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ABSTRACT

In this presentation, we propose a framework for inductive modeling of discrete-
event systems called Discrete-event Inductive Reasoner, DIR. It is based on systems
theory and non-monotonic logic. We present a new representation for a finite set
of discrete-event observed input/output time segments called Iterative IOFO (In-
put/Output Function Observation) Specification. We also introduce a novel use
of non-monotonic logic allowing DIR to make tentative decisions. With the inclu-
sion of additional data, non-monotonic logic ensures that any of its prior decisions
that becomes violated is retracted properly. Due to the underlying features of
non-monotonic reasoning, DIR supports incremental refinement/extension of the

model iterative IOFO specification.

To implement the DIR, we map the iterative IOFO into a logic-based representa-
tion suitable for Logic-based Truth Maintenance System, a form of non-monotonic
reasoning mechanism. Abstraction mechanisms are defined that are capable of pre-
dicting unobserved input/output time segments, given some existing IO segments
and some assumptions. The systems theory framework enables us to develop the
means to ensure the appropriate use of abstractions. In this way, the model is

incrementally extended by predicting and retaining unobserved IO segments in a

well-defined fashion.

Also, we discuss an implemented prototype of DIR called Logic-based Discrete-
event Inductive Reasoner, LDIR. Two examples are used to discuss LDIR’s fea-
tures. We give some heuristic metrics for quantitative evaluation of LDIR’s pre-
dictions. We provide general guidelines for the evaluation of DIR and place the
methodology within existing inductive modeling approaches. We conclude with

some shortcomings of our approach and speculate on future research directions.
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Chapter 1 Introduction

1.1 Motivations

We are always searching for new ways to solve problems and tailor the world to
our needs. Modeling is a tool employed in all branches of science and engineering to
achieve this. It is used for describing the behavior of dynamical systems ranging
from electrical circuits to the interactions in human societies, as well as static
functions such as the relationship between air density and altitude above sea level
on planet Earth or that between the lending rate and several economic factors such

as inflation and unemployment.

The theory of modeling will evolve as long as it continues to help us gain an
improved understanding of the environment we live in, or find better answers
to our questions and solutions to our problems. As our expectations change, the
techniques of modeling that we employ are constantly challenged. Hence we should
not be surprised to see that no individual modeling methodology ever fully satisfies
the changing expectations of all of its users. Methodologies either prosper or

become obsolete depending on their ability to meet the challenges facing them.

If we want to continue exploring new problems — and studying old problems
in new ways — we must find more powerful and increasingly flexible modeling
methodologies.

As a case in point, a movement began in the 1970’s toward developing modular
and hierarchical modeling paradigms. They have since proven to be indispensable!
Formalists and experimentalists alike have conducted research to better understand
their roots and ramifications and consequently develop methodologies and tools
that adequately support them [HEO93, Wym93, Zei84, Zei90, Fis93, Cel91].

A more recent movement deals with complex, large-scale systems by attempting

to develop additional capabilities that can use highly parallel computing platforms
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[MRS88, CZ94]. These new developments are a testimony to the ever-evolving

demands for more powerful modeling methodologies.

Another movement in modeling has been targeted toward building (modest)
intelligence into models. Over the past two decades, the modeling practioners at
large have witnessed progress in building some intelligence into models expressed
using either deductive, inductive, or abductive paradigms. Several research com-
munities have been involved in building intelligent models of dynamical systems
[Dav84, For84, HM85, Mey85, dKW87, GN87, Ham91, Rei87, Pea88, Zei90, FF91,
Cel91, Fis93, RR93].

The dynamics (or behavior) of a system can be encoded in several languages,
such as differential equations and logic formulas. In particular, a system can be
classified as either dynamic (time-dependent) or static (time-independent). In
this work, I am concerned with dynamic systems only. A dynamical system may
be modeled using differential equation, discrete-time, or discrete-event formalisms
[Cel91, HM85, Sho88, Wym93, Zei76, Zei84]. Each of these formalisms is associ-
ated with a particular time base. Systems represented (modeled) using either a
differential equation or a discrete-event formalism have a continuous time base,
while those employing a discrete-time formalism have a discrete time base. Fur-
thermore, dynamical systems can be viewed as either time-invariant or time-variant
[Cel91, Wym93, Zei76], deterministic or stochastic [Wym93, ZD79, Zei76], as well
as causal or non-causal [Mac74, Pea88, Sho88, Cel91, Sup73, ZD79, Zei76]. The
notion of time-invariance vs. time-variance, associated with a dynamical system,
determines whether its behavior depends on a fixed time point or not. A deter-
ministic model is not subject to uncertainty as a stochastic model would be. The
causal behavior of a model asserts that its previous behavior influences its present

and future behavior. The past or present behavior of a noncausal model, however,
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may depend on its future behavior. In this dissertation, I am concerned with a

class of dynamical systems, which are time-invariant, deterministic, and causal.

Furthermore, a modeling methodology can be viewed as either deductive, abduc-
tive, or inductive depending on whether outputs, inputs, or structure of a system
are the subject of inquiry, respectively [Cel91, GN87, Zei76, Zei84, Wym93]. The
deductive modeling paradigm computes outputs of a system based on its structure
(principles governing its behavior) and some valid input sets. The abductive mod-
eling paradigm predicts a system’s inputs given its structure and some outputs.
The inductive paradigm attempts to predict a system’s behavior from input and

output data sets without any reference to the system’s structure.

We can think of inductive modeling as either trying to identify a structure for
the system or some set of generator input/output pairs. The former tries to sum-
marize the behavior of the system in a closed-form. The latter attempts to identify
a minimal set of input/output pairs from which a system’s behavior can be ob-

tained by means of composition.

Modeling is generally viewed as a creative activity that relies on complex and
intricate reasoning processes. Presently, almost the entire task of creating a model
is the responsibility of the modeler. Relying on diverse sources of knowledge,
modelers create, implement, and eventually try to validate their models. The act
of reasoning is such an integral part of these stages that sometimes modelers are

hardly aware of it.

In recent years, improved measurement and data storage techniques have led
to an avalanche of data becoming available that characterize a large variety of
processes or systems. Consequently, there is a need for methods capable of reason-
ing about these data. That is, a modeler studies some data and tries to devise a

model that explains them. As the amount of available data continues to increase
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rapidly, a modeler becomes overwhelmed with the amount of information. Hence
it is imperative to seek methodologies that can take active part in understanding
the data. Such a methodology would emulate the tasks of one or more modelers
as we know them today. I call a modeling methodology that supports this kind of

modeling non-standard.

Obviously, at the present time and for a very long time to come (if ever), we
cannot hope for a model that in itself would have the ability to emulate a modeler’s
reasoning in its entirety. Hence, it is natural to identify the simplest among all
forms of model creation and attempt to model it. To this end, it is, of course,
necessary to isolate the part that is amenable to being modeled given our present

knowledge.

Generally, of the three modeling paradigms, the simplest form of reasoning is
used in inductive modeling. The basis for this claim is that the inductive modeling
approach attempts to create a model for a system based on observed data. That is,
we reason about a system’s behavior and formulate hypotheses (develop models)
about how it may account for the observed behavior. A modeler trying to derive an
either deductive or abductive model typically needs to specify a system’s internal
structure. The reasoning processes involved in deriving such an internal structure

representation of a system are quite intricate and complex.

In broad terms, inductive modeling consists of identifying input/output trajec-
tories of interest, reasoning about the observed data (which would result in some
postulated relationships among them), and gaining more and more confidence in
the hypothesized relationships by unsuccessfully trying to refute them through ad-
ditional experiments. It is my intent to devise an approach to model the reasoning

part only.

As the overall goal of this dissertation, I propose a new inductive modeling

methodology that supports an explicit form of reasoning about a system’s ob-



15

served behavior. Given a system’s observed behavior, i.e., a set of input/output
trajectories, I partition them into a set of input/output segments that can then be
re-composed appropriately to form the original observed behavior as well as pre-
dict output trajectories for yet unobserved input trajectories. Of course, since we
can only observe, store, and process a finite amount of data, it becomes necessary

to reason about the available data in order to account for any unobserved data.

A very useful concept in modeling is abstraction. Whereas modeling itself can be
viewed as a process of encoding knowledge available about a system under study,

abstraction can be interpreted as a process of knowledge generalization.

The flexibility provided by multiple abstraction levels has proven itself indis-
pensable in modeling activities. It provides the means to study a system from
different viewpoints [HH90, HM85, K1i85, Wym93, Zei76, Zei84, Zei90, Wel92]. Its
utility in mathematics and physics as well as our every day activities ‘is preva-
lent and indisputable. To switch from one viewpoint to another can be seen as
a change in abstraction level. Often, the need for a more abstract (simplified)
representation is justified on the basis of insufficient knowledge being available
to reason conclusively at a level of lesser abstraction. Higher abstraction levels
(corresponding to less detailed knowledge) support better-managed reasoning (in

terms of tractability and complexity) at the cost of a reduced precision.

The proposed inductive modeling approach requires partitioning of input /output
trajectories. It also requires reasoning about the use of input/output segments in
predicting output trajectories as necessary. I use two classes of abstractions. In
particular, a trajectory can be partitioned into smaller parts (segments) based
on abstractions on the time base as well as the range of the input/output vari-
ables. These abstraction levels support varying degrees of data granularity. The
other class of abstractions provides the basic means for reasoning about the com-

plexity of input/output segments. For instance, we may abstract the length of
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an input/output segment pair, or abstract a segment’s initial state. The gen-
eral concept for examining the correctness of an abstraction is homomorphism. It

establishes relationships between two models of a system [Sto73, Zei76, Wym93].

The ability to change the abstraction level based on explicit assumptions (jus-
tifying the use of a particular abstraction level) underlies the development of a
non-standard modeling methodology. Obviously, a reasoning mechanism that is
able to operate at varying abstraction levels, necessitated due to a lack of knowl-

edge, has a non-monotonic character.

Modeling has many attributes [Min65, Zei76, Zei84, K1i85, GN87, Cel91, Wym93],
two of which are fundamental in bringing about sound modeling methodologies.
First, it can benefit greatly from being non-standard. Second, it should be built
on well-defined concepts supported by mathematical underpinnings. Both of these

attributes are essential for the development of powerful modeling methodologies.

We can categorize modeling methodologies into standard and non-standard. A
model generated using a standard methodology cannot in itself emulate the tasks of
a modeler. Whereas these models may contain varying forms of decision making,
they are, in general, not subject to revision. For example, models devised based on
formulations of deductive paradigms such as differential-equation specified systems,
discrete-time specified systems, and discrete-event specified systems [Cel91, Fis93,
Kl1i85, Zei76, Wym67] provide the means for modelers to create models. They are

not, in themselves, models of a modeler.

An ideal non-standard modeling methodology, on the other hand, would support
creating models that would emulate a modeler’s activities. While this approach has
to possess all the capabilities afforded by the standard methodologies, it should,
in addition, possess reasoning capabilities similar to our own. This approach,

unlike those devised according to standard methodologies, may not always behave
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correctly, just as a modeler hardly ever creates a model, the first time around, that
does not have to be revised. Therefore, non-standard methodologies must provide
means for the integration of reasoning mechanisms into models, such that their

incorrect decisions are correctable automatically by themselves.

Within deductive modeling paradigms, progress has been made to support the
creation of models that have some self-assessment capabilities, i.e., that know some-
thing about themselves [Zei84, GN87, BZR89, Cel91, Zei90, Fis92]. However, these
approaches provide no explicit reasoning mechanisms to handle their own incorrect
decisions. It is important to observe that, whereas non-standard methodologies are
prone to committing (hopefully correctable) mistakes, standard methodologies are

expected to always make the correct decision right away.

To develop a non-standard inductive modeling methodology, I draw from two
basic disciplines: Mathematical Systems Theory [ZD79, MT75, Kli69, Wym67,
RKA69)] and Artificial Intelligence [GN87, Ric83, Gin93, Nil80]. The former pro-
vides a framework for representing and studying dynamical systems. The latter

supports explicit types of reasoning using declarative knowledge representation.

Although Systems Theory forms the foundation for all system representations,
it is, by itself, insufficient to support modeling of complex and interconnected
systems [K1i85, Wym93, Zei84]. As a result, several modeling methodologies have
been developed [Zei76, EIm78, Zei84, Zei90, K1i85, Wym93] that build on Systems
Theory, but add several essential components to it. In this work, I shall use
a hierarchy of system specifications with abstraction levels, starting from purely
observed input/output behavior and ending with the coupling of highly-structured
systems [Zei76, Zei84].

As stated earlier, non-standard methodologies need to deal with changing ab-

straction levels expressible in declarative form. Traditionally, reasoning has been
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within the confines of declarative representations due to its rich semantics and
powerful means for manipulation of descriptive knowledge [GN87, McC90, Dav90,
Nil91]. In representing abstraction levels for ezplicit reasoning, I take the logical
approach to knowledge representation [GN87], as opposed to other approaches,

such as semantic nets or rule-based systems [Ric83].

To carry out the type of reasoning that is necessary for our purposes, I make
use of the so-called non-monotonic reasoning approach. Since the late 1970’s,
several such approaches (formalized and unformalized) have been developed [Pol75,
Doy79, McC80, McA80, MD80, Pea88, Rei80, Sho88, Bredl, MT93]. In my work,
I use a variant of Truth Maintenance Systems [Doy79] called Logic-based Truth
Maintenance System [McA80, FAdK93]. It supports the type of non-monotonic

reasoning that we are interested in.

Now, we can view standard and non-standard modeling methodologies in terms
of a block diagram with three components: language, reasoning, and abstraction.
Figure 1.1 depicts how a modeling methodology can be created using these compo-
nents put together appropriately. In particular, a modeling methodology defines
its own governing principles to ensure a well-defined discipline. According to what
I have said so far, we have a non-standard methodology when only the reasoning
component and the language component are used. By including the abstraction
component with the other two components, we have a non-standard modeling

methodology.

I wrote earlier about the need for a formal approach to modeling. The devel-
opment of modeling methodologies is influenced by the fact that modeling is a
conglomerate of various techniques put together to capture a particular viewpoint
of a system. However, modeling can be (and should be) viewed as a discipline
that seeks to formalize its existence based on solid mathematical foundations. To

ignore the necessity of formalized modeling methodologies, puts the discipline at
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Languages Reasoning
 diff. egs. * deductive
¢ logic formulas * inductive
. etc. * abductive
* non-monotonic

Abstraction

e data
* structure

Figure 1.1, Components of Modeling methodologies

risk. Using a rigorous theoretical approach supports validation and verification
of models via mathematical tools and offers several other important advantages
[Zei76, Zei84, K1i85, GN87, MEZ89, Wym93].

An occasional lack of preciseness, however, may be unavoidable, and may, in
fact, be beneficial at times. It is furthermore not endemic to the modeling commu-
nity alone. In the field of Artificial Intelligence, spirited debates between formalists
and experimentalists have been going on over the same fundamental issues. The

following is an excerpt from formalists’ point of view:

. it is nevertheless our opinion that the important new results in Al will
be achieved by those researchers whose ezperiments are launched from the

high platform of solid theory, page viit [GN8T].

I take the point of view that the research conducted by experimentalists is

equally important as that conducted by formalists. Tangible results in science are
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generally brought about by both the experimentalists and the formalists. It is
not always the case that research can take off from well-defined theoretical under-
pinnings. Sometimes theories are developed years after the experimentalists have
demonstrated their own results [SS77, Doy79, McA80, MRS88, dK86a, RAK87].
Nevertheless, the development of new methodologies, as well as the growth of ex-
isting ones, may severely suffer from a lack of solid theoretical foundations, threat-

ening the existence of a stable base for future research.

1.2 Goals

In view of what has been said thus far, I have chosen the discrete-event rep-
resentation paradigm as the basis of my investigation, since high-level model ab-
straction is essential for having any hope of tractability within inductive modeling
paradigms. Furthermore, it is my belief that non-standard modeling methodologies
cannot entirely be built on deductive modeling paradigms, thus the need for an
inductive approach. This is mainly due to the observation that inductive modeling
is an important stepping stone toward creating deductive models. I am also in-
terested in dynamical systems (i.e., those that have states.) Henceforth, this work
is concerned with inductive, discrete-event system representations of dynamical
systems. Reasoning about them is accomplished with the aid of a non-monotonic
paradigm expressed in the language of logic.

Hence the goal of this dissertation is to develop an approach for an induc-
tive discrete-event modeling methodology based on non-monotonic reasoning. The

breakdown of the goal of this work results in the following:

e Formulate a representation of a deterministic, time-invariant, and causal ob-
served input/output data set.

¢ Identify an assumption set-I to determine data granularity and partitioned
input/output data that allows the partitioning of the observed trajectories
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into discrete-event segments, if necessary. Also identify an assumption set-11
that facilitates reasoning at varying abstraction levels in accordance with the
richness of the available data as well as the necessity for moving from one
abstraction level to another.

e Develop and formalize an iterative input/output function observation speci-
fication suitable for reasoning.

e Identify the role of non-monotonic reasoning in inductive modeling.

e Define an inductive modeling methodology incorporating some simple explicit
forms of non-monotonic reasoning.

e Choose/justify an appropriate non-monotonic reasoning mechanism for rep-
resentation and manipulation of observed data and the assumption set-II.

e Define an architecture for the proposed inductive discrete-event modeling
methodology.

e Develop the foundations of an inductive discrete-event modeling reasoner.

e Implement and test the proposed inductive modeling reasoner via an example
— a shipyard with two repair stations responsible for repairing broken vessels.

¢ Develop some heuristic means for evaluating the proposed approach.

e Discuss the potentials, limitations, and future work for the proposed approach
as well as its relation to some of the existing work.

1.3 Organization

In Chapter 2, I begin with the presentation of fundamental concepts from Sys-
tems Theory. I use the concepts of determinism, time-invariance, and causality
to formalize a representation of the input/output space. Then, I describe the no-
tion of generator segments and extend it to the input/output space. I continue
with the representation of a stratification of system specifications. This chapter
concludes with the discrete-event representation of I/O System (IOS) and I/0
Function Observation (IOFO) specifications.
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Chapter 3 begins by describing and analyzing the iterative discrete-event 1/0
system specification. It discusses the importance of the iterative IOS specification.
I then propose a way to dissect the IOFO specification in order to define its it-
erative specification. I continue with a reformulation of the IOFO specification,
from which its iterative I/O function observation specification is formalized. Then,
based on it, a free iterative IOFO specification is derived. Next, a discrete-event
representation of the IOFO specification is introduced. I also associate assumption
set-I and assumption set-II with IOFO specification and iterative IOFO specifica-
tion, respectively. Assumption set-I determines the granularity of data for an
iterative IOFO specification. Assumption set-1I allows reasoning (abstraction) of
10 segments of an iterative IOFO specification in order to construct its free spec-
ification. Finally, a free-constructed IOS specification is described and compared

with the free I/O function observation specification.

The discussion of Al reasoning paradigms is presented in Chapter 4. This
chapter serves three purposes: (1) to provide a brief overview of some types of
non-monotonic reasoning approaches, (2) to select the one that serves best our
present demands and that may serve some future purposes as well, and (3) to
realize the potential of inductive modeling as a new application of non-monotonic
reasoning. In particular, I focus on non-monotonic reasoning within the Al ter-
ritory, which uses logic as the primary means to represent knowledge and carries
out the task of reasoning from a model theoretic point of view. Hence I present
a brief overview of logical approaches to knowledge representation. Two primary
knowledge representation languages, propositional and first-order logic, are briefly
described. Then, a primitive form of knowledge representation as well as a specific
inference rule (resolution principle) that has the two fundamental properties of
soundness and completeness are discussed. I continue with a discussion of reason-

ing, specifically non-monotonic reasoning (NMR), and why it plays a significant
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role in inductive modeling. Some NMR approaches (e.g., Closed-World Assump-
tion, Negation as Failure, and Circumscription) that are based on model-theoretic
logic are presented. In particular, I also describe the Truth Maintenance Systems
(TMS) from a somewhat formal point of view, as it has been presented in the lit-
erature. Two variations of the TMS, implemented in the Common Lisp language,
are described followed by a discussion of trade-offs between them. At the end of
this chapter, I list some of the present applications of NMR and discuss my appli-
cation. The last section also discusses the challenges of incorporating NMR into

other problem-solving methods.

Chapter 5 establishes the details of an inductive reasoner called Discrete-event
Inductive Reasoner (DIR). I begin by describing the existing abstraction mech-
anisms which are primarily developed for systems with their internal structures
known. This discussion points to the lack of a theory of abstraction for systems
with their internal structures unknown. Then, I give a modified representation of
discrete-event input segments as well as input/output segments. This leads to a
reformulation of the iterative IOFO specification in terms of these 10 segments.
To provide predictability, I devise some equivalence relations as a way to abstract
IO segments to derive new ones in a well-defined manner. From these equiva-
lence relations, a set of assumption types from assumption set-II are identified.
Then, I discuss how iterative IOFO can be augmented with a Logic-based Truth
Maintenance System to devise DIR. First, I choose logical representation of the 10
segments, then show how assumptions provide the basis for justifying the use of
equivalence relations. Thereafter, I show how unobserved IO segments can be pre-
dicted in a systematic manner. The remaining elements of the assumption set-II
are determined from the types of predictions allowed. I then provide a set of consis-
tency axioms for ensuring consistency of any predicted 10 segment with previously

known IO segments. I continue with devising a scheme for partitioning of input
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trajectories. Finally, I conclude this chapter by showing how DIR (by utilizing
equivalence relations, prediction schemes for unobserved 10 segments, and con-
sistency axioms collectively) can predict output trajectories for some well-defined
input trajectories.

An implementation of the inductive reasoner, called Logic-based Discrete-event
Inductive Reasoner (LDIR), is presented in Chapter 6. I start by describing a
shipyard. The example is concerned with arrival ships in need of repair. Each
instance of this example considers the arrival of some ships and their departure
after they are repaired. The shipyard features two types of disciplines (repair
priorities) — one is first-in-first-out and the other is priority ranking. This example
serves as the primary vehicle for studying DIR. It also shows what types of systems I
am dealing with. Next, I give in pseudo code the skeleton of the procedures carrying
out the tasks of the LDIR. I consider 5 scenarios. All scenarios use the same input
trajectory for which output trajectories ought to be predicted. For the first three
scenarios, one particular set of observed 10 segments are supposed. Each of these
scenarios, however, considers a particular variation of the assumption set-II. The
last two scenarios use another set of observed IO trajectories. Again, each of
these two scenarios uses different variations of the assumption set-II. Detailed
description of the LDIR implementation is illustrated for the first two scenarios.
The chapter continues with a comparison of the two disciplines and point out
LDIR’s features. Next, two quantitative measures are provided to determine the
goodness of the LDIR’s predicted behavior. I also give a qualitative evaluation of
LDIR. This chapter concludes with an overall evaluation of DIR compared with
some other approaches.

In the last chapter, I summarize the contribution of this work, discuss some

related work, and suggest directions for future work.
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Chapter 2 A System Theoretic Approach to
Modeling

2.1 Preliminaries

Systems theory is based on basic formal concepts such as time, a system’s
behavioral properties (e.g., determinism and time-invariance), and the represen-
tation of input and output trajectories and how they may be manipulated. This
chapter presents these concepts and their relationships. Indeed, the definitions of
such concepts are fundamental to a precise treatment of various classes of system
representations (to be outlined later in this chapter) and their interrelationships.

In this chapter, I present the main definitions and concepts without regard to
any specific view of time. Later, I will specialize these definitions and concepts to

continuous, discrete-time, and discrete-event forms as we need them.

2.1.1 Time Base

The notion of time seems rather trivial. Yet, its mathematical treatment and
even its physical understanding have been a stumbling block for centuries [Pri80].
The notion of time is an elusive one. In general, time can be either linear or
branching [Ben83, EH83]. For linear time, there is only one possible future at
any moment. Branching time, however, indicates that time has a tree-like (or
branching) nature — a given instant of time has more than one future (i.e., there
are multiple/alternative futures).

I shall assume the nature of time to be linear. Furthermore, time is assumed to

[Zei76):

1. be an Abelian group (i.e., an algebraic structure (T, +, <)),
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2. satisfy a linear ordering relation <,
3. satisfy order preservation under addition +, and

4. have the property of unbounded extension.

The restriction of the time base to an Abelian group is necessary for consider-
ing time-invariant systems, i.e., for being able to move back and forth time-based
histories w.r.t. time. The linear ordering relation establishes the notions of past,
present, and future, while order preservation guarantees the chronology of instants
of time. The remaining unbounded extension property allows us to consider tra-
jectories of finite but arbitrary length.

Since the elements of T, a set of time points, can be either real, ®, or integer, Z,
the time base can be either continuous or discrete. Both continuous and discrete
time bases will be used in my discussions. I exclude the discussion of hybrid time
bases.

I make another observation: the notions of time points as well as time peri-
ods [All84] are used in my discussion, since I shall be dealing with both discrete
and continuous time bases, although usually only one of these concepts will be
considered in any particular situation.

The notation used to describe a time periodis < t,,t ;> whereVit, <t <t =
t € T. The angular brackets < .,. > can stand for any of four possible choices:

[,-)(-)]--],and ( .,.],1.e., both open and closed intervals will be considered.

2.1.2 Histories

Systems are often studied by looking at their behavioral patterns which are
nothing more than sets of collected data with a chronological pattern. A sys-
tem’s behavior can be phenomenologically described through a collection of time-

stamped data relating to some variables of interest, often classified as its inputs
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and outputs. What I mean by a data set is a time history of a variable. Generally
the variable represents some property of a system. Thus, histories have time as
their independent variable. Notice that not all functional relationships are called
“histories” — e.g., fluid viscosity as a function of temperature is not considered a
“history” unless time is explicitly present. In general, a history, denoted as w, is

represented as:

wi<t,l, >— 72

where Z is a set, and ¢, and ¢, are the initial and final instants of time associated

with the set.

In the following discussions, I shall distinguish between histories based on their
interpretations. If a history is expected to be partitioned into histories of smaller
durations, it will henceforth be called a trajectory. On the other hand, if a history
is assumed not to be partitioned any further and only to be used as is, it will be
called a segment. Note that this definition is entirely based on our interpretation of
histories and the limitation put on how small their time length (or duration) might
be. Therefore, under interpretation, a history of a variable is either a trajectory
or a segment, but not both .

The duration of a trajectory has at least one or more intermediate time instants
that can be used to partition it into two trajectories, two segments, or a trajectory
and a segment. In formal notation, for any trajectory w, there exists at least
one time instant t' such that < t,,t, > can be partitioned into < t,,t' > and
< t,t ; >, where each part of the partitioned trajectory can itself be either a

trajectory or a segment. Likewise, for a segment, denoted as w and its time

£F)?

'In the later part of this chapter as well as in the following chapter, I shall develop some
concepts based on whether a history is a segment or not. In particular, the so-called iterative
specification of an algebraic structure is based on segments.
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length dom(w, ,) =< t,,t, >, there does not exist any t' such that < ¢,,t > and
<t t ; > can be found. The duration of a trajectory or a segment is represented
as £(.) & t, —t,. Evidently, f(w_ ) < {(w).

I can distinguish between several types of histories: constants, periodic, contin-
uous (and its variations — constant piecewise, linear piecewise, etc.), and discrete
event. As indicated above, the time base can be either real-valued or integer-
valued. From here on, the time base for a discrete event history will be assumed

real-valued.

2.1.3 Types of Histories

Having described histories of the form w : < ¢,,t, > — Z, I can specify three
types of histories based on the time base T and its corresponding set of values
Z. The set Z is either the input value set X or the output value set Y. That

t, > —Y

isw: < t,t, > — X represents input histories, whereas ¢ : < t,, ;

[ 3
represents output histories. In short, I am denoting w and % as input and output

histories, respectively.

I can interpret a history in any of the following forms:

e Continuous time histories: A continuous time history is continuous at all
points along < t,,1, >; i.e., it is differentiable at least once everywhere.

wi<t t,>— 7 where tE%,VttiStStfand

[
z € Z = z € {numerals} where é & symbols.

o Piecewise continuous histories: A piecewise continuous history is continuous
at all points along < ¢,,¢, > except at a finite number of points. Furthermore,

w(t) is continuous between any two consecutive time points ¢, <t < t,.

wi:<t,t, >— 2 where tel,Vt i, <t<t, and

z € Z = z € {numerals, symbols} where ¢ & symbols.
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e Discrete event histories: A discrete event history has a finite number of points
{t,} for i = 1,...,n at which w(t,) # ¢ where ¢ denotes the “non-event sym-
bol”. Whenever an event occurs, it is identified with a symbol other than ¢
or a numeral. In other words, a discrete-event history should have a finite
number of symbols other than ¢ and/or numerals associated with it.

w:<t,t, >— 2 where teRVt t,<t<t, andz€Z=z2¢€

{numerals, symbols} where ¢ € symbols.

A special case of a discrete-event history is the empty history, where w(t) = ¢
for all t, <t < t,. We can also have “piecewise constant histories”. This is
a subclass of piecewise continuous histories where for w :< ¢,,t, >— Z, there
exists a finite number of ¢,,---,¢ _, €< t,,t, > and their corresponding ¢;,---, ¢,
<tgity> O OWat g tn> and We, ,t.~+1>(

>i€{0a"'>n_1}'

Later I shall use the notation (Z,T') to denote the set of all histories that be-

such that w = w t)=c¢,, forallt e<t,ti; >

long to any one of the classes defined above for given sets Z and 7. That is,

w:<t,t,>—Z€e(Z,T).

2.1.4 Composition of Histories

In the preceding section, it was said that a trajectory with duration < ¢,%, >
can be decomposed into < t.,# > and < t',tf >. Depending on which of the
four possible types of intervals is selected, the two neighboring histories are either
disjointed, connected, or overlap at t'. In either case, I say that the two time
histories are contiguous, not making the interpretation unique. With this in mind,
any two histories (that may belong to two distinct histories), are contiguous if they

satisfy the following composition operation [Zei76]. The composition operation

simply concatenates two histories:
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w, : <t,t, > — X

w1 <t,t,>— X

wi(t) ifte<t,,t >
w(t) = w,(t) o w,(t) =
wi(t) ifte <t t, >

A duration < t,,t, > can have any of these forms: {( ), [ ), (], []}. I w,
and w, overlap at ¢, i.e., if the upper interval boundary of w, and the lower in-
terval boundary of w; are both closed, the contiguous trajectory could potentially
be multivalued at ¢,, which doesn’t make sense for a time function. To avoid

this problem, I therefore demand, for an overlapping contiguous trajectory, that

w'i(tl) =W, (tl)'

I shall furthermore define that a collection of histories is denoted as §) such that
worw,, €{). Given a set of histories (2, the composition operation is said to be
closed if for every contiguous pair w and w' € Q, wow' € Q is true. Furthermore,
the composition is said to be associative if, for w ow' € @ and w’ o w, € Q being
true, (wow')ow, =wo (v ow,) € N always holds.

Furthermore, the set of histories that have < 0,¢ > as their domain is denoted
by Q,. That is, w € ), & w: < 0,t > — Z. Thus, Q, forms a semigroup? under
the composition operation.

Since all histories in {2, begin at time zero, the composition of w,w’ € ), requires
translating one of the histories. Let me briefly explain the translation operation.

Assuming that a history can be translated, the composition operation on histories

2A semigroup, as compared to a group, only needs to satisfy the closure and associativity
properties [Sto73].
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in {1, is identical to the one presented above. Note that by definition £, contains
all histories that begin at time zero and thus satisfies the closure property, if I
demand that only one of the two composed histories is allowed to be translated.
The associativity property is also satisfied, as can be easily shown by induction.
However, if histories are arbitrarily translatable, as I had to demand in order
to define the composition operation on histories in €}, then it is not meaning-
ful anymore to distinguish a given fixed time point as time zero. A zero time
point may still be needed for algebraic reasons, but we should not put too much
emphasis on where precisely the zero time point is located. Hence I shall, from
now on, talk about histories that begin at a fictitious time zero, and thus use Q
instead of (1, in the remainder of this work. Furthermore, I shall denote the set
of input histories w,,...,w, as (), and the set of output histories v,,...,%, as
V. Obviously, for correctness and consistency, the output histories must have the

same form and properties that characterize the input histories for any given system.

Before proceeding to the next section, I need to introduce a notation that allows
me to partition a history into its left-history and its right-history. To this end, I
shall define the operation cut. It partitions a history into two histories separated
by a time instant 7 €< ¢,,¢, > . The histories to the left and to the right of
7 are denoted as w,_, and w_,, respectively. They can be obtained using the cut

operations cut.left(.) and cut.right(.):

w:<0,t>— 7

cut.left(w,7) =w, = dom(w,,)=<0,7 >

cut.right(w,7) = w_, = dom(w_, ) =< 1,t>

where 0 < 7 < ¢. Of course,w =w,, ow_ where<., .>€{[.,.,[.,-), (-]}
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I am assuming w_, and w,, to have identical interval types. Of course, the com-
position property becomes undefined at a time instant 7 when <., . >= (., .).

It is also possible that £(.) = 0 for one of the histories.

To translate a history to a time point located either in the future or in the
past, we need an operator. I define a unary operator called translation, denoted
as TRANS,, which translates a history along its time base by 7 either to the past
(T < 0) or to the future (7 > 0) with respect to the initial time point [Zei76].

Translation does not change the algebraic structure of a history, thus: TRANS, :
(2,T) — (2,T). Given a history w : < t,t, > — Z to be translated by 7:
w' = TRANS,(w). Then: w': <t ,+, t,+7 > — Z. The operation TRANS (w)
must satisfy w(t) = w'(t 4+ 7) for all t €< t,t, >.

The set (1 is said to be closed under translation if TRANS (w) € Q for all w € 0
and for all 7 € T'. Closedness under translation implies the unbounded extension
property that was demanded earlier in this chapter, as can be shown easily by
induction.

Both the cut and translation operations are applicable in the left and the right
directions. The two operations can be combined to define various forms of the
operation cut.shift [AZ93]. In this text, the operation cut.shift denotes a cut.right
operation followed by a TRANS, operation in the left direction to move the left
end of the right-history back to the fictitious zero point. Given w: < 0,t > — Z,

we have:

cut.shift (w) = TRANS_ (cut.right(w,T))
= TRANS_.(v"), wi<nt>—1Z

w, w <0t—17>— 72

It

Hence:
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cut.shift (w): < 0,(w)y—7>— Z, such that

cut.shift (W)(t) =w(t+71) for te<0,l(w)—T1>.

where 7 i1s the time instance at which the operation cut takes place and the amount
by which the part of the history to its right is translated to the left w.r.t. ¢. Having

defined the cut.right and cut.she ft operations, we have the following proposition:
Proposition 1 The set of histories Q, satisfies: [Zei76]:

e closure under composition,
e closure under the cut.shift operation, and

e closure under the cut.left operation.

2.1.5 Time-Invariance and Causality of Input/Output His-
tories

Systems are often assumed to be time-invariant and deterministic, since sys-
tems that satisfy these properties can be treated with more rigor and preciseness
than with those that lack such properties. The discussion of time-invariance and
determinism is often given within the context of a system’s structure as opposed
to its observed behavior. Appropriate restrictions are put on a set of differential
equations describing their underlying features. In my discussions, the behavior of a
time-invariant and deterministic system (i.e., its histories) is a direct consequence
of its structural representation, and hence time-invariance and determinism of his-
tories follow from the same properties of the underlying system that generates
these histories.

Nevertheless, it is also useful to define time-invariance and determinism directly
as properties of input/output histories, rather than indirectly through the proper-

ties of a system’s internal structure that accounts for the observed input/output
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histories. Let me give some definitions.

Definition 1 A set of input/output histories:

I0space = {(w,$) | (w,%) € (X,T) x (V,T),  dom(w) = dom(d))}

is called an I0space.

The domain of each pair (w,v) € IOspace can be restricted to < 0,7 > for

some t > 0. Hence:

Definition 2 A set of input/output histories beginning at time zero

I0space, = {(w,¥) | (w,v¥) € IOspace,
dom(w) = dom(y) =< 0, > for some  t > 0}

is called an I0space,.

I can use the projection function [Wym67] over the IOspace, onto the first and
second coordinates to obtain ), and ¥, respectively. Hence PJN(IOspace,, 1) =
), and PJN(IOspace,,2) = ¥,.

To discuss the time-invariance and causality notions in the context of composite
input/output histories, the operators cut.right, cut.left, and translation need to

be well-defined. My interpretation of well-definedness of the above operators is:

Definition 3 If the operators cut.left, cut.right, and translation (hence cut.shift)
generate time-invariant input/output histories from a set of time-invariant in-
put/output histories, then they are said to be well-defined.

In other words, these operations must not affect the time-invariance characteris-
tic of their operands (input/output histories IOspace,). The definition is satisfied
if the above operations on a set of time-invariant input/output histories depends
only on the time length (duration) of the histories and not on any specific time

interval during which the histories may have been observed.
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10space

Figure 2.1, Projection of IOspace into its first and second coordinates

Henceforth, I shall use IOspace instead of IOspace, for a less cluttered nota-
tion. Remember that, algebraically, only the fact that time possesses a zero point

is important, not the precise location of that zero point along the time axis.

When a system is time-invariant, its behavior is independent of the selection
of the zero time point. Input/output histories that are jointly invariant under
translation are consequently called time-invariant input/output histories.

Let me suppose that a system receives an input history w € < t,,¢, >. The

system generates the output history ¢ € < ¢,,¢, >. Let me further suppose
that the same system is exposed at some other time to the input trajectory w' =
TRANS (w). If the system is time-invariant, it will react by generating the output

trajectory o' = TRANS, (v)).

Definition 4 A set of time-invariant input/output histories is defined as:

time-invariant 10space = {(w,¥) | (w,¥) € IOspace,
cut.shift (w) € PIN(IOspace,1),
cut.shift () € PIN(IOspace,?2),
forTteT.}

where the cut.shift operator is well-defined.

That is, a set of input/output histories is time-invariant iff it is closed under

the well-defined operation cut.shift.
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The concept of time-invariance was here defined for input/output pairs of his-
tories. This may seem unnecessary. However, it makes sense to define a single
history as time-invariant if it possesses the property of translation. However, this
is a somewhat weaker definition, since the former definition requires in addition

that the same translation 7 applies to both the input history and the output history.

The property of determinism of a set of input/output histories states that any
input history has a unique output history [MT89, Sho88, Wym93, Zei76]. For
instance, given an input trajectory w, there exits a unique output trajectory .

Note that, although it is meaningful to discuss the notion of time-invariance
in terms of a single history, the notion of determinism/causality involves at least
two histories; one being the cause (input history), and the other being the effect
(output history).

Definition 5 A functional IOspace, denoted as I Ospace’™™, is a set such that:
I0space™™ = {(w,¥) | (w,®) € IOspace,
(w,,) € I0space A (w,v,) € IOspace => ), =1, }.

Definition 6 An IOspace that is both functional and closed under the cut.left
operation is said to be causal; i.e.,

I0space™ ™ = {(w, ) | )
](t“% ¥) EdIO.(spgz}cef"“ = (Ws,%,,) € I0space e
ort € dom(w)}. ,

For example, suppose we have trajectories (w, ), (w,%') € I Ospace™™™™. Us-

ing the above definitions, we have:

wt> = w:> = ¢t> = d):>

where w,w' € Q, ¥,%"' € ¥, and ¢t € dom(w) N dom(w'). Hence, from the above

definitions, we have:
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Proposition 2 A set of causal, time-invariant input/output histories IOspace is:
o functional,
e closed under the cut.left operation, and

e closed under the cut.shift operation.

Note that the causality of a system is usually defined differently. A system is
said to be causal if, at no point in time, its outputs depend on future values of its
inputs. My definition, of course, implies the more common definition given above,
but does it restrict it further? I must extend my definition in two important points

to avoid any further restriction of generality.

The first generalization necessary is the following. The definitions of causality
and time-invariance, as provided so far in this text, do not depend on the states of
the system; in fact, I never even talked about systems having internal states. Yet,
state variables are evidently an essential facet of any system with internal memory.

Given the system:

Z=—z+z z(t,) = z,

13

obviously, the output trajectory z(t) does not only depend on the input trajectory
z(t), but also on the initial state z,. Thus, its IOspace would not be functional
according to my previous definition; consequently, this would not be a causal
system either. Clearly, this is not meaningful.

One approach to resolve this apparent inconsistency is to augment the input
space with the set of initial internal states of the system, i.e., w now denotes the
set of input trajectories and the set of initial states of the system. Since the
input/output pairs only represent certain features of a system’s behavior, while
ignoring other equally pertinent facets, I/O histories would appear to be inconsis-

tent. In order to ensure consistency, I need to augment the representation with
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the initial states of the system. By associating the states with the input space, the
formerly given definitions can be preserved. They only need to be reinterpreted in

a more general sense.

The second generalization necessary is the following. Until now, we were al-
ways talking about individual input/output pairs. This is insufficient. In order to
guarantee consistency of any of the outputs, we need to look at the entire input
space at once. In other words, a multi-input/multi-output (MIMO) system with
m inputs and p outputs can be decomposed without reduction of generality into
a set of p multi-input/single-output (MISO) systems, but not into m X p single-
input/single-output (SISO) systems. This further simplification is only permitted
if I can guarantee that the ignored inputs remain constant during the investigation.
More Notation: The definitions for IOspace, I0space’™, and IOspace™™ ™
assume the availability of all eligible input/output histories. If only a subset of the
eligible input/output histories is considered, I prefix the aforementioned definitions

with the term partial.
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2.2 Generator Segments

This section follows closely the treatment presented in [Zei76]. I stated above
that , is a semigroup. Of course, (), contains all histories (trajectories and
segments) that begin at ¢ = 0. However, it would be much more desirable (for
computational efficiency) if I could find a smaller set of histories that can be used
to generate all members of {,. That is, I would like to find a set ), C Q,
(preferably |Q,] < |©]) such that the semigroup Q;' generated by €, results in
Q; 2 0. Q; denotes the composition closure of Q.. Simply stated, Q; is the set
of segments resulting from finite concatenations of all possible segments. If the set
(), satisfies Q; = {), it is said to be a set of generators for Q.

Note that ultimately I am interested in a finitely describable generator set.
Therefore, if w € Q, and Q is a generator set for 3, then w = w, o... 0w, and
wy,...,w, € §; that is, w can be decomposed into w, o...ow, given {),. However,
in general, even if there exists for each w € §) a decomposition into elements of 1,

’

. o, . . 1
this decomposition may not be unique. For example, w,,...,w, and w_,...,w_

17°

may both be decompositions: w =w, 0...0w, =w 0...0 w:n, and w € Q;

This leads me to the question whether there exist any “canonical decomposi-
tions” of w € O into elements from (, that have the same desirable properties. A
canonical decomposition is any decomposition that is uniquely identifiable.

In particular, I may be looking for decompositions into elements from 1, with
the smallest possible cardinality, i.e., decompositions with the smallest possible
number of elements from . I call such a decomposition a minimum cardinality
segmentation (mcs). An algorithm determining an mcs can be found using a
variant of Bellman’s optimality principle. Let me assume that the cardinality of
the mcs is n. Thus, I need to find a cut 7 such that cut.left(w,7) € €, and

cut.right(w,7) € Q has an mcs of cardinality n — 1. Unfortunately, the mcs
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has two serious drawbacks. On the one hand, there may be more than one such
decomposition, i.e., the mcs is not necessarily a canonical decomposition. On the
other hand, since an mcs can be found by applying the optimality principle, any
algorithm determining an mcs must be invariably NP-complete. Consequently,
such an algorithm can never be very efficient.

Thus, let me look for a canonical decomposition that can be implemented ef-
ficiently. A trajectory w from ) can be successively decomposed into elements
of ), using the following algorithm. FEach cut decomposes w into two parts,
whereby the left-cut is always from (), whereas the right-cut may still be from
). Using the rule of the longest match, the cut 7; is chosen such that {(w,,) =
l(cut.left(w, 1)) is maximized. The cutting procedure is then repeated on w_,,

such that #(cut.left(w,,,T) is again maximized, etc. The iteration ends when

<rs
the right-cut is from €. This algorithm describes a canonical decomposition of w
into elements of Q.. This canonical decomposition is called the mazimum length
segmentation, (mls).

A decomposition w,,...,w, is a maximum length segmentation of w into ele-
ments from §Q_, if, for each s = 1,...,n, W' e ), being a left segment of w,0...0w,
implies that ' is a left segment of w,.

Definition 7 If ), generates  and if for each w € Q an mls decomposition of

w into elements from Q ezists, then § is called an admissible set of generators

[Zei76].

Lemma 1 If w has an mls decomposition, it is unique [Zei76].

The uniqueness property of a decomposition has important consequences as we
shall see.

To summarize, the set {3, admissibly generates Q; if £, is an admissible set of
generators for Q; and if, for each w € Q;, a unique mls decomposition of w into

elements from (1 exists.
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In the following theorem, a set of sufficient conditions is provided that ensures

(), to be an admissible set.

Theorem 1 Sufficient Conditions for Admissibility: If Q. satisfies the following
conditions, it admissibly generates Q; [Zei76]:

1. existence of longest segments: w € Q; = maz {t| w, € Q.} eaists,

2. closure under right-cut: w' € Q, = (.o'<t €, forall tedom(w).

It is important to make a few observations about an admissible set of generators.
Whenever a trajectory has an mls, that decomposition is unique. A trajectory that
has an mls must be time-invariant, since the composition of a trajectory from the
generator set depends only on the duration of generator segments without regard
to any fixed reference time point. Furthermore, the decomposability of trajectories
into elements from ), and the composition of trajectories out of elements from ),
is dependent on the structure of the underlying system.

The definitions IOspace, I Ospacef“m, and I Ospaceca"sal were given for histories
in general. If the considered histories are limited to segments, and in particular
the generator segments (0, and W), we have the following definition for the in-

put/output generator segment space:

Definition 8 A set of input/output segments

I0space, = {(wg,¥s) | (wg, %) € I0space,
ws € g,

¢G E WG7
I0space, C I0space,

dom(wg) = dom ()}

where

0, = PIN(IOspace,,1) is the input generator segment set, and
V. = PIJN(IOspace_,2) is the output generator segment set.



42

Corresponding functionality and causality definitions for input/output genera-

causa

tor segments (i.e., [ Ospacecj;""c and IOspace."™*") can be given using the IOspace,

e
definition.

Finally I note that my discussion of generator segments so far has not explic-
itly referenced the states of the system. I say that a Complete I/O segment pair
(in the case of a single-input system) is associated with an initial state, in order
to overcome the lack of distinguishability among apparently inconsistent I/0O seg-
ments (cf. Section 2.3.3). The term “Complete” is used to indicate that a system’s
I/O segment augmented by the set of initial states contains enough information
to ensure its uniqueness in relation to other I/O segments of the same system. In
other words, the interpretation of Complete is that I/O segments are causal.

In my future discussions, causality shall always be assumed when I speak about

individual I/O segments, or IOspace,.

2.2.1 Composition of Functions

Given a pair of functions f: X — Y and g: Y — Z, I can construct a function

h: X — Z.

Definition 9 The composition of a function g : Y — Z with a function f: X —
Y, denoted as g(f(z)), is the function go f: X — Z [Sto73].

Earlier, I discussed the composition of histories. Now, given the composition of
functions, I can define the notion of well-definedness of a composite function that
operates on finite multiple mls decompositions (e.g., w,w' € Q;)

Suppose we have a function &, : @ x , — @ where £, is as defined above
and () is a set. The function §,(g,w) operates on single segments w € Q.. This

function is referred to as a single segment function [Zei76).

Definition 10 A function 6; 1@ X Q;' — @ is called the extension of 8, [ZeiT6]:
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. 65(g,w) for w€fg,q€Q
bl w) =19 | .
6.(6:(q,w,),w,,...,w,) for we ,q€Q
where w,, . ..,w, ts the mls decomposition of w.

The extended function & (g,w) is a composition of single segment functions that

operate on single segments. That is, I can rewrite 5;(q,w) as:

5(q,w) = &g, wyy - w,) = 6,(8,(-. . 8(q,w,),w,), - . ), w,)
where w,,...,w, is the mls decomposition of w. Since §,(¢q,w,) = ¢ for ¢ € Q
and w, € Q, I can use the composition of functions as defined above along with
the mls decomposition for w to ensure that &, (g,w) exists and is unique for ¢ € Q
and w € Q;

Proposition 3 A function 6; P @ % Q; — @ is well-defined if it ezists (i.e.,
admissibly generates Q;) and is unique for each q € Q,w € Q; [Zei76].

For example, consider the situation where 5; operates on two histories w and '
with the mls decompositions w, 0. . .ow_ and w: o.. .ow; , respectively. In particular,
if §_(q,wo w')) and 6.(8.(g,w),w') are identical, I say that & has the composition
property. That is, the composition property has to be satisfied by showing that the
mls decomposition of w o w’ is the same as the mls decomposition of w followed

by the mls decomposition of w' if 5; is to be well-defined.
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2.3 Abstract Stratification of Models

To formally treat various forms of representing a “system,” the interface among

systems, and recursive decomposability, a stratification of system specifications is

shown below [Zei76]°.

Level 0: Observation Frame (O)

Level 1: Input/Output Relation Observation (IORO)
Level 2: Input/Output Function Observation (IOFO)
Level 3: Input/Output System (I0S)

Level 4: Structured Input/Output System (SIOS)
Level 5: Coupling of Systems (CS)

I shall utilize this view of a system stratification throughout this work. As the
name of each specification indicates, more concreteness is introduced as I proceed
from the lowest level to ever higher levels through the hierarchy. Relationships be-
tween certain levels are discussed. In particular, Levels 1, 2, and 3 are considered
in detail. The associations between two neighboring levels are established in both
directions; that is, we have downward and upward associations. The former is in
the direction of structure to behavior, while the latter attempts to hypothesize

structure from behavior.

Before proceeding further, I note that I am considering systems without restrict-
ing them to any particular formalism, such as the continuous-time, the discrete-
time, or the discrete-event formalism. Thus, the nature of the time base and
the input/output value sets are unspecified. Correspondingly, the following levels

of system specifications are valid for any of the classes of histories discussed earlier.

3There are other approaches to classification of systems [K1i85, MT89, Wym93].
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2.3.1 Input/Output Observation Frame

The Observation Frame (O) is a structure defined as [Zei76]:

0=(T,X,Y), where:

T Time Base
X Input Value Set
Y Output Value Set

T is the time base, and X and Y are sets containing the legal values that the input

and output variables may assume.

2.3.2 Input/Output Relation Observation

The Input/Output Relation Observation (IORO) is a structure [Zei76):

IORO = (T, X,,Y,R) where:

time base

input value set
output value set
input history set
I/0O relation set

0 e N

R is a set of Input/Output relations with the following constraints: Q C (X, T),
R C Qx (Y,T). Also, if (w,,%,) € R for i = 1,2,..., then dom(w,) = dom(v,).

The remaining elements of the IORO are already defined in the Observation Frame. -

The pair (w, ) is called an input/output history pair, where w € Q and ¢ € (Y, T).
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2.3.3 Input/Output Function Observation

The Input/Output Function Observation (IOFO) is a structure [Zei76]:

IOFO = (T,X,0,Y, F) where:

Time base

Input Value Set
Output Value Set
Input History Set
I/O Function Set

O~ N

F is a set of input/output functions with the constraint that:

f€F implies fCQx(Y,T) is a function.

Thus, F' must satisfy dom(w,) = dom(y,) for any f = {(w,,¥,),...,(w,,¥,)}
and w, € Q,9, € (Y,T). The remaining elements of the quinary IOFO were defined
previously.

Each f € F is associated with a unique initial state in order to ensure a unique
response, ¥, = f(w,), for an input segment, w,. At this level, we only know the
initial state for each f. Each f is a grouping of those Input/Output segments that
are associated with a unique initial state. Note how we are associating an initial
state with each (w,,,) pair as I alluded to in discussing Complete and Incomplete

I/O segments in Section 2.2.

2.3.4 Input/Output System

The Input/Output System (IOS) is a structure [Zei76]:

I0S =({T,X,02,Q,Y,8,\) where:
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time base

input value set
output value set
input history set
state set
transition function
output function

> QD MM

The transition function is defined as § : @ x @ — ) where ) represents the
memory of the system. The output function is defined as A: Q — Y.

The input/output system structure must satisfy the following axioms:

1. © is closed under composition,
2. the structure is deterministic in terms of § and A, and

3. the composition property of §(¢,w ow') = §(8(q,w),w’) is ensured for every
pair of contiguous histories w,w’ € .

2.3.5 Structured Input/Output System

My future discussions do not depend on system specification at this level. How-
ever, for the sake of completeness, it is sufficient to say that a system specified
at this level differs basically from the IO system in that its sets and functions
are structured. In other words, the sets and functions are represented as more

elementary sets and functions. For a comprehensive exposition refer to [Zei76].

2.3.6 Coupled System

Just as in the previous case, I refrain from giving a description of a coupled
system. It suffices to say that a system represented at this level designates what
other (less complex) systems are to be coupled and how they interact with each

other. Again, refer to [Zei76] for further information.



48

2.4 Discrete-Event Specifications

As I stated earlier, models can be represented in at least three separate for-
malisms: the continuous-time formalism (differential equation formalism), the
discrete-time formalism (difference equation formalism, finite automata formal-
ism), and the discrete-event formalism.

[Zei76] chose the I/O system as the basic level for discussing the role of modeling
formalisms. The selection of the I/O system as the most appropriate basic level
appears to be triggered by an emphasis on deductive modeling approaches.

[Zei76] then formalized the I/O system level within the discrete-event formal-
ism. In the following two sections, I shall present the discrete-event 1/O system

and the discrete-event I/O function observation specifications.

2.4.1 Discrete-Event I/O System Specification

A discrete-event system specification (DEVS) is a structure [Zei76]:

M = (X,;, 5., Y605 Ass 1) where:

M?)*M?YM) M? %%

is a set of external input events
is a set of sequential states

1s a set of output events

is the transition function

is the output function

is the time advance function

)
g iy

The above structure has the following constraints:

1. The total state of the system determines the state of the system. It contains
two state variables s and e:

Qu ={(s,€) | s € 8,,0< e<t(s)}
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where e is the elapsed time in state s. S,, is called the sequential state to
distinguish it from the total state @Q,,.

2. The time advance function ¢, is defined as:

t,:5, —~—>§R:w

where t, is interpreted as the maximum time the system can remain in state
s €S,

3. The transition function is defined as
6: Qy X (Xy U{d}) — S,

6,, is a shorthand notation to represent two different functions — the external
transition function 4,,, and the internal transition function §,,. The external
transition function is defined as:

00t 1 Qu X Xy — Sy

The interpretation of 4, is that, if an event z € X, arrives and the system
has been in state s € .5 for an elapsed time 0 < e < ¢,(s), it will transition to
0...(s, e, ) instantaneously. At the same time, the elapsed time is initialized
to zero (i.e., e = 0).

The internal transition function is defined as:

6im : SM — SM'

The internal transition function causes the system to change its state inter-
nally after ¢,(s) units of time have elapsed if no external event has arrived in
between. Simultaneously, the elapsed time component e is initialized to zero
just as in the case of the external transition function.

4. The output function is defined as:

A @, — Y,

M
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2.4.2 Discrete-Event I/O Function Observation Specifi-
cation

If the set of input/output histories is causal and time-invariant, then JOFO =
(T,X,Q,Y,F) is a causal and time-invariant specification. The I/O function set

F' can be represented as:

F= {f1f=(ng), % @b (@)}

s, : 1s an initial state associated with g,

1

w,, €Q, ¥, €Y, T) for i=12,..., j=1,...,n}.

Hence a reformulation of IOFO = (T,X,S,,Y,10space, F), represents the
causal, time-invariant IOFO with IOspace being the set of input/output histo-
ries (cf. Definition 6). This alternative form of the IOFO specification explicitly

represents the initial states S,.
This IOFO can be further specialized into its discrete-event form. A discrete-

event IOFO must operate on discrete-event histories, i.e.,

Definition 11 A set of discrete-event input/output histories DEVS(X,Y), begin-
ning at time zero, satisfies:

DEVS(X,Y)= {(w,¥) |w € DEVS(X), + € DEVS(Y) where:
DEVS(X) = Q;, =U,_+ Q;’z such that
Q,={v,,0...00 |w €

¢,z ? j=1)"'7i) Q¢,$=Q¢UQ$},

DEVS(Y)=9" =y . ¥ such that
, b,y

ielt oy

i 1 [ ] . .
\Il¢’y={¢¢,yo...ogb¢’y lz/»;,ye\llm, j=1,...,1, v, =Q,U%}.

®,

subject to:
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Q,={¢, |7eR, ¢, :<0,7>— {4}},
Q ={c |7eRz,:<0,7>— X" 2.0 =2, 2.()=¢ for te(0,7)},

\I/y={yT|T€§R,yT:<0,T>—->Y¢, v.0)=y,z (t)=¢ for te(0,7)}.

The above sets ,{)_, and 2, contain discrete-event segments.

Proposition 4 A set of discrete-event, causal, time-invariant input/output histo-
ries, denoted as IOspace,, is:

e functional,
o closed under the cut.left operation, and

o closed under the cut.shift operation.

Given Proposition 4 and the alternative form of the IOFO, I define a discrete-
event, causal, time-invariant I/O function observation specification (DEVF) to be

a structure:

D=(X,,S,Y,,10space,, F,) where:

D’ D

X, = {z|z € {reals,symbols}, =z € range(w(t)),
for some finite subset of ¢ € dom(w) and w € PJN(IOspace,, 1)},

S; : A set of initial states associated with (w, ) such that (w,v¥) € IOspace,,

Y, = {y|y € {reals,symbols}, y € range(y(t)),
for some finite subset of ¢ € dom(+) and w € PJN(IOspace,,2)},

I0space, € DEVS(X,,Y,) : A set of discrete-event, causal, and time-invariant
I/O histories,

F,= {f.|f =(s,9.), s, :is an initial state associated with g,,
g; € I0space, for :=1,2,...}
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Causality: For any f = (s,g) € F,, we have:

!
wt> = w:> = ¢t> = ¢t>

where (w,%), (w, ') € g, and ¢ € dom(w) N dom(w").
Time-invariance:

(s,9) € F, = (379’) € F, where:
g: {(wlﬂ/}l)," e 7(wn7 ¢n)} c IOspa,ceD,
g AW, %)), 5 (w,,%,)} € I0spacey,
w;, = cut.shift (w;) for j=1,...,n,

¢;. = cut.shift (,) for j=1,...,n

The causality and time-invariance of the IOFO specification are based on knowl-

edge of the initial states associated with input/output histories.
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Chapter 3 An Inductive Modeling Approach

One of the essential steps in developing a useful approach to solving a problem
is to figure out how it should be perceived. For instance, as we shall see in the
following chapter, there have been intense efforts to find an appropriate repre-
sentation that would support common-sense reasoning adequately. In such cases,
representation of a problem in a way that is amenable to solving it, then becomes
indispensable. Thus, the way a problem may be approached and eventually solved
often hinges upon its representation. We may seek different representations of a
problem for different purposes. For example, we may want to gain a better under-
standing of the problem at hand, thus looking for representations that would best
support this effort.

In this chapter, I look first at a different representation of the IO system that
will help us see some of its in-depth characteristics. Then, I introduce a new
IOFO structure — called iterative IOFO structure — to have a of representing

input/output segments instead of input/output trajectories.

3.1 Iterative Specification of I/O System

In this section, I shall discuss the so-called iterative specification of 1/O systems
[Zei76]. The approach to derive the iterative I/O system specification is a general
one in the sense that it is applicable to any 1/O system regardless of the system
formalism it might be expressed in.

In the previous chapter, I looked at the structure of the discrete-event 1/0
system, M = (X,,, S,;, Yy, 8.5 Ass>t.). This structure specifies an I/O system in a
compact way. Whereas it does provide the essential information that is necessary
for its unique specification, it cannot be used to describe some of the fundamental

properties and features of an I/O system.
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Hence the motivation for iterative specification is to provide a means to delve
into the subtleties of the fundamental properties of the I/O system structure. For
instance, the nature of the input set {2 and how the transition function §,, operates
can be described succinctly once the iterative I/O system specification is available.
Having the ability to discuss the elements of the I/O system based on its iterative
specification and using the discrete-event formalism, the iterative specification can
render the legitimacy property of discrete-event systems. A brief account of the

legitimacy property will be provided in this chapter.

Since we are interested in understanding the details and properties of I/O sys-
tems, it is necessary to begin with I/O segments and develop appropriate functions
that can operate on them. The previously discussed generator segments, as well
as the functions that operate on them, form the basis that leads to the iterative

I/O system specification.

In Chapter 1, I stated that a system can be described using differential equa-
tions, automata, or discrete-event formalisms. It is helpful to choose one of these
formalisms in order to elucidate the iterative specification exposition. I already
confined myself to discrete-event systems, and hence I shall use the discrete-event

I/0O system for the development of the iterative I/O specification.

It is necessary to know what kind of knowledge is necessary to derive the iter-
ative discrete-event I/O system specification from the discrete-event I1/O system
structure. As the construction of the iterative I/O system specification is based
on generator segments and their corresponding functions, the knowledge we are

seeking must come from them.

Given the discrete-event /O system structure, we know that the time base is

real-valued and the input/output histories are of the discrete-event type. This
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kind of knowledge is referred to as background conventions [Zei76], and is common
to all types of systems specified (e.g., I/O function and I/O system) within the

discrete-event formalism.

Thus, the goal is to take an I/O system M and transform it into its iterative
form by selecting the background conventions and by using generator segments
and their corresponding functions. A full account of the iterative I/O system

specification is presented in [Zei76].

The previously mentioned transformation is a precursor to another transforma-
tion. We can use another kind of knowledge to distinguish between members of
the same class of systems. For instance, this knowledge dictates how the transition
function of a discrete-event I/O system should be extended to operate on compos-
ite segments or trajectories. This kind of knowledge is encoded in the specificity
rules [Zei76]. Such rules specify how a particular function which is defined at the
primitive level (i.e., iterative specification) can be extended to be applicable at
the extended iterative I/O system level. That is, given a proper definition for a
function that operates on a single segment, the correctness of an extended form of
the same transition function operating on a history (a set of contiguous segments)

would be warranted by the specificity rules.

Then, given an iterative I/O system specification, denoted as G, as well as
the specificity rules, the extended iterative I/O system, denoted as IOS(G,), can
be derived. Thus, these two transformations systematically generate G (M) and

I0S(G.(M)) from a discrete-event I/O system M (cf. Figure 3.1 [Zei76].)

If the transformations are correct, then M and IOS(G,(M)) should exhibit
identical behaviors to the extent that the behavior of M is entailed by that of
I0S(G,(M)).

Now we can observe that the underlying purpose for an iterative specification
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Translation to
M Iterative
E— Specification

(Background Conventions)

Figure 3.1, Translation and interpretation of I/O system iterative specification

could also be to show the correctness of the higher level I/O system specification

by establishing its correctness at the level of its primitive iterative I/O system

specification.

In the following two sections, I present the main two theorems developed in
[ZeiT6]. One establishes the conditions that must be satisfied to ensure that an it-
erative I/O system, when extended, results in an I/O system. The second theorem

states that the extended iterative I/O system IOS(G,) derived from a legitimate

Interpretation
of Iterative
Specification

(Specificity Rules)

105(Gs(M))

discrete-event I/O system is a time-invariant I/O system.

3.1.1 Iterative I/O System Structure

An iterative specification for an I/O system is a structure [Zei76]:

G, =(T,X,9,,Q,Y,8,,\

rrE?

)

where:
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time base set

input value set

input segment generator set

state set

output value set

single segment transition function.
output function.

RO P XM

with the following constraints:
Q. C(T,X), Q is an admissible set of generators,
6,:Qx 0 — Q,
A:Q — Y, and
6; 1 Q X Q;' — @ has the composition property.

where as I mentioned earlier, in my notation, I am using  in place of Q,. We

have the following theorem.

Theorem 2 Let G, = (T, X,Q,,Q,Y,6,,A) be a structure with T a time base set;

yra?
X,Q,Y the input, state, and output sets, respectively; Q, C (T, X), 6, : @ xQ, —
Q; and X : Q — Y. Then, if the following conditions hold, G, is an iterative
specification and I0S(G,) is an 1/0 system [Zei76].

1. Ezxistence of the longest segments:
w € Q; = maz{t|w, € N} eaists,
2. Closure under right segmentation:
we = w, € for t € dom(w),

3. Closure under left segmentation:

weEN, = w, €0, for t € dom(w),

4. Consistency of composition:
Wiyoooyw, €0, A wyo0...0w, EQ; =
bg(w, 0. 0w, ) =6,((...0:(q,,),-..),w,).

The proof of the theorem shows that 5; 1 QX Q; — @ has the composition
property.
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Now that we have a definition for the iterative I/O system structure, I can
briefly say what it means for a discrete-event system to be legitimate.

In simple terms, the legitimacy of the DEVS M ensures that time continues to
advance as long as there is some state change. Put in other words, there cannot be
a sequence of states that would prevent time to advance beyond a certain point. 1
stated earlier that the time advance function should be discussed using an iterative
I/0 system specification. The following formulation of DEVS M legitimacy shows
why.

If we let 3°(s,n) be the total time necessary to make n transitions beginning in
state s, then we say DEVS M is legitimate if for each s € S, lim,—,0o 3(8,7) — 00
[ZeiT6].

Note that each state change is due to a single segment function &, acting on a
generator segment w € (), hence the importance of the iterative specification in

defining the notion of legitimacy.

Earlier we saw a definition for G,. Using the specificity rules pertaining to Q;

and 6, in conjunction with G; = (T, X, Q.,Q,Y, 6, ), we can construct IOS(G,)

' Yar
as:

108(G,) = (T, X, ,Q,Y,6,\)

’ a?

time base set

input value set

extended generator input set

state set

output value set

extended single segment transition function.
output function.

DR X N

with the following constraints:

Q+={w,1°---°w,,,|$,~€X+, t=1,...,m; n=12,.....}
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5; A% Q; — @, l.e.,
8s(g,w) for we,,qe

6 (qw) = {

5;(5G(q,w1),w2,...,wn) for wEQ;,qu

where the mls decomposition of w is w,,...,w, € §,

A—Y.

3.1.2 DEYVS Iterative Specification

Having defined I0S(G,), we can use it to construct a discrete-event extended

iterative specification JOS(G,(M)). We thus have the following main theorem:

Theorem 3 Let M = (X,,,S,,,Y,,,0,,, A t.) be a a legitimate discrete-event I/0

MM

system. Then, Go(M) = (T,X,Q,,Q,Y,6,,\) is its iterative specification and
105(G,(M)) = (T, X, Q;,Q, Y,8., ) is a time-invariant 1/O system [Zei76].

Suppose B stands for the collection of all behavior exhibited by the discrete-
event 1/O system M, and correspondingly, B’ denotes the collection of all behavior
exhibited by its I/O system iterative specification JOS(G,(M)). Then, we have:

B' D B.
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3.2 Inductive Modeling and IOFO Specification

In Chapter 1, the inductive modeling paradigm was defined as a modeling
paradigm that considers a system as a black boz, of which nothing is known but its
inputs and outputs and attempts to predict a system’s behavior based solely on
this knowledge. In particular, no knowledge is claimed about the system’s internal
structure. For example, for a discrete-event I/O system, there must exist explicit
knowledge about how states of a system can change (i.e., internal and external
transition functions should be defined). As we observed, at the IOFO level, no
such transition functions are specified. Therefore, the I/O function system speci-
fication provides a suitable mechanism for an inductive system-theoretic approach
to modeling.

The iterative specification of I/O systems presented us with insight into its
inner structure. My motivation was primarily to show that, to gain a thorough
understanding of an I/O system and its intricate properties, it is necessary to study
its inner structure. The basic notion of the iterative specification not only can be
applied at the I/O system level, but also at the I/O relation observation and the
I/O function observation levels.

This observation led me to seek an iterative specification of the IOFQO struc-
ture. However, my motivation is different from that stated for an I/O system.
Instead, my goal is to develop an iterative representation for the IOFO structure.
Thereafter, based upon its structure, I can establish a mechanism that allows me
to operate on it.

Correspondingly, I shall formulate an iterative I/O function observation struc-
ture. In doing so, as in the case of the iterative I/O system structure, I shall be

able to explore the extent to which it is applicable.

The IOFO specification (T, X, S,,Y, IOspace, F), presented in Section 2.4.2, is
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assumed to contain knowledge about the initial states .S, that are associated with
the respective input/output trajectories IOspace. This is one of the main dif-
ferences between the input/output system level and the input/output function
observation level. Consequently, if we have a finite number of input/output tra-
jectories and their initial states, all that we can expect is to match an initial state
and its corresponding input trajectory with the repertoire of available data. That
is, suppose we have a set F' where f = (s, {(w,,%,;)}) € Ffori =1,...,n, and
j=1,...,m. Also, assume we have an initial state s’ and input trajectory w' for
which we would like to determine the output trajectory. Then, if there exists f
such that one of its input trajectories matches w' and also its initial state matches

s’, then the output trajectory  is trivially obtained from f.

Obviously, the success of finding a match for a given initial state s' and an
input trajectory w’, given F', depends on the richness of F. However, if it contains
input/output segments and their final states, then it is possible to not only recon-
struct previously observed input/output histories, but also a subset of unobserved
input/output histories that can be constructed by concatenating appropriate 1/0
segments. Hence, although these I/O trajectories have not been observed explic-

itly, they can be constructed by rearranging some of the available I/O segments.

Additionally, having input/output segments supports hypothesizing those 1/0
trajectories that cannot be constructed with the existing 1/O segments. The IOFO
structure cannot support construction of these types of 1/O histories. Hence we

are interested in defining an ¢terative IOFO structure from the IOFO structure.

To this end, we are led to seek an input/output segment generator function, F,
that is similar in structure to F. The elements of F have the form (s, {(wg,¥5)})
where w, € PJN(IOspace_,1),%, € PJN(IOspaceg,2). Constructing F, requires
partitioning of observed 1/0 trajectories (w, p) into segments ({w, ,},{¥¢ 3}).
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We may envision two stages in generating F,, starting from a set of observed
input/output histories F'. In the first stage, the partitioning of trajectories into
segments based on the segments’ granularity, duration, and initial state assignment
is dependent on a set of conjectures (assumptions). These assumptions constitute
some belief set, which I denote as assumption set-I. This belief set, therefore, forms

the basis upon which an iterative IOFO specification can be formalized.

In partitioning a trajectory into segments, if we consider two contiguous I/0O
segment pairs, we are assuming that the initial state of one pair immediately
following another pair is the same as the final state of the previous pair. This is
necessary since the systems that we are considering are assumed to be causal, and

we are merely partitioning I/O trajectories.

If we are to compose trajectories from segments, another belief set is also needed.
I denote this second belief set as assumption set-Il. To compose two segments w,
and w,, they may be concatenated as w, o w,. However, unless the final state
of w, is the same as the initial state of the w,, we are forced to make w, o w,
a hypothesis. That is, ignoring a mismatch between the final state of w, and
the initial state of the w, results in a hypothesized trajectory. This explains the
requirement for assumption set-1I. Later, in chapter 5, I shall extend this definition

of the assumption set-II.

At the IOFO specification level, our two transformations correspond to two
sets of assumptions I and II. As motivated above, the former set facilitates the
partitioning of trajectories into segments resulting in the iterative IOFO structure.
The latter set allows the composition of incompatible I/O segments. Thereby
construction of composite segments (trajectories) from segments leads to the free
iterative IOFO structure. 1 denote the iterative IOFO specification as G, and the
free iterative IOFO specification as JOFO(G,,). Hence,
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Assumption Set-I:

IOFO Assumption Set-1I: | TOFO(@,)

partitioning of
I/0 trajectories
into 1/0 segments

predicting >
1/0 segments

Figure 3.2, Role of assumptions in constructing G, and IOFO(G,).

IOFO —s G, — IOFO(G,).

Figure 3.2 depicts how each assumption set contributes to arriving at G, and
IOFO(G,).

The transformations from IOFO to G, and from G, to IOFO(G,) can be
considered to be independent. The interpretation of the independence of these
transformations is that, once G, is formed, the construction of IOFO(G,) is solely
dependent on the assumption set-1.

There is, nevertheless, some interdependence between the transformations. This
is due to the fact that, in constructing composite I/O trajectories, some segments
may be hypothesized. The assumptions underlying the assignment of states of I/O
segments for G, and states of hypothesized I/O segments for JOFO(G,) might
depend on each other. That is, the assumptions underlying the partitioning of a
trajectory and the composition of I/O segments can be quite different.

First, I shall focus my attention on how one might partition an I/O trajectory

given its initial state into I/O segments with assigned initial states.



64

Let us assume we have a function 7,, which we call a quasi-state prediction
function. This function hypothesizes about a segment’s final state based on as-
sumption set-I. Note that the final state of a segment of a trajectory is the same
as the initial state of the segment following it. Conversely, the initial state of one
segment is the final state of the segment preceding it. In order to identify possible

assumptions, it is useful to determine what can be used to characterize v,.

In an inductive modeling approach introduced by Klir, during the so-called
recoding process, the range of a variable is divided into levels or regions [KIi85,
Cel91]. For instance, we may associate the symbols ‘too low,” ‘low,” ‘normal,’
‘high,” and ‘too high’ with levels representing regions of systolic blood pressure
[Cel91]. Then, given a set of input and output variables, the number of discrete
states associated with these variables is defined as:

* num.levels

num = num.levels

States input output*
Thence, the number of states for a given system is based on the number of levels
assigned to each variable. These states are time independent in the sense that they
are not deterrﬁined based on any particular instant of time.
Given we have the knowledge of I/0 segments, the final state of an I/O segment

can be one of the following mappings using the elements time, inputs, and outputs:

1. nputs — states
outputs — stales

ttme — states

inputs X time — states

outputs X time — states

o oA W W

inputs X outputs X time — states
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Thus, the the quasi-state prediction function is:

Z = P{inputs, outputs, time}

72— 151 S, : set of candidate final states.}

where P{inputs, outputs, time} denotes the power set on inputs, outputs, and
states.

For example, we can use outputs — candidate. final.states. The inclusion
of set t2zme in the mapping functions provides us with the ability to examine the
past of the I/O histories, thus allowing a special class of final states (finite memory
machines) to be hypothesized. For instance, we can examine one or several previous
segments in order to conjecture what the state might be. The inclusion of time
in the state identification can play a critical role as compared to the inputs and
outputs elements. In other words, if we use, for instance, outputsxtime — states,
we are allowing the examination of not an output value, but an output trajectory
(or any of its parts).

We may represent inputs X outputs X time as R C IOspace. Thus, the quasi-

state identification function would be:

R———)Sf.

If we also include the initial state set S in the previous mapping, we can for-

malize the quasi-state identification function for trajectories as:

7:8 X R— S5,
where S, is the set of initial states identified with R. If we consider segments

(R, C IOspace,) instead of trajectories, we have:

R

G_—)S

Iz
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Furthermore if we also include the initial state set S;, as we did for trajecto-
ries, with R_, then the previous quasi-state identification function for segments

becomes:

Yo 1S X Ry — S,

These mappings are not necessarily the truly representative set of states of the
system, but they may be the best that we are able to obtain given the input/output
segments and their initial states only. I note that higher level knowledge such as
the sets X and Y (elements of IOFO) can lead to different sets of final states. That
is, depending on how the number of levels (i.e., the quantization) is specified, the
candidate final states may vary.

It might be tempting to form S; U S;; after all, any state can belong to the set
of initial states, the candidate final states, or both. We may like to reformulate

the quasi-state identification function for the segments as:

Vo : S X R, — S.

In this formulation the initial state set and the final state set are identical.
Given two segments that are to be composed, this form of v, is proper, since a
segment’s final state can be used as the initial state of another. In general, however,
we should be cautious and keep these two sets separate; the semantics associated
with the initial states and final states can be quite different. The reason is that
when it becomes necessary to predict an I/O segment, (e.g., assuming its initial
state using assumption set-II), the assumed initial state must not necessarily be
valid. That is, although the assumed initial state belongs to .S, the revised initial
state may not.

A state could be part of either an observed or a hypothesized I/O segment.

Hence, in general, we do not want to extend S, to include S, or vice-versa. We
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like to treat initial states associated with hypothesized I/O histories in a manner
that allows us to revise our belief in them whenever this should become necessary.
In other words, when there is evidence to falsify hypothesized candidate initial
states, we can readily do so by replacing them with new ones. The need to main-
tain two sets of states is necessary when we are interested in the interaction of
assumptions between both stages. Nevertheless, in this work, I shall use the latter

formulation of v, as we deal with assumption set-II alone.

3.2.1 Iterative I/O Function Observation Structure

Using the alternative representation of an IOFQO structure given above, I de-
fine an iterative specification for a causal, time-invariant 1/O function observation

structure as:

Gr(vs) =(T,X,S,,Y, 10space,, F_,7.) where :

T time base

X input value set

Y output value set

S, set of initial states

I0space,  causal, time-invariant input/output segment generator set

I/O function generator set
quasi-state identification function

3 o3

with the following constraints:

F,: S — partial IOspace,,
Vo : 9 X IOspace, — S..
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The interpretation of the function v, is that it maps a given initial state and an
input/output segment pair into another initial state. We can equate (interpret) the
final state s, of (s,,(w,%)) with the initial state of another pair of input/output
segments (w',?’') as desired. The quasi-state identification function 7, as defined
above has the most general form in terms of utilizing states, outputs, inputs, and

time. For instance a less general form of v, would be:

'YG:\I’G_—’S;'

To obtain an output segment 1,[): for an input segment w;j € ), an initial
state s, € S, and a given data set F, (cf. Section 2.4.2), we can define the output

segment matching function as:

Mg 15 X Qe X Fy — Y,

and its computational counterpart as:

N6(8:,wa Fg) = Fo(s;,we)-
The interpretation of the above function is that there exists an f, € F, such thaf
Mg : (s,.,w;j, ) 1/): For example, using the output segment matching function
ne and the special form of the quasi-state identification function v, : ¥, — S,

we can determine the final state by consecutive application of v, followed by 7.

That is,

7G(77G(snwi,j7f;)) = '7G(¢.‘,j) = Sy

or using the general form of the quasi-state identification function, v, : S X

A

I Ospa,ce;L — S, we have the general form for combining 7, and ~,:

’YG('SH (wi,ﬂnc(snwe,,‘af;))) = 7G(3;v (wi,jvl/)i,j)) = 8-
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The new iterative IO function observation structure results add one level to
the abstract stratification of Section 2.3. That is, we have the following as the

extended hierarchy of system specifications.

Level 0: Observation Frame (O)

Level 1: Input/Output Relation Observation (IORO)

Level 2: Input/Output Function Observation (IOFO)

Level 2.5:  Iterative Input/Output Function Observation (G,,)
Level 3: Input/Output System (I0S)

Level 4: Structured Input/Output System (SIOS)

Level 5: Coupling of Systems (CS)

3.2.2 Free Iterative I/O Function Observation Structure

Having defined the iterative IOFO structure IOFO, we give the structure of the
free iterative IOFO structure JOFO(G,) generated from G,:

IOFO(G,) =({T,X,S,Y, IOspace;,P::)

where 1 O.spatce;r is the free semigroup generated from IOspace,, and F;: is the

free semigroup constructed for each s € S;:

T = {wouwn, o)
(w,¥) €T, (fje,?/’a) € Fy(vs(si (w, %))
(w,%) € IOspace, },

FC‘: : 5, — partial IO.space;,

F+=U +§‘,‘i'

G jeJ
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The input/output function generator set has the form:

t __(FITF — - g.': {(wi,j?g.',j)}
B ={f1f=009) s, : is an initial state associated with g,
for 1=1,2,..., Jj=1,...,n
W, =w,0...0w,, $j=¢lo...o¢m,
Wiyeon,w,, € Qg and Yyyeo oy, € UL

In order to form JOFO(G,) from G,,, we need to use the composition of output
generator segments, using an extended form of 7,. For example, let us assume
Ye + Y — S, which is a special case of v, defined earlier. Also, suppose we have

s;, and two input segments w, ;,w,, € ;. The segment w,; is followed by w, ,,

5,57

and the initial state s, is associated with w, ;. Then the following holds:

(w;; 0w, ¥, 0%,,) €7,
(w;,%:;) € Fy(s,),

(Wi0rPre) € Fi(s,),

foisi o (w;,,) € F,

fo 18— (wy,,%,,) € F, and
n;(s‘.,w"j ow,,, fi, fi) = Y, 0%,

In the above composition of ¢, ; o ¥, ,, the final state of (w, ;,%, ) is the same
as the initial state of (w, ,,%,,). If a composite output segment 1, ; o %, , can be

generated by applying 7, and «, on individual segments, then we have:

nG(7G(nG(3i7wi,j7fi))’wk,l’fk) = 17[)6,1' ° 1/’1;,:'

What this says is that if v,(74(s;,w,, f,)) = 75(¥.,) = s, and the initial state
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associated with w, , is s,, then s; = s, must be satisfied in order for 77, to hold.
However, if we assign (via assumption set-II) s: to be the initial state of w, , such
that s: = s,, then we are no longer working within the IOFO formalism; we have
stepped outside of it by allowing ourselves to have the composition of two I/O
segments, one of which does not belong to IOspace.

Now, I can define the extended form of the output segment matching function

as:

+
a’?

n;:S;xQ;xF:———)\II or

*
nG(s‘.,w‘.,j ow,, o...own,q,fi,fk,...,fn) =

N6((- - Ye(Ma(Va(na (80w, ;s F))s Wy s Fi))s o ) W gs F)

Thence, in composing two I/O segments, the final state associated with an I/O
segment pair must be the same as the initial state of the I/O segment following it
if the matching function 17; is to be applicable. That is, 7]; must use 7, in concert

with each segment w € §), and its initial state s,.

Proposition 5 Given a causal, time-invariant input/output function observation
specification for each s € S, and (w,¥) € IOspace

(s,(w,¥) € B iff

4
w=w o0...0w, €1,

=1, 0...00%, €L
(w,,,) € I0space;, for 1=1,...,m.

Now we may ask the question: when does an IOFO have an iterative speci-
fication? If a causal time-invariant input/output function observation specifica-
tion, IOFO = (T, X, S,,Y, IOspace, F'), has an iterative specification, G,(v,) =
(T, X, S,Y,I0space,, F,~.), then we have:
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(¥ eF = (s(wo0...00,,0...09,)) €

where s is the initial state associated with (w,,9,), {(w,) = £(¢,),fork=1,...,m.

Equivalently, we have:

+
F'DF

3.2.3 Iterative Discrete-event IOFO Specification

I am interested in knowing how, if we have a time-invariant discrete-event in-
put/output function observation specification, we can find its iterative counterpart.
My aim is to be able to represent and operate on I/O segments instead of I/O tra-
jectories as discussed earlier. Note that the I/O trajectories and their initial states
are in F'. Hence I like to obtain their I/O generator segments and their initial
states as F_ using assumption set-I.

The iterative input/output function observation structure G, was defined with-
out restricting it to any particular time base such as discrete-time. Here, we like

to construct an iterative Discrete-event IOFO specification (DEVF).

Proposition 6 Let D = (X,,S,Y,,I0space,,F,) be a causal time-invariant

+? °D? DY D
discrete-event input/outputl function specification. Then, its iterative specification,

G.(D)=(T,X,S,,Y,10space,, F,7,), can be constructed provided that:

1. The mis decomposition of 1/0 trajectories {(w,v) | w € PJN(IOspace,,1)
and v € PJN(IOspace,,2)} exists,

2. There exists a quasi-state identification function such that v, (s, (ws,v¥.)) =
s, €8,

3. The composition of segments, using 1, as defined for the iterative I/O func-
tion observation structure, is satisfied within the discrete-event I/O function
observation representation.

If the above conditions are satisfied, the constructed discrete-event iterative I/O

function observation has the following form:
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G.(D) = (T, X, S,,Y, I0space, F_,v.) where:

T=%R

¢
X = XD,mla
Y=Y’

D,mls
IOspace, C DEVS_(X,Y)
F,: S, —> causal time-invariant partial IOspace,
Yo i S X I0space, — S,

where:

X¢ = XD U Xmls U {¢}7

D,mls
X . is the set of input events obtained from segments generated from the mls

decomposition of PJN(IOspace,1),

Y* =Y UY, U{é}

D,mls D mls

Y .. is the set of output events obtained from segments generated from the
mls decomposition of PJN(IOspace,?2),

DEVS,(X,Y) = {(ws,%s) | ws € DEVS,(X),15 € DEVS,(Y)
DEVS,(X) = {w, | w, € 0,9, = Q. UQ,}
DEVSG(Y) = {1/)G | "/)G €Y, = \Ily U Q¢}}7

Q,={¢, | TR, ¢, :<0,7>— {¢}},

Q, ={z, |TeRz, <0,7>— X*,z2.(0)=zx,z,(t) = ¢ for t € (0,7)},

Q,={y, |7TeR,y, <0,7>— Y¢,y,(0) =y,z,(t)=¢ fort € (0,7)}.
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As can be seen, 9, §,, and ©, belong to discrete-event type segments. Having
constructed the iterative I/O function specification, we can proceed to construct

the iterative I/O system specification based on assumption set-II; 1.e.,

IOFO(G,(D)) = (X,Q.,5,Y, ¥’ F)

Therefore, the behavior of D, a causal time-invariant discrete-event input/output
function observation, is exhibited by the behavior of IOFO(G,(D), the free speci-

fication constructed from the iterative specification G, (D); i.e.,

Proposition 7 Let B be the behavior of the DEVF D and B’ be the behavior of
IOFO(G.(D)). Then,

B' D B.
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3.3 Free-Constructed DEVS

The Free-constructed DEVS [AZ93] is a discrete-event /O system derived from
ideal input/output data.

Based on the assumption that all input/output data and their corresponding
initial states are available, a discrete-event IOFO specification can be constructed.

By imposing two additional assumptions on the IOFO structure — time-invariance

and causality — we can arrive at the desired IOFO, denoted as IOFO Then

ideal *

we can derive, in an axiomatic manner, the Free-constructed DEVS, denoted as

DEVS

free®

This is a discrete event I/O system specification where precise tran-
sition functions, a time advance function, and an output function are defined for
the input/output and state sets. That is, given JOFO,, , = (T, X,9,Y, F) we can

construct DEVS as:

free

tdeal

DEVS

free

= (X, S,Y, 8int, 6cat, A, tat) where:

1. The input and output sets are the same as those given in IOFO.

2. The sequential state set S C F x  is defined by:

(fiws) €S e w (1) €X or flw,)t)eY.

3. The time advance function ta : S — §R:m is defined by:
ta(f,w,,) =min{e|e>0, flw, o $)(t+e)eY}

where .¢ is a segment, and ta(f,w,,) = oo if no minimum element exits.
4. Total state: @ = {(s,e) | s € S and 0 < e < ta(s)}.
5. Internal transition function: 6, ,(f,w,.) = (f,w,s © ta(f, wt>)¢)'

6. External transition function §,,,(f,w,,,e,z) = (f,w, © eX)‘
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7. Output function: A(f,w,,) = f(w,, © ta(f, wt>)¢)(t +ta(f,w,s))-

The definition for segment ecﬁ (or any other segment similar in form such as

X st
¢
c0:(0,¢] — X such that P(t)=¢  for t e (0,e], ecR.

Theorem 4 Let IOFO,, , = (T,X,Q,Y,F), and DEVS,__ be a free constructed
DEVS from IOFO,,,,,. Then, the input/output relations of DEVS,  and IOFO,,,
are equal [AZ93]; i.e.,

R

IOFO 105(Gg(DEVS

sdeal ree N

The above theorem asserts that JOFQO and DEVS ree have the same in-

ideal
put/output behavior. First, a free constructed DEVS (which is an I/O system) is
derived from a causal time-invariant IOFO that contains all possible data. Then,
a free iterative specification of DEVS,  , denoted as IOS(G,(DEVS, ., )), is de-
rived by constructing G,(DEVS,,..) followed by IOS(G,(DEVS

tree))- Then, the
input/output relations of IOFO,, , and IOS(DEVS

free

ideat ) are shown to be equal.
Obviously, DEVS, , is a deductive model. The assumption that we have all
possible data allows us to construct the complete sequential state set, and conse-
quently, the free iterative I/O system DEVS. Due to lack of an ideal data set, we
need to operate at the IOFO level specification, thus allowing us to work with a
finite data set. Unlike the ideal data set, a finite data set requires partitioning of
trajectories and assignment of initial and final states in hope of predicting output

histories that do not belong to the data set.
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Chapter 4 Al and Non-Monotonic Reasoning

I have already discussed the need for making tentative choices when defining
the free iterative IOFO specification due to lack of complete knowledge about the
length, granularity, and possible state assignments to segments. Also, when there
is no exact match for a given input segment, I proposed a set of assumptions to

hypothesize about candidate segments.

System theory provided us with the basic means for representing input/output
models (all variations of IOFO specifications). So it is fair to ask why I cannot use
the same tools for reasoning. Unfortunately, the mathematics of system theory are
too rigid to allow explicit forms of reasoning when knowledge cannot be assumed

to be fixed and apriori.

Reasoning can be carried out by several schemes, each of which primarily fol-
lows one of two basic approaches: probabilistic reasoning [Pea88] and logic-based

reasoning [GN8T].

The former can be split into extentional and intentional. Intentional approaches
to probabilistic reasoning, which are also referred to as model-based reasoning ap-
proaches, compute conclusions within the framework of probability theory [Lah79].
Extentional approaches (also referred to as production systems), however, use
methods based on less stringent calculi such as the Dempster-Shafer certainty-

factor calculus [Dem68, Sha79, Sho76], and fuzzy logic [Zad75, Zad81].

Logic-based approaches do not deal with the notion of certainty as it is defined
for other approaches. They support reasoning based on the truth values TRUE,
FALSE, and UNKNOWN assigned to entities to be reasoned with. They provide for
a basic and simple type of reasoning, making tentative decisions that are subject

to revision.

Several non-monotonic reasoning (NMR) theories have been formalized based



78

on this form of reasoning. The features of other formalisms — usually absent
in logic-based approaches — have, however, been incorporated into several of its
variants [GN87, McC90, Nil86, Kir91].

One of the main concerns of this chapter is to bring to attention the issues
involved in automating the processes of reasoning. It is paradoxical that, while
NMR seems quite simple (at first sight), formalizing a general theory of it seems to
be rather difficult. By briefly describing three early NMR formalisms, I will point
out some of the NMR key characteristics and difficulties.

4.1 Logic and Knowledge Representation

Having decided on a logical approach to reasoning, I will briefly point out some
key issues in using mathematical logic, which must be provided by any language
formalizing logical approaches to reasoning.

For an intelligent entity to be able to reason, it must have an appropriate repre-
sentation scheme for encoding its knowledge, as well as an inferencing mechanism
to make decisions. Both of these issues (knowledge representation and reasoning
procedures) have been treated extensively in the literature [End72, CL73, GN87,
Ric83, Gin93]. I shall briefly describe each of these and their relationships to

mathematical logic.

4.1.1 Propositional and First-Order Calculi

A language that can support NMR needs to be flexible. Knowledge can be rep-
resented using Propositional Logic, First-order (or Higher-order) Logic, and Modal
Logic, among others. The implementation of logic-based truth maintenance sys-
tems is commonly based on a variation of First-Order Calculus, which is somewhat
stronger than Propositional Calculus. I will present a short overview of proposi-

tional and first-order calculi that will become necessary in later discussion of some
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types of NMR.

Propositional Calculus:

The language of Propositional Calculus (PC), or Propositional Logic, is very
simple both in terms of its syntax and semantics. However, the types of sentences
that can be described in this language are quite limited in their expressive power.

Syntaz specifies how sentences can be constructed according to a set of (syn-
tactical) rules. Each sentence can be composed of logical symbols and sentence
(or non-logical) symbols. Each sentence symbol represents a distinct object, such
as A, that corresponds to an object in the universe of discourse (the set of ob-
jects about which the knowledge is being expressed). The logical symbols consist
of (, ) and the connective symbols =, V, A, —, and <. Sentences constructed
from these symbols according to grammatical rules are called well-formed formu-
las (or wffs). Grammatical rules specify the construction of (grammatically) valid

sentences. Sentences are constructed recursively (cf. [End72] for details):

1. Every sentence symbol is a wff.

2. If o and § are wffs, then (o), (ma), (@ A B),(a V B3), (a — B),and (o « )

are also wffs.

3. No expression is a wff unless it is either of the form (1) or (2).

The semantics of propositional logic are straightforward. Semantics are con-
cerned with truth assignment, i.e., the interpretation of sentences. Since this lan-
guage is concerned with objects alone, non-logical symbols can be interpreted as
being either true or false. In particular, a sentence is either satisfiable, valid, or
invalid. A satisfiable sentence is true at least under one interpretation, While a
valid sentence is true under every interpretation. A sentence that is not satisfiable

is invalid.
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Furthermore, the truth assignment for any finite set of wffs is finite. As a

consequence, the language of propositional logic is decidable and thus tractable

[GI79, LP81].

First-order Propositional Calculus:

The language of First-Order Predicate Calculus (FOPC), or First-Order Pred-
icate Logic, allows the construction of sentences that mention not only objects
but also their properties in the world. It mirrors additional facets of natural lan-
guage that make it much more powerful than the calculus of propositional logic

for purposes of knowledge representation.

Besides the symbols of propositional logic, its syntax entails variable symbols
and four additional parameters: the universal quantifier symbol V, constant sym-
bols, function symbols, and predicate symbols. The universal quantifier symbol
has the intended interpretation for all. Constant symbols name specific elements
of a universe of discourse. A function symbol designates a function on members
of the universe of discourse. Similarly, a predicate symbol designates a relation
on members of the universe of discourse. For convenience, a term (i.e., a variable
symbol, an object symbol, or a functional expression) is used to name an object

in the universe of discourse.

Using the defined symbols and parameters, wffs for first-order logic can be
constructed using the syntactical rules of first-order logic. In particular, there are
three types of sentences: atomic, logical, and quantified sentences. The construction

of wffs is defined recursively, as this was done in the case of the propositional logic.

An atomic sentence is formed from an n-ary predicate relation symbol ¢ and
n terms 7,,...,7, by combining them as ¢(7,,...,7,). The other two types of
sentences are formed by using the logical symbols and the V parameter. A logical

sentence is constructed by combining atomic sentences with logical connectives
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according to the syntactical rules specified for propositional logic. A universal
quantified sentence is constructed as V, (¢), where ¢ is a simpler sentence and v
is a variable!.

Some additional terminology will be useful. There are other special types of
sentences defined according to the type of variables they contain. A variable in a
sentence is free if it is used in a term without an enclosing quantifier. A variable
that occurs in a sentence and in an enclosing quantifier is called a bound variable.
that has no free variable is called a closed sentence. A ground sentence contains
neither free nor bound variables.

Unlike propositional logic, the semantics of first-order logic are not straightfor-
ward due to the presence of variables. In first-order logic, if an interpretation Z
satisfies a sentence ¢ for all variable assignments, then interpretation 7 is called
a model of ¢. Consequently, the notion of validity for a sentence no longer de-
pends solely on the interpretations of a sentence symbol, but also on the variable
assignments. A sentence is said to be valid iff it is satisfied by every interpretation
and variable assignment. Similar to the definition of satisfiability of propositional
logic, a sentence is called satisfiable if it has at least one model.

The notion of interpretation is quite important if a reasoning mechanism is to do
reasoning, it has to rely on the syntax of the language alone. That is, it has to rely
on a proof procedure to derive conclusions. A proof procedure derives all possible
conclusions by using one or more inference rules, such as modus ponens, and a set
of logical axioms. A logical aziom is satisfied by all interpretations because of its
logical form.

However, when we are talking about something, we have in mind a particular

1Since V = =3, there is no need to include 3 in the language as an additional element. However,
this can be done for convenience. Similarly, the smaller set of logical symbols -, and — would
suffice to express all sentences in propositional logic, yet it is convenient to add the additional
operators for the benefit of shorter sentences [End72].

Also, note that only variable symbols are allowed within the scope of the V quantifier for a
first-order language.
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interpretation for symbols in our language. Therefore, it is necessary to show that
a proof procedure (or our desired reasoning mechanism) infers facts that have the
intended interpretation, i.e., it is necessary to show that the conclusions derived
by a reasoning mechanism have the intended interpretation. We need to bridge

the syntactical and the semantical notions.

Given a set of sentences A and a sentence ¢, it is said that A logically im-
plies (entails) @, iff every interpretation of each sentence symbol that satisfies the

sentences in A also satisfies ¢. The logical implication is denoted as A = ¢.

Since, in general, we cannot specify a particular interpretation, it becomes nec-
essary to derive conclusions (implicit facts) that are true in all interpretations.
Therefore, a reasoning mechanism does not have to know which interpretation is

intended as long as it adheres to this constraint.

An inference rule such as Modus Ponens can infer hidden (implicit) facts (sen-
tence symbols) from what is already known. A proof procedure (which applies
inference rules to the sentences in a database) is said to be sound iff any sentence
that can be derived from a database of facts using it, is logically implied by that
database. Also, a proof procedure is said to be complete iff any sentence logically

implied by a database can be derived using that proof procedure.

More definitions are called for, When there exists a proof of a sentence ¢ from
a database A and the logical axioms using modus ponens, ¢ is said to be provable
from A. A sentence ¢ derived from A, denoted as A F ¢, is called a theorem. A
theory is a set of sentences closed under logical implication. A theory, 7, is said

to be complete iff for any sentence ¢, either ¢ or —¢ is a member of 7.

In the development and formalization of a reasoning formalism such as NMR, it
is helpful to use the notion of logical implication to study and verify the correctness
of the properties of a proof procedure. Model Theory provides the bridge to study

the relationship between a syntactical object (a proof procedure) and its semantical
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counterpart (its interpretations) [CK90, Bri77].

For instance, a proof procedure that uses a set of logical axioms and modus
ponens is shown to be semidecidable. This means that there are sentences that
are entailed (logically implied) from a set of sentences, but cannot be inferred by
this proof procedure. However, a proof procedure that is equivalent to a logical
implication, denoted as A = ¢ = A | ¢, is said to be decidable. That is, any
sentence that is logically implied by a set of sentences can be inferred by the proof
procedure. These notions are necessary in our forthcoming discussions of NMR

approaches.

4.1.2 Inference and Resolution Principle

As mentioned earlier, our intended reasoning mechanism needs to be a proof
procedure of some kind. It is known that a proof procedure based on a set of
axioms and modus ponens is semidecidable [GN87]. We can use the resolution
procedure to ensure decidability for a special class of wffs. It uses the resolution
principle as its rule of inference [Rob65, Rob79]. However, the resolution principle
operates on clauses, expressible in a simplified variant of first-order logic, called
clausal form logic. A first-order logic’s closed sentence can be transformed easily
into its clausal form using a procedure.

A clausal form has symbols, terms, atomic formulas, literals, and clauses. The
difference between a clausal form and a wff is that a clausal form has literals and
clauses instead of logical and quantified sentences [GN87, Ric89]. A literal is an
atomic sentence or its negation. An atomic sentence is called a positive literal,
whereas its negated form is called a negative literal. Having these, a clause is
defined as a disjunction of a set of literals.

It should be noted that a set of clauses is equivalent to sentences of first-order
logic in the sense that a sentence is satisfiable by a set of sentences iff the corre-

sponding set of clauses is satisfiable. That is, nothing is lost in the transformation
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processes.

For so-called Horn clauses [GN87, Ric89], the resolution principle is both sound
and complete. A Horn clause is a clause with at most one positive literal. A
Definite clause is a more restricted clausal form. It contains at least one positive
literal.

However, in general, a proof procedure that is designed to operate on sentences
of first-order logic may not generate the same results if clausal forms are used
instead.

The idea behind the resolution principle is simple: if we know that either P or
Q is true and if we also know that P is false or R is true, then either Q or R is true.
That is, given two clauses ® : {P,Q} and T : {-P,R}, then the clause {Q,R} is the
resultant. Or in general, when no variable instantiation is necessary, the resolution

principle can be represented as:

® with ¢€®
T with —¢€T

(@ —{s}) U (Y —{-¢})

A definition of the resolution principle that is applicable to any literal, with or
without variables, can be given [GN87]. However, the above definition is sufficient
for our purposes.

Having defined the resolution principle, a proof procedure (also referred to as
resolution deduction) can be defined. A resolution deduction of a clause @ from a
database A is a sequence of clauses in which (a) @ is an element of the sequence,
and (b) each element is either a member of A or the result of applying the resolution

principle to clauses earlier in the sequence?.

21f the resolution principle is used unconstrained, the resolution deduction becomes inefficient.
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4.2 Non-Monotonic Reasoning

We rarely realize the degree of sophistication involved in the reasoning processes
we use to make our everyday decisions. Walking through a crowded street, for
example, requires a tremendous amount of reasoning. To avoid colliding with
other pedestrians as well as obstacles, one makes tentative instantaneous decisions
to take a step a little faster, squeeze through a few people, bend a little to walk
under a canopy. Students at the University of Arizona walking in the Student
Union hallway often decide at a moment’s notice to change their walking paths; as
they are changing their paths, they might have to resort to alternate paths to avoid
unexpected encounters. What is important is that a student is making a tentative
decision, and is prepared to revise it as soon as there is some reason to do so.
This type of decision making is necessary for us to maneuver our way through a
world undergoing continual change®.

Since its early days, one of the grand goals of the field of Al has been to automate
this type of decision making [McC58, McC90].

Reasoning can be either monotonic or non-monotonic. As the name indicates,
monotonic reasoning [CL73, GN87, Gin93] only allows making decisions that can-
not be revoked later. Non-monotonic reasoning [McC80, Rei80, MD80, Bob80,
Bes89, Bre91, MT93], which manifests itself in many types of problems, allows
making tentative decisions, subject to future revocation. That is, it allows us to
back off from an earlier decision (thought) once there is evidence justifying it.

What should be noticed is that the evidence that supports this altered decision

For this reason, various strategies, such as unit resolution and linear resolution, are used to
improve the efficiency of the resolution deduction [GN87]. Such proof procedures are called brief
deductions [McC62, MW91].

3There is a nice example in [Pea88]. It compares the tension between intentional and exten-
tional systems faced with the problem of crossing a minefield on a wild horse. If, on the one
hand, the horse is restrained too much, it won’t go anywhere; on the other hand if you let it
loose, the fast ride may end up with a disaster. This argument can be analogously used for a
pedestrian strolling in a crowded street.

4[Bur90] argues that, in fact, most of human reasoning is non-deductive.
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was not available at the time the original decision was made.

Just as NMR plays a vital role in our daily lives, any proposed intelligent ma-
chine needs to support NMR as well [MH69, Nil91, GN87, Bre91, MRS88, McC90].
The main reasons for requiring this form of reasoning can be traced back to two

fundamental problems — the qualification problem and the frame problem [MHG69).

The qualification problem refers to trading the amount of knowledge required for
making inferences for the accuracy of these inferences. In a real-time environment,
decisions must be reached within a finite, and often quite limited, amount of time.
It may not even be feasible to review the entire body of currently available infor-
mation when making a decision. Thus, decision making under uncertainty may be
a necessity even in situations where complete information would theoretically be
available. It is this difficulty that makes NMR necessary, since we cannot possibly
expect humans (or machines for that matter) to be aware of all the preconditions

that might trigger, enable, or inhibit a decision.

The frame problem is concerned with how to avoid specifying axioms about
which actions do not interfere with other actions. A famous problem from the
Block World makes this clear. Suppose, in state s,, block b is red and is on the
table. Also in state s,, block a is on the (same) table with block c placed on
top of it. Now, if block ¢ is moved and placed on the table, resulting in state
s,, then it is fairly easy for us to conclude that block b is still red. To date, no
mathematical formalism can make this conclusion without being provided with
appropriate axioms. The difficulty lies in the fact there are numerous axioms that

have to be specified before a machine can say block b is still red.

The frame problem is a more general form of the qualification problem; conse-
quently, it seems to be much harder to solve. In this work, I am concerned with

the qualification problem only.

The kinds of tasks (e.g., language understanding and reasoning) that caught
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the attention of the early AI community suffer from these two problems in various
disguises. However, to most people, language understanding and reasoning seem
rather trivial, since they are quite successful in carrying them out. To the surprise
of many, these deceivingly simple-looking tasks have proven exceedingly difficult

to formalize [GN87, Gin93, Ric83, Sho88].

4.3 Limitations of Monotonic Reasoning

What underlies monotonic reasoning is the use of one or more sound rules
of inference, each consisting of (1) a set of sentence patterns (conditions), and (2)
another set of sentence patterns (conclusions). Typical monotonic rules of inference
are the resolution principle and modus ponens. Classical logic rests on the idea
that its inference rules are sound. While a sound inference rule ensures deduction
of (implicit) conclusions that are consistent with what is already known, it can
produce no new knowledge. Furthermore, adding new sentences to the database
cannot invalidate any of the previously derived conclusions.

This strict form of monotonic inference rules does not allow the expression of
tentative statements. Another difficulty with monotonic inferencing is the qualifi-
cation problem — an inference rule is applicable only if its premises (conditions)
are known.

To overcome these difficulties, one can use non-monotonic inference rules [GN87,
Bes89, Bre91l, MT93]. With such inference rules, an earlier conclusion may have
to be retracted if another sentence is added to the database. These inference rules
are generally called non-monotonic. That is, for a given database A, we allow non-
monotonic inference rules to be used to infer new conclusions that do not logically
follow from A when using sound inference rules only. Basically, NMR approaches
attempt to formulate (1) non-monotonic inference rules and/or (2) a formalism

that can support well defined, yet revocable, inferences.
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4.4 Non-Monotonic Reasoning Logics

Despite the widespread usage of NMR in our own decision making, no serious
efforts had been made until recently to incorporate such mechanisms into algo-
rithms. Although the need for understanding and formalizing the NMR style of
reasoning was realized quite a long time ago [McC58, MH69)], its first theoretical
accounts weren’t reported until late 1970’s [Rei78, Cla78, Doy79, McC79].

Different taxonomies of NMR logic have appeared in the literature [Bre91,
GBS93, Bes89, Gin87, Sho88, MT93]. However, I prefer to present a somewhat
different categorization. I take the point of view that NMR can be approached
from two perspectives: the experimentalist approach and the formalist approach.
Yet, there is a need to proceed from the theory developed by formalists to some-
thing that is actually computable. Likewise, it is necessary to put on a firm ground
the implementation of a non-monotonic reasoner. Much work has been done to go
from one direction to the other, and vice versa [MRS88, GBS93].

I begin by classifying the NMR approaches from the formalists’ point of view. I
consider some mathematical formalisms that have been developed without taking
into account their computational counterparts. My motive is to bring to attention
the issues involved in building a non-monotonic reasoner. In this respect, I choose
to distinguish one class from another by identifying the type of logic, such as
model-preference logic and fixed-point logic, underlying the decision making of the
reasoner.

The main idea behind model-preference logic is that one interpretation is pre-
ferred over another. For instance, we may want to choose an interpretation that
minimizes the number of positive facts in a given theory. Close-World Assumption
(CWA), Predicate Logic, and Circumscription are three formalisms belonging to

this class [GN87, Rei78, Cla78, Bob80, McC80].
Fized-point logic supports NMR by choosing from a set of available default
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assumptions, the maximum number of assumptions that are consistent among
each other and that can be added to the theory. Since this class of logic can best
be formalized using the idea of a fixed-point, it is known as fixed-point logic. The
main approaches belonging to this class are Default Logic [Rei80], Modal Non-
monotonic Logic [MD80, McD82], and Autoepistemic Logic [Mo0085].

One important feature distinguishing these two approaches from one another is
that model-preference logics do not devise new logics. Instead, new non-monotonic
inference rules are introduced for making tentative inferences. Fixed-point logic,
however, devises new logics such as Default Logic.

In this work I choose the model-preference approach. This is because (1) classi-
cal logic offers a richer base of concepts and mechanisms that are more applicable
to model-preference logic than to fixed-point logic, (2) the types of problems that
I am interested in are amenable to model-preference logics at least as easily as to
fixed-point logics, and (3) there still exists a better pool of computational models®
and tools for model-preference logic, both from the point of view of existing clas-
sical theorem provers and the ease with which they are likely to be enhanced in
the future.

Next, I discuss a couple of model-preference approaches that can meet my
present needs, and seem powerful enough to satisfy foreseeable additions. Com-
putational models have already been devised for some variations of these model-
preference approaches [FdK93, Gin89, MRS88]. In particular, I shall briefly de-
scribe Closed-World Assumption and Predicate Completion, and shall add a few
words on Circumscription. These formalisms are all expressible within classical
logic, and thus no new logic (e.g., Default Logic) is necessary.

One apparent difficulty with NMR is that its intuitive definition is too vague!

Consequently, there are many misconceptions about what NMR really is. The

5For the last several years, an entire research community has devoted much effort to Logic
Programming as an alternative means for computational models of non-monotonic logics.
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reason may be that we are all too familiar with the notion of belief revision. This
familiarity, unfortunately, lures people into using the term too loosely. It is used
indiscriminately to refer to backtracking in trees and graphs, updating databases,
diagnosis, qualitative modeling, synthesis problems such as deign and planning,
reasoning about actions, and common-sense reasoning, among others.

The most serious misconception is that non-monotonic reasoning is equivalent
to backtracking. NMR is much more than backtracking! In traversing a tree,
for example, a backtracking mechanism provides the ability to backtrack a path.
However, the path itself usually remains static. As NMR backtracks a chain of in-
ferences, it is providing a foundation for creating dynamically a chain of inferences
and, consequently, withdrawing part or all of that chain of inferences as necessary
while new knowledge is being added. That is, although the behavior of NMR
resembles that of backtracking — and indeed, NMR does backtracking — it is a
much more powerful notion. The following should elucidate some basic features
of NMR. More importantly, various NMR formalisms provide some means for the
extension of theories.

The order in which I discuss the following three formalisms has the merit that,
as | proceed from one to the next, each formalism becomes more powerful than
the previous one in the sense that the sophistication of non-monotonic reasoning

increases by allowing the use of more general logic sentences.

4.4.1 Closed-World Assumption

The qualification problem amounts to having to specify too many things. For
instance, a database’s only entries may be pairs of neighboring countries. It does
not have any entries for non-neighboring countries. Intuitively, we could conclude
that, if two countries are not listed as neighbors, then they are not — although
this may not be true if we find out later that this entry had simply been left out

of the database. This kind of conclusion cannot be made with classical logic be-
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cause the theory for this database is not complete. In a complete theory, either a
ground sentence or its negation must be in the theory. As mentioned earlier, the

qualification problem is a battle between specifying too many and too few facts.

In databases with many entries it is very useful to only include either the set
of positive facts or that of negative facts, whichever is smaller. Then, if something
is not in the database, we conclude its negation with the provision that we may
have to withdraw this conclusion later and augment the theory as necessary. The
Close-World Assumption (CWA) approach simply completes the theory by adding
tentative conclusions to A [Rei78, She84, GN87].

CWA can be clearly described in terms of a database, A, containing some axioms
called facts, a theory, T[A], which is the closure of A under logical implication,

and another database, A containing some axioms called beliefs. We know that

the wff 4 € T[A] iff A = ¢. Then, each element of the belief dataset, A, ,
be derived based on CWA provided that ma € A,  iff the ground atom a ¢ T[A],

that is, ¢ € CWA[A] if {AUA,, } E ¢. Hence the augmented theory CWA[A]

can

is the closure of all facts and beliefs.

Unfortunately, in general, CWA does not produce consistent results for all types
of theories. However, CWA augmentation is consistent for the important class of
Horn theories. We also don’t want to assume that any ground sentence that is not
provable from A is false. In particular, we might want to weaken this assumption by
considering CWA for a subset of predicates only. This limits the number of negative
ground sentences that can be assumed false. However, while CWA augmentation
is consistent for a single predicate, it may be inconsistent for a set of predicates.
Two other types of assumptions — the Domain-Closure Assumption (DCA) and
the Unique-Name Assumption (UNA) — can also be used. Whereas CWA does

not limit the constants of the language that occur in A, DCA does. By assuming
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DCA, the objects in the domain are limited to those that can be named using the
object and function constants occurring in the language. The UNA assumes two

ground terms to be distinct, unless they can be proven equal.

4.4.2 Negation as Failure

It would be better if we could express what CWA is in terms of some sentences
that can be expressed in one of the logical languages. The nice thing is that often a
single logical sentence can express an assumption indicating that the only objects
that satisfy a predicate are those that must do so given a set of beliefs. An example
makes this clear. Let us assume that our database A contains a simple formula

p(8). Then the following expression is equivalent to p(A);

A = Vxx=A4 = p(x)

However, if we want to say that there is no other object satisfying p, we should

rewrite the above expression as:

Vx x=4 < p(x)

The last expression (called the completion of p in A) is obtained by adding the

expression (called completion formula for p)

Vx p(x) = x=A

to the first expression [Cla78, She84, GN87]. Therefore, we say that the completion

of pin A is:

COMP[A;p] = (Vx p(x)=> x=4) A A.

Again similar to CWA, this approach is applicable for certain classes of formulas

only. For example, predicate completion is shown to work for a set of clauses



93

referred to as solitary clauses. That is, if we have a consistent A of solitary clauses
in predicate p, then the completion of p in A is consistent [GN87]. For a set of
solitary clauses in predicate p, each clause with a positive occurrence of p has at
most one occurrence of p. Comparing Horn clauses and solitary clauses indicates
that, whereas solitary clauses are necessarily Horn clauses as well, the reverse does
not have to be true.

Similar to CWA, predicate completion for multiple predicates can be performed
in parallel with proper handling of solitary clauses to avoid inconsistent completion
of A with respect to a set of clauses. I do not describe this and other variants
of Predicate Completion since my purpose is limited to pointing out the issues
involved in formalizing the logic of Negation as Failure. A nice treatment of Pred-

icate Completion is presented in [GN87].

4.4.3 Circumscription

The logic of CWA and Negation as Failure are attempts at augmenting their
respective belief sets. Whereas CWA augments its belief set by including the
negation of ground positive literals that cannot be proven, the logic of Negation
as Failure deals with predicates instead. That is, Predicate Completion augments
an existing set of solitary formulas with some new formulas, which collectively
state that the only objects that satisfy the predicates are the ones that must do
so. What is common between these strategies is that the idea of augmentation is
based on a kind of minimization. That is, in one strategy, literals are minimized;
in the other, predicates are minimized.

Another formalism called Circumscription [McC80, McC86, Lif85, Lif86, Lif87,
Lif89] minimizes the so-called abnormal objects of a theory. In its basic form, it is
a minimal conjecture rule, instead of an inference rule, expressible within classical
logic. Like the previous two strategies, it is based on the minimization idea. Hence

its goal is to minimize the number of objects that can be shown to be abnormal.
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The general formulation of circumscription is a second-order formula that can be
added to a theory with some predicates to be minimized with respect to some
objects.

The circumscription formalism, however, is much broader and more powerful
than the previous two formalisms. For instance, the canonical example is about a
database containing facts about objects which may or not fly. Circumscription is
used to express the assumption for only those objects that can fly. That is, there
exist positive expressions about those birds that can fly and no statements about
elephants that cannot fly. Therefore, it is possible to add new expressions about
an elephant (a bird name may be Elephant) without affecting the previous expres-
sions. The power of Circumscription is due to the possibility of adding expressions
with exception handling, again without affecting the previous expressions. These
expressions have much broader implications compared to expressions stating some
facts or beliefs. I don’t go into the mathematical discussion description of Circum-
scription and its ramifications, as I am interested in a much less sophisticated type
of NMR that can be handled with CWA. A detailed exposition of Circumscription
is provided in [GN8T].

The purpose of discussing CWA as well as touching on Predicate Completion
and Circumscription is to add precision to the framework of reasoning that I am
committing myself to. Furthermore, it is useful for putting into proper perspective

the material developed in the remainder of this chapter and in subsequent chapters.
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4.5 Truth Maintenance Systems

In the previous section, I discussed some NMR formalisms that were based on
the language of logic for representing knowledge and using some theorem proving
techniques for manipulating belief. Here, I focus on an approach referred to as
Truth Maintenance Systems® (TMS). It was developed and advocated primarily by
the experimentalists {SS77, Lon78, Doy79, dK86b, McA90, MR91], but recently,
some formalists have also become interested in TMS systems [RdK87, McD91,
NR90, MT93]. ‘

A problem solver has to generate acceptable responses given some inputs and
enough knowledge about the tasks at hand. Why do I use the term acceptable in
the previous sentence? The reason is that the kind of problems for which this type
of problem solvers is useful implicitly takes into account the fact that problem
solvers are inevitably faced with situations where they have to make tentative
decisions, knowing there is not enough information to warrant a decisive one.
Thus, I am primarily concerned with problem solvers that do have sufficient partial
knowledge. The qualifier “sufficient” is used to make clear that at least a minimum
amount of knowledge has to be made available to a problem solver if it is to generate

any acceptable responses.
A problem solver has to keep track of all the decisions it makes based on incom-

plete knowledge. This explains why the problem solver is partitioned, as shown in

Figure 4.1.

The need for Truth Maintenance Systems is the same as before: there are
situations where some tentative decisions have to be made based on unsupported

knowledge (also referred to as assumptions). This implies that decisions may have

6In the literature sometimes the better suited names of Belief Maintenance Systems or Reason
Maintenance Systems are used instead.
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justifications
"
Inference assumptions TMS
Engine
contradictions
beliefs

Figure 4.1, Caricature of a problem solver.

to be made with the authority to withdraw any incorrectly hypothesized decisions
once new facts that contradict the assumptions become available. Since revocation
of these temporary decisions should be efficient, it is quite useful (and sometimes
necessary) to devise not a simple backtracking, but a rather more powerful scheme
such as dependency directed backtracking [SST77, Lon78, Ric83, Gin93, FdK93]. The
roots of the evolution of TMSs are based on dependency directed backtracking
principles.

It is useful to define a problem solver — or, more appropriately, a reasoning
system — as comprised of an inference engine and a TMS [dK86b, FdK93] (cf.
Figure 4.1 [FdK93]).

The task of keeping and manipulating records of inferences and their proofs is
assigned to a Truth Maintenance System. The inference engine provides inferences
and their proofs to the TMS”. This partitioning of a problem solver provides better
control as well as more efficient computations for most problems. Nevertheless, the
dividing line of responsibility between an inference engine and its corresponding
TMS is not crisp. For instance, some inferences to be carried out by an inference

engine can be delegated to the TMS. In fact, several types of TMSs (cf. Figure 4.2)

"The name TMS is sometimes used to refer to a TMS as well as to the problem solver itself.
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are possible, partly because the tasks of a problem solver are divided between the
inference engine and the TMS.

One thing to note about this approach is that a TMS can be largely independent
with respect to the type of inference engine. For instance, the inference engine
could be a rule-based system or a theorem prover.

I shall now discuss, in a general setting, how the problem solver carries out
its task. The inference engine and the TMS are exchanging information using a
well-defined protocol. That is, the inference engine’s important inferences are sent
to the TMS as justifications (I shall shortly describe what a justification is). The

TMS, having recorded these justifications, aids the inference engine by:

1. discovering inconsistencies between justifications;
2. finding out from justifications what set of assumptions leads to contradictions;

3. stashing information about failed inferences as well as successful inferences as
justifications to avoid redundant work;

4. facilitating default reasoning by using TMS justifications to include explicit
default assumptions; and

5. generating explanations by tracing through justifications.

In order to understand how the inference engine and the TMS interact, I need
to define some concepts and terminologies. A problem solver’s (or more precisely,
an inference engine’s) datum refers to its assertions, facts, inference rules, and
procedures. Each datum has an assigned counterpart in the TMS called a TMS
node. Both the TMS and the inference engine need to communicate with each other
via TMS nodes. Therefore, each inference engine’s datum points to its associated
TMS node, and each TMS node points to its counterpart datum. The responsibility
of establishing this connection is assigned to the inference engine. Although TMS
nodes are communicated between the inference engine and the TMS, each TMS

node is interpreted differently by the inference engine and the TMS. TMS nodes
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are used as data by the inference engine to make inferences. The same TMS nodes
with assigned truth values are used by the TMS to maintain a consistent dataset.
TMS does not use these nodes as data.

A node of a TMS can be either a premise, a contradiction, or an assumption.
While a premise and a contradiction hold indefinitely, an assumption may hold
temporarily, making it subject to revision as necessary. Each node, furthermore,
can have a label to indicate the current belief in it. For example, in Logic-based
TMSs, a node’s label can be either TRUE, FALSE, or UNKNOWN.

A justification is essentially a deduction (or inference), which is a type of con-
straint on conditions on some TMS nodes. Each justification consists of three
parts:

o Antecedents are the nodes of the data used as antecedents to an inference
rule.

e A Consequence is a node corresponding to the data that is inferred using an
inference rule and known antecedents.

e The Informant contains explanatory information associated with an inference
rule.

The syntax of justification is:

((Consequence) (Informant) - (Antecedents))

Now, we can view a TMS as a dependency network structure consisting of TMS
nodes connected via justifications. Also, we can identify different families of TMSs
(cf. Figure 4.2 [FdK93]) using the type of constraints the inference engine is allowed
to express among nodes, as well as the kind of queries the TMS is expected to
answer efficiently.

Three basic types of constraints are: Justifications (i.e., Definite or Horn clauses
as defined in Section 4.1.2), Non-Monotonic Justifications, and Arbitrary Justifi-

cations. The node type could be either simple or complex. For example, where
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Simple Label | Complex Label

Horn/Definite Constraints JTMS ATMS

NM Clause Constraints NMJTMS —

Arbitrary Clause Constraints LTMS CMS

Figure 4.2, Families of TMSs

a simple node’s label can be TRUE, a complex node’s label may consist of the set
of assumptions under which the node is TRUE. Therefore, as shown in Figure 4.2,
a TMS can be a Justification-based TMS (JTMS), a Logic-based TMS (LTMS),
a Non-Monotonic JTMS (NMJTMS), an Assumption-based TMS (ATMS), or a
Clause Management System (CMS) [FdK93]®. Our own problem solver uses a
Logic-based Truth Maintenance System. Nevertheless, before discussing LTMSs
in more detail, I wish to point out a few important aspects of JTMSs. A compre-
hensive exposition of JTMSs, LTMSs, ATMSs as well as their implementations is
provided in [FdK93].

A JTMS only accepts justifications that can be expressed as definite clauses
(i.e, &y A... Ao, = B where a; and B are TMS nodes). A premise node is a
justification with no antecedents. A contradiction node is specifically designated
by the inference engine. The belief in a contradiction node does not interfere with
the operations of the JTMS. They are there to be sent to the inference engine once

they become believed; that is, contradictions have to be resolved by the inference

8In principle, every type of TMS is powerful enough to emulate the other kinds [McA80,
McD91].
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engine, which has to ensure that they are not believed.

A node can also be an assumption. Again, the inference engine has to designate
it as such explicitly. An assumption is enabled if the inference engine chooses to
believe it. Otherwise, an assumption is treated as any other node; that is, it can be
believed if its justification is believed, or retracted if its justification is not believed.
In a JTMS, a node is either “in” or “out,” where in indicates that it is believed,
and out indicates it is not.

Now I can describe briefly how the JTMS operates. We can formulate a JTMS
within propositional calculus and hence have precise ideas about what the JTMS
is actually computing. Every node is a propositional symbol s € S. Theset AC S
denotes the set of assumptions. Then every justification can be viewed as a simple
propositional definite clause, the set of which is denoted as J. Within the setting
of propositional calculus, a node « is tn when it follows from AU J under the rules
of propositional calculus. Otherwise, the JTMS indicates that node « is out. The
main advantage of the JTMS approach is that, since all justifications are definite
clauses, a simple forward propagation algorithm can be used for implementing
JTMSs. However, the price for this efficient implementation is that a JTMS is
quite limited in its expressing power. For example, it cannot represent —o since it
is not a definite clause without resorting to various encoding tricks.

Nevertheless, a JTMS can be used for providing well-founded support for those
nodes that are believed as well as storing justification for efficiency. Also, it can
support default reasoning with help from contradiction nodes, even though it lacks

precise semantics.

4.5.1 Logic-based Truth Maintenance Systems

The additional expressive power of an LTMS can be quite beneficial. A Logic-
based Truth Maintenance System permits expressing arbitrary propositional clauses

(e.g., a negative node can be expressed just as easily as a non-negative node). It is
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possible to tinker with a JTMS to allow it to express any clause as well. Various
encoding tricks can be used to overcome the JTMS’s lack of expressive power in
its natural setting. That is, it is possible to obtain much of the logical power of an
LTMS by using a JTMS with the aid of appropriate encoding procedures. How-
ever, the end result is prone to more errors in terms of formulating the clauses.
It also produces a dependency network that can require too many computational
resources. Hence, having a TMS that can express arbitrary propositional clauses
not only eliminates error-prone encoding schemes, but also provides better facili-
ties for carrying out the TMS’s tasks, such as assisting the backtracking process
by eliminating surplus computations that would otherwise be necessary [FdK93].

Much of the top-level functionality of an LTMS is the same as that of a JTMS.
The differences between them, aside from their expressive power, mainly lie in the
algorithms that are used in carrying out the tasks of the problem solver.

A TMS can distinguish between several node properties. In a JTMS, a node
can be either a premise, a contradiction, or an assumption. In an LTMS, there are
only two node properties:

e A node is a premise if it is the only node in some inference engine supplied
clause (the LTMS does not require an explicit premise property).

o A node is an assumption if the inference engine tells the LTMS that it chooses

to label 1t as either TRUE or FALSE.

Contradiction nodes are meaningless in an LTMS. This is due to the way in
which clauses are represented in clausal propositional calculus. For instance, in a

JTMS, we may have a justification as:

aANf = L

where symbol L indicates a contradiction. The above justification can be equiva-

lently represented in LTMS as:
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—aV-pBV L = -aV-f.

The last clause eliminates the need for including contradiction nodes. Contra-
diction literals in clauses cannot contribute in satisfying clauses.

Hence, a node in an LTMS is either a premise or an assumption. We can denote
the set of clauses as C and the set of assumptions as \A. An assumption is a node
the belief of which can be altered by an explicit inference engine operation. As in
a JTMS, each node in an LTMS has a label; it can be either known or unknown
since it is based on propositional calculus. If a node is known, it can either be
TRUE or FALSE. Specifically, a node is labeled TRUE if it is derivable from C U A.
A node is labeled FALSE if its negation is derivable from C U A. The label of an
unknown node is UNKNOWN, in case it is neither TRUE nor FALSE, i.e., In case no
arbitrary assumption was made about that node.

Note that in an LTMS, if a node has a label, there is no need to include a separate
node representing its negation, as would be the case in a JTMS. The LTMS simply
assigns the label FALSE or TRUE to the negation of a node’s label that is TRUE or
FALSE. Of course, if a node’s label is UNKNOWN, then the label of its negation is
also UNKNOWN. The ability of an LTMS to represent negative literals in terms of
positive literals results in the creation of fewer nodes. Consequently, an LTMS’s

efficiency improves since a smaller dependency network is needed for fewer nodes.

Logical Specification of LTMS:

The dependency network for an LTMS is comprised of a set of nodes (or a set of
literals) denoted as S. A subset of these nodes, denoted as A C §, are assumption
literals. Then, according to clausal logic, a clause is a disjunction of literals with
no repeated literal. Having the literals, the inference engine can then supply a set

of clauses C defined over S. Again, we can assume that C grows monotonically,
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whereas A does not.

The three basic tasks of the LTMS are:

1. Provide a label for each node.
2. Detect contradictions.

3. Provide explanations for the label of each node.

To provide a label for s inquired by the inference engine, the LTMS can respond
with one of the three possible labels TRUE, FALSE, or UNKNOWN. If there exists a
€ C CU A, such that s follows from £ propositionally, then the LTMS assigns the
label TRUE to s. It is also possible that —s is provable from £. In this case, the
label FALSE is assigned to s by the LTMS. If neither £ I s nor £ - s, then the
LTMS assigns the label UNKNOWN to s.

The second task implies that somehow CUA is unsatisfiable, else there would not
be a contradiction to be concerned with. The only explanation for CU.A becoming
unsatisfiable, is that the LTMS has arbitrarily assigned the labels TRUE or FALSE
to one or more of the unknown nodes. Some of these arbitrary assumptions will
now have to be revised in order to make C U A again satisfiable. Luckily, the
LTMS keeps explanations for these labels that provides the inference engine with
the information necessary for resolving the contradiction.

The third responsibility of the LTMS is to provide explanations for nodes, even
when C U A is satisfiable. Typically, these explanations will be pointers to the
assumptions that had to be made in order to reach a particular TRUE or FALSE
value for a node. This feature is one of the primary benefits of equipping a problem
solver with a Truth Maintenance System.

The above logical behavior of the LTMS can be implemented using a variety of
algorithms. A particularly efficient algorithm is the so-called Boolean Constraint

Propagation (BCP) algorithm. The BCP algorithm used in this work is restricted
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to clauses. However, as I mentioned previously, any propositional formula can be
converted into a logically equivalent set of clauses.

The basic specification of a BCP [FdK93] is sound with respect to propositional
calculus both in terms of labeling nodes as either TRUE or FALSE, as well as detect-
ing contradictions only when they are logically provable. Unfortunately, the BCP’s
basic specification is not strong enough to ensure logical completeness®. For our
purposes, it suffices to say that, for positive literals and Horn Clauses, the basic

specification of the BCP can be extended to make it logically complete [FdK93).

9The logical completeness of a BCP can be viewed in terms of literal completeness and refu-
tation completeness. The former refers to the ability of the BCP to label a node as either TRUE
or FALSE when it is logically entailed from PC. The latter says that, whenever a contradiction is
logically entailed from PC, the BCP can detect it.
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4.6 Applications of NMR

The most challenging application of NMR seems to be in common-sense reason-
ing relying on common-sense knowledge. John McCarthy discusses his views on
what Common Sense is. He refers to the term Common-Sense Capabilities and di-
vides it into common-sense knowledge and common-sense reasoning [McC84]. The
former refers to facts and the latter to some forms of inference.

The use of the term common-sense reasoning is not limited to deductive, in-
ductive, or abductive modeling paradigms; it can be identified with any reasoning
scheme that humans are capable of. We often say it makes sense to say something
or do something, e.g., it makes sense for a ball thrown into the air to fall down after
some time. It was this general usage of the term common-sense reasoning that first
caught the attention of some early AI researchers [McC58, MH69, McC90]. One
may argue that, in fact, common-sense reasoning applications encompass all others
— applications based on probability theory and its variations, and fuzzy logic, for
example. My motive is not to argue about such claims or delve into epistemo-
logical issues about what is and what is not common-sense reasoning. Instead, I
would like to point out that deductive qualitative modeling is considered to rely
extensively on common-sense reasoning [HM85, FdK93]°.

Default reasoning, inheritance, and reasoning about action are considered dif-
ferent variations of non-monotonic reasoning!!. In applications that exhibit non-
monotonic characteristics, the primary reason for using NMR can eventually be
traced back to the need for dealing with the qualification problem. What is more
interesting is that, although NMR is itself inductive in nature, to y knowledge

NMR has never been used so far to deal with inductive forms of reasoning. All

1014 is interesting to note that the term “qualitative modeling” is commonly used in the liter-

ature as equivalent with “deductive qualitative modeling,” i.e., the attribute deductive is silently
implied.

11[1if88] has compiled a set of benchmark problems to aid researchers in the study of formalisms
for non-monotonic reasoning.
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reported usages of NMR relate to either deductive or abductive modes of reasoning.

For instance, NMR has been used in deductive qualitative modeling [HM85,
FdK93, Gin93]. The inference engine for deductive qualitative modeling is built
using deductive inference rules that essentially describe how implicit knowledge
can be derived based on the axioms specifying how the system is supposed to
work. These axioms, for instance, may describe how a motor or a thermostat
is expected to operate under some well-defined conditions. Then, NMR is used
to allow for properly handling situations that had not previously been expected,
and for which consequently no provisions were explicitly specified. The role of
NMR is to augment the existing theory, i.e., the set of axioms describing the
behavior of the system, with additional knowledge such that the augmented theory
is able to handle some unspecified situations as well. The inferencing mechanism
of NMR is non-monotonic, and thus it is possible to withdraw decisions that are
refutable given new axioms. Clearly both deductive and inductive inference rules

are involved in deductive qualitative modeling.

In contrast, our own contribution to NMR relates to inductive reasoning modes.
In inductive qualitative modeling, the situation is quite different. There are no the-
orems available that would describe the underlying behavior of the system. There
exists no theory that can be subjected to deductive rules of inference to predict
the system’s behavior. Instead, the theory contains axioms expressing a system’s
observed behavior. That is, whereas in deductive qualitative modeling a set of
theorems describes how the system is expected to operate, in inductive modeling
there exist no such theorems. Indeed in inductive modeling, we are constraint
with some finite observed dataset. We use some inferencing mechanism to make
decisions. These decisions are purely based on data rather than on theorems ex-

pressing how the system is supposed to operate. Hence, given a finite set of data,
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applicable inference rules have to be non-monotonic!?.

Therefore, the use of NMR in inductive qualitative modeling is quite different
from its use in deductive qualitative modeling or any other application that is
formulated based on either deductive or abductive paradigms. In inductive mod-
eling as I have defined it, we need to rely either on inductive (non-sound) or non-
monotonic inference rules. Although there exists an extensive body of literature on
inductive modeling and machine learning, to our knowledge, none of the previous

research efforts in inductive modeling made use of non-monotonic reasoning.

12Note that inductive inference and non-monotonic inference are distinct.
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Chapter 5 Discrete-event Inductive Modeling

A modeler has to inevitably consider a system to be modeled from a particular
point of view [Min65, Zei76, Cel91, Wym93]. The basic idea is to view a system
as delineated from its surroundings that externally interact with the enclosed sys-
tem. The separation between the system itself and the part that lies outside of
it provides a particularly powerful means to deal with the difficulties of modeling.
Consequently, a modeler must decide what types of questions the model is expected
to answer. Several other important choices, such as the levels of complexity and
granularity of data (e.g., input and output), have to be made as well. A powerful
concept called abstraction is particularly useful to effectively deal with such choices
[Z€i76, Zei84, K1i85, Wel86, CK90, GW92, Wym93].

The basis for modeling, and in particular inductive modeling, is abstraction.
Reasoning is intrinsically intertwined with abstraction. The ability to use abstrac-

tion and reasoning simultaneously is very useful and powerful in modeling.

Abstraction allows one to deal with the lack of knowledge. As I mentioned in
the previous chapter, the frame and qualification problems are manifestations of
insufficient knowledge, hence indicating the eligibility of abstraction as a potent
candidate to deal with these problems. In particular, my tenet is that the under-
lying ideas of NMR are based on applying some kind of abstraction to overcome

the lack of knowledge.

For an abstraction to be useful, it must be the “right” one. Of course, the
difficulty is determining what “right” means, i.e., what makes an abstraction ef-
fective? What does it ignore? What does it emphasize? Three basic measures
for determining a “right” abstraction are validity, applicability, and computability
[Zei84]. Obviously, much effort (reasoning) is needed before any of these questions

can be answered effectively.
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5.1 Abstraction in Modeling

Theories of abstraction, as defined by [Zei76, Wym93], provide the means for
comparing behaviors of two systems, one being an abstraction of the other. One
may be called a big system and the other a little system. The terms “big” and
“little” are used in [Zei76]. These terms should be interpreted in contrast to each
other. That is, a big system should be understood to have more input, output,
and/or state variables as well as more elaborate transition functions than a little
system. For example, a big system may be a “real” system, whereas the little
system could be a “model” of the real system. A theory of abstraction attempts
to establish some formal means to examine the behavioral similarities of these
systems. In particular, it is desirable to establish the correctness of a little system
with respect to the big system.

Any formalization of abstraction should be carried out in terms of the level of
model specification in the hierarchy of system specifications (refer to Section 2.3).
Abstraction can be categorized into two types. First, abstraction can be used at
any one level in the system’s hierarchy, that is, an abstraction of an 10 system (i.e.,
big system S, ) is another 10 system (i.e., little system S,). The other type of ab-
straction deals with one system at level ¢ and another at level j, where 0 < 2,7 <5
and ¢ # j. For instance, an 10 system model (5 = 2) can be abstracted as an IO

function observation (2 = 1).

Before any further discussion of reasoning and abstraction in the context of
inductive modeling can be attempted, a brief account of well-studied abstractions

in deductive modeling will be helpful.

Within the deductive modeling paradigm, abstraction has been formalized using
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Systems Theory [Zei76, Zei84, Wym93] and Logic [CK90, GW92]. Using the sys-
tem specification hierarchy given in Section 2.3, I view system specifications based
on levels 0-2 and levels 3-5 as inductive and deductive modeling paradigms, respec-
tively. I begin with a short discussion of abstraction in the context of deductive
modeling. First, I give a definition of abstraction derived from [GW92}:

Definition 12 An abstraction is a pair of distinct formal systems and a mapping
between them.

Note that, according to this definition, abstraction establishes a relationship
between two systems. However, the definition does not specify how to actually go
about abstracting one from the other. Both systems theory and logic have been
used in developing theories of abstractions. I start with the systems theory view
of abstraction.

Generally, abstraction is understood to be the simplification of one model into
another via homomorphism (a preservation relation) [Sto73, Zei76, Wym93]. Both
Wymore and Zeigler use homomorphism as the basis for abstraction. For instance,
at the I/O system specification level, given a big system S, = (T, X,Q,Q,Y, 4, ))
and a little system S, = (T", X', ¥, Q’,Y’,8', X'}, then S, is an abstraction of S, if
some aspect of the big system structural specification is preserved in S,. That is, a
system morphism at the 1/O System level provides checkable conditions such that
some structural characteristics of S, are preserved in S,. Therefore, some desired
behavioral patterns of the big system should be derivable from the little system.

The I/O system morphism from S, to S, is defined as a set of mappings for
inputs, outputs, and states as well as transition and output preservation functions
(for a detailed exposition refer to [Zei76]):

Definition 13 A system morphism from S, = (T, X,Q,Q,Y,4,)) to
S, = (T, X", Q,Y" & X) is a triple (g, h, k) such that [Zei76]:

1.g: QY —Q
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2. h:0 28 Q where Q C Q
g k:Y 28y

4- h(é(q, 9(w")) = &'(h(q),«")
5. k(A(q)) = X(h(q))

where g € Q and W' € Q.

I need to discuss abstraction from the viewpoint of logic as well since the rea-
soning part of my work is based on the tenet of logic. Although abstraction has
been studied in systems theory and logic separately, the basic underlying principles
are the same in both cases. Nevertheless, the theory of abstraction based on logic
is richer due to the inherent power of the language of logic.

In logic, a system is a collection of wffs (theorems and axioms), and it is called
a theory. Therefore, in contrasting two systems, we need to consider two theories,
one representing the big system and another the little system. In logic, however,
a system has to be discussed in terms of its interpretations (i.e., models). That
is, we use interpretations in order to contrast two systems (i.e., their theories) in
terms of one being an abstract representation of the other.

Given two axiomatic formal systems (Z,,%,), where ¥, = (A;,A,,Q,), A, a
language, ), a set of axioms, and A, a deductive machinery (inference rules), we

have the following definitions:

Definition 14 An abstraction, written f : ¥, — X, , is a pair of aziomatic
formal systems (X,,%,), and a function f, : A, — A, [GWI2].

Given two theories, 7(X,) (the concrete theory) and 7(X,) (the abstract the-
ory), we have:
Definition 15 An abstraction f: X, — X, is said to be a [GW92]:

1. TD-abstraction iff, for any wff ¢ € T(%,), if ¢ = f,(¢) € T(L,), then
¢ €T(%,),
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2. TI-abstraction iff, for any wff ¢ € T(X,), if ¢ € T(%,), then ¢ = f,(¢) €
T7(%,).

These two definitions are called TI-abstraction (theorem-increasing abstraction)
and TD-abstraction (theorem-decreasing abstraction). Both types of abstractions
indicate that 7(X,) is more abstract than 7(X,). The Tl-abstraction ensures
that the absence of a theorem in the abstract theory implies its absence in the
concrete theory as well. Here, some of the abstract theory’s conclusions may not
be supported by the concrete theory. In contrast, the TD-abstraction ensures that
all conclusions made by the abstract theory are also correct in the concrete theory.
In other words, a TI-abstraction allows more conclusions, some of which may be
wrong, whereas a TD-abstraction allows fewer conclusions, but all are correct.
My brief discussion leaves many important things untold. For a comprehensive
exposition of a theory of abstraction based on logic, accompanied with numerous
examples, refer to [GW92).

Note that the notion of abstraction in logic is somewhat different than the one
defined for systems theory. Here, mapping is defined over a “language,” instead of
mapping the input, output, and state sets as is done in systems theory.

Having defined two formulations of abstraction in systems theory and logic, we
can observe that both of these provide some means to evaluate relationships be-
tween a system and any of its abstractions. However, neither of them provides a
procedure that would specify how an abstraction of a system is actually obtained.
For instance, given some input set X in S,, Definition 13 does not tell us how
to obtain X’ in S,. Likewise, given a theorem ¢ € 7(X,), Definitions 14 and 15

provide no means to obtain a theorem ¢ € 7 (%,).

Now I turn to abstraction at the input/output level specification. As stated in
Chapter 2, an IOFO specification is an algebraic structure with input, output, and

state sets, an input/output space, and an input/output function set.
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Again, the basis for abstraction is the notion of homomorphism between IOF'O,
(a big system) and TOF O, (a little system) that can be used to ensure the preser-
vation of some input/output behavioral patterns of the big system in the little
system. An I/O function observation morphism for the IOFO level is:
Definition 16 Given S, (I0OFO0 = (T, X, S,,Y,10space, F)) and S, (IOFO' =
(T, X',S!,Y', 10space’, F')), an I/O function morphism from S, to S, is a pair
(g, k) such that [Zei76]:

1. g:9 -0

2. k:0 T8

8. For each f' € F', there is an f € F such that for all W' € U, f'(W') =
k(f(g(W'))); thatis f'=ko fog.

Items (1) and (2) are self-explanatory. Item (3) is saying that if 5, is in a state
whose 1/O function is f’ and an input history «’ is injected into it, then 3’ can be
observed. Now, using the I/O function morphism mappings, we can observe the
same output history v’ for w’ by first mapping w’ into w using function g. Then,
the output history 3 for S, can be obtained using f, which can subsequently
be mapped into 1’ using k. These mapping functions can be used to verify the
correspondence between S, and S, (in terms of their behavior preservation). Again,
the I/O function morphism is used for verification purposes. It is not a procedure
for deriving the mappings ¢g and k.

Although the above concepts and definitions are quite useful, primarily in de-
ductive modeling methodologies, they are not suitable for our purposes. This is
mainly due to the absence of any procedure that can derive, for example, S, from

S, in Definition 5. Appropriate settings should be developed in order to derive

such algorithms.
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5.2 IO Segment Pair Types

Before I proceed, we may recall that the I/O function generator set F, is simply
a database containing pairs, each comprised of an initial state associated with its

input/output segment pair. That is,

F, : S, — partial IOspace,,

f=1(s,9) € F, where g = (w, ).

In this form, no final state is assigned to any IO segment pair. Instead, the
quasi-state identification function 7, is specified in G, to hypothesize about them.
For any particular set of final states, I can suppose that every IO segment has both
an initial state s, and a final state s, (i.e., (s;,s,,(w,¥))). It should be noted that
8;,8, € S, (see Section 3.2).

My discussion of trajectories and segments in Chapter 2 did not consider how IO
trajectories may be partitioned into IO segments. In addition, it did not discuss the
possible ways in which input segments, output segments, and pairs of input/output
segments may be represented. In this section, we begin with a classification of all
possible ways in which an input segment might be represented.

Let me denote an input segment as (s;,w), an output segment as (s,,), and
a causal IO segment pair as ((s;,w),(s,,%)). An input segment’s representation,
without considering its initial and final states for now, can be categorized into
several types depending on whether events occur at one or both of its initial and
final time-points; likewise, for output segments. For example, suppose we have an
input segment w and an output segment 1) with duration dt. We associate ¢, with
the initial time-point of the input/output segment pair and ¢ ; with its final time-
point. As has been said previously, we are concerned with discrete-event systems

only. Hence, all segments are assumed to be of the discrete-event type. Thus, we
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can have the following discrete-event input segment types:

e Input segment type 1:

w(t)y=nil for t,<t<t

e Input segment type 2:

_} input_event  for =t,
w(t) = { nil for ¢, <t<t,

e Input segment type 3:

w(t) = nal for t.<t<t
| input_event for t=t

e Input segment type 4:

input_event  for t=1t,
w(t) =4 nil for 1, <t<t,
input_event  for t=1t,

Likewise, output segments are of the same four types. Then, considering input
and output segments together, I require that each conform to one of the following
4 types out of all 16 possible combinations of 10 segment pairs.

e 10 segment type 1:

w(t)=nil for ¢

IA
IA

P(t) =nil  for

IN
IA
o~
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e 10 segment type 2:

+

_ | input_event  for t=t,
w(t) = { nil for t,<t<t,

p(@)=ml for ¢t <t<t

f

e 1O segment type 3:

1]

wt)=nil for ¢, <t

1/)(t)={m'l for t, <t<t,

output_event  for t=t

e 10 segment type 4:

_J input_event  for t=t,
w(t) = { nil for ¢, <1<t
nal for t.<t<t
’(p(t) = i . f
output_event  for t=t,

The rationale for this restriction is the following: The trajectories for a single
input, single output (SISO) system, can be partitioned in several ways. Clearly,
the partitioning of IO trajectories for an SISO system ought to be with respect
to both input and output trajectories. If there are no time-points at which both
an input event and output event occur, then the partitioning of IO trajectories
results in IO segments having the above proper types. That is, no input event and
output event should occur at the same time in order to ensure that an 10 segment
pair has one of the proper types defined above. A trajectory may be partitioned at
time-points where either an input event or an output event occurs. Thus, partition
points (time instants along a trajectory where an event occurs) should occur only

at time-points where either an input event or an output event occurs, exclusively.
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In particular, the following types of input and output segments are not allowed

due to violation of the causality principle.

input_event or nil  for t=t,
w(t) =< nil for t <i<{,
input_event for t=1t,
output_event for t=1t,
P(t) =< nil for t,<t<t,
output_event or nzl for t=1,.

Therefore, partitioned 10 segment pairs should adhere to the 4 types described
above. In particular, input segments of types 3 and 4 cannot be used. Figure 5.1
illustrates pictorially an input/output trajectory and its partitioned 10 segments.

Having decided on the proper representations for input and output segments,
I can now determine the representation of Complete IO segments*. That is, any
10 trajectory pair (partitioned according to assumption set-I) would result in 10

segment pairs representable as:

((‘Sn (xval, dt))’ (31’ (yvuh dt)))

where dt is the duration of input/output segments and z,o € {nil,input_event}
and Yya € {nil, outpui_event}. Note that the durations of the input and output
segments of an input/output pair must always be identical. Hence I can reformu-

late the earlier specification of Gy in terms of ((s;, (%val, 1)), (s,, (Yuar, dt))) as:

G, = (T, X,5,Y,I0space,, F.,)  where

}The prefix Complete, which distinguishes an 10 segment with states from an IO segment
without states, is dropped as long as there is no confusion.
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0 1 2 3 4 5 6 7 8 9 10

output trajectory

nill-—_ nill__

4 6 2 4
C
ni l|
10 Segment Type 1 10 Segment Type 3
C a
0 1 1 2
a
ni II
IO Segment Type 2 10 Segment Type 4

Figure 5.1, A discrete-event input/output trajectory and its IO segments
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T time base
X input value set
Y output value set
S set of states
IOspace, time-invariant IO segment generator set
E partial IO function generator set
and

E.: S x PJN(IOspacey,1) — S, x PIN(IOspace,,2)  such that
S C8S,8, C8.

FG = {((Sn (xvaladt)), ('Sfa (yval’dt))) I 8,8, € S,
(Zyat, dt) € PIN(I1O0spaceg, 1), and
(Yvar, dt) € PJN(IOspaceg,2)}.

Therefore, E’; represents either a set of observed 10 segments, each having asso-

ciated with it an initial state and a final state, or an iterative IOFO specification.
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5.3 Equivalence Relations

The main idea behind the iterative IOFO specification is to provide predictabil-
ity. Partitioning trajectories into segments allows a combinatorial composition of
segments into trajectories. The IO segments may be observed or be the result
of partitioning IO trajectories. In general, partitioned IO trajectories based on
assumption set-I are subject to revision. It is possible however, that after a finite
number of revisions, IO segments need not be revised any further. That is, whereas
F, may be subject to revision, }/7\'6 is not. I shall work with F\'G in the remainder of

this work.

There is no fundamental difficulty with my supposition. It is common practice
in inductive as well as deductive qualitative modeling to abstract inputs, outputs,
and states. The difference (advantage) in treating a data set, derived according to
assumption set-I, is that reasoning with such abstractions is possible in ways simi-
lar to those a human modeler would use. Therefore, I neither consider nor develop
the means by which the assumption set-I can be used to derive an iterative IOFO

specification.

The assumption set-II is to be used to reason about IO segments contained in
F’G and a candidate input segment to predict unobserved 10 segments. An input
segment is called a candidate input segment when it is not observed. A concrete
input segment (or IO segment), however, refers to one that is observed. We need

to be specific about what the assumption set-1I is, and what it entails given @:
Suppose we are given an input trajectory partitioned into a finite number of

sequential segments. Then, we are interested in finding its corresponding output

trajectory. For example, suppose one of its input segments is (s,, (2,41, dt')), and

there exists a pair of input/output segment ((s,, (Zvat,dt)), (5;,(Yvat,dt))) € E..

!
val?

If the input segment (s, (z,4;, dt') is equal to the input segment (s, (Tya1, dt)) (i-e.,
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’

Lyl = Ty, dt = dt', and s, = s:), then we are able to postulate the output segment
corresponding to this input segment by analogy.

However, the hope of composing the output trajectory is dashed once and
for all if, for a given input segment, no equal input segment be found in the
database. For instance, given the three sequential input segments (s;, (x;,dt;)),
(s, (z,,dt)), and (s, (z,,dt.)), it is entirely irrelevant whether output segments
can be found for the second or third input segment, as long as no output segment
can be found for the first input segment. That is, given the candidate input seg-
ment (s, (z,,dt.)) & PJN(F’G, 1), (i-e., there exists no input/output segment pair
((s:5 (Tvar, dt)), (84, (Yoar, dt))) € F’G in the database, such that z,,; = x’l, dt = dt;,

and s, = s;), then no output trajectory can be obtained.

The notion of equality, of course, is too strong for inductive modeling. It becomes
imperative to speak of equivalence instead?. Otherwise, we have to limit our claims
of prediction to trajectories that can be composed from the 10 segments found in
F\’G only. Without using equivalence, no generalization capability would be present
in the reasoner, and matching of input segments would be limited to what is
available in F; It is the inevitable impossibility to find in the database equal
input segments for all imaginable new input segments (due to the qualification
problem) that underlie the need for an equivalence definition®. I use the term
equivalence to indicate that, even though two input segments are not equal, we
can think of them as being equal.

When are two segments said to be “equivalent” instead of equal? An equivalence

relation is weaker than the equality relation. Therefore, it is necessary to decide,

2Qur usage of the term equivalence is different from the one used in [Gil62] where various
notions of (deductive) equivalence are defined for finite-state memory machines. For instance, a
set of states for a deductive model is shown to have an equivalent set of states that is smaller.
Then, a homomorphism relation is used to show that the system has the same behavior for either
of the two sets of equivalent states.

3The type of equivalence we are seeking is not based on fuzzy logic or probability theory.
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given two input segments (s:,w/) ¢ PJN(E,I) and (s,,w) € PJN(F\'G,I), when
they can be considered to be equal, i.e., when they can be called equivalent. Two

input segments, (s,, (Zvat, dt)) and (s, (z,y, dt')), are equal iff €pq = €y, s; = s,

dt')), three

‘
val?

and dt = dt'. Given the two input segments (s, (Z,q1, dt)) and (.s:, (z
primitive types of equivalence relations are possible. They are based on length-
equivalence, input-equivalence, and state-equivalence. Each of these equivalence
definitions discards the inequality in one of the three aspects: length (or duration),

initial state, or input. Hence we have the following definition:

]

Definition 17 Two input segments (s,, (Tva1, dt)) and (s, (.4, dt')) are called:

1. length-equivalent iff

Lval = Tyqay
’
dt  dt
'
S, = 8_;

2. input-equivalent iff

3. state-equivalent iff

i
Lyal = Tyqals

dt = dt,
s, # s:.

that is, despite the presence of an inequality in each of the above equivalence
relations, the two input segments are believed to be equivalent. An equivalence

relation between two input segments violates exactly one of the three equalities
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relating to input, duration, and state, that are mandated by the equality relation.
Hence, given two input segments, either the length, the input, or the state can be
ignored in an equivalence relation. Let us call these abs-length, abs-input, and
abs-state for future use in Chapter 6. Any combination of these comprises one
form of assumption set-II. A more specific form of assumption set-II is discussed

in Section 5.4.4.
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5.4 Discrete-event Inductive Reasoner

In the previous sections, it has been convenient not to be concerned about truth
in my discussions. In studying the @; structure, everything was considered to be
true, which relieved us from considering truth as being negotiable. Not having
to ponder about the truth of a statement facilitates the manipulation of the the
iterative IOFO structure. Deciding about the equality of two input segments re-
quires no explicit comparison of their truth values as long as the equality relation
is satisfied. What happens if two input segments do not satisfy the equality rela-
tion, but some of their parts do? I already discussed cases where, for instance, two
input segments were equal in their inputs and durations, but not equal in their
state values. I pointed out that we must free ourselves from the rigidity of the
equality relation in order to tackle the qualification problem. I did not, however,
discuss what is necessary to warrant the use of the previously proposed equivalence

relations. We must be careful in ensuring the proper use of equivalence relations.

In this section, I discuss how NMR provides well-defined mechanisms supporting
the use of equivalence relations in place of the equality relation when applicable.
Specifically, I consider how the iterative IOFO specification E’; can be augmented
with an inference engine and a truth maintenance system to create a more general
and versatile IOFO structure. Ishall refer to this problem solver as a Discrete-event

Inductive Reasoner (DIR) (see Figure 5.2.)

The truth maintenance system of DIR carries out the tasks discussed in Chapter
4. Tt consists of a database (i.e., observed and predicted 10 segments) and an
inference engine responsible for maintaining consistency among its databases. DIR
also has its own inference engine which is distinct from the above inference engine.
One of the roles of the DIR’s inference engine is to predict (infer) unobserved

IO segments. It relies on equivalence relations (i.e., abstraction mechanisms and
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Figure 5.2, Discrete-event Inductive Reasoner
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consistency axioms to be developed in the section) to overcome the restrictions of
the iterative IOFO structure described in Section 5.2. The inference engine of DIR
also has the responsibility of matching any two 10 segments against each other as
well as partitioning an IO trajectory into IO segments. The TMS supports proper

use of those 10 segments that are supported by the equivalence relations.

The additional capabilities of this new structure are due to the equivalence
relations and the non-monotonic reasoning capabilities offered by the TMS. The
resultant structure is no longer restricted to the observed data — it can make

“sound” tentative predictions about IO segments.

I have already discussed in detail the iterative IOFO structure. I also discussed
the equivalence relations and their properties. What I have not done yet is to
show how these three basic elements (i.e., the iterative IOFO specification, the
equivalence relations, and a TMS) can work together to form the discrete-event

inductive reasoner.

It is useful to pose some questions about the DIR. Thus far, in various settings,
I have discussed primarily the why and what questions. I have argued for the
need of DIR. I also discussed, in general terms, what the tasks of DIR are. In
comparison, I have said little about how the DIR goes about predicting an output
segment for an input segment. However, before delving into any details about the
specifics of how DIR works, I shall give an overview of the fundamental properties

of the Discrete-event Inductive Reasoner.

In the previous chapter, I discussed a problem solver that had an inference
engine and an LTMS as its basic elements. The fundamental motivation for such
a problem solver was the lack of complete knowledge about the problems that
were to be solved by it. The inference engihe would make decisions where some

of them would be tentative. The maintenance of a consistent set of data was the
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responsibility of the TMS. The inference engine and the TMS, therefore, had to
communicate with each other such that their activities could complement each

other.

My earlier reference to the DIR as a problem solver was no accident! It is in fact
a problem solver. A truth maintenance system and an inference engine as depicted
in Figure 5.2 together can infer new input/output segments from observed and
predicted IO segments. Now, what kind of TMS can serve the purposes of DIR?
Each equivalence relation is essentially used to hypothesize about an unobserved
10 segment. Since it is more general to assign TRUE, FALSE, and UNKNOWN truth
values to IO segments, I have chosen a logic-based TMS. Figure 5.3 shows the basic
architecture of the Logic-based Discrete-event Inductive Reasoner. Hence, LDIR
relies on LTMS to maintain a consistent set of IO segments, some of which are

predicted.

Therefore, we can identify DIR as a problem solver where its inference engine is
the machinery of the iterative IOFO structure along with the equivalence relations.
The inference engine either finds output segments for a candidate input segment
that match the input segment of an 10 segment available in E, or it hypothesizes
an input/output segment for a candidate input segment that is not available in F;,
but that is consistent with other existing IO segments. Whenever a hypothesized
10 segment or observed IO segment becomes available, each is added to the exist-
ing propositions in the LTMS while maintaining consistency among all of them.
That is, each 10 segment pair has a truth value assigned to it, and the LTMS only

adds those IO segments that are consistent with what it already knows to be true.
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5.4.1 Representation of IO Segments

I begin with knowledge representation of 10 segments for the inference engine
and the LTMS. I illustrate by an example. A DIR is expected to compute output
segments for unobserved candidate input segments. Let us suppose the iterative

IOFO contains an 10 segment

(0 (zoat, d8)), (5, (Yoar, dt))) € F.

Then, the DIR receives a candidate input segment

(!, (2uat, ) & PIN(F, 1)

for which it is expected to compute the following IO segment based on the existing

IO segment and the state-equivalence relation.

((3:> (Zyat, dt)), (Sf’ (Yoat, dt)))

Starting at the lowest level, we need to decide about the language in which
knowledge (e.g., 10 segments) should be represented for the inference engine and
the LTMS. In my discussions of the problem solver, I said that the available data
to the inference engine need to be presented in the logic-based TMS as well. Of
course, the type of knowledge representation for the inference engine and the LTMS
need not be the same!

In the previous chapter, I argued for a logic-based TMS. Hence we would have to
encode 10 segments and other necessary data (e.g., justifications) in the language
of propositional logic. However, I do not use the language of propositional logic for
the representation of I0 segments in the iterative IOFO structure. The iterative
IOFO structure is basically a database containing the observed 10 segments along

with some functions allowing it to “match” two input segments from which a proper
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output is chosen. There is no need to use an expensive Theorem Prover, which
would require a logical language for knowledge representation and an inferencing
procedure such as resolution principle. One can, of course, use a Theorem Prover
if this should be necessary.

I already discussed how 10 segments of an iterative IOFO should be encoded.
Each input or output segment can be represented as a list. Then, I can represent
an IO segment as a nested list containing the list for the input segment and the
list for the output segment.

Next, I need to decide how an IO segment such as ((s;, (Tva1, dt)), (S,, (Yuval, dt))
is to be represented in logic. There are several choices depending on the level of
aggregation. In the least aggregated representation, the state value, input value,
and duration value of a segment are considered distinct non-logical symbols. We
can represent the initial state, s, the input, x4, and the duration, dt, of an input
segment as three separate non-logical symbols si, a, and dt respectively. With
this choice, I am claiming that there are objects in the universe of discourse that
correspond to them. Using these non-logical symbols together with the logical

symbol A, I can form a wff such as

siAaAdt

to represent an input segment. Having a representation for an input segment, I
can use the same representation for an output segment with the final state sf and

the output value b:

sf AbAdt

Another choice is to represent an entire input segment as one non-logical symbol.
That is, the k** input segment (s,, (Zya1, dt)), represented as in.seg.k, corresponds

to the k** input segment in the universe of discourse. Then, using the same rep-
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resentation scheme for an output segment, we can form wffs relating an input

segment to an output segment like:

in.seg.k = out.seg.k

or

in.seg.k A\ out.seg.k.

The most aggregated representation corresponds to denoting a pair of I/O seg-
ments as a single non-logical symbol having a corresponding counterpart in the uni-
verse of discourse. For instance, the k™ IO segment ((s,, (Zvat, dt)), (s, (Yvar, dt)))

can be represented as

io.seg.k

In this form, logical symbols are not used to indicate, for instance, that an
output segment and an input segment are related in a specific way. There is
no explicit relationship between input and output segments. If both non-logical
symbols in in.seg.kAout.seg.k are assigned the truth value TRUE (or FALSE), then
there is no difference between io.seg.K and in.seg.k A out.seg.k. However, the
assignment of different truth values to the input and output segments makes the
conjunction subject to more interpretations (i.e., truth assignments). Whereas the
input and output segments can be used independently to reason about the truth
of their conjunction in the less aggregated representation, this is not possible in
the more aggregated representation.

Each level of aggregation has its own semantics. For instance, whereas the least
aggregated representation allows reasoning with each of the elements of a segment,

the most aggregated representation allows reasoning about an IO segment as a
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whole. The least aggregated form might appear to be the best choice since reason-
ing can be focused on elements of each 10 segment. With this choice, however, we
are forced to delve into ontological issues about state, input value, and duration
of a segment as well as the relationship between the input and output segments.
In considering the relationship between the input and output segments, we have
to use either a conjunction or an implication primitive to relate an input segment
to an output segment. Each enforces a particular semantics on the relationship
between them. The truth assignments to these two sentences are completely dif-
ferent. Consequently, it is important to choose one that reflects the intended truth
about an IO segment pair.

In order to come to a conclusion about this issue, I can ask which representation
is the simplest scheme that allows prediction as well as revocation of input/output
segments. Clearly, the most aggregated representation lends itself to more efficient
reasoning. I am faced with the question of whether or not the most highly aggre-
gated representation of the IO segment can support the prediction and revision
of IO segments. Given the degree of reasoning we are interested in, the answer
is affirmative. Thus, I use the most aggregated representation io.seg.k in the

remainder of this work.

5.4.2 Authorizing the Use of Equivalence Relations

Earlier in this chapter, I showed different types of equivalence relations between
two input segments. I now need to discuss what is required to authorize their use.
In the description of the equivalence relations, I referred to the term “belief.” Also
I have been using the term “fact.” These two terms are generally used without
much attention to their semantics. They are related, but are two distinct concepts,
especially in the present setting.

I use the term fact in the restricted sense that its truth value is fixed and
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cannot be subjected to revision. The term belief, however, can change its truth
value. Another difference between these is that, whereas a belief can be converted
to a fact, the converse is not true. Every piece of data is either a fact or a belief,
exclusively. In my earlier reference to a database, as used in relation to the DIR, I
said that it consists of facts and beliefs. This type of database is needed for systems
expected to operate with partial knowledge. I use the term partial knowledge to

refer to a database consisting of facts and beliefs.

A candidate input segment is not observed: thus, it should be treated as a belief
rather than as a fact. What makes a predicted 10 segment a belief and not a fact?
I said that, if an IO segment is not observed, it is not a fact. Then, since each IO

segment is either a fact or a belief, a predicted 10 segment has to be a belief.

The concept of belief is central in using equivalence relations. It is important
to understand the interplay between belief and equivalence relations. I proceed by
looking at how hypothesized 10 segments come to be actually identified as beliefs.
We know that one or more of the equivalence relations must be used to hypothesize
an 10 segment. We also know that the equivalence relations were defined in terms

of input segments rather than IO segments.

I start with discussing how an equivalence relation can be justified. Even though
I argued already in the previous section for not assigning truth values to input

segments, we want to think of them for the moment as having truth values.

Let us think of an entity as an input segment, an output segment, an 10 segment,
or an equivalence relation. An entity that represents a belief can be assigned any of
the three truth values TRUE, FALSE, or UNKNOWN, just as a fact can be assigned
these truth values. If a belief is said to be true, then it is assigned the truth
value TRUE. Likewise, if it is said to be false, then its assigned truth value is
FALSE. If a belief’s truth value is neither TRUE nor FALSE, then its assigned truth

value is UNKNOWN. Conjunctions of beliefs and facts are also beliefs since the
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Figure 5.4, Abstraction of two concrete states into their respective abstracted states

truth assignment of the conjunction depends on the truth values assigned to the

individual beliefs.

'
val)

In my earlier example, we had (s;, (Zvar, dt)) and (s, (2, dt')), Where s, # s,,
T,y = Zyal, and dt’ = dt. Consequently, we need to assume state-equivalence in
order to consider these two segments as being equivalent. How can this formally
be accomplished? One approach is to turn the inequality s: # s, to an equality
between their respective abstracted states s, and §_: Now, I define the state-
equivalence between s; and s, as an assumption. Then, we can use s, # s, (fact)
along with the state-equivalence assumption (belief) to construct two abstract

states s, and ,3: from the concrete states s; and s: (cf. Figure 5.4), where

-~

|t
il
[

Hence the use of the state-equivalence relation is substantiated by treating the
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inequality of two states as a fact while using the state-equivalence assumption be-
tween them as a belief. Having two abstracted states §: = s, as well as two concrete

!

input segments (s;, (a1, dt)) # (s:, (z.41,dt")), then the abstract candidate input

!

segment (s, (.4, dt)) and the abstract observed input segment (s,, (Zvat, dt)) are

val?

equal (cf. Figure 5.5). That is

! l

(§;7 (xval, dt)) = (§-,-’ (x'ual’ dtl))'

Now, we can simply use the state-equivalence relation knowing that in fact we
are using s, # s:. together with the state-equivalence assumption. Thus, we may
say that the two concrete input segments are equivalent. I use the term equivalent
in the sense discussed in Section 5.3.

In the example I have been discussing, state-equivalence is supported by ab-

straction of states. In general, we have:

! 1 L

(8;5 (Tvat, @) = (5, (Tyepy dt ), s # s: or dt #dt' or Ty # T,y
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(Si in dt)
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In = 1in
S, =S; gt = df state
=i =i equivalence
S, # 8!

Figure 5.5, Abstraction of two input segments into their respective abstracted input
segments

5.4.3 Predicting IO Segments

Although the concrete candidate input segment (s, (z,,,dt)) € F., we have
seen its abstraction can be equal to the abstraction of an observed input segment.
The equality between these two abstractions can be used to construct a new un-
observed 10 segment (cf. Figure 5.6) with the concrete candidate input segment
and the output segment of the observed IO segment. That is, we can predict

(construct)

’

(s (@aatr @), (5,5 (3at, d2))).

Here, I use the term predict to indicate that a predicted 10 segment has no truth
value assigned to it yet. Once the 10 segment has been assigned a truth value, it
is referred to as a hypothesized 10 segment if its truth value is hypothesized, or an

asserted O segment if the segment has actually been observed. Therefore, an 10



137

(initial state input segment) (final state output segment)
—
I
<state > |
I
\/
//'——“\ /”——_h\\
{80 Gevar @) —— = Gp Gy d) D
—_——— - ~ e e —

Figure 5.6, Constructing an unobserved 10 segment

segment can be predicted, hypothesized, or asserted.

The supporting factors for a new yet unobserved IO segment are the observed
IO segment ((s;, (Zvat, dt)), (S,,(Yuai, dt))), the state-equivalence assumption, and
s, = g' In effect, we use the observed 10 segment, the candidate input segment,
and the state-equivalence relation to ignore (or abstract) the states of the input
segments, in order to pair the candidate input segment with the output segment of
the concrete observed input segment that is equivalent to it. A similar discussion
can be given for constructing unobserved IO segments based on other equivalence

relations.

Earlier, I supposed truth assignments for input segments in order to discuss
under what conditions two unequal input segments can be considered equivalent,
and consequently, to construct an unobserved 10 segment. The question is whether

the IO segments’ truth assignment alone is sufficient or not. The answer primarily
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depends on what is communicated to the LTMS. There is no need to discuss the
truth assignments of input segments as long as the hypothesized 10 segments
reflect their truth values. Each IO segment pair has a list representation for the

E;; and a logical representation for the LTMS.

We have already decided that the LTMS represents 10 segments and not their
parts. Thus, we only need to be concerned about the truth assignment of the 10
segments. Each IO segment pair represents either a fact or a belief. Those 10
segments that have been observed are assigned the truth value TRUE. In this way,
each 10 segment is known to the LTMS as a datum with its truth value TRUE.
Furthermore, it is declared as a fact. I don’t consider any negative facts, i.e., IO
segments that can be assigned once and for all the truth value FALSE. This is in
agreement with the data representation chosen in the iterative IOFO structure. It

only contains the observed 10 segments (positive facts).

What about those IO segments that are to be hypothesized? A hypothesized
10 segment can have any of the truth values TRUE, FALSE, and UNKNOWN. Their
truth values (beliefs) must, however, be justified. For instance, in the above ex-
ample, if the two input segments satisfy T, = a:;al and s, # s:, and if we use
the state-equivalence relation to hypothesize (s, (yvai, dt)), we would declare the
hypothesized IO segment as an assumption to the LTMS. Note that I am using
the term “assumption” here differently from its use in the Truth Maintenance Sys-
tem. It is therefore better to call a hypothesized 10 segment a hypothesis, as we
already referred to the state-equivalence as an assumption. Every hypothesized 10
segment must have an assigned truth value. The truth value of any hypothesized
IO segment is TRUE at first, since the intention of hypothesizing an IO segment is

also to believe in it!

It should be noted that, although the original truth value of a hypothesized 10

segment is always TRUE, the semantics of this assignment are completely different
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from those of the truth value of an observed IO segment pair. A hypothesized
IO segment’s truth value is substantiated by a state-equivalence assumption, for
example. That is, the original truth value of a hypothesized IO segment (TRUE) is
subject to revision if there is knowledge to the contrary. Hence, while an asserted
10 segment’s truth value can only be TRUE, the truth value of a hypothesized 10
segment can be TRUE, FALSE, or UNKNOWN. Furthermore, when the assigned truth
value of a candidate input segment is revised, any previous (tentative) decisions
derived based on it become subject to revision as well.

It would, of course, be possible to communicate more detailed information to
the LTMS, such as the truth value of an individual input segment, or even the
facts that z,q = ., and dt = dt' whereas s, # s:. Such knowledge might be
useful in more elaborate types of reasoning than what I am presently discussing.
However in the present DIR implementation, each 10 segment is communicated to
the LTMS as a single entity representing either a fact or a belief having a single

truth value assigned to it.

5.4.3.1 Consistency Axioms

Thus far, we have been predicting 10 segments based on observed IO segments
only. However, it is also possible to predict 10 segments based on previously
hypothesized 10 segments. As I have indicated, the DIR is able to add to its
database new IO segments incrementally. These new IO segments can either reflect
new observations or be the product of previously made hypotheses.

A major role of the DIR is to assure the consistency among all of its IO segments.
All observed and hypothesized 10 segments must be consistent since the LTMS
maintains a single database. What does the inference engine do? Essentially it

has to compare a candidate (predicted or observed) 10 segment with the ezisting
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(hypothesized or asserted) IO segments and determine whether the candidate 10
segment should be added to the database, or not; and if so, whether it should
be treated as a fact (asserted) or a hypothesis (hypothesized). To this end, the
inference engine needs to interact with the LTMS, since the latter maintains all
the previously asserted and hypothesized 10 segments. Each candidate IO segment
represents either an observation or a prediction. Likewise, each existing IO segment

is either asserted or hypothesized (cf. Figure 5.7.)

In order to ensure that the databases of the inference engine and of the LTMS
are never contaminated by inconsistent IO segments, every candidate IO segment
has to be examined against all existing IO segments for consistency before it can
be added to the databases. To check whether a candidate IO segment is consistent
with a current entry in the databases, we need Consistency Azioms. The role of

these axioms is to enforce both causality and uniqueness of all IO segments.

Recall that I/"'; is a function. We can also perceive the collection of hypothesized
10 segments as another set of functions. In the following section, I give a precise
description of an overall structure containing all the observed and hypothesized 10

segments while enforcing their consistency.

How do we ensure consistency between a candidate IO segment and an existing
10 segment? On the one hand, observed IO trajectories are facts, and thus, can-
not have their truth values revised. On the other hand, hypothesized IO segments
are beliefs, and thus, their truth values can be revised under certain conditions.
The inference engine has to determine whether the candidate IO segment is to be
communicated to the LTMS as an assertion or as a hypothesis. Correspondingly, it
also has to determine the type of the existing IO segment, which is either asserted
or hypothesized. Once the inference engine knows the types of IO segments being

compared, it needs to consider one of the cases shown in Figure 5.7.
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CASE | Candidate 10 segment | Ezxisting 10 segment
I observed assertion
n observed hypothesis
I predicted assertion
v predicted hypothesis

Figure 5.7, Types of 10 segments to be compared

A consistent candidate IO segment with respect to all existing 10 segments can

become:
e an assertion, or
e a hypothesis, or

e a redundant assertion or hypothesis,

and an inconsistent candidate 10 segment is either:

e rejected, or

e undecided

with respect to all existing IO segments. An undecided candidate 10 segment in-
dicates that the present knowledge of the DIR is insufficient to determine whether
one or both of the candidate and the existing 10 segments should be rejected.



142

I have not yet discussed under what conditions two 10 segments are considered
consistent. These conditions lead to the consistency axioms. I discuss only the
details of consistency criteria (axioms) for Case III where the existing 10 segment
is “observed” and the candidate 10 segment is “predicted”. The basic ideas are
equally applicable to the other cases. Let us denote these IO segments as:

1

IOcandidate = ((S:, (mval, dtl))’ (3;’ (y;al') dt’)))
IOewisting - ((3,‘, (x‘ualv dt))’ (sf’ (y‘uala dt)))

We need to determine what conditions are necessary to declare two 10 segments
consistent. If only the initial states or the input events of two 10 segments are
equal, then they do not need to be examined for consistency — the two IO segments
are consistent with respect to each other. That is, given two IO segments, if either

of the following two conditions holds, they are consistent.
s, # s, or

m'lual # Tual.
Consistency here simply means that the two compared IO segments represent
different yet compatible situations that can coexist in the databases.

However, if both the initial states and input events of two IO segments are
equal, then they must be examined for consistency. Two input segments with
identical initial states and input events can differ, depending on their durations.
In particular, three possibilities can occur given the durations of the candidate 10

segment I Ocandidate and the existing 10 segment 1O.zisting. We have:

(a) E(Iocandidate) = Z(Ioezisting)
(b) K(Iocandidate) < K(Ioem’sting)
(C) e(IOcand'idate) > f(IOem’stiny)
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In all three cases, s: = 5, and ,,; = T,q. In case (a), if both output events
are nil, then the two IO segments are identical, and the predicted IO segment is
redundant. This, of course, would never happen if the 10 segment were predicted
— there would not have been any reason for predicting it.

However, if their output events do not match, i.e.,

dt = dt
y;al 76 Yval

the two IO segments are inconsistent. In this case, the predicted candidate 10
segment must be rejected. This means it should not be added to the databases.
Of course, it could also be asserted, provided its truth value is FALSE. (Note that
even if we decide to include it in the databases, it must not be made a hypothesis
since the durations of both IO segments are equal.)

In case (b), the IO segments are consistent when their output events are nil.

In other words, when axiom (5.1) is satisfied, the two 10 segments are consistent.

That is,
dt’ < dt
y-:;al = Yot = ¢ (5'1)

If the candidate 10 segment’s output event is ni/ and the existing IO segment’s

output event is not nil, the predicted IO segment is also consistent. This leads to
axiom (5.2)*
dt' < dt
y;al = ¢ a'nd Yual 7é ¢ (52)

When either of the above two axioms is satisfied, the predicted IO segment is

hypothesized with truth value TRUE.

4Note that even though axioms (5.1) and (5.2) can be combined to dt' < dt and y;a, = ¢, it
is better not to hide the distinction between them.
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The remaining two axioms for case (b), (5.3) & (5.4), show under what con-
ditions two IO segments are inconsistent. When either of these two axioms is

satisfied, DIR rejects the candidate IO segment.

dt' < dt

y’t’ml 7& ¢ and Yual = ¢, (53)
dt' < dt

y;al 7’4 ¢ and Yval # ¢ (54)

In case (c), the IO segments are also consistent when the output events are nil.

The axiom for this situation is similar to (5.1); we have:

dt > dt
y;al = Yval = & (5.5)
If the candidate IO segment’s output event is not nil and the existing 10 seg-

ment’s output event is nil, they are consistent as well. This situation is the reverse

of axiom (5.2).

dt' > dt
y;a.l # ¢ and Yoal = @. (5.6)
Once again, the predicted IO segment will become a hypothesis. Any of the
remaining two axioms, (5.7) & (5.8) — similar to (5.3) & (5.4) — when satisfied,
indicates to the DIR that the predicted IO segment and the asserted 10 segment
are inconsistent. As usual, if the predicted 10 segment is inconsistent with the

observed 10 segment, it is rejected.
dt > dt

y;al = ¢ and Yuval #" ¢, (57)

dt' > dt
y;al # ¢ and Yval ?é ¢ (58)
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Hence for Case I1I, we say that two 10 segments are compatible when one of the
axioms (5.1), (5.2), (5.5), or (5.6) is satisfied.

In determining the consistency between two 10 segments, I did not examine
the equality (or inequality) of the final states of the predicted and observed 10
segments. What are the implications of not doing so? Of all the situations I con-
sidered, we need to be concerned with those four of the above axioms that result

in declaring a predicted IO segment as consistent. I discuss only one of them.

Given (5.1) with inclusion of the final states of the IO segments, we are con-

fronted with either of the following two situations:

dt' < dt
y':zal = Yuval = ¢
5; =s, (5.1.a)
dt' < dt
y;al = Yval = @
s, #s, (5.1.5)

We may wish to declare a predicted IO segment as consistent only when axiom
(5.1.a) is satisfied. In the case of axiom (5.1.b) being satisfied, we may decide to de-
clare the predicted IO segment as inconsistent. Such a decision would be supported
by taking the view that, while both outputs remain nil, their corresponding final
states should remain unchanged. What this requires is that an observed output
of a system must be a direct reflection of its past — different outputs correspond
to different time histories. If we impose this restriction, we are claiming that only
certain types of outputs are observed, namely those that are strongly related to

states. Imposing such a demand on output trajectories is rather strong. I have
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chosen to take the opposite view — (5.1) should not be replaced by (5.1.a) and
(5.1.5). Of course, it would be a simple matter to replace (5.1) by the more re-
strictive axioms (5.1.a) and (5.1.b). Similar explanations can be given for axioms

(5.2), (5.5), and (5.6).

Now, we say that two IO segments are consistent when (1) they are equal, (2)
either the initial states or the input events of their complete input segments are
unequal, or (3) they are compatible. Consistency checking based on (1) and (2)
are the same for all four cases (cf. Figure 5.7). Consistency checking among these
four cases differs only in (3), i.e., in the interpretation of compatibility between
10 segments. For Case III, we showed explicitly under what conditions two 10

segments are said to be compatible with each other.

The consistency of a candidate 10 segment against an existing IO segment de-
pends on the types of the candidate and the existing IO segments. My intention at
this point is to describe what might happen to the candidate/existing IO segments
for each of the four cases. Due to previous exposition of what consistency between
IO segments entails in general, I am now able to do so without going into any
details of what conditions need to be satisfied precisely in each of the four cases in

order to declare two 10 segments consistent with each other.

Let us first assume that the candidate IO segment is observed. Then, there are
two possibilities (Case 1 & Case II) depending on whether an existing 1O segment
is observed (an assertion) or hypothesized (a hypothesis).

In Case I, we have a contradiction between observed 10 segments if they are
inconsistent. When this happens, additional knowledge is required to decide how
to resolve the inconsistency. An IO segment that is undecided (i.e., cannot be

determined given the available IO segments) is denoted by a “x”. If two observed
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IO segments are found to be inconsistent with each other, then both will be marked
with a “4”. Note that the entire database needs to be searched to check whether

other previously observed 10 segments need also to be marked with a “x”.

Observed (asserted) IO segments are not dependent on any assumptions. If
no inconsistency is discovered between the candidate IO segment and any of the
previously observed 10 segments, then the candidate 10 segment is either redun-
dant (consistent with one or several previously observed 10 segments) or has been
observed for the very first time. In the former case, the redundant 10 segment
is tgnored. In the latter case, the newly observed 10 segment is asserted. Note
that an observed IO segment is always consistent with itself; that is, the newly
observed IO segment can be added to the databases as asserted if no compatible

10 segment has been found.

Inconsistencies between a newly observed 10 segment and the body of previ-
ously asserted IO segments takes precedence over all other considerations. How-
ever, since the database is consistent at all times, it is possible to search for equality
and inconsistencies simultaneously. If a previous entry is found that is equal to
the candidate, then the candidate can be discarded as a duplicate, and the search
can stop at once. If, on the other hand, an inconsistency has been discovered, it is
important to continue the search through the database for other potential incon-
sistencies. Only if neither an equality nor an inconsistency has been found in the
entire database, should the database be searched in a second pass for compatible

entries.

The Case I situation takes precedence over Case II. Thus, only after the entire
database has been searched twice for assertions, and the observed candidate 10
segment has been asserted (i.e., has been found to be consistent and not redun-
dant with the body of previous experiences) should the database be searched for

hypotheses.
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When the database is searched for hypotheses, the candidate 10 segment has
already been communicated to the LTMS as a fact with truth value TRUE irrespec-

tive of whether it is consistent with any or all of the previously stored hypotheses.

If a hypothesis is found that is equal to the newly asserted 10 segment, then the
existing IO segment is converted from a belief to a fact, and since it is redundant

with the newly asserted IO segment, one of them can be deleted from the databases.

If a previously TRUE hypothesis is found to be inconsistent with the newly as-
serted 10 segment, its truth value changes from TRUE to FALSE, and since FALSE hy-
potheses are not overly useful, I have chosen to eliminate them from the databases

for the benefit of compactness of the LTMS.

Previously TRUE hypotheses that are found to be compatible with the new as-

sertion will remain unchanged, i.e., will remain TRUE hypotheses.

Let us now look at the case where the candidate 10 segment represents a pre-
diction. Since assertions are always stronger than hypotheses, the Cases III and
IV are a little simpler to handle than the Cases 1 and 1I. None of the decisions
made relative to a candidate prediction will ever make the database inconsistent.
Consequently, it suffices to handle the Cases III and IV in a single pass through
the database, and I can thus focus my discussion on a comparison of individual

pairs.

Note that, in Cases III and IV, the inference engine is not supposed to hypoth-
esize IO segments that have either been previously observed or predicted; there
would be no reason to do so! Consequently, if the candidate is found to be equal
to an existing hypothesized IO segment, the already existing hypothesized 10 seg-
ment is confirmed; and if it is equal to an existing observation, then it is discarded

(left unchanged). Obviously, in either case, the search can stop immediately.

Let’s discuss Case III now. If an existing IO segment is an assertion and is in-
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consistent with the predicted candidate IO segment, the inference engine has two
choices: (1) communicate the predicted 10 segment to the LTMS as a fact with
truth value FALSE, or (2) simply reject it. I have chosen to throw away inconsis-
tent predictions since there are a great many of them. If an existing IO segment
is compatible (yet not equal) with the predicted candidate IO segment, then the
predicted 10 segment is communicated to the LTMS as a hypothesis (belief) with

truth value TRUE.

In Case IV, two choices are possible for the inference engine as well. (1) If they
are compatible, then the predicted candidate IO segment is communicated to the
LTMS as a hypothesis with a truth value of TRUE, and the existing hypothesized
10 segment remains unchanged. (2) If they are inconsistent, then further knowl-
edge and reasoning are once again necessary. In this situation, the existing and
the predicted 10 segment cannot both be true, but if one of them is true, we don’t
know which one it is. Finally, it is also possible that both are false, and this is the
simplest choice the inference engine can make. In our implementation of the DIR

(discussed in Chapter 6), I have chosen to let the user resolve the contradiction.

Figure 5.8 summarizes what effects the consistency axioms may have on the 10
segments in all four cases shown in Figure 5.7. In the left column of Figure 5.8, a

Candidate 10 Segment may be:

asserted, hypothesized, rejected, ignored x}.
p

Likewise, in the right column of Figure 5.8, an Existing IO Segment may be:

{confirmed, rejected, unchanged, x}.

Note that the elements in each of the above sets are mutually exclusive. For in-
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stance, when an IO segment cannot be asserted, hypothesized, confirmed, ignored,

or left unchanged due to an inconsistency situation, it is denoted as «.

It should now be apparent why the consistency axioms are paramount to the
proper functioning of the truth maintenance system. The DIR uses the consistency
axioms in order to update the databases with newly observed or predicted 10
segments while maintaining consistency among all the prior IO segments, both
asserted and hypothesized. The consistency axioms serve two purposes. First, they
ensure consistent databases. Second, their use prevents the databases from getting
too large by ignoring candidate IO segments that are redundant with previously

stored 10 segments.

So far, I have discussed how the DIR can predict IO segments. Does the DIR
always predict a unique IO segment? No. Due to the abstraction, multiple IO
segments may be predicted for a candidate input segment. For instance, if the
state-equivalence assumption is used, it might be that there are multiple observed
IO segments that match the duration and input value of the candidate input seg-

ment, thus resulting in multiple predicted IO segments.

How do we handle this situation? Non-monotonic reasoning basically offers us
three possibilities. We could decide to make multiple predictions and pursue all of
them further, as e.g. QSim would [Kui86]; or we could use a measure of likelihood
to determine which prediction looks most promising, as e.g. SAPS would [Cel91];
or finally, we might make further assumptions until only one prediction is left. In
Section 5.4.5, I shall discuss how DIR reacts in this situation. It shall be shown
that the user has a choice between options one and three, and how precisely option

three is implemented.



Candidate IO Segment

Observed
{asserted, ignored, *}

Observed
{asserted }

Predicted
{ hypothesized, rejected }

Predicted
{hypothesized, *}
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Existing IO Segment

Assertion
{unchanged, %}

Hypothesis

{conﬁrmed, rejected, unchanged}

Assertion
{unchanged}

Hypothesis
{unchanged, *}

Figure 5.8, How candidate and existing IO segments may fare w.r.t. to the consis-

tency axioms.
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5.4.4 Partitioning Input Trajectories

I still need to describe how an input trajectory containing multiple events is
partitioned into input segments. This is necessary since we only know how to

reason with IO segments, not with trajectories.

Note that for now, I shall concentrate on the input trajectories alone, since
we wish to study the process of prediction, i.e., the situation where no output
trajectory is available. The case of observations of input/output behavior of a
system for the purpose of augmenting the databases is different. In that case, we
would need to segment the input and output trajectories simultaneously, since the
duration of an input segment would then be influenced by events occurring in the

output trajectory as well.

Let us call a candidate input segment an input segment of either type 1 or 2
as defined in Section 5.2. Given an input trajectory, the input event of the first
candidate input segment is the first input event of the input trajectory. Its duration
is measured as the duration between the first and second input events of the input
trajectory. Likewise, the input event of the second candidate input segment is
the second input event of the input trajectory. Obviously, for any input segment
w, £(w) > 0. T shall suppose that, for each input segment, w has a duration of
either unit length or a multiple thereof, where unit length is determined based on

assumption set-I (cf. Sections 3.2 and 5.2).

I use the term partition to refer to the process of dividing an input trajectory
into candidate input segments, Of course, an input trajectory as well as any
Complete input segment has associated with it an initial state. However for now,
our discussion is based on input segments such as w (see Section 5.2), and not on
Complete input segments. An input trajectory without initial state is represented

as:
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indraji: ((Toary, dty), (Toat2s dt,),s -« (Toain, dt,)).

I use an example instead of the generic input trajectory in_traj_s to make the

discussion easier. Let

intraj1: ((c, 1),(a, 5),(b, 2)),

be an exemplary trajectory, where 241 = ¢, dt, = 1, Zyq2 = a, dt, = 5, and so
on. This input trajectory can be partitioned into the following candidate input

segments

in_seg-1: (¢, 1)
in-seg2: (a, 5)
in-seg-3: (b, 2).

Let us look at one such candidate input segment. We have no reason to further
partition the candidate input segment if there exists an IO segment (either asserted
or hypothesized), the input segment of which matches the candidate input segment.
However, if neither an asserted nor a hypothesized matching 10 segment can be
found in the database, then the candidate input segment (of length greater than
unit length) needs to be further partitioned.

The partitioning of a candidate input segment into two smaller input segments
allows the composition of the original candidate input segment from these smaller
input segments. The first smaller input segment is referred to as left input segment
and the second input segment as right input segment (cf. Section 2.1.4). That

is, given (Zya1, dt), its left and right input segments become (Zyares:, di and

left)

(:If"ual,'righta dt,.,-yht) where Tyalleft = Tyaly LTwvalright = nZl, and dt = dt + dt

left right*®

When the input segment cannot be partitioned any further, it becomes the left

input segment. An input segment is called smaller w.r.t. another input segment
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when its duration is less than that of the other input segment. The rationale be-
hind partitioning a candidate input segment into left and right input segments is
that either (1) there exist (asserted or hypothesized) IO segments with their input
segments matching the left input segment, or (2) compatible I0 segments can be
predicted based on the left input segment. Note that I am also using the term
partition to refer to subdividing a candidate input segment with duration greater

than unit length into shorter input segments.

When the duration of a candidate input segment is greater than unit length, it
may be partitioned in several ways depending on the available IO segments. Given
a candidate input segment, we partition it based on three choices — longest,

exact, and all, indicating the desired duration for any left input segment.

Imagine we have the candidate input segment in_seg 2 : (a, 5) with z,u = a
and dt = 5. I use this candidate input segment in discussing two of the above three
choices. When the choice is longest, the candidate input segment’s duration is
reduced by a minimum number of unit lengths such that it matches either an

asserted or a hypothesized IO segment (cf. Section 5.4.3.).

For instance, given in_seg_2 : (a, 5) and provided that there are no matching

10 segments with a duration of 5 unit lengths, the candidate input segment can

be partitioned into left and right input segments where in.seg.2,_,, : (a, 4) and

in_seg2 : (nel, 1), respectively. If, for (a, 4), either a matching IO segment

right

exists with its input segment equal to (a, 4), or an 10 segment can be hypothesized
based on a previous assertion or hypothesis of shorter duration, then (a, 4) becomes
the “longest” input segment. If neither is possible, then (a, 5) is partitioned such
that its next longest left input segment and its corresponding right input segment
are (in-seg2,_, : (a, 3)) and (in-seg-2_, .. : (nil, 2)), respectively. Again it might

left right

be that (a, 3) is the longest input segment. If not, the same process is carried out



155

until the “next longest” input segment leads to a matching IO segment, or until

the duration of the left input segment is unit length.

Of course, it can happen that the “longest” IO segment actually has its duration
equal to one of the available IO segments. That is, when the choice is longest,
the goal is to attempt to find an IO segment with the maximum duration possible.
The DIR will try to find an 10 segment of the same length as the candidate input
segment; if none can be found, then an IO segment of shorter duration will be
acceptable also. Once a left input segment leads to a consistently predicted 10
segment, its right input segment becomes the new candidate input segment. The
iteration process stops at the latest when the last left input segment is of unit
length duration and when no IO segment can be predicted for a left input segment

with its duration equal to unit length.

The partitioning of a candidate input segment is not necessarily unique. It is
possible that a left input segment with shorter duration (in comparison to the
one with the longest duration) may also lead to a consistent I0 segment. In
particular, we may want a candidate input segment to be partitioned such that
its left input segment has a length equal to one of the available IO segments. Of
course, there may exist several (or many) IO segments with durations of unit length
and greater. I use the term ezact to denote our preference to choose the left input
segment such that its duration is equal to the duration of one of the available 10
segments. Among those, we shall select the one with largest duration. That is,
the choice exact not only requires that the duration of the left input segment of
a partitioned candidate input segment be equal to an available I0 segment, but
among those 10 segments that satisfy this condition, the one chosen will be one of
maximum duration. In other words, the choice exact implies that no hypothesized

IO segment for a left input segment can have its duration greater than any of the
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available IO segments.

For example, suppose the above in_seg-2 is partitioned into in_seg2,,, : (@, 3)

and in_seg2 : (nel, 2), and there exists an IO segment such that its input

right
segment forms a perfect match or an 10 segment can at least be consistently hy-
pothesized for (a, 3) based on an IO segment with a duration of 3 unit lengths. In
either case, the duration of the left input segments is equal to that of the exiting
IO segment, and the exact specification is satisfied. If no such IO segment can be

found, the candidate input segment will have to be partitioned differently, namely

with its left input segment being of shorter duration than 3 unit lengths.

Finally, an input segment with length greater than unit length can be parti-
tioned in all possible forms. In this case, the DIR may provide multiple predic-
tions, leading to the branch-out problem that is so well known from qualitative
physics [Bob84]. I won’t provide the details of this selection since it represents a

straightforward extension of the previous two choices.

I emphasize that it is not always possible for every candidate input segment to
be partitioned such that the “longest” (“exact”) left input segment can lead to a
consistent IO segment. If this happens, the “next” longest or exact input segment
for a candidate input segment is computed. Also, partitioning of a candidate input
segment is recursive. That is, it is possible that once the longest (exact) left input
segment is determined, the right input segment’s duration is greater than unit

length, which in turn may be partitioned accordingly.

Finally, I caution the reader that I have not been explicit about the role of
initial states in partitioning of an input trajectory or a candidate input segment.
Whenever a candidate input segment or a left input segment leads to a consistent

IO segment, its final state becomes the initial state of the subsequent left input
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segment.

All three choices in partitioning an input trajectory are different variations
for abs-length. In particular, depending on the available observed 10 segments
and the assumption set asn-set, only a subset of all possible partitioned input
segments eventually can result in predicted IO segments.

Earlier in this chapter, I presented different types of abstractions on a seg-
ment’s length, input event, and state. Now with these three choices on the type
of abs-length, I can succinctly specify assumption set-II. It has two elements:
elm-1 € {longest,exact,all} and elm-2 € {abs-input, abs-state} (cf. Sec-
tion 5.3 for the elements of elm-2). Therefore, each assumption specifies the type
of abs-length from elm-1, and whether input event or initial state should be
abstracted if necessary. I use the qualifier necessary in the previous sentence to in-
dicate that input (or state) abstraction should be used only if abstraction on length
alone does not lead to any hypothesized I0 segment. As an example, (longest,

abs-input) would be a legitimate choice for the assumption set-II.

5.4.5 Predicting Output Trajectories

I still need to describe how the DIR generates one or more output trajectories
for an input trajectory. Here I shall only provide a top-level description of how
this process works, while leaving the details for the following chapter.

Given an input trajectory, an initial state, a choice of assumption set-II, and
some available (asserted and hypothesized) 10 segments, the task of the DIR is to
predict at least one output trajectory for the given input trajectory. As mentioned
previously (Section 5.4.3.1), it is possible that multiple IO segments can be hypoth-
esized for a single input segment. When this is the case and if elm-1: abs-all,
then all of these possibilities are explored to construct multiple output trajecto-

ries. This corresponds to the way QSim [Kui86] predicts the future. However, when
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elm-1 € {longest, exact}, then only one among the multiple possibilities will be
pursued at any one time. This resembles the way in which SAPS [Cel91] predicts
the future. However, rather than relying on an assessment of the likelihood of a
particular prediction (the statistical approach), DIR relies on two assumption sets

in selecting the prediction to be pursued (the artificial intelligence approach).

Note that assumption sets are never exhaustive. It is possible (and it may actu-
ally happen quite often), that the chosen assumptions do not lead to a single pre-
diction. For example, if the chosen assumption set-1Iis (longest, abs-input), it
may well happen that, even without input abstraction, two different longest input
segments of equal length result. In this situation, our implementation of the DIR
will select one at random. SAPS has the same problem. If the two most likely
predictions have the same value of likelihood, SAPS will pick randomly either of
the two.

The inference engine begins by finding the candidate input segment and forms
a Complete candidate input segment using the given initial state. Then, it tries
to find a match for the Complete candidate input segment in the database of
previously asserted 10 segments. If it succeeds, it extracts the final state of the
newly found IO segment and uses it as the initial state for a new input trajectory
with the previous candidate input segment chopped off from the previous input
trajectory. Now, another candidate input segment is computed and the same

process is repeated if applicable.

As I have discussed, it is also possible that there may not exist an observed 10
segment that matches the Complete candidate input segment. In this case, the
DIR examines the hypothesized 10 segments for a match. If it succeeds, it follows
the steps described in the above paragraph with the exception that the match is
with a hypothesized 10 segment instead of an asserted 10 segment. Evidently, it
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makes sense to give preference to asserted IO segments over hypothesized ones.

If the DIR cannot find a match for the candidate input segment from either
the asserted or the hypothesized 10 segments, it then attempts to hypothesize an
I0 segment on the basis of compatible, yet not equal, asserted or hypothesized
IO segments, and communicates this hypothesis with its assigned truth value to
the LTMS in accordance with the assumption set used. As indicated earlier, when
length alone suffices to hypothesize an IO segment, then the other part of the as-
sumption set-II (i.e., abstraction on abs-input or abs-state) is not used. Once
again, given the hypothesized 10 segment, a new input trajectory is constructed.
The initial state for the new input trajectory is the final state of the hypothesized
IO segment. This process iterates using the new input trajectory and the new
initial state until the concatenation of all selected input segments is the same as
the original input trajectory or until no IO segment can be hypothesized for an
intermediate candidate or left input segment. In the former situation, at least one
but possibly several output trajectories can be predicted. In the latter situation,
the prediction process comes to a halt when no IO segment can be hypothesized for
a given input segment, thus providing only partially predicted output trajectories.
SAPS has the same problem. If it runs into a state that it has never seen be-
fore, the forecasting process comes to a grinding halt. The problem can be cured
by adding more evidence (IO segments) to the experience databases. However,
our approach is somewhat more flexible in this respect than SAPS, because the
problem can also be solved if no additional data are available, simply by allowing
stronger abstraction types to be used by the DIR. This technique can be employed

to alleviate the lack of sufficient data.

The DIR, of course, can receive additional observed IO segments. In that case,

it should be able not only to update its databases, but also to retract any hypoth-
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esized 1O segment that may contradict the newly received observed data. That
is, when any newly observed 10 segment o contradicts any previously hypothe-
sized 10 segment o, the DIR concludes that a A @' L. The DIR resolves this
contradiction by assigning the truth value FALSE to «'.

A final note is for the situation where contradictions are due to inconsistencies
between a previous assertion and a newly observed 10 segment, or between a pre-
viously hypothesized IO segment and a newly predicted one. We already discussed
these situations in Section 5.4.3.1. The {x} instructs the DIR to be cautious when
using such evidence in concluding anything. It will do so only as a last resort. The
{x} represents a mild form of inconsistency that is tolerated to migrate into the

LTMS, because it cannot be avoided.

This concludes the basic description of the DIR. Of course, we don’t know yet
how powerful the DIR really is. It could be that the reasoning mechanisms used
are much too rigid, and therefore, any prediction will invariably come to a halt.
It could also be that the reasoner behaves like the oracle of Delphi, predicting
in every situation that “tomorrow the weather will change or remain the same as
today.” Chapter 6 shall address this question at least in an experimental fashion by
showing the actual implementation of our DIR and by presenting realistic examples

of its use.
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Chapter 6 LDIR: An Implementation of DIR

A theory aimed at providing a basis for a computational model can become
dormant until an implementation of it demonstrates at least some of its claims.
In the introduction, I discussed the an ongoing debate between the virtues of ap-
proaches followed by the experimentalists and the formalists. To settle the dispute,
the formalists could support their “theories” with counterpart “implementations”;
alternatively, the experimentalists could do the converse — i.e., devise “proofs”
for their “experiments.” [Kuh62, Hay73, McD76, RH84] point, for example, to the
lack of coherency between the ideas expressed by the formalists and the results

presented by the experimentalists when the two are developed separately.

At the outset of this writing, I indicated that one of my goals is to implement
a subset of a discrete-event inductive reasoner. Having an implementation enables
us to examine what aspects of the theory is actually working and useful, how
the theory works, and why it works. Furthermore, an implementation provides a

playground for exploring ideas that have not been developed formally.

Consequently, this dissertation does not fall either in the camp of the formalists
or in that of the experimentalists in any strict sense. The dissertation started
out in a rather formalistic way; in due course, it shifted toward the experimental
side, while making full use of the formerly introduced theories in the procedures
described to perform the experiments. This approach did not simply happen. The

course of action was chosen deliberately to narrow the gap between the two camps.

I begin by describing an example to illustrate the underlying mechanisms of the
implementation of the DIR. I then describe an implementation of the DIR, called
Logic-based Discrete-event Inductive Reasoner (LDIR). 1 use fragments of two ob-
served 1/O trajectories (io-traj-1 and io-traj-2) to construct a database, and an

input trajectory (in-traj-3), for which output trajectories are to be predicted. Key
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features of LDIR’s implementation shall be discussed by means of this simple yet
non-trivial example. Several predicted output trajectories for the input trajectory
in-traj-3 will be presented and analyzed in detail. They shall serve to evaluate

LDIR’s performance.

6.1 Example: A Shipyard

Imagine there exists a shipyard' that contains two Repair Stations: RS-1 and
RS-2. The shipyard receives different types of vessels in need of repair. To simplify
the example, assume only one of the two repair stations is expected to be in
operation during any given period. Let us assume that RS-1 adheres to a First-
In-First-Out (FIFO) discipline, whereas RS-2 observes a Priority Ranking (PR)
discipline whereby vessels of type “B” are given priority over boats of type “C”
and ships of type “A” have the highest priority of all. Since only one repair station
is in use at any point in time, an observer sitting on the shore may observe a FIFO
discipline for two weeks, and a PR discipline for the next two.

Vessels in need of repair enter the shipyard at stochastically chosen time points,
wait for their turn, and depart the shipyard after being repaired. Each vessel type
is assigned an ID number indicating how much time is required for it to be fixed.
In this simple example, there are three types of vessels — “A,” “B,” and “C” —
that require one unit, two units, and three units of time, respectively, for repair.
Only one vessel is being repaired at any one time.

Next, suppose an observer records the arrival and departure of vessels to a
shipyard. The arrival of vessels corresponds to input events, and the departure
of vessels corresponds to output events. An observer may record the number of

vessels that enter the repair stations. The number of vessels in the shipyard is

!QOriginally, I used a bank with two tellers as an example. During a conversation with Alex
Meystel, he laughingly said we are not businessmen, are we? He then suggested I call the bank
a shipyard instead. Of course, the dynamics of the two systems are essentially the same (at least
at the level of abstraction dealt with here), even though aesthetically they are not!
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incremented (decremented) by one whenever a vessel enters it (departs from it).
Instead of specifying the number of vessels in the repair station, the observer may
keep an ordered record of the vessels entering the repair station, while removing

from the list any vessel departing from it.

However, in order to completely specify the state of a repair station, it is neces-
sary not only to have an ordered record of the vessels entering the repair station,
but also to specify how much time is necessary for each vessel until it is able to
depart again, given that some vessels are already waiting for repair. For example,
even though a vessel of type “A” requires only one unit of time for repair, it might

require two units of time if it has to wait.

LDIR has been implemented in Common Lisp [Ste90] — now the de facto stan-
dard of Lisp programming languages. The list notation common to all Lisp lan-
guages was used to represent IO segments, 10 trajectories, input trajectories, etc.
Common Lisp, by default, generates all its output in upper case. Accordingly, I use
an all-upper-case representation to denote LDIR output, and lower-case characters
to denote everything else, including LDIR input and segments of Lisp pseudo-code
simplified to increase the readability of the information presented. In particular,
Lisp procedures are presented in a mathematical form. For example, an actual

Lisp procedure such as

(defun ensure-consistency-asn (cand &optional asn-set &aux nodie)

is shown in the following mathematically equivalent form:

ensure-consistency-asn(cand, asn-set)
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In the above Lisp procedure, ensure-consistency-asn is the name of the pro-
cedure; cand is the required argument; &optional indicates the beginning of the
list of optional arguments, here consisting of asn-set only, which, if omitted, is
replaced by a default value; &aux indicates the beginning of the list of auxiliary
variables, in the above example consisting of a single variable called nodie; and
... represents the place where the actual computations of the procedure would be
encoded. Since this chapter provides only a high-level presentation of the concepts,
mechanisms, and procedural algorithms implemented in LDIR, the details of the
Lisp code realizing these procedural algorithms are omitted in the interest of em-
phasizing more important conceptual issues, and a more readable mathematical
pseudo-code representation is used in place of the actual Lisp code. In representing
a pseudo-code, I don’t distinguish between required and optional arguments, and

I omit auxiliary variables altogether.

Within the framework of DEVS, the state of each repair station can be com-

pletely described by:

(-, (2ds,t5), -+ +)
where id; denotes the identity of the vessel “J,” and ¢; denotes the remaining time

before vessel “J” will depart from the repair station. Some abstractions of the

above representation are:

(num-of vessels, (---, idj,--))

(---, idj, )

(num_of vessels)

where num_of _vessels is the number of vessels that have entered the repair station
and have not left yet. I chose the input/output trajectories for the shipyard to

have as their states (num_of_vessels, (---, id;,--+)). Evidently, it is possible to
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compute num._of_vessels from (---, i¢d;,--+). For convenience, I decided to make
this information explicit. Each IO trajectory has as its input events the identities
of arriving vessels. Likewise, the identities of leaving vessels are the output events

of an IO trajectory.

An observed 10 trajectory for the shipyard, represented in a pseudo Lisp nota-

tion, might take the form:

io-traj-1: ((si-0 ()) (in a 1) (out a 1))
((si-0 ) (in nil 1) (out nil 1))
((si-0 ()) (in b 2) (out b 2))
((si=0 ()) (in nil 1) (out nil 1))
((si-0 ) (in ¢ 3) (out c 3))
((8i-0 ) (in nil 1) (out mnil 1)).
This particular IO trajectory is shown as the top 10 trajectory in Figure 6.1.
In the above representation, both si-0 and () indicate that no vessel is at the
repair station at the time of the input event. The pseudo-code (in a 1) indicates
that a vessel of type “A” arrives at the current time. Since no vessel is in the
shipyard, the total processing time for vessel “A” is equal to the servicing time of
the vessel, namely one time unit. Since no other vessel is scheduled to arrive in
between, this is also the duration of the first segment. The code (out a 1) shows
the same vessel leaving at the end of the segment, i.e., one time unit later. It is not
necessary to explicitly mention the final state associated with the output segment,
since, because of continuity, the final state of one segment must coincide with the

initial state of the next. Thus, the information is redundant and was suppressed

in the above pseudo-code.

Similarly, had we encountered an initial state marked as (si-3, (a b a)), this
would have indicated that, at the time of the new input event, there were three

vessels currently already in the shipyard, two of type “A” and one of type “B.”

The arrival or departure of no vessel at either the beginning or the end of a
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segment is indicated as nil, which was denoted as ¢ in earlier chapters?. For
instance, (in nil 1) specifies that no new vessel arrived at the beginning of the
segment.

Consequently, the first record of io-traj-1 says that there were no vessels in the
repair station initially, and that a vessel with identity a arrived at that time, which
departed again one time unit later. The second record, ((si-0 ()) (in nil 1)
(out nil 1)), says that no vessel arrived or departed during the second time unit
and that no vessels were in the repair station during this time period, etc. Note
that this particular IO trajectory satisfies both FIFO and PR displines.

Comparing the pseudo-code with the top graph of Figure 6.1, it should be very
easy to interpret the pseudo-code correctly. An input trajectory such as to-traj-1is
simply a list of records, each containing an initial state, an input segment, and an
output segment, in the order given. The final state associated with each record is
the initial state of the record following it, except for the last one. This is due to the
underlying causality of the system. For this reason, I chose to end the trajectory
description with a “nil” record, so that the final state of the trajectory would also
be properly recorded.

Of course, the input and output segments of each record of a trajectory have the
same initial states and the same final states. However, I chose to always associate
the initial state of both segments with the input segment to form the Complete
input segment. Likewise, the final state of both segments is always associated with
the output segment constituting the Complete output segment.

Obviously, this same information could be represented in alternate forms as
well. For instance, it would have been possible to record an 10 segment using
a syntax such as (((si-0 ()) (in b 1)) ((si-1 (b)) (out nil 1))) where

((si-0 ()) (in b 1)) corresponds to the Complete input segment, (s, (zyal, dt)),

2In Lisp, an empty list () and the symbol nil are both returned as NIL. Nevertheless, I chose
to represent in the pseudo-code an empty list as () to distinguish it from the “nil” event.
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with s; = (si-0 ()), Zyas = b, and dt = 1 (cf. Section 5-2), and where ((si-1
(b)) (out nil 1)) corresponds to the Complete output segment, (s, (yvai, dt)),
with s, = (si-1 (b)), yua = nil, and dt = 1. Note that I used the identifiers in
and out to differentiate between input and output events.

The second IO trajectory, which satisfies a FIFO discipline only, is shown in

the bottom graph of Figure 6.1. Its pseudo-code representation is:

io-traj-2: ((si-0 ()) (in b 1) (out nil 1))
((si-1 (b)) (in a 1) (out b 1))
((si-1 (a)) (in nil 1) (out a 1))
((si-0 ()) (in nil 3) (out nil 3))
((si-0 ()) (in a 1) (out a 1))
((si-0 ()) (in nil 1) (out nil 1))
((2i-0 ()) (in ¢ 2) (out mnil 2))
((si-1 (c)) (in b 1) (out c 1))
((si-1 (v)) (in nil 2) (out b 2))
((si-0 ()) (im nil 1) (out nil 1)).

The purpose of this exercise is of course to check whether, given yet another
input trajectory, its output trajectory can be “correctly” predicted using the in-
formation contained in the two training trajectories described above.

In particular, I shall use the following input trajectory:

in-traj-3: (in c 0)

(in a 1)

(in b 6))

(in nil 8))
with a given initial state and an assumption set, to determine what output trajec-
tories can be predicted using my approach. Note that in the above pseudo-code
representation, the third argument denotes the time point when the arrival event
takes place, rather than a duration.

Since we know the internal structure of the system, we can of course perform

a quantitative and completely deductive simulation, to determine the true 10 tra-
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jectory for this system, given in-traj-3 as its input trajectory. It is important
to note that I am using the knowledge about the shipyard’s internal structure as
a baseline to measure the predictions of LDIR against it.

I shall assume that the shipyard is initially empty and that it follows a FIFO

discipline. The pseudo-code representation of the correct IO trajectory is as follows:

io-traj-3-fifo: ((si-0 ()) (in c 1) (out nil 1))
((si-1 (c)) (in a 2) (out c 2))
((si-1 (a)) (in nil 1) (out a 1))
((s1-0 ()) (in nil 3) (out nil 3))
((si-0 ()) (in b 2) (out b 2))
((si-0 ()) (in nil 1) (out nil 1))
In the sequel, I shall use LDIR to predict a set of logically consistent IO tra-
jectories for this input trajectory assuming no other knowledge about the system

except for the two recorded 10 trajectories, and I shall assess the fidelity of these
hypothesized IO trajectories relative to the correct one shown above.

In a second step, I shall assume the true IO trajectory, io-traj-3-fifo, to be
observed, adding its IO segments to the databases as additional evidence. Ob-
servation of io-traj-3-fifo may cause some of the previously hypothesized output
trajectories, which had been predicted solely based on i0-traj-1 and io-traj-2, to
become invalid, due to an inconsistency between previously made hypotheses and
the new evidence. The truth value of these previously made hypotheses will thus
change from TRUE to FALSE, and LDIR will need to revise its belief in the IO

segments truth assignments to keep its databases fully consistent at all times.

6.2 Implementing DIR

I call the implementation of the discrete-event inductive reasoner a Logic-based
Discrete-event Inductive Reasoner (LDIR), since it is essentially a problem solver

of the type described in Section 4.5. Before I discuss its highlights, a few words are
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Figure 6.1, Observed 10 trajectories io-traj-1, to-tray-2, and to-traj-4.
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in order about what parts of its implementation I am actually going to describe.

A problem solver (as described in [FdK93]) is designed such that its inference
engine and its TMS can be discussed separately without much difficulty. I can
discuss the inference engine part of the LDIR without requiring detailed discussion
of the LTMS procedures (e.g., how the BCP works, Section 5.4) as long as I avoid
referring to such details. The procedures of the LTMS tell us how its responsibilities
are carried out. As this text would have to include more than a hundred additional
pages to merely duplicate what is already available in [FdK93] about the LTMS
and its implementation, I decided not to discuss its implementation at all, and

refer the reader to the literature instead.

I have said that LDIR is a problem solver consisting of an inference engine and
the LTMS. Forbus and de Kleer {FdK93]| discuss in great detail implementations of
several problem solvers based on different kinds of truth maintenance systems. For
instance, they describe and discuss thoroughly the implementation of a problem
solver called Logic-based Tiny Rule Engine (LTRE), based on the Logic-based TMS
(LTMS).

The implementation of LDIR is embedded inside LTRE. Therefore, the infer-
ence engine of LDIR includes the capabilities described in Chapter 5 in addition to
those of the inference engine of LTRE. Since LDIR does not make excessive use of
LTRE’s inference engine capabilities, I can exclude the discussion of its inference

engine implementation without obscuring too much the discussion of LDIR’s other

features.

Given a discrete-event input trajectory and some discrete-event input/output
trajectories, I recall that DIR, from a user’s point of view, has to be able to (1)
receive observed 10 trajectories, (2) predict plausible discrete-event 10 trajectories

for some input trajectories, and (3) receive additional observed IO trajectories. I
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used the above ordering to indicate the obvious: at least some appropriate 10
trajectories ought to be present before the DIR can be expected to predict output
trajectories for any input trajectories. It is also possible that additional 10 trajec-

tories may become available after some 1O trajectories have already been predicted.

The part of LDIR’s inference engine that is beneficial to discuss is comprised of

four “modules.”

Add: has the responsibility to receive observed 10 trajectories and to

stash them away both in a database of its own and in the LTMS.

Consistency: contains the set of axioms (cf. Section 5.4.3.1) and pro-

cedures that examine consistency among IO segments.

Hypothesize: is the most elaborate module. Its main responsibility is
to partition an input trajectory and predict its plausible output trajec-

tories while insisting on consistency among all IO segments.

Inquiry: contains the user interface utilities as well as some other rou-

tines that are called upon by Add, Consistency, and Hypothesize.

I shall discuss only the first three of the modules since the Inquiry module
contains only auxiliary routines that are generally self-explanatory.
First, I shall discuss Add without worrying about the consistency of the ob-

served data yet — for now it is the responsibility of the user to supply consistent
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IO trajectories. Then, I shall begin with the discussion of the Consistency mod-
ule. Next, I complete the earlier discussion of the Add by describing how the
procedures responsible for ensuring consistency can be used to automatically add
only consistent IO segments. Finally I shall present a fairly extensive discussion of
Hypothesize where all the major procedures are carried out under the watchful
eyes of the LTMS. As the occasion arises, I shall also make use of procedures that

belong to the Inquiry module.

6.2.1 Declaring Observed 10 Trajectories

The Add module creates a structure (using def-struct in Common Lisp)
containing slots for input events, output events, states, observed I0 segments,
hypothesized input segments, hypothesized output segments, LTRE, debugging,
and a title. The slot for “debugging” is an auxiliary slot introduced for easier
maintenance of the software. The slot for “LTRE” provides the link with the
LTRE. The slot “title” is used for assigning a name to the entered structure that
can be referred to in printouts, The slots “hypothesized input trajectory” and
“hypothesized output trajectory” contain the partitioned input trajectory and its
corresponding output trajectory. The remaining slots pertain to the sets defined

for the iterative IOFO specification (cf. Section 5.2).

input events: X
output events: Y
states: S
observed IO segments:  IOspace,

The main procedure of this module is add-io-traj(io-traj). It adds new IO
segments to the observed IO segment slot called io-space-g, which is a simple

hash-table. The procedure get-out-seg-g(in-seg-i) finds the Complete out-
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put segment out-seg-f for a Complete input segment in-seg-i. Of course, the
module Add with the above procedures only supports storage and retrieval of 10
segments to and from the hash-table. For example, given io-traj-2 for the shipyard
example described above, then issuing the command add-io-traj(io-traj-2)

would enter the first IO segment as:

(((s1-0 ()) (IN B 1)) ((si-1 (B)) (OUT NIL 1))).

The procedure add-io-traj(io-traj) iterates over the entire IO trajectory by

adding each 10 segment to io-space-g using the procedure

add-io-space-g(in-seg, out-seg, i-state, f-state).

It creates Complete input/output segments from an input segment, an output
segment, an initial state and a final state. Then, for each observed IO trajectory,
its corresponding IO segments are stashed in the hash-table io-space-g indexed
in accordance with their initial states. Of course, the function add-io-space-g
does not check for consistency among IO segments. In fact, since a hash-table is
being used, if two IO segments have the same input segment and initial states yet

different output segments, then whichever is stored last overrides the previous one!

6.2.2 Enforcing Consistency Among I0 Segments

The Consistency module contains two procedures

1. ensure-consistency-asn(cand, asn-set)

2. ensure-consistency-ast(cand)
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where asn and ast are abbreviations for assumption and assertion, respectively.
cand refers to a candidate IO segment, either a predicted 10 segment (an assump-
tion) or an observed IO segment (an assertion) (cf. Section 5.4.3.1). Consequently,
cand refers to a predicted I0 segment in the former procedure, whereas it ref-
erences an observed IO segment in the latter procedure. As I discussed in the
previous chapter, the role of these procedures is to enforce consistency among all

10 segments (observed and predicted).

The procedure ensure-consistency-asn(cand, asn-set) begins by collect-
ing all 10 segments that have the same initial state as the candidate 10 segment
from the LTMS into a set called nodie. (Note that all IO segments stashed in
io-space-g are also known to the LTMS.) Then, if nodie is empty, it simply
sends the predicted IO segment into the LTMS as a hypothesis with assumption
asn-set, since there exists no previous IO segment that can possibly contradict
it. However, if the set nodie is not empty, then the predicted 10 segment has to
be examined against all of its members. As I discussed in Section 5.4.3.1, the set
nodie can contain both hypothesized and asserted IO segments. A procedure called
check-consistency-asn(cand, nodie, asn-set) enforces the axioms that test
whether the predicted IO segment is consistent with the IO segments contained in
the set nodie. After the examination of the predicted IO segment against all IO
segments in the set nodie, the newly predicted IO segment becomes a hypothe-
sis (with proper assumption provided by asn-set) whenever no contradiction has

been discovered.

However, if the predicted IO segment is inconsistent with at least one of the
existing observed IO segments, it will be rejected. For example, if we have the

predicted 10 segment:
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(((SI-1 (C)) (IN A 1)) ((SI-1 (A)) (OUT C 1)))

and nodie contains the asserted 10 segment:

(((8I-1 (C)) (IN A 2)) ((SI-1 (4)) (OUT C 2)))

then the hypothesized 10 segment is rejected.

Note that the above example is an interesting one. Remember that in this rep-
resentation, I chose to abstract away the remaining time to complete a transaction
(or the elapsed time since the beginning of the transaction, which contains the
same information). Remember that vessels of type “C” require three time units
for repair. The above assertion indicates that a vessel of type “A” arrived one
time unit into the service of a vessel of type “C.” Consequently, vessel “C” needs
two more time units before it can depart from the shipyard. Thus, the assertion
represents a logically meaningful 10 segment. The above prediction indicates that
a vessel of type “A” arrived two time units into the service of a vessel of type
“C.” Consequently, vessel “C” needs one more time unit before departure. Thus,
the prediction also represents a logically meaningful 10 segment. Yet, it will be

rejected by LDIR as inconsistent.

Logic-based non-monotonic reasoners can commit two types of errors. Lacking
complete knowledge, they can either accept a wrong piece of information as correct,
or they can reject a correct piece of information as invalid. We already knew that
overabstraction can lead to errors of type I, but the above example shows that it

can also lead to errors of type II.

The problem could have been avoided easily by adding the time to completion
as an additional piece of information to the initial state of each IO segment. In

the above example, this would have led to the assertion:
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(((sI-1 ((C 2))) (IN A 2)) ((sI-1 ((a 1))) (OUT C 2)))

whereas the prediction would have taken the form:

(((8I-1 ((C 1))) (IN A 1)) ((sI-1 ((A 1))) (OUT C 1)))

Then, the two initial states would have been different, and the two IO segments

could have co-existed in the LTMS.

So, why did it choose to abstract away the time to completion if this was evi-
dently a dumb thing to do? It is not very exciting to watch a non-monotonic rea-
soner perform on a system with complete information. It is much more interesting
to see how the reasoner performs under conditions of incomplete information, how
it makes wild assumptions, discovers new problems, struggles, backtracks, revises
previous assumptions made, etc. Thus, withholding an essential piece of informa-
tion, such as the time to completion, turns out to be much more instructive, and

this is why we decided to “play dumb.”

It is also possible that the predicted IO segment is inconsistent with an already
existing hypothesized I0 segment. What does ensure-consistency-asn do in
this situation? It can do a couple of things, as described in Section 5.4.3.1. One
possibility would be to retain the existing hypothesized IO segment while rejecting
the newly predicted 10 segment. Another choice would be the reverse. It would
also be possible to reject the predicted IO segment and revise the truth value of
the existing hypothesized 10 segment from TRUE to FALSE. We simply lack the
knowledge necessary to make an informed decision. Therefore, a more appropriate

way seems to request additional knowledge to settle the dispute between the two



177

competing hypothesized 10 segments whenever possible. In the present implemen-
tation of LDIR, the user encounters a break-point indicating what the conflicting

IO segments are and asking the user for further instructions.

Analogously, ensure-consistency-ast(cand) also determines the set of 10
segments that have the same initial state as the candidate IO segment. When the
set nodie is empty, the observed IO segment is asserted — again there can exist
no contradictory 10 segment. If, however, the set is not empty, then the function
check-consistency-ast(cand, nodie) is called. This function has two tempo-
rary variables, both holding hypothesized 10 segments. One holds hypothesized
IO segments that are affirmed by the observed 10 segment. For example:

(((SI-0 NIL) (IN C 1)) ((SI-1 (C)) (OUT NIL 1)))

might be a hypothesized IO segment. Then given the observed 10 segment

(((8I1-0 NIL) (IN C 2)) ((sI-1 (C)) (OUT NIL 2)))

the above hypothesized IO segment is converted to an assertion and also added to

io-space-g using the add-io-space-g procedure.

The other temporary variable contains those 10 segments that are violated given
the observed 10 segment. An example may be helpful. Suppose we already have
the hypothesized 10 segment:

(((SI-1 (C)) (IN A 1)) ((SI-0 NIL) (OUT A 1)))
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which we know can’t be true since we understand the internal structure of the
system — the vessel “C” just “sank” in the shipyard (an error of type I), and we

receive the newly observed 10 segment:

(((s1-1 (C)) (IN A 2)) ((sI-1 (A)) (OUT C 2))).

In this case, the belief in the hypothesized IO segment has to be reversed, i.e.,
LDIR should assign to it a truth value of FALSE. The procedure iterates over all
10 segments in the set nodie and updates the truth values of hypothesized 10
segments as necessary. At the end, the hypothesized IO segments in the set nodie
are either affirmed (converted to assertions), or left unchanged. What happens
when an IO segment from nodie is a conflicting assertion? The procedure enters a
break-point, displaying the two inconsistent 10 segments. Again, the LTMS would
become inconsistent with the addition of the observed 10 segment as an assertion,
and since not enough knowledge is currently available to decide the issue, the user
is being asked for help. Note that, when dealing with observed IO segments, we

do not use the asn-set.

Before I can resume my earlier discussion of the Add module, I need to consider

one more procedure:

assert-ios!(in-seg-i, out-seg-f).

The procedure assert-ios! creates a candidate IO segment of the form
io-seg-k (cf. Section 5.4.1) from a Complete input segment in-seg-i and a Com-
plete output segment out-seg-f. Then, if this IO segment already exists as an

assertion, it is detected as a repeat assertion, and the user is notified. If it exists
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as a hypothesis, then the former hypothesis is affirmed (converted to an asser-
tion.) In case the IO segment has not be observed before, it is asserted through

ensure-consistency-ast(cand).

Now, with the aid of the Consistency module, the procedure add-io-space-g
can not only include the observed 10 segments, it can also test for potential contra-
dictions between a newly observed IO segment and all previously observed 10 seg-
ments. Given io-traj-2, the add-io-traj(io-traj-2) uses assert-ios! (((si-0
()) (in a 1)) ((si-0 ()) (in al))) to assert the first IO segment. Once this
is successfully done (i.e., the observed IO segment has been added to the LTMS),
the procedure add-io-space-g(in-seg, out-seg, i-state, f-state) is called
to add the observed IO segment also to io-space-g. This procedure iterates over
the entire IO trajectory. Now the LTMS contains all observed IO segments as
propositions with their assigned truth values set to TRUE as discussed in the previ-
ous chapter. Again, note that these 10 segments are also available in the hash-table

io-space-g without their truth values.

6.2.3 Hypothesizing IO Segments for Unobserved Input
Segments

Next, I discuss the remaining module Hypothesize. The top-level procedure
in this module predicts output trajectories for a given input trajectory, in-traj,

an initial state, init-state, and the assumption set, asn-set:
pred-out-traj(in-traj, init-state, asn-set).
Before I proceed any further, I recall that the assumption set asn-set has two

elements. The first element can be either longest, exact, or all (cf. Section 5.4.4).

The second element can be either abs-length, abs-input, or abs-state (cf. Sec-
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tion 5.3). _

At the outset of a session, a “candidate” Complete input segment is determined
based on partitioning, as discussed in Section 5.4.4, using form-in-seg-i(in-traj,
init-state). It creates a Complete input segment in-seg-i from the input tra-
jectory in-traj and the initial state. Given the input trajectory:

in-traj: (in c 0)
(in a 1)

(in b 6)
(in nil 8))

and the initial state (si-0 ()), the first candidate Complete input segment is:
((SI-0 NIL) (IN C 1)).

The length of the candidate input segment is initially selected as the length be-
tween the first input event and the next input event. Thus, the second candidate

input segment is:
((sI-1 (C)) (IN A 5))

where the initial state (si=1 (c)) is the final state associated with the previously
asserted or hypothesized IO segment. Once a candidate input segment is deter-

mined, three cases are possible. I discuss each in turn.

Case 1: In the simplest situation, which there exists an exact match between
the candidate input segment and the input segment of an observed 10 segment
in the inference engine’s database io-space-g. For example, given the candidate

input segment:
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(((s1-0 NIL) (IN B 2))

and the asserted IO segment:

(((s1-0 NIL) (IN B 2)) ((SI-O0 NIL) (OUT B 2)))

the procedure in-seg-i?(in-seg-i, init-state) determines that there exists
an exact match, i.e., the input segment of the asserted 10 segment is identical to the
candidate input segment. Now, the input segment and the output segment of this
10 segment are appended to two variables holding retrieved /hypothesized 10 seg-
ments (e.g., Input-Trajectory-I and Output-Trajectory-I, cf. Section 6.3.1)
using the procedures parse-in-traj and parse-out-traj, respectively. These
variables are lists containing Complete input segments and Complete output seg-
ments, respectively. To start the next round, the final state of the IO segment just
hypothesized is computed, to be used for the initial state of the new input trajec-
tory. The new input trajectory is the prior input trajectory from which the input
segment — for which the corresponding 10 segment was just found — has been
chopped off. Now, pred-out-traj starts over again with the new input trajectory,
the new initial state, and the original assumption set (the assumption set remains

unchanged during the entire session.)

When Case 1 is not applicable, pred-out-traj has to resort to abstractions

(cf. Section 5.4). I consider the following two situations separately:

{(candidate input segment) = 1

{(candidate input segment) > 1.

When the candidate input segment is of unit length, only elm-2 needs to be

taken into account, otherwise both elm~1 and elm-2 are needed.
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Case 2: The main procedure find-pred-io-1(in-seg-i, asn-set) attempts
to hypothesize an 10 segment for a candidate input segment in-seg-i of unit
length (i.e., £(in-seg-i) = 1), if such an IO segment can be predicted. First, it
attempts to find all the IO segments that have the same input event and initial
state as in-seg-i while ignoring their durations. If no such IO segment can be
found with the specified input event and initial state, then, depending on the
type of abstraction specified by the assumption set (input-equivalence or state-
equivalence), one or more 10 segments may be predicted using a procedure called
find-io-pred-seg. These predicted IO segments are yet to be examined for

consistency before they can become hypotheses.

Before I continue, I shall describe how the procedure assume-ios! works. It
is similar to assert-ios! discussed in the previous section with the exception
that it takes the additional argument asn-set. The procedure assume-ios! cre-
ates a candidate IO segment of the form io-seg-k (cf. Section 5.4.1) for both the
Complete input segment in-seg-i and the Complete output segment out-seg-£.
Then, if the predicted IO segment already exists as either a hypothesis or an asser-
tion, it is simply detected as a repeat. In case the newly predicted 10 segment has
not been assumed before, then it is assumed if ensure-consistency-asn(cand,
asn-set) supports it. This IO segment, of course, is not stored in io-space-g
where only observed 10 segments are stored. Just as in the previous case, the Com-
plete input and output segments of the consistently hypothesized 10 segment are
extracted and stored appropriately in variables holding hypothesized input/output

segments.

The procedure rem-incons-asn(pred-io-seg) removes inconsistent IO seg-
ments from those obtained by the procedure find-io-pred-sing. When no state

or input event is abstracted, then two possibilities exist. In the first case, the
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predicted IO segment is consistent and is assumed using assume-ios!. It is added
to all other 10 segments in the LTMS as a hypothesis. Here is an example. Given

the candidate input segment:

((8I-0 NIL) (IN C 1))

and having the observed 10 segment

(((SI-0 NIL) (IN C 2)) ((SI-1 (C)) (OUT NIL 2)))

then the following predicted IO segment is determined by length abstraction as:

(((SI-0 NIL) (IN C 1)) ((sI-1 (C)) (OUT NIL 1))).

When this predicted 10 segment is consistent with all other IO segments (as-

serted and hypothesized), then it is assumed,; i.e.,

(((SI-0 NIL) (IN C 1)) ((sI-1 (C)) (OUT NIL 1))) via ABS-LENGTH.

In the second case, the predicted IO segment is inconsistent with at least one of
the IO segments known to the LTMS. Then, it becomes necessary to use elm-2 of
the assumption set asn-set. Now, for example, based on input abstraction, one
or more IO segments might be predicted. Again, similar to what was done above,
it could be that none of them is consistent. In this situation, the LDIR cannot do
anything more! It reports that the existing data is insufficient. In the case that one
or more of the predicted 10 segments are consistent with the LTMS’s 10 segments,

one is selected randomly and assumed. Once a predicted IO segment is assumed,
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its input and output segments are stored. Then, the new input trajectory, the
initial state, and the assumption set are passed on to pred-out-traj for another

round. Now I discuss the remaining case.

Case 3: The distinction between this case and the previous one is that the
duration of the candidate input segment is greater than unit length. That is,
form-in-seg-1i produces a candidate input segment such that #(candidate input

segment) > 1. This case starts with calling the following procedure

find-pred-io-n(in-seg-i, asn-set).

Given the candidate input segment in-seg-i, there must have not been any-
thing matching it. When elm~-1: longest, the duration of the input segment is
reduced (abstracted) successively by one unit until (a) an existing 10 segment (hy-
pothesized or asserted) is found that has the same initial state and input event as
the input segment; or (b) no existing IO segment is found with the same initial

state and input event as the input segment.

If no IO segment can be found with length abstraction alone (i.e., situation (b)),

then the following procedure is called

(1) find-in-seg-longest(in-seg-i, asn-set)

within the procedure find-pred-io-n to abstract input, initial-state, or both
based on elm-2, while requiring the longest segment to be found (elm-1: longest.)

Hence elm-1 and elm-2 are used simultaneously.

For example, suppose elm-2: abs-input. Now, one or more 10 segments are

predicted by abstracting both the input event and length. Suppose the candidate



185

input segment is

((sI-1 (C)) (IN A 5)).

Then, suppose there does not exist any IO segment in the LTMS’s database
that matches this input segment by abstracting its length alone. There does not
exist a single IO segment with input event A and initial state (si-1 (C)). Suppose

we have the following 10 segment

(((sI-1 (€)) (IN B 1)) ((SI-1 (B)) (OUT C 1))).

Therefore, the in-seg~i’s duration is first reduced by one unit, which results in
the new candidate input segment ((SI-1 (C)) (IN A 4)). This input segment
has the same initial state as the existing IO segment above. Then since the input
is to be abstracted, there exists a match if we also abstract in-seg-i length ac-
cording to elm-1: longest. Since the longest duration is asked for, the following

IO segment is predicted

(((8I-1 (C)) (IN A 4)) ((SI-1 (B)) (OUT C 4))).

Note that the length reduction by one time unit would not have been absolutely
necessary. This is a heuristic built into the current implementation of LDIR. If
the selected abstraction is elm~1: longest and if LDIR must make use of input
or state abstraction as well in order to find a match, it returns the longest left

subsegment that does not lead to a contradiction, but never the original segment

itself.

The reader may notice that input abstraction was much more harmful than
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length abstraction. Understanding the structure of the system, we know about
some conservation principles. We know that what goes in must eventually come
out again, and that nothing can ever come out of the shipyard that hasn’t gone in

earlier — to be enforced by some sort of continuity equation.

LDIR, being entirely based on behavioral knowledge and induction, doesn’t
know any such thing. The evidence gathered through ‘o-traj-1 and io-traj-2 alone
is insufficient to support continuity. Consequently, the “repair” of vessel “A” above
involves a major remodeling — vessel “A” is evidently being remodeled to become

a vessel of type “B.”

Yet, there is nothing fundamentally wrong with the way LDIR reasons. There
is no such thing as a free lunch. Either LDIR is provided with enough data to
make sensible decisions, or it will have to engage in wild guesses — reasonable or

not — in order not to give up.

The predicted 10 segment and the above existing 10 segment are consistent.
Consequently, the “remodeling job” is accepted as a valid hypothesis. However, a
so predicted 10 segment can be in contradiction with existing evidence, in which

case the prediction would have been rejected.

When elm-1: exact, the procedure

(2) find-in-seg-exact(in-seg-i, asn-set)

is called. Once again, this procedure attempts to abstract the input segment’s
length only. As in the previous case, two situations, (a) and (b), are possible.
I give an example. For the same candidate input segment as above (i.e., ((SI-1
(C)) (IN A 5))), we suppose there does not exist any 10 segment in the database
of LTMS that matches it through abstraction of its length alone. Having the same
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existing IO segment as above together with elm-2: abs-input, the candidate in-

put segment is changed, by reducing its duration, to:

((s1-1 (C)) (IN A 4)).

Unfortunately, there is still no exact match even if we allow the input event to
be abstracted. To this end, we shall need to shorten the duration further, until it
matches that of the only existing IO segment with the correct initial state. The
predicted IO segment is:

(((8I-1 (C)) (IN A 1)) ((sI-1 (B)) (OUT C 1))),

i.e., another “remodeling job.”

A similar discussion can also be given for the remaining case — elm-1: all.

There exists a third procedure:

(3) find-in-seg-all(in-seg-i, asn-set)

to handle this type of abstraction. Additional scenarios are also possible by se-
lecting one of the three length abstraction types, as well as abstracting the input

event and the initial state simultaneously. I shall not discuss them here.

At the end of any of the above three procedures, a set of predicted 10 segments
is returned. As in the previous case, it is possible that any or all of them might be
inconsistent. The procedure rem-incons-asn is called upon to remove those that
are inconsistent. If multiple IO segments are predicted and either elm-1: exact

or longest, then one of them is selected (either randomly or based on some a priori
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knowledge) and assumed if consistent. When elm-1: all, then all IO segments
are assumed that do not contradict any of the existing IO segments. This can lead
to multiple predicted 10 trajectories. It is also possible that length, input event,
and initial state abstractions do not lead to hypothesized IO segment(s). If this

happens, the user is notified, and the procedure pred-out-traj comes to a halt.

When an [0 segment is predicted and hypothesized for a candidate input seg-
ment, then the procedure pred-out-traj is called once upon again with the re-
mainder of the input trajectory, the final state of the just computed hypothesized
IO segment used as the new initial state (for reasons of continuity), and the se-
lected assumption set-II. Of course, before calling the procedure pred-out-traj,
the respective input and output segments of the hypothesized IO segments are
appended to those previously computed using the procedures parse-in-traj and

parse-out-traj.

6.3 Sample Scenarios for the Shipyard Example

I have used some fragments of io-traj-1, io-traj-2, and in-traj-3 to illustrate
the functioning of the Add, Consistency, and Hypothesize modules. Now, I
present four scenarios that share the same input trajectory and initial state, but
use distinct assumption sets. I shall first present each individually. Then, I shall
collect their predicted 10 trajectories and discuss them collectively. In each of these
scenarios, I assume that the LDIR has already processed the 10 trajectories zo-

traj-1 and to-traj-2, and thus has knowledge of the following observed 10 segments.
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(B)) (IN NIL 2)) ((SI-0 ()) (OUT B 2))): TRUE
(C)) (IN B 1)) ((SI-1 (B)) (OUT C 1))): TRUE
(4)) (IN NIL 1)) ((S8I-0 ()) (OUT A 1))): TRUE
(B)) (IN A 1)) ((SI-1 (A)) (OUT B 1))): TRUE
()) (IN € 2)) ((s1~1 (C)) (OUT NIL 2))): TRUE
(O) (IN NIL 3)) ((SI-0 ()) (DUT NIL 3))): TRUE
0O) (IN B 1)) ((s1-1 (B)) (OUT NIL 1))): TRUE .
() (IN ¢ 3)) ((s1-0 ()) (OUT C 3))): TRUE

(O) (IN B 2)) ((s1-0 ()) (OUT B 2))): TRUE

()) (IN NIL 1)) ((SI-0 ()) (OUT NIL 1))): TRUE
(O) (IN A 1)) ((81-0 ()) (OUT A 1))): TRUE

6.3.1 Scenario 1

In this example, the procedure pred-out-traj called upon with the initial

state, assumption set, and input trajectory:

initial-state: (si-0 ())
asn-set: (longest abs-input)

in-traj-3:

(in ¢ 0)
(in a 1)
(in b 6)
(in nil 8))

predicts some 10 segments, examines them for consistency, and generates a pair of

consistent input and output trajectories. I present the results generated by LDIR

with some cosmetic changes for better readability. I also provide explanations as

needed.

pred-out-traj(in-traj-3 (initial-state asn-set))

candidate input seg: ((SI-0 ()) (IN C 1))

candidate input seg ((SI-0 ()) (IN C 1)) does not exist.

Candidate 10 segments with matching input event and initial state are com-
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puted using find-hyp-io-1 since the candidate input segment is of unit length.

We have:

(((s1-0 )) (IN € 2)) ((sI-1 (C)) (OUT NIL 2)))
(((s1-0 ()) (IN C 3)) ((sI-0 (D) (OUT C 3))).

These 10 segments are found based on Case 2. Although two 10 segments are
found, only one of them leads to a hypothesized 10 segment. We obtain the fol-
lowing predicted 10 segment:

(((s1-0 ()) (IN C 1)) ((81I-1 (C)) (OUT NIL 1))).

At this point, since the predicted IO segment does not violate any of the ex-
isting IO segments, it is assumed and becomes a hypothesis. Note that only the

length has been ignored (abstracted). That is:

hypo-io-seg: (((SI-0 ()) (IN C 1)) ((SI-1 (C)) (OUT NIL 1)))
via ABS-LENGTH.

Comparing the hypothesized 10 segment with the true first IO segment of io-
traj-3-fifo, we find that length abstraction has worked beautifully. LDIR has indeed

hypothesized the correct I0 segment in this case.

Then, a new input trajectory is computed by cutting off the first segment be-
fore calling pred-out-traj once again with the same assumption set, yet with a
different initial state. The initial state is the final state of the previous 10 segment.

Hence:

initial-state: (si-1 (c))
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in-traj-3: (in a 1)

(in b 6)

(in nil 8))
input Traj: ((IN A 1) (IN B 6) (IN NIL 8))
candidate input seg: ((SI-1 (C)) (IN A 5))

candidate input seg ((SI-1 (C)) (IN A 5)) does not exist.

The procedure in-seg-i? does not find any 10 segment in the database having
an input segment that matches the candidate input segment completely (i.e., they
differ at least in either the initial state, the input event, or the duration.) It then
attempts to abstract the duration of the candidate’s input segment. This time,
Case 3 comes to bear, since the length of the input segment is greater than one.
Hence the procedure find-hyp-io-n is called upon. Also, since the assumption
set asks for the “longest” match, the procedure find-in~seg-longest is called
to partition the candidate input segment. Consequently, LDIR finds the longest
possible IO segments for which both the length and the input event (if necessary)
are abstracted by partitioning the input segment (IN A 5). We obtain:

reduced input seg: ((SI-1 (C)) (IN A 4))
cand I0 seg: (((SI-1 (C)) (IN B 1)) ((SI-1 (B)) (OUT C 1)))
pred I0 seg: (((SI-1 (C)) (IN A 4)) ((SI-1 (B)) (OUT C 4)))

hypo I0 seg: (((SI-1 (C)) (IN A 4)) ((sI-1 (B)) (OUT C 4)))
via ABS-LENGTH & ABS-INPUT.

thence one of these “remodeling jobs” our shipyard is already so famous for. The
longest consistent 10 segment was found and assumed. Since the input event was
ignored (abstracted), the input event for the hypothesized IO segment had to be
changed from the model 10 segment used in the abstraction in order to fit the bill,
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which led to violation of the conservation principle.
Evidently, it would have been more reasonable to change the final state in ac-

cordance with the abstracted input event to:

(((S1-1 (C)) (IN A 4)) ((sI-1 (a)) (OUT C 4))).

but LDIR had no way of knowing that. For LDIR, a state is a compact entity that
cannot be analyzed internally for its semantic meaning. Consequently, LDIR did

the best it could under the given circumstances.

Next, pred-out-traj is called upon with the following newly computed input

trajectory and initial state:

initial~state: (si-1 (b))
in-traj-3: (in nil 5)
(in b 6)
(in nil 8))
input Traj: ((IN NIL 5) (IN B 6) (IN NIL 8))
candidate input seg: ((SI-1 (B)) (IN NIL 1))

candidate input seg ((SI-1 (B)) (IN NIL 1)) does not exist.

Time has advanced to unit 5 by now, yet the next arrival of a vessel (of type
“B”) is only scheduled for time point 6. Since the flow of time is a universal concept
that doesn’t depend on the situation to be modeled, LDIR is allowed to make use
of deeper knowledge assuming the continuity of time. Hence LDIR is able to insert
a NIL segment of length one into the input trajectory.

Since the new candidate input segment does not exist, procedure find-hyp-io-1

is called upon as the candidate input segment is of unit length. The following 10
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segment is predicted:

cand I0 seg: (((SI-1 (B)) (IN NIL 2)) ((SI-0 ()) (OUT B 2)))
pred I0 seg: (((SI-1 (B)) (IN NIL 1)) ((SI-i (B)) (OUT NIL 1))).

The NIL event can be treated in a special way, since it is independent of the
application at hand. Shortening a candidate IO segment leads necessarily to a NIL
output event, and a IO segment with both NIL input and output events cannot
possibly change its state. Thus, the above prediction is reasonable and can be
made without drawing upon application-dependent structural knowledge. Hence
we accept the following IO segment as a hypothesis once it has been examined and

authorized by the consistency axioms.

hypo IO seg: (((SI-1 (B)) (IN NIL 1)) ((SI-1 (B)) (OUT NIL 1)))
via ABS-LENGTH.

Now the remaining input segment is (IN B 2) with initial state (si-1 (b)).

initial-state: (si-1 (b))
in-traj-3: (in b 6)
(in nil 8))

input Traj: ((IN B 6) (IN NIL 8))
candidate input seg: ((SI-1 (B)) (IN B 2))

candidate input seg ((SI-1 (B)) (IN B 2)) does not exist.

There does not exist an 10 segment with initial state (SI-1 (B)) and candi-
date input segment (IN B 2). Abstracting the length alone is not sufficient, and

it becomes necessary to also abstract the input event, i.e., find-in-seg-longest
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is called upon. The following consistent hypothesized 10 segment is predicted:

(((s1-1 (B)) (IN B 1)) ((sI-1 (A)) (OUT B 1)))
via ABS-LENGTH & ABS-INPUT.

i.e., another remodeling job.

At this point in time, the new input trajectory and initial state become:

initial-state: (si-1 (a))

in-traj-3: (in nil 7)

(in nil 8))
input Traj: ((IN NIL 7) (IN NIL 8))
candidate input seg: ((S8I-1 (A)) (IN NIL 1))

candidate input seg ((SI-1 (A)) (IN NIL 1)) does exist.

Since a matching assertion can be found in the LTMS, the 10 segment can be

hypothesized without any abstraction.

(((8I-1 (A)) (IN NIL 1)) ((s1-0 ()) (OUT A 1))).

Now, pred-out-traj comes to a halt since the input trajectory has been suc-

cessfully partitioned into input segments and corresponding output segments. The

input and output trajectory pairs, depicted in Figure 6.2 on page 208, generated

by LDIR are:
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Input-Trajectory-I: ((SI-0 ()) (IN C 1))
((sI-1 (C)) (IN A 4))
((s1-1 (B)) (IN NIL 1))
((s1-1 (B)) (IN B 1))
((SI-1 (A)) (IN NIL 1))

Qutput-Trajectory-I: ((SI-1 (C)) (OUT NIL 1))
((s1-1 (B)) (OUT C 4))
((sI-1 (B)) (OUT NIL 1))
((81-1 (a)) (OUT B 1))
((s1-0 ()) (OUT A 1)))

The top graph of Figure 6.2 is what the observer on the shore would see. It
looks inconspicuous. The observer might hypothesize that the repair of vessel “C”
required 5 time units. Thereafter, repair on vessel “A” was started, but this job got
interrupted at time unit 6 by a higher priority job when vessel “B” arrived. Vessel
“B” took one time unit for its repair, after which time the work on vessel “A” was
resumed. Since the observer on the shore doesn’t have access to the internal state
information of the shipyard, he or she has no reason to assume foul play and would

never guess that two major remodeling jobs have taken place.

At this point, procedure find-I0~seg-asn selects those IO segments that rep-
resent new hypotheses. The hypothesized IO segments are:

(((s1-1 (B)) (IN B 1)) ((SI-1 (A)) (OUT B 1)))
(((s1-1 (B)) (IN NIL 1)) ((sI-1 (B)) (OUT NIL 1)))
(((s1I-1 (C)) (IN A 4)) ((sI-1 (B)) (OUT C 4)))
(((s1-0 ()) (IN C 1)) ((si-1 (Cc)) (OUT NIL 1))).

We can query the LTMS for a list of all IO segments and their truth values.
Beside from the previously available assertions, the LTMS now contains four ad-

ditional hypothesized 10 segments:
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12. (((s1-1 (B)) (IN B 1)) ((si-1 (a)) (OUT B 1))): TRUE
13. (((s1-1 (B)) (IN NIL 1)) ((SI-1 (B)) (OUT NIL 1))): TRUE
14. (((s1-1 (C)) (IN A 4)) ((sI-1 (B)) (OUT C 4))): TRUE
15. (((s1-0 ()) (IN C 1)) ((81-1 (Cc)) (OUT NIL 1))): TRUE

Next, let us assume that the IO trajectory to-traj-3-fifo is being observed (cf.
Section 5-1). It is partitioned into 10 segments and added to the already available
assertions by the add-io-space~g procedure. However, it is not possible to simply
add the new observations unchecked, since they may contradict one or more of the
already entered 10 segments. Therefore, each new pair is tested for consistency,
and if it is neither redundant with nor contradicts the previous evidence, it is
added to the databases.

In the given example, the first IO segment:
(((s1-0 ()) (IN C 1)) ((8I-1 (C)) (OUT NIL 1)))

already exists as a hypothesis. In this case, the hypothesis is converted to an as-

sertion. The second IO segment:
((s1-1 (C)) (IN A 2)) ((SI-1 (A)) (OUT C 2))
contradicts the previously made hypothesis:
(((s1-1 (C)) (IN A 4)? ((s1-1 (B)) (OUT C 4)))
which will now have to be retracted and its negation assumed. That is:

hypo IO seg: (NOT (((SI-1 (C)) (IN A 4)) ((sI-1 (B)) (OUT C 4))))
via (((SI-1 (C)) (IN A 2)) ((SI-1 (a)) (OUT C 2))).
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Once the negated IO segment is assumed, the observed IO segment is asserted.

observed I0 seg: (((SI-1 (C)) (IN A 2)) ((SI-1 (A)) (OUT C 2)))
via OBSERVED-DATA.

Of course, if a duplicate 10 segment is found, it is noted and ignored. In the

given example, the following three IO segments have already been asserted as IO

segments through either io-traj-1 or io-traj-2, and are thence ignored. That is:

duplicate :
duplicate :

duplicate :

(((s1-1 (A)) (IN NIL 1)) ((sI-0 () (OUT A 1)))
(((s1-0 ()) (IN NIL 3)) ((SI-0 ()) (OUT NIL 3)))
(((s1-0 ()) (IN B 2)) ((SI-0 ()) (OUT B 2))).

A query to the LTMS for its current contents shows the following 10 segments

and their truth values.

1. (((sI-1
2. (((s1-1
3. (((s1-1
4. (((s1-1
5. (((s1-0
6. (((SI-0
7. (((sI-0
8. (((s1-0
9. (((s1-0
10. (((sI-0
11. (((s1-0
12. (((sI-1
13. (((sI-1
14. (((s1-1
15. (((s1-0
16. (((sI-1

(B)) (IN NIL 2)) ((SI-0 ()) (OUT B 2))): TRUE
(C)) (IN B 1)) ((sI-1 (B)) (OUT C 1))): TRUE
(4)) (IN NIL 1)) ((SI-0 ()) (OUT A 1))): TRUE
(B)) (IN A 1)) ((SI-1 (A)) (OUT B 1))): TRUE
() (IN ¢ 2)) ((SI-1 (C)) (OUT NIL 2))): TRUE
()) (IN NIL 3)) ((SI-0 ()) (OUT NIL 3))): TRUE
()) (IN B 1)) ((sI-1 (B)) (OUT NIL 1))): TRUE
() (In ¢ 3)) ((81-0 ()) (OUT C 3))): TRUE

() (IN B 2)) ((s1-0 ()) (OUT B 2))): TRUE

()) (IN NIL 1)) ((8I-0 ()) (OUT NIL 1))): TRUE
O) (IN A 1)) ((SI-0 ()) (OUT A 1))): TRUE
(B)) (IN B 1)) ((SI-1 (A)) (OUT B 1))): TRUE
(B)) (IN NIL 1)) ((sI-1 (B)) (OUT NIL 1))): TRUE
(C)) (IN A 4)) ((sI-1 (B)) (QOUT C 4))): FALSE
O) (IN € 1)) ((81-1 (C)) (OUT NIL 1))): TRUE
(C)) (IN A 2)) ((SI-1 (A)) (OUT C 2))): TRUE

Note that (((SI-1 (C)) (IN A 4)) ((SI-1 (B)) (OUT C 4))) had atruth value
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of TRUE prior to adding io-traj-3-fifo. Also note that the 10 segment:

(((s1-0 ()) (IN C 1)) ((SI-1 (C)) (OUT NIL 1))): TRUE

is no longer a hypothesis, as it should not be! That is, the query find-I0-seg-asn

returns only three IO segments as hypotheses at this time:

12. (((S1-1 (B)) (IN B 1)) ((sI-t (A)) (OUT B 1))): TRUE
13. (((sI-1 (B)) (IN NIL 1)) ((SI-1 (B)) (OUT NIL 1))): TRUE
15. (((SI-1 (C)) (IN A 4)) ((sI-1 (B)) (QUT C 4))): FALSE

It should be remarked that only a single assertion had been missing in the

LTMS, namely:

16. (((sI-1 (C)) (IN A 2)) ((SI-1 (A)) (OUT C 2))): TRUE

This one additional assertion would have sufficed to enable LDIR to predict the
correct 10 trajectory, given the LTMS and in-traj-3. Because of a lack of evi-
dence, LDIR had to make a wild hypothesis. It did so using the available evidence
in the best way possible, but came up short, suggesting an unfortunately incorrect
hypothesis that then led to further mishap down the road. Yet, it is important to
point out that very little additional knowledge would have been needed to do the
job right.

6.3.2 Scenario 2

The initial state and the input trajectory for this example remain the same as
in the previous scenario. Only the assumption set is changed to asn-set: (exact
abs~input).

Since the first candidate input segment for this input trajectory did not require
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any input abstraction before, it won’t require such an abstraction now either. Con-

sequently, the first hypothesis remains the same, namely:

(¢(sI-0 ()) (IN C 1)) ((S1-1 (C)) (OUT NIL 1)).

Next, a reduced input trajectory and a new initial state are computed as before,

calling pred-out-traj. We have:

initial-state: (si-1 (<))
asn~set: (exact abs-input)
in-traj-3: (in a 1)
(in b 6)
(in nil 8)
candidate input seg: ((SI-1 (C)) (IN A 5))

candidate input seg ((SI-1 (C)) (IN A 5)) does not exist.

Since the procedure in-seg-i? fails and since the duration of the candidate in-
put segment is greater than unit length, the procedure find-hyp-io-nis called in
accordance with Case 3. Given the assumption set’s first element, elm-1: exact,
procedure find-in-seg-exact is called to determine the predicted 10 segments.
The duration of the candidate IO segment is reduced successively until one or more

desired 10 segments are found. The first reduced input segment is:
reduced input seg: ((SI-1 (C)) (IN A 4))
for which no desired IO segments can be found. Consequently, the candidate in-

put segment will have its duration reduced further. For the following two reduced

input segments still no desired 10 segments can be predicted.
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reduced input seg: ((SI-1 (C)) (IN A 3))
reduced input seg: ((SI-1 (C)) (IN A 2)).

Finally, even for the reduced candidate input segment ((SI-1 (C)) (IN A 1)),
no candidate I0 segment can be found based on abstracting the length alone.
Hence, the input event abstraction becomes necessary. Again, the candidate input
segment had to be reduced to ((SI-1 (C)) (IN A 1)) before the following IO

segment could be found:

(((81-1 (€)) (IN B 1)) ((sI-1 (B)) (OUT C 1))).

that has a different input event, but the correct initial state and the correct (exact)

duration. Consequently, the following 10 segment will be predicted:

pred I0 seg: (((SI-1 (C)) (IN A 1)) ((SI-1 (B)) (OUT C 1))),

again suggesting a “remodeling job.”
Since this prediction does not contradict any existing 1O segment, it is assumed.
The procedure assume-ios! is called to make the predicted 10 segment a hypoth-

esis.

The next reduced input trajectory and its initial state are:

initial-state: (si~-1 (b))
in-traj-3: (in nil 2)

(in b 6)

(in nil 8).

The candidate input segment is thus ((SI-1 (B)) (IN NIL 4)). Also, since

no 10 segment can be found for this candidate input segment, its duration is re-
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duced until an 10 segment is predicted for it. For the shortened candidate input
segment ((si-1 (b)) (in nil 2)), we find a matching IO segment without need
for input abstraction. The predicted 10 segment is thus:

(((s1-1 (B)) (IN NIL 2)) ((SI-0 ()) (OUT B 2))).

As indicated previously, the predicted IO segment is detected as an existing
IO segment (an assertion); therefore, it must be consistent with the existing 10

segments. Hence there is no need for further consistency checking.

I continue with:

initial-state: (si-0 ())
in-traj-3: (in nil 4)
(in b 6)
(in nil 8).
The next input segment is ((SI-0 ()) (IN NIL 2)). This input segment does

not exist and thus abstraction on its length is attempted first. The reduced input

segment, ((si-0 nil) (in nil 1)), leads to the following redundant assertion:
(((s1-0 ()) (IN NIL 1)) ((8I-0 ()) (OUT NIL 1))).

The next reduced input trajectory and its initial state are:

initial-state: (si-0 ())
in-traj-3: (in nil 5)
(in b 6)
(in nil 8).

The following IO segment is found in io-space-g for the input segment ((SI-0
()) (IN NIL 1)) without any abstraction:
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(((8I-0 ()) (IN NIL 1)) ((s1-0 ()) (OUT NIL 1))).

The last reduced input trajectory and initial state are:

initial-state: (si-0 ())
in-traj-3: (in b 6)
(in nil 8)

leading to the input segment ((SI-0 ()) (IN B 2)), for which the following IO

segment can be predicted:

(((S1-0 ()) (IN B 2)) ((s1I-0 ()) (OUT B 2)))

without any need of abstraction.

Partitioning the input trajectory and computing its 10 segments results in the

predicted input and output trajectories given below and shown in Figure 6.2.

Input-Trajectory-II: ((SI-0 ()) (IN C 1))
((sI-1 (C)) (IN A 1))
((sI-1 (B)) (IN NIL 2))
((s1-0 (O) (IN NIL 1))
((s1-0 ()) (IN NIL 1))
((s1-0 ()) (IN B 2))

Qutput-Trajectory-II: ((SI-1 (C)) (OUT NIL 1))
((s1-1 (B)) (OUT C 1))
((s1-0 ()) (OUT B 2))
((s1-0 ()) (OUT NIL 1))
((s1-0 ()) (OUT NIL 1))
((s1-0 ()) (OUT B 2)))

This time, an observer on the shore would have been able to discover the re-

modeling job, since one vessel of type “B” went in, but two vessels of type “B”
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came out.

We can query the LTMS to find those IO segments that represent assumptions.
They are:

12. (((s1-1 (C)) (IN A 1)) ((SI-1 (B)) (OUT C 1))): TRUE
13. (((SI-0 ()) (IN ¢ 1)) ((sI-1 (C)) (OUT NIL 1)): TRUE

Using the assumption set asn-set: (exact abs-input), we ended up with
fewer hypothesized 10 segments, and input abstraction had to be used less fre-
quently. However, the input trajectory is partitioned into more input segments,
and there is no reason to believe, just on the basis of what LDIR knows, that the

predictions are any better or worse than in Scenario 1.

Next, we assume as in Scenario 1 that IO trajectory to-traj-3-fifo is now being
observed. It is partitioned into 10 segments and added to the databases by the
add-io-space-g procedure. Again, each new 10 segment must be checked for
consistency before it can be added. The steps taken in adding the newly observed
10 segments to the already existing IO segments are to a large extent the same
as those illustrated in Scenario 1. The main difference is the second observed 10

segment.

((8I-1 (C)) (IN A 2)) ((sI-1 (A)) (OUT C 2))

contradicts the assumption:

(((s1-1 (€)) (IN A 1)) ((SI-1 (B)) (OUT C 1))).

Therefore, this hypothesis must be retracted and its negation assumed instead.
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Hence the following 10 segment:

(NOT (((SI-1 (C)) (IN A 1)) ((SI-1 (B)) (OUT C 1))))
assumed via (((SI-1 (C)) (IN A 2)) ((SI-1 (a)) (OUT C 2))).

Once the negated 10 segment is assumed, the observed 10 segment is asserted

as before:

Asserted (((SI-1 (C)) (IN A 2)) ((SI-1 (a)) (QUT C 2)))
via OBSERVED-DATA

Again, duplicate 10 segments are noted and ignored. Once the databases have
fully absorbed the newly available information, the following IO segments with

their truth values can be queried from the LTMS:

(((sI-1 (B)) (IN NIL 2)) ((SI-0 ()) (OUT B 2))): TRUE
(((s1-1 (C)) (IN B 1)) ((sI-1 (B)) (OUT C 1))): TRUE
(((SI-1 (A)) (IN NIL 1)) ((sI-0 ()) (OUT A 1))): TRUE
(((s1-1 (B)) (IN A 1)) ((SI-1 (A)) (OUT B 1))): TRUE
(((s1-0 ()) (IN C 2)) ((s1I-1 (C)) (OUT NIL 2))): TRUE
(((s1-0 ()) (IN NIL 3)) ((si-0 ()) (OUT NIL 3))): TRUE
(((s1-0 O) (IN B 1)) ((SI-1 (B)) (OUT NIL 1))): TRUE
(((81-0 ) (IN C 3)) ((SI-0 ()) (OUT C 3))): TRUE

9. (((81-0 ()) (IN B 2)) ((s1-0 ()) (OUT B 2))): TRUE

10. (((SI-0 ()) (IN NIL 1)) ((s1-0 ()) (OUT NIL 1))): TRUE
11. (((s1-0 ()) (IN A 1)) ((SI-0 ()) (OUT A 1))): TRUE

12. (((sI-1 (C)) (IN A 1)) ((SI-1 (B)) (OUT C 1))): FALSE
13. (((sI-0 ()) (IN C 1)) ((SI-1 (C)) (OUT NIL 1))): TRUE
14. (((SI-1 (C)) (IN A 2)) ((SI-1 (A)) (ODUT C 2))): TRUE

P© NPT N

After the addition of io-traj-8-fifo, the query find-I0-seg-asn returns a single
hypothesized 10 segment only:

12. (((s1I-1 (C)) (IN A 1)) ((S1-1 (B)) (OUT C 1))): FALSE
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as was to be expected. This is very encouraging indeed. Hypotheses are a neces-
sary evil in non-monotonic reasoning. They enable the reasoner to proceed under
conditions of incomplete knowledge. Yet, it is encouraging to see that few hy-
potheses were necessary in the first place, and that the only remaining hypothesis

at this point has been deactivated for all practical purposes by being negated.

6.3.3 Scenario 3

I only present the features that are specific to this scenario. This scenario is
used to illustrate the use of state equivalence. Hence we have the same input tra-

jectory and initial state, but the assumption set is asn-set: (exact abs-state).

initial-state: (s1-0 ())
asn-set: (exact abs-state)
in-traj-3: (in c 0)

(in a 1)

(in b 6)

(in nil 8)

The first prediction must evidently be the same as in the earlier scenarios. How-
ever, already in the second prediction, state abstraction comes to bear. We start

out with the following situation:

initial~-state: (si-1 (c))
in-traj~3: (in a 1)
(in b 6)
(in nil 8))
input Traj: ((IN A 1) (IN B 6) (IN NIL 8))
candidate input seg: ((SI-1 (C)) (IN A 5))

candidate input seg ((SI-1 (C)) (IN A 5)) does not exist.
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Length abstraction alone won’t do the trick. Since elm-1: exact, LDIR re-
duces the length until it finds a perfect match of input event and duration. It finds
two candidate IO segments in the LTMS:

4. (((sI-1 (B)) (IN A 1)) ((SI-1 (A)) (OUT B 1)))
11. (((81-0 ()) (IN A 1)) ((SI-0 ()) (OUT A 1)))

leading to the possible predictions:
(((s1-1 (C)) (IN A 1)) ((SI-1(A)) (OUT B 1)))
(((s1-1 (C)) (IN A 1)) ((sI-0 (O) (OUT A 1))).

Since both predictions are consistent with all the entries currently in the LTMS,
it picks one arbitrarily.. LDIR decided on the second candidate, thus:

hypo IO seg: (((SI-1 (C)) (IN A 1)) ((SI-0 ()) (OUT A 1)))
via ABS-LENGTH & ABS-STATE.

No remodeling job this time! LDIR is much more destructive now — vessel “C”

is sunk in the shipyard.

The remainder of the predictions are straightforward. The predicted input and

output trajectories are (see Figure 6.2):

Input-Trajectory-III: ((SI-0 ()) (IN C 1))
((s1-1 (C)) (IN A 1))
((s1-0 ()) (IN NIL 3))
((s1-0 (O) (IN NIL 1))
((s1-0 ()) (IN B 2))

Output-Trajectory-III: ((SI-1 (C)) (OUT NIL 1))
((s1-0 ()) (OUT A 1))
((s1-0 ()) (OUT NIL 3))
((s1-0 ()) (OUT NIL 1))
((s1-0 ()) (OUT B 2))).
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Note that the partitioning of the input trajectory is different than in the previ-

ous two scenarios. Now, we can query the LTMS to find all IO segments.

(((8I-1 (B)) (IN NIL 2)) ((81-0 ()) (OUT B 2))): TRUE
(((sI-1 (C)) (IN B 1)) ((8I-1 (B)) (OUT C 1))): TRUE
(((SI-1 (4)) (IN NIL 1)) ((SI-0 ()) (OUT A 1))): TRUE
(((sI-1 (B)) (IN A 1)) ((SI-1 (A)) (OUT B 1))): TRUE
(((s1-0 ()) (IN C 2)) ((sI-1 (C)) (OUT NIL 2))): TRUE
(((s1-0 ()) (IN NIL 3)) ((s1-0 ()) (OUT NIL 3))): TRUE
(((81-0 ()) (IN B 1)) ((SI-1 (B)) (OUT NIL 1))): TRUE
((€s1-0 ()) (IN C 3)) ((s1I-0 O)) (OUT C 3))): TRUE

9. (((s1-0 ()) (IN B 2)) ((s1-0 ()) (OUT B 2))): TRUE

10. (((s1-0 ()) (IN NIL 1)) ((SI-0 ()) (OUT NIL 1))): TRUE
11. (((s1-0 O) (IN A 1)) ((SI-0 ()) (OUT A 1))): TRUE

12. (((SI-1 (C)) (IN A 1)) ((s1-0 ())) (OUT A 1))): TRUE
13. (((s1-0 ()) (IN C 1)) ((SI-1 (C)) (DUT NIL 1))): TRUE

PN E LN

Of these IO segments, the last two are hypotheses. As before, they can be

obtained separately by using the query find-io-seg-asn.

Again, adding io-traj-3-fifo results in an additional 10 segment:

14. (((SI-1 (C)) (IN A 2)) ((5I-1 (A)) (OUT C 2))): TRUE

This observed 10 segment also contradicts (and thus negates) the hypothesized

IO segment #12, which is also the only remaining hypothesized 10 segment given

the three observed IO trajectories, thus a similar situation as in Scenario 2.
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Figure 6.2, Predicted IO trajectories (FIFO Discipline):
I0-Trajectory-II, and I0-Trajectory-III
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6.4 PR vs FIFO Disciplines

Let us now introduce 10 trajectory io-traj-4 (cf. Figure 6.1), which has its in-
put events occurring at the same time points as io-traj-2. This IO trajectory is
observed from Repair-Station-2, and thus adheres to a Priority Ranking (PR) dis-

cipline.

io-traj-4: ((si-0 ()) (in b 1) (out nil 1))
((si-1 (b)) (in a 1) (out a 1))
((si-1 (b)) (in nil 1) (out b 1))
((s1i-0 ()) (in mnil 3) (out nil 3))
((si-0 ()) (in a 1) (out a 1))
((si-0 () (in nil 1) (out nil 1))
((si=0 )) (in c 2) (out nil 2))
((si-1 (c)) (in b 2) (out b 2))
((si-1 (c)) (in nil 1) (out c 1))
((si-0 ()) (in nil 1) (out nil 1)).

The policy adhered to by Repair-Station-2 entails more than just a regular
priority ranking of the waiting queue. Newly arriving vessels of type “B” preempt
vessels of type “C” that are currently being serviced, and newly arriving vessels of
type “A” preempt all vessels of other types.

I shall assume that io-traj-1 and io-traj-4 have been actually observed. This

leads to the following entries in LTMS:

(((s1-1 (C)) (IN NIL 1)) ((sI-0 ()) (OUT C 1))): TRUE
(((SI-1 (C)) (IN B 2)) ((SI-1 (C)) (OUT B 2))): TRUE
(((SI-1 (B)) (IN NIL 1)) ((SI-0 ()) (OUT B 1))): TRUE
(((SI-1 (B)) (IN A 1)) ((SI-1 (B)) (OUT A 1))): TRUE
(((s1-0 ()) (IN C 2)) ((sI-1 (C)) (OUT NIL 2))): TRUE
(((81-0 ()) (IN NIL 3)) ((SI-0 ()) (OUT NIL 3))): TRUE
(((8I-0 ()) (IN B 1)) ((sI-1 (B)) (OUT NIL 1))): TRUE
(((SI-0 ()) (IN ¢ 3)) ((sI-0 ()) (OUT C 3))): TRUE
(((81-0 ()) (IN B 2)) ((SI-0 ()) (OUT B 2))): TRUE
(((81I-0 ()) (IN NIL 1)) ((sI-0 ()) (OUT NIL 1))): TRUE
(((SI-0 ()) (IN A 1)) ((SI-0 ()) (OUT A 1))): TRUE

2o O XSO R WD

—
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It can be noticed at once that the created database above contradicts that ob-

tained for the FIFO discipline. In particular, the two entries #4

4. (((SI-1 (B)) (IN A 1)) ((sI-1 (a)) (ouT B 1))) FIFO
4, (((SI-1 (B)) (IN A 1)) ((sI-1 (B)) (OUT A 1))) PR

are in conflict with each other. This is an interesting observation. It shows that
LDIR is able to distinguish between the two disciplines on the basis of just a few

observations alone.

Similar to the earlier scenarios, several prospective output trajectories can be
predicted for the previously used input trajectory in-traj-8 in accordance with the
selected assumption sets. Since we understand the internal working of Repair-
Station-2, we can, of course, know the true behavior of the system as it deals with
in-traj-3. For Repair-Station-2 (RS-2), the correct observed IO trajectory io-traj-
3-pris:

io-traj-3-pr: ((si-0 ()) (in c¢ 1) (out nil 1))
((si-1 (¢)) (in a 1) (out a 1))
((si-1 (¢)) (in nil 2) (out c 2))
((si-0 ()) (in nil 3) (out nil 3))
((si-0 O) (in b 2) (out b 2))
((si-0 ()) (in nil 1) (out mnil 1)).

In Scenario 4, we shall predict the behavior of RS-2 given the same initial state

and assumption sets as in Scenario 1.

initial-state: (si-0 Q)
asn-set: (longest abs-state)
in-traj-3: (in c 0)

(in a 1)

(in b 6)

(in nil 8)
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For Scenario 4, the predicted input and output trajectories are (cf. Figure 6.3):

Input-Trajectory-IV: ((SI-0 ()) (IN C 1))
((s1-1 (€)) (IN A 4))
((s1-0 ()) (IN NIL 1))
((s1-0 ()) (IN B 2))

Output-Trajectory-IV: ((SI-1 (C)) (OUT NIL 1))
((s1-0 () (OUT C 4))
((s1-0 ()) (OUT NIL 1))
((s1-0 (O) (OUT B 2)))

with the LTMS having added the following 2 hypothesized 10 segments:

12. (((8I-0 ()) (IN C 1)) ((SI-1 (c)) (OUT NIL 1))): TRUE
13. (((SI-1 (C)) (IN A 4)) ((s1-0 ()) (OUT C 4))): TRUE

Input abstraction had to be used on the second of the predicted IO segments.

For the reduced input segment:

((s1-1 (C)) (IN A 4))

the following candidate IO segments can be used for abstraction:

1. (((s1-1 (C)) (IN NIL 1)) ((s1-0 ()) (OUT C 1))): TRUE
2. (((sI-1 (C)) (IN B 2)) ((s1-1 (C)) (OUT B 2))): TRUE

out of which segment #1 was chosen, leading to the prediction:

(((s1-1 (C)) (IN A 4)) ((sI-0 ()) (OUT C 4)))

i.e., RS-2 is also in the ship-sinking business. This time around it was the newly

arriving vessel of type “A” that magically disappeared.
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A comparison of hypothesized 10 segments from the databases corresponding to
the similar Scenarios 1 and 4 shows that the hypotheses are also inconsistent with
each other. In particular, IO segments #15 from Scenario 1 and #13 of Scenario 4

contradict each other:

15. (((SI-1 (C)) (IN A 4)) ((sI-1 (B)) (OUT C 4))) (FIFO)
13. (((SI-1 (C)) (IN A 4)) ((SI-0 NIL) (OUT C 4))) (PR)

LDIR predicts two distinct 10 trajectories I0-Trajectory-II and I0-Traj-
ectory-IVon the basis of only two IO segments, whereby one of them ({z0-traj-1})
is identical in the two scenarios, and the other ({i0-traj-2} vs. {io-traj-4}) is influ-
enced by the selected shipyard discipline. Evidently, LDIR is able to distinguish
clearly between the two ship servicing disciplines (FIFO vs. PR). Alternatively, it
can be said that LDIR will not predict the true 10 trajectory io-traj-3-pr given the
observations to-traj-1 and to-traj-2; similarly, LDIR will not predict the true 10

trajectory io-traj-3-fifo based on i0-traj-1 and to-traj-4. This is encouraging indeed.

As Scenario 5, we shall consider RS-2 with the same initial state and assump-

tion sets that were previously used in Scenario 2:

initial-state: (si-0 ())
asn-set: (exact abs-input)

in-traj-3: (in c 0)
(in a 1)
(in b 6)
(in nil 8)

Scenario 5 leads to the predicted 10 trajectory I0O-Trajectory-V (cf. Fig-
ure 6.3):
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Input-Trajectory-V: ((SI-0 NIL) (IN C 1))
((s1-1 (C)) (IN A 2))
((s1-1 (C)) (IN NIL 1))
((s1-0 ()) (IN NIL 1))
((s1-0 ()) (IN NIL 1))
((s1-0 OO) (IN B 2)))

Output-Trajectory-V: ((SI-1 (C)) (OUT NIL 1))
((s1-1 (C)) (OUT B 2))
((s1-0 ()) (OUT C 1))
((s1-0 ()) (OUT NIL 1))
((s1-0 ()) (OUT NIL 1))
((s1-0 ()) (OUT B 2)))

As before, the second 10 segment called for input abstraction. The same two
IO segments from LTMS were available for abstraction. This time, LDIR chose
the other IO segment #2. As mentioned earlier, LDIR picks one arbitrarily in this

situation.

It can be noticed that the predicted I0-Trajectory-V resembles more closely
the observed io-traj-3-pr than the previously predicted I0-Trajectory-IV. The
same could be concluded when comparing the first three scenarios with the ob-
served {o-traj—B-ﬁfo. It seems that choosing elm-1: exact leads to better predic-
tions than elm-1: longest. It also seems that choosing elm-2: abs-input is
superior to elm-2: abs-state. In the following section, I shall try to quantify

this observation somewhat.
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Figure 6.3, Predicted IO trajectories (PR discipline): I0-Trajectory-IV and

I0-Trajectoxry-V
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6.5 Quantitative Evaluation of Predicted IO Trajectories

I have already mentioned that the early chapters of this dissertation present the
foundations of the methodology are laid in a rather formalistic fashion, whereas the
later chapters turn more and more to the tools of the experimentalist to provide
practical meaning and engineering relevance to the formalistic constructs intro-
duced earlier. It was unavoidable that, while turning to more and more applied
i1ssues, my terminology also changed somewhat. The early chapters of this disser-
tatlon are written in the language of formal logic, whereas this chapter is written
using a pseudo-lisp notation to explain the algorithms implemented in the LDIR
software.

In Chapter 5, I developed (rather informally) algorithms to hypothesize new 10
segments from a (non-empty) set of available I0 ségments and some assumptions
(abstractions). At this point, I wish to provide a definition of how IO segments
are generated by DIR in the language used in Chapter 4, in order to bridge the
gap between these chapters and help the user to understand how the various ter-
minologies and nomenclature used in this dissertation fit together.

In the literature, the symbol p is commonly used to denote non-monotonic
inference. Since DIR (non-monotonically) hypothesizes unobserved 10 segments
based on assumptions, I use the symbol p, to emphasize the use of abstrac-
tions. An IO segment « is said to be non-monotonically derivable from an input
segment ¢, and a non-empty set of available IO segments A under a given set of
assumptions, i.e., AU {ea, } b, «, if it can be hypothesized from the available
10 segments using the abstraction mechanisms specified in the assumption set. In
this way, we can refer to non-monotonic prediction of IO segments in a somewhat

well-defined context.

I now wish to assess the quality of the database maintained by LTMS, and the
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effectiveness of LDIR in using the available knowledge for predicting IO trajecto-
ries. We can say that the database maintained by LTMS constitutes the model
of the system, whereas predicting an IO trajectory represents a qualitative simu-
lation. Thus, assessing the quality of the database is synonymous with validating
the model, whereas assessing the quality of a prediction corresponds to verifying

the simulation.

More traditional modeling/simulation systems use goodness-of-fit measures to
assess the quality of a simulation. Also, since the model usually remains static
during the simulation, it is possible to separate the task of validating the model
from that of verifying the simulation. In LDIR, and in other qualitative model-
ing/simulation systems, these tasks are more intricate. In LDIR, the model does
not remain static during the simulation (new hypotheses are added on the fly, and
the available knowledge is constantly revised to maintain consistency among all
available facts and hypotheses). Also, the modeling and simulation engines are

basically the same algorithms applied in slightly different fashions.

Before I can define precisely what I mean by the quality of the database (the
model) in the context of LDIR, we need to understand what the term “quality”
entails. The quality of a knowledge maintenance system always has two compo-
nents that must be assessed separately, and that are always in competition with

each other. I shall illustrate these two properties with a simple example.

The warehouse of a large company stores many parts that it must sell when
they are needed. The warehouse manager keeps a book in which all parts are listed
with their part numbers, location in the warehouse, and prices. Unfortunately, the
knowledge is incomplete. There are many parts for which no prices are listed, and
other parts are missing altogether. The warehouse manager now has two choices:

he can work with the book as is. In this case, the reliability of the available
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knowledge is excellent, yet the completeness is not. If the apprentice is to sell a
part for which no price is listed, he must always look for the warehouse manager to
find out how much to charge. The other possibility is for the apprentice to estimate
the cost of the incomplete entries as best as the manager can within the limitations
of available time. As missing entries are added to the book, the better will the
knowledge becomes more complete. Unfortunately, the reliability will suffer in the

process.

The same is true for the database maintained by the LTMS. The more hy-
potheses are added to the database, the more complete the knowledge becomes.
However, the increase in completeness goes hand-in-hand with a reduction in re-
liability. Thus, when assessing the quality of the database, we shall define two
separate quality measures — one assessing the reliability of the database, and the

other assessing its completeness.

How do we assess completeness? I begin with a number of (fairly informal) ob-
servations about the cardinality of the spaces of hypothesized 10 segments. Given
a set of input segments, let their space of hypothesized 10 segments refer to those
hypotheses that are non-monotonically derivable based on some observed 10 seg-
ments and a unique abstraction type. For example, using abstraction abs-length
with some observed 10 segments leads to a space of hypothesized 10 segments for a
set of input segments. Another space of hypothesized 10 segments for the same set
of input segments and observed 10 segments can be non-monotonically derived us-
ing (abs-length, abs-input). Each of the three abstraction types (abs-length,
abs-input, and abs-state), usually leads to different hypothesized IO segments
(cf. Section 6.3). Of course, it is not necessary that the IO segments from these
three spaces are mutually exclusive. The completeness measure must somehow

be related to the cardinality of observed, hypothesized, and hypothesizable 10
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segments. A more precise definition will be given later.

How can reliability be assessed? Each abstraction type enforces a certain degree
of predictability. We can rank the three types of abstraction in order of increas-
ing compliance as: (1) length, (2) input event, and (3) state. I am using the term
“compliance” to indicate how forgiving an abstraction is (similar to the compliance
of a spring). The more compliant an abstraction is, the less reliable a hypothesis
will be, and the smaller the fidelity of a predicted 10 segment that is based on
this hypothesis. State abstractions make much stronger assumptions in generat-
ing hypothesized IO segments than either input event or length abstractions. I
shall illustrate this fact in due course with our shipyard example. Of course, it
is also possible to allow combinations of abstractions, as in the sample scenarios.
Having the ordering defined as given above, it is fairly straightforward to order
their combinations as well. If length, input event, and state are abstracted simul-
taneously, then the so hypothesized 10 segments are based on the most compliant

assumptions, allowing prediction of anything as long as consistency is not violated!

The compliance of an abstraction type offsets the fidelity of 10 segments hy-
pothesized based on it. In the most restrictive sense, the term “fidelity” might
refer to whether a hypothesized IO segment will eventually be confirmed or re-
jected. However, instead of postulating a dichotomy, I use the term fidelity to
indicate to what extent a hypothesized 10 segment is consistent with the available
IO segments. The stronger the compliance of an abstraction, the worse the fidelity
of hypothesized IO segments generated based on it — the fidelity of IO segments
degrades as abstractions with higher compliance are used. Thus, I use the terms

compliance and fidelity in relation to each other.

How does the predictability of LDIR relate to the number of observed 10 seg-
ments? The answer to this question depends on the candidate input trajectory.

The more 10 segments have been observed for a system in relation to a candidate
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length & input event
abstraction

Figure 6.5, Spaces of hypothesized 10 segments generated based on some asserted
IO segments and different types of abstractions.

input trajectory, the fewer IO segments would need to be hypothesized. Also,
more observed 10 segments place more restrictions on what IO segments can be

hypothesized.

Hence the size of the space of the hypothesized IO segments is related to both
the number of observed 10 segments and the types of abstractions used. In general,
the cardinality of the space of hypothesizable IO segments based on (abs-length,
abs-state), (abs-length, abs-input),or (abs-length) decreases in the order
given. Furthermoi‘e, while the number of hypothesizable 10 segments decreases
as less compliant types of abstractions are employed, their fidelity improves. Fig-
ure 6.5 shows the cardinality of spaces for hypothesized 10 segments corresponding

to three abstraction types in relation to a set of asserted IO segments.

Having different types of 10 segments (some asserted, others hypothesized), it

is possible to define two heuristic quality measures relating to: (1) the quality of
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ASSUMPTION USED FoM

— 4.0

exact 3.5

longest 3.0

(exact, abs-input) 2.5
(longest, abs-input) 2.0
(exact, abs-state) 1.5
(longest, abs-state) 1.0
(exact, abs-input, abs-state) 0.5
(longest, abs-input, abs-state) | 0.0

Table 6.1, Figures of merit assigned to some types of assumptions.

all available 10 segments in the database, i.e., the quality of the model, and (2)
the quality of a predicted IO trajectory given an input trajectory, i.e., the quality
of a simulation. A quality measure is a real-valued number in the range 0.0 to 1.0,

where larger values denote improved quality [Cel91].

Now let me introduce the term 10 segment fidelity in terms of a Figure of Merit
(FoM) assigned to it. Let Fups denote the absolute fidelity of the i** IO segment.
Asserted 10 segments have the highest figure of merit, whereas hypothesized 10
segments using the abstraction mechanism with the largest compliance have the
lowest figure of merit. I only consider the possibilities from the first two ele-
ments of elm-1 € {longest, exact, all} together with elm-2 € {abs-input,
abs-state} with some (arbitrarily) assigned figures of merit for each abstraction
(assumption) type. Table 6.1 suggests some assigned FoM for each combination
of abstraction types. In the chosen scale, the maximum and minimum absolute

fidelity values are Fi.x = 4.0 and Fii, = 0.0, respectively.
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Now, it is easy to define the relative fidelity of each 10 segment. Let:

Fs,
Frey, = FI::‘
denote the relative fidelity of an 10 segment. Assertions have the highest relative
fidelity (1.0), whereas hypotheses that are based on the abstractions with the
highest compliance have the lowest relative fidelity (0.0). Evidently, the relative
fidelity can be used as a quality measure.

Given all currently available IO segments in the LTMS database, we can define

the average relative fidelity as:

1 &
Favg= ;“ZFrelg

=1
where n denotes the number of 10 segments currently stored in the database. F,g
can also be used as a quality measure. We shall use F,,; as the reliability measure

of our model.

Given that we have a finite set of Complete input segments, each either being
a hypothesis or an assertion, let us call the number of all possible combinations
of initial states and input events N,%. Also, let us call the set of all combinations
of different initial states and input events that are currently present among the
(asserted and hypothesized) 10 segments N,, where N, < N,,.

We can introduce the evidence ratio measure:

Ep = —, 00< Er<1.0

S|=

Evidently, Er can also be used as a quality measure. We shall use this measure

as the completeness measure of our model. The interpretation of Eg is that, the

3Qften, the number of possible states the system can be in is infinite. I shall discuss in due
course how we handle this situation.
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greater the value of Eg, the fewer IO segments will need to be hypothesized in
relation to a fixed set of initial states and input events. Smaller values of Eg

indicate the converse.

A value of Er = 1.0 indicates that LDIR will never have to resort to either
input or state abstractions in hypothesizing 10 segments. This measure ignores

length abstractions, as they are in most cases fairly harmless.

Now, we can use F,y; and Eg to define Qmoda, the prediction quality of the

model, i.e., the overall quality of all available 10 segments in LTMS:

QModel = Favg : ER-

The two influencing factors of the prediction quality Qpodel are always in com-
petition with each other. Evidently, if the cardinality of all possible 10 segments
is exhausted through observations, Qmoge = 1.0. A useful feature of quality mea-
sures, as they were defined in [Cel91], is that multiple (usually competing) quality
measures can be simply multiplied with each other, leading to a multidimensional
new quality measure that takes into consideration all the influencing factors as-

sessed through the individual quality measures contributing to it.

Evidently, if no hypotheses have been made, F,,; shows a perfect score of 1.0.
However, when only few 10 segments are observed or hypothesized, Er will be
poor. On the other hand, if everything has been hypothesized that can be, Egr

shows a perfect score of 1.0, but this time around, F,y will be poor.

The average fidelity measure, F,,., and the evidence ratio measure, Er, are
adaptations of the entropy reduction measure, Hg, and the observation ratio mea-
sure, Og, used in SAPS [Cel91]. SAPS defines the quality of its inductive model

in a similar fashion as:
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Qm = Hp-Or

It uses Qur to distinguish between the relative virtues of different “masks” (the
abstraction mechanism used in SAPS), and chooses as the “optimal mask” the one
with the largest Qs value, i.e., it selects the abstraction mechanism that maxi-
mizes the predictability power of the qualitative model. LDIR currently does not
need to do so, because there are a small number of choices available in selecting
abstraction mechanisms, and their relative merits w.r.t. predictability power are
fairly well understood. In the future, however LDIR will be expanded to deal with
multi-input systems (as SAPS already does); at such time, Qmodel may be used by
LDIR as @ is currently used in SAPS.

If we don’t know yet what we wish to use the model for, i.e., which input
trajectory we are going to use to predict an output trajectory, this is the best we
can do. However, given an input trajectory, we can evaluate the quality of the 10
trajectory predicted by LDIR in more direct ways,i.e., we can predict the quality
of a simulation.

Since we already know the input segments we shall have to work with, the evi-
dence ratio is of no concern any longer. We only deal with the relative fidelities of
individual predicted IO segments. Making the supposition of statistical indepen-
dence of neighboring predicted 10 segments, we can postulate the following quality

measure:

m
Qsimu = [ Frey;
=1

where m denotes the number of predicted 10 segments. The supposition of sta-
tistical independence is obviously a preposterous one. Simulation output is never

statistically independent (unless we try to predict the next value of a noise gener-
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ator). However, we don’t have anything better to go by, and so we shall have to
live with this supposition. Most qualitative simulation systems do. For example,
SAPS does exactly the same, except that Fyq; is replaced by a measure of likelihood

of the prediction made.

6.5.1 Evaluation of the Shipyard Example

Let us now use the measures defined in the previous section to analyze the
predicted Scenarios 1 through 5 of the shipyard example.

When assessing the evidence ratio for the shipyard example, we are immediately
faced with a problem: the number of different possible states is infinite, since an
arbitrary number of ships can be waiting in the input queue. Consequently, we
need to replace the theoretical cardinality by a much smaller subset: the power set
of all initial states and input events that have ever been observed.

Unfortunately (or fortunately), we can’t know what we don’t know. We have
to live with this fact, and make the best of it. Luckily, the powerset of all ever
observed states is something that LDIR can compute. In the case of RS-1, LTMS
contains 4 different initial states and 4 input event types. The power set of these
two (independent) quantities is 16. In the case of RS-2, only 3 initial states have
ever been observed, since the state (SI-1 (A)) has never been seen by the sys-
tem. Evidently, no abstraction mechanism in the world will enable LDIR to make
a prediction of this state ... until the state shows up for the first time in an obser-
vation. Thereafter, we are dealing with an entirely new situation, and the evidence

measure will have to be revised.

Before proceeding with the remainder of this section, I note that the tables
given here are based on few data points. Thus, not much emphasis should put on
them!

Table 6.2 shows the fidelity measure, F,., and the evidence measure, Eg, of
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Observed 10 segments | Fio.y | Er = Qnroder
Repair-Station-1 (FIFO) | 1.0 0.5
Repair-Station-2 (PR) | 1.0 0.6667

Table 6.2, Quality measures for observed 10 segments from repair stations 1 & 2.

the databases of the two repair stations, RS-1 and RS-2, before any additional 10

segments were hypothesized.

Evidently, the fidelity measure shows a perfect score, since the databases don’t
yet contain any hypotheses. Given the observed 10 segments only, the prediction
quality of IO segments for the RS-2 is evidently better than that of RS-1. This is
because LDIR is more ignorant (innocent) in the case of RS-2, since it has never

seen the state (SI-1 (4)).

Given that there are 4 distinct initial states and 4 input events for RS-1, the
total number of combinations of initial states and input segments is 16. The ob-
served IO segments contain 8 different cases. Therefore, Er = 8/16. Considering
RS-2, the number of distinct initial states is 3; thus, LDIR can only imagine 12
combinations. The observed 10 segments for RS-2 also contain 8 different cases,

which leads to Eg = 8/12.

Now, we can look at quality measures for Scenarios 1 through 3 (cf. Table 6.4),
and compare them with each other. The quality measures of the model change

since the model itself is updated to include some hypotheses.

Looking at the quality of the model, we may conclude that this model is best
suited for predictions. However, the quality of the one predicted trajectory using
this model is dismal. Evidently, the fact that 4 of the 15 IO segments in the
database are hypotheses, has not been punished enough. This can easily be done

by proposing a third quality measure, the assertion ration measure:
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Favg ER QModel QSimul
I0-Trajectory-I 0.9 0.625 | 0.5625 | 0.1406
(longest, abs-input)
I0-Trajectory-II 0.9615 | 0.5625 | 0.5409 | 0.5469
(exact, abs-input)
I0-Trajectory-III | 0.9423 | 0.5625 0.53 | 0.3282
(longest, abs-state)

Table 6.3, Quality measures for Scenarios 1 through 3 (Repair-Station 1).

Favg ER AR QModel QSimul
I0-Trajectory-I 0.9 0.625 | 0.7333 | 0.4125 | 0.1406
(longest, abs-input)
I0-Trajectory-II 0.9615 | 0.5625 | 0.8462 | 0.4577 | 0.5469
(exact, abs-input)
I0-Trajectory-III | 0.9423 | 0.5625 | 0.8462 | 0.4485 | 0.3282
(longest, abs-state)

Table 6.4, Quality measures for Scenarios 1 through 3 (Repair-Station 1).

_ N4
" Nia+ Ny

where N4 denotes the number of assertions in the database, and Ny represents

Ar

the number of hypotheses. The modified model quality would then be evaluated

as:

@Model = Favg - Er - AR
Using the modified model quality measure, we obtain the following modified
table:
Now, there is a good correspondence between what the model quality stipulates
and what the simulation quality confirms. The original definition is left in the text

to show that there is a fairly high degree of heuristicism in the detailed definitions
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Favg ER AR QMadel QSimul
I0-Trajectory-1IV 0.9423 | 0.75 | 0.8462 | 0.5980 | 0.375
(longest, abs-input)
- I0-Trajectory-V 0.9615 | 0.75 | 0.8462 | 0.6102 | 0.5469
(exact, abs-input)

Table 6.5, Quality measures for Scenarios 4 and 5 (Repair-Station 2).

of these quality measures, and more fine tuning may be needed down the road; for
now, however the modified quality measures look rather promising.

Note that the evidence ratio has gone up in all cases (as it must), yet the fidelity
measure and the assertion ratio have both gone down, and the overall model quality
has in fact decreased, i.e., we didn’t do a very smart thing by augmenting the
LTMS with these hypotheses. In all likelihood, at least some of them will have to
be revoked (negated) in the future. Of course, we already know this to be true
from Section 6.3.3.

Among the three cases, both the model quality measure and the simulation
quality measure suggest that Scenario 2 is the best. Scenario 1 added so many
spooky hypotheses to the LTMS that its results are the most doubtful ones, al-
though the abstraction mechanism is valued more reliably, in general, than that
used by Scenario 3. The model and simulation quality measures agree in their
relative assessments of the three scenarios.

Let me now discuss the case of Repair-Station 2, i.e., Scenarios 4 and 5. The
tabulated results are as follows:

This time, the assessments of the model quality come in higher. The reason is
that (as far as LDIR knows), this system has a smaller number of degrees of free-
dom (a smaller cardinality); thus, there is less uncertainty when making guesses.
Again, the model and simulation quality measures are in good agreement with

each other.
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Now, I examine each of the predicted scenarios in terms of their behaviors. I
begin with I0-Trajectory-I. Evidently, the predicted IO trajectory is not the
expected one. Moreover, the order in which vessels are predicted to be repaired
is incorrect. Even though the first predicted 10 segment is consistent and correct,
the remaining part of the predicted IO trajectory is incorrect. LDIR predicted
vessel “C” to take longer than expected to be repaired. Consequently, all the
remaining IO segments turn out to be incorrect. This, obviously, need not be true
in general. The reason vessel “C’ requires 5 time units for repair is due to asking
for the longest match in the assumption set. Nevertheless, the number of vessels

entering and leaving the repair-station-1 is correct.

How about I0-Trajectory~II? The predicted IO trajectory satisfies the FIFO
discipline. This is accidental however, since inside the shipyard two major “re-
modeling jobs” have taken place that were not visible from the outside. The
amount of time predicted for vessels “C” and “A” to be serviced is incorrect.
Moreover, 10 segment (((SI-0 ()) (IN NIL 2)) ((SI-0 ()) (OUT NIL 2)))
is split into two identical 10 segments (((SI-0 ()) (IN NIL 1)) ((SI-0 ())
(OUT NIL 1))). This is due to asking for exact match and not having (((SI-0
()) (IN NIL 2)) ((SI~0 ()) (OUT NIL 2))) in I0-space-g. Evidently, this
deviation is harmless. I0-Trajectory-II looks better than I0O-Trajectory-I,
but the conclusion may be accidental, since the internally made abstractions are

still rather dubious.

(I0~Trajectory-III) shows the least agreement with the desired predicted 10
trajectory. We expected this since the assumption set is (longest, abs-state).
The abstraction of initial states is more compliant than that of input events. In

this scenario, vessel “C” disappeared altogether!

The above discussion shows that assessing a qualitative simulation in the same
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way as one would judge a quantitative simulation, i.e., in terms of a goodness-
of-fit measure, is problematic at best. The previously presented quality measures
are much more solid and reliable, in general, than any goodness-of-fit measure we
might come up with.

If this is the case, what is the purpose of the simulation? Had we provided the
system with more evidence (a higher evidence ratio) to start with, the quantitative
results of the simulation would also have been better. The problem is simply
that if the agreement between reality and prediction is poor, as in the shipyard
example, this is related to the problem of not having enough evidence, and not to
a principal flaw in the methodology. The proposed quality measures have a much
better chance of assessing the real strengths and weaknesses of such a model than
a simple output-to-output comparison.

However, there is also another implicit benefit of performing logic-based quali-
tative simulation runs. It relates to the possibility of understanding the underlying
reasoning processes of the qualitative simulator. A traditional weakness of simu-
lation is that simulation results are rarely enlightening [Cel91]. It is as difficult to
generalize knowledge from a simulation output as from a lab experiment. Many
different simulation runs are usually needed until a human researcher can discern
the general patterns behind the specific patterns generated by individual simula-
tion runs. In this respect, the DIR methodology exhibits an important advantage.
Its reasoning processes are immediately open to human interpretation. I shall talk

more about this facet of the DIR methodology in the following section.

6.6 Evaluation of DIR

Before evaluating DIR, it is helpful to discuss the basic characteristics of in-

ductive modeling/reasoning in general settings. An inductive modeler/reasoner

(e.g., [CM83, CM86, GN87, BZ87, MK83, Cel91, Gin93]) is basically comprised
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of a modeling engine and a simulation engine. The former creates a model from
some finite dataset by resorting to abstraction. The latter uses the model to make
predictions (cf. Figure 6.6). Usually, there exists a strict separation between the
modeling and simulation engines. Whereas the process of model creation is fre-
quently inductive, the once derived model seems to be generally used in a deductive

fashion during the process of simulation®.

The goal in creating the model is to allow exactly one prediction in every sit-
uation. In other words, the ideal model would be deterministic. However, due to
lack of data, often such an ideal model cannot be created without abstracting too
much. This is due to the fact that, at a desirable granularity level, data may either
support multiple predictions or none at all [Cel91]. To resolve the problem of mul-
tiple predictions, one or more of the following strategies can be used: (1) collect
additional data, (2) add more constraints or make the existing constraints more
stringent, (3) use figures of merit to choose among the alternatives, and (4) con-
sider all possibilities®. In the case that no prediction is possible, fewer constraints

or less restrictive constraints, and more compliant abstractions can be useful.

What about the simulation engine? What does it do? In its most basic form,
it is a pattern matcher. For any input that it receives, it finds its corresponding
output based on the model it operates on. However, it may take an active role
in dealing with the situation when either multiple or no predictions are possible,
yet without changing the model that it uses. In a more synergistic manner, it is
also possible for the modeling and simulation engines to interact with each other
in order to improve the model and overcome some of its restrictions (e.g., multiple

predictions). The discovery of no possible predictions is the responsibility of the

4Deductive models have a much higher validity value if they can be devised. This may explain
why existing inductive modeling methodologies are so keen on obtaining deductive models from
observed data.

5This is what is usually done in deductive qualitative modeling. This approach usually leads
to excessive branching, and is therefore only applicable when dealing with simple systems.
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Figure 6.6, Making predictions from observations.

simulation engine.

How does DIR relate to Figure 6.67 We know that DIR also operates on a model,
namely an iterative IOFO specification. However, the IOFO specification is not a
static model. Both newly arriving observations and previously made hypotheses
constantly change the contents of the databases, and thereby the model. Hence,
while (other quantitative and qualitative) simulation systems that operate on a
fixed model in a purely deductive fashion, DIR also induces new knowledge during

the simulation phase.

The iterative IOFO model consists of nothing more than a set of observed IO
segments with their associated states. Whereas the presence of states is a mild
indication of structure, the Complete IO segments are disjointed from each other
and do not constitute a structural model. An iterative IOFO does not specify any

explicit structure among IO segments.

Figure 6.7 shows the comparison of DIR with more traditional inductive mod-
eling/simulation systems. Most inductive modeling tools make assumptions about
the model structure and then use parameter estimation techniques minimizing the
distance between observed and simulated behavior. Once this process is concluded,

the model is in no way different from a deductively obtained structural model, and
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the same simulation engine can be used for both.

Other techniques, such as the well-known neural network approach [Gro88], re-
lax the requirement of prespecifying a structure somewhat, in that they operate on
a more general structure that can be fitted to various types of behavior. However,
neural network models are also parametric in nature. Different neural networks
may use different internal structures, and they may vary in the training algorithms
used for parameter optimization; however, once the network has been trained, it
can again be simulated using standard simulation engines. Some neural networks

don’t operate on a fixed model in that they keep learning while they simulate.

Other techniques, such as the System Approach Problem Solver (SAPS) [Cel91],
are non-parametric, just like DIR. Also, SAPS operates simply on a bunch of
unconnected data records, trying to find an optimal match between the current
input pattern and previously observed similar input patterns, using an interpolated
value of their outputs as the predicted new output value. However, contrary to
DIR, SAPS strictly separates the simulation task from the modeling task, and,

during simulation, the model remains fixed.

Most Al-based inductive systems [CM83, CM86, MK83, GN87] use non-temporal
logic-based languages such as VLy; [LMT77]. Consequently, they cannot easily rep-
resent time-dependent facts or beliefs. Of course, non-temporal logic can emulate
temporal logic. SAPS, for example, does this by treating past input and output
values as additional “current” inputs. To do so just requires additional work for
encoding the knowledge and providing sound semantics for it. The reasoning part
of DIR also uses non-témporal logic®; consequently, it is unable to reason about the
time content of its knowledge — there is none. However, the inference engine of
DIR is making use of time explicitly. It does not use any form of theorem prover,

be it a temporal or a non-temporal one; the implication of using time explicitly

Recall that an IO segment was abstracted to a proposition (cf. Section 5.4.1).
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Figure 6.7, A block diagram showing steps in predicting 10 trajectories using
deductive and inductive modeling approaches.

in making decisions allows DIR’s inference engine to account for causality among
what it knows about its assertions and hypotheses. As we already know, an output
segment is supposed to be caused by an input segment. Furthermore, the output
state of one 10 segment must be identical to the input state of the subsequent one.
In this respect, DIR appears to be better equipped than other logic-based systems
to deal with situations where it is necessary to use causality explicitly in making
hypotheses while maintaining consistency among all available facts and beliefs.

Among the existing inductive modeling approaches, the inductive modeling ap-
proach conceptualized by [KIi85] and subsequently advocated and extended by
[Cel91] is the one closest to DIR. This methodology is commonly referred to as
the General System Problem Solving (GSPS) approach to inductive modeling, and
the specific implementation discussed in [Cel91] is called the Systems Approach
Problem Solver (SAPS). In the sequel, I shall give a brief overview of what SAPS
does, and how this relates to DIR. For a comprehensive exposition of GSPS and
SAPS, I refer the reader to [K1i85, Cel91].

SAPS is an inductive modeling approach that also operates on observed in-
put/output trajectories. SAPS was designed to inductively model the behavior
of continuous-time Multi-Input Single-Output (MISO) systems. It provides guide-
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lines converting continuous trajectories into their counterpart discrete episode. The
conversion process is called recoding. The dynamics of the system are captured by
considering not only the current input values as system inputs, but also past values

of all the inputs and of the output.

SAPS uses the concept of a mask to select from among all the possible in-
puts (usually many) the subset that is most representative for capturing the in-
put/output behavior of the system. If the subset is too large, often no matching
input pattern can be found; if it is too small, we get multiple matchings. Thus,
the mask represents an abstraction mechanism. “Modeling” in SAPS simply refers
to the process of finding the optimal mask, i.e., selecting the most appropriate
abstraction mechanism among many. In this respect, SAPS differs substantially
from LDIR. In LDIR, the abstraction mechanism is user-specified, and “modeling”
refers to the process of applying that abstraction mechanism to a set of training
10 trajectories, cutting them into appropriate 10 segments while enlisting the help

of LTMS for preserving consistency among them.

SAPS uses quality measures (a reliability measure and a .completeness measure)
to select the optimal mask among the many candidate masks. Once the optimal
mask has been determined, the process of generating the database to be used
during simulation is much simpler in SAPS than its counterpart in LDIR. SAPS
doesn’t care about consistency at all. Its database is full of contradictions. How-
ever, multiple occurrences of the same input pattern are stored in the database
independently, and a “voting strategy” is used to decide which output is the most
likely one. For this reason, it is important that each input pattern be recorded at
least five times whenever possible [Cel91]. An advantage of this approach is that
it provides the simulation engine with a measure of likelihood of correctness of the

prediction made, a feature that is currently not provided by LDIR.

Also the process of qualitative simulation is much less sophisticated in SAPS
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than in LDIR. SAPS simply looks for similar input patterns in its (usually large)
database, picks out the five nearest neighbors, and generates as the prediction of

the new output a weighted average of the outputs of these five neighbors.

Now, I summarize the major differences and similarities between the two ap-
proaches: (1) SAPS is much more sophisticated than LDIR w.r.t. the selection
of the abstraction mechanism. In SAPS, this process is fully automated, whereas
in LDIR, the abstraction mechanism is user-specified. (2) LDIR is much more
sophisticated than SAPS in its reasoning mechanisms. SAPS reasons in a strictly
monotonic fashion. Once SAPS convinces itself that the earth carries a methane
atmosphere, nothing in the world will ever make it change its mind! (3) LDIR is,
due to its non-monotonic reasoning capabilities, much better geared to deal with
incomplete information than SAPS is. Because of its “linear mindset,” SAPS is
stuck if it ever, during simulation, encounters a situation that it has never seen
before. SAPS solves this problem by reasoning with several suboptimal masks
(several databases) in parallel. In the very worst case, it can still toss a coin. How-
ever, by the time SAPS simulates, it no longer knows how to relax its constraints
or work with more compliant abstractions. (4) SAPS was designed to deal with
continuously changing phenomena. LDIR was designed to deal with discrete-event
systems. However, since SAPS discretizes the continuous-time trajectories into
discrete-time episodes — which, in turn, can be represented using discrete events
— LDIR can also conceptually handle the types of systems that SAPS is geared to
work with. The converse is not necessarily true. (5) SAPS is much further devel-
oped than LDIR. SAPS is a fully operational software, whereas LDIR is currently
only a prototype. (6) SAPS is currently able to deal with much more complex
(multi-input) systems than LDIR is. For this reason, it is too early to provide a

comparison of the computational efficiency of the two reasoners.
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I continue with the evaluation of LDIR’s performance. In the literature, the
performance of deductive as well as inductive models is generally judged using some
kind of goodness-of-fit measure, looking solely at the accuracy of the predictions
made by the reasoner. In this way, the evaluation criteria only implicitly take
into account the processes of model generation and simulation. As an example, I
mention a theory called Probably Approzimately Correct (PAC) [Val84]. The term
PAC says that a system will probably learn rules that are approximately correct.
Given some observations (training examples), it uses probability theory to compute
to what extent rules learned are correct for some desired accuracy and confidence

levels.

I am, however, as interested in the process of inductive modeling itself as [ am
in the predictions made by the reasoner. Thus, I assess LDIR’s performance along
three axes — (1) how accurate its predicted IO trajectories are; (2) how flexible it
is in making predictions; and (3) to what extent its underlying reasoning is explicit
and accessible to the user. The first measure is a quantitative one, whereas the

other two are qualitative measures.

Accuracy is a quantitative measure that can be used to rank alternative pre-
dictions. Flezibility refers to LDIR’s ability to make predictions on the basis of
a few observed 10 segments alone, i.e., its performance when confronted with in-
complete knowledge. Flexibility also includes incremental learning, in that LDIR’s
predictions should improve as more data are accumulated. Finally, LDIR’s acces-
sibility of reasoning enables the user to trace back and understand why and how a
particular 10 trajectory has been predicted. Every hypothesized 10 segment has
a reason associated with it. The system is responsible for maintaining consistency
among all IO segments and their associated reasons for believing in them. These

reasons are explicitly available to the user.
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Looking at the results shown in Sections 6.3 and 6.4, the performance of LDIR
in terms of the accuracy of predicted IO segments (first axis) does not seem very
impressive yet. However, this is simply due to the very limited data that LTMS
had been fed with. It would be very easy to get more accurate results, but it is
much more interesting to watch LDIR’s behavior while lacking sufficient data to
do the job right. Furthermore, as LDIR was described, it does not rely on any
domain-specific knowledge such as different types of bias. In logical approaches, for
example so-called theoretical bias is often used [GN87]”. While LDIR. uses logical
bias (restricting the type of 10 segments), it does not use any conceptual bias.
Of course, there exists no fundamental difficulty in incorporating domain-specific
knowledge into the methodology if so desired. Therefore, LDIR’s performance
should be judged accordingly. Of course, it is straightforward to use the quality
measures introduced in Section 6.5 in order to optimize the abstraction mechanism
in use. Instead of relying on the user’s insight, the system could use the all option
for length abstraction, and allow both input and state abstraction. It could then
use the quality measures to sort through the predictions made, and come up with

the one that offers the overall best quality measures.

Now, I look at the next axis of LDIR’s evaluation. One aspect of LDIR’s
flexibility is that it can predict IO trajectories with few data by making proper ab-
stractions. The lack of sufficient data is in fact the earlier mentioned Qualification
Problem, and abstraction mechanisms can be used to tackle it. Another aspect of
LDIR’s flexibility is its ability to learn incrementally. LDIR is not restricted to
“one-shot” type learning and hypothesizing of IO segments. As was shown in Sec-
tion 6.3 and 6.4, other observed 10 segments can be added to the already observed

10 trajectories as long as they are consistent with the previously stored. There

"Theoretical bias refers to conceptual and logical forms of bias. The former restricts the
vocabulary from which sentences can be constructed. The latter restricts the types of sentences
(e.g., only allowing conjunctive formulas.)
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exists a subtle point here, though. While LDIR is able to detect those IO segments
that are causally consistent (inconsistent) with the existing 10 segments, it cannot
do so for those that are not causally related. In other words, it can only detect
consistency (or inconsistency) between two 10 segments when they are causally
related.

Finally, it is important to know how a particular IO trajectory is predicted and
what its merits are (third axis). Due to the underlying explicit reasonings provided
by LTMS, we know know why and how an IO segment is predicted. Any predicted
IO trajectory generated by LDIR is supported with explicit reasons indicating the
type of abstractions used. This is an important feature of LDIR. It distinguishes it
from other inductive modeling approaches since its internal reasoning mechanisms
are similar to those of a human modeler. LDIR makes decisions (hypotheses) that
are supported by the available data, yet it is also capable of making assumptions
to enable predictions when the available data are insufficient. It is prepared to
revise its predictions whenever warranted. In this way, some of the responsibilities

of a human modeler can safely be delegated to LDIR.

I conclude this chapter with a general assessment of DIR’s virtues. DIR can
operate on few data — it makes hypotheses that are supported by the available
data, yet is also capable of making assumptions to enable predictions when the
available data are insufficient. It is also prepared to revise its predictions whenever
this is warranted. Due to these two features, DIR can tackle the Qualification
Problem. Also, with respect to Figure 6.6, DIR does not adhere to a complete
separation of the modeling and the simulation engines. Finally, DIR leaves a trace

of its decisions that are comprehensible and may prove useful to human modelers.
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Chapter 7 Conclusions

This chapter begins with a summary of this dissertation and its contributions,
continues with a discussion of the related approaches, and concludes with some

suggestions about future research directions.

7.1 Contributions

Given the recent advances in knowledge representation and in particular non-
monotonic reasoning, | proposed an inductive modeling methodology to include
abstraction as an integral part of modeling. The ability to integrate abstraction
as a feature of a modeling framework can support modeling capabilities that have
only been within the reach of human modelers.

I have defined and developed some preliminary steps toward the development of
this new inductive modeling methodology for discrete-event systems. 1 used some
observed IO trajectories for single input/single output discrete-event dynamic sys-
tems as the starting point. The systems are supposed to be causal, deterministic,
and time-invariant. Then, I developed a specification of a system at the level of
segmented input/output trajectories. In particular, I took the IOFO specification
and derived its iterative specification, G, by identifying 10 segments such that
they can be composed to form the originally observed 10 trajectories as well as
some which are unobserved. The iterative IOFO system specification resulted in
a new abstract stratification of models. I showed that system specification at this
finer level enables the inducement of some unobserved IO trajectories from the

observed 10 segments.

To derive an iterative specification, it was necessary to identify 10 segments

from IO trajectories. Supposing that only IO trajectories with their initial states
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are observed, then IO trajectories must be partitioned into IO segments. An
assumption set-1 was proposed and defined as the underlying basis for partitioning
and identifying the IO segments. Based on assumption set-I, granularity levels
of input/output variables were determined. Also, the assignment of states to I0

segments was handled by the assumption set-I.

I also proposed assumption set-II to deal with the qualification problem. Al-
though the iterative IOFO specification by itself allows some degree of predictabil-
ity, the assumption set-II is the basis for abstraction. In particular, assumption
set-II allows extending the space of predictable IO trajectories by properly using

abstractions to deal with lack of complete data.

Based on the iterative system specification, four types of discrete-event input
segments were defined. Given these input segments, I derived four types of discrete-
event input/output segments. From these segments, two input segments and two
input/output segments were selected. Then, another specification of the iterative
specification, @;, was formulated containing these well-defined 10 segments with
their initial and final states being either observed or predicted. This new for-
mulation of the iterative specification was based on the unique representation of
I0 segment pair. I continued with defining three types of equivalence relations
(i.e., length-equivalence, input-equivalence, and state-equivalence) for discrete-
event segments. These equivalence relations provided the basis for abstracting
length, input-event, and/or state of an IO segment to construct a new 10 segment

from 1it.

To handle assumption set-1I appropriately and consistently, I argued that tradi-
tional reasoning strategies are inappropriate. Then, I proposed using non-monotonic
reasoning and in particular a Logic-based TMS. I discussed how inductive mod-
eling is a new application area of NMR. Using the system specification é; the

equivalence relations, and the LTMS, I arrived at what I had hoped for — the
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skeleton of a Discrete-event Inductive Reasoner. The LTMS’s mechanisms were
shown to be appropriate for handling the non-monotonicity inherent in inductive

modeling.

Since DIR is essentially a problem solver, it was necessary to make some choices
about how to represent 10 segments of the iterative specification for use in the
LTMS. Since we are interested in simple forms of abstractions, I chose to represent

IO segments within the language of Propositional Calculus.

I showed how equivalence relations can be used in conjunction with LTMS to
construct and eventually hypothesize 10 segments based on length, input event,
or/and state abstractions. A precise vocabulary was developed to distinguish 10
segments with or without assigned beliefs. The existing IO segments with as-
signed beliefs were classified as assertions or hypotheses. Likewise, the candidate
(observed or constructed) IO segments without any belief assignment were classi-
fied as observed or predicted. Then, I developed a set of consistency axioms to aid
DIR in maintaining consistent IO segments. When these axioms were satisfied,
addition of the candidate IO segments to the existing 10 segments was granted
since consistency was assured. The faith of candidate IO segments was tabulated

w.r.t. the consistency axioms and the existing IO segments.

I showed how to partition an input trajectory into candidate input segments
in order to predict consistent 10 trajectories. To determine a candidate input
segment from an input trajectory, I defined three choices. Two of the choices
indicate whether predicted IO trajectories should be constructed using 10 segments
with maximum length or with exactly the same length as those already observed
or hypothesized. The third choice allows prediction of IO trajectories that are
constructed from IO segments with maximum length, exact length, or any length
in between. With the ability to partition an input trajectory and predicting 10

segments based on the available data and assumption set-1I, DIR has the means
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to predict 10 trajectories.

I have implemented a prototype of DIR in Common-Lisp. The implementa-
tion, called LDIR, consisted of the design of an inference engine capable of storing
observed 10 segments, constructing (predicting) unobserved 10 segments, parti-
tioning of an input trajectory into candidate input segments, and predicting 10
trajectories. The inference engine then was interfaced with an existing LTMS to
allow reasoning with the observed and hypothesized 10 segments. The main mod-
ules of the LDIR were described. The software was used with the shipyard example
to test the discrete-event inductive reasoner. Several sample scenarios with unique
characteristics were predicted based on a few observed input/output trajectories

and some user specified assumptions reflecting allowable abstractions.

To evaluate the performance of DIR and in particular LDIR, the three types of
abstractions were ranked based on their compliance. Informally, I discussed how
the cardinalities of hypothesized IO segments are related to one another. Then, I
provided some simple fidelity assignments based on the variations of assumption
set-II for different types of hypothesized 10 segments. Since the DIR approach to
modeling is different from the existing approaches, I continued with devising an
evaluation scheme for LDIR. Two quality measures were defined. In particular,
quality of a model (observed and predicted 10 segments) was defined to compare
alternative models. Also, quality of a simulation was defined to compare alter-
native predicted IO trajectories. Using these quality measures, the evaluation of
the shipyard scenarios showed that LDIR predictions are as expected. I made a
comparison of DIR principles with the traditional inductive modeling methodolo-
gies and pointed out that DIR meets some of the goals of a non-standard modeling
methodology. In particular, LDIR was compared with SAPS, and some similarities

were pointed out between LDIR and qualitative deductive modeling.
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7.2 Related Research

The field of machine learning has attracted researchers from mathematics, com-
puter science, cognitive science and engineering. Three distinct research programs
have emerged during the last few decades [CM86]: (1) neural network modeling and
decision theoretic techniques; (2) symbolic concept formation; and (3) knowledge

intensive, domain-specific learning.

At the present time, it is impractical to engage in a comparison of the DIR
methodology with existing approaches in each of the above research disciplines.
This is largely due to the nature of research in inductive modeling (also called Ma-
chine Learning within the Artificial Intelligence community). Ginsberg ([Gin93],
p. 300) says the following about the status of Machine Learning: “The status
of learning in Al is like the status of planning, only more so: The problems are
harder and recognized solutions are rarer.” Thus, I have chosen to mainly discuss

the research activities that are closest to what has been done here.

Nevertheless, before discussing some specific approaches which are aimed at
tackling the class of systems considered here, I'll make some brief remarks about
some of the main differences between the discrete-event inductive reasoning ap-

proach and statistical and neural network approaches.

Statistical approaches cannot handle abstractions in explicit form and conse-
quently are unable to reason about any abstractions that may be made. Statistical
abstractions are the means by which the certainty of a variable either is deem-
phasized or emphasized. In this way, some aspects of a system can be ignored
altogether. In DIR, from the outset, handling of abstractions is introduced as part
of the inductive modeling framework. Consequently, in statistical approaches, it
is the (human) user who has to take an active role in providing the required ab-

stractions, even those that are simple and can be handled automatically.
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Neural networks approaches can have similar characteristics to statistical ap-
proaches. Moreover, their abstraction mechanisms are founded on a solid theory
to a lesser extent than in the case of statistical approaches. Another distinction
between DIR and these approaches is that they seem to be better equipped to han-
dle problems with low level granularity. This advantage is mainly because much
of the machinery of these approaches does not require explicit abstractions and
reasoning. Presently, it is unclear how much the DIR, as described here, might
suffer if it were to deal with problems that require fine grain input/output repre-
sentation. The point of importance is to recognize which of the methodologies are

applicable for what types of problems.

Now, I turn to Al-based approaches. The approaches addressed by the ma-
chine learning community are (deductive and inductive) generalization learning,
discovery learning, and explanation-based learning. Various algorithms have been
developed to handle problems that fit each of these. Of these, the inductive gen-
eralization approach appears to be the closest to the DIR approach. Prominent
inductive learning algorithms are AQ11 [LM77], ID3 [Qui83], and HCV [Hon85].
Wu [Wu93] points out that these inductive learning algorithms suffer from a lack

of constructive learning, incremental learning, and learning from data bases.

DIR addresses the first two — constructive and incremental learning. The DIR
framework naturally supports both. The iterative IOFO specification provides
a mathematical structure for dealing with creating causal relationships (or rules)
between inputs and outputs. The non-monotonic reasoning approach ensures incre-
mental learning in a well-defined fashion. This type of reasoning is more powerful
than traditional rule-based approaches where rules have to be verified for proper
behavior by the knowledge engineer. The combination of the IOFQO representation
and the non-monotonic reasoning provides explicit causality among input/output

pairs and, consequently, consistency of all the input/output pairs (or the inductive
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model.)

This work has been concerned with systems with states. Other research ef-
forts in inductive modeling that also have focused on such systems are the works
of Biermann and Feldman [BF72], Biermann [Bie72], Cellier [Cel91], Dietterich
[Die84, AD94], Gerardy [Ger89].

I already discussed in some detail how DIR and SAPS relate to each other. Now,
I say a few words about the approach of Dietterich. He discusses his approach in

relation to those of Biermann and Feldman [BF72], Biermann [Bie72].

Dietterich’s [Die84] approach is concerned with learning about systems that
have states (i.e., dynamical systems.) His approach to learning is called Iterative
Ertension Method by which partial theories are constructed successively. In this
approach, the learner applies a partial theory to interpret the observed data, from
which additional constraints are obtained to create another (partial) theory. A
revised structure as well as new values for the state variables create an extended
theory. These constraints are then used for hypothesizing additional internal state
variables. The process iterates until a theory for the entire system is obtained.
In [Die84], a program called EG is said to be under development. This program
is to apply the iterative extension method strategy to learning about the UNIX

operating system.

In concept, DIR and EG share some common goals. The EG program is said to
contain two major subprograms: a reasoner and a theory formation engine. Thus,
both EG and DIR use the same overall architecture. In terms of the reasoning
mechanism, EG uses forward reasoning and dependency-directed backtracking of
Stallman and Sussman [SS77], while DIR uses a logic-based TMS. In DIR, as-
sumptions play a major role in predicting unobserved 10 segments. EG’s theory-
formation engine is a means-ends analysis planner. DIR, on the other hand, uses

the causality principle along with assumptions to predict 10 segments. Inciden-
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tally, the name “theory-formation” is a better term than the vague “inference
engine,” which I have been using throughout this text. I only found this paper
after I had already completed most of the writing!

Also, Dietterich studies under what conditions his method is applicable. In con-
trast, DIR was developed within a modeling framework. Conséquently, the type
of conditions that were considered by Dietterich are already contained intrinsically
in the modeling formalism from the onset. Therefore, while the iterative extension
method and discrete-event inductive modeling share similar ideas, they have funda-
mental differences. With few data, DIR is able to hypothesize output trajectories.
DIR is developed from a modeling framework point of view and strives to provide
a unifying framework for modeling and reasoning. The process of abstraction is a
part of the inductive modeling methodology. The reasoning basis of DIR differs in

significant ways from that offered by the iterative extension method.

7.3 Future Work

To continue with the work reported, two paths may be followed: applied and
theoretical. Obviously, some of the following suggestions lend themselves to both
applied and theoretical research. (1) Characterizing abstraction handling formally
within a non-monotonic reasoning approach to provide valuable insight into the
reasoning processes of DIR; (2) Studying DIR’s behavior with respect to theory of
Probably Approximately Correct; (3) Allowing the use of domain-specific knowl-
edge in the reasoning process; (4) Applying other types of truth maintenance sys-
tems such as ATMS; Identifying and incorporating better means to handle multiple
predictions; (5) Extending DIR to handle multi-input/output systems; (6) Includ-
ing the assumption set-I in DIR, i.e., handling assumption set-I and assumption
set-1I simultaneously; (7) And probably most importantly, applying LDIR to other
types of systems.
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