate,digital
->mode1,classification,discrete
->simu1ation,system,softuare,language,classification,
discrete system
->modeling,apptoach,network-oriented,description,
topological
->simulation,system,software,language,structure,
network description,topological description
->
—>simu1ation,system,software,language,compiler,robustness
-)simulation,system,software,language,robustness
—>expetimentation,operation on data,generation
->simu1ation,system,software,run-time system,classification,
combined,state~condition handling,numerical interpolation,
convergence
->51mulation,system,software,run-time system
->simulation,operational mode
->model,operation
->simu1ation,system,software,language
->simu1ation,system,software,language,compiler,robustness,
Programming
—>simu1ation,system,scftware,language,robus:ness,modeling
->simu1atign,system,software,language,robustness
pProgramming
~>experimentation,operation on data
->simulation,system,software
-)51mulation,system,softwa:e,language
—>simulation,system,softwaxe,language,cnmpilet

:un—lehgth determination

run-time system
scheduling

segment
semantics
sequence

sequential
sequential section

short~living

signal flow
signal/noise ratio
simulation

smooth

software

SORT section

sorting of equations
spatial discretization
special

speed

stability

state

state~condition

state-condition handling

state identification

state~space description
state-space representation

state trajectory

statistical
statistical quantity

step-size

stiff
stiffly-stable

stiffness

stochastic

storage
structural algebra

structure

->simulation,system,software, run-time system )
=>simulation,system,software, run-time sy§tem{classxf1catxon,
distributed,numerical solution,classification,
method-of-lines
~>experimentation
->simulation,system,software . .
->simulation,system,software, run-time system,classification,
discrete,file,event
=>simulation,system,software, language,structure
->simulation, system,software,language . .
->simulation,system,software,run-time system,classification,
discrete,file,event
->programming, structure
->simulation,system,software,language,structure,segment,
continuous . .
~>simulation,system,software,run-time system,classification,
combined,discontinuity function
->simulation,system,software, language,structure,
network description,bond-graph
->system, stochastic,continuous
-5 )
->model,classification,combined,discontinuous
~>simulation,system
->simulation,system,software,language,structure,segment,
continuous
=>simulation,system,software,language;compiler .
=->simulation,system,software,run~time §y§tem!classif1cat10n,
distributed,numerical solution,classification,
method-of-lines L .
->simulation,system,software, run-time systen,classification,
combined,discontinuity function . .
=->simulation, system,software, run~time sys@em,c%assxflcat;on,
combined,state-condition handling,numerical interpolation,
convergence L . .
=>simulation,system,s0ftware,run-time system,classification,
continuous,numerical integration,method .
~>simulation,system,software,run-time sygtemfclassxficatxon,
distributed,numerical solution,classification,
method-of-lines
->gimulation,system,software, language, structure, segment,
discrete,event
~>simulation,system,software, language,structure,segment,
combined
~>simulation,system,software,language,structure,segment,
discrete,event,state - .
~>simulation,system,software,run-time. system,classification,
combined
~>experimentation,optimization,structure
->model,operation tion
->model,characterizatio
—;sgmsléticn,system,software,run—time system,classification,
continuous
~>experimentation,operation.on data,cnllgction~
=->experimentation,operation on data,tetrxeyal
~>experimentation,operation’ on’data,analysis
->experimentation,operation on-data,collection
->experimentation,operation on'data,retrieval
=->simulation,system,software, run-time gystem,classification,
continuous,numerical integration
- tem .
-;:{;ulation,system,softwaxe,run-time system,classification,
continuous,numerical’ integration,method
-;gggﬁiatinn,system,softuate,run—time’system,classification,
combined,discontinuous. function .
«>simulation, system,software,run=time gygtem{clasaificatlon,
distributed,numerical solution;classification,
method-of-lines
->model,classification,continuous
->system
~>experimentation,operation on data
->simulation,system,software;module handler,
algebraic loop solving
->experimentation,optimization
->modeling,element
~>programming . .
->simulation,system,software,language



structured
structuring

subprogram
subroutine

synchronization

syntax
system

system engineer
system theory based
systems dynamics

technigue

terminal

terminology

text editing

theory N
time~persistent variable

time

topological
topological description

transformation

transparency
type
unambiguous
updatability
user
validation
variable

variable structure

verification
well-defined
white-box

3-dim. graphical representation

=>simulation, system,software, run-time system
~>programming
=>programming,data
=>model,operation
->simulation, system,software, language, robusthess, model ing
=>programming,structure
~>simulation,system,software,language,structure, segment,
declaration
=~>programming,structure,subprogram,classification
—>simu1ation,system,software,lanquage,structure,segment,
‘declaration,subprogram,classification
->simulation,system,software, run-time system,classification,
continuous,numerical integration,method
->simulation,system,esoftware, language
->
~>simulation
~>simulation
->simulation, system,software,language, extendability
->simulation,system,software,language
=>model,application,
economy, management, and social sciences
~>modeling
~>simulation, system,software, language,structure,segment
=>simulation
~>simulation,system,software, robustness,updatability
=>modeling
—->experimentation,operation on data,collection,
statistical quantity
~>simulation, system,software,language,structure,segment,
discrete,event
->modeling, apprcach,network-oriented,description
~>simulation,system,software, lanquage,structure,
network description
=>model, operation
~>simulation, system,software,run-time system,classification,
combined,discontinuity function
->simulation,system,software,language
=>modeling,approach,network-oriented
—)simulation,system,softwate,language,gtammar
=>simulation,system,software, robustness
->simulation,system,software, language, extendability
=>model
=>programming
~»>simulation,system,s0ftware, language,structure,segment,
continuous,memory
~>simulation,system,software, language, structure, segment,
declaration
~>simulation, system,software, run-time aystem,classification,
continuous,numerical integration,step-size
~>model,classification,combined
~>simulation,system,conbined
=>simulation
=>system
=>system
=>experimentation,operation on data,retrieval,
state trajectory
=>simulation,system,software, postprocessor

CURRICULUM VITAE

I am born in Zurich, Switzerland on July 30, 1948 as a son
of Jean and Anita Cellier-Borchardt. I attended the primary
school in Duebendorf/zH for five years. Thereafter, I
entered the preparatory class of the "Freies Gymnasium
zurich" where I passed my final examinations in autumn 1967
with a specialization in the humanistic field (Maturitaets-
pruefung, Typus A). Immediately afterwards I started my
studies at the Department of Electrical Engineering of the
Swiss Federal Institute of Technology Zurich., I was awarded
my Diploma degree in Electrical Engineering in spring 1972.
Following graduation I spent another two semesters in 1973
attending the postgraduate courses in - Automatic Control.
since August 1972 I am employed at the Institute for Auto-
matic Control and 1Industrial Electronics. = -During the
years 1972 to 1976 I was mainly engaged in an industrial
project on simulation, design, and adaptive control of
machine tools sponsored by AGIE AG (Losone/TI). Since then I
worked as an Assistant. Beside of this work I was granted
time to write my Ph.D. thesis. Finally, in spring.1978 I was
appointed by the Department of Electrical Engineering as a
Lecturer of Simulation Techniques,

Zurich, October 1979 Francois: E. Cellier



