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ABSTRACT

This research examines an approach to modeling and simulating a distributed
object computing (DOC) system as a set of discrete software components mapped onto a
set of networked processing nodes. Our overal modeling approach has clearly separated
hardware and software components enabling co-design engineering. The software
component models form a distributed cooperative object (DCO) model to represent
interacting software objects. The hardware component models form aloosely coupled
network (LCN) model of processing nodes, network gates, and interconnecting
communication links. The distribution of DCO software objects across LCN processors
forms an Object System Mapping (OSM) model. The OSM provides a sufficient
specification to alow simulation investigations. Component model dynamics are
specified using the Discrete Event System Specification (DEV S) formalism.
Experimental frame components facilitate analysis of individual DCO and LCN

components as well as interdependent system behaviors.
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1. INTRODUCTION

Dramatic increases in both networking speeds and processing power has shifted
the computing paradigm from centralized to distributed processing. The economics of an
increasing performance-to-cost ratio is continuing to drive this shift with more and more
emphasis on building networked processing capabilities. Concurrently, ashiftis
occurring in the software industry with a move toward object-oriented technologies. This
object orientation trend is creating more and more interacting software components.
Distributed object computing represents the convergence of these two trends.

This convergence resultsin a highly complex interaction of the hardware and
software components forming the distributed object computing system. Two sets of
challenges associated with developing distributed computing systems are inherent
complexities and accidental complexities [Sch97]. Inherent complexities are aresult of
building systems that are distributed. Developers of distributed systems need to resolve
issues of distribution; e.g., how to detect and recover from network and host failures; how
to minimize communications latency and its impacts; and, how to partition software
objects to optimally balance computational |oads across host computers with traffic loads
across networks. Accidental complexities are aresult of inadequate tools and techniques
selected to construct distributed systems. Examples of accidental complexity include the
use of functional design methodologies; the use of platform specific coding tools; and the
use of concurrency and multithreading techniques in coding software components.

Functional design methodol ogies add complexity when attempting to extend or reuse
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software components. Platform specific coding tools add complexity when porting code
to additional platforms or interfacing components in a heterogeneous environment.
Concurrency and multithreading techniques can add unnecessary complexity to software
implementation, testing, and maintenance activities.

To attain alevel of tractability in developing a distributed object computing
system, we advocate the use of modeling and simulation tools to explore design
aternatives. Wetake a"co-design” and synthesis approach in considering the software
and hardware implications as well as the communications design issues. In modeling a
distributed system, our constructs deal with the partitioning of functionality into software
objects, defining software object interactions, distributing software objects across
processing nodes, selecting processing components and networking topol ogies, and

structuring communication protocols supporting the software object interactions.

1.1. Maotivation

Thisresearch is motivated by the growing need for methodol ogies and
mechanisms to support the design and analysis of complex distributed computing
systems. Distributed systems approaches are being pursued for a growing variety of
business endeavors, including process control and manufacturing, transportation
management, military command and control, finance, banking and medical records and
imaging. Often, technical conflicts arise in analyzing the user requirements and
constraints. For example, military command and control systems may need to exchange

large data | oads over bandwidth limited networks. A process control system may need
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guaranteed job throughputs from remote multi-tasked processors. The complex
interactions of such distributed systems make static analysis of behaviors and resource
utilization intractable.

To support dynamic analysis, we need a means to generate formal dynamic
models of the distributed object computing system of interest. A prime purpose of such
dynamic modelsis the use of ssmulation to facilitate the needed analysis. In this context,
there are three general approaches to system simulation: emulation, quantum simulation,
and directed simulation. Emulation refersto highly detailed simulations based on
modeling virtually complete system specifications. However, rapidly evolving studies of
system alternatives becomes more difficult at thislevel of specificity. At the other end of
the spectrum is quantum simulation. Quantum simulation is based on more abstract
descriptions (incomplete specification) of system behaviors, which rely on random
variables to model bulk behavior. Generally, such abstractions enable one to rapidly
analyze severa aternatives at adistinctly lower level of precision. In between these
extremes lies directed smulation. Directed simulations focus on modeling a specific
aspect of system behavior. Directed simulation requires detailed specifications around
the aspect being modeled while ignoring or abstracting away many other aspects.

Within the domain of distributed object computing, commercial products are
available to provide directed modeling of the communications network (e,g,, COMNET
[CAC99] and OPNET [MIL99]); or, of the software components and their interactions
independent of hardware constraints (e.g., WRIGHT [All97]); or, of hardware

components via various computer aided engineering tools (e.g., VHDL tools). A
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limitation of these available analysistools, however, is a convenient mechanism to model
the software components independent of the hardware components and then explore
alternative mappings (distribution) of the software components across the hardware.

The goal of thisresearch is to develop a means of modeling software systems
independent of the hardware architecture; modeling hardware architectures as networked
computing systems; and coupling these models to form a dynamic system of systems
model. Furthermore, this research aspires to have modeling mechanisms that support
early-on design analysis using quantum techniques, as well as, enabling specification

refinements for more directed analysis of system designs.

1.2. Enterprise Computing

The behavioral complexity associated with distributed object computing systems
arises from both the dynamics of individual components and the structural relationships
between components. Design decisions affecting the dynamics of individual components
and in coupling and structuring these components often have significant impacts on the
overall behavior and performance of the system under development or modification. For
example, processor speed and memory selections impact job throughputs. Buffer size
and network bandwidth drive the queuing and dropping of traffic. Choicesin networking
technol ogies constrain communication protocol options, and impact channel error rates.
Communication failure and recovery schemes and mechanisms control network behavior
under stress and load. Distribution of software objects across processing nodes affects

processing workloads and network traffic loads. The level of multi-threading
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implemented within software objects determines behavior in handling multiple,
simultaneous invocation requests. Exploring these design decisions and alternativesis
the focus of our interest.

The results of this research provide a modeling and simulation framework to
enable exploring the dynamic behavior consequences of design decisions. This
framework enables system designers to model software objects, hardware components,
networking protocols, and distribution of the software objects across the networked
hardware components. We call the resulting framework DEVS-DOC. DEVSrefersto
the underlying model specification formalism, the Discrete Event System Specification;
and DOC refersto the application context, Distributed Object Computing systems. In the

following, we briefly review related technologies and their relationship to DEVS-DOC.

1.2.1. Java-—atechnology for coding enterprise computing solutions

Java has generated alot of excitement in the programming community with its
promise of portable applications and applets. In fact, Java provides three distinct types of
portability: source code portability, CPU architecture portability, and OS/GUI portability.
These three types of portability result from the packaging of severa technologies—the
Java programming language, the Java virtual machine (JVM), and the class libraries
associated with the language. The Java programming language provides the most
familiar form of portability — source code portability. A given Java program should
produce identical results regardless of the underlying CPU, operating system, or Java

compiler. The VM provides CPU architecture portability. Java compilers produce
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object code (J-code) for the VM and the JVM on a given CPU interprets the J-code for
that CPU. To facilitate OS/GUI portability, Java provides a set of packages (awt, util,
and lang) for an imaginary OS and GUI [Rou97].

The Java programming language embraces the object-oriented paradigm and
provides a means for devel oping distributed software objects and applications. DEVS-
DOC isintended to provide a means to model the dynamics of such distributed objects
and simulate the resulting model s to support design decisions on structuring and
distributing the software objects being coded.

A DEV S-DOC environment has been implemented using Javatechnologies. As
complex simulations tend to be computationally demanding, and any non-trivial DEV S-
DOC model will be, improving Java performance is advantageous. Improving Java

runtime performance is an active area of research [Fox96, Ins98, and Wir99].

1.2.2. Unified Modeling Language — a language for modeling softwar e objects

The software systems being developed today are much more complex than the
human mind can generally comprehend. To simplify this complexity, software
developers often model target systems. Typically, no one model is sufficient; so, several
small, nearly independent models are developed. The Unified Modeling Language
(UML) [OMG99] is agraphics based language for specifying, visualizing, constructing,
and documenting such software models. The development of UML has incorporated

ideas from numerous methodologies, concepts, and constructs. The common syntactic
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notation, semantic models, and diagrams of UML facilitate comprehension of the
designed structure, behavior, and interactions of the software system under devel opment.
UML collaboration diagrams and sequence diagrams provide a static illustration
of behavior. UML deployment diagrams provide a mapping of software to hardware
configurations. UML component diagrams illustrate software structures. These UML
diagrams provide a graphical complement to the DEV S-DOC specification of the
software components and the software distribution across hardware. Extending these
UML diagrams with details on object size, message size, and object method
computational workload estimates provides a complete set of parameters needed for a

DEVS-DOC model and ssimulation.

1.2.3. Rational Unified Process— a process for constructing models of a

software system

The UML is a generic modeling language that can be used to produce blueprints
for a software system. To better leverage the UML, Rational Software has developed the
Rational Unified Process (RUP) [Rat99] as a generic set of steps to develop such
software blueprints using the UML. The idea behind the RUP is to define who does
what, when, and how during the development of a software system.

The RUP has steps for an architect to develop an architectural view of the target
software system, early on, during the analysis and design workflow. In particular, the

architect develops the software architectural design, flushes out software concurrency
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issues, and determines software object distribution. The details of these steps

complement development of DEV S-DOC components and couplings.

1.2.4. Co-design — engineering processes to simultaneously consider hardware

and software constraints

Traditional co-design efforts are focused on enabling better communications
between hardware and software devel opers in the design of embedded systems, such as
portable devices. Our intent isto expand such capabilities into the arena of distributed
co-design. We define Distributed Co-design as the activities to concurrently design
hardware and software layers within a distributed system. Distributed Co-design can be
characterized in terms of its underlying hardware and software options. Traditional Co-
design assumes single or multiple software components (possibly multithreaded) being
executed on a single machine having one or more processors. Distributed Co-design,
however, assumes a network of distributed machines servicing parallel and/or distributed
software components. Specifically, distributed hardware-layer design efforts study
aternative high-level hardware topol ogies whereas distributed software-layer design

efforts study software components characteristics and interoperability.

1.3. A Distributed Object Computing Model

The conceptual approach for this research was inspired with the Distributed
Object Computing (DOC) modeling framework proposed in [But94]. This modeling
framework is defined with two layers— Distributed Cooperative Objects (DCO) and

Loosely Coupled Networks (LCN) — and a mapping (Object System Mapping(OSM))
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between the two layers. Part of this research involved implementing key DOC
framework objectsin DEVSJIAVA [A1S99] and extending them to enable not only
guantum simul ations— the modeling of bulk behavior with random variables— but,
also, directed simulations— the means to model specific underlying system

technologies, structures, and behaviors.

Distributed Cooperative Objects

software
object

Object
System
Mapping

Loosely Coupled Network

FIGURE 1. Butler'sDistributed Object Computing M odel

For aDOC model, Butler developed aformal set-theoretic representation of the
LCN, DCO, and OSM structures. Development of behavior specification for these

structures, however, was not addressed. A central contribution of this dissertation isa
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formal development of such behaviors to support both quantum and directed simulations.
Figure 1 depictsthe LCN and DCO layers and their mappings. Appendix A provides a
summary of Butler's formal set-theoretic representation.

The LCN layer provides the means to define and structure (couple) hardware
components. Developing an LCN model results in the definition of the hardware
architecture for a set of networked computers. The components of the LCN are
processors, networking devices (hubs and routers), and network links. A processor
performs computational work at arate based on resource constraints, e.g., processor
speed and memory capacity. A network device provides communication servicesin
routing network traffic between incident network links under the constraints of buffer
sizesand internal datarates. A hub device will broadcast incoming traffic out to all other
outgoing links, while arouter device will route traffic out to asingle link towards its
destination. Network links connect one or more processors and/or network gates.
Network links constrain inter-processor communications based on bandwidth, channels,
and error rates associated with the link.

The DCO layer provides the means to define software components and their
interactions using a distributed object paradigm. Software objects within the DCO model
follow atraditional object orientation metaphor; namely, they contain a set of attributes
to define the state of the object, and a set of methods that operate on those attributes. The
collective alocation requirement for the attributes determines the size of the software
object. Each method has an associated computational workload. Software objects

interact based on computational progress. They interact viainvocation and message arcs.
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Invocation arcs may represent either synchronous or asynchronous client-server
interactions. Message arcs represent peer-to-peer message passing interactions. DCO
software objects can aso be organized into computational domains, which represent
independent executable programs.

The OSM defines the distribution of the DCO software objects across the LCN
processors. Individually, neither the LCN nor the DCO models are of any great valuein
modeling the behavior or performance of adistributed object computing system. The
LCN provides amodel of atarget hardware architecture that imposes time and space
constraints, but lacks a specification of dynamic behavior. Dynamic behavior is specified
in the DCO model with the definition of computational loads and object interactions,
which provide amodel of the target software architecture. Yet, the DCO representation
isindependent of time and space. Mapping DCO software objects onto LCN processing
nodes results in constraining the abstract dynamics of the software architecturein

accordance with the time and space limitations of the hardware architecture.

1.4. A Modeling and Simulation Formalism
Using set theory, Butler provides a mathematical basis for specifying a static,

structural model of a DOC system. While the intention to develop asimulation facility is

clear, atarget system specification formalism was not identified.
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System Specifications:

DESS: differential equations QSS: discrete variable states
DTSS: difference equations DEVS: discrete events
t Simulator: QA Simulator:
/_\ Numerical Solvers & : ,J"X Pattern Matching
Integrators Evaluator
System \ / System \ /
DESS model: QSS model:
ODE: dx/dt =f(x,u,t) finite state representations

DAE: 0.0 = f(dx/dt,x,u,t)

Simulator: _l—l__l_ Simulator:
EETO Recursive Algorithm Event Processor

System \ / System \ /

DEVS model:
DTSS [nOdeI' time to next event
X(t+At) = f(x,u,t) state at next event

FIGURE 2. System Specification Formalisms

Four fundamental methods [Cel91, pp. 11-15] for specifying dynamical system
models are Differential Equation System Specification (DESS)'[Cel91], Discrete Time

System Specification (DTSS)? [Cel91], Qualitative System Specification (QSS)® [Cel91],

! The Differential Equation System Specification (DESS) assumes that the time base is continuous and that
the trgjectories in the system database are piecewise continuous functions of time. The models (system
specifications) are expressed in terms of differential equations (ordinary differential equations and/or
partial differential equations) that specify change rates for the state variables. The corresponding
simulation concept is that of numerical solvers— numerical integrators and differential algebraic equation
(DAE) solvers.

% The Discrete Time System Specification (DTSS) assumes that the time base is discrete so that the
trgjectories in the system database are sequences anchored in time. The models are expressed in terms of
difference equations that specify how states transition from one step to the next. A forward marching time-
stepping algorithm constitutes the associated simulator.
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and Discrete Event System Specification (DEV S)*.[Z€i 76, Zei84, Zei91, and Zei99¢].
Figure 2 depicts the basics of these four fundamental specification methods. In order to
develop a dynamic system specification for DOC models, we needed to select one of
these fundamental approaches. Asisdetailed later, the behavior of interest in DOC
components is piecewise constant over variable periods of time. Thus, the DEVS
formalism provides a straightforward means to specifying the necessary DOC component

behaviors.

15. TheDEVS-DOC Framework

The remainder of this dissertation introduces the DEV S-DOC modeling and
simulation environment. This environment enables system designers and devel opersto
independently model the hardware and software architectures and then map software to
hardware to form a distributed object computing model ready for simulation. The model
is easily wrapped within an experimental frame— instrumentation to collect simulation
results, statistics, and trajectories— to aid evaluation and analysis of the system
behavior.

The capability to independently model the hardware and software architectures

facilitates concurrent engineering practices, as well as introduces the concept of

% The Qualitative System Specification (QSS) assumes a continuous time base and a finite set of valuesfor
state variables. The models are a posteriori derived patterns of system states. Simulators evaluate inputs
against these patterns to determine system outputs and responses.

* The Discrete Event System Specification (DEVS) assumes that the time base is continuous and that the
trajectories in the system database are piecewise constant, i.e., the state variables remain constant for
variable periods of time. The jump-like state changes are called events. The models specify how events are
scheduled and what state transitions they cause. Associated simulators handle the processing of events as
dictated by the models.
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distributed co-design. This approach provides a means to bridging the gap between
hardware, software, and systems engineering, and enables system designers and

devel opers to focus on the complexity issues associated with the interdependencies and
inter-dynamics of processor behaviors, communication protocols, networking topol ogies,

and software structures.

1.6. Summary of Contributions

Overall, the primary contribution of thisthesisisin the demonstration of a
practical methodology for modeling and simulating the complex dynamics and
interactions of distributed computing systems. Additionally, thisthesis demonstrates the
suitability of DEV S in representing and simulating DOC models; reveals how
maintaining a separation of concerns contributes to structural modeling; introduces the
concept of Distributed Co-Design; advances the experimental frame concept with layers;
and shows the expediency and simplicity of aggregated couplings.

This research demonstrates a practical methodology to modeling and simulation
DOC systems with a concrete realization of Butler's conceptual model. Using formal
methods (DEV S), the realization involved identifying and developing behavioral
representations of the critical dynamics associated with hardware and software
components. Conversely, the representation of DOC modelsin DEV S demonstrates the
applicability of DEV S in the distributed computing problem domain.

A key aspect within our DEV S-DOC redlization is a separation of concerns; in

particular, maintaining independence of the software (DCO) and hardware (LCN) models
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and only introducing interdependencies in the distribution (OSM) of software across
hardware. Under this approach, the software behavior is modeled independent of time
and space constraints, whereas the networked hardware components impose such
constraints. The networked hardware imposes time constraints in the processing of
software object jobs and the communication of software object interactions. The
networked hardware imposes space constraints based on the mapping of software objects
onto the hardware and the networked topology of the hardware components. This level
of independence between the DOC components (LCN, DCO, and OSM) facilitates
structural approaches to implementing the models.

The concept of Distributed Co-Design expands on the idea of concurrent
engineering of hardware and software constraints with the added dimension of networked
systems. Through the DEV S-DOC environment, we advance an approach of
independently modeling the hardware and software systems. The hardware
representations explicitly support investigations into the implications of distributed
processors, networked components, communication protocols, and network topologies.
The software representations explicitly support investigations into multi-threading,
invocation queuing, parallel processing, and software object interactions. The coupling
of the hardware and software representations enabl es investigations into computational
load balancing across processors, message traffic |oading across network components,
and execution latency as a combination of computational loading, job queuing, and

communications latency.
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The experiment frame concept is advanced with the idea of layered frames. In
particular, in the case studies of thisthesis, alayered experimental frameis utilized to
investigate model sensitivities.

In realizing the DEV S-DOC environment, object-oriented techniques are applied
to facilitate amodular and hierarchical system construction. With this object-orientation,
DOC specific "aggregated coupling” mechanisms are devel oped to significantly simplify
the specification of the LCN topology, the OSM specification of software to hardware
mappings, and the specification of the experimental frame couplings.

With the DEV S-DOC environment and case studies, we shall demonstrate
systems analysis of DOC implementation technologies, DOC designs against “inherent”
and “accidental” complexities, software multithreading behavior and performance,

network topology and protocol selections, and software partitioning across hardware.

1.7. Plan of Dissertation

The next chapter of this dissertation surveys literature related to the research
presented in subsequent chapters. In chapter 3, the conceptual constructs and formalisms
used to develop the DEV S-DOC environment are outlined. Chapter 4 introduces the
DEV S-DOC modeling and simulation environment. This chapter provides details on the
structural representation of the DEV S-DOC modeling components and experimental
frame. Chapter 5 complements the structural details of chapter 4 with details on the
formal specification of behavior dynamics for the DEVS-DOC components. Then, in

chapter 6 we present four distributed system case studies using the DEV S-DOC modeling
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environment. The first case study models Simple Network Management Protocol
(SNMP) interactions between a network management station and a set of networked
devices; the second study models the interactions of an HLA-compliant distributed
simulation federation [Zei99c]; the third models the interactions of an email application
[Hi198b]; and the fourth case study looks at LCN alternatives for the email application.
Chapter 7 concludes the dissertation with a summary of contributions and a discussion of

future work.
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2. RELATED WORK

This chapter presents an overview of work related to this research. We organize
this synopsis of related work along the lines of our DOC abstractions. Related to the
LCN abstraction iswork in the area of networked information technology modeling:
communications, protocol, network, and processor modeling; related to the DCO
abstraction iswork in the area of software systems modeling; and the most closely related
work to the OSM abstraction is research in the area of Co-design. Finally, werelate this
modeling and simulation research to alternate distributed system design and analysis

approaches.

2.1. Networked Information Technology Modeling

2.1.1. Queuing System Approaches

A key performance metric of an information system is average delay or waiting
time. Queuing theory isaformal methodology for analyzing network delays based on
statistical predictions. Queuing theory hasits rootsin the early twentieth century studies
of the Danish mathematician A. K. Erlang on telephone networks and in the creation of
stochastic models by the Russian mathematician A. A. Markov. The simplest queuing
model consists of asingle queue and server. Using Little's Theorem, N = A / u, we can
analyze avariety of situations based on the mean arrival rate A, the mean servicerate u,
and the mean number of customers or objects being served by the system N. Queuing

theory continues to evolve, and enables analytical analysis of more complex queuing
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systems, networks of queues and servers, and various statistical behaviors associated with
arrival rates and service rates.

The approach taken in this research, however, has attempted to avoid some of the
simplifying assumptions required when taking a queuing theory approach. One objective
isto enable modelers with a means to construct arbitrary structures of software objects,
network components and topologies, and their subsequent coupling. Arbitrary networks
of queuing systems tends to be problematic and can often viol ate assumptions about the

random distributions of arrivals.

2.1.2. Discrete Event Approaches

Our discrete event systems approach to modeling and simulating communications
networks and processorsis not unique. A variety of commercia and academic efforts
have been invested in devel oping modeling and simulation capabilities to support
analysis of network components and technologies, routing strategies, protocols, network
controls and recovery mechanisms, traffic flows and loads. OPNET™ Modeler [MIL99]
and COMNET ™ [CAC99] are both examples of commercially available tools for
discrete event modeling and simulation of communications networks, devices, and
protocols. In these tools, modeling of the information flows and loads to stimulate the
system under investigation is accomplished with setting traffic parameters associated
with selected nodesin the model. With DEVS-DOC, we take a more direct means of
modeling distributed software systems and then support investigating alternative

mappings of the software across the networked components.



30

2.2. Software Systems Modeling

2.2.1. Object-Oriented Design

Several prominent object-oriented design notations have recently been combined
to form the Unified Modeling Language (UML) [OMG99]. The UML provides afamily
of graphical notations for describing the attributes and rel ations between objects under
design. These graphical notations support the production of static structure diagrams and
behavior diagrams. The structure diagrams include class and object diagrams, while the
behavior diagrams include use-case, interaction, and activity diagrams. The structure
diagrams identify definitional and referential relationships among components. The
definitional relationships create taxonomic hierarchies, and the referential relationships
create compositional hierarchies.

While the structure diagrams do not describe the interaction and behavior of
components, UML behavior diagrams can provide a static view. UML sequence and
collaboration charts are interaction diagrams that depict the flow of events, messages, and
actions among interacting software components. UML state charts depict component
behavior in terms of state changes and transitions. However, these diagrams are
independent of each other and do not systematically relate patterns of interaction and
state changes and transitions, nor do these charts rel ate resource dependencies,
workloads, or relative timing implications. Thus, reasoning about, and evaluating,
software component interaction performance and behavior is difficult. Withinthe DEVS-

DOC environment, we couple the software component workloads and interactions to the



31

LCN, which imposes resource constraints, enabling the evaluation of these interactions

and the resulting resource utilization impacts.

2.2.2. Software Architecture Modeling

To deal with the increasing complexity of software systems, the overall system
structure— or software architecture— is gaining increasing attention as a central design
problem. WRIGHT [All97] is a software architectural description language that provides
aformal means to describe architectural configurations and architectural styles. The
software architectures are defined in terms of software components and connectors
(interaction patterns). The descriptions of software components and connectors are
"architectura" in that the notation defines behavior independent of implementation or
formal programming language constructs. The practicality of aformal architectural
description language is in the ability to analyze component interactions and patterns of

interactions for semantic correctness.

2.3. Co-design

Research in co-design is closest to our work when viewed from an abstract view
of concurrent hardware and software analysis and design within aframework. Given
research activities in Co-design since the 1980s, many of the developed methodologies
are primarily focused on real-time embedded systems such as portable devices[Y en97,
Roz94, Sch98, and Fli99]. These Co-design methodologies and their supporting
environments primarily emphasize concurrent engineering of hardware and software

constraints (e.g., size, timing, weight, cost, reliability, etc.) for agiven a piece of
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hardware. While Co-design and the work described in this dissertation are both focused
on concurrent hardware and software engineering issues, this dissertation is distinguished
by itsfocus on analysis and design of distributed systems; systems where networked
hardware components enable physically distributed cooperating software components to
interact. DEVS-DOC expands the basic ideas of Co-design system development from the
execution of one or more processes on a single device (embedded system) to the inter-
dependent execution of many processes running on multiple, distributed and networked,
heterogeneous devices (system of systems).

Examples of research activitiesin Co-design include CASTLE at GMD Germany
[GMD99], Model-based Co-design at the University of Arizona[EDL99], and POLIS at
the University of California, Berkeley [Chi94]. CASTLE isaset of tools to support
synthesis of embedded systems. CASTLE’stool set can be used to convert system’s
software and hardware specifications via System Intermediate Representation using input
and output processors from one to the other. For example, CASTLE’s co-synthesis
environment can generate a processor’s VHDL description, and a compiler can translate
any C/C++ program from a given application domain into the operational code of the
intended processor. Similarly, POLIS provides a Co-design Finite State Machine
representation that can be used to characterize both hardware and software components of
asystem using tools such as VHDL or graphical FSMs. The environment supports
formal verification, simulation, and HW/SW system level partitioning as well as HW and
SW synthesis and their interfacing. Model-based Co-design (and its computer-based

design environment, SONORA [R0z99]) provides a methodology that is comprised of
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five stages: (1) specification (requirements and constraints), (2) modeling, (3)
simulation/verification, (4) model mapping to hardware/software components, (5)
prototyping and implementation. Given CASTLE, POLIS, and Model-based Design,
from aframework approach, the latter is the closest to our work. However, while this
framework and others promote system specification into hardware/software architectures,
they do not support concurrent hardware/software analysis and design within a

distributed context. DEV S-DOC does support this distributed context.

24. Alternative Analysis and Design Approaches

2.4.1. Distributed Smulation Exercise Construction Toolset (DiSect)

An environment known as DiSect has been proposed to aid the development,
execution monitoring, and post execution analysis of a distributed simulation [STR99].
DiSect is comprised of three software tools. The Exercise Generation (ExGen) tool aids
developers in composing simulations from a web-based simulation object repository.
The Distributed Exercise Manager (DEM) is the simulation execution monitoring tool,
which controls simulations and monitors the distributed simulation infrastructure:
workstations loads, network loads, and the High Level Architecture (HLA) Run Time
Infrastructure (RT1) [DMS99]. The Modular After Action Review System (MAARS)
provides tools for visualization and analysis of data collected during a DEM simulation.
DiSect was implemented to support evaluation and analysis of Army training simulation

exercises during, and after, the execution of the simulation exercise.



While such an environment can aid in the re-design of systems of interest, this
approach is limited to a narrow scope of distributed systems— Army training simulation
exercisesin an HLA/RTI environment — and to post-mortem system evaluation. System
analysisis based on the monitoring of the operational system. The DEV S-DOC approach
provides a modeling and simulation environment enabling system evaluation and analysis

prior to composing and running the real target system.

2.4.2. Petri Nets

Petri Nets provide an abstract state-machine model of a system. Petri Net models
allow analysis of system concurrency, asynchronous operations, deadlocks, conflicts, and
event-driven actions. In short, it isameansto develop and evaluate the logical structure
of asystem. Petri Nets are composed as directed graphs consisting of two classes of
nodes, called places and transitions, that are interconnected with arcs. The state, or
marking, of a Petri Net is defined with the placement of tokens on places. Allowed state
changes are defined with the association of firing rulesto transitions. Variations on the
Petri Net methodology can add attributes to tokens— called colored Petri Nets— as well
astiming, conditional, and probabilistic firing details to arcs.

Petri Nets provide a means to define the set of possible execution traces through a
system. Each trace represents a possible path through the state graph. This modeling
approach is often used to ensure that there is aways atransition possible for any input,

and that selected, undesired states are not reachable.
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With only two types of nodes, places and transitions, the Petri Net modeling
notation makes no distinction between hardware and software components. Due to this
semantic limitation, Petri Nets provide no direct means to model a distributed object
computing system. Use of the Petri Net formalism as the basis for building higher level

abstractions of DOC hardware and software componentsis a potential area of research.
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3. DEVS-DOC BUILDING BLOCKS

In developing an environment for modeling and simulating distributed object
computing systems, we utilize the DEV S formalism to devel op specifications of DOC
components; implement these representations using DEVSJAVA; and, utilize the
experimental frame concept to define simulation experiments. As already mentioned, the
DEV S formalism provides a systems theoretic basis for specifying component behaviors.
Implementing in DEV SJAV A enables object-oriented modeling, concurrent simulations,
concurrency among interacting simulation objects, and web-enabled simulations. The
experimental frame concept provides aformal structure when specifying the simulation
conditions to be observed for analysis. These conceptual constructs are outlined in this
chapter as background for the following two chapters that detail the DEVS-DOC
modeling and simulation environment devel oped during this research. We begin this

chapter with an overview of Butler's formal structure for modeling a DOC system.

3.1. Butler'sDistributed Object Computing Model

Butler developed aformal representation for modeling DOC systems. This
formalism allows for independent devel opment of representations for the hardware and
software architectures, and then coupling these models into a systems representation.
The hardware architecture, called the Loosely Coupled Network (LCN) model, defines
the real-world network topology interconnecting computing systems. The software
architecture, called the Distributed Cooperative Object (DCO) model, defines object-

oriented software components and structures. The DCO software objects are mapped
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onto LCN hardware components to couple the two models to form an Object System
Mapping (OSM). These components are assigned random variables (e.g., bandwidth,
error rates, compute loads, data sizes, etc.) to provide the basis for simulating dynamic

behavior. A summary of Butler'sformal notation is provided in Appendix A.

3.1.1. Hardware: Loosely Coupled Networks

The LCN representation of networked computer components results in the
specification of processors, network gates, and links. The processors serve as nodes, on
which software objects of the DCO abstraction may be loaded and executed. The two
critical parameters for these processing nodes are processor storage size and processor
speed. The storage size of the processor constrains software objects in their competition
for memory resources. The processor speed constrains the rate at which software jobs are
processed. The network gatesin the LCN represent hubs and routersin a computer
network. The critical parameters constraining the performance of the gates are operating
mode (hub or router), buffer size, and bandwidth. The links model the communication
media between processors and gates. Critical parameters for links include number of
channels, bandwidth per channel, and error rates. The LCN network topology is defined
by mapping the processors and gates onto the links.

Figure 3 depicts an example LCN structure of two computing locations
interconnected with aT1 carrier link, Lo. Theleft-sidelocal area network (LAN) has a
gate, Gy, configured as arouter to interconnect the two ethernet links, L1 and L, and the

T1carrier link. Theright-side FDDI star LAN has agate, G1, configured as arouter, to
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interconnect the T1 carrier with the FDDI star LAN. Gate G, is configured as a hub to

create the FDDI LAN star topology.

P, P, P, P, P, Legend:
L, =T1

L,, =Ethernet

L., =FDDI star LAN
G,. =Router

G, =Hub

P,s =Processors

FIGURE 3. Example LCN Structure

3.1.2. Software: Distributed Cooper ative Objects

The DCO abstraction of software components results in the specification of
computational domains, software objects, methods, and object interaction arcs. A set of
software objects forms a computational domain. Any software object may belong to
more than one computational domain. A computational domain represents an executable
environment or program and identifies initializer software objects. Theseinitializer
software objects stimulate the initial execution order of software objectsin adomain.

A software object is based on the object-oriented concept of an object that
contains both attributes (data members) and methods (functions) that operate on the
attributes. The collective memory requirements of these attributes and methods
characterize the object’ s size. When the software object is invoked, the size parameter
loads the supporting LCN processor memory. The object may be invoked autonomously
or on the receipt of an object interaction arc. The software object has athread mode

parameter that defines the granularity of its multi-threaded behavior: method, object, or
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none. Thisthread mode determines the level of execution concurrency the software
object supports. At the method level, all requests to the object may execute concurrently.
At the object level, only one request per method may execute concurrently; additional
requests against an executing method get queued. At the none level, only one request per
object may execute at a given time; each additional request to the object gets queued.

The methods of a software object are characterized as a computational work load
factor and an invocation probability. The work load factor represents the amount of
computational work required to fully execute the method. The invocation probability is
an artifact of the quantum modeling technique. From the quantum perspective, when a
software object isinvoked, it isirrelevant which method is actually selected aslong as all
the methods of the object are invoked in correct proportion.

Two types of software object interactions are identified, message arcs and
invocation arcs. A message arc represents peer-to-peer exchanges between objects.
When a source object sends a message, it may target several destination objects. The
frequency of firing amessage arc is based on the computational progress of the source
software object. The message size parameter characterizes the amount of data
transmitted. An invocation arc represents client-server type interactions between two
software objects. When a client object fires an invocation arc, the message size
parameter specifies the amount of data sent. The destination server object invokes a
method and, on method compl etion, sends a response back to the client. Invocation arcs

have either a synchronous or asynchronous blocking mode. In synchronous mode, the
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firing method is blocked from further execution until the return message isreceived. In

asynchronous mode, the firing method is allowed to continue execution.

A Do\ / D1\
L e
A3 @ As _’@
A

o

\
650

A2 A6

@ ')'Mo"ﬁ'@ )

Legend:
Do, = Software Domains

S,.,4= Software Objects
A, = Invocation Arcs
M, = Message Arc

®

FIGURE 4. Example DCO Software Structure

Figure 4 depicts an example DCO abstraction of 25 software objects organized
into two computational domains. Domain D; acts as a compute server with 16 parallel
compute objects. Client Sy3 from Dy requests service with invocation arc Ag and invokes
Sy4 to wait for the results via message arc Mo. When S;7 receives arequest from the
client, it invokes S;g, and S;g distributes the required computation over Sp.15. When al 16
compute objects complete and return results to S;g, the results are sent back to the client
domain to Sy.

Software object methods and arc interactions stimulate the dynamic behavior of
distributed object computing systems. DCO software objects interact with other objects

viainvocation and message arcs. In cases where software objects are executed on
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different processors, the invocation and message arcs are routed as network data traffic
through the LCN processors, gates, and links. When invoked by an incoming arc, a
software object is loaded into processor memory. Arc reception aso triggers selection of
amethod for execution. The selected method is either fired for execution or queued
based on the multi-threading mode and the current state of the software object. Fired jobs
go to the OSM-assigned processor for execution. Completed jobs are returned from the
processor indicating computational progress for the software object. Based on
computational progress, additional interaction arcs are selected for exchanges with other
DCO software objects. Selected arcs are fired / transmitted across the LCN. Methods
that trigger arc firings continue execution unless blocked by the firing of a synchronous
arc. Inthiscase, the method continues execution after the associated return for the
synchronous arc isreceived. When all methods compl ete execution, and when al fired
arcs expecting return arcs are received; the object unloads processor memory and

inactivates.

3.1.3. Distribution: Object System Mapping

Individualy, neither the LCN nor the DCO models are of any great valuein
modeling the behavior or performance of a distributed object computing system. The
LCN provides amodel of the target hardware architecture that imposes time and space
constraints. The LCN, however, lacks a specification of dynamic behavior. Dynamic
behavior is specified in the DCO model with the definition of initializer objects, object

methods and arc interactions. These DCO definitions provide a model of the target
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software architecture. However, this DCO behavior representation is independent of time
and space. By mapping the DCO software objects onto LCN processing nodes, the
abstract behavior dynamics of the software architecture are coupled with and constrained
by the capacity of resources (processor speed, memory, bandwidth, buffer size, etc.) and
topology of the hardware architecture. The DCO onto LCN mapping isreferred to as the
Object System Mapping (OSM).

The performance and behavior of the resulting distributed object computing
system can support design analysis with ssimulation. During simulation, the invocation of
a software object competes for processor resources in terms of storage space to load the
object and processor speed to execute its methods. These dynamics drive the
performance of the processor as it serves OSM-assigned software objects. Processor
performance also impacts performance of OSM-assigned software objects in terms of
completing computational tasks (object methods) and speed of network data (DCO arc)
exchanges between software objects. These data exchanges also drive the dynamics of
the network performance as well as the performance of the DCO domain (application) as
software object exchanges denote computational progress between objects.

In addition to mapping DCO software objects onto LCN processors, the OSM
model defines a set of communication modes and maps the DCO interaction arcs into
these communication modes. The communication modes specify how DCO interaction
arcs are processed into packets that will transit the LCN. The communication mode
defines constraints on packet size, packet overhead size, and packet acknowledgment

size.
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3.2. Discrete Event System Specification

The DEV S modeling approach supports capturing a system's structure from both
functional and physical points of view. A DEV S model can be either an atomic model or
acoupled model [Zei84]. The atomic classrealizesthe basic level of the DEVS
formalism with specifications of the elemental components of the system of interest.

The coupled class realizes the compositional constructs for structuring DEV S modelsinto
system hierarchies. Atomic and coupled models can be simulated using sequential
computation or various forms of parallelism [Cho96].

A DEV S atomic model specification defines the states (variable values) and
associated time bases resulting in piecewise constant trajectories over variable periods of
time (see footnote 1). The atomic model specification aso defines how to generate new
state values and when new states should take effect. A Parallel DEV S atomic model

[Cho96] isformally defined as:

M =<Xm, Ym, S, Sints Sexts Oconts A, ta>
where
Xm ={(p,v) | pe|Ports, ve Xp} isaset of input ports and values
Ywum ={(p,v) | pe OPorts, ve Xp} isaset of output ports and values
Sisaset of states
O S— S istheinternal transition function
St QX Xu® — S isthe external transition function
Scont: QX Xy® — S isthe confluent transition function
L: S— Yy° isthe output function
ta S— NRo.. isthetime advance function.
with
Q={(se)|se S,0<e<ta(s)} istheset of total states
e isthetime elapsed since last transition
XwP is abag of inputs (a set with possible multiple occurrences)
Y wP isabag of outputs (a set with possible multiple occurrences)
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A DEV S coupled model designates how (less complex) systems can be coupled
together and how they interact with each other. Given atomic models, DEV S coupled
models are formed in a straightforward manner. Two major activitiesinvolved in
coupled models are specifying its component models, and defining the coupling that
represents desired interactions. A Parallel DEV S coupled model [Cho96] is formalized
as:

DN =< Xv Y1 D1 {Mi}1 {Ii}v {ZIJ} >
Where
X isaset of input values
Y isaset of output values
D isaset of the DEV'S component names.
For eachi e D,
M; isaDEV'S component model
I, isthe set of influenceesfor I.
Foreachj e I,
Z; isthei-to-j output trandation function.

The sequential and parallel views play a central role in modeling and simulation
of coupled models since each coupled model is essentially comprised of multiple atomic
models. Two different formalisms have been introduced. The sequentia formalism
[Z€ei84] treats components' simultaneous transitions (dext and dint) sequentially, while the
more recent Parallel DEV S formulation [Cho96] treats them concurrently. Paralel
DEV S supports (1) processing of multiple input events and (2) local control on the

handling of simultaneous internal and external events.

3.2.1. DEVSIAVA

Using the Java programming language, the basic DEV S constructs have been

implemented in an environment called DEVSJAVA [A1S99 and Sar97]. This
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environment provides the foundation upon which higher constructs of DEV S (e.g., endo-
morphism and variable structure) [Zei90] can be created using the basic, aswell asthe
internet-based features, of the Java environment. The DEV S atomic and coupled models
can be developed and simulated as standal one applications or as applets. Since
DEVSJAVA is amulti-threaded implementation, each ssmulation model is assigned a
unique thread allowing for simultaneous execution of several models. Similarly, in
DEVSJAVA, each atomic model can be assigned a unique thread allowing for
simultaneous execution of the DEV S atomic components. These multi-threading features
enable handling multiple events concurrently within the component models of a
distributed object computing system.

In developing the DEV S-DOC environment, we use the DEVSIAVA
implementation along with the experimental frame concept described later.
Implementation of DEV S-DOC on top of DEV SJAV A enables object-oriented modeling,
concurrent simulations, concurrency among interacting simulation objects, and web-

enabled simulations.

3.2.2. DEVSObject-Orientation

Implementing DEV S in an object-oriented computational form leads to a natural
and easy to comprehend modeling framework. A generic DEV S class hierarchy isgiven
in Figure 5. The parental classis entity, from which devsisderived. Thedevsclassis
specialized into two sub-classes: atomic and coupled. Each of these classes enables

system models to be expressed within the DEV S formalism outlined above.
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FIGURE 5. Generic DEVS Object-Oriented Hierarchy

A second class hierarchy is the heterogeneous container class library (HCCL)

[Zei974], as depicted in Figure 6, which enables easier manipulation of sets of entities.

digraph
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Again, the parental classis entity. The container classis ageneralized form of alinked

list that is based on set theory, and provides methods to store, retrieve, and organize

objects. The container classisto define objects that contain other objects. To facilitate

modeling the exchange of events between DEV S atomic and coupled models, the

message class is used to structure the event information as output from source models and

as input to destination models. The content of a message can be any instance of an entity

or entity derived class.
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FIGURE 6. Heterogeneous Container ClassLibrary

Experimental Frame

An experimental frameis an artifact of amodeling and simulation enterprise

[Zei84]. Itisaspecification of the conditions under which a system is observed and

experimented with. The experimental frame is the operational formulation of the

a7

objectives motivating a modeling and simulation project. A typical experimental frame,
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as depicted in Figure 7, consists of a generator, an acceptor, and atransducer. The
generator stimulates the system under investigation in aknown, desired fashion. The
acceptor monitors an experiment to see that desired conditions are met. The transducer
observes and analyzes the system outputs. The experimental frame concept provides a
structure to specifying the simulation conditions to be observed for analysis. DEVS-

DOC specific experimental frame components are discussed later in this disseration.

a SYSTEM
(under investigation)

EXPERIMENTAL FRAME

generator acceptor transducer

FIGURE 7. Experimental Frame

3.4. System Entity Structure

The System Entity Structure (SES) isameans of formally organizing afamily of
possible configurations for a system under investigation [Zei90]. Thisformal
organization of possible system configurations bounds the system design space as a set of
design aternatives. The SES formalism provides an operational language for specifying
hierarchical structures. The hierarchical structures are a declarative knowledge
representation of decomposition, taxonomic, and coupling rel ationships among entities

forming the system. The decomposition scheme allows representing the construction of a
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system from a set of entities. The taxonomy is arepresentation of possible variants of an
entity; i.e., how the entity is categorized or sub-classified. The coupling knowledge
identifies constraints on ways in which entities may be coupled together in compositions.

The SES knowledge of a system is often depicted graphically as alabeled tree.
Within the SES tree, an entity represents areal world object that is a component of the
system in one or more decompositions. An aspect represents how an entity may be
broken down into sub-entities. A specialization isameans of classifying an entity; it
expresses alternative choices for components in the system being modeled.

The nodes in an SES graph may aso have attached variables. Attached variables
are ameans for associating attribute knowledge with the nodes. The following six

axioms formally characterize the SES framework.

Uniformity: Any two nodes that have the same labels have identical
attached variable types and isomorphic sub-trees.

Strict hierarchy: No label appears more than once down any path of the tree.

Alternating mode: Each node has a mode that is either entity, aspect, or
specialization; if the node mode is entity then the modes of
its successors are aspect or specialization; if the node
mode is aspect or specialization then the modes of its
children are entity. The mode of theroot is entity.

Valid brothers:  No two brothers have the same label.

Attached variable: No two variable types attached to the same node have the
same name.

Inheritance: Every entity in aspecialization inherits al the attached
variables, aspects, and specializations from the parent of
the specialization.

For example, in an SES for awristwatch, the entity wristwatch may have an
aspect that decomposes into awristband entity and a clock entity. Furthermore, the clock
entity may have a specialization that classifies the clock as either an analog or digital

clock. A style attribute may also be associated with the wristwatch to specify its style as



amen'sor lady'swatch. The wristband may also have an attribute to specify its color.

This simple SES example for awristwatch is depicted in Figure 8.

Wristwatch
I ~ style

Wristwatch-decomposition

Wristband Clock
~ color ||

Clock-specialization

Analog Digital

FIGURE 8. Wristwatch System Entity Structure
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The entity-aspect relationship represents decomposition knowledge. The entity-

specialization relationship represents taxonomic knowledge. As coupling knowledge

defines how entities (models) communicate with each other, this knowledge is associated

with the respective SES aspects.

The SES is a powerful mechanism for identifying the components and structure of

model bases. We use the SES in section 6 as a means to depict the design space for each

of the case studies.
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4. DEVS-DOC MODELING AND SIMULATION ENVIRONMENT

This research has focused on developing an environment to model and simulate
distributed object computing systems in support of system design and design eval uation.
In this section, we describe the DEV SJIAV A implementation of the DCO, LCN, OSM,
and the associated experimental frame components. The implementation discussion of
this section focuses on the structural representation and highlights deviations taken from
Butler's approach. Throughout this section, qualitative behavior descriptions are
provided to assist in defining, and rationalizing the need for the various structural
elements and attributes. In the next section, we provide rigor to the specification of the
behavioral representations.

The DEV S-DOC implementation has been successful in leveraging the object-
oriented paradigm to maintain a separation of concerns and to encapsulate abstractions of
behaviors and data. A primary separation of concernsis between the LCN and DCO
abstractions. The resulting LCN model describes the networked computing hardware
architecture under investigation, while the resulting DCO model describes the distributed
object software architecture. The OSM abstraction describes the “mapping” of the DCO
software objects onto LCN processor nodes to form a dynamic systems model.

Within the DEV S formalism, atomic models interact viaDEV S messages. For
the DEV S-DOC implementation, DEV S messages between DCO software objects and
L CN processors contain one of two object class types: job or msg. A DCO software

object sends (a DEV S message containing) ajob to an LCN processor to signify the
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execution of a method and the LCN processor returns the job to the DCO software object
to signify execution completion. Similarly, aDCO software object sends (aDEVS
message containing) amsg to an LCN processor to interact with other DCO software
objects and the LCN processor routes the msg to LCN links towards the destination DCO
software object.

In this chapter, we provide detail s on the implementation of a DOC modeling and
simulation environment in DEVS. In severa areas, the implementation deviates from
Butler'sformal structure to simplify the implementation effort, simplify the user's (a
modeler's) effort, or both. In other areas, we extend the structure to enable quantum and

directed modeling. These deviations and extensions are detailed within each section.

4.1. A Process For DOC Modeling

To bring alevel of tractability into the design and analysis of a distributed object

computing system, we decompose the modeling effort into five steps:

1) state the modeling and simulation objectives;

2) define the processing nodes and interconnection network;
3) define the software objects and their interactions;

4) associate software objects with processing nodes; and,

5) configure simulation control components.

The first step determines the target system performance and behavior questions of

interest. Following the terminology and conventions of Butler, the next three steps result
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in the specification of aLoosely Coupled Network (LCN), a set of Distributed
Cooperative Objects (DCO), and an Object System Mapping (OSM). The fifth modeling
step involves defining an experiment to stimulate the model during simulation and to
collect data needed for performance and behavior analysis. Thisfifth step produces an

Experimental Frame [Zei84].

State M&S ) ]
objectives Refine hardware design?

Refine software design?

v
Define processors, Define software
_routers, hubs, objects and
links, and network interactions (DCO)
topology (LCN)

Map software
onto processors |d— Refine distribution?
(OSMm)
Docl

Configure simulation control
»| and data collection components
(Experimental Frame)

Run simulation and

analyze results

| )

FIGURE 9. DEVS-DOC Modeling and Simulation Process

no

Desired
performance
& behavior?

This process and the DEV S-DOC environment enable modeling the behavior of
the software components independent of modeling the computing and networking
hardware components. The resulting software and hardware components are then

coupled together to form a dynamic model of the distributed object computing system of



interest. Software applications are modeled in the DCO following a distributed object
paradigm. Hardware for networked computing components is modeled in the LCN.
Mapping DCO software objects onto LCN processors creates the desired DOC model.
Adding experimental frame components (acceptors, generators, transducers) prepares the
model for simulation and data collection. Analyzing the simulation results may drive
decisions to try different software distributions, LCN structures, or DCO configurations.
This processis depicted as aflowchart in Figure 9.

Worth noting is the degree of modularity and independence between the LCN,
DCO, and OSM representations, as implied within Figure 9 by the iteration loops that
refineaDOC model. The DEVS-DOC modeler may choose to evaluate alternative
software distributions across processors within the OSM representation reusing the same
LCN and DCO models. Alternatively, the modeler may choose to simulate and analyze
different LCN topologies and, thus, have no need to rework or modify the DCO or OSM
models. Similarly, the modeler may refine and simulate various DCO configuration and
interaction structures with no need to revisit the LCN or OSM. However, if arefinement
results in the addition or omission of an LCN processor or a DCO software object,
obviously, the OSM will aso require attention to add or adjust pertinent software -

processor mappings.

4.2. Loosely Coupled Networks

The LCN hardware architecture is described in terms of processors, gates, and

links. LCN processors are capable of performing computational work for DCO software
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objects and transmitting and receiving software object interaction messages. LCN gates
interconnect two or more network links and operate in one of two modes: hub or router.
As ahub, packets from one link are broadcast out on every other link. Asarouter, packet
address information is used to make routing decisions and switch a packet down a

gpecific link. LCN links provide a communication path between processors and gates.

42.1. LCN Links

LCN links describe the communication medium that interconnects two or more
LCN nodes. Butler's specification for alink is an object with an assigned error
coefficient and a set of one or more channels, where the bandwidth on each link isa
random variable to account for servicing actions external to the scope of the simulation
gpace. Our implementation extends on this concept with the specification of technology
specific links. In [Hil98a and Hil99] we developed amodel of an ethernet link. This
ethernet link model alows us to simulate and evaluate DOC systems that employ ethernet

technol ogies within the networking topology.

4.2.2. LCN Gates — Hubs and Routers

LCN gates are objects that interconnect two or more network links. Behavioral
attributes for these gates are mode (hub or router), bandwidth for processing traffic, and a
buffer size for queuing traffic. The key distinction between router and hub modeis
routing decision logic. In hub mode, the gate broadcasts traffic out on each incident link;
while in router mode, the gate routes traffic only on the incident link necessary for end-

to-end communication.
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Router models require routing decision logic to select an outgoing link for end-to-
end communication. We opted to not burden the DOC modeler with developing and
defining routing tables. Our desire to support technology specific link models has also
required the development of technology specific models of media access units (MAUS) or
network interface cards (NICs). To separate these two concerns — routing and technol ogy
specific NICs —we choose to implement LCN gates as separate object classes. For hubs,
atechnology specific NIC model class isimplemented for each corresponding link
technology model. For arouter, asingle router class model isimplemented with the
required routing logic. To couple arouter to atechnology specific link, a DEV'S coupled
model is used to define the LCN gate. To model arouter interconnecting two ethernet
linksand a T1 carrier link, asin the Figure 3 gate Gy example, the DEV S coupled model
of the gate is composed from two ethernet hub models and a T1 hub model as depicted in

Figure 10.

(Gate \
INo/ OUTOrlRouterl IN2/ OUT2
__J

INLOOP} OUTLOOP s/ OUT:

INo IN | Hatart lOUT OUT0$

INLOOP} OUTLOOP

IN1 > IN >I He”;] ouT > OUT: >

INLOOP] OUTLOOP

IN2 K IN>I Hr IOUT/I OUTzI

FIGURE 10. DEVS Coupled Model of Figure 3 Gy Gate
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Popul ating routing tables within LCN routers requires knowledge of the LCN
topology and the mapping of DCO software objectsto LCN processors. To avoid
burdening the DOC modeler with developing this information and maintaining
consistency with alternative LCN topologies and alternative DCO to LCN mappings,
route discovery logic is encoded into the DEV S atomic router model and into the DCO
software object model. When a DEVS-DOC simulation starts, the DCO software objects
announce themselves, via DEV S messages, to their assigned processors. The processors
then broadcast this information on their assigned LCN links. LCN routers receive these
broadcasts, load their routing tables, and forward the broadcast. Inthisway, al LCN

routing components learn which incident LCN links service each DCO software object.

4.2.3. LCN Processors

The LCN processor object is capable of performing computationa work for DCO
software objects and it enables these software objectsto interact viathe LCN. Butler
identifies only two specification parameters for a processor — a computational speed and
astorage capacity. If aprocessor is connected to multiple LCN links, routing decision
logic is necessary and we have elected to implement it within the processor. Butler also
identified a need to define communication modes — segmenting interaction arcs into
packets, dealing with packet overhead, packet acknowledgments, and time-outs —in the
OSM abstraction. Again, we have opted to implement these mechanisms within the LCN

processor model.
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The resulting LCN processor isimplemented as a DEV S coupled model of a

central processing unit (CPU), arouter, and atransport component. The router

component is simply areuse of the router class model just described as part of an LCN

gate. Technology specific NIC models are coupled to the processor as needed for the

LCN link technologies and topology. The couplings for this DEV S coupled processor

model are depicted in Figure 11.
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inLink - outLinkl
Prouter

inJobs

inLoop
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inJob - outJobs
Pcpu

outMsgi

outlinky

out\]obgi
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FIGURE 11. DEVS Coupled Processor M odel

The CPU ismodeled as a DEV S atomic model with two input ports, one output

port, six state variables, and three parameters. The inJobs input port accepts requests

from DCO software objects to execute jobs. The inSW input port accepts requests from

DCO software objects to load and unload software into, and out of, memory and disk
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gpace. The outJobs output port emits jobs that have completed execution. A cpuSpeed
(cycles per second) parameter determines how quickly data processing operations
associated with accepted jobs are executed. When processing multiple jobs, the effective
cpuSpeed is divided equally across each job. Thus, jobs with equal loading factors are
completed on afirst-in, first-out basis; whereas, in the case of jobs with unequal loading
factors arriving at the same time, the smaller jobs will complete first. A memSze (bits)
parameter defines the memory usage constraint, and triggers job swapping dynamics as
the CPU processesjobs. A swapTimePenalty parameter specifies ajob processing time
loading factor when memory usage becomes constrained during simulation runs.

The transport component is modeled as a DEV S atomic model and segments a
DCO software object interaction msg into packets for transport acrossthe LCN. The
transport component at a destination node receives and collects packets. When all
packets for an interaction msg are received, the destination transport component delivers
the interaction msg to the destination DCO software object. In future versions of this
transport implementation, we plan to support packet acknowledgment schemes and time-
outs. With the transport model, we define the communications modes within the LCN,
while Butler opted to define them in the OSM. By extending the functional behavior of
the transport component, we can define additional communication modes. Added
communication modes will be named. Thus, the user/modeler will be able to map DCO
invocation and message arcs onto appropriate communications modes by naming the
required communication mode during DCO arc declaration. For more detail see the

"Invocation and Message Arcs' description in section 4.3.3.
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Butler defined two distinct function mappings as part of the LCN representation:

processorsto links and gatesto links. For our DEV S-DOC implementation, these

function mappings are implemented directly within aDEV S coupled model as internal

couplings between the DEV S models representing the processors, gates, and links. For

example, the topology mappings of the example LCN structure in Figure 3, may be coded

within a DEV S coupled model as:

// map processors to links

Add_coupling
Add_coupling
Add_coupling
Add_coupling
Add_coupling
Add_coupling
Add_coupling
Add_coupling
Add_coupling
// map gateoO
Add_coupling
Add_coupling
Add_coupling
// map gatel
Add_coupling
Add_coupling
// map gate2
Add_coupling
Add_coupling
Add_coupling
Add_coupling
Add_coupling

( p0,"outLink", nil,"in");
( pl,"outLink", nl,"in");
( p2,"outLink", nl,"in");
( p3,"outLink", n2,"in");
( p4,"outLink", n2,"in");
( p5,"outLink", n4,"in");
( p6,"outLink", n5,"in");
( p7,"outLink", n6,"in") ;
( p8,"outLink", n7,"in");
to links

( g0,"out0", no,"in");

( g0,"outl", nil,"in");

( go,"out2", n2,"in");

to links

( g1,"out0", no,"in");

( gl,"outl", n3,"in");

to links

( g2,"out0", n3,"in");

( g2,"outl", n4,"in");

( g2,"out2", n5,"in");

( g2,"out3", n6,"in");

( g2,"out4", n7,"in");

Add_coupling
Add_coupling
Add_coupling
Add_coupling
Add_coupling
Add_coupling
Add_coupling
Add_coupling
Add_coupling

Add_coupling
Add_coupling
Add_coupling

Add_coupling
Add_coupling

Add_coupling
Add_coupling
Add_coupling
Add_coupling
Add_coupling

nl,"out",
nl,"out",
nl,"out",
n2,"out",
n2,"out",
n4,"out",
n5, "out",
n6, "out",
n7,"out",
no, "out",
nl,"out",
n2,"out",
no, "out",
n3,"out",
n3,"out",
n4,"out",
n5, "out",
ne,"out",
n7,"out",

p0, "inLink") ;
pl, "inLink") ;
p2, "inLink") ;
p3, "inLink") ;
p4,"inLink") ;
p5, "inLink") ;
p6, "inLink") ;

p7,"inLink") ;

p8, "inLink") ;
go,"in0") ;
g0, "ini") ;
gO,"in2");
gl,"in0O") ;
gl,"ini");
92’ ninon);
g2,"inl") ;
g2,"in2");
g2,"il’l3");
g2,"in4");
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To further simplify the process of defining such couplings for a DOC modeler, the
DEVS-DOC digraphDOC class extends the DEV S digraph class model to provide
specific procedures for coupling LCN components. The following code example results
in the same topology mappings/ couplings as above but with half as many Add_coupling

statements. Such aggregated coupling statements simplify the modeling effort.

// map processors to links // map gateO to links

Add_coupling LCNtoLCN ( pO, nl ); Add_coupling LCNtoLCN ( g0,0, nO );
Add coupling LCNtoLCN ( pl, nl ); Add_coupling LCNtoLCN ( g0,1, nl );
Add _coupling LCNtoLCN ( p2, nl ); Add_coupling LCNtoLCN ( g0,2, n2 );
Add_coupling LCNtoLCN ( p3, n2 ); // map gatel to links

Add coupling LCNtoLCN ( p4, n2 ); Add_coupling LCNtoLCN ( gl1,0, nO );
Add_coupling LCNtoLCN ( p5, n4 ); Add_coupling LCNtoLCN ( gl,1, n3 );
Add _coupling LCNtoLCN ( pé6, n5 ); // map gate2 to links

Add_coupling LCNtoLCN ( p7, né6 ); Add_coupling LCNtoLCN g2,0, n3 );
Add coupling LCNtoLCN ( p8, n7 ); Add coupling LCNtoLCN g2,1, n4 );

Add_coupling LCNtoLCN

( )
( )
Add_coupling LCNtoLCN ( g2,2, n5 );
(92,3, n6 )
( )

Add coupling LCNtoLCN g2,4, n7

4.3. Distributed Cooper ative Objects

The DCO software architecture is described in terms of computational domains,
software objects, invocation arcs, and message arcs. A computational domain is a set of
software objects that comprise an independent executable program. Following the
traditional object orientation concept, software objects represent software components
composed of data members (attributes) and functions (methods) that operate on the
attributes. Invocation arcs define client—server type software object interactions.

M essage arcs define peer-to-peer type software object interactions.



62

4.3.1. Computational Domains

Butler had two purposes for defining computational domains: 1) grouping
software processes to extract simulation results, and 2) program scheduling. For program
scheduling, Butler identifiesinitializer objects (objects that represent the main program)
by assigning them a duty-cycle. The duty-cycle triggers multiple executions of the
program during a simulation.

In considering these two purposes for domains, the first purpose isrealy an
experimental frame issue while the second issueisa DCO behavior issue. To maintain a
separation of these concernsin our DEV S-DOC implementation, we have opted to
identify computational domains within the confines of the experimental frame and drop
theinitializer and duty-cycle attributes from its definition. This makestherole of a
computational domain in our implementation strictly an experimental frameissue. To
address the program scheduling issue, we add a duty-cycle parameter to the definition of
software objects. Thus, initializer objects within a computational domain are simply
those DCO software objects that have a duty-cycle (set to something less than infinity).
Consistent with this role shift, we describe our computational domain implementation

further in the experimental frame discussion of section 4.5.

4.3.2. Software Objects

DCO software objects represent the interacting processes of executable programs.
Within Butler’ s structure, software objects have four parameters. athread mode, a

memory storage size, a set of method computational workloads, and a set of method
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invocation probabilities. The thread mode determines the multi-threading granularity of
the object: none, object, or method. The memory storage size represents the total (data
and methods) storage requirement of the object when loaded into processor memory for
execution of its methods. Each method is represented by a computational workload
factor (e.g., processor cycles) and an invocation probability. The invocation probability
isan artifact of the guantum modeling approach and represents the probability that an

invocation method will call (invoke) that method.

_ swObject
M’ state variables initial value range M’
sigma: 0, [0 .. 9]
phase: fire, {passive active,fire}
inJobs N activeJobs: empty relation 0 or more thread-Job pairs outJobs N
commJobs: empty function 0 or more Job-blockedStatus pairs
queuedJobs:  empty relation 0 or more thread-Job pairs
timerMsgs: empty relation 0 or more timeOut-Msg pairs outSW
fireJobs: empty set 0 or more Jobs —
fireMsgs: empty set 0 or more Msgs
loadStatus: unloaded, {unloaded,onDisk,inMem}
parameters default value range
objectSize: 0 bytes [0 .. o]
threadMode:  none, {none, object, method}
methods: empty set 0 or more methods
arcs: empty set 0 or more dcoArcs
dutyCycle: ) [0 .. ]
initMsg: null msg a Msg

FIGURE 12. DEVS Atomic Model For swObject

Our software object (swObject) isimplemented as a DEV S atomic model. Figure
12 depicts this model, highlighting the inputs, outputs, state variables, and parameters.
For state variables, Figure 12 identifies the initial value settings and the range of
acceptable values. For the parameters, Figure 12 identifies the default values and range

of acceptable values. This swObject model extends Butler's software structure of object
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size, thread mode, and a set of methods with the definition of a set of interaction arcs, a
duty cycle, and an initialization message.

As previously described in “Computational Domains’, our software object
representation includes a duty-cycle parameter, which enables identifying and
configuring initializer objects. The duty-cycle parameter sets the duration between
program executions. Setting the duty-cycle to infinity indicates that the object is not an
initializer. If the DOC modeler is detailing specific method and arc sequencesin
modeling the DCO, an initialization message (initMsQ) is also defined to start each
program execution with the invocation of atarget method.

Counter to Butler's approach of modeling interaction— invocation and message
— arcs as DCO components on alevel peer to software objects, we define the interaction
arcs as components of software objects. In particular, we model interaction arcs as a set
of entities that the source software object uses to create messages that are "fired" across
the associated LCN during ssimulations. With this approach, the set of interaction arcsis
a parameter in the swObject declaration. The implementation of interaction arcsis
discussed in more depth in section 4.3.3.

The structure used in defining a set of methods for a software object depends on
the DOC modeler’sintent and desired level of detail in modeling the selection and
sequencing of methods and interaction arcs. Following the quantum (probabilistic)
approach, methods are defined as a set of computational |oads paired with a set of
invocation probabilities. Thisimplementation satisfies the argument that, in a quantum

sensg, it isirrelevant which method is invoked by an interaction arc, only that each
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method of the object isinvoked in correct proportion to the aggregate invocations of all
methods of the object. We have also extended this implementation to enable direct
modeling of specific sequences of methods and interaction arcs. In particular, interaction
arcs can be defined to call (invoke) a specific method on a targeted software object, and
the targeted software object method can also declare a specific computational workload
and interaction arc firing sequence. These extensions offer a DOC modeler the ability to
do directed simulations of specific real-world software interactions. This quantum and
directed sequencing approach to modeling method behavior results in two constructor
types.

The constructor for a method defined under the quantum approach has three
parameters: a name, aworkload, and an invocation probability. The method name simply
provides a means to identify the method. The workload parameter is used to define LCN
processor computational loads for jobs that get processed when the method is selected for
execution. The invocation probability identifies the relative probability that this method
isinvoked whenever the software object receives an invocation or message. For
example, in the Email Application case study discussed in Chapter 6, the email client
software objects have two methods: sendMail and resolveNames. Both methods are
defined with aworkload of 400000 computational cycles and with invocation
probabilities of 30% and 70% respectively. The email client set of methods is specified

with the following three Java statements:

methods = new set () ;
methods.add (new method ("sendMail", 400000, 30));
methods.add (new method ("resolveNames",400000, 70)) ;
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At first glance, the constructor for a method defined under the directed
sequencing approach appears simpler, but it is actually a bit more complex. The
simplistic view is that the method is constructed with a method name and a task queue.
Again, the name provides a means to identify the method. The task queue defines a
sequence of computational workloads and interaction arcs. The software object uses the
computational workload to construct a job for the LCN processor to execute, and then
fires the associated interaction arc once the LCN completes the job. Then the next
workload in the task queue is used to construct the next job in the sequence. For
example, in the Distributed Federation Simulation case study in Chapter 6, the federate
executive (fedex) software object has a single method called "run()" with atask queue
(fedexCycle) to model the repetitive cycling of time-advance-grant messages from the
fedex to the other distributed federate software components. Thisfedex method set is
defined with two statements.

methods = new set () ;

methods.add (new method ("run ()", fedexCycle ));

The definition of the fedexCycle task queue is a bit more complex. The fedexCycle has
four key steps to compute the next-time-advance-grant and three intermediate time-
advance-grants for an interleaved DEV S cycle [Zei99c]. The task queueis configured to
run this cycle for a specified number of iterations, which results in the following Java

code to define the fedexCycle task queue.
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queue fedexCycle = new queue() ;
for (int i=0; i<Iterations; i++) ({
fedexCycle.add (new task(timeAdvGrant workload, arc_ timeAdvGrant n));

fedexCycle.add (new task(timeAdvGrant_workload, arc_timeAdvGrant_n 1)) ;

(
fedexCycle.add (new task(timeAdvGrant workload, arc_ timeAdvGrant n 2));
(

fedexCycle.add (new task(timeAdvGrant workload, arc_ timeAdvGrant n 3));

4.3.3. Invocation and Message Arcs

Butler defines invocation and message arcs independent of computational
domains and software objects. In defining the DCO representation, mapping functions
are used to relate a source (calling) software object to each arc and to relate one or more
target (called) software objectsto each arc. Both arc types are defined by afiring
frequency parameter and a message size parameter. The firing frequency is expressed as
the amount of computational progress to be made by the source software object between
arc firings (software object interactions). The message size parameter represents the
number of bytes sent across the LCN. Invocation arcs are further defined with two
additional parameters, areturn message size and a blocking mode. Asinvocation arcs
represent a client—server interaction, the return message size represents the number of
bytes returned by the target software object at the completion of its method execution.
The blocking mode parameter is set as either synchronous or asynchronous. A
synchronous setting causes the source software object to be blocked from continuing
method computation, while an asynchronous setting allows method execution to continue

at the source software object.
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To reduce the number of DCO modeling constructs, we implement asingle
dcoArc class as an extension of the DEV S entity class to represent both types of
interaction arcs. Collections of such arcs are defined within a DEV S set, which serves as
a parameter to the source software object and defines the arc to target object mapping.
Using the quantum modeling approach, an arc is declared by specifying an arc name, a
target set of software objects, a message size, areturn size, a message type (Synchronous,
asynchronous, or message), and afiring frequency. Asan example, in the Email
Application case study discussed in Chapter 6, email clients make invocation queriesto
the name server object. Thisname server invocation arc is defined as:

//arc to query NameServer

//arc: name, dstList, msgSize, returnSize, msgType, firingFreq

dcoArc query=new dcoArc ("queryName", "NameServer",100,200, "invokeSync",200000) ;

Using a directed modeling approach, the interaction arc constructor drops the "firing
frequency" parameter and adds a "called method" parameter. The "firing frequency” is
no longer needed as arc firing is made an explicit part of the task queue defined within a
method, and the "called method" parameter explicitly identifies the method to be executed

on the targeted software object.

4.3.4. DCO Mappings

Bulter defined five distinct function mappings as part of the DCO representation.
As our implementation has aligned the need for computational domains with

experimental frames, the mapping of DCO software objects into computational domains
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is also shifted into the experimental frame representation. The remaining four function
mappings relate arcs to source and destination software objects. Asdetailed in the
preceding two sections, the mapping of arcsto source objectsis part of the swObject class
declaration, and the mapping of arcs to destination objectsis part of the dcoArc class

declaration.

4.4. Object System Mapping

The OSM representation assigns DCO software objectsto LCN processors. As
depicted in Figure 12, each swObject has two input ports and three output ports. Each of
these portsis coupled to input and output ports on the assigned LCN processor. These
couplings can be defined within a DEV S digraph model with five Add_coupling()
statements for each assigned swObject. To simplify thisfor a DOC modeler, the DEVS-
DOC digraphDOC class extends the DEV S digraph class to implement an
Add_coupling swObject to processor (swObjects, processor) Statement. This
single statement implements all five of the needed couplings and can accept the
swObjects argument as areference to asingle DCO swObject or a set of DCO swObjects
being mapped to the processor. For example, when the DEV S set container swObjects

contains swObject1, swObject2, and swObject3, the statement

Add_coupling swObject to processor( swObjects, processor );

adds all the needed couplings as depicted in Figure 13. In particular, this statement
couples the outMsgs port of each component in swObjects to the inMsgs port of the

processor. Similar couplings are made for outJobs to inJobs and for outSWto inSW. The
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statement also couples the outMsgs port of the processor to the inMsgs port for each
component in swObjects. Similar couplings are made, as well, for outJobs to doneJobs.

This aggregated coupling statement significantly simplifies the modeling effort.

__INMsgg | swObject1 JoutMsgs
i i rocessor
InMs swObject2 [outMsgs ’M» (Eeeﬁgurell) outMsgs

inMs swObject3 [outMsgs
doneJobs, jutdobs o i 30bs outJobs

A0-0DSy, ——

doneJob butJobs I‘
doneJobl J(z;:i/obsl oW
. utSwW : I
: outSW )

inLinlf outLink
—

FIGURE 13. DCO Software Objectsand L CN Processor Couplings

These couplings and mappings facilitate the following dynamics and interactions.
A software object isinvoked by receiving a msg on its inMsgs port, where the msg
contains the name of the software object in its destination address list. Once invoked, the
software object loads itself into processor memory by sending aload software message to
the processor inSW port. The invocation also causes a method of the software object to
be selected for execution, and a computational job is sent to the processor inJobs port.
Once the processor completes executing the job, the job is returned to the software object
viathe outJobs port of the processor. Each software object receives the job completed by

the processor and must check whether the job on the doneJobs port originated from itself.
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If so, the software object marks computational progress, selects a dcoArc, creates a msg,
and sends it to the processor port inMsgs for transmission across the LCN. When the
processor receives amsg destined for one of its associated software objects, that msg is
sent on the outMsgs port. Again, each mapped software object receives the msg and must
verify whether it isthe targeted (destination) software object prior to servicing the msg.

At thislevel of abstraction, the DCO to LCN mapping may be more appropriately
characterized as a software to firmware mapping in that the processor components
represent an aggregation of hardware and software functional resources. The LCN cpu
actually represents a combination of processor subsystems:. central processing unit, disk
and system memory system, system bus and input/output ports. Likewise, the gate
actually represents a combination of network interfaces and intra-processor

communication channels for co-hosted interacting software objects.

45. DEVSDOC Experimental Frame

For distributed object computing systems, Table 1 depicts a set of metricsto
observe and assess dynamics and behaviors in running a simulation of a DOC model.
Table 1 isrevised from [But94] and lists some of the mgjor sets of information metrics
that may be derived from simulation of the DCO and LCN interactions. Metrics marked
with a"=" are applicable for components of that class. Metrics marked witha"X"
indicates that an aggregation of the metric is applicable over the set of componentsin that
class. For example, the"X" under the Domain DCO Class for the metric Computational

Work Performed indicates this statistic is a summation of the computational work
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completed for each software object within the domain. These information elements
define the objectives for the distributed computing system modeling and simulation

enterprise and specify the magjor functional components for the experimental frame.

LCN Classes DCO Classes
Description of Metric Processor Gate Link Domain Object Interaction Arc
Computational Work Performed * > *
Active Time/Utilization * * *
I/0O Data Load * ) *
Utilization of Storage *
Percentage of Active Objects * *
Degree of Multithreading * *
Length of Execution Queues *
# of Initialization Invocations * *
Total Execution Time * *
Coefficient of Interaction *
Data Traffic * > *
Utilization of Bandwidth * >
% of Packet Retransmission > *
Length of Packet Buffer *
Net Throughput of Data * > *
Rate of Overhead * > *
Gross & Net Response Time ®

TABLE 1. Maor DOC System Simulation Metrics

This research effort has developed a set of transducers for the processor, link,
domain, object, and the interaction arc classes listed in Table 1. The current link
transducer is specifically for ethernet links. Development of a gate (hub and router)

transducer and a generic link transducer are planned as part of future directions.
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FIGURE 14. Layered Experimental Frame

Given the number of random variablesin aDOC model, we have aso devel oped
atuples transducer to collect results across multiple smulation runs. The tuples
transducer collects the results of each transducer from a single simulation run and
computes the mean, variance, lower and upper bounds for the metrics of Table 1. This
approach can be viewed as an experimental frame containing two operational layers: the
first layer to support individual simulation runs, and a second layer to drive multiple
simulation runs and aggregate the results into statistical quantities. A traditional
experimental frame (EF-1) is constructed with a generator to stimulate the model, an
acceptor to control the smulation, and a transducer to collect simulation data and
summarize the results. The second operational layer experimental frame (EF-2)
stimulates, controls, collects and summarizes the results of the first experimental frame

layer. Figure 14 depicts this layered experimental frame concept.
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4.5.1. Computational Domains

As pointed out in the DCO Computational Domains section, the prime purpose
for defining computational domainsisto group related software processes for extraction
of simulation results across the aggregate. For this reason, we implement the definition
of computational domains as part of the experimental frame. The implementation isa
DEVSset class. A setisdeclared for each computational domain being represented, and
appropriate swObjects are added to each domain (set). The set of software objectsis then
used in declaring the domain transducer that monitors the software objects of the domain

during simulation.

45.2. DOC Transducers

This research has implemented a transducer for the DOC classes of domains,
swObjects, interaction arcs (msgs), processors, and ethernet links. Implementing a
transducer for gates and generic links is planned for future efforts. Each of these
transducers isimplemented as an extension of the DEV S atomic class. As previously
described, atuples transducer class isimplemented to collect and compute the mean,
variance, lower and upper bounds for these class specific transducers. The tuples
transducer is also a child of the DEV S atomic class. To simplify the coupling of these
transducers to DCO and LCN components, the digraphDOC class provides procedures

that aggregates the otherwise multiple Add_coupling() statementsto asingle
Add_coupling transducerCLASS (monitoredObjects, interactingObjects, transducer) ;

statement.
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4.6. DEVSDOC ClassHierarchy

In section 3.2.2, DEV S Object-Orientation, we provide a short overview of the
DEV S class hierarchy. In implementing the DEVS-DOC modeling and simulation
environment in DEVSJAVA, we have extensively used the object-orientation property of
inheritance to simplify the implementation effort. To realize LCN, DCO, and
experimental frame component classes, we implement them as extensions of the DEVS
atomic class. The one exception isthe LCN processor class, which isimplemented as an
extension of the coupled class, as the processor model is a composition of the DEVS
atomic model for LCN cpu, router, and transport components. This inheritance
hierarchy is depicted in Figure 15.

Within the DOC model, as devised as part of this research, several inert or passive
components are characterized — e.g., dcoArc for invocation and message arcs, and job
for cpu workloads. To simplify implementing these DOC specific passive components,
we extend the DEV S entity class to create the needed classes in the same fashion as the
HCCL outlined in section 3.2.2. Figure 16 depicts the inheritance hierarchy for these

passive DOC container components.
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5. DEVS-DOC COMPONENT BEHAVIOR

In section 4, we detailed the structural representation used to model distributed
object computing systems. In this section, we provide behavioral specifications for the
various DEV S-DOC components. In particular, we focus on defining the input events,
states, state transitions, outputs, output functions, and time advance functions needed to
implement the dynamics of the various DEV S-DOC components. These behavioral
representations were developed and refined throughout the research effort behind this
dissertation. The Parallel DEV S formalism is utilized to succinctly and rigorously define

these dynamics.

5.1. LCN Component Behavior

The overall behavior of an LCN model is an aggregation of the individual LCN
component behaviors, which form the LCN. The behavior of the individual components
within the LCN model, however, is constrained by the couplings that define the LCN
composition and topology. In this section, the dynamic behaviors developed for the

atomic LCN components are defined.

5.1.1. Ethernet Link

The LCN link_ethernet model represents the ethernet cable interconnecting two or
more devices. The basic behavior required is to receive transmitted messages— data
frames— from connected nodes; after an appropriate propagation delay time, output a

preamble to signal the start of a frame; and then after an appropriate transmit delay time,
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output the transmitted data frame to signal the end of the transmission. If any new
frames are received during this process, a collision has occurred. In the case of a
collision, after the propagation delay time the model outputs a null frame, which signals
the collision event to al connected nodes. On detection of a collision, the ethernet
standard requires nodes to emit anoiseburst. So after a collision and the appropriate
propagation delay time, the ethernet link model outputs a noiseburst. For connected
nodes, the preamble output signals that the ethernet is busy, the null frame output signals
acollision, and a data or noiseburst frame output signals the end of atransmission, i.e.,
the ethernet isidle.

The dynamics of this model need to account for the propagation delay of
transmissions from one node to al other ethernet connected nodes. The propagation
delay isthe time for asignal from one node to reach another node, which depends on
cable length. To keep it ssimple, we assume aworst case propagation time between all
nodes. Thus, we only need asingle input port to receive transmissions, a single output
port to broadcast the signal, and a single time delay state variable to track the delay for all
connected nodes. From the |EEE 802.3 standard, an ethernet may have one to five 500
meter segments (using four repeaters) with the worst-case propagation delay per segment
being 25.6 micro-seconds.

To further ssmplify the model and enhance simulation performance, our model
also accounts for the time to transmit each frame. Thus, an input message from anodeis
apair of values representing the data frame to be transmitted and the time to transmit the

data frame — the time between putting the first and last bits of the data frame on the
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ethernet. This approach improves model simulation performance by only requiring a

single message exchange from a transmitting node model to the ethernet link model

rather than two exchanges— one for the preamble (start of transmission) and one for the

data frame (end of transmission).
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FIGURE 17. LCN Ethernet Link Discrete Event Time Segments

The discrete event time segment trajectories for the required dynamics of this

ethernet link model are depicted in Figure 17. The dynamics are plotted over time and

represent the input events, X; the model state changes, S; the elapsed timein agiven

state, e; and the model output events, Y. The depicted dynamics start with the ethernet in

a"passive' state with the time advance function set to infinity (o) and the pair of values

representing the data frame being transmitted and the time to transmit both set to null.
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The next event isthe input event "x1" that contains a pair of values, f1 being a dataframe
and rl being its transmit time. The "x1" input event sets the model into a"preamble”
state with the time advance function set to the propagation time (pt) and the frame and
transmit time pair set to (f1,rl). With the elapse of the propagation time, the model has
an internal event that causes the output of a preamble and setsitsinternal stateto
"xmitting" with atime advance of r1. With the elapse of r1, the internal event causes the
output of the data frame f1 and sets the model back to its "passive" state. The next event
sequence depicts the progression of a collision scenario.
A Paralel DEV S representation for this LCN link_ethernet model follows. This
representation is also included in Appendix C, DEVS-DOC Behavioral Specifications.
DEV Sink ethemnet =< X, Y, S, Sint, exts Oconf, A, ta>, where
InPorts = {"in"}
OutPorts ={"out"}

X={{n|fe F,re R}
Y ={preamble, noiseburst} U F

S={"passive","xmitting","collisions","noiseburst"} x Ro x X

dext((phase,6,Xa),6,("In" X)) = case phaseis
("preamble”,propagtionTime,x) "passive”
("collisons®,c-e,x) "preamble’
("collisions',c-e,x) "xmitting"
("collisons",c-e,x) "collisions’
("noiseburst" ,propagationTime,x) "noi seburst”

dinl(phase,o Xjas) = case phaseis
("passive’,,(3,2)) "passive"
("Xmitting" M ast, Xiast) "preamble”
("passive’ =, (3,9)) "xmitting"
("noiseburst” ,,(J,9)) "collisions’
("passive’ e=,(,9)) "noiseburst”

Scont(S,ta(S),X) = dext(Sint(S),0,X)
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A (phase,6 Xjas) = case phaseis
("out",preamble) "preamble”
("out" flax) "xmitting"
("out",fz) "collisions’
("out",noiseburst) "noiseburst”

ta(phase,6,Xias) = ©

where Xjas=(flasNast) represents the last input pair received
F = frames, to include the null frame fg

5.1.2. Ethernet Hub

The LCN hub_ethernet model represents a multi-port communications device that
receives LCN traffic on one port and broadcasts that traffic out on all other ports, where
all but one set of ports follow the IEEE 802.3 ethernet protocol. The exception port set,
the "inLoop" port and "outL oop™ port, provides a means for interconnecting other LCN
devices— processors and routers— to ethernet links. The number of ethernet ports
modeled is a configuration parameter.

The discrete event time segment trgjectories for three scenarios of asingle
ethernet hub system are depicted in Figure 18. In thefirst scenario, traffic is received on
the local loop port while the ethernet isidle; the model immediately sends the traffic out
over the ethernet; and no collisions are detected. In the second scenario, traffic is
received from the ethernet and isimmediately sent out the local loop. For the third
scenario, local loop traffic is again sent over the ethernet; however, thistime acollision is

detected; the model waits, and then tries to send the traffic again; this time successfully.
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A complete specification of the LCN hub_ethernet dynamic behavior is provided
in Appendix C. To simplify the specification, a single ethernet port was assumed. Here,

we highlight extracts of the Appendix C dynamic behavior specification to embellish on a

few concepts.
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€ f e A x2.sizelloop Speed
> >
YT (a*(xl,xmimme)) YT (aiLoop,XZ)
> >
a. From local loop to ethernet scenario b. From ethernet to local loop scenario
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FIGURE 18. LCN Ethernet Hub Discrete Event Time Segments
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The hub_ethernet state space matrix, S, isthe cross-product of a number of

vectors and scalars. In particular,

S = Phase X 0 X XmitState X MediaState
X LoopDelay X LoopBuffer X PortDelay
X PortBuffer X BackOffCount

where the vector Phase and the scalar o represent the two basic state variables of any
DEV S model.

The XmitState and the MediaState are two of the ethernet hub specific vectors.
The XmitState vector represents the transmission status of the hub on the outgoing
ethernet link, i.e., XmitSate = {idle, waitingForldle, xmitting}. The XmitStateis"idle"
when the hub has no traffic to send out the ethernet; is"waitingForldl€" when the hub has
traffic but, in following the |EEE 802.3 media access protocol rules, is unable to transmit;
and, is"xmitting" when the hub is transmitting queued traffic. The MediaState vector
represents the detected state of the ethernet link, i.e., MediaSate = {idle, singleCarrier,
collisions}. The MediaSateis"idle" when traffic has not been detected on the ethernet;
is"singleCarrier" when the start of traffic (a preamble) has been detected (received); and,
isin"collisons' when acollision (a null event) has been detected (received).

The LoopDelay scalar represents the time to transmit traffic out the local
"outLoop" port; while the PortDelay scalar represents the time to wait until attempting to
transmit traffic out the ethernet link port "out1". When thereis no traffic for these ports,

these scalars are set to infinity, c.



The LoopBuffer and the PortBuffer are queues to hold traffic destined for
transmission out the local "outLoop” port and the ethernet link port "outl", respectively.

Following the |EEE 802.3 media access protocol, when a device has traffic to
send and detects traffic on the ethernet, the device waits (backs off) arandom number of
time slots before attempting to send itstraffic. A time slot isequal to the worst-case
propagation time. For each back off, the range of random numbers increases
exponentially. E.g., after the first collision, each station waits either O or 1 slot times
before trying again; the second time, either O, 1, 2, or 3 time slots; in general, after i
collisions, arandom number between 0 and 2"i-1. The BackOffCount scalar in the state
Space matrix represents the number of sequential collisions encountered.

The external transition function is defined with four sequential state change steps,
which are summarized as follows:

dext(S,€,(INPorts, X)) =

(,,,,JoopDelay-e,,portDelay-e,,) ° before processing input events X
(yorroPradd(x,xt),) for each x event on "inLoop"
(,,xs,ms,Id,Ib,pd,pb,boc) for each x event on"in"
(ph,sigma,xs,,,,pd,,boc) after processing input events X

As annotated, the first state change— (,,,,/oopDelay-e,,portDelay-e,,) — is executed
before processing any of the input events X. This state change step re-computes the

LoopDelay and PortDelay scalars based on the elapsed time, e. If either LoopDelay or

® In this notation, commas are used to signify each of the state variables and any equations within them
signify the new value to be assigned. Inthe(,,,,JoopDelay-e,,portDelay-e,,) case, the first four state
variables, along with the sixth, eighth, and ninth state variables, remain unchanged. The fifth state variable
is LoopDelay, which is set to anew value of loopDelay-e. Similarly, the seventh state variableis
PortDelay, which is set to a new value of portDelay-e.
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PortDelay happen to be at infinity, then the subtraction of any arbitrary elasped time e
(whichislessthan infinity) resultsin infinity. With the completion of this first sequential
state change step, these new delay values apply in the remaining three steps.

As annotated, the second sequential state change step (,,,.,,,P:add(x,xt),) is applied
repetitively for each input event from the "inLoop" input port. Likewise, thethird step is
applied repetitively for each input event from the ethernet "inl1" input port. The fourth
and final step is applied once after processing al the input events.

Appendix C provides the complete specification with details on the variables used
in the sequential state change steps just described, as well as details on the other DEV'S

functions.

5.1.3. Router

The LCN router model represents a multi-port communications device that
receives LCN traffic on one port and then, based on its routing table, forwards the traffic
over alink heading towards the destination. Therouter has one set of ports, the "inLoop"
and "outLoop" ports, to provide a path for interconnecting DCO software objects local to
the router node to other LCN componentsviaLCN link paths. The number of router
LCN link ports modeled is a configuration parameter.

To avoid requiring a DEV S-DOC modeler to define routing tables, the router
model includes dynamic behavior mechanisms that automatically discover the routing
information needed to setup arouting table. This route discovery behavior istriggered by

a DCO software object behavior that sends a"load" message over the LCN, at the start of
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asimulation. On thereceipt of this"load" message, the router updates its route table by
noting the source name and the link servicing it. The router then broadcasts this "load"
message out all other links to share this knowledge with other LCN components. Within
the experimental frame, these route table update dynamics can be defined as a simulation
startup sequence that the transducers (data collectors) can ignore.

Thefirst discrete event trgjectory plot in Figure 19 depicts the progression of a
"load address" event on a"loop" input port. The scenario starts with an input event of
message X1 on the "inLoop" port. Message X1 isfrom DCO software object "A", hasa
sizeof "sizeX1", andisa"load" message. The state change reflects X1 being queued for
output on outLink1 and outLink2 and the AddressList being update to associate traffic
destined for software object "A" to the "Loop" output port.

In similar fashion, the second event plot in Figure 19 depicts the progression of a
"load address" event on a"link" input port. In particular, message X2 arrives on the
"inLink1" port and isa"load" message from software object "B". The model queues
message X 2 for forwarding on the outLink2 port and updates the AddressList to associate

traffic for "B" to the "Link1" output port.
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FIGURE 19. LCN Router Discrete Event Time Segments

The third and fourth plotsin Figure 19 depict traffic reception and forwarding

scenarios. In plot c, traffic X3 isfrom the local loop DCO software object A and is

destined to software object B. In this scenario, the router isinitially passive. In

receiving X3, it is queued for "outLink1" (based on the prior occurrence of scenario b),
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and the next internal event for the router is scheduled by setting ¢ to the transmit time of
sending X3 over "outLink1", i.e., the size of X3 divided by the link rate of "outLink1".

Similarly, plot d isthe event scenario for traffic received on "inLink2", where X4
is from software object C and destined to B. In this scenario, the router is already
transmitting traffic over "outLink1" when X4 isreceived. So, the schedule for
completing the current "outLink1" transmission event is reset based on the elasped time
eX4; and traffic X4 is queued on the "outLink1" buffer. Once, the current "outLink1"
transmission completes, the output event of sending X4 over "outLink1" is scheduled
based on the transmit time needed for X4.

A complete specification of the LCN router behavior is provided in Appendix C.
For the external transition function, a sequential set of state change stepsis specified in

the same style described in section 5.1.2 for the ethernet hub.

5.1.4. Central Processing Unit (CPU)

The LCN cpu model represents the behavior of LCN processors as they compute
jobs generated from DCO software objects. The model has two input ports; "inJobs" for
receiving jobs that are to be processed, and "inSW" for receiving requests to load and
unload software in memory. The "memSW" and "meminUse" state variables maintain
the status and resource demands of these loads and unloads. Plotsaand b in Figure 20

depict event sequence scenarios for such loads and unloads.
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a. LCN cpu load memory scenario
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b. LCN cpu unload memory scenario

FIGURE 20. LCN cpu "inSW" Discrete Event Time Segments

Two cpu model types are available in the DEVS-DOC framework — asingle-
tasking cpu and a multi-tasking cpu. While the behavior resulting from events on the
"INSW" port is the same for both cpu types, the behavior resulting from jobs on the
"inJobs" port can vary significantly. The single-tasking cpu accepts and queues multiple
job requests, processing them one at atime on afirst-in, first-out (FIFO) basis. The
multi-tasking cpu accepts multiple job requests and processes al jobs concurrently. The
effective cpu speed available to each job, however, is an equally divided fraction of the

total cpu speed based on the number of jobsin the cpu.
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FIGURE 21. LCN cpu Discrete Event Time Segments

Figure 21 depicts the scenario of two jobs, X5 and X6, arriving at the cpu at the

sametime. Plot a depicts the scenario for the single-tasking cpu and plot b for the multi-
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tasking cpu. Inthis example, we assume the work load of job X5 islarger than the work
load of X6 and that the speed of the two cpu'sisthe same. The single-tasking cpu treats
one of the jobs (X5) asthefirst arrival, processes it, and outputs it on "outJobs"; the
single-tasking cpu then processes job X6 and outputsit. Thejob outputs of the single-
tasking processor are quite staggered in comparison to the multi-tasking cpu. We can
also note that while the duration to compute both jobsis equal, the multi-tasking
processor completes job X6, with the smaller work load, first.

A specification of behavior for both cpu typesis provided in Appendix C.

5.1.5. Transport

The LCN transport model is acomponent to represent behaviors of various
communication modes. The current DEVS-DOC transport model supports only one
communication mode. The required behavior of the model is to partition DCO software
object messages into packets for transmission over the LCN, and to reassembl e received
packets into messages for delivery to software objects. The model receives software
object messages of arbitrary length on the "inMsgs" input port; partitions them into
packets of a set maximum length; and sends the resulting packets out the "outPkts' port.
The model collectsincoming packets viathe "inPkts" input port; stores these inbound
packets in areceiving queue buffer; and when all the packets for a message have been

collected, delivers that message to the DCO software object viathe "outMsgs" port.
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The Parallel DEV S with Ports specification is provided in Appendix C. Figure 22
depicts adiscrete event scenario with the transport model partitioning a message into

packets and with the model receiving a series of packets to form a message.

(inMsgs, M 1) (inPkts,P1) (inPkts,P2) (inPkts,P3)
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( outPkts, (src,dest,100,X 1,30f4) )
(outPkts, (src,dest, 50,X1,40f4) )

(outMsgsM 2)

FIGURE 22. LCN transport Discrete Event Time Segments

5.2. DCO Software Object

The only DCO component is the software object model, swObject. This model
represents software components as the interacting processes that constitute executing
programs. The swObject model has two input ports, "inMsgs' and "doneJobs’. The
"InMsgs"’ port isto receive exchanges (invocations, invocation responses, and messages)
from other software objects. The "doneJobs’ port is to receive completed jobs from the

LCN processor. The swODbject has three output ports, "outMsgs,” "outJobs,” and
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"outSW." The"outMsgs' port isto send out invocations and messages to other software
objects. The "outJobs" port isto send jobs to the LCN processor for execution. And the
"outSW" port isto signal the loading and unloading of the software object onto the

processor disk and memory resources. Loading the processor disk also triggersthe LCN

router mechanism for automatic route discovery, see section 5.1.3.

(inMsgs, M1)
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eh
YA
(outSW,(A,Mem,1000,unload)
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(outJobs,J1(A,01,50,100,M1))  (outMsgsM 2.A1) (outMsgsM 3.A2)

FIGURE 23. DCO swObject Discrete Event Time Segments. Simple Scenario

Figure 23 illustrates arelatively simple event and state transition scenario of a
software object receiving an invocation request, selecting the method, processing the job,
interacting with other software objects, and then returning a response to theinitial

invocation. For this simple scenario, the multi-threading mode of the object has no
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impacts on its resultant behavior as we have only considered a single invocation. On
receiving the invocation message M1, the object selects method O1 (based on the
modeler's configuration for the object) to create job J1, and immediately sends two events
to the processor: atrigger to load software into memory and the job J1 to execute. The
software object is now active and waits (o = o), for an external event. Note, J1is
configured to execute in two steps, 50 work load units at atime. On receipt of the
completion of the first half of J1, the software object selects interaction arc Al (based on
the modeler's configuration for the object) to create an interaction message M2 to send
out. The object then immediately sends out two more events:. job J1 to the processor for
the second half of its execution and message M2 to the LCN for delivery to its destination
object. Note, in this scenario M2 is an asynchronous message as job J1 continues on with
execution rather than waiting for a response to M2 before continuing execution. Again,
the software object waits for an external event. On receipt of the completion of the
second half of J1, the software object again selects an interaction arc A2 to create
message M3, which is an asynchronous message. Asjob J1 has completely executed, the
object creates the return message to the M 1 invocation; and, as the object has no
outstanding jobs, the object triggers the processor with an event to unload memory.

More complex scenarios are described in the following sub-sections, which depict
the behavioral differences that can be encountered based on the setting of the software
object thread mode. To help highlight some of these behavioral differences, some
common configuration assumptions about the object and its environment are summarized

here:
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1) the object has two operation methods defined: O1 and O2;
2) the object hastwo arc interactions defined: Al and A2,
where Al and A2 are asynchronous arcs;
3) the execution of operation Ol firesarc Al; O2 fires A2,
4) the processor for this object is multi-tasking and no other
software objects are interacting with it;
5) the object initially receives three messages. M1, M2, and M 3;
only message M1 requires aresponse; M1 and M2 trigger
selection of method O1 for execution while M3 selects O2.
The Parallel DEV S with ports specification for the behaviors of the swObject model is

provided in Appendix C.

5.2.1. swObject Dynamics For Thread Mode None

In the "none" level thread mode, a swObject only executes one job at atime and
any additional requests are queued. So this scenario, as shown in Figure 24, resultsin the
sequential execution of jobs J1, J2, and J3. Job Jl istheinitial active job, with jobs J2
and J3 being queued.

At the completion of J1, the M1 return message is sent as well as the new
message M4, which was created based on the definition of interaction arc A1 and the
completion of method O1. Similarly, with the completion of job J2, message M5 is
created from A1 and sent. Finally, with the completion of J3, message M6 is sent based

on arc definition A2, and the software object sends an event to "unload” memory.
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FIGURE 24. DCO swObject Discrete Event Time Segments:
Thread Mode None

5.2.2. swObject Dynamics For Thread Mode Object

In the "object” level thread mode, a swObject can have one job per defined
method concurrently active. Soinitially, our swObject has two active jobs: J1 associated
with method O1 and J3 associated with method O2. Asshownin Figure 25, job J2is
queued until completion of method O1 viathe execution of J1.

Asjob J3 has the smaller work load and our processor is multi-tasking, J3
completesfirst and is the next external event. AsJlisstill executing, J2 remainsin
gueue, but the completion of method O2 triggers the sending of arc A2 with the creation

of message M6.
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FIGURE 25. DCO swObject Discrete Event Time Segments:
Thread Mode Object

With the completion of job J1, J2 becomes the remaining active job. The M1
response message is sent along with the message M4 based on method O1 being
executed. Completion of job J2 closes out this scenario with the rel ease of message M5
and the "unload" memory event. In contrast to the "none" thread mode event scenario,
the queuing of jobsin the "object" thread mode scenario imparts prominent behavioral

differences that are manifest in the relative timing and sequencing of output jobs and

messages.

5.2.3. swObject Dynamics For Thread Mode Method

In the "method" multi-threading mode, a swObject reactsto all incoming requests
with the generation of active jobs. Hence, a swObject in "method" mode starts out with

the production of three active jobs: J1, J2, and J3. With J3 having the smallest work |oad
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of the three, and since the processor is multi-tasking, the completion of J3 is our next
external event as shown in Figure 26. The completion of J3 dropsit from the active job

list and also creates the M6 interaction message for output.
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FIGURE 26. DCO swObject Discrete Event Time Segments:
Thread Mode M ethod

The next external event is the completion of jobs J1 and J2. This clears out the
active job list and creates three outgoing messages. The completion of J1 creates the
return message for M1 and the new message M4 for executing method O1. Likewise, the
execution of method O1 via J2 creates message M5. With no more active jobs, the
swObject also sends an event to "unload” memory.

In contrast to both the "none" and the "object” level multi-threading modes, we
observe another distinctly different behavior scenario for the same given input. The
resulting job execution sequence and relative timings between the output messages have

changed.
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53. TheOSM Component

The OSM component of the DEV S-DOC framework is the mapping of DCO
software objects onto LCN processing nodes. In this mapping role, the OSM provides
structural knowledge about the combined hardware and software system. The OSM,
however, does not introduce any new behavior. Rather, the structures defined within the
OSM impose constraints and limitations on the behavior of the individual components

forming the DOC system.

54. Experimental Frame Component Behavior

The dynamic behaviors developed for DEVS-DOC experimental frame

components are summarized in this section.

5.4.1. Acceptor

In an experimental frame, an acceptor monitors a simulation experiment to see
that desired conditions are met. In the DEV S-DOC case studies described in chapter 6,
we devel oped an acceptor to provide synchronization and coordination functions during
the simulation experiments. The phases this acceptor cycled through are shown in the
discrete event segment plots of Figure 27 aand b.

The time segment scenario depicted in Figure 27 isfor the acceptor controlling
two simulation runs of the same experiment (numSimRuns=2). Thefirst plot depicts the
time segments for acceptor control in running the first smulation experiment. The

second plot, b, continues with showing the control of the second simulation experiment.
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The acceptor starts out in a"starting” phase, which allows the DCO software
objects time to send aload disk event to their respective processors. The router
component of the processor model uses this event to begin configuring routing tables and
forwards this routing information around to the other LCN components. The acceptor
waits for these routing table configurations to compl ete based on the startupTime
parameter.

The acceptor next signals all transducers to start collecting data by sending the
"collect" event out the "control" port. The acceptor aso stimulates the DEVS-DOC
system model by sending an initial invocation message out the "invoke" port. For three
repetitions, the acceptor continues to periodically — based on the invokeDutyCycle
parameter — stimulate the system with invocation messages. The acceptor subsequently
waits, for a period set by the ssmDutyCycle, for thisfirst smulation run to complete. The
acceptor then signals the transducers with a"report” event on the "control” port. The
acceptor completes this first smulation control cycle by entering an "initializing" phase
in preparation for controlling the second simulation run.

Asshown in plot b, control of the second simulation run starts with the acceptor
signaling all the DEV S atomic models to initialize themselves. The acceptor then cycles
through the same sequence just described, with the exception of the acceptor ending the
cycle by entering a passive state, rather than an initializing state, at the end.

A Paralel DEV S with ports specification of the behavior of this acceptor is

included in Appendix C.
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5.4.2. LCN and DCO Control Instrumentation

The behavior of the just described acceptor has control interactions with the
atomic models of the LCN and DCO components. In order for these control interactions
to have the intended effect, the LCN and DCO components must be capable of receiving
and reacting to these control events. The following DEV S specification, which is also
listed in Appendix C, isincorporated into the LCN and DCO atomic modelsto provide
this experimental frame control instrumentation.

DEVS.cN_and o _contro= < X, Y, S, Sint, Oexts Oconf, A, ta>, where

InPorts = { control }
X ={ (control, controlMsg) }, where controlMsg = { passivate, initialize}

S=Phasex o
Phase = defined in LCN or DCO model
c=Ro
dexi(S,€,(INPorts, X)) = (ph,sigma) for each x event on "control"

where ph is new Phase, and
sigmais new o,

if x=passivate ph=passive
sigma=co
elseif x=initialize initialize LCN_or_ DCO_model
8int(5) = (S)
dconf(S,ta(S),X) = Oext(Oint(S),0,X)
A(S) =0
ta(s)=o

5.4.3. Transducer

The transducer, in an experimental frame, observes and analyzes the outputs of
the system model under investigation. As previously described, our DEVS-DOC

transducers need to respond to both control events from the acceptor and to statistical
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events from the LCN and DCO components under observation. So, we develop a generic
transducer behavior model to respond to the acceptor and then extend the generic
transducer model to construct specific transducers to collect datafor the metrics outlined

in Table 1 of Chapter 4.
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FIGURE 28. Transducer Discrete Event Time Segments

Asillustrated in Figure 28, the generic transducer receives control events on its
"control" input port. With receipt of a"collect" control event, the transducer begins
collecting statistic events on specific ports. While in this collecting phase, the transducer
keeps track of the observation interval with the "ObservationTime" state variable. On
receipt of a"report” control event, the transducer generates a report on its observations
and passivates.

A Parallel DEV S with ports specification of this behavior isincluded in Appendix
C. The behavior of specific LCN and DCO transducers to collect the metrics outlined in

Table 1 simply extend this generic behavior by defining the statistics to collect, the input
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ports to observe them on, and a generate report function for the generic transducer to call

as part of its output function.

55. Synopsis

Each component in the DOC systems model represents areal world entity. These
DOC components characterize key structural and functional attributes associated with the
real world counterparts. This chapter details aformal behavioral specification for each
component in our DEVS-DOC environment. These behavior specifications define the
dynamic manner in which these components act and react.

For each component, its structural composition is defined in terms of input ports,
output ports, and a set of sequential states. The behavioral specification defines the set of
input values alowed on each input port; the set of output values that can be sent on each
output port; the state transition functions (internal, external, and confluent) which define
the state sequences; the output function; and the time advance function. Each of these
aspectsisformally specified in DEVS. Fragments of these specifications are discussed in
this chapter with complete specification listings provided in Appendix C. To supplement
these component behavior discussions, discrete event tragjectory diagrams depict how

various event scenarios affect component state transitions and outputs.
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6. CASE STUDIES

This chapter of the dissertation presents four case studies that useDEVS-DOC to
model various distributed computing applications. The four studies demonstrate the
breadth and depth of applicability for the DEV S-DOC environment. Thefirst case study
is of anetwork management application monitoring the status of managed devices across
alocal areanetwork [Hil99]. This study was not only modeled and simulated in the
DEV S-DOC environment, but was similarly configured and run in areal world
environment allowing for a comparison of the simulation results with real world
behavior. The second case study is of an HLA-Compliant distributed simulation
federation [Zei99c] that also has areal world counterpart to allow usto compare
simulation results against. The third study is amodel examining the interactions of an
email application involving an email server, aname server, and email clients [Hil98b].
Wherein the first two cases we used directed modeling to specify specific software object
method and arc interaction sequences, this study uses the quantum modeling approach.

In this study, we also present and discuss several of the more interesting simulation
results collected and plotted using the DEV S-DOC environment. The final case study
revisits the email application case study with afocus on LCN alternatives. This case
study demonstrates the degree of independence achieved in modeling the DCO, LCN,
and OSM components while also demonstrating the degree of interdependence on overall

system behavior.
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6.1. Simple Network Management Protocol (SNMP) Monitoring

In this DEVS-DOC case study, we have modeled and simulated an Internet
Engineering Task Force compliant SNM P management system [IET90]. Such a system
has four essential elements: management stations, management agents, management
information bases (MIBs), and a management protocol. Management stations, using the
management protocol, request management agents to perform management operations on
MIB objects, and the agents respond to these requests. MIB objects represent
manageabl e attributes. For our scenario under study, the manager requests agentsto

provide status on selected MIB objects via the snmpget command.

T
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FIGURE 29. SNMP Monitoring

The DOC system under study is depicted in Figure 29. The LCN consists of five

host processors interconnected with 10 Mbps ethernet links through a central hub to form
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anetwork with a star topology. For the DCO, each processor has an SNMP agent. One
of the five processors (Pasc6) also has an SNMP manager software object (mgr) and a
loop controller software object (loop). For the experimental frame, asingle
computational domain is defined to encompass all five SNMP agents, the manager and
the loop software objects.

The loop controller drives the overall system dynamics for this scenario. The
loop object fires an snmpwalk interaction arc to invoke the manager object to “walk” the
MIB of one of the five host processors. With thisinvocation, the manager fires a series
of snmpget commands. These commands translate into snmpget jobs that |oad the
processor's cpu and then fire snmpget interaction arcs that query (invoke) the targeted
SNMP agent. The SNMP agent fires ajob to process the request and then fires areturn
arc representing the response to the query.

The system entity structure for this case study is depicted in Figure 30. The
system is decomposed into the LCN components consisting of processors, media access
units (MAUS), links, and gates; the DCO swObjects; and the Experimental Frame
components consisting of adomain transducer and an acceptor. Key couplings for this
decomposition are annotated directly under the "SNMP System-aspect.” For instance,
coupling of the LCN is summarized in the five lines listing the coupling of a processor to
itsMAU, to itslink, to anumbered port on the hub. Attribute settings used within this
case study are also annotated next to the appropriate entitiesin the SES. The DEVS-

DOC code to model and simulate this systemis provided in Appendix B.
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FIGURE 30. SESfor the SNMP Monitoring Case Study®

® Infinity (o) is used as amodel simplification setting for several component parameters in this case study.
Inthe DEVSJAVA implementation, INFINITY is defined as a double sized real number with a static, final

setting of POSITIVE_INFINITY.
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FIGURE 31. SNMP Monitoring Execution Times

During the investigation, we ran three series of simulations. For each series, we

set the manager software object to none, object, and method level multi-threading on its

thread mode. Within each series, we executed ten simulations with the loop software

object set to fire the snmpwalk arc the same number of times as the simulation iteration.

In other words, fire snmpwalk once for the first simulation; fire snmpwalk five times for

the second simulation; ten times for the third ssmulation; 15 timesin the fourth

simulation; and 20 timesin the fifth ssimulation. We also realized this DOC systemin a
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lab environment and collected data on the execution times. Figure 31 depicts plots of the
results for the simulation runs (simulation) against the real system (real) measurements.

From these results we see that the execution times begin to rapidly increase for
the real system when the manager is set for a method level of granularity. We explored
this behavior further using the system activity reporter (sar) utility on the Unix system
running the manager object. From the sar report, we found that after ten iterations
significant amounts of time accumulated for block transfers into and out of memory. Our
real system manager configuration is such that it actually starts a new process for each
snmpget method, and with the method level granularity, ten loop iterations, and 35
snmpgets per iteration, it equates to 350 concurrent execution requests. The block
transfers end up swapping out the processes executing these requests.

Our simulation results for this case study correspond well with most runs. For the
method level configuration, however, our poor results are strongly attributable to a weak
representation of memory swapping dynamics within our DEV S-DOC cpu model.
Developing an improved cpu memory representation is one instance of where an
improved representation of information technologies is needed within DEVS-DOC. This
need is discussed further in the information technol ogies sub-section in the final chapter

of this dissertation.
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6.2. Distributed Federation Simulation

This case study is of a DEVSHLA’-compliant distributed simulation federation
[Zei99c] that also has area world counterpart to allow us to compare simulation results
against. In[Zei99a] a pursuer-evader federation isimplemented in DEVS/HLA to
investigate predictive contract mechanisms. Now, the same pursuer-evader federation is
studied to show applicability of the DEVS-DOC environment and to demonstrate DEV S
DOC as ameans of exploring the tradeoffs in message traffic and computational loadsin

a complex distributed computing environment.

6.2.1. Predictive Contracts and DEVSHLA

DEVSHLA isan HLA-compliant modeling and simulation environment formed
by mapping the DEV S C++ system [Zei97Db] to the C++ version of the DMSO RTI
[DMS98a and DM S98b]. While HLA supports interoperation at the simulation level,
DEV S/HLA supports the hierarchical and modular modeling construction features
inherited from DEVS.

The operational form of the HLA isaRun Time Infrastructure (RTI) that supports
communication among simulations, called federates. DM SO (Defense Modeling and
Simulation Office) has developed an RTI in C++ for use in the public domain [DM S98al.
HLA supports a number of features including establishing, joining, and quitting

federations, time management, and inter-federate communication [ Dah98].

"HLA isthe DoD Modeling and Simulation Office (DMSO) High Level Architecture for implementing
distributed simulations [Dah98], [DM S98a], [DM S98b], and [DM S99].
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Predictive contract mechanisms are an active area of research into technologiesto
support large distributed simulations [Cha79, Cho99, Zei98, Zei99a, and Zei99c]. The
idea behind predictive contract mechanismsisto reduce the message traffic exchanged
between distributed simulation federates while incurring only marginal additional
computational overhead. In[Zei99a, Zei99c, and Cho99], tradeoffs between
computational overhead and bandwidth requirements for various predictive contract
mechanisms were examined using the concept of quantization [Zei98].

In [Zei99a], three predictive contract mechanisms were studied using a pursuer-
evader model to illustrate performance impacts within the simulations. The first
mechanism was called non-predictive quantization, wherein a sender federate updates the
receiving federate with a numerical, real-valued, state variable each time an agreed upon
(contracted) threshold is crossed. The second mechanism was called predictive
guantization. In predictive quantization, only a one-bit message is sent when a contracted
threshold is crossed; the one-bit message signals a crossing of the next higher or next
lower boundary. The third mechanism was called multiplexed predictive quantization,
which expanded on the predictive quantization concept. As mentioned, predictive
guantization reduces the information sent about boundary crossingsto asingle bit. Given
the overhead bits associated with creating a packet to send this information, reducing the
payload from 64 bits to 1 may not produce a significant overall reduction. However,
when large numbers of interacting entities reside on each federate, it is possible to

multiplex their reduced outputs into a single packet and exploit the message size benefits
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of predictive quantization. This concept defined the multiplexed predictive quantization
mechanism.

The pursuer-evader federation depicted in Figure 32awas used in [Zei994a)] to
explore these predictive contract mechanisms. The pursuer and evader components were
implemented as DEV S coupled models of vehicles and driversthat follow simple rules
for pursuit and evasion. The Pursuer component contains ared tank model that reflects
its state to the EvaderWENdo component. The EvaderWENdo component contains an
endo-model [Zei90] of the red tank, which receives the reflected state values from the
Pursuer. The EvaderWENdo component also contains an Evader model, which itself
contains a blue tank model. A ssimple federation, Figure 32b, is formed of two federates
—aPursuer federate and an Evader federate. Matched pursuer - evader pairs create

dynamics for federate interactions during simulations.

Pursuer EvaderWEndo
Red Tank Red Tank Evader
Endo Model
position | | perceive| Pursuer |« » Evader
A
in out
. Pursuer [« » Evader
out in v
- fireOut
drive L fireln Blue
Tank Pursuer [+ » Evader
Pursuer Federate Evader Federate
=) update (quantizer)
\ interaction (coupling) I |
DEVS/HLA
a. Pursuer-Evader Pairs b. Pursuer-Evader Federation

FIGURE 32. Pursuer — Evader Federation
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In studying the effects of the two extreme quantization mechanisms within a

distributed simulation setting, a DEV S/HLA model with the two federates were

configured to hold an arbitrary number of matched pursuer-evader pairs. An experiment

consisted of a number of randomly initialized identical pairs being simulated for a set

simulation time (100 cycles) and quantum size. In successive experiments, the number of

pairs were increased to approach network saturation.
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SimulatorEndoB
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tN;: Time of Next Event of Federate i

FIGURE 33. DEVSHLA Federation Infrastructure

In implementing the federation, each federate was configured on a Unix

workstation with the two workstations being interconnected via an Ethernet link. Figure

33 depictsthe DEV S/HLA federation infrastructure used to implement the simulation

federation. Federate P and E are formed to support the Pursuer and Evader federates.

The time manager federate is formed to enable the DEV S coordinator as described in
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[Zei99b]. The RTlexec and Fedex are DM SO HLA standard components [DM S98a

DM S98b].
Federate 1 Federate 2 Coordinator
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; ; | ny. Ly
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FIGURE 34. Combined DEVSHLA Simulation Cycles

Due to a constraint imposed by the HLA RTI rules, see [Zei99D], the RTI Time
Management mechanisms are used to synchronize the DEV S Simulation Cycle as
illustrated in Figure 34. Logical time (DEV S time) proceeds along a separate axis, as
shown, and advances each cycle in the phase where the coordinator updates each federate
with the DEV S global time.

The results of the [Zei99a] study are shown in Figure 35. Asthe number of pairs
increased, the simulation execution time increased in a highly non-linearly fashion for the
non-predictive quantization mechanisms. However, simulation execution time for the
multiplexed predictive quantization mechanism demonstrated a significant performance

improvement with only avery marginal increase in execution times for 1000 pairs or less.
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6.2.2. Predictive Contracts and DEVS-DOC

We have employed the DEV S-DOC environment to model and simulate this

distributed federation ssimulation. For our DEVS-DOC case study, the LCN simply
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consists of the two processors using media access units (MAUS) to interconnect with the

ethernet link. For the DCO, seven software object models were defined as numbered in

Figure 33. One each for the Fedex, RTI Exec, DEV S coordinator (time manager),

Federate P coordinator endo-model, and the Federate E coordinator endo-model. For the

set of pursuer models in Federate P, a single software object representing an aggregation

of the pursuersis defined. Similarly, for the set of evader modelsin Federate E, asingle

aggregate object is defined. The OSM places the Federate E coordinator and the evader
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aggregate software objects on one processor and all the other DCO objects on the other
processor. The Experimental Frame consists of two transducers and an acceptor. A
software object transducer collects data on the RTI Exec and an ethernet link transducer
monitors the network link. An acceptor monitors and controls the ssmulation runs.

As the number of pursuer-evader pairsincreases, the performance of the
simulation under each predictive contract mechanism is a central focus of the
experiments. Defining the set of pursuer models and the set of evader models as
aggregate software objects provides a simpler means of scaling the complete DEVS-DOC
system model. The computational workloads for the pursuer aggregate DCO object isa
function of the number of objects being represented. Similarly, the communications
traffic load placed on the LCN by the DCO is scaled by increasing message sizes based
on the number of pursuer-evader pairs.

For experiments, we ran 100 DEV S simulator cycles. During each cycle, we
assumed that 50% of the pursuer-evader pairs were active with interactions. To model
the non-predictive quantization mechanism, we assumed the contracted threshold settings
resulted in a five-fold decrease in message traffic, i.e., only 1in 5 of the interacting pairs
actually triggered a threshold crossing. And, the message size payload is based on the 64
bits needed to represent the numerical, real-valued, state variable. For the predictive
guantization mechanism, the same five-fold decrease in traffic is assumed, but now the
message size payload is based on 1-bit. For the multiplexed predictive quantization
mechanism, a 1-bit payload is again assumed, however, these 1-bit payloads are

multiplexed into a single message for routing through the RTI Exec.
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Interactions for the DCO software objects were defined based on the abstract
interactions depicted in Figure 34. To help elaborate these DCO software object
interactions and associated method invocations, the UML interaction sequence diagram
in Figure 36 was developed as a detailed refinement of Figure 34. Message sizes
associated with the pursuer and evader interactions were set asoutlined in [Zei99a]. The
message sizes associated with the federate coordinators, Fedex, and RTI Exec objects
were qualitatively estimated to reflect the complexity of information contained in these
exchanges. Similarly, the computational workloads for the methods associated with each
software object were qualitatively estimated to reflect the relative computational
complexity of the functions represented.

Figure 37 depicts the system entity structure for the set of DEVS-DOC models
developed under this case study. Asin the previous case study SES diagram, the key
couplings associated with this decomposition are annotated directly under the "Pursuer-
Evader Federation-aspect” and attribute settings used within the case study are also
annotated next to their associated entities. The DEVS-DOC code for thismodel is

provided in Appendix B.
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Comparing Quantization - Simulated Run Time
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FIGURE 38. Federation Execution Time versus Number of Pursuer-Evader Pairs

Results from simulating this DEV S-DOC federation model are depicted in Figure
38. The absolute magnitudes associated with these results are not that interesting as they
can be easily shifted by changing each processors’ speed parameter or with adjustments
to the computational workloads associated with the methods in each software object. The
relative trajectories for each simulation series — non-predictive, predictive, and
multiplexed predictive — are quite interesting in that they strongly reflect the behaviors
found in the original study [Zei99a].

Aswill be shown, the simulated computational |0ads dominate the simulated run
times by more than an order of magnitude. Adjusting the modeled computational |oads
to better characterize the real system would result in stronger network effects and a closer

correlation of the simulated results with the real system measurements.
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Comparing Quantization - Ethernet Busy Time
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FIGURE 39. Ethernet Busy Time versus Number of Pursuer-Evader Pairs

During this DEVS-DOC investigation of the federation model, we also collected
results on the cummulative time the ethernet link was busy with transmissions. See
Figure 39. Within DEVS-DOC, this "busy" time represents the time spent on
successfully transmitting traffic as well as time spent transmitting and recovering from
collisions. However, no collisions occurred during any of the simulations. This
simulated busy time represents only afraction of the simulated run time plotted in Figure
38. The simulated computational load dominates the simulated run time.

Observing no collisions is reasonable— only two workstations are modeled; no
other traffic source is represented; the traffic load occursin lock step with the simulated
DEV S cycle; and, the smulated computational load significantly dominates the overall

simulated run time.
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Comparing Quantization - Ethernet Data Load
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FIGURE 40. Ethernet Data L oad ver sus Number of Pursuer-Evader Pairs

The simulated total dataload transmitted across the ethernet is depicted in Figure
40. Asno collisions occurred in any of the simulation scenarios, the data load

transmitted is a direct complement to the previously discussed Ethernet Busy Time plot.
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Comparing Quantization - Real Execution Time
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FIGURE 41. Federation Execution Time versus Number of Pursuer-Evader Pairs

Whereas Figure 38 presents the ssmulated execution times for each scenario, in
Figure 41 we depict the real (wall clock) execution time to run these DEVS-DOC
simulations of the distributed DEV S/HLA federation. For example, the Predictive
simulation of 1000 sender/receiver pairs took just over 1000 minutes (approximately one
day) to run. Thisone-day run actually is executing the scenario four times with the
average of these results being used to generate the plots in figures 38 through 40. These
simulation runs were executing on a 4 processor, 250 Mega-hertz, 1 Giga-byte, multi-
user machine. Processing loads from other users during these simulation runs was not

monitored.
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6.3. Email Application

In this case study we consider an email application comprised of three specific
components. an Email Client, an Email Server, and aName Server. Within the Internet
Engineering Task Force (IETF) architecture and standards, the Email Server represents a
Simple Mail Transfer Protocol (SMTP) server, while the Name Server represents a
Domain Name Service (DNS) server. Within the International Standards Organization
(ISO) architecture and standards, the Email Server represents an X.400 server and the
Name Server represents an X.500 server. In both cases, the Email Client represents an
end user’s client application.

The Email Client component is modeled as a DCO software object (swObject)
that has a specification of two methods and two interaction arcs. an invocation arc and a
message arc. The two methods represent a function to resolve email names to addresses
within an email, and a function to send an email to the Email Server. Theinvocation arc
represents a request to the Name Server to resolve names associated with an email. The
message arc represents the sending of an email message viathe Email Server.

Similar to the Email Client, the Email Server component is modeled asa DCO
swObject with its own specific methods and arcs representing an electronic mail service.
The Email Server has three methods, three message arcs, and one invocation arc. The
three methods represent functions to receive email messages, forward email messages,
and resolve addresses. The three message arcs represent three different email messages

that are processed through the server. Two of these messages have Email Clients as
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destinations. The invocation arc represents requests to the Name Server for resolving
addresses.

The remaining software object for this Email Application isthe Name Server
component. Its DCO swObject model has specific methods and arcs for a name service
object. The Name Server has a single method defined to ook up names (resolve names).
No invocation or message arcs are defined. Thus, incoming arcs invoke the lookup
method, and on completion, the Name Server object ssmply fires return arcs for each

invocation arc that activated the server.

P14

client client i i i i client
22 23

i i '] —i ) d ) —i

FIGURE 42. Email Application LCN Topology and OSM
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For the LCN in this study, we explored a slightly more complex network. In
particular, we modeled three routers, each interconnected with the other two. This
configuration beginsto test and demonstrate the routing logic within the LCN. The
interconnection of the routersis via 10 megabits per second ethernet links. Off of each
router is a set of two or more processors. Each processor has a dedicated link to its LCN
router. ThisLCN structure forms a router-star topology as depicted in Figure 42. For the
OSM, we mapped one software object onto each processor.

Each of the fifteen Email Clients exhibits the same behavior as expressed above.
Each client is set with an object level multithreading mode. Each client isalso
configured to select the "resolve names' method 70% of the timeit isinvoked, and the
"send email” method the remaining 30%. The Email Server is set to a method level of
multithreading and selects the "receive email” method 20% of the time itsinvoked,
"forward email” 60%, and "resolve names' the remaining 20%. Ininvestigating this
system, two sets of simulations are run. One set has the Name Server set at no (none)
multithreading and the other at method. Asthe Name Server only has one method, it is
always selected when invoked.

For the experimental frame, an acceptor is coupled to each Email Client to invoke
it forty times at the start of each of twenty simulation runs. Each runisallowed to
progress until all the objects passivate. A software domain transducer for the email
application is connected to each software object. Software object transducers are
connected to the Email Server, Name Server, and one of the Email Client software

objects. Ethernet transducers are connected to each ethernet. The transducers collect
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system events from their components throughout each simulation run. The layered
experimental frame concept described in section 4.5 is used to compute, from the
transducer reports, the maximum, mean, and minimum statistical values across the twenty
simulation runs for each of the two Name Server configurations.

The system entity structure for this Email Application case study is outlined in
Figure 43. This SES highlightsthe LCN, DCO, and Experimental Frame components

and their couplings. The attributes settings used are also annotated.
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Case Study
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Email Application - Simulated Execution Times
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FIGURE 44. Email Application — Simulated Execution Time®

When the Name Server is set to none level multithreading, only one resolve name
request is processed at any point in time; subsequent requests get queued and processed
on afirst-in, first-out (FIFO) fashion creating a pipeline effect. We expect this pipelining
to also impact the dependent processes (Email Clients and Email Server) and effectively
reduce the amount of concurrent processing across the system. Thus, the none
configuration should result in slightly longer run times than when the Name Server is
configured for method level multithreading. Figure 44 plots the maxima, means, and
minima collected from the twenty simulation runs for the two Name Server thread mode
settings. While the ssmulation results do not demonstrate a significantly shorter
execution time for the method setting, they do show a smaller variation in the total

required execution time.

8 Note, the none and method labels in these plots reflect the thread mode setting of the Name Server object
during the simulation runs.
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FIGURE 45. Email Application — M essage Counts’

We expect the number of messages exchanged between DCO objects to vary
between simulation runs. However, from a quantum perspective, we expect to see
consistency on the mean number of messages as well as consistency on the range across
the two simulation sets of runs for the two Name Server configurations. The plotsin
Figure 45 depict the message counts for incoming and outgoing traffic on three of the

DCO software objects. These plots reflect this consistency.

° Note, the none and method labels in these plots reflect the thread mode setting of the Name Server object
during the simulation runs.
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The key configuration difference between the two sets of simulation runsisthe
thread mode on the Name Server object. When set to none, one and only one Name
Server thread can process at any point in time, and new requests get queued for
execution. When set to method, each incoming invocation or message resultsin a new
Name Server thread starting immediately, and no requests get queued. The following

plots depict various implications of this behavior on various components.

Software Object - Degree Of Multithreading
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FIGURE 46. Email Application — Degree of Multithreading Maxima®®

The degree of multithreading is a count of the number of concurrent jobs from a
given software object. In Figure 46, one and only one thread is active when the Name
Server is set to none. However, when it is set to method, it shows a maximum (for any
one simulation run) multithreading range of 11 to 25 active threads. The multithreaded
mode setting for the Name Server, however, shows no impact on the multithreading
behavior of the Email Client or Email Server, as their respective multithreading behaviors
are directly controlled by their own multithreaded mode settings, object and method level

respectively.

19 Note, the none and method abels in these plots reflect the thread mode setting of the Name Server object
during the simulation runs.
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Software Object - Execution Queue Length Maximums
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FIGURE 47. Email Application — Queue L ength Maxima™*

Figure 47 shows the impact of the Name Server thread mode setting on the
maximum queue lengths seen in each software object during each simulation run. For the
maximum queue length, the Name Server mode setting directly impacts the queuing
behavior of itself. Yet, it also indirectly impacts the queuing behavior of the Email
Client, which is set to an object level multithreaded mode. For the Name Server set to
none, as the Email Client receives and processes incoming messages, Email Client jobs
that are dependent on invocation requests to the Name Server get queued as those
requests get queued at the Name Server. From this none scenario, we see the Email
Client having maximum queue lengthsin the range of 1 to 14. For the method level
configuration, however, a queue at the Name Server does not grow — each incoming
request being immediately turned around into ajob —, and so there isa significantly lower
opportunity for a queue to build at the Email Client. So, the Email Client maxima queue

length dropsto arange of 2to 5.

™ Note, the none and method |abels in these plots reflect the thread mode setting of the Name Server object
during the simulation runs.
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Software Object - Invocation Message Response Time
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FIGURE 48. Email Application — Invocation M essage Response Times™

In distributed systems, response time is often an issue of particular interest. For
this case study, the response time of the Name Server to the Email Clients and Email
Server isof interest with results plotted in Figure 48. These response time statistics
reflect the time for an invocation request to transit the LCN, plus the time to process at
the Name Server, plus the time for the response to return over the LCN.

During any given simulation, the average response time is computed over all the
invocations a software object makes during that simulation. Similarly, the maximum
response time is the one that takes the longest to get aresponse. So across the 20
simulations for a given Name Server configuration, Figure 48 has plots of the highest

(max), lowest (min), and mean of the average response times collected during each

12 Note, the none and method |abels in these plots reflect the thread mode setting of the Name Server object
during the simulation runs.
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simulation. Similarly, the figure has plots of the highest (max), lowest (min), and mean
of the maximum response times collected during individual simulation runs. For
instance, the max, min, and mean of "Email Client 11 (average) - none" (plot column 2)
are all approximately 0.01 seconds. While the max, min and mean of the "Email Client
11 (maximum) - none" (plot column 4) are approximately 0.4, 0.06, and 0.02 seconds
respectively. From these plots, we see that using the Name Server in the method thread
mode has a negligible impact on the average response time, but that it can have a

significant impact on reducing the maximum response time.

Ethernet - Transmitting Time
1.2
1
0.8
[%2]
©
ey
3 06
(]
[%2]
0.4
max
0.2 min
- - mean
0 } } } } }
Ethernet 1- Ethernet2- FEthernet3- Ethernetl- FEthernet2- Ethernet3-
none none none method method method

FIGURE 49. Email Application — Ethernet Transmission Times™

Figure 49 provides transmission time statistics on the three ethernets providing

connectivity between the routers. This transmission time is the amount of time the

2 Note, the none and method |abels in these plots reflect the thread mode setting of the Name Server object
during the simulation runs.
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ethernet was busy transmitting successful frames; in other words, it does not account for

time the ethernet was idle or active with collisions.
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FIGURE 50. Email Application — Ethernet Collisions™

Extensive collisions on an ethernet can have significant impacts on the throughput
performance of a distributed system. Increasing the number of devices on an ethernet
increases the probability of a collision, as does increasing the traffic load on the ethernet.
In this case study, the acceptor (as part of the experimental frame) invokes all fifteen
Email Clients simultaneously. Since all fifteen Email Clients and their associated
processors exhibit the same behavior, collisions are highly likely to occur due to the
simultaneous introduction of traffic on the LCN. Figure 50 plots the collision results on

each of the three ethernet links, as collected during the two sets of simulation runs.

4 Note, the none and method abels in these plots reflect the thread mode setting of the Name Server object
during the simulation runs.
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FIGURE 51. Email Application — Ethernet Bandwidth Utilization®

Bandwidth utilization is another metric that is often used in evaluating network
performance and potential bottlenecks to system throughput. Figure 51 depicts the
utilization measured during the email application ssmulations. Since this utilization
metric is the percentage of time each ethernet spent successfully transmitting data, the
results display the same relative tragectories we observed in Figure 49 for the ethernet

transmission times.

6.4. Email Application LCN Alternatives
For this case study, we consider the same email application as described in the
previous study, but now our focusis on aternative LCN configurations. In particular, the

DCO and OSM models remain unchanged in this investigation; only the LCN and the

%> Note, the none and method |abels in these plots reflect the thread mode setting of the Name Server object
during the simulation runs.
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experimental frame (for LCN dependent components) are modified. This case study

demonstrates the degree of independence between the LCN, DCO, and OSM models

while signifying the interdependence of distributed systems behavior.

E1

==

Alternative 1. Hub-Bus

Alternative 2: Bus

FIGURE 52. Email Application Alternative LCNs



139

For LCN alternatives, we consider two alternatives to the baseline Router-Star
configuration of the original case study. For thefirst aternative, the Hub-Bus
configuration, the three routers are replaced with three hubs that have an ethernet "bus’
link off each providing connectivity to two or more processors. For the second
aternative, the Bus configuration, the entire LCN network consists of a single shared
ethernet "bus’ link. The baseline Router-Star configuration is as depicted in Figure 42.
The Hub-Bus and the Bus alternate LCN configurations are both depicted in Figure 52.

The experimental frame for each alternative is very similar across each
aternative. Just asin the baseline configuration, an acceptor is coupled to each Email
Client to invoke it forty times at the start of each of twenty simulation runs. Each
simulation executes until all objects are passive. The software domain transducer
monitors the entire collection of email application software objects. The Email Server,
Name Server, and one of the Email Client software objects are each monitored with a
software object transducer. Three processors are also monitored: Py, Pop, and Py;. For
the Router-Star configuration, the three ethernets interconnecting the routers are
monitored. For the Hub-Star configuration, the two ethernets interconnecting the hubs
are monitored. Inthelast alternative, the single ethernet link is monitored. Again,
transducers collect system events from their components throughout each simulation run
with statistical maxima, means, and minima collected and computed across the twenty
simulation runs for each alternative and for each of the Name Server thread mode

settings.
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FIGURE 53. Email Application — Simulated Time For Components To Passivate™

Figure 53 plots the simulated execution time maxima, means, and minima
collected across the 20 simulation runs for each configuration. Within each alternative
configuration, the thread mode setting for the Name Server has no significant impact on
execution times. The LCN configuration, however, has significant impacts on the
execution times with the baseline Router-Star configuration providing the shortest time to
completion. Thisis expected as the routers enabl e the traffic to be routed. In particular,
the expectation is that ethernet E1 and E3 will roughly do a 50-50 split the LCN traffic
load between the Email Clients and the Email and Name Servers. We will confirm this

as we examine the results further.

18 Note, the none and method abels in these plots reflect the thread mode setting of the Name Server object
during the simulation runs.
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Baseline Router-Star LCN: Software Object Degree of MultiThreading
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FIGURE 54. Email Application — Degree of Multithreading Maxima®’
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The degree of multithreading is a count of the number of concurrently active jobs

from a given software object. The degree of multithreading maxima is alook at the

maximum value this count achieved during a simulation run. For the three monitored

software objects, the plotsin Figure 54 show the range of maximum values observed over

¥ Note, the none and method |abels in these plots reflect the thread mode setting of the Name Server object
during the simulation runs.
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the twenty simulation runs for each alternative configuration. Thefirst plot in Figure 54
is of the baseline alternative and shows the same results depicted in Figure 46.

The second and third plots reflect the results observed for LCN alternatives 1 and
2, respectively. While these two plots show no significant difference between each other,
they are drastically different from the baseline Router-Star configuration. Inthe Hub-Bus
and Bus configurations, the transit time for an interaction arc across the ethernet is longer
than the computational time required for any method within the Email Server and Name
Server software objects. Thus, the Email Server and Name Server only have asingle
thread active at any point in time during the simulation for these two configurations. In
the baseline Router-Star configuration, however, the star configuration to the processors
don't delay the interaction arcs as much and the Email Server services several requests at
once, which generate several concurrent threads. Concurrent threads in the Name Server,
however, are dependent on the thread mode setting. When the Name Server is set to none,
one and only one thread is active at any time for the Name Server. With the method
setting in the Router-Star LCN configuration, the Name Server maximum multithreading

rangeis 11 to 25 with amean of 18.
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Baseline Router-Star: Software Object - Invocation Message Response Time
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FIGURE 55. Email Application —Invocation M essage Response Times'®

18 Note, the none and method |abels in these plots reflect the thread mode setting of the Name Server object
during the simulation runs.
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The average and maximum invocation message response times for Email Client
11 and the Email Server are plotted in the graphs of Figure 55. For the baseline
configuration, these are the same results as shown in Figure 48. In general, these results
show the Router-Star configuration having significantly better (lower) response times for
both, the average and the worst case, maximum response times.

While both alternative LCN configurations show the same basic behavior, closer
inspection of the results reveals an interesting occurrence for the Email Client 11. While
the average response times for Email Client 11 are lower in the Bus versus Hub-Bus
configuration, the maximum response times tend to be higher in the Bus versus Hub-Bus
configuration. This response time behavior reflects that the average invocation request,
on average, experiences the transit delay of only the single ethernet link in the Bus
configuration vice three in the Hub-Bus. Whereas, in the worst case maximum response
time scenario, the traffic loading is such that an invocation request will often experience
contentions and collisions on the single ethernet, which often exceed the collective transit

delay of the multiple ethernet links in the Hub-Star configuration.
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FIGURE 56. Email Application — Processor CPU Busy Times™

From our three processor transducers, we generate the plots depicted in Figure 56,
which reflect the amount of time the processors were busy processing jobs during each
simulation run. Noting the relative magnitude associated with each plot, the Name
Server Processor had the longest busy times and the Email Client 11 Processor had the
shortest busy times. Since all the processors have equal cpu speed, this differenceis
attributable to the computational demands placed on each processor by the software

objects. Since all fifteen Email Clients are configured to only interact with the Email and

19 Note, the none and method abels in these plots reflect the thread mode setting of the Name Server object
during the simulation runs.
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Name Servers, and the method work |oads of all software objects are relatively equal, the
Email and Name Server Processors receive the higher computational demands causing
these relatively longer cpu busy times. The Name Server Processor is the "busiest” due
to the configuration of the Email Clients to invoke and interact with the Name Server
more often than with the Email Server.

In the first plot, no significant deviation in the Email Client Processor Pi; busy
time is observed, across the various configurations. In the second plot, the Email Server
Processor Py shows higher cpu busy times in the Router-Star LCN configuration. In the
third plot, the Name Server Processor Py, shows a higher cpu busy time for the Router-
Star configuration when the thread mode setting is method. These higher cpu busy times
in these configurations are attributable to the multi-threading concurrency effects. Inthe
LCN cpu model, asmall overhead processing time tax is associated with each concurrent
thread in the multi-tasking processor. As seen in Figure 54 a significantly larger number
of concurrent threads occur for the Email Server and Name Server software objectsin the
Router-Star LCN configuration. This multi-threading concurrency effect isalso seenin

the concurrency of tasks these processors as depicted in Figure 57.
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The degree of software multi-threading depicts a measure of system concurrency

from the software perspective. From the hardware perspective, this concurrency can be

shown as the degree of multi-tasking in the LCN processors. Figure 57 shows the multi-

tasking behaviors for the three observed processors. Asonly one software object is

assigned to each processor in this case study, Figure 57 shows the same concurrency

results as Figure 54.

% Note, the none and method labels in these plots reflect the thread mode setting of the Name Server object
during the simulation runs.
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FIGURE 58. Email Application — Ethernet Link Performance™

The ethernet performance results for the main LCN links and each configuration
are depicted in Figure 58. The transmitting time is the time the ethernet was busy with
successful transmissions; it excludes ethernet collision time. The collisions graph reflects
the maximum, mean, and minimum number of observed collisions. The bandwidth
utilization is the percent of transmitting time over the observation time. The observation
time starts with the first transmission over the link and ends with the completion of the
last. Asexpected from the simulation execution time results in Figure 53, ethernet links

E1 and E3 in the Router-Star configuration experience roughly equal traffic loads.

2L Note, the none and method labels in these plots reflect the thread mode setting of the Name Server object
during the simulation runs.
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6.5. Case Studies Synopsis

This chapter details the results of four DEVS-DOC case studies. These case
studies exhibit the power of the DEV S-DOC environment in modeling and simulating the
dynamics of distributed computing systems. The first two studies use a directed
modeling approach — specific software method and arc interaction sequences— and
provide a comparison of DEVS-DOC simulationsto real world results. The third and
fourth studies use a quantum modeling approach providing aless rigid specification of
software object behaviors.

In the first case study of the network management application, the key dynamics
investigated involved the workload placed on the management application and the degree
of concurrency exploited in executing that workload. The degree of concurrency was
determined by the thread mode setting of the manager software object. The simulation
results were relatively good for none and object thread modes, but rather poor at the
method-level. Analysisof these resultsidentified a need for a better representation of the
processor memory dynamics.

In the second case study, a DEV S/HLA-compliant distributed simulation
federation is explored. Inthe real world system, the distributed performance effects of
different predictive contract mechanisms are explored. Inthis DEVS-DOC case study,
we investigate how to model the complex interactions of the DEVS/HLA software
components and how well the simulation results reflect reality. From this experience, we
discovered the utility of exploiting UML interaction diagramsto facilitate defining the

DEV S-DOC software object interactions, which represent the DEV S/HLA software
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component interactionsin the real system. The implication here is the dual use of UML
interaction diagrams to engineer the software system design and to simulate that design.
The ssimulation results also show that with only crude guesses (qualitative estimates) of
computational loads associated with the software objects, generally correct performance
behaviors emerge.

The third case study examined an email application scenario. This scenario had
only three types of software objects— Email Clients, an Email Server, and a Name
Server — and examined the impact of switching the thread mode of the Name Server.
The simulation results of this study highlight the influence this one setting can have on
system performance as it impacts overall execution time, the queuing of requests and
jobs, and the response times experienced by clients of the service.

The fourth case study further analyzed the email application under alternative
LCN configurations. Three alternative LCN configurations were investigated: Router-
Star, Hub-Bus, and Bus. This study highlights the independence that existsin the LCN,
DCO, and OSM modeling structures. In particular, that only the LCN and its associated
experimental frame required modification in exploring these three alternatives. As
expected, the simulation results confirmed the Router-Star LCN configuration provides

the best overall system performance.
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7. CONCLUSION AND FUTURE WORK

In this dissertation, we have shown that:

A distributed systems modeling and simulation
environment, based on a formal system specification
methodol ogy for devel oping abstract models of software
behaviors and workloads, and abstract models of

networ ked processing technologies and structures, can
provide a practical means to describe and analyze
Distributed Object Computing systems.

Thisis demonstrated in the context of the DEVS-DOC modeling and simulation
environment. DEV S-DOC models object-oriented software behaviors and networked
computing technol ogies independently and then enables unifying them into a dynamic
system of systems model. In chapter 3, we introduced the formal concepts behind the
DOC ontology for the LCN, DCO, and OSM models; the DEV S formalism for specifying
the DOC representations; and the Experimental Frame for prescribing simulation
investigations. Chapter 4 detailed the structural implementation of the LCN, DCO, and
OSM representations within the DEV S formalism. In chapter 5, we formally specified
the behavioral dynamics developed for the LCN, DCO, and experimental frame
components. In Chapter 6, we explored the representational power and practicality of the
DEV S-DOC environment through four case studies. This chapter summarizes these

contributions and outlines future work.
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7.1. Contributions

The primary contribution of thisthesisisthe realization of aformal approach to
modeling and simulating a distributed object computing system. Thisrealization
provides an example of how the dynamics of object-oriented software systems— the
invocation and exchange of messages in concert with the computation of methods— can
be modeled and joined with representations of networked computing technologies to
construct aformal and practical system of systems specification.

Additionally, this thesis makes contributions to advances in modeling and
simulation in general and to the modeling and simulation of computing systems
specifically. The general modeling and simulation contributions are the concept of a
layered experimental frame to control and manage a series of simulations; the notion of
aggregated couplings to enhance and simplify modeling portrayals of modular,
hierarchical components; the introduction of the distributed co-design scheme; and a
demonstration of the versatility of DEVS. Contributions to the modeling and simulation
of distributed computing systems specifically fall into the areas of networked systems
modeling, software modeling, and distributed systems modeling. These specific and

general contributions are detailed below.

7.1.1. Networked Systems Modeling

We have shown how aformal, high-level representation of networking and
computing technol ogies and components can support modeling distributed hardware

architectures. Moreover, in the case studies we demonstrated how these components can
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be joined together to represent network topologies with the combined (components and
topology) specification defining the loosely coupled network. The resulting LCN
represents a distributed hardware architecture that imposes time and space constraints on
associated software components.

Within the LCN component models, we have demonstrated a means to
automatically register software components and develop routing tables. This automated
routing table discovery service not only unburdens the DOC system modeler of these
concerns but, eliminates potential problemsin keeping routing tables consistent with
OSM distribution alternatives. Thus, the automated routing table discovery approach
avoids creating a dependency relationship between the LCN topology and the OSM
distribution specification.

Current limitations within the LCN components are attributed to modeling
granularity of the selected components. Four key examples are: the dynamics of cpu
memory in response to the demands of associated software objectsis limited; support for
multiple communication modes and protocolsis limited to one mechanism;
representation of link error rates and recovery mechanisms; and a representation of

dynamic routing protocols.

7.1.2. Software Systems Modeling
We have shown how aformal, high-level representation of software components,
following an object-oriented paradigm, can support modeling distributed software

architectures. This representation accounts for computational |oads associated with
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methods and data |oads associated with object interactions. The object interactions have
been shown to model synchronous and asynchronous client - server interactions as well
as peer-to-peer messaging exchanges. We have also demonstrated how the multi-
threading granularity of a software object can affect its performance and behavior.

This research has developed a means of modeling software independent of
hardware imposed time and space constraints?. It is through the OSM distribution of the
software objects onto the hardware components that such constraints impact the
computing performance of software methods and the interaction performance of software
object exchanges.

Two limitations exist within the DCO software representation. The first
limitation is alack mechanisms to support modeling software hierarchies. The current
DCO software model only supports identifying peer-to-peer interactions; no constructs
exists for identifying hierarchical relationships between the DCO components. The
second limitation is a restricted representation of the semantics associated with the
methods and interactions defined for a software component. Being able to associate
semantic properties with a software object's methods and interactions, as demonstrated in

[Al197], would add a significant software architectural analysis capability.

7.1.3. Distributed Systems Modeling

The object system mapping component of this research presents an approach to

explore issues of software distribution across networked hardware. In particular, the

2 The software object duty-cycle parameter is the only exception.
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OSM enables investigating many inherent complexities associated with distributed object
computing— e.g., computational load balancing, network traffic load balancing, and
communications latency. Through the OSM, the systems modeler can support evaluation
of the distribution alternatives to identify key performance tradeoffs and system

performance optimizations.

7.1.4. Layered Experimental Frame

The contemporary experimental frame is a modeling and simulation artifact that
specifies the conditions under which to observe and test a system for a given simulation.
In this research, we expand on this idea with the specification of an experimental frame to
control and observe a series of simulations. Under this scheme, an experimental frameis
defined to control and collect data on a single simulation run; this artifact forms the layer
one EF. Then, an additional experimental frame can be specified to control and collect
the results of a series of simulations. Such additional EF layers may control the initial
simulation parameter settings, such as the number of pursuer-evader pairsin the
DEV SHLA Federation case study. Alternatively, the additional EF layer may collect
statistical results from a series of simulation runs to determine variance on selected
performance and behavior metrics, such as in the invocation message response timesin

the Email Application case studies.

7.1.5. Aggregated Couplings

DEV S models have input and output ports, which enable coupling individual

component models together to form system hierarchies. The fundamental DEVS
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coupling construct isan "add_coupling()" method, which is used to define couplings
between one component and its output port and another component and its input port.
Within the DEV S-DOC environment, each mapping of a DCO software object onto an
LCN processor requires five of these fundamental DEV S coupling statements to fully
specify the mapping. Similarly, the coupling of two LCN components into a network
topological hierarchy may require multiple coupling statements, as may the coupling of
DOC experimental frame components.

This research contributes the concept of aggregated couplings wherein the object-
oriented coupled class model is extended with specific knowledge of the modeling
domain. Such knowledge includes details on the types of components, the input and
output ports associated with those components, and the allowed couplings of the output
ports to input ports. With this domain specific coupling knowledge encoded, the systems
modeler can maintain afocus at the higher level of abstraction of the component to
component relations; the details of the individual port to port relations for such
component relationshipsis handled automatically with the aggregated coupling

knowledge.

7.1.6. Distributed Co-design

Contemporary co-design research has focused on tools and methods aiding the
concurrent and cooperative design of the hardware and software elements of a target
system. Often, these efforts focus on integrated approaches to specifications, designs,

analyses, and simulations of the overall system under development. Systematic,
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computer aided approaches to requirements definition, specification, design,
implementation, verification and validation are the objectives.

Through this research, we have introduced and devel oped a distributed aspect to
co-design. This aspect provides a means to formally account for the distributed nature of
networked hardware-software systems, which we call Distributed Co-design. Distributed
Co-Design is defined as the activities to simultaneously, and collectively, design the
hardware and software layers of a distributed system. The distributed hardware layer
allows for exploring the design space for alternative high-level topologies and
configurations, while the distributed software layer allows for exploration of the software
design space from an object-oriented perspective. The independence maintained between
the DEV S-DOC hardware and software representations allows the systems modeler to
easily explore alternative distributions of the software objects across the hardware

jprocessors.

7.1.7. DEVSVersatility

DEV Sisa system-theoretic based approach to the modeling of discrete-event
systems. The DEV S modeling formalism enables characterizing systems in terms of
hierarchical modules with well-defined interfaces. The mathematical formality of DEVS
focuses on the changes of state variables and generation of time segments that are
piecewise constant. In essence, the formalism defines how to generate new state values
and the times when these new values should take affect. Animportant aspect of the

formalism is that the time interval s between event occurrences are variable.
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Due to the system-theoretic foundations, the DEV S modeling paradigm is
naturally rendered within object-oriented implementations. Consequently, DEV'S has
been implemented in sequential, parallel, and distributed environments. The
DEV SJIAVA implementation provides the benefits of the system-theoretic foundations,
object-orientation, multi-threading concurrency, and simulation flexibility through the
generation of traditional stand-alone applications or web-enabled applets.

The DEV S-DOC environment takes advantage of, and demonstrates the power of
each of these features. The DEVS DCO and LCN component models demonstrate the
suitability of the DEV S mathematical formalism to representing software, processing
hardware, and communication system, devices, and components. The DEVSIAVA
object-orientation eases the structural construction and modularization of the LCN, DCO,
OSM, and EF models.

The DEVSIJIAVA multi-threaded implementation permits simultaneous execution
of several models, which aids the simulation of, and investigation of, concurrency issues
among the DOC component models. Each model may be assigned its own thread, which
iscritical to the concurrent handling of the multiple internal and external events within
the models.

Additionally, the DEV SJAV A implementation allows generation of traditional,
stand-alone simulation applications or web-enabled applets. The generation of applets
provides a means to run simulations within abrowser. Web browser access provides a
critical enabling mechanism for introducing a collaborative modeling and simulation

environment. Enabling collaboration is a key feature to the realization of a Distributed
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Co-Design capability. Likewise, DEVSJAVA allows generation of stand-alone
simulation applications. When simulation execution time becomes critical, these Java
applications can then be processed through a Java optimizing compiler to improve
execution performance on atarget platform. Within DEVS-DOC, applets were used
extensively for the development of the LCN and DCO component models, while stand-

alone simulation applications were generated for the case study simulations.

7.2. FutureWork

One basis for thiswork is the assumption that each processor will have its own
unique memory. So, from abasic inquiry into the limitations of the proposed framework,
support for system architectures of distributed shared-memory, object computing is
inevitable and remains open for future research. A second basis of thiswork isthe static
distribution of software across hardware. Meanwhile, agrowing part of today’s
computational needs are based on agent-oriented systems with inherently dynamic
topological structures (e.g., mobile networked tele/video-conferences not only depend on
varying network topologies, but also varying software computational characteristics such
asload and response time). Therefore, representation of variable-structure systems

[Zei90] is believed to be of importance to future developments.

7.2.1. Real Time Distributed Object Computing

Increasingly, applications with stringent timing requirements are being
implemented as distributed systems. These timing requirements mean that the underlying

networks, operating systems, and middle-ware components forming the distributed
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system must be capable of providing quality of service (QoS) guarantees to the supported
applications. Implementation mechanisms and technologies for such real time systemsis
an active area of research. A key issuein providing a QoS guarantee within areal-time
systemisresource utilization. DEV S-DOC provides a potential means to model and
simulate proposed mechanisms and technologies and focus evaluation of resource
utilization issues. To enable modeling of real time systems, DEV S-DOC will need to be
extended with a means for DCO software objects to specify QoS requirementsin

methods and arcs and for LCN components to respond to QoS requests.

7.2.2. Mobile Software Agents

Mobile software agents are autonomous, intelligent programs that move through a
network, searching for and interacting with services on auser's behalf. These systems
use specialized serversto interpret the agent's behavior and communicate with other
servers. A mobile agent has inherent navigational autonomy and can ask to be sent to
other nodes. Mobile agents should be able to execute on every machine in a network, and
the agent code should not have to be installed on every machine the agent could visit.
Therefore mobile agents use mobile code systems like Java with Java classes being
loaded at runtime over the network. DEV S-DOC provides a potential means to model
systems with mobile agents. Extensions would be needed in the DCO software objectsto
allow for an object to wrap and unwrap itself for firing acrossthe LCN. The LCN aso
needs extensions to support dynamic routing of traffic to an agent that is moving or has

moved.
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7.2.3. Information Technologies and Standards

In [Car99], technologies are classified as either being sustaining or disruptiveto
successful business endeavors. In either case, information technologies and their
application are continuously changing and evolving. To explore these technologiesin the
context of existing distributed systems or newly proposed systems, models of these
technol ogies can be devel oped and coupled with existing DEV S-DOC components for

investigation via simulation.

7.2.4. Integration

Integration of DEV S-DOC with other commercially supported modeling and
simulation packages is another direction of interest. For example, several commercial
packages support modeling and simulating communications networks, e.g., OPNET by
MIL3 and COMNET by CACI. Rather than continue to develop and maintain LCN
component models, the LCN components could be reconfigured to integrate into these
existing commercially supported packages. The DCO and OSM abstractions would
continue to be used to model the software architecture and map its objects onto the new
LCN components. These new LCN components would then trandlate arc firings into
traffic loads for simulation through the commercial package. On the receiving side, the
commercial package results would be tranglated by the LCN components back into arcs

for delivery to target DCO software objects based on OSM mappings.



162

7.2.5. DEVSDOC In Collaborative and Distributed Modeling and Smulation

At the University of Arizona, several projects are underway to extend
collaboration support to modeling and simulation capabilities. These projects seek to
build on experience with GroupSystems, a University of Arizona spin-off groupware
environment [Nun95] in combination with advances in modeling and simulation
methodology and high performance, distributed simulation support environments
[Zei97b]. Research concepts evolving from these projects form the basis of a conceptual
collaborative modeling and simulation architecture. This conceptual architecture is under
investigation and the DEV S-DOC capability is being explored as a means to study
alternative implementation designs for the collaboration architecture.

Figure 59 shows a component-based architecture for the DEV'S Collaborative and
Distributed Modeling and Simulation environment [Sar97, Sar99a, and Sar99b].
Components are broadly categorized into three layers. The lowest layer provides
standard services such as persistent storage and middleware supporting distributed
computing. Inthe middle layer, domain neutral modeling and simulation capabilities
enable representations of hierarchical, heterogeneous models (of software and hardware).
The Co-Design Modeling component provides modeling constructs enabling
representations of software objects, hardware components, and their associations (as
detailed in this dissertation). Well-defined modeling constructs offered by the Co-Design
Modeling component provide the basis for domain-dependent model development via
model construction and composition components. The top layer roleisto provide

domain-dependent features built on the services provided by the lowest and middle
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layers. This architecture, based on the fundamental DEV S paradigm, facilitates extension
of DEVS-DOC modeling to be used in collaborative settings with distributed simulation

support.
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FIGURE 59. Collaborative/Distributed M & S Architecture
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APPENDIX A. BUTLER'SDOC FORMALISM

A.1 Hardware: LCN Model

The formal LCN representation is a 5-tuple set H containing a set P of processors,
aset K of network gates, aset N of network links, and mapping functions f and g of
processors and gates, respectively, onto a power set of network links. This 5-tuple LCN
set is summarized in the following equations.

H=(P K,N,f,g)
f:mr—>L, meP, LcN, L#zJ
g:0—>L; ¢eK, LcN, Lz2I

A processor tisan LCN component capable of performing computational work
under the resource constraints of its processor speed S and its storage capacity D. The
processor speed Sis defined as arandom variable since, during the processing of any
given job, CPU time isthat portion when it is not engaged in servicing overhead tasks,
operating system daemons, and other processing requests external to the scope of the
modeled simulation space. Similarly, the storage capacity D is arandom variable
accounting for swap space, operating system overhead, and other storage requirements
outside the scope of the modeled simulation space. The following equation summarizes
this representation.

n=(S,D); meP, S>0, D>0
A network gate ¢ isan LCN component capable of passing data traffic from an

incident link to other incident links. Gates have two operational modes. hub or router.

Hub mode resultsin al incident links passing the same data traffic. Router mode
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switches inbound data trafffic from one incident link to one outbound link that provides
direct or indirect connectivity to the targeted destination. Datatraffic is processed
through the gate based on constraints of buffer size R and bandwidth B. AsR and B
represent available resources to the system being modeled, they are defined as random
variables due to the dynamics of external (to the model) conditions. Thus, agateis
defined as follows.

6=(mR,B); ¢€ K, me {hub, router}, R>0, B>0

A network link 1 isan LCN component connecting one or more processors and
network gates to provide acommunications path. A link may have one or more
independent channels that have a bandwidth B. A link is aso assigned an error
coefficient € (of units errors/second), which influences data retransmissions. The
bandwidth B is arandom variable in representing resources availabl e to the system being
modeled and excluding bandwidth consumed by external conditions. The error
coefficient € is arandom variable to account for the non-deterministic nature of all real
communications channels. A network link is defined with the following two equations.

nN=(e,C); meN, €20, Cz2Y
(i,B)e C, B>0
A.2 Software: DCO Model

The formal DCO representation is a 9-tuple set S containing aset D of domains, a
set T of software objects, aset A of directed invocation arcs, aset G of directed message
arcs, and mapping functions u, v, X, y, and z. Function z maps software objects of T

onto a power set of domains D. Functions x and y map the calling ends of invocation
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arcs A onto software objects of T and the target ends of A onto a power set of T.
Functions u and v map the source ends of message arcs G onto software objects of T and
the target ends of A onto apower set of T. This representation is summarized in the
following six equations.

S=(D, T,A,G,uVv,X,VY,2)
u:y—r1T Y€ G, 1eT
Viy—>L; ye G, LcT, |L|=2
X:a—=>17 oe A, 1eT
y:ao—>L; aeA, LcT, LI
z:1—>L; 1eT, LcD, LY

A domain 6 isa DCO component representing a set of software objects that form
an independently executable program. Software objects may be mapped to more than
one domain. Domains serve two purposes, organizing software objects for the extraction
of simulation data and for scheduling program initiations. For scheduling program
initiations, selected objects in adomain are defined as initializer objects Q and assigned a
duty cycle U representing the time between program executions. The duty cycle U is set
as arandom variable.

0=(QU); 6eD, Qc{tz(r)=8}, U>0

A software object T isa DCO component representing a software object in the
traditional object-oriented concept of an object, composed of attributes defining the
objects state and a set of methods that operate on the attributes. Software objects are
formally defined with a4-tuple set t. The object's size C refersto its collective memory

allocation requirement. The object has a thread mode m specifying the granularity of
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multithreading behavior to be object, method, or none (single thread capable only). Each
method of the software object is characterized by a computational work load factor x and
an invocation probability p. In aquantum simulation, it becomesirrelevant which
method is invoked on a given invocation; rather, methods need to be invoked in correct
proportion across the aggregation of invocations on the object.

t=(C,m, X,P); 1e T, C>0, me { Object, Method, None }
X=<Xy ..., %> % >0, 1<i<n
P=<py, ....,pn> pi=0, Xpi=1, 1<i<n

Aninvocation arc o isa DCO component representing client-server request and
response exchanges between calling (client) and called (server) software objects.
Invocation arcs have afiring frequency F, arequest size P, aresponse size R, and a
blocking mode b. The firing frequency F is arandom variable that is dependent on the
computational progress of the source software object, i.e., how much work must be
completed between invocations. The invocation request size P and response size R are
both random variables. The blocking mode b may be either Synchronous or
Asynchronous. For synchronous invocations, the client object is blocked until the server
response is received, while asynchronous invocations allow the client object to continue
processing.

o=(F,P,Rb); ae A, F>0, P>0, R>0, be { Sync, Async}
A message arc y is a DCO component representing peer-to-peer message passing

between a source software object and a set of destination objects. The message arcis

defined as having afiring frequency F and amessage size M. Thefiring frequency Fisa
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random variable that is dependent on the computational progress of the source software
object, i.e., how much work must be completed between messages. The message size M
isarandom variable denoting the size of the message being exchanged.

y=(F,M); ye G, F>0, M>0
A.3 Distribution: OSM Model

The formal OSM representation is a 5-tuple set ¥ containing an LCN
representation H, aDCO representation S, a set of communication modes C, and mapping
functions A and u. Function A maps DCO software objects Ts onto LCN processors Py.
Function u maps DCO invocation arcs As and message arcs Gs onto communication
modes C. A communication mode c is defined by random variables representing packet
size P, packet overhead V, and acknowledgment packet size R. Thisrepresentation is
summarized in the following four equations.

Y=(HSACpu)
AMT—om VieTs me Py
c=(P,V,R): ceC, P>V>0, R>0

L:o—c Voe {AsuGs}, ceC



APPENDIX B. CASE STUDY CODE

B.1  Simple Network Management Protocol (SNMP) Monitoring

/*

*  Filename : snmp.java
* Version : 1.0

* Date : 01-13-99

* Author : Daryl Hild
*

/

//package DOCapp;

import DOC. *;
import Zdevs.*;
import Zdevs.Zcontainer.*;

public class snmp extends digraphDCO {

//simulation run parameters

protected String threadMode;

protected int loopCount, simRuns;
protected double simTime, Mem, BFhub, BFmau;

//system under study components
protected atomic loop, mgr,

agent4, mau4, link4, agenteé, maué, linké,
agentl5, mauls, link1l5, agentl7, maul7, 1link17,
agentl9, maul?9, 1ink19;

protected digraph asc4, ascé, ascls, ascl?, ascl9;

protected atomic hub;

//experimental frame components

protected atomic tLoop, tMgr,
tAgent4, tAsc4, tAgenté6, tAscé6, tLinké6,
tAsc_snmp, tTuple, acceptor;

protected set snmpSW, processors;

public snmp()
super ("snmp") ;
threadMode="object"; loopCount=20;
simTime=500; Mem=1E+4; BFhub=2E+6; BFmau=2E+6; simRuns=10;

Loosely Coupled Network() ;
Distributed Cooperative Objects();
Object System Mapping() ;
Experimental Frame () ;

initialize() ;
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public void Loosely Coupled Network ()

//declare LCN components

{

= INFINITY; //proc nic bandwidth bits/sec

= INFINITY; //buffer size in bytes * 8 bits/byte
//buffer size in bytes * 8 bits/byte
//buffer size in bytes * 8 bits/byte
//cpu speed ops/sec
//cpu mem in bytes * 8 bits/byte
1.1; //cpu-mem swapTimePenalty
//ethernet speed bits/sec
//number of Ethernet Segments
//maxPktSize

double udpHS = 8*8;
double ipHS = 20*8;
double LS = 2E+9;
double BW

double BFinf

double BF hub = BFhub*8;
double BF mau = BFmau*8;
double cpuSp = 200E+6;
double memSz = Mem*8§;
double swapTime =

double ES = 10E+6;
int etherSeg = 5;

int MPS = 1500;
//processors

ascd=new processor ("asc4",udpHS+ipHS, LS, BW,BFinf, cpuSp, memSz, MPS) ;

add (asc4) ;
ascé=new processor ("asc6",udpHS+ipHS, LS, BW,BFinf, cpuSp, memSz,
swapTime, MPS) ;
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//udp header size in bytes * 8 bits/byte
// ip header size in bytes * 8 bits/byte
//proc nic speed bits/sec

add (ascé) ;

ascl5=new processor ("ascl5",udpHS+ipHS, LS, BW,BFinf, cpuSp, memSz, MPS) ;
add (ascl5s) ;

ascl7=new processor ("ascl7",udpHS+ipHS, LS, BW,BFinf, cpuSp, memSz, MPS) ;
add (ascl?) ;

ascl9=new processor ("ascl9",udpHS+ipHS, LS, BW,BFinf, cpuSp, memSz,MPS) ;
add (ascl9) ;

//processor mau's

mau4 = new hub ethernet ("mau4", ES, BW, BF mau); add (mau4) ;

maué = new hub ethernet ("maué6", ES, BW, BF mau); add (maué) ;
maul5 = new hub ethernet ("maul5", ES, BW, BF mau); add (mauls) ;
maul7 = new hub ethernet ("maul7", ES, BW, BF mau); add (maul?) ;
maul9 = new hub ethernet ("maul9", ES, BW, BF mau); add (maul9) ;
//ethernet links

link4 = new link ethernet("link4", etherSeg); add (link4) ;

linké = new link ethernet("linké", etherSeg); add (1linkseé) ;

1linkl5 = new link ethernet ("1linkl5", etherSeg); add (1link15) ;
1linkl7 = new link ethernet ("1linkl7", etherSeg); add(1link17) ;
1linkl9 = new link ethernet ("1link1l9", etherSeg) ; add (1ink19) ;

//hub

queue etherSpeeds = new queue () ;
i<6; i++) etherSpeeds.add(new doubleEnt (ES)) ;

for (int i=1;

hub =

// couple LCN

BW, BF_hub) ;

link4) ;
1inké6) ;
1ink15) ;
1ink17) ;
1ink19)

7

new hub ethernet ("hub", etherSpeeds,
Add_coupling LCNtoEthernet ( asc4, mau4,
Add_coupling LCNtoEthernet ( ascé, maue,
Add _coupling LCNtoEthernet ( ascl5, mauls,
Add_coupling LCNtoEthernet( ascl7, maul7,
Add coupling LCNtoEthernet( ascl9, maul9,
hub,1, 1link4);

Add_coupling LCNtoEthernet (

add (hub) ;
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Add_coupling LCNtoEthernet( hub,2, 1inkeé6);
Add coupling LCNtoEthernet( hub,3, 1ink15);
Add _coupling LCNtoEthernet ( hub,4, 1ink1l7);
Add_coupling LCNtoEthernet ( hub,5, 1ink19);

public void Distributed Cooperative Objects() {
//declare DCO components
dcoArc noArc = new dcoArc () ;

set methods = new set () ;
set iArcs = new set () ;
set mArcs = new set () ;
//loop

int loop WL = 2103792;
int no WL = 10;
//1oop

// loop methods: methodName, queue of (pairs of (workLoad, arc))
queue lp = new queue () ;
//msgingArc:arcName, dstAddr, msgSize, returnSize, mmsgType, methodCalled
lp.add (new task(no WL, new dcoArc("snmpwalk asc4",
"mgr",48*8, "message", "snmpwalk asc4")));
lp.add (new task(no WL, new dcoArc ("snmpwalk ascé",
"mgr",48*8, "message", "snmpwalk ascé"))) ;
lp.add (new task(no WL, new dcoArc ("snmpwalk
ascl5","mgr",48*8, "message", "snmpwalk ascl5")));
lp.add(new task(no WL, new dcoArc ("snmpwalk
ascl7","mgr",48*8, "message", "snmpwalk ascl7")));
lp.add (new task(no WL, new dcoArc ("snmpwalk
asclo","mgr",48*8, "message", "snmpwalk asclo")));
// messagingArc: arcName, dstAddr, msgSize,
methods = new set() ;
methods.add (new method("loop", 1p));
//swObject: name, size,threadMode,methods, arcs,dutyCycle, initMethod
loop = new swObject ("loop",32000*8, "method",methods, new
set (), INFINITY, "loop") ;
add (loop) ;

methodCalled

//mgr

int mgrSize = 32000*8; //bytes * 8 bits/byte

int snmpget WL = 13160000;

double timeOut = 0.8;

// mgr methods: methodName, queue of (pairs_of (workLoad, arc))

queue snmpwalk4 = new queue () ;

snmpwalk4.add (new task (snmpget WL,new dcoArc ("snmpget asc4
1", "agent4",42*8,84*8, "invokeSync", "snmpget", timeOut))) ;

snmpwalk4.add (new task (snmpget WL,new dcoArc ("snmpget asc4
2", "agent4",44*8,54*8, "invokeSync", "snmpget", timeOut))) ;

snmpwalk4.add (new task (snmpget WL,new dcoArc ("snmpget asc4
3","agent4",44*8,48*8, "invokeSync", "snmpget", timeOut))) ;
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snmpwalk4.add (new task (snmpget WL,new dcoArc ("snmpget asc4
"agent4",44*8,44*8, "invokeSync", "snmpget", timeOut))) ;
snmpwalk4.add (new task (snmpget WL,new dcoArc ("snmpget asc4
"agent4",44*8,48*8, "invokeSync", "snmpget",timeOut))) ;
snmpwalk4.add (new task (snmpget WL,new dcoArc ("snmpget asc4
"agent4",44*8,44*8, "invokeSync", "snmpget", timeOut))) ;
snmpwalk4.add (new task (snmpget WL,new dcoArc ("snmpget asc4
"agent4",44*8,45*8, "invokeSync", "snmpget", timeOut))) ;
snmpwalk4.add (new task (snmpget WL,new dcoArc ("snmpget asc4
"agent4",44*8,45*8, "invokeSync", "snmpget", timeOut))) ;

queue snmpwalké = new queue () ;

snmpwalké6 .add (new task (snmpget WL,new dcoArc ("snmpget ascé
"agent6",39%8,81*8, "invokeSync", "snmpget",timeOut))) ;
snmpwalké6 .add (new task (snmpget WL,new dcoArc ("snmpget ascé
"agent6",41*8,51*8, "invokeSync", "snmpget", timeOut))) ;
snmpwalké6.add (new task (snmpget WL,new dcoArc ("snmpget ascé
"agent6",41*8,45*8, "invokeSync", "snmpget", timeOut))) ;
snmpwalké .add (new task (snmpget WL,new dcoArc ("snmpget ascé
"agent6",41*8,47*8, "invokeSync", "snmpget", timeOut))) ;
snmpwalké6.add (new task (snmpget WL,new dcoArc ("snmpget ascé
"agent6",41%*8,45*8, "invokeSync", "snmpget", timeOut))) ;
snmpwalké6 .add (new task (snmpget WL,new dcoArc ("snmpget ascé
"agent6",41*8,41*8, "invokeSync", "snmpget",timeOut))) ;
snmpwalké .add (new task (snmpget WL,new dcoArc ("snmpget ascé
"agent6",41*8,42*8, "invokeSync", "snmpget", timeOut))) ;
snmpwalké6.add (new task (snmpget WL,new dcoArc ("snmpget ascé
"agent6",41%*8,42*8, "invokeSync", "snmpget", timeOut))) ;
snmpwalké .add (new task (snmpget WL,new dcoArc ("snmpget ascé
"agente6",41*8,42*8, "invokeSync", "snmpget", timeOut))) ;

qgueue snmpwalkl5 = new queue () ;

snmpwalkl5.add (new task (snmpget WL,new dcoArc ("snmpget asclb
"agentl5",39*%8,64*8, "invokeSync", "snmpget", timeOut))) ;
snmpwalkl5.add (new task (snmpget WL,new dcoArc ("snmpget ascl5
"agentl5",41*8,50*8, "invokeSync", "snmpget", timeOut))) ;
snmpwalkl5.add (new task (snmpget WL,new dcoArc ("snmpget asclb
"agentl5",41*%8,45*8, "invokeSync", "snmpget", timeOut))) ;
snmpwalkl5.add (new task (snmpget WL,new dcoArc ("snmpget ascl5
"agentl5",41*8,67*8, "invokeSync", "snmpget", timeOut))) ;
snmpwalkl5.add (new task (snmpget WL,new dcoArc ("snmpget ascl5
"agentl5",41*8,55*8, "invokeSync", "snmpget", timeOut))) ;
snmpwalkl5.add (new task (snmpget WL,new dcoArc ("snmpget asclb
"agentl5",41*8,82*8, "invokeSync", "snmpget", timeOut))) ;
snmpwalkl5.add (new task (snmpget WL,new dcoArc ("snmpget ascl5
"agentl5",41*%8,42*8, "invokeSync", "snmpget", timeOut))) ;
snmpwalkl5.add (new task (snmpget WL,new dcoArc ("snmpget ascl5
"agentl5",41*8,42*8, "invokeSync", "snmpget", timeOut))) ;

queue snmpwalkl7 = new queue () ;

snmpwalkl7.add (new task (snmpget WL,new dcoArc ("snmpget ascl7
"agentl7",39*8,100*8, "invokeSync", "snmpget", timeOut))) ;
snmpwalkl7.add (new task (snmpget WL,new dcoArc ("snmpget ascl?
"agentl7",41*8,60%8, "invokeSync", "snmpget", timeOut))) ;
snmpwalkl7.add (new task (snmpget WL,new dcoArc ("snmpget ascl?7
"agentl7",41+%8,45*8, "invokeSync", "snmpget", timeOut))) ;

172



4"’

5"’

6"’

7"’

8"’

1"’

3"’

4"’

5"’

6"’

8"’

snmpwalkl7.add (new task (snmpget WL,new dcoArc ("snmpget ascl?
"agentl7",41*8,41*8, "invokeSync", "snmpget", timeOut))) ;
snmpwalkl7.add (new task (snmpget WL,new dcoArc ("snmpget ascl?
"agentl7",41*8,46*8, "invokeSync", "snmpget", timeOut))) ;
snmpwalkl7.add (new task (snmpget WL,new dcoArc ("snmpget ascl?
"agentl7",41*%8,41*8, "invokeSync", "snmpget", timeOut))) ;
snmpwalkl7.add (new task (snmpget WL,new dcoArc ("snmpget ascl?
"agentl7",41+%8,42*8, "invokeSync", "snmpget", timeOut))) ;
snmpwalkl7.add (new task (snmpget WL,new dcoArc ("snmpget ascl7
"agentl7",41*8,42*8, "invokeSync", "snmpget", timeOut))) ;

queue snmpwalkl9 = new queue() ;

snmpwalkl9.add (new task (snmpget WL,new dcoArc ("snmpget ascl9
"agentl9",42*8,115*8, "invokeSync", "snmpget", timeOut))) ;
snmpwalkl9.add (new task (snmpget WL,new dcoArc ("snmpget ascl9

, "agentl1l9",44*8,54*8, "invokeSync", "snmpget", timeOut))) ;

snmpwalkl9.add (new task (snmpget WL,new dcoArc ("snmpget ascl9
"agentl1l9",44*8,48*8, "invokeSync", "snmpget", timeOut))) ;
snmpwalkl9.add (new task (snmpget WL,new dcoArc ("snmpget ascl9
"agentl9",44*8,44*8, "invokeSync", "snmpget", timeOut))) ;
snmpwalkl9.add (new task (snmpget WL,new dcoArc ("snmpget ascl9
"agentl9",44*8,44*8, "invokeSync", "snmpget", timeOut))) ;
snmpwalkl9.add (new task (snmpget WL,new dcoArc ("snmpget ascl9
"agentl9",44*8,44*8, "invokeSync", "snmpget", timeOut))) ;
snmpwalkl9.add (new task (snmpget WL,new dcoArc ("snmpget ascl9

,"agentl1l9",44*8,45*8, "invokeSync", "snmpget", timeOut))) ;

snmpwalkl9.add (new task (snmpget WL,new dcoArc ("snmpget ascl9
"agentl9",44*8,45*%8, "invokeSync", "snmpget", timeOut))) ;

int methodMemLoad = 716800%*8;//bytes * 8 bits/byte

methods = new set () ;

methods.add (new method ("snmpwalk asc4", snmpwalk4, methodMemLoad
methods.add (new method ("snmpwalk ascé", snmpwalké, methodMemLoad
methods.add (new method ("snmpwalk ascl5", snmpwalkl5, methodMemLoad
( (
(

methods.add
methods.add

mgr = new swObject ("mgr",mgrSize,threadMode,methods, new

set (), INFINITY, "snmpwalk") ;

add (mgr) ;

//Agents

int agentSize = 32000*8; //bytes * 8 bits/byte
int snmpget response WL = 2470600;

int snmptrap WL = 1560000;

// Agent methods: methodName, queue of (pairs of (workLoad, arc))

gueue snmpget = new queue () ;

snmpget .add (new task (snmpget response WL,noArc)) ;
queue snmptrap = new queue () ;

snmptrap.add (new task (snmptrap WL, new

dcoArc ("snmptrap", "mgr",48*8, "message", "snmptrap"))) ;

methods = new set () ;
methods.add (new method ("snmpget", snmpget)) ;
methods.add (new method ("snmptrap", snmptrap)) ;

new method ("snmpwalk ascl7", snmpwalkl7, methodMemLoad
new method ("snmpwalk ascl9", snmpwalkl9, methodMemLoad
//swObject: name,size,threadMode, methods,arcs,dutyCycle, initMetho

)
)
)
)
)

)
)
)
)
)
d
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//swObject: name, size,threadMode,methods, arcs,dutyCycle, initMethod



agent4 = new swObject ("agent4", agentSize,
set (), INFINITY, "snmptrap") ;

add (agent4) ;

agent6 = new swObject ("agenté6", agentSize,
set (), INFINITY, "snmptrap") ;

add (agenté6) ;

agentl5 = new swObject ("agentl5",agentSize,
set (), INFINITY, "snmptrap") ;

add (agentl5) ;

agentl7 = new swObject ("agentl7",agentSize,
set (), INFINITY, "snmptrap") ;

add (agentl?7) ;

agentl9 = new swObject ("agentl9",agentSize,
set (), INFINITY, "snmptrap") ;

add (agentl9) ;
}

public void Object System Mapping() {
//couple DCO and LCN

Add_coupling swObject to processor( loop,
Add _coupling swObject to processor( mgr,
Add _coupling swObject to processor( agent4,

Add_coupling swObject to processor
Add_coupling swObject to processor

(
(
(
Add _coupling swObject to processor( agenteé,
(
(
Add coupling swObject to processor (

public void Experimental Frame () {
//define DCO domain of study
snmpSW = new set () ;
snmpSW.add (loop) ;
snmpSW. add (mgr) ;
snmpSW.add (agent4) ;
snmpSW. add (agenté6) ;
snmpSW.add (agent15)
snmpSW.add (agentl17) ;
snmpSW.add (agent19)

2

7

processors = new set () ;
processors.add (asc4) ;
processors.add (ascé) ;
processors.add (ascl5s) ;
processors.add (ascl7) ;
processors.add(ascl?9) ;
//declare transducers
String T = " Transducer";

agentl5, ascl5
agentl7, ascl?
agentl9, ascl9

"method", methods, new

"method", methods, new

"method", methods, new

"method", methods, new

"method", methods, new

asce
asce
asc4
asce

oS NS,

—_— — — — — — —
~

’

tAsc_snmp = new transd domains(get name()+" Domain"+T, snmpSW) ;

add (tAsc_snmp) ;
tTuple = new transd tuples("tuple"+T);
add (tTuple) ;
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// declare acceptors

String acceptorN = "acceptor";

//set of: invocation msg: name, src,dst,msgSize,returnSize,msgType,
firingJob, calledMethod

set invoke = new set () ;

for (int i=0; i<loopCount; i++)

invoke.add (new msg("invoke loop",acceptorN, loop.get name (),

0,0, INFINITY, "invokeAsync",new job(),"loop"));

//acceptor (Name, StartTime (sec) , InvokeDutyCycle (sec) ,Repetitions,
InvokeMsgs, SimDutyCyle (sec) , NumSimRuns

acceptor = new acceptor (acceptorN,1,simTime, 1, invoke,
simTime, simRuns) ;

add (acceptor) ;

//couple DCO and LCN to Acceptors and Transducers
set asc6SW = new set () ;

asc6SW.add (loop) ;

asc6SW.add (mgr) ;

asc6SW.add (agenté) ;

Add coupling ethernetTransducer( linké, tLinké6);

Add_coupling domainTransducer ( snmpSW, processors, tAsc_snmp ) ;
Add_coupling( tAsc_snmp, "results", tTuple, "in") ;

Add_coupling( tMsgs, "results", tTuple, "in") ;

Add coupling( tLinkeé, "results", tTuple, "in") ;

// coupling for Acceptor

Add _coupling( acceptor, "invoke", loop, "inMsgs") ;

Add_coupling acceptorControl (acceptor, components) ;
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B.2 Distributed Federation Simulation

/*
* Filename : peFed.java
Version : 1.0
Date : 07-27-99
* Author : Daryl Hild
*
/

import DOC. *;

import java.lang.*;

import Zdevs.*;

import Zdevs.Zcontainer.*;

public class peFed extends digraphDCO

//simulation run parameters

protected int numPairs, simRuns, simulationIterations;
protected double simTime;
protected int percentInteractionPairs, predictiveFilteringFactor;

protected boolean multiplexedQuantizer;
protected atomic ether;

public peFed(int numPrs, boolean muxQ, int filterFactor) {
super ("Pursuer-Evader Federation") ;
// 1 - no filtering; 5 - five-fold decrease in message traffic
predictiveFilteringFactor = filterFactor;
// multiplexed predictive quantization - "on" or "off"
multiplexedQuantizer = muxQ;
numPairs=numPrs;
simulationIterations=100;
simRuns=4;
simTime=10000.0;
int numProcs=2;
peFed construct (numProcs, numPairs) ;

}

public void peFed construct (int numProcs, int numPairs)
//% of pursuer-evader pairs interacting in any simulation cycle
percentInteractionPairs = 50;
queue processors = Loosely Coupled Network (numProcs) ;
relation swObjects = Distributed Cooperative Objects (numPairs) ;
Object System Mapping (swObjects, processors);
Experimental Frame (swObjects, processors) ;
initialize() ;



public queue Loosely Coupled Network (int numProcessors) {
//declare LCN components
20*8; //HLA RTI header size in bytes * 8 bits/byte

double rtiHS

double ipHS

double LS
double BW

double BFinf

double BF hub

double BF mau
double cpuSp
double memSz
double swapTime

double ES

int etherSeg =

int MPS

gqueue procs

ether = new link ethernet ("Ethernet", etherSeg); add (ether) ;

for (int i=0;
int j=1i+1;
digraph proc =
BFinf, cpuSp, memSz, swapTime, MPS) ;

add (proc) ;

if (numProcessors>1) {
atomic mau = new hub_ethernet ("mau"+j, ES, BW, BF_mau);
add (mau) ;

20*8; // ip header size in bytes * 8 bits/byte

2E+9; //proc nic speed bits/sec
INFINITY; //proc nic bandwidth bits/sec

INFINITY; //buffer size in bytes * 8 bits/byte

2E+6*8; //buffer size in bytes * 8 bits/byte

2E+6*8; //buffer size in bytes * 8 bits/byte
10E+3; //cpu speed ops/sec

64E+6*8; //cpu mem in bytes * 8 bits/byte
1.1; //cpu-mem swapTimePenalty

10E+6; //ethernet speed bits/sec

5; //number of Ethernet Segments

1500; //maximum packet size for LCN

new queue () ;

i<numProcessors; i++) {

new processor ("proc "+j,rtiHS+ipHS, LS, BW,

Add_coupling LCNtoEthernet ( proc, mau, ether);

}

procs.add (proc) ;

}

return procs;

public relation Distributed Cooperative Objects (int numPairs)

//declare DCO components
= new dcoArc() ;

dcoArc noArc

set methods

set arcs

//double timeOut
double timeOut =

int ACK
int RTIoh
int Sd
int Si

// fedex

2

new set () ;
new set () ;
= 4.0;
INFINITY;
1*8; // 1 byte acknowledgement
0*8; // 20 bytes RTI overhead
8*8; // attribute size for a "double" value
2%8; // attribute size for an "int" value

{
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int timeAdvGrant wl = 20; // time advance grant workload
// methods: methodName, queue of tasks
queue fedexCycle = new queue () ;
for (int i=0; i<simulationIterations; i++)
fedexCycle.add (new task(timeAdvGrant_ wl,
new dcoArc ("timeAdvGrant (n)", "rtiEx",RTIoh+Sd, ACK,
"invokeSync", "timeAdvGrant (n) ", timeOut))) ;
fedexCycle.add (new task(timeAdvGrant wl,
new dcoArc ("timeAdvGrant (n+0.1)", "rtiEx",RTIoh+Sd,ACK,
"invokeSync", "timeAdvGrant (n+0.1)",timeOut))) ;
fedexCycle.add (new task(timeAdvGrant wl,
new dcoArc ("timeAdvGrant (n+0.2)","rtiEx",RTIoh+Sd, ACK,
"invokeSync", "timeAdvGrant (n+0.2)",timeOut))) ;
fedexCycle.add (new task(timeAdvGrant wl,
new dcoArc ("timeAdvGrant (n+0.3)", "rtiEx",RTIoh+Sd,ACK,
"invokeSync", "timeAdvGrant (n+0.3)",timeOut))) ;
!
methods = new set () ;
methods.add (new method ("run ()", fedexCycle ));
//swObject: name, size,threadMode,methods, arcs,dutyCycle, initMethod
atomic fedex = new swObject ("fedex",64e+3*8, "none",methods, arcs,
INFINITY, "run()") ;

add (fedex) ;

// TrtiEx

int tick = RTIoh;

int tag wl = 10;
int tick wl = 10;
int send wl = 30;
int next wl = 20;

// methods: methodName, queue of tasks
set federates = new set();
federates.add (new entity("fed P"));
federates.add (new entity("fed E"));
queue n00 = new queue () ;
n00.add (new task( tag wl,
new dcoArc ("timeAdvGrant (n)", "devsCoord",RTIoh+Sd,
tick, "invokeSync", "timeAdvGrant (n) ", timeOut))) ;
n00.add (new task( tick _wl, noArc)) ;
queue n0l = new queue () ;
n0l.add(new task( tag wl,
new dcoArc ("timeAdvGrant (n+0.1)", federates,RTIoh+Sd,

tick, "invokeSync", "timeAdvGrant (n+0.1)",timeOut))) ;
n0l.add(new task( tick wl, noArc));
queue n02 = new queue () ;

n02.add(new task( tag wl,
new dcoArc ("timeAdvGrant (n+0.2)", federates,RTIoh+Sd,
tick, "invokeSync", "timeAdvGrant (n+0.2)",timeOut))) ;
n02.add(new task( tick wl, noArc));
queue n03 = new queue () ;
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n03.add (new task( tag wl,

new dcoArc ("timeAdvGrant (n+0.3)", federates,RTIoh+Sd,
tick, "invokeSync", "timeAdvGrant (n+0.3)",timeOut))) ;

n03.add(new task( tick wl, noArc));
queue send GtN

= new queue () ;
send GtN.add(new task( send wl,

new dcoArc ("send(Global tN)", federates,RTIoh+Sd,

0, "message", "send (Global tN)",timeOut)));
queue send iaP = new queue();
if (multiplexedQuantizer)

send iaP.add(new task( send wl,
new dcoArc ("send (interactions)","fed P",
RTIoh+2*numPairs, 0, "message", "send (interactions)", tim
elut))) ;
else for (int i1=0; i< (numPairs*percentInteractionPairs)/

(100*predictiveFilteringFactor); i++)
send iaP.add(new task( send wl,

new dcoArc ("send (interactions)","fed P",

RTIoh+Sd, 0, "message", "send (interactions) ",
timeOut))) ;

new queue () ;
(multiplexedQuantizer)

send iaE.add(new task( send wl,

queue send iaE
if

new dcoArc ("send (interactions)"

, "fed E",
RTIoh+2*numPairs, 0, "message", "send (interactions) ",
timeOut))) ;
else for (int 1=0; i< (numPairs*percentInteractionPairs)/
(L00*predictiveFilteringFactor) ; i++)
send iaE.add(new task( send wl,

new dcoArc ("send (interactions)","fed E",

RTIoh+Sd, 0, "message", "send (interactions)",
timeOut))) ;

= new queue () ;
(multiplexedQuantizer)

send_uaP.add(new task( send wl,

queue send uaP
if

new dcoArc ("send (updates)","fed P",RTIoh+2*numPairs,
0, "message", "send (updates) ", timeOut))) ;
else for (int i=0;

i< (numPairs*percentInteractionPairs) /

(L00*predictiveFilteringFactor) ; i++)
send_uaP.add(new task( send wl,
new dcoArc ("send (updates)","fed P",RTIoh+Sd,
0, "message", "send (updates) ", timeOut))) ;
queue send uaE = new queue();
if

(multiplexedQuantizer)
send_uaE.add(new task( send wl,

new dcoArc ("send (updates)","fed E",RTIoh+2*numPairs,
0, "message", "send (updates) ", timeOut))) ;
else for (int 1=0; i< (numPairs*percentInteractionPairs)/
(L00*predictiveFilteringFactor) ; i++)
send_uaE.add(new task( send wl,

new dcoArc ("send (updates)","fed E",RTIoh+Sd,
0, "message", "send (updates) ", timeOut))) ;
queue send LtN

= new queue () ;
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send LtN.add(new task( send wl,

new dcoArc ("send(Local tN)", "devsCoord",RTIoh+Sd,
0, "message", "send (Local tN)",timeOut))) ;
queue nextEVRgq = new queue () ;

nextEvRg.add (new task( next wl, noArc)) ;
methods = new set () ;

methods.add (new method ("timeAdvGrant (n) ", noo ));
methods.add (new method ("timeAdvGrant (n+0.1)" nol ));
methods.add (new method ("timeAdvGrant (n+0.2)" no2 ));
methods.add (new method ("timeAdvGrant (n+0.3) ", no3 ));
methods.add (new method("send(Global tN)", send GtN ));
methods.add (new method("send(interactionsToP)", send iaP ));
methods.add (new method("send(interactionsToE)", send iaE ));
methods.add (new method ("send (updatesToP) ", send uaP ));
methods.add (new method ("send (updatesToE) ", send uakE ));
methods.add(n w method ("send (Local tN)", send LtN ));
methods.add (new method ("nextEventReq()", nextEVRg )) ;

//swObject : name,size,threadMode,methods,arcs,dutyCycle,initMethod

atomic rtiEx = new swObject ("rtiEx",64e+3*8, "method", methods, arcs,
INFINITY,"") ;

add (rtiEx) ;

// devsCoord

int send GtN wl = 50;
int nxtEvtRg wl = 10;
int rev LtN wl = 20;
// methods: methodName, queue of tasks
queue tag n00 = new queue();
tag n00.add(new task(send GtN wl,
new dcoArc ("send(Global tN)","rtiEx",RTIoh+Sd,

0, "message", "send (Global tN)",timeOut))) ;
tag n00.add(new task(nxtEvtRg wl,

new dcoArc ("nextEventReq()","rtiEx",RTIoh+Sd,
0, "message", "nextEventReq ()", timeOut))) ;
queue rcv_LtN = new queue();

rcv_LtN.add (new task(rcv_LtN wl, noArc)) ;
methods = new set () ;
methods.add (new method ("timeAdvGrant (n)", tag n00));
methods.add (new method("send(Local tN)", rcv LtN));
//swObject: name, size,threadMode,methods, arcs,dutyCycle, initMethod
atomic devsCoord = new swObject ("devsCoord", 64e+3*8, "method",
methods, arcs, INFINITY,"") ;
add (devsCoord) ;

// DEVS federates
// fed P and fed E

int computeIO wl = 10*numPairs;
int askallOUT wl = 10*numPairs;
int whichDevs wl = 200*numPairs;
int tellall wl = 10*numPairs;
int next tN wl = 10*numPairs;

int interactQ wl 100*numPairs;
int updateQ wl = 100*numPairs;
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int nxtEvtReqg wl = 10;
int rcv GtN wl = 10;
int rcv_ia wl = 10;
int rcv_up wl = 10;
// fed P

// methods: methodName, queue of tasks
set Pursuers = new set () ;
Pursuers.add(new entity ("pursuers "+numPairs)) ;
int numP=numPairs; //model Pursuers as aggregate swObject
gueue compute = new queue () ;
compute.add (new task (computeIO wl,
new dcoArc ("compute input output (t)",Pursuers,numbP*4*8,
0, "invokeAsync", "compute input output (t)",timeOut))) ;
compute.add(new task(askallOUT wl,
new dcoArc ("get output ()", Pursuers,numP*1*8, numP*40*8,
"invokeSync", "get output()",timeCut))) ;
if (multiplexedQuantizer)
compute.add (new task(whichDevs wl,

new dcoArc ("send (interactionsToE)", "rtiEx",
RTIoh+2*numPairs, 0, "message", "send (interactionsToE) ",
timeOut))) ;

else for (int 1=0; i< (numPairs*percentInteractionPairs)/
(L00*predictiveFilteringFactor) ; i++)
compute.add (new task(whichDevs wl,

new dcoArc ("send (interactionsToE)", "rtiEx", RTIoh+Sd,

0, "message", "send (interactionsToE) ", timeOut))) ;
compute.add (new task(nxtEvtReqg wl,

new dcoArc ("nextEventReq()","rtiEx",RTIoh+Sd,

0, "message", "nextEventReq ()", timeOut))) ;

gueue tellall = new queue() ;
tellall.add(new task(whichDevs wl, noArc)) ;
tellall.add(new task(tellall wl,
new dcoArc ("wrap deltfunc (tN, input) ", Pursuers,numP*42*8,
0, "invokeAsync", "wrap deltfunc (tN, input) ", timeOut))) ;
if (multiplexedQuantizer)
tellall.add (new task(whichDevs wl,
new dcoArc ("send (updatesToE) ", "rtiEx",RTIoh+2*numPairs,
0, "message", "send (updatesToE) ", timeOut))) ;
else for (int 1=0; i< (numPairs*percentInteractionPairs)/
(100*predictiveFilteringFactor); i++)
tellall.add (new task(whichDevs wl,
new dcoArc ("send (updatesToE) ", "rtiEx",RTIoh+Sd,
0, "message", "send (updatesToE) ", timeOut))) ;
tellall.add(new task(nxtEvtReq wl,
new dcoArc ("nextEventReq()","rtiEx",RTIoh+Sd,
0, "message", "nextEventReqg ()", timeOut))) ;
queue next tN = new queue() ;
next tN.add(new task(next tN wl,
new dcoArc ("next tN()",Pursuers,numP*1+*8,
numP*4*8, "invokeSync", "next tN()",timeOut)));
next tN.add(new task(whichDevs wl,
new dcoArc ("send (Local tN)","rtiEx",RTIoh+Sd,
0, "message", "send (Local tN)",timeOut))) ;
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next tN.add(new task (nxtEvtReqg wl,

new dcoArc ("nextEventReq()","rtiEx",RTIoh+Sd,
0, "message", "nextEventReq() ", timeOut))) ;
queue rcv_GtN = new queue();
rcv_GtN.add (new task(rcv_GtN _wl, noArc)) ;
queue rcv_ia = new queue() ;
rcv_ia.add( new task(rcv_ia wl, noArc));
queue rcv_up = new queue () ;

rcv_up.add( new task(rcv_up wl, noArc)) ;
methods = new set () ;

methods.add (new method ("timeAdvGrant (n+0.1)", compute )) ;
methods.add (new method ("timeAdvGrant (n+0.2)", tellall ));
methods.add (new method ("timeAdvGrant (n+0.3)", next tN ));
methods.add (new method("send(Global tN)", rcv_GtN ));
methods.add (new method("send (interactions)", rcv_ia ));
methods.add (new method ("send (updates) ", rcv_up ));

// fed P

//swObject: name, size,threadMode,methods, arcs,dutyCycle, initMethod

atomic fed P = new swObject("fed P",64e+3*8,"method",methods,
arcs, INFINITY, "loop") ;

add (fed P) ;

// fed E

// methods: methodName, queue of tasks
set Evaders = new set();

Evaders.add(new entity("evaders "+numPairs)) ;
numP=numPairs; //model Evaders as aggregate swObject
compute = new queue () ;

compute.add (new task(computeIO wl,

new dcoArc ("compute input output (t)",Evaders,numP*4*8,

0, "invokeAsync", "compute input output (t)",timeOut)));
compute.add (new task(askallOUT wl,

new dcoArc ("get output()",Evaders,numP*1*8,

numP*40*8, "invokeSync", "get output ()", timeOut))) ;
compute.add (new task (nxtEvtReq wl,

new dcoArc ("nextEventReq()","rtiEx",RTIoh+Sd,

0, "message", "nextEventReqg ()", timeOut))) ;

tellall = new queue() ;
tellall.add(new task(whichDevs wl, noArc)) ;
tellall.add(new task(tellall wl,
new dcoArc ("wrap_deltfunc (tN, input) ", Evaders,numP*42*8,

0, "invokeAsync", "wrap deltfunc (tN, input)", timeOut))) ;
tellall.add(new task(nxtEvtReqg wl,

new dcoArc ("nextEventReq()","rtiEx",RTIoh+Sd,

0, "message", "nextEventReq() ", timeOut))) ;

next tN = new queue() ;
next tN.add(new task(next tN wl,

new dcoArc ("next tN()",Evaders,numP*1*8,

numP*4*8, "invokeSync", "next tN()",timeOut))) ;
next tN.add(new task(whichDevs wl,

new dcoArc ("send (Local tN)","rtiEx",RTIoh+Sd,

0, "message", "send(Local tN)",timeOut))) ;



next tN.add(new task (nxtEvtReq wl,

new dcoArc ("nextEventReq()","rtiEx",RTIoh+Sd,

0, "message", "nextEventReq() ", timeOut))) ;
methods = new set () ;
methods.add (new method ("timeAdvGrant (n+0.1)", compute ));
methods.add (new method ("timeAdvGrant (n+0.2)", tellall ));
methods.add (new method ("timeAdvGrant (n+0.3)", next tN ));
methods.add (new method("send(Global tN)", rcv_GtN ));
methods.add (new method("send(interactions)", rcv_ia ));
methods.add (new method ("send (updates) ", rev_up ));

// fed E

//swObject: name, size,threadMode,methods, arcs,dutyCycle, initMethod
atomic fed E = new swObject("fed E",64e+3*8, "method",methods,
arcs, INFINITY, "loop") ;

add (fed E);

// DEVS Models: Pursuers and Evaders

int return wl

int out wl

int get output wl
int deltint wl
int deltext wl

out.add( new task (75,
out.add( new task (25,
= new queue () ;

queue getOut

1*numP;

10*numP; // get output ()
200*numP; // deltint ()
300*numP; // deltext (e, x)
// methods: methodName,
gueue out = new queue () ;

return wl, noArc))
out_wl, noArc) )

// return w/o processing
= 100*numP; // out ()

queue_ of (pairs_of (workLoad,

7

7

getOut.add (new task( get output wl, noArc)) ;
gueue wrap = new queue () ;
wrap.add( new task

wrap.add( new task

(
wrap.add( new task(
(
(

wrap.add( new task
gueue next = new queue () ;
next.add( new task(

methods = new set () ;

60, return wl, noArc)

) i

workload
workload
workload
workload
workload

arc))
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10,out _wl+deltint wl+deltext wl, noArc)) ;
10,out_wl+deltint wl, noArc)) ;
10,deltext wl, noArc));

next tN wl, noArc)) ;

methods.add (new method ("compute input output (t)",out

methods.add

(
(new method("get output ()",
methods.add (new method ("wrap deltfunc (tN, input)",wrap
(

methods.add (new method ("next tN()",
//swObject: name, size,threadMode,methods, arcs,dutyCycle, initMethod
gueue pursuers = new queue () ;
for (int i=0; i<numPairs;

atomic pursuer;
if (numP==1)

iv+)

getOut

next

) I
) i
) .

2

)
)
)
))

pursuer = new swObject ("pursuer_ "+i,64e+3*8,"method",
methods, arcs, INFINITY,"") ;

else

pursuer = new swObject ("pursuers_"+numPairs, 64e+3*8, "method",
methods, arcs, INFINITY, "") ;

add (pursuer) ;

pursuers.add (pursuer) ;
if (numP>1) break;
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}

queue evaders = new queue () ;
for (int i=0; i<numPairs; i++)
atomic evader;
if (numP==1)
evader = new swObject ("evader "+i,64e+3*8, "method",
methods, arcs, INFINITY,"") ;
else
evader = new swObject ("evaders "+numPairs, 64e+3*8, "method",
methods, arcs, INFINITY, "") ;
add (evader) ;
evaders.add (evader) ;
if (numP>1) break;

}

relation swObjects = new relation

)

"fedex"), fedex) ;

(
swObjects.add (new entity(
swObjects.add (new entity ("rtiEx"), rtiEx) ;
swObjects.add (new entity("devsCoord"), devsCoord) ;
swObjects.add (new entity("fed P"), fed P);
swObjects.add (new entity("fed E"), fed E);
swObjects.add (new entity ("pursuers"), pursuers) ;
swObjects.add (new entity("evaders"), evaders) ;

return swObjects;

public void Object System Mapping(relation swObjects, queue processors)

{

//get processors

digraph proc_1 = (digraph)processors.list ref (0);

digraph proc 2 = (digraph)processors.list ref (1) ;

//map fedex, rtiEx, devsCoord, fed P, and pursuers to proc_ 1
Add_coupling swObject to processor( (atomic)

swObjects.assoc ("fedex"), proc_ 1 );
Add_coupling swObject to processor( (atomic)
swObjects.assoc ("rtiEx"), proc 1 );
Add coupling swObject to processor( (atomic)
swObjects.assoc ("devsCoord"), proc 1 );
Add_coupling swObject to processor( (atomic)
swObjects.assoc ("fed P"), proc_ 1 );
queue pursuers = (queue)swObjects.assoc("pursuers") ;

int numPursuers = pursuers.get length();
for (int i=0; i<numPursuers; i++) {
atomic pursuer = (atomic)pursuers.list ref (i) ;
Add_coupling swObject to processor( pursuer, proc 1 );
}
//map fed E & evaders to proc 2
Add _coupling swObject to processor( (atomic)

swObjects.assoc ("fed E"), proc 2 );
qgueue evaders = (queue)swObjects.assoc("evaders") ;
int numEvaders = evaders.get length();

for (int i=0; i<numEvaders; i++)
atomic evader = (atomic)evaders.list ref (i);
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Add_coupling swObject to processor( evader, proc 2 );

public void Experimental Frame (relation swObjects, queue processors) {
//get processors
digraph proc 1 = (digraph)processors.list ref (0)
digraph proc 2 = (digraph)processors.list ref (1) ;
atomic fedex = (atomic)swObjects.assoc("fedex");
atomic rtiEx = (atomic)swObjects.assoc("rtiEx")

I

7

set procs = new set();
procs.add (proc_1) ;
procs.add (proc_2) ;

set proc_1 sw = new set();
proc_1 sw.add(fedex) ;
proc_1 sw.add(rtiEx) ;
proc_1 sw.add(devsCoord) ;
proc_ 1 sw.add(fed P);
for (int i=0; i<pursuers.get length();
proc_1 sw.add(pursuers.list ref (i));
set proc_ 2 sw = new set();
proc_ 2 sw.add(fed E);
for (int i=0; i<evaders.get length(); i++)
proc 2 sw.add(evaders.list ref(i));
set fedDomain = proc_1 sw.union objects(proc_ 2 sw);

i++)

//declare transducers

String T = " Transducer";

atomic tRtiEx = new transd swObj (rtiEx.get name()+T,
rtiEx.get name()) ;

add (tRtiEX) ;

atomic tEther = new transd ethernet ("Ethernet"+T) ;
add (tEther) ;

atomic tTuple = new transd tuples("tuple"+T);

add (tTuple) ;

// declare acceptor

String acceptorN = "acceptor";

//set of msgs:name,src,dst,msgSize,rSize,msgType, £Job, calledMethod

set invoke = new set() ;

invoke.add (new msg("run()",acceptorN, fedex.get name(),
0,0, INFINITY, "invokeAsync",new job (), "run()")) ;

atomic acceptor = new acceptor (acceptorN, 1, simTime, 1, invoke,
simTime, simRuns) ;

add (acceptor) ;

//couple DCO and LCN to Acceptors and Transducers

Add_coupling msgsTransducer ( fedDomain, procs, tMsgs );
Add coupling swObjectTransducer( rtiEx, proc_1, tRtiEx );
Add_coupling ethernetTransducer( ether, tEther );
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Add_coupling( tEther, "results", tTuple, "in" ) ;
Add coupling( tRtiEx, "results", tTuple, "in" ) ;
// coupling for Acceptor

Add _coupling( acceptor, "invoke", fedex, "inMsgs") ;

Add_coupling acceptorControl (acceptor, components) ;
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APPENDIX C. DEVS-DOC BEHAVIOR SPECIFICATIONS

In this appendix, dynamic behavior specifications for the DEVS-DOC
components are provided using the "Parallel DEV S with Ports* formalism.
C.1 LCN: link_ethernet

DEV Sink_ethemet = < X, Y, S, Sint, exts Oconf, A, ta>, where

InPorts = {"in"}
OutPorts = {"out"}
X ={(f,r) | fisarbitrary, r ¢ R}
Y ={preamble, f|a, fz}
where Xjas=(flast,l1ast) Fepresents the last input pair received
S={"passive","xmitting","collisions","noiseburst"} x Ro X Xjas

dext((phase,6 Xias),6,("in" X)) = case phaseis
("preamble”,propagtionTime,x) "passive”
("collisions',c-e,x) "preamble”
("collisions’,c-e,x) "xmitting"
("collisons®,c-ex) "collisions’
("noiseburst",propagationTime,x) "noiseburst”

dint(phase,c Xias) = case phaseis
("passive’,e=,(,9)) "passive"
("Xmitting" ,rast, Xiast) "preamble”
("passive’,,(3,9)) "xmitting"
("noiseburst” e0,(3,)) "collisions’
("passive',=,(,9)) "noiseburst”

Oconf(S,ta(S),X) = Oext(Oint(S),0,X)

A (phase,6 Xjas) = case phaseis
("out",preamble) "preamble”
("out" fias) "xmitting"
("out",fz) "collisions’
("out",noiseburst) "noiseburst”

ta(phase,c,Xjat) =G



C.2 LCN: hub_ethernet
To simplify the specification, only one ethernet port is assumed.

DEV Shub_ethemet = < X, Y, S, dint, Oext, Oconf, A, ta>, where
InPorts = {inLoop, inl}
OutPorts = { out Loop, out1}
X ={ (inPort, pdu) }, where pdu = (source, dest, size, data)
Y ={ (outLoop, pdu) }
{ (outd, (pdu,r)) |[re R}
S=Phase x ¢ x XmitState x MediaState x LoopDelay x LoopBuffer
x PortDelay x PortBuffer x BackOff Count
Phase = { passive,busy}
c=Ro
XmitState = {idle, waitingForldle, xmitting}
MediaState = {idle, singleCarrier, collisions}
LoopDelay = Rj
LoopBuffer = L (aFIFO queue of pdu's)
PortDelay = Rp
PortBuffer = P~ (a FIFO queue of pairs of pdu's and xmitTimes)
BackOffCount = aninteger > 0

dext(s8,(INPorts, X)) =

(,»,,/JoopDelay-e,,portDelay-e,,) before processing input events X
(orrr,Pradd(x,xt),) for each x event on "inLoop"

where xt isxmitTimefor x, i.e., xt=x.pdu_size/ethernetSpeed

(,,xs,ms,|d,Ib,pd,pb,boc) for each x event on "in"
where ms is new mediaState,
if X.pdu=fg ms=collisions

elseif x.pdu=preamble = ms=singleCarrier
elseif x.pdu=noiseburst ms=idle
else ms=idle
where xsis new xmitState,
if X.pdu!=fz and x.pdu! =preamble and x.pdu! =noiseburst
and xmitState=xmitting
if Plsize=l  xs=idle
else xs=waitingForldle
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where boc is new BackOffCount,
if X.pdu!=fz and x.pdu! =preamble and x.pdu! =noiseburst
and xmitState=xmitting
if Plsize=1  boc=0
else boc=BackOff Count++
where pb is new portBuffer,
if x.pdu!=fz and x.pdul =preambl e and x.pdu! =noiseburst
and xmitState=xmitting pb= PremoveFrontPair
where pd is new portDelay,
if x.pdu!=fz and x.pdul =preamble and x.pdu! =noiseburst
and xmitState=xmitting
if Plsize=l  pd=co
else pd=RandomInt[0..2"BackOff Count++-1]
where Ib is new loopBuffer,
if x.pdu!=fz and x.pdu! =preambl e and x.pdu! =noiseburst
and xmitState! =xmitting Ib=L".add(x.pdu)
where Id is new loopDelay,
if x.pdu!=fz and x.pdul =preamble and x.pdu! =noiseburst
and xmitState! =xmitting

if loopDelay=c Id= x.pdu_size/loopSpeed
(ph,sigma,xs,,,,jpd,,boc) after processing input events X

where xsis new xmitState,
if xmitState=idle and P".size>0 xs=waitingForldle
where pd is new portDelay,
if xmitState=idle and P".size>0 and mediaState=idle
pd=0.0
elseif xmitState=idle and P".size>0 and mediaState!=idle
pd=RandomInt[0..2"BackOff Count++-1]
elseif xmitState=waitingForldle and portDelay=c
pd=RandomInt[0..2"BackOff Count++-1]
elseif xmitState=xmitting and mediaState=collisions
pd=0.0
where boc is new backOffCount,
if xmitState=idle and P".size>0 and mediaState!=idle
boc=BackOff Count++
elseif xmitState=waitingForldie and portDelay=c
boc=BackOff Count++
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where ph is new phase,
if minimum(loopDelay,pd)=co ph=passive
else ph=busy
where sigmaisnew o,
sigma=minimum(loopDelay,pd)

dint(S) = (ph,sigma,xs,,Id,Ib,pd,,boc)
where Id is new loopDelay
if loopDelay<c and L'size=1

|d=co
elseif loopDelay<c Id=L"next_pdu.size/loopSpeed
else |d=loopDelay-c
where Ib is new loopBuffer
if loopDelay<c lb=L".removeFront_pdu

where xsis new xmitState
if portDelay<c and xmitState=waitingForldle
and mediaState=xmitting
Xs=xmitting
if portDelay<c and xmitState=xmitting
and mediaState=collisions
xs=waitingForldle
where pd is new portDelay
if portDelay<c and xmitState=waitingForldle
and mediaState=xmitting
pd:oo
elseif portDelay<c and xmitState=waitingForldie
pd=RandomInt[0..2"BackOff Count++-1]
elseif portDelay<c and xmitState=xmitting
and mediaState=collisions
pd:oo
else pd=portDelay-c
where boc is new backOffCount
if portDelay<c and xmitState=waitingForldle
boc=backOff Count++
where phis new phase,

if ld=co and pd=co ph=passive

else ph=busy
where sigmais new o,

if ld=co and pd=co sigma=co

else sigma=minimum(ld,pd)
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dconf(S,ta(S),X) = Bext(dint(S),0,X)

A=y .
wherey isaset of output (port, value) pairs
y" = new empty set
if loopDelay<c
y-add(outLoop,L " .front_pdu)
if portDelay<c and xmitState=waitingForldle
and mediaState=idle
y-add(outl,P".front_pair)
elseif portDelay<c and xmitState=xmitting
and mediaState=collisions
y+add(out1,(noiseburst,0.0))

ta(s) =o
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C.3 LCN: router

To simplify the specification, only two router ports are assumed.

DEVSiouter =< X, Y, S, dint, Oext, Oconf, A, ta>, where
InPorts = {inLoop, inLink1, inLink2}
OutPorts = { outLoop, outLink1, outLink2}
X ={ (inPort, pdu) }, where pdu = (source, dest, size, data)
Y ={ (outPort, pdu) }
S =Phase x ¢ x OutLoopBuffer x OutlBuffer x Out2Buffer
x OutLoopDelay x OutlDelay x Out2Delay x AddressList
Phase = { passive,busy}
o =Ro
OutL oopBuffer = L™ (aFIFO queue of pdu's)
OutBufferl = O1" (aFIFO queue of pdu's)
OutBuffer2 = 02" (aFIFO queue of pdu's)
LoopDelay = Rp
OutDelayl = R
OutDelay2 = R
AddressList = A" (afunction of software names to output ports)

dext(S8,(INPorts, X)) =

(,»nld,0d1,0d2)) before processing input events X
whereld isnew LoopDelay, Id=LoopDelay-e
where odl is new OutDelay1, 01d=OutDelay1-e
where 0d2 is new OutDelay?2, 02d=0utDelay2-e
(,,,0b1,0b2,,0d1,0d2,a) for each x event on "inLoop"

where obl is new OutBufferl,
if X.destination in AddressList
and AddressL ist.association(x.destination)=outLink1
ob1=01".add(x)
elseif x.destination not in AddressList
and x.data=load
ob1=01".add(x)
where ob2 is new OutBuffer2,
if x.destination in AddressList
and AddressList.association(x.destination)=outLink2
0b2=02".add(x)
elseif x.destination not in AddressList
and x.data=load



0b2=02".add(x)
where odl is new OutDelay1,
if x.destination in AddressList
and AddressL ist.association(x.destination)=outLink1
od1=x.size/outLink1Speed
elseif x.destination not in AddressList
and x.data=load
od1=x.size/outLink1Speed
where 0d2 is new OutDelay?2,
if x.destination in AddressList
and AddressL ist.associ ation(x.destination)=outLink2
o0d2=x.size/outLink2Speed
elseif x.destination not in AddressList
and x.data=load
0d2=x.size/outLink2Speed
where al isnew AddressList,
if x.destination not in AddressList
and x.data=load
al= A’add(x.destination,outL oop)

(,,Ib,,002,1d,,0d2,al) for each x event on "inLink1"
where b is new OutL oopBuffer,
if x.destination in AddressList
and AddressL ist.associ ation(x.destination)=outL oop

Ib=L1".add(x)
elseif x.destination not in AddressList
and x.data=load
Ib=L1".add(x)

where ob2 is new OutBuffer2,
if x.destination in AddressList
and AddressL ist.associ ation(x.destination)=0utL ink2
0b2=02".add(x)
elseif x.destination not in AddressList
and x.data=load
0b2=02".add(x)
whereId isnew LoopDelay,
if x.destination in AddressList
and AddressL ist.associ ation(x.destination)=outL oop
|d=x.size/L oopSpeed
elseif x.destination not in AddressList
and x.data=load
Id=x.size/L oopSpeed
where 0d2 is new OutDelay?2,
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if X.destination in AddressList
and AddressL ist.associ ation(x.destination)=outLink2
0d2=x.size/outLink2Speed
elseif x.destination not in AddressList
and x.data=load
o0d2=x.size/outLink2Speed
where al is new AddressList,
if x.destination not in AddressList
and x.data=load
al= A’add(x.destination,outLink1)

(,,Ib,0b1,,Id,0d1,,al) for each x event on "inLink2"
where |b is new OutL oopBuffer,
if x.destination in AddressList
and AddressL ist.association(x.desti nation)=outL oop

Ib=L1".add(x)
elseif x.destination not in AddressList
and x.data=load
Ib=L1".add(x)

where obl is new OutBufferl,
if x.destination in AddressList
and AddressL ist.associ ation(x.destination)=outLink1
ob1=01".add(x)
elseif x.destination not in AddressList
and x.data=load
ob1=01".add(x)
where ld is new LoopDelay,
if x.destination in AddressList
and AddressL ist.associ ation(x.destination)=outL oop
Id=x.size/L oopSpeed
elseif x.destination not in AddressList
and x.data=load
|d=x.size/L oopSpeed
where odl is new OutDelay1,
if x.destination in AddressList
and AddressList.association(x.destination)=outLink1
od1=x.size/outLink1Speed
elseif x.destination not in AddressList
and x.data=load
od1=x.size/outLink1Speed
where a isnew AddressList,
if X.destination not in AddressList
and x.data=load
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al= A’add(x.destination,outLink2)

(ph,sigma,,,,,,,) after processing input events X
where ph is new phase,
if minimum(LoopDelay,OutDelay1,0utDelay2)=co
ph=passive
else ph=busy

where sigmais new o,
sigma=minimum(loopDelay,pd)
dint(S) = (ph,sigma,lb,0bl1,0b2,Id,0d1,0d2,)

whereld isnew LoopDelay, |d=LoopDelay-c
where odl is new OutDelay1l, od1=OutDelayl-c
where 0d2 is new OutDelay?2, 0d2=OutDelay2-c
where Ib is new LoopBuffer,

if |d<0 Ib=L ‘removeFront_pdu

if Ibisempty [d=co

else Id=Ib.front_pdu.size/outL oopSpeed
where obl is new OutBufferl,

if 0d1<0 ob1=01"removeFront_pdu

if oblisempty 0dl=co

else od1=obl.front_pdu.size/outLink1Speed
where ob2 is new OutBuffer2,

if 0d2<0 ob2=02"removeFront_pdu

if ob2 isempty 0d2=co

else 0d2=0b2.front_pdu.size/outLink2Speed

where ph is new phase,
if minimum(ld,od1,0d2)<e ph=busy
else ph=passive
where sigmaisnew o,
sigma=minimum(ld,odl1,od2)
Oconf(S,ta(S),X) = Oext(Oint(S),0,X)
A=y .
wherey isaset of output (port, value) pairs
y" = new empty set

if  LoopDelay<c y“add(outLoop, L".front_pdu)
elseif OutDelayl<c y'add(outLink1, O1".front_pdu)
elseif OutDelay2<c y add(outLink2, O2" front_pdu)

ta(s)=o
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C.4 LCN: cpu_singleTask

DEV Sy singletak =< X, Y, S, dint, Oext, Oconf, A, ta>, where
InPorts = {inJobs, inSW}
OutPorts = { outJobs}
X ={ (inJobs, job) }, wherejob = (swObject, workL oad)
{ (inSW, pdu) }, where pdu = (source, dest, size, data)
Y ={ (outJobs, job) }
S =Phase x 6 x memSW x Jobs
Phase = { passive,busy}
c=Ro
memSW = a set of swObject names
Jobs = arelation of jobTimeto job

dext(s8,(INPorts, X)) =

(,mSW,) for each x event on "inSW*"
where mSW is new memSW
if x.dest=mem and Xx.data=load
MSW=memSW.add(x.source)
eseif x.dest=mem and x.data=unload
MSW=memSW.remove(X.source)

(;,,J9) for each x event on "inJobs"
where Jsis new Jobs
if x.srcisin memSW Js=Jobs.add(x)
(ph,sigma,,) process | ast

where phis new phase
if Jobsisempty ph=passive

else ph=busy
where sigmaisnew ¢
if Jobsisempty sigma=co
elseif phase=busy  sigma=c-e
else sigma=Jobs.front_job.size/cpuSpeed

dint(s) = (ph,sigma,,Js)
where ph is new phase
if Jobs.size=1 ph=passive
else ph=busy
where sigmaisnew ¢
if Jobs.size=1 Sigma=co



197

else sigma=Jobs.next_job.size/cpuSpeed
where Jsis new Jobs
Js=Jobs.remove_front_pdu

8conf(s,ta(5),X) = 8ext(8int(5),0,X)
A (s) = ("outJobs',Jobs.front_job) if Jobs not empty

ta(s) =c
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C.5 LCN: cpu_multiTask

DEV Sy mutitax =< X, Y, S, Sint, Oext, Ocorf, A, t&>, Where
InPorts = {inJobs, inSW}
OutPorts = { outJobs}
X ={ (inJobs, job) }, wherejob = (swObject, workL oad)
{ (inSW, pdu) }, where pdu = (source, dest, size, data)
Y ={ (outJobs, job) }
S = Phase x ¢ x memSW x Jobs x meminUse
Phase = { passive,busy}
c=Ro
memSW = a set of swObject names
Jobs = arelation of jobTimeto job
memlnUse = Ro

dext(S8,(INPorts, X)) =

(,mSW,,mlU) for each x event on "inSW"
where mSW is new memSW
if x.dest=mem and x.data=load
MSW=memSW.add(x.source)
eseif x.dest=mem and x.data=unload
MSW=memSW.remove(X.source)
where mlU is new meminUse
if x.dest=mem and Xx.data=load
mlU=memlnUset+x.size
elseif x.dest=mem and x.data=unload
mlU=memlnUse-x.size

oldJobCount=Jobs.length
(;yyJs) for each x event on "inJobs"
where Jsis new Jobs
if x.srcisin memSwW
newJobTime=(e+x.workL oad/cpuSpeed)* ol dJobCount
Js=Jobs.add(newJobTime,x)

newJobCount=Jobs.length
(ph,sigma,Js,,) for each (jobTime_i, job_i) pair in Jobs
where Jsis new Jobs
newJobTime_i=(jobTime_i-e)newJobCount/oldJobCount
Js=Js.add(newJobTime i,job i)
where ph is new phase
if Jobsisempty ph=passive
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else ph=busy
where sigmaisnew ¢
if Jobsisempty sigma=co
else sigma= minimum(each jobTime_i in Jobs)
Oint(S) =
oldJobCount=Jobs.length
(;5,Js,) for each (jobTime i, job i) pair in Jobs
where Jsis new Jobs
if jobTime_i<c Js= J".remove _pair(jobTime i, job i)

newJobCount=Jobs.length
(ph,sigma,,Js,) for each (jobTime i, job_i) pair in Jobs
where Jsis new Jobs
newJobTime_i=(jobTime_i-sigma)newJobCount/oldJobCount
Js=Js.add(newJobTime i,job i)
where ph is new phase
if Jobsisempty ph=passive

else ph=busy
where sigmaisnew ¢
if Jobsisempty Sigma=co
else sigma= minimum(each jobTime_i in Jobs)

Ocont(S,ta(S),X) = dext(int(S),0,X)

A9 =y
wherey isaset of output (port, value) pairs
y = new empty set
for each (jobTime, job) pair in Jobs
if jobTime<c y.add(outJob, job)

ta(s)=o
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C.6 LCN: transport

DEV Syansport = < X, Y, S, Sint, Oext, Ocont, A, ta>, where
InPorts = {inMsgs, inPkts}
OutPorts = { outM sgs, outPkts}
X ={ (inMsgs, pdu) , (inPkts, pdu) }, where pdu = (source, dest, size, data)
Y ={ (outMsgs, pdu), (outPkts, pdu) }
S = Phase x ¢ x xmittingQ x deliveryQ x recvingQ
Phase = { passive,busy}
o =Ro
xmittingQ = a set of msg, where msg=(src,dest,size,data)
deliveryQ = aset of msg
recvingQ = afunction of (msg — pktQ) pairs,
where pktQ is queue of pkt and pkt=(src,dest,size,data)

dext(S,€,(INPorts, X)) =
(ph,sigma,xQ,,) for each x event on "inMsgs'
where ph is new phase, ph=busy
where sigmais new o, sigma=0
where xQ is new xmittingQ, xQ=xmittingQ.add(x)
(ph,sigma,,dQ,rQ) for each x event on "inPkts"
M=X.Msg
pQ=recvingQ(m)
pQ.add(x)
where ph is new phase, ph=busy
where sigmais new o,
if x.num_fragments=pQ.length sigma=0
where dQ is new deliveryQ,
if x.num_fragments=pQ.length dQ=deliveryQ.add(m)
whererQ is new recvingQ,
if x.num_fragments=pQ.length rQ=recvingQ.remove(m—pQ)

else rQ=recvingQ.replace(m—pQ)

dint(S) = (ph,sigma,xQ,dQ,rQ)
where ph is new phase
if recvingQ isempty ph=passive
else ph=busy
where sigmais new ¢, sigma=co
where XQ is new xmittingQ, xQ=empty set
where dQ is new deliveryQ, dQ=empty set

dcont(S,ta(s),X) = dext(dint(S),0,X)
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A=y
wherey isaset of output (port, value) pairs

y = new empty set

for each msg in xmittingQ,
partition msg into pkts of size maxPktSize
for each pkt, y=y.add("outPkts",pkt)

for each msg in deliveryQ,
y=y.add("outMsgs',msg)

ta(s) = o
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C.7 DCO: swObject

DEVSSNObjeC'[ =<X,Y,S, dint, Oext, Ocont, A, ta>, where
InPorts = {inMsgs, doneJobs}
OutPorts = { outM sgs, outJobs, outSW}
X ={ (inMsgs, msg) , (doneJobs, job) },
where msg=(name,src,dest,s ze,returnSize, timeOut, msg Type, firingJob,method)
where job = (swObject, method, workL oad, workL eft, invokingM essage)
Y ={ (outMsgs, msg), (outJobs, job), (outSW, pdu) }
where pdu = (src, dest, size, data)
S = Phase x ¢ x activeJobs x commJobs x queuedJobs x timerMsgs
x fireJobs x fireM sgs x |oadStatus
where
Phase = { passive, active, fire}
o =Ro
activeJobs = relation of (method—)job)
commdJobs = set of jobs
gueuedJobs = relation of (method—job)
timerMsgs = relation of (timeOut—msg)
fireJobs = set of jobs
fireMsgs = set of msgs
loadStatus = {unloaded, onDisk, inMem, unloadMem, unloadDisk}

dext(S,6,(InPorts, X)) =
(ph, sigma, &, ¢j, gj, tm, fj, fm, |s) for each inJob on "doneJobs"
and inJob.swObject=self
where phisnew phase
sigmaisnew ¢

aj is new activeJobs, aj=activeJobs
¢j is new commJobs, cj=commdJobs
g is new queuedJobs, gj=queuedJobs
tmis new timerMsgs, tm=timerMsgs
fj is new fireJobs, fj=fireJobs
fmisnew fireMsgs, fm=fireMsgs
Isis new loadStatus, |s=loadStatus

inJob.reset_workL oad

if inJob.method=""

for each arc_iinarcs
if arc_i.workLoad<inJob.workDone
fm=fm.add(newMsg base on arc i)
ph=fire
sigma=0
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if arc_i.returnSize>0
cj=cj.add(inJob)
if arc_i.invokeSynchronous inJob.set to blocked
if arc_i.timeOut>0 tm=tm.add(timeOut—newM sg)
arc_i.set_workLoad(arc_i.total\WorkL oad)
else arc i.set workL oad(workL oad-inJob.workDone)
else
get next task_i in task based on inJobs.workDone
for each arc i intask i
fm=fm.add(newMsg base on arc i)
ph=fire
sigma=0
if arc_i.returnSize>0
cj=cj.add(inJob)
if arc_i.invokeSynchronous inJob.set to blocked
if arc_i.timeOut>0 tm=tm.add(timeOut—newM sg)
if inJob.is_not_blocked
if inJob.workLoad>0 fj=fj.add(inJob)
ph=fire
sigma=0
else
aj=aj.remove(inJob.method,inJob)
if threadMode=none
if g isnot empty
nextJob=gj.front_job
gj=gj.remove_front_job
aj=gj.add(nextJob.method— nextJob)
fj=fj.add(nextJob)
ph=fire
sigma=0
eseif cjisempty
Is=unloadMem
ph=fire
sigma=0
if threadM ode=object
if gisempty and g isempty and ¢jisempty
IssunloadMem
ph=fire
sigma=0
elseif g isnot empty
nextJob=qj .associated(inJob.method)
if nextJob exists
gj .remove(inJob.method—nextJob)



aj=gj.add(nextJob.method— nextJob)
fj=fj.add(nextJob)
ph=fire
sigma=0
if threadMode=method
if gisempty and cjisempty
ph=fire
sigma=0
Is=unloadMem
if inJob.invokeMsg.returnSize>0
fireM sgs(inJob.invokeM sg.returnM sg)
ph=fire
sigma=0

(ph, sigma, g, ¢j, qj, tm, fj, fm, |s) for each inMsg on "inMsgs'
and inMsg.dest=self
where phisnew phase
sigmaisnew ¢

g is new activeJobs, gj=activeJobs
¢j is new commJobs, cj=commdJobs
gj is new gqueuedJobs, gj=queuedJobs
tmis new timerMsgs, tm=timerMsgs
fj isnew fireJobs, fj=fireJobs
fmisnew fireMsgs, fm=fireMsgs
Isis new loadStatus, |s=loadStatus

if inMsg.isReturnMsg
If inMsg.firingJob isin commJobs
tm=tm.remove(* —inMsg)
if inMsg.firingJob.is_blocked
firingJob.set_unblocked
cj=cj.remove(firingJob)
if firingJob.workLeft>0
fj=fj.add(firingJob)
ph=fire
sigma=0
else
aj=aj.remove(inJob.method,inJob)
if threadMode=none
if g isnot empty
nextJob=qj.front_job
gj=gj.remove_front_job
aj=gj.add(nextJob.method— nextJob)

204



205

fj=fj.add(nextJob)
ph=fire
sigma=0
eseif cjisempty
[s=unloadMem
ph=fire
sigma=0
if threadMode=object
if gisempty and g isempty and ¢jisempty
IssunloadMem
ph=fire
sigma=0
elseif g isnot empty
nextJob=qj.associated(inJob.method)
if nextJob exists
gj.remove(inJob.method— nextJob)
aj=gj.add(nextJob.method— nextJob)
fj=fj.add(nextJob)
ph=fire
sigma=0
if threadMode=method
if gisempty and ¢ isempty
ph=fire
sigma=0
IssunloadMem
if inJob.invokeM sg.returnSize>0
fireM sgs(inJob.invokeM sg.returnM sg)
ph=fire
sigma=0
else
if phase=passive g=g.add(newJob based on inMsQ)

Sine(s) = (ph, sigma, dj, ¢j, qj, tm, fj, fm, Is)
where phis new phase

if phase=passive ph=fire
elseif loadStatussinMem  ph=active
else ph=passive
where sigmaisnew ¢
if phase=passive sigma=0
eseif loadStatussinMem  sigma=min(each timeOut_i in timerMsgs)
else Sigma=oo

where g is new activeJobs
if phase=passive aj={ newJob based on initialization_message}



206

else g=activeJobs
where ¢j is hew commJobs cj=commJobs
where gj is new queuedJobs gj=queuedJobs

where tm is new timerMsgs
for each (timeOut_i, msg_i) in timerMsgs
if timeOut_i<c tm=tm.add(msg_i.timeOut, msg_i)

else tm=tm.add(timeOut_i-c, msg_i)
wherefj is new fireJobs
if phase=passive fj=aj.newJob
else fj=empty set
where fmis new fireMsgs fm=empty set
where Isis new loadStatus
if loadStatus=unloaded |s=onDisk

elseif loadStatus=onDisk

and (fireJobs.length+fireMsgs.length)>0 IssinMem
elseif loadStatus=unloadMem Is=onDisk
elseif loadStatus=unloadDisk |s=unloaded

dconf(S,ta(S),X) = Bext(dint(S),0,X)

A=y
wherey isaset of output (port, value) pairs

y = new empty set

if loadStatus=unloaded
y=y.add((outSW,(myName,Disk,swSize,|oad))

elseif loadStatus=onDisk and (fireJobs.length + fireM sgs.length)>0
y=y.add((outSW,(myName,Mem,swSize,load))

elseif loadStatus=unloadMem and fireJobs.length=0
y=y.add((outSW,(myName,Mem,swSize,unload))

elseif loadStatus=unloadDisk
y=y.add((outSW,(myName,Disk,swSize,unl oad))

for each job _i in fireJobs
y=y.add("outJobs",job i)

for each msg _i in fireMsgs
y=y.add("outMsgs’,msg_i)

for each (timeOut_i, msg _i) in timerMsgs
if timeOut_i=c y=y.add("outMsgs',msg_i)

ta(s) =o
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C.8 Experimental Frame: acceptor

DEVSacceptor: <X,Y,S, 8int, Sexty SConf, 7\4, ta>, where
InPorts ={ control }
OutPorts ={ control, invoke }
X ={ (control, controlMsg) }
where controlMsg = { passivate, initialize}
Y ={ (control, controlMsg), (invoke, msg) }
where msg=(name,src,dest,si ze,returnSi ze,timeOut,msg Type,firingJob,method)
S = Phase x ¢ x ControlMsg x NumSimRuns x Repetition
Phase = { passive, initializing, starting, collecting, stopping, reporting}
o =Ro
ControlMsg = {J, passivate, initialize}
NumSimRuns = 3
Repetition = 3

dext(s&,(INPorts, X)) =

(,sigma,) before processing events
where sigmais new o, sigma=c-e
(ph,sigma,cM) for each x event on "control"
where phis new Phase, ph=Phase
where sigmais new o, sigma=0
where cM is new ControlMsg, cM=x

Sine(S) = (ph,sigma,cM,nSR,rep)
where cM is new ControlM sg, cM=Z
where phisnew Phase
sigmaisnew o,
nSR is new NumSimRuns
rep is new Repetition
if Phase=initializing ph=starting
sigma=startupTime
NSR=numSimRuns-1
elseif Phase=starting ph=collecting
sigma=invokeDutyCycle
rep=repetitions - 1;



elseif Phase=collecting
and repetition>0

elseif Phase=collecting
and repetition=0
elseif Phase=stopping

elseif Phase=reporting
and numSimRuns>1

elseif Phase=reporting
and numSimRuns=1

else

Scont(S,ta(s),X) = dext(Sint(S),0,X)

A=y

wherey isaset of output (port, value) pairs
y = new empty set

if
if
if
if

if
if

ta(s)=o

ControlMsg! =
Phase=initializing
Phase=starting
Phase=starting
for each msg_i in invokeM sgs

Phase=stopping
Phase=reporting
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ph=collecting
sigma=invokeDutyCycle
rep=repetition--;

ph=stopping
sigma=simDutyCycle
rep=repetition--;
ph=reporting
sigma=0

ph=initializing
sigma=1

ph=passivate
sigma=co
ph=passivate
sigma=co

y=y.add(control, ControlMsg)
y=y.add(control, initialize)
y=y.add(control, collect)

y=y.add(invoke, msg_i)

Phase=collecting and repetition>1
for each msg_i in invokeM sgs

y=y.add(invoke, msg_i)

y=y.add(control, passivate)
y=y.add(control, report)
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C.9 Experimental Frame: LCN and DCO Control Instrumentation

This"control instrumentation” specification complements the DEV S specification
for the Experimental Frame Acceptor. This behavior isincorporated into the LCN and
DCO atomic models to provide experimental frame control instrumentation.
DEV'S.cN_and pco_contro= < X, Y, 'S, Sint, dext, Ocont, A, ta>, where

InPorts ={ control }
X ={ (control, controlMsg) }, where controlMsg = { passivate, initialize}

S=Phasex ¢
Phase = defined in LCN or DCO model
oc=Ro
dext(s,&,(InPorts, X)) = (ph,sigma,) for each x event on "control"

where ph is new Phase, and
sigmaisnew o,

if x=passivate ph=passive
sigma=co
elseif x=initialize initidize LCN_or_DCO_model
Bint(S) = (9)
Oconf(S,ta(S),X) = Oext(Oint(S),0,X)
A9 =9

ta(s) =o
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C.10 Experimental Frame: transducer

DEV Sransduce= < X, Y, S, Oint, Oext, Oconf, A, ta>, where

InPorts ={ control }
X ={ (control, controlMsg) }

where controlMsg = { initialize, collect, report, passivate}
Y ={ (results, report) }

where report is an accounting of the collected data

S = Phase x ¢ x ObservationTime

Phase = { passive, collecting }

c=Ro

ObservationTime = Ry
dext(S,6,(InPorts, X)) =

(,sigma,OT) before processing any events
where sigmais new o,
sigma=oc-e
if Phase=collecting ee=e
else ee=0
(ph,sigma,) for each x event on "control"

where phis new Phase, and
sigmais new o,

if x=initialize initialize_myself

elseif x=collect ph=collecting
sigma=co

elseif x=report ph=reporting
sigma=0

elseif x=passivate ph=passive
sigma=co

(.,OT)

where OT is new ObservationTime,

if Phase=collecting
dint(s) = (ph,sigma,OT)
where phis new Phase,
where sigmais new o,

after processing all events

OT=0ObservationTime+ee

ph=passive
Sigma=co

where OT is new ObservationTime, OT=ObservationTimetoc

Scont(Sita(S) X) = Sex(Bin(S),0X)
A=y

wherey isaset of output (port, value) pairs

y = new empty set
if Phase=reporting

ta(s)=o

report=generate_my_results report
y=y.add(results, report)
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APPENDIX D. GLOSSARY OR TERMS

CORBA Common Object Request Broker Architecture

CPU Central Processing Unit

DCO Distributed Cooperative Object

DEM Distributed Exercise Manager

DESS Differential Equation System Specification
DEVS Discrete Event System Specification
DiSect Distributed Simulation Exercise Construction Tool set
DMSO Defense Modeling and Simulation Office
DNS Domain Name Service

DOC Distributed Object Computing

DTSS Discrete Time System Specification

EF Experimental Frame

ExGen Exercise Generation

FDDI Fiber Distributed Data Interface

FIFO First-In, First-Out

FSM Finite State Machine

GUI Graphical User Interface

HCCL Heterogeneous Container Class Library
HLA High Level Architecture

HW Hardware

IETF Internet Engineering Task Force

1SO International Standards Organization
VM Java Virtua Machine

LAN Loca AreaNetwork

LCN Loosely Coupled Network

M&S Modeling and Simulation

MAARS Modular After Action Review System



MAU
MIB
NIC
oS
OSM
QoS
RTI
RUP
SES
SMTP
SNMP

SwObject
UML
VHDL
VHSIC

Media Access Units

Management Information Bases
Network Interface Cards

Operating System

Object System Mapping

Quality of Service

Run Time Infrastructure

Rational Unified Process

System Entity Structure

Simple Mail Transfer Protocol

Simple Network Management Protocol
Software

Software Object

Unified Modeling Language

VHSIC Hardware Description Language
Very High Speed Integrated Circuit
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This research examines an approach to modeling and simulating a distributed
object computing (DOC) system as a set of discrete software components mapped onto a
set of networked processing nodes. Our overall modeling approach has clearly separated
hardware and software components enabling co-design engineering. The software
component models form a distributed cooperative object (DCO) model to represent
interacting software objects. The hardware component models form aloosely coupled
network (LCN) model of processing nodes, network gates, and interconnecting
communication links. The distribution of DCO software objects across LCN processors
forms an Object System Mapping (OSM) model. The OSM provides a sufficient
specification to allow simulation investigations. Component model dynamics are
specified using the Discrete Event System Specification (DEV S) formalism.
Experimental frame components facilitate analysis of individual DCO and LCN

components as well as interdependent system behaviors.



