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ABSTRACT

Modeling and simulation form an integral role in the engineering design process. An
accurate mathematical description of a system provides the design engineer the flexibility
to perform trade studies quickly and accurately to expedite the design process. Most
often, the mathematical model of the system contains components of different
engineering disciplines. A modeling methodology that can handle these types of systems
might be used in an indirect fashion to extract added information from the model.

This research examines the ability of a modeling methodology to provide added
insight into system analysis and design. The modeling methodology used is bond graph
modeling. An investigation into the creation of a bond graph model using the Lagrangian
of the system is provided. Upon creation of the bond graph, system analysis is
performed. To aid in the system analysis, an object-oriented approach to bond graph
modeling is introduced. A framework is provided to simulate the bond graph directly.
Through object-oriented simulation of a bond graph, the information contained within the
bond graph can be exploited to create a measurement of system efficiency. A definition
of system efficiency is given. This measurement of efficiency is used in the design of
different controllers of varying architectures. Optimal control of a missile autopilot is

discussed within the framework of the calculated system efficiency.
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CHAPTER 1: Introduction

1.1 Problem Statement

Modeling and simulation form an integral role in the engineering design process. An
accurate mathematical description of a system provides the design engineer the flexibility
to perform trade studies quickly and accurately to expedite the design process. Most
often, the mathematical model of the system contains components of different
engineering disciplines. The ability to accurately model these types of systems is
therefore a necessity among the engineering community.

Bond graph theory began in the 1960’s at MIT by H. M. Paynter [Cel91]. The basic
idea behind the theory is to create a map of the power flow through a system. Since the
first law of thermodynamics applies to all types of energy in all engineering domains
[War95], mapping the system’s power flow helps the system engineer understand the
transfer of power at the boundary of engineering disciplines. Upon developing the power
flow diagram, further research lead to causal assignments identifying the causal
relationships between state variables [Mon91]. By using the power flow diagram, with
the noted causal relationships, creating system equations becomes a relatively
straightforward task.

Most often, bond graphs are used to generate system equations. Once the system
equations are obtained the bond graph is usually discarded, along with the power flow

map and the causal relationship indicators. Useful information is often lost as a result.
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Much potential exists to gain further insight into the system model by keeping the power
flow diagram and causal indicators. The research presented here provides methods of
system analysis by closely monitoring the system power flow through specific bonds of

the bond graph model.

1.2  Plan of Dissertation

Chapter 2 is a survey of literature related to the research presented in subsequent
chapters. In Chapter 3, a discussion on the creation of bond graphs is given. The
discussion explains bond graph basics and then moves to advanced bond graph creation
using the Lagrangian of a system [McBO01, Mei98, Lag1788].

Upon creation of the bond graph it is usually the modeler’s task to formulate system
equations and then implement these equations in some executable code in order to
perform model simulation. Chapter 4 uses an object-oriented modeling platform called
Dymola [Dym], and introduces a bond graph library within this modeling framework
[Cel93]. This modeling framework allows the user to build a bond graph in Dymola and
simulate the bond graph directly, thus eliminating the need to create further code. Also,
since the system model is a bond graph, and not just a set of state equations obtained
from a bond graph, it is possible to utilize the bond graph’s power flow diagram and
causal map to the modeling engineer’s advantage. A fairly complex system is modeled in

Chapter 4 to demonstrate the flexibility provided by the bond graph library.
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Chapter 5 provides a means of measuring the efficiency of a system by monitoring
the power input to the system and the power delivered as output. The monitoring of
power on any element of the model is a straightforward task when using a bond graph,
since the bond graph itself is a power flow map of the system. The efficiency
measurement is used as a benchmark for comparing controllers of different topologies. It
is shown that this analysis is not limited to linear systems only, but is equally effective
for nonlinear systems. The efficiency measurement of a system is common to
thermostatic problems [Bej97, Cen89, War95]. Bond graph modeling allows this
efficiency analysis to be performed on dynamic systems of all engineering domains
[McBO05c].

Chapter 6 utilizes the efficiency measurement obtained in Chapter 5 to compare the
system efficiencies for a controller with different gain sets [McB05a]. In doing this
comparison the control design engineer obtains a measurement of optimality of the
system. The optimal efficiency signal is created by using a state dependent Riccati
equation approach. This optimal efficiency signal is then compared to efficiency signals
obtained from a linear controller. The usefulness of this analysis is that a limit of
efficiency is obtained such that the control design engineer is alerted to gain sets that
violate linear constraints on nonlinear systems. Also, it is shown that the efficiency
signal can further be used to determine the need for controller gain redesign given that

the original system parameters have changed.
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Summary of Contributions

The main contributions of this thesis are as follows:

A method for creating a bond graph from the Lagrangian of a system is given.
The method presented here further improves upon methods that have been
presented previously.

An object-oriented bond graph library is given. The library allows the modeling
engineer to build a bond graph such that the bond graph is an executable code. In
this way potential errors are eliminated in that the bond graph modeler does not
need to generate state equations.

The bond graph library allows the modeling engineer to use the power flow
diagram directly. The power flow diagram provides a means for measuring the
efficiency of a system. A definition of system efficiency is given.

It is shown how the system efficiency measurement can be used to compare
control schemes of different architectures. Both linear and nonlinear controllers
are compared.

It is shown how the system efficiency signal can be used to measure the
optimality of a constrained optimization design.

It is shown how the efficiency signal can help determine if a nonlinear system
approaches the violation of linear constraints.

It is shown how the efficiency signal can be used to determine if a controller

redesign is necessary for a system of which the parameter values have changed.
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CHAPTER 2: Related Work

2.1 Introduction

This chapter presents an overview of work related to this research. Bond graph
research is often concerned with the development of system state equations [Kar90,
Kar83]. This research, however, focuses on system analysis that can be done directly

from the bond graph itself.

2.2 System Lagrangian and Bond Graph Construction

Early on in the development of bond graph theory Karnopp presented a method for
generating a bond graph from the Lagrangian of a system [Kar69]. The Lagrangian bond
graph method shown by Karnopp gives correct but complicated bond graph structures.
The method of Karnopp was later improved upon in Brown’s presentation of Lagrangian
Bond Graphs [Bro72]. Brown’s method also provides a correct bond graph structure but
uses complicated formulae involving inertia terms for transformer and gyrator moduli.
The method presented in this research further improves upon the method of Brown to
reduce the complexity of transformer moduli [McBO1]. An in depth discussion is
presented in Sections 3.3 and 3.4.

Research is being conducted to apply Lagrangian bond graphs with a finite element
discretization scheme to simulate a wide range of high order, solid continuum dynamics

problems [Fah99, Fah94]. Also, Lagrangian bond graphs have been used to develop
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formalism for modeling kinematic joints [Fav98, Zei95, Mas91]. The applications of
Lagrangian bond graphs are many [Bro72, McB05a, McB05b, McBO05c]. This research
provides further insight into the creation of the Lagrangian bond graph by noting natural
gyrator modulations of system /-element.

A similar research path is currently under investigation. This path is concerned with
the creation of Lagrange equations given a bond graph structure. By obtaining
conservation laws of different energy domains, using bond graphs, Lagrangian-
Hamiltonian mechanics can be extended to deal with dissipative elements and non-

potential fields [Muk05, Muk97, Kar77].

2.3 Object-Oriented Bond Graph Modeling

The ability to use models in a plug-and-play fashion gives the modeler a great
advantage in the field of design and simulation. Bond graph modeling allows the user to
easily model systems that cross engineering domains. The creation of a bond graph
library, within an object-oriented framework, allows the designer to create models that
cross multiple engineering domains and simultaneously simulate the models [Cel03a,
McB03]. The object-oriented nature of the simulation software allows the reuse of
models, eliminates equation generation errors, and removes the users from the difficulties
of programming the code. The research presented here provides a bond graph library that

can represent electrical, mechanical, hydraulic systems, etc. This library does account for
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dissipated energy in the form of heat. However, complete thermodynamic systems
cannot be modeled using this library.

Current research in this area involves the creation of a thermodynamic bond graph
library. The creation of a bond graph library that deals with thermodynamic systems, in
an object-oriented manner, provides the users with the ability to model convective flows
[Cel03b, GreOla, GreO1b].

Similar research in this area is concerned with defining the role of the library designer
and the role of the user. The ability of the user to employ the library’s models with
confidence that the components operate correctly, without knowing their internal
workings, provides the modeler with greater flexibility [Urq03a, Urq03b]. A bond graph
methodology, being based on the first law of thermodynamics, helps provide confidence

in the correctness of the library components.

2.4 System Efficiency Measurement Through Bond Graph Modeling

Power flow information of a bond graph can be used to develop the state equations
for a given system. However, once the equations of motion are obtained, often the power
flow map and the system’s causal relationships are discarded. As a result, useful
information is lost. This research uses the power flow information of a bond graph to
develop a method for measuring the efficiency of a system. By monitoring the input

power, and the output power, an efficiency measurement can be defined [McBO05c].
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A similar research path uses the power flow information from a bond graph of a
system to measure the relative value of energy elements in a system. By evaluating the
amount of energy used by a particular branch of the system, it is possible to determine
which system elements are relatively unimportant. The relatively unimportant elements
can then be eliminated, thus reducing the overall size of the system. Thus, a systematic
approach to system order reduction can be formulated [Lou02, Lou99]. This research
path provides a further use for the power flow map, and causal information map, that are

naturally obtained in a bond graph model.

2.5 Optimal Gain Selection Using the Bond Graph Efficiency

Measurement

The thermodynamic power flow of a system, and the causal relationships among
system variables, provide insight that can be exploited to develop a controller for the
system. Bond graphs naturally provide the power flow through the system and the
system’s internal causal relationships. Extracting information from a bond graph of a
system to aid in the system’s controller design is ongoing research. The research
presented here focuses on the definition of autopilot efficiency. This analysis can be used
to compare different controller designs, or to compare efficiencies of different gain sets,
within the same design [McB05a, McBO5b].

There is current research that utilizes the causal properties of the bond graph to

determine structural control properties of thermo-fluid systems. The causal information
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of a thermo-fluid bond graph can be utilized to ultimately design sensor placements for
observability and fault detection isolation [Sar04]. This naturally leads to an
investigation of the relationship between the causal loops/paths in a system and the
system controllability/observability. Research on bond graph based methods for analysis
and design of control systems is ongoing [Jun05].

Also, a research branch exists that is interested in utilizing the bond graph method of
model reduction to formulate a control law for large-scale systems [Liu02]. The bond
graph model reduction method is a method that can be applied to nonlinear models, as

well as, linear models [Lou02, Lou99].
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CHAPTER 3: Bond Graph Modeling

3.1 Introduction

Modeling and simulation form an integral role in all of science and engineering. A
scientist can iterate through the scientific process at a much greater pace by performing
experiments on a model of a system versus experimentation on a full-scale system.
Engineers are able to iterate quickly through the design process by modeling their designs
prior to implementing them in hardware. Control engineers, for example, use modeling
by first attempting to control a model of a system prior to controlling the actual system.

The process of modeling is one in which a set of cause and effect relationships are
defined between parameters that represent physical characteristics of a system. These
parameters, or variables, are chosen such that the key information for understanding the
system can be extracted from the model through simulation. Simulation is then the
ability to view how the model acts over a period of time. Understanding the cause and
effect relationships between the variables of a system is essential to developing a
meaningful model.

The modeling process exists in all science and engineering domains. Electrical
engineers use circuit diagrams to represent electrical circuits, mechanical, and civil
engineers use free-body diagrams to represent forces and moments between components
of their respective systems. Thermodynamics and chemical system descriptions yet use

other techniques to help the user develop the necessary cause and effect relationships
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between the describing parameters of the system. Each technique of the various domains
differs from one another in that they each describe different aspects of the physical world.
Each technique has meaning only in the engineering domain for which it is intended.
Thus, systems that cross multiple disciplines of science and engineering can, therefore, be
very difficult to model.

The laws of thermodynamics are relevant to systems in all science and engineering
domains. The first law of thermodynamics states that energy cannot be created nor
destroyed but simply changes from one form to another. By modeling the flow of energy
from one form to another, a methodology that describes systems in multiple energy
domains is obtained. One such methodology is bond graph modeling.

Bond graph modeling lends itself very well to assisting the user in the organization of
cause and effect information. It is a methodology that maps power flow throughout the
system. Bond graphs also map signal flow throughout the system allowing the user to
define the cause and effect relationships between all describing variables of the system.
Since power flow laws are the same regardless of the energy domain that is being
described, bond graphs are able to connect model sub-systems of different domains
together to form a larger, mixed-domain model, in a concise and meaningful way. The
ability to map power flow across energy domain boundaries, and map signal flow
information across the same boundaries, is an indispensable aid in the user’s quest to
form cause and effect relationships within interdisciplinary systems.

Bond graph modeling is a graphical modeling technique that preserves the

computational structure and the topological structure of the system being modeled. H.M.
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Paynter, an MIT professor developed bond graph modeling as an interdisciplinary
modeling technique that simultaneously conveys the topological structure and the

computational structure of a system [Cel91, pp. 258-265].

3.2 An Introduction to Bond Graph Modeling

The first law of thermodynamics states that energy is neither created nor destroyed,
but is simply transformed from one form to another [Cen89, pp. 23, 80]. Bond graph
modeling maps the flow of power through a system. By keeping track of the power in a
system, the energy is accounted for as well since energy is the time integral of power.
Power is a convenient entity in modeling, since it can be described as the multiplication
of two conjugate variables regardless of the engineering domain of its origin. A bond
graph maps the power flow through a system and simultaneously describes the
relationships between the conjugate variables in each branch of the system. In this way,
an accounting of all the energy of a system, and the conjugate variable relationships, are

used to develop the describing equations of a system.

3.2.1 Power Bonds and Conjugate Variables

Bond graphs represent the power flow through a system by using a series of
connections called power bonds. Figure 3.1 shows a half arrow power bond symbolizing

the power flow from point A to point B. Each power bond has a set of conjugate
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variables associated with it. Naturally, the multiplication of these conjugate variables is

power.

A — B

I

Figure 3.1. Power Bond with the Flow of Power from A to B

Each conjugate variable pair is made up of one flow variable and one effort variable.
Figure 3.1 represents the effort and flow variables with an e on the harpoon side of the
bond, representing the effort, and an f on the opposite side, representing the flow. The
effort/flow conjugate combination exists regardless of the engineering discipline that the
conjugate pair describes. For example, a conjugate combination found in the electrical
domain is current, as a flow variable, and voltage as the effort variable. Thermodynamics
uses entropy flow, as the flow variable, and temperature as the effort variable. The
multiplication of both sets of conjugate variables is power. By accounting for these
conjugate combinations throughout the system in question, a methodology for deriving
system equations can be established even for systems that cross multiple engineering
disciplines. Table 3.1 lists examples of conjugate variables that are commonly found in

engineering systems.
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Effort Flow
e f
Electrical Voltage Current
u[V] i[A]
Translational Motion Force Velocity
F[N] v [m/s]
Rotational Motion Torque Angular Velocity
T [N*m] w [rad/sec]
Hydraulic Pressure Volumetric Flow
p [N/m’] g [m*/sec]
Chemical Chemical Potential Molar Flow
4 [J/mole] v [mole/sec]
Thermodynamic Temperature Entropy Flow
T[K] dsS/dt [W/K]

Table 3.1. Effort and Flow Definitions in Multiple Engineering Domains

Bond graph modeling is able to model systems that cross engineering domains by
keeping track of the effort/flow conjugate combinations throughout a multi-discipline
system. Often, the conjugate combinations in a bond graph are simply expressed with the
generalized variables e and f. The modeling process is simplified considerably by

keeping the conjugate combinations in this generic form.
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3.2.2 Bond Graph Junctions

Power bonds are connected together at junctions. There are two types of junctions in
bond graph modeling. Each of the junction types are set up such that the amount of
power coming into the junction equals the amount of power leaving the junction. No
creation of power, or power storage, is allowed in a bond graph junction.

The first type of bond graph junction is referred to as a zero-junction (0-junction).
Each of the power bonds connected to a zero junction have equal effort terms. The flow
terms of the power-bonds connected to the zero junction sum to zero, i.e.,

flowi, - flowgy = 0, shown in figure 3.2.

</

N N N
1 O 3 11 1 13
Efforts are equal Flows are equal
el=e2=e3=ed =¢S5 f11=f12=113
Flows suim to zero Efforts suim to zero
fl+f2=1f3+f4 + {5 ell +tel2=el3

Figure 3.2. Bond Graph Junctions and Conjugate Variable Relationships

The second type of bond graph junction is a one-junction (1-junction). The power
bonds connected to a one junction have equal flow terms. The effort terms of the power-

bonds connected to the one junction sum to zero, i.e., efforti, - efforty, = 0.
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Figure 3.2 shows a zero and a 1-junction and the implied meanings of the effort and
flow variables. The O-junction of figure 3.2 shows five power bonds connected to the
junction, and the 1-junction of figure 3.2 shows three power bonds connected to the
junction to indicate that each junction may have an unlimited number of power bond
connections. The power bonds, on each of the junctions in figures 3.2, are arbitrarily
numbered to keep track of the conjugate variables associated with them.

It is clear from figure 3.2 that each type of junction conserves power in that power
into the junction is equal to the power out of the junction. By holding one of the
conjugate variables equal on all bonds connected to the junction, the other conjugate

variable must then sum to zero, i.e., incoming minus outgoing equals zero.

3.2.3 1-Port Elements

Bond graphs use five types of idealized /-port elements. Two of these elements are
active and the remaining three are passive. The two active [-port elements are the
idealized bond graph sources, consisting of an effort source and a flow source. Each of
these elements is shown in figure 3.3. Bond graph sinks are represented by reversing the
direction of the power arrow opposite that shown in figure 3.3.

Bond graphs use three types of idealized passive I-port elements. Two of these
elements are energy storage elements and the other is a dissipative element. Each of
these elements exchanges power from one form to another in their own unique way.

These elements are considered to be passive, since they do not contain any sources of
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power. They are called /-port elements, since the exchange of power from one form to

another occurs at a single location or port [Cel91, Kar83, Kar90].

Effort source SE _

Flow source SF 4

Figure 3.3. Ideal Sources

The three types of passive /-port elements are represented by an R, I, and C for
resistive, inductive, and capacitive, respectively. Figure 3.4 shows each of these
elements in bond graph notation. The resistive element represents electrical resistance,
mechanical friction, thermal resistance, etc., depending on the domain in which it is used.
The inductive element represents electrical inductance, mechanical mass, or rotational
mass moment of inertia depending on the domain in which it is used. The capacitive
element represents electrical capacitance, mechanical compliance, thermal capacitance,
hydraulic capacitance, etc., depending on the domain in which it is used. Each of the
passive /-port elements has a single power bond attached. The single power bond, with

the element at the end of the bond, shows the exchange of power at a single location.
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él Inductive Element
— C Capacitive Element
— R Resistive Element

Figure 3.4. Basic Bond Graph 1-Port Elements

3.2.4 Basic 2-Port Elements

Two types of basic 2-port elements exist in bond graph modeling. These elements
are used at the boundaries of different engineering domains. Similar to the passive /-port
elements the 2-port elements do not contain power sources, thus they are passive. Also,
the 2-port elements, do not store, or dissipate power. For each of the 2-port elements,

power-in equals power-out.

el :., TF g2 : el =m¥*el
f
f1 tn f£2

1 = m*f2

el gl 1 = d*fz
2 N ey N ¢

£l 1 £ fl = d*e2

Figure 3.5. Basic 2-port Elements

The 2-port elements are a transformer, represented by a 7F, and a gyrator represented

by a GY. Figure 3.5 shows each of these elements and the implied relationships among
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the conjugate variables. As seen in figure 3.5, the transformer relates the effort on one
side of the transformer to the effort on the other side, and the flow on one side to the flow
on the other. The gyrator relates the effort on one side of the gyrator to the flow on the
other. Note that the relationships shown in figure 3.5 satisfy the power-in equals power-
out criterion.

An example of the use of a transformer is an ideal mechanical gear train. An ideal
gear train does not store or dissipate power. The angular velocity of the output gear is a
multiple of the angular velocity of the input gear. The input torque is the same constant
multiplied by the output torque. This multiple is represented in figure 3.5 by the symbol
m.

An example of a gyrator is an ideal electric motor. The angular velocity of the motor
shaft is a multiple of the input voltage. The motor current is the same constant multiplied
by the shaft torque. This multiple is represented in figure 3.5 by the symbol d.

Nonlinear transformers and gyrators use the same relationships as described in figure
3.5. The difference is that the modulus is allowed to vary with time. These elements are
represented by an MTF, for a modulated transformer, and an MGY, for a modulated

gyrator.

3.2.5 Power Flow Diagrams

At this point, all basic elements of bond graph modeling have been presented. The

first step in creating a bond graph is to create a power flow diagram. The power flow
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diagram is created by connecting the bond graph elements presented above, such that the
power flow through the system is mapped. This is best presented via an example. Figure
3.6 shows a circuit diagram and the corresponding power flow diagram. The power flow
diagram represents the power flow through the circuit. The bonds shown in the power

flow diagram of figure 3.6 have been arbitrarily numbered to facilitate discussion.

Rgsﬂis_t.o.ﬂ Rre?islor\z Rri Rr2
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Ground
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Figure 3.6. Circuit Example

The sinusoidal input voltage of figure 3.6 is represented as an effort source in the
power flow diagram. The l-junctions represent locations in the circuit with common
current flow. The O-junctions of the power flow diagram represent the nodes of the
circuit since, for each node, the voltages (efforts) are the same across each path of the
node. Series circuit elements are connected at 1-junctions since the current flowing

through the elements is the same for each element.
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As seen in figure 3.6 the power flow diagram preserves the topological structure of
the circuit diagram. The power flow diagram is an intuitive representation of the power
flow through the circuit.

The power flow diagram of figure 3.6 can be simplified, however. The voltage

represented by the 0-junction that connects bonds 8, 10, and 11 is the ground voltage.

Rri Rz

d I

2
CSE 12—
SineVoltagel I/ ;
4

1% C.c1

Figure 3.7. Simplified Circuit Power flow Diagram

Since this represents zero volts in the circuit, this O-junction forces bonds 8, 10, and 11 to
have a value of zero for each of their respective effort variables. Thus, the power-bonds
8, 10, and 11 have zero power in them, since power is effort * flow. Bonds with zero

power can be erased from the diagram. The simplified diagram is shown in figure 3.7.
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Figure 3.8. Completed Circuit Power flow Diagram

The power flow diagram of figure 3.7 can be simplified yet further. This
simplification comes from noting the 1-junction connecting bonds 4 and 9. The flow
variables of bonds 4 and 9 are equal by definition of a 1- junction. Also, a 1-junction
cannot store or create power so the effort on bond 4 must equal the effort on bond 9.
Thus, this 1-junction can be removed and replaced with a single bond. This is true for all
junctions that have only two bonds connected [Cel91, BroOl, Kar90]. With this

simplification, the power flow diagram is complete and is shown in figure 3.8.

3.2.6 Causality

The power flow diagrams of figures 3.6 through 3.8 are considered A4-causal bond
graphs. They lack one essential bond graph assignment. That is the assignment of bond
graph causality. Causality shows the direction of the effort and flow information for each
bond of the power flow diagram [Kar83]. Upon assigning the direction of the effort/flow

information throughout the power flow diagram, the necessary causal relationships
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between all of the variables are defined, thus the term causality. Figure 3.9 shows two
power-bonds with bond graph causal marks, and the implied direction of the effort/flow
information. Two power-bonds are shown to emphasize the fact that the causal mark is

independent of the power flow direction.

€ > \.
€ I
> Causal Marks
€ f

Figure 3.9. Causal Marks

As shown in figure 3.9 the effort information always moves opposite the flow
information. The effort information moves toward the causal mark and the flow
information moves away from the causal mark [Kar83 pp. 85-89].

Obviously there exists a necessary causal assignment for the bond graph sources. An
effort source defines the effort on its connecting power-bond and a flow source defines
the flow on its connecting power bond. The necessary causal assignments for bond graph
sources are shown in figure 3.10

The SE element of figure 3.10 shows that the effort information moves from left to

right, as defined by the causal mark. The half arrow shows that the SE element is
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modeled as a source and not a sink. Similarly, the SF’ element of figure 3.10 shows that
the flow information moves from left to right as defined by the causal mark, and the half

arrow depicts this element as a source as well.

Effort source SE

Flow source SF IA

Figure 3.10. Necessary Causality

Figure 3.11 shows the possible combinations for the causal assignments for the 2-port
elements. Also shown in figure 3.11 are the implied relationships between the conjugate
variables determined by each set of causal marks. The relationships between the
conjugate variables are defined by the causal mark, since the signal flow information
must remain consistent with the definition of the causal mark shown in figure 3.9. Note;
in figure 3.11, the conjugate variable equations for each case maintain the required
power-in equals power-out relationship.

The remaining 1-port elements have two possible combinations for causal mark
assignments. Each possibility implies specific relationships between the conjugate
variables. For the / and C elements there exists either an integral relationship or a
differential relationship between the conjugate variables. Figure 3.12 shows the integral

relationship with the proper causal mark for the 7 and C elements.
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Figure 3.11. Possible Causal Assignments for 2-Port Elements

This type of causal mark is often referred to as integral causality. The relationship
between the conjugate variables is shown to the right of the bond graph elements in block
diagram form. The block diagram helps clarify the meaning of the causal mark and the

signal flow information.
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Figure 3.12. Integral Causal Assignments for 1-Port Elements
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As seen in figure 3.12 the integrators of a system are implied by the integral causal
marks of the system. Thus, for each integral causal mark the order of the system is
incremented by one [BroO1, Cel91, Kar83, Kar90].

Figure 3.13 shows the differential causal marks for the 1-port / and C elements. The
differential causal mark will occur in a bond graph only when a structural singularity is
present in the system [Cel91 pp. 264-265]. See Section 4.2.3 for further discussion on

structural singularities.
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Figure 3.13. Differential Causal Assignments for 1-Port Elements

The only other 1-port element that has not yet been discussed in terms of causality is
the R element. The causal stroke on the resistive element implies neither an integral nor a
differential relationship between the conjugate variables. The causal stroke implies a
linear relationship between the conjugate variables. In the electrical domain, this linear
relationship is simply Ohm’s law written in terms of voltage or current depending on the

position of the causal stroke. This is easily seen in figure 3.14.
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Figure 3.14. Possible Causal Assignments for a Resistive Element

It was shown in figure 3.2 that all bonds connected to a 0O-junction have the same
effort conjugate variable and all bonds connected to a 1-junction have the same flow
conjugate variable. The causal assignments on the bonds of a 0-junction, and 1-junction,
determine the source of the effort information, and flow information, respectively. This
concept is clarified in figure 3.15. Figure 3.15 is the same as figure 3.2 with causality
added to the bonds. Also, the effort equality statement for the O-junction and the flow
equality statement for the 1-junction have been rearranged slightly to emphasize which
bond is responsible for the effort/flow information. Obviously, only one bond can be
responsible for the source of effort/flow information. Thus, for a 0-junction only one
bond can have a causal mark next to the 0. For a 1-junction only one bond can have a
causal mark away from the 1. The bond that is the odd man out is the bond that defines
the necessary information for the junction. For the purposes of figure 3.15 the defining
bond on each junction has been picked arbitrarily. Typically in a bond graph the causal

assignments around junctions will be obvious.
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Figure 3.15. Causal Assignments on Bond Graph Junctions

The 0-junction in figure 3.15 shows that the effort terms are all equal, due to the fact
that it is a O-junction, and that they are all defined by bond 2. The effort signal
information comes from bond 2 and is then spread to the rest of the bond graph by the
other bonds, as is shown by the full arrows next to the bonds. The full arrows have been
included in figure 3.15 for illustration only. Similarly, the 1-junction shows that all of the
flows are equal, due to the fact that it is a 1-junction, and that all of the flows are defined
by bond 12. The flow information comes from bond 12 and is then communicated to the
rest of the bond graph via the remaining bonds on the 1-junction, as shown again by the

full arrows in figure 3.15.
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Bond Graph Causal Mark Assignments

Figure 3.8 shows a completed power flow diagram for the example circuit of figure

3.6. In order to complete the bond graph this diagram must have causality assignments.

Causal assignments are made using the following steps;

1.

Assign required causal marks to all sources. There is no choice on assigning a
causal mark on a source, thus the causal marks are predetermined.

If step one provides the defining bond on a junction, then the causal marks for the
bonds of the junction are also defined. Thus far, no choices have been made.
Typically, step one will not determine the causal marks for entire junctions
although this is not always the case.

If either step one or step two provides causal marks for any 2-port elements then
the connecting causal marks are also defined. Steps two and three should be
repeated until all bonds are assigned, where there is no choice on their
assignments.

Choose an unassigned C or [ element. Assign an integral causal mark. Repeat
steps two and three. For the C and [ elements, integral causality is preferred.
Differential causality will only be used when steps two or three force the 1-port
element to have differential causality.

Repeat step four for all C and / elements.

Potentially there may be unassigned R elements. If this is the case, choose an R
element and assign an arbitrary causal mark. Repeat steps two and three as

before.
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7. Repeat step 6 until all bonds have a causal assignment. Every time there exists an

unassigned R element whose causality is determined by an arbitrary assignment,
there exists one algebraic loop in the resistor network. See Section 4.2.2 for a

discussion on algebraic loops.

Figure 3.16 shows the complete bond graph for the circuit example of figure 3.6. The

causal assignments were made in the following order;

1.

Bond 1 was assigned, since this is the only source in the bond graph. This
complies with step one above. Steps two and three are then skipped since no
other causal assignments can be made at this point.

Bond 4 was assigned an integral causal mark for the C element. Upon assigning
bond 4, bonds 3 and 5 are also assigned to comply with the causality rules for a 0-
junction. In turn, the assignments for bonds 1 and 3 force the causal mark of bond
2 to follow the causal rules of a 1-junction. This complies with steps four and two
above.

Next, bond 7 is assigned an integral causal mark which repeats step four for the /
element. The last causal mark, on bond 6, is then forced to comply with the

causal mark rules of a 1-junction.

Simply by looking at the bond graph of figure 3.16, it is seen that this system is a 2"

order system and no algebraic loops are present in the equations. The 2™ order system

information is found by counting the number of integral causal 1-port elements. The

algebraic loop information comes from the fact that there were no resistive elements

without a causal mark upon finishing the integral causal assignments. Although this
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information is obvious from the simple circuit diagram of figure 3.6, this information
may not be so obvious for larger systems, especially ones that cross multiple engineering

domains.
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Figure 3.16. Completed Circuit Bond Graph

3.2.8 Bond Graph Equation Formulation

Bond graph equation formulation is a straightforward methodology that utilizes the
signal flow information of the causal marks and the addition of efforts/flows on 1-
junctions/0-junctions. Bond graphs use two types of generic state variables to express the
dynamic equations. The first type is represented with the variable p and the second type
is represented by a g. Table 3.2 shows each of these variables and their respective
interpretations within various engineering domains [BroO1, Cel91, Kar83]. The selection
of these state variables, as described by table 3.2, is done for a very specific purpose.

The time derivative of the state variable p is an effort, in all domains, and the time
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derivative of the state variable ¢ is a flow. Naturally there is no chemical or

thermodynamic momentum [Cel91]. Thus, these entries are left blank.

p q
Translational Momentum Displacement
[kg*m/s] [m]
Rotational Angular Momentum Angular Displacement
[kg*m2/s] [rad]
Electrical Flux Linkage Charge
[Wb=H*A] [C]
Hydraulic Integral of Pressure Volume
[Pa*s] [m3]
Chemical o Number of moles
[n]
Thermodynamic - Entropy
[S=J/K]

Table 3.2. Generic State Variable Definitions in Different Domains

The following steps are taken to create the state equations:

1. Selectan I or C 1-port element with an integral causal mark.

2. Write the appropriate state equation beginning, p =, or ¢ = for an / or C element,

respectively.
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3. Use the conjugate variables as intermediate variables in developing the state
equations. The equation is not complete if an intermediate e or f remains in the
equation.

4. Use the signal flow of causality and summation properties in the appropriate
locations.

These steps are best shown by means of an example. The circuit bond graph of figure

3.16 has one p equation and one ¢ equation.

4y =13~ fs (3.1)
Starting with the C element of bond 4, equation 3.1 sums the flows around the 0-junction.

The signal flow information of bond 3 leads to

fi=fi= (3.2)
Subscripts denote bond numbers where non-subscript numbers denote circuit element
values, i.e., L1 is the inductance value found in the circuit diagram, which is the same as
the bond graph value /7.

In order to solve for e, in equation 3.2 the efforts are summed around the 1-junction

leading to

e,=e —e, =SE, —e, = SE, —% (3.3)

Equation 3.3 results in an expression that involves no intermediate variables. However

equation 3.1 still involves the intermediate variable f; .
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R
fs—f7—L1 (3.4)

Substituting the results of equation 3.4, 3.3 into 3.2, and these results into 3.1 creates

: 1 q p
= |SE 24|27 3.5
T Rl[ ! CJ Ll (3-)

Repeating the equation generation steps for the / element of bond 7 results in

. q q p
p7:es_e(’:e4_R2*f6:F41_R2*f7:F41_R2*L_; (3.6)

Equation 3.6 was written in one continuous statement as shown because, after some
practice, it is possible to write bond graph equations almost by inspection of the bond
graph with a thought process similar to the one shown by equation 3.6. Rather than
writing many small equations and substituting each time, it is usually possible to write
the equation out as is shown by equation 3.6. Equation 3.6 written in a reduced form is

shown by

. 9.4 Z
=14 _Rpoxf7 3.7
Pr="c1 Ll (3.7)

The two state equations for the circuit diagram are then given by equations 3.5 and 3.7.
Obviously these two equations are not in the common form for electrical circuits where
voltage and current are state variables. Converting bond graph equations to common
equations for each engineering domain is discussed in Section 3.2.9. The two equations
form two, first-order, coupled, differential equations. For a linear system this set is easily
converted into state-space form. This process is the case for any bond graph. The

equations naturally form n coupled, first-order, differential equations.
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3.2.9 Conversion of Bond Graph Variables to Common State Variables

The equations generated by bond graphs result in a set of non-standard state variable
formulations that may be unintuitive to a user that is accustomed to common state
variables. This situation was readily shown by the circuit example with equations 3.5 and
3.7. Obviously, these state variables can be converted into common state variables by
using the proper transformation matrix.

Bond graph state variables can be converted into common state variables by using a
diagonal transformation matrix. For every p in the electrical domain, the transformation
matrix will have a 1/ on the corresponding diagonal. For every ¢ in the electrical
domain, the transformation matrix will have a //C on the corresponding diagonal.
Similarly, in the mechanical domain a p state variable is transformed to a common
mechanical state variable with a /// on the transformation matrix diagonal. The
mechanical domain ¢, however, already defines a displacement and therefore has no need
of transformation. Thus, a mechanical domain ¢ will simply have a / on the
corresponding transformation matrix diagonal.

Equation 3.8 combines equations 3.5 and 3.7 in state-space form. Again, subscripts

denote bond numbers and non-subscript numbers denote circuit diagram values.

e a2
= CLERL LU oIS, (3.8)
LR 0

)2 - D7
C1 Ll
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These state variables are strictly electrical, thus the corresponding transformation matrix

is given by

. Ulla ®
T="0 = (3.9)

0 — —

I Ll

The resulting transformed state equations are shown as

Q| |__ 1 _ e 1

Cli=) CI*RL - ClL) CLI Ry ISE 3.10
b, 1 R|p ClORl i (3.10)
L1 Ll 1] L1

From the definitions of p and ¢ for the electrical domain in table 3.2, the state variables in
equation 3.10 can be rewritten as the voltage across the capacitor and the current through

the inductor, respectively. This variable change is shown with

1 1
. _ = 1
\Y Vv, -
e | = CLERL CL) Tee | | \S5p T (Sinvoltage,  (3.11)
Ling L _R_2 Ling 0
Ll Ll

Equation 3.11 gives the same state-space representation that is given when classical
methods are used to derive the circuit equations.

The example shown has been a simple second-order electrical circuit. This simple
system was chosen to illustrate the basic technique of creating a bond graph and
obtaining the dynamic equations. Obviously, it is not necessary to perform such complex
manipulations to obtain the state-space representation for such a simple system when
classical methods suffice. However, for a complex system that crosses multiple

engineering domains, the bond graph technique gives a straight forward approach to
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obtaining dynamic equations, and is therefore very useful. The state space equations
obtained through the bond graph method suffice for all modeling purposes as shown in
equation 3.8 with no need to transform them into any other state variable representation.
However, the transformation shown in this section may be necessary when attempting to
communicate the equations of motion from a bond graph to those unfamiliar with this

modeling technique.

3.3 Bond Graph Construction from the Lagrangian

This section presents a method for developing a bond graph representation of a
system from the Lagrangian of the system. Often the Lagrangian of a system is readily
available from texts or other sources. Although the system equations can be derived
directly from the Lagrangian, there is still benefit in viewing the system in bond graph
representation. Some of these advantages are as follows:

1. Viewing the power flow through the system gives insight into the inter-
relationships of the state variables. This insight may point out the possibility of
simplifying assumptions. The bond graph often makes it clear what the
assumptions need to be and their effects on the overall system.

2. Once a bond graph is obtained, whether from the Lagrangian or by conventional
methods, it is a straight forward operation to connect the bond graph to larger

systems.
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3. By repeating the second advantage allows one to use bond graphs in an object-

oriented fashion.

Conventionally bond graphs are designed to help the user obtain the system equations.
However, for the reasons listed above, it is sometimes desirable to find the bond graph
representation of a system itself.

Often systems that have complex mechanical geometries are difficult to model. The
Lagrangian approach is often a preferred method of developing the system equations,
since potential and kinetic energies are easier to account for than forces and moments for
such systems. Since the Lagrangian is the sum of energies in the system, it is an integral
away from the power flow in the system. This fact can be exploited to create a bond
graph model of the system.

Although the Lagrangian method is a common method of developing the dynamic
equations of a system, it turns out that bond graph theory is more closely related to the
Hamiltonian of a system than the Lagrangian. The distinction between these two
methods is described in the following section. Thus, during the bond graph development
from the Lagrangian elements of the Hamiltonian formulation are used extensively. The
starting point of the bond graph derivation is the Lagrangian, and not the Hamiltonian, for
reasons that become apparent in the mathematical formalism of the Hamiltonian. These

formalisms are explained below.
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3.3.1 Lagrangian to Hamiltonian Transformation

The Lagrangian is defined as the sum of the kinetic energy of the system minus the
sum of the potential energy of the system. For a conservative system, the Lagrangian is
defined by [Mei98 pp. 68, Lagl788]

L=T-V=0 (3.12)
Where T is the sum of all kinetic energies of the system and V' is the sum of all potential
energies of the system. The kinetic and potential energies of the system are written in

terms of a set of generalized coordinates g,. To obtain the dynamic equations of a

system, given the Lagrangian, the Lagrange equation is applied separately for each of the

generalized coordinates.

R ) (3.13)

Thus, it is noted that the Lagrangian is a function of the generalized coordinates ¢, the
generalized velocity ¢,, and time, i.e., £(g,,4,,t). Also, equation 3.13 shows that for

each generalized coordinate, the Lagrange method provides one, second-order equation.

The Hamiltonian is related to the Lagrangian via a transformation known as a
Legendre transformation [Mei98 pp. 93, 342-343]. This transformation is derived in
equations 3.14 through 3.21.

A function of two variables, f(x,y), has a derivative, df, given by

:gdergdy (3.14)

d
4 ox oy

Equation 3.14 can be written as
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df =udx +vdy (3.15)
The Legendre transformation changes the variables from dx and dy to du and dv with the
following transformation:

g=f—ux (3.16)
The derivative of equation 3.14, dg, is shown as

dg =df —udx — xdu (3.17)
Substituting equation 3.15 into equation 3.17 yields

dg = udx +vdy —udx — xdu (3.18)
Simplifying

dg =vdy —xdu (3.19)

Equation 3.19 has the same form as equation 3.15, which, by definition of 3.15, leads to

X = _6_g (3.20)
ou
and
V= G_g (3.21)
oy

By applying the Legendre transformation to the Lagrangian of a system, the Hamiltonian
is obtained. The Hamiltonian is defined as a function of the generalized coordinates, the
generalized momentum, and time, ie., #H (q, p,t), without loss of generality the
subscripts have been dropped. The Legendre transformation of the Lagrangian is shown
by equations 3.22 through 3.32. The first step, as in the derivation of the Legendre

transformation is to find dr .
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or . oL .. or
drlg.at)=Ldg+ L as+ L g 3.22
(¢.4.t) 5y 0 5 0, (3.22)

Applying the Legendre transformation to the Lagrangian, in terms of the Hamiltonian,
yields

#(q.p.t)= pg - L(q.g.t) (3.23)
Applying the chain rule to equation 3.23, in order to find d#", yields
di = pdq +qdp —dr (3.24)

Substituting equation 3.22 into equation 3.24 gives

d?-[zpdq'+q'dp—a—ﬁdq—6—1_:dq'—a—Ldt (3.25)
oq oq ot
The generalized momentum is defined as
p=2L (3.26)
oq

Substituting equation 3.26 into equation 3.25 results in

dH = qdp —Z—qu —a—Ldt (3.27)
q ot

Also, substituting the definition of the generalized momentum, equation 3.26, into the

Lagrange formulation of equation 3.13 yields

“p-=0 (3.28)

Solving equation 3.28 for p gives
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p= oL (3.29)
oq
Substituting equation 3.29 into 3.27 yields the final form of d# .
dH = qdp — pdq —Z—fdt (3.30)

By noting the final steps of the Legendre transformation, equation 3.30 results in

equations 3.31 through 3.33.

g = (228 (3.31)
op
p= _9H (3.32)
oq
o _ oL (3.33)
ot ot

Equation 3.33 is a mathematical formalism and is of little consequence. Equations 3.31
and 3.32, however, form a meaningful result. For each generalized coordinate the
Lagrange equation results in a single, second-order equation. The Hamiltonian method
provides two, first-order, coupled equations for each generalized coordinate.
Furthermore, the form of the equations given by the Hamiltonian formulation is similar to
the form of equations that are derived by the bond graph method. The reason that the
form of the Hamiltonian equations is not identical to the bond graph form is simply a
question of the definition of the generalized momentum. The Hamiltonian formulation
lumps mass terms together where the bond graph formulation does not. Thus, the bond
graph method of equation development and the Hamiltonian are very closely related but

do not form an exact one to one mapping.
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An underlying assumption in the derivation of the Hamiltonian, given above, is that
the system be conservative. Methods have been developed to lift this restriction for the
Hamiltonian formulation but they are somewhat tedious [Tve98]. The Lagrange method
for developing the equations of motion is not restricted to conservative systems only, but
the non-conservative elements also add tedium to the process. The bond graph approach
handles non-conservative systems quite readily. Furthermore, the bond graph approach
allows the user to easily change the thermodynamic boundary of the system and track the
energies of the non-conservative elements (dissipative elements) through to their
transformation into heat and entropy, if so desired. The approach given here focuses on
the creation of the bond graph from the Lagrangian. Also, there is ongoing research into
the reverse approach, i.e., obtaining the Lagrangian for a given bond graph [MukO05,
Muk97, Kar77]. This approach creates the Lagrangian, taking into account the non-

conservative and external forces acting on the system.

3.3.2 Lagrangian to Bond Graph Development

The method for creating the bond graph from the Lagrangian follows these general
steps:
1. Assume that the system is conservative. Drop the non-conservative elements
from the Lagrangian if the system is non-conservative. The non-conservative
elements will be added back in after the general structure of the bond graph has

been created.
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Note the flow terms in the Lagrangian. The kinetic energy terms in the
Lagrangian will have the form % I * £ where I is an inertia term and fis a flow
term.

Assign bond graph 1-junctions for each distinct flow term in the Lagrangian
found in step 2.

Note the generalized momentum terms. The generalized momentum terms are

noted by taking the partial of the Lagrangian with respect to the time derivative of

) ) ) oL ) } )
the generalized coordinate, ie., p, =——, where p; is the i, generalized

momentum and ¢; is the iy, generalized coordinate. Note that this is the first step
in developing the Hamiltonian as well.

For each generalized momentum equation, found in step 4, solve for ¢,. This step

determines the form of the /-elements and how they connect to each of their
corresponding 1-junctions. Often a generalized momentum will include a
summation of many inertia elements. One of these inertial elements will have
integral causality while the rest have derivative causality. Inertia elements that
are scaled by some factor should be connected through a transformer, with the
appropriate scale factor, to derivative causal /-elements.

Naturally, the equations derived from the Lagrangian show the balance of efforts
around each 1-junction. Thus, the efforts on the I-junctions are given by the

equations of motion derived from the Lagrangian. Namely, i@_ﬁ_&_ﬁz 0

dt dg, 0g,

gives the effort balance around the iy 1-junction.
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7. Develop the Hamiltonian for the conservative system by applying equation 3.23.
Obviously this step may be impractical. For many systems the bond graph
structure is apparent from steps 1 through 6. If the structure is not apparent, the
Hamiltonian will add valuable insight due to the Hamiltonian formulation of n
first-order equations.

8. Add non-conservative elements, where needed, on the bond graph structure.

9. Add external forces where needed as bond graph sources.

10. Use bond graph methods to simplify, if desired.

After completing steps 1-7, the structure of the bond graph will be apparent. The

overall bond graph structure will have the general form shown in figure 3.17.

0 «— MTF s—1 «— MTF s—1—>MTFF—>1

I
bl Y

Figure 3.17. General Bond Graph Structure Developed from the Lagrangian

The process of creating a bond graph from the system Lagrangian is best shown by

means of an example.
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3.3.3 Lagrangian to Bond Graph Development: Pendulum Example, One Degree
of Freedom

Figure 3.18 shows a pendulum with a single degree of freedom with mass m and mass
moment of inertia . The length L represents the distance from the pivot point to the

center of gravity.

\ o )
\:. Rigid Bar with Mass m and
Mass moment of Inertial p

Figure 3.18. Single Degree of Freedom Pendulum

The Lagrangian is given by

L= %m(L 9)2 + % u60* —mg(L—Lcos(6))=0 (3.34)

By noting the single degree of freedom 6, and by inspection of the Lagrangian, it is

evident that the bond graph must have a single 1-junction to represent the flow term 6.
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The partial of the Lagrangian with respect to @ gives the generalized momentum shown
by

» :%:mygﬂ,g‘ (3.35)

Solving equation 3.35 for 6 yields

: p
0=—7— 3.36
mL® + u ( )

Equation 3.36 shows that the 1-junction has two /-elements attached representing the
mass moment of inertia, x, and mass m. The L’ term must then be modeled as a
transformer.

The Hamiltonian is found by applying the Legendre transformation of equation 3.23:
. 1 VI B
H=p 0—L=Em(L9) +2 10 + mgL+ mgLeos(0) (3.37)

Equation 3.37 can be written as

1 p2
H=——" "+ mgLl +mgLcos(0 3.38
2l + 10 g gL cos(0) (3.38)

Applying equations 3.31 and 3.32 provides the complete Hamiltonian equations. These
are shown in equations 3.39 and 3.40, respectively. Note that equation 3.39 is a repeat of
equation 3.36, as it should be, since the equation for € should be the same regardless of

the method used to obtain it.

_OH _ P
op ml’+u

(3.39)
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p= —aa—j;[ = mgLsin(0) (3.40)

Equation 3.39 shows the /-elements and how they connect to the I-junction.
Equation 3.40 shows that there is another bond on the 1-junction with an effort term
equal to the left hand side of equation 3.40. Also, note that eliminating the variable p
gives the same second-order equation that would have been found had the Lagrange

method been used, i.e.,

(mL? + )6 = mgLsin(0) (3.41)
The 1-junction of figure 3.19 obviously must have three bonds attached to it, one for each
of the terms in equation 3.41. These three effort terms sum around the 1-junction of

figure 3.19. Also, in figure 3.18, the flow of the 1-junction is explicitly stated for

clarification.

Figure 3.19. Pendulum 1-Junction

The power arrows shown in figure 3.19 reflect the signs of equation 3.41.
It is clear at this point that the remaining elements of the pendulum bond graph
consist of two /-elements, two transformers and a source of effort. The complete bond

graph is shown in figure 3.20. Again, the bonds have been arbitrarily numbered. The
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bond graph shows a single degree of freedom on the integral-causal bond 3, and a
differential causal bond 5. For this bond graph, the user might have chosen bond 5 to be
integral-causal. This choice makes bond 3 differential-causal, and the transformer

constant between bonds 4 and 5 would then be inverted to 1/L.

Figure 3.20. Complete Bond Graph of Pendulum

The effort source of figure 3.20 has been defined with a —mg. Often in bond graph
representation sinks are modeled by assigning a positive term to the source element but
showing the power-arrow towards the source.

The MTF in figure 3.20 represents a modulated transformer. This 2-port element is
the same as the transformer element shown in Section 3.2.4, however, the transformer
modulus is allowed to vary with time. A full arrow in bond graph terminology represents
a pure signal. There is no power flow on the full arrows. Common block diagram
algebra is used to describe the mathematics of the signal arrows. As seen in figure 3.20
the modulated transformer relates e, to e; by e, = e;*L*sin(6). The signal arrows begin
at the 1-junction. Since all bonds connected to the 1-junction have the same flow, the

flow value is the input to the signal arrow.
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The equations for the bond graph of figure 3.20 are developed in equation 3.42-3.44.
p, = SE, *Lsin(0)— L *e, (3.42)

Equation 3.43 occurs in this form due to the differential causal assignment on bond 5.

65=15*f5=15L*f4=15L*f3=]5L*% (3.43)

3

Plugging equation 3.43 into 3.42 and solving for p, yields the final bond graph equation.

: L :
Py 1+ . = SE, * Lsin(0) (3.44)

3
Equation 3.44 and 3.41 are shown to be equivalent by noting that p, = 16, Is=m,I;=p,
and SE; = -mg.

The single degree of freedom pendulum shows the method for creating the bond
graph from the Lagrangian of a system but the example was simple enough that the bond
graph could have been obtained by inspection of the free-body diagram. The following
section develops the bond graph of a gyroscope using the approach shown here. The
gyroscope model is a complicated system. Developing a bond graph for a gyroscope

model without using a Lagrangian approach would be a much more difficult task.

3.3.4 Lagrangian to Bond Graph Development: Gyroscope Example

The bond graph formulation of a gyroscope demonstrates the usefulness of the

Lagrangian/Hamiltonian approach. Creating a bond graph of a gyroscope without the aid
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of a Lagrangian/Hamiltonian approach would be a difficult task due to the complexity of

the system.

3.3.4.1 Gyroscope Lagrange Equations
Figure 3.21 shows a diagram of the gyroscope to be modeled. This model has two

gimbals the mass of which will not be neglected in the development of the model.

Figure 3.21. Gyroscope Diagram

The distance /, shown in figure 3.21, however, is set to zero since this is the most
common implementation of a gyroscope model. This minor simplification causes the
potential energy terms in the Lagrangian to disappear.

The Lagrangian of the gyroscope is given by equation 3.45, whered, ¢, and y, the

three Euler angles, are the generalized coordinates of the system [Mei98 pp. 386-389].
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L=T= l[(A+A’)672 +(4+B')p*sin” 6 +
2 (3.45)
+ C(écos&’ + t/))z +C'¢* cos” 0 + C";/fz]
The moment of inertia of the rotor about the symmetry axis ( is denoted as C, and 4 is
the moment of inertia of the rotor about any transverse axis through the point O. The
moments of inertia of the inner gimbal about the axes &, 1, and {, are denoted by 4', B’,
and C', respectively. The moment of inertia of the outer gimbal about the inertial axis Z
is denoted by C". The corresponding Lagrange equations are given by equations 3.46
through 3.48.
L L
AN
dt\o¢ ) O¢

= (4+ B')psin® 6 + 2(4 + B')p@sin Ocos 6 + (3.46)
+ C(éfcos&’ — $Osin O + y?)cosﬁ +
- C(¢COSH + t/))é’siné’ +C'¢cos> @ —2C pOsinOcos O + C" .

d|( oL oL . ..
” =E(8—WJ—£=C(¢ c050—¢<9$1n49+l//) (3.47)
AR
©ar\o6) o0 (3.48)

= (A+A’)[9'+C(¢5cos¢9+w)¢3sinl9—(A+B'—C')¢32 sinfcosé
The generalized torques are given by Ny N,, and No. The Lagrangian equations are
three, second-order, coupled differential equations resulting in a sixth-order system. The
state variables of this system are &, 9, @, ¢5, v, and . However, the state variables
¢, and w do not show up in the above equations. Thus, the system can be described

entirely by four state equations. The four state equations consist of equations 3.46
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through 3.48 and the simple equation 6 = %(9) The resulting system is a fourth-order,

nonlinear system.

3.3.4.2 Gyroscope Bond Graph
This section builds the bond graph from the Lagrangian of the gyroscope [McBO1].
The step by step bond graph creation process is as follows:
1. Step one of the bond graph creation process is not needed since this system is
already a conservative system.
2. In order to note the flow terms of the Lagrangian for this conservative system it is
necessary to rewrite the Lagrangian. The Lagrangian can be rewritten such that
each flow term has the form 7 I * f°. Equation 3.45 becomes equation 3.49.

Equation 3.49 shows that the bond graph will have three 1-junctions with integral
causality. The three 1-junctions represent the flow terms @, ¢, and v .

L= %[(A + B)sin?0+(C+C')cos’ 0+ C"] 5 +

(3.49)
1 N\ A2 1 .2 7.
+§(A+A)9 +ECV/ + Cpy cosl

3. The 1-junction assignment is shown in figure 3.22.
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1
0
1 1
' b

Figure 3.22. Gyroscope Integral 1-Junctions

4. The i™ generalized momentum is found by )2 =§—_£. The generalized

i

momentum equations are

P, = 2L [(4+ B')sin® 0+ (C+ C')cos® 0+ C"}j + Cyrcos O (3.50)
oL -
=Z (4t A 3.51
py=—s=(d+ 4P (3.51)
p, =8—L,=c¢/+ Cecosd (3.52)
oy

5. Solving equations 3.50 through 3.52 for the respective ¢, terms yields equations

3.53 through 3.55. Equation 3.53 has a sum of inertia elements in the
denominator. This sum contains sine and cosine terms that are connected by
transformers to the ¢ l-junction. Equation 3.53, and 3.55 both have sums in the

numerators. This indicates that these two flows are connected via a O-junction,
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since flows sum around a O-junction. Also, the sum of C and C’ cannot be on the
same /-element as are 4 and B’ due to the zero junction flow addition. Equation
3.54 implies that the 6 1-junction is a standard junction with a single -element,

Figure 3.23 reflects these updates to the bond graph.

b= p, —Cycosf (3.53)
[(4 + B')sin> 6+ (C + C")cos> 6+ C"| '
] Py
0= 3.54
(4+4) (.34
~Cgcosd
v = w (3.55)
A+A’
i
)
¢ cos(8) ¢ ¢ sin(8)
1 — § «—— 11— MTF ~—1—>MTF—>1
¥ L [ cos(@) l singo)
I 1 1 I
c c A+B

Figure 3.23. Gyroscope 1-Junctions: |-Element Connections

6. Taking the time derivative of equations 3.50 through 3.52 yields equations 3.56

through 3.58. This is a step in developing the Lagrange equations for the
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gyroscope with the Lagrangian in the form of equation 3.49. This step also shows

Pl. equations as a function of ¢, and ¢ .

Py :%Z—;: (4+B')sin® 0 +(C+C)cos> 0+ C"Jf +
+2(4+ B')g6sin O cos @ — 2(C + C')pAsin O cos 6 + (3.56)

+Cycos@ — Cyfsin 0

d oL A
Po dt 00 ( )9 ( )
P, :ia—L_:Ct}/’+C¢'cosH—Cq§6}sin9 (3.58)
dt oy

The last step in completing the Lagrange equations for the Lagrangian of 3.49 is shown in
equations 3.59 through 3.61.

oL _

=0 3.59
o0 (3.59)
2—§= (4+ B')p? sin@cosd —(C + C')p* sin@cos @ — Cyrpsind  (3.60)
oL _, (3.61)
oy

Two of the three complete Lagrange equations are obtained by setting equations 3.56,
and 3.58 equal to zero. The third complete Lagrange equation is obtained by subtracting

equation 3.57 from equation 3.60 to obtain
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(A4+ 40 —(4+ B')p* sin@cos@ +(C+ C')p*> sin@cos@ + Cyrpsind =0  (3.62)

Figure 3.23 is beginning to show the general bond graph form shown in figure 3.17. The
modulated gyrator connections can be seen by noting the effort terms of equation 3.62.
Recall that a gyrator provides an effort term by multiplying a flow term with the gyrator
modulus. Three of the effort terms of equation 3.62 are rewritten in equations 3.63 and

3.65 to reflect a flow term multiplied by a gyrator modulus.

e=|(4+ B)sinOlpcos = Mf (3.63)
e=|(C+C')pcosOpsin6 = Mmf (3.64)
e=[Cypsing=Mf (3.65)

Equations 3.64 and 3.65 can be combined to group the C terms together. This is desired
since the C inertia appears only once in the bond graph of figure 3.23.
e=|Cy + Chcosblpsing = My (3.66)

e=|C'dcosblpsing = Mf (3.67)

The flow terms of equations 3.63, 3.66 and 3.67 are already established in figure 3.23.
The modulus terms are momentum terms. These terms are also established in figure 3.23

as the momentum terms of the derivative causal /-elements, and the integral causal /-
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element with inertia C. Thus, the bond graph of figure 3.23 becomes the bond graph of

figure 3.24. Note that the 0-junction summation is also reflected in equation 3.66.

A+B:1 \ ,
*MTF—>1
singey ¢S

/I=C’

1 — 0 s——1~—MTF ~—
W l $ cos(®) cos(0)
I
C
L

L f—— -

Figure 3.24. Gyroscope MGY Connections

The gyroscope bond graph of figure 3.24 is complete with the exception of the effort
sources. The signal arrows indicate that the MGY elements use momentum signals as
their moduli. The elegance of the bond graph construction method presented here is that
much of the complicated mathematics of the Lagrange equations is provided within a
relatively simple structure. The differential causal elements account for much of the
Lagrange equation complexity. The cross-coupled flow terms of equations 3.56 and 3.62
are accounted for through the differential causal elements connected though modulated

gyrators and transformers. The transformer modulations themselves are natural elements
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of the bond graph, i.e., they are not created by over-complicated gyrator and transformer
moduli.

Input torque sources are added to the Lagrange equations 3.56, 3.58 and 3.62 to
obtain equations 3.68 through 3.70. These equations are identical to those obtained in
equations 3.46 through 3.48, with the sources in bond graph notation.

SE, = [(A + B')sin? @+ (C + C')cos” 0 + C"]& +

. . . (3.68)
+2(4+ B')g6sin O cos @ — 2(C + C')pAsin @ cos @ + Ci cos @ — Cyyf'sin &

SE, =Cy+Cgcost—Cgp0sin 0 (3.69)

SE, =(A4+ A')0 — (4 + B')p* sin@cos@ +(C + C')p* sin@cos@ + Cyrpsin®  (3.70)

ATA’
I

SE; 17 71[1:8 0
15/ \16 ,

MGY MGY MGY <

Ly

. A+B‘=Ik/ |

SE—1—30 < —1—>MTF—>1
L 4 3 7L¢ sin(@)
I I
g c

Figure 3.25. Complete Gyroscope Bond Graph
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Figure 3.25 shows the effort sources added to the gyroscope bond graph. The bonds have

been assigned arbitrary numbers to aid in the bond graph equation derivation. Note,

bonds 1 and 2 can be collapsed into a single bond but have been left as shown to

specifically indicate the  1-junction.

3.3.4.3 Gyroscope Bond Graph Equations

The bond graph equations for figure 3.25 are best derived by first defining a few of

the variables that will appear often in the equation derivation. Obviously the flows of the

derivative causal elements will be convenient terms to have predefined. Also, the

momentums used to modulate the gyrators will be used often. These predefinitions are

shown as
fs=pcosO
fs=¢cosO —pOsin 6
fo =$siné
fo =sin@ + 0 cos 0
P,=Cf, =C(f, + f.)=Cly + dcos0)
P, =Cf,=Cf,=C'¢cost
Py=(4+B)f,,=(4+B')f, =(4+ B')psino
Po=(4+4)f,,=(4+4')

P7:C,’7:C,’¢

(3.71)

(3.72)

(3.73)

(3.74)

(3.75)

(3.76)

(3.77)

(3.78)

(3.79)
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The simplest bond graph equation is the integral causal /-element on bond 3. This is
because the effort on the 0-junction is defined entirely by the effort source on bond 1.

The result yields
P=e =e,=¢ =5E, (3.80)

Naturally, equation 3.75 can be used to write equation 3.80 in terms of the Lagrangian

variables. Equation 3.81 is identical to equation 3.47 and equation 3.69.
P, =C(1/7+é50050—¢9sin9)=SEW (3.81)
The next equation is taken by summing the efforts around the integral causal I-

element on bond 18.

Py=e,+es—eq—€o,=SE,+P.fo—P.fiu—-PFf (3.82)
By =SE, + Py fs =P fy = P.fy (3.83)
Using the predefinitions, equation 3.83 becomes
Py =SE, +(4+B')$* sin@cos@ — C'$* sin& cosd — (Cl/'/ +Co cos@)g[ﬁsin@ (3.84)
Simplifying
Py=SE, +(A4+B' —C~-C')$* sin@cos@ — Cyrpsin 6 (3.85)
Using equation 3.78 to find P, equation 3.85 can be written
(A+A4)9 +(~A4-B'+C+C')p* sin@cos + Cyrpsin @ = SE, (3.86)

Equation 3.86 is identical to equations 3.48 and 3.70.
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The last equation is the most complex of the three bond graph equations. This
equation relies on both derivative causal elements, both modulated transformers and all

three modulated gyrators.

P, =e, —e, —e =SE, —e5cosl —¢,sinf = SE, —(e; cos@ +e,sin@) (3.87)
At this point it is much easier to work with e, and e, separately and substitute the end
result back into equation 3.87.

es=e,+e, +e, =P, f,s +Cf, +SE, =P,0+CYf; + SE, (3.88)
Using predefined equations 3.72 and 3.77, equation 3.88 becomes:

es=(4+B')p0sin0 + C'gcosd — C'¢0sin6 + SE,, (3.89)
Multiplying both sides of equation 3.89 by cosé and substituting equation 3.81 for SE ,

equation 3.89 yields

e;cos@=(A+B')pOsinfcos@ + C'dcos’ O +
—C’¢'6'?sin6’cosH+(Ct/'/'+ C&cos@—Céésin@)cosH

(3.90)
Simplifying equation 3.90 gives

e;cosf@=(4+B —C—C')pdsinOcosd +(C + C')pcos” @+ Cijj cos (3.91)
Similarly for e,

€y =€3 — € — €y :(A"'B’)fls =B fis =P :(A+B’)f9 _Pllé_f)Sé (3.92)

Using predefined equation 3.74, 3.75, and 3.76, e, becomes

e, =(A+B')(¢ sin9+¢90050)—C'¢90059—C({/)+¢cos€)6"=

. . . . (3.93)
=(A+ B')psin@ + (4 + B')p6 cos & — C'¢f cos 6 — Cyrf — C O cos @

Multiplying both sides of equation 3.93 by sin &
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e, sin@=(4+B')psin> @ + (A4 + B')pdsin O cos 6 +
— C'¢Osin O cos @ — Cyf sin 6 — CPO sin O cos O

(3.94)
Equation 3.95 is a rearrangement of the terms in equation 3.94 in a similar form as
equation 3.91.

e,sin@=(4+ B —C—C')pfsin@cos& +(4+ B')psin> @ — Cyyfsin 6 (3.95)
Adding equations 3.95 and 3.91 yields

e;cos0 +e,sin@=2(4+ B —C—C')pdsinOcosO +
+ §l(4+ B')sin® 0+ (C+ C')cos® 0]+ (3.96)
+ Cyicosd — Cyrfsin 0

Substituting equation 3.96 into 3.87 and using predefined equation 3.79 for P7 yields

C"¢.=SE¢ ~2(4+B'—C~C")p0sinOcos b +
—g'é'[(A + B')sin? @ + (C + C")cos’ 9]+ (3.97)
—Cycosf + Cyfsin 6

Solving equation 3.97 for SE; completes the bond graph equation derivation.

SE, = §[(4+ B')sin? 0 +(C + C")cos? 0+ C" ]+
2(4+B'~C~-C")pfsinGcos 6 + (3.98)
+Cycos@ — CyOsin 0

Equation 3.98 is identical to equations 3.46 and 3.68. Equations 3.81, 3.86 and 3.98 form

the bond graph equations for the gyroscope model in figure 3.25. The simple equation

0= %(9) must be added to the set to complete the state equations of the model.
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3.4 Brown’s Lagrangian Bond Graphs

An alternate method for developing a bond graph model from the Lagrangian of a
system was shown by F. Brown [Bro72]. The general method produces bond graphs with
a fairly simple structure. However, in some cases the transformer moduli are overly
complex. An example system, used by Brown is a ball joint table assembly, shown in

figure 3.26.

“' “—-Shoft Bearings
(%2  not Shown

= 1,13, 13, Principal
Moments of Inertia
Referred 1o Pivot

Figure 3.26. Ball Joint Table: Schematic

The Lagrangian for this system is

L :%]11//2 sin’ 9+%[21/12 cos’ 9+%[1//2 +%13¢9'2 +mgl cos 6 (3.99)

The definitions of ®,, w,, and o, in figure 3.26 are as follows:
w, =ysind (3.100)

w, =y cosd (3.101)
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w, =0 (3.102)
The method described by Brown groups the inertia terms of the Lagrangian together

into a symbolic energy term.

E =%1'(T;//)2 (3.103)

Where [’ is arbitrarily set at 1 and T 'is

T=\I+1,-(I,-1,)sin* 6 (3.104)
The resulting bond graph by Brown is shown in figure 3.27.
v

f ‘MGY 1 ~ MTF 5T
G=—1 o, cost +1,m,sm 6 T=JI+1,-(I,~1)sin*8

SE— MTF—
-mg 1*sin{6)

—=c

b

3

Figure 3.27. Ball Joint Table: Brown’s Bond Graph

As seen in figure 3.27 Brown’s bond graph contains a very complex transformer

structure with a fictitious /-element.

12
r
lerator Structure el
] M;]‘F.ms(ﬁ)
s 2 MIF—MGY .
9 Ly
] (i)
SE—MTF—y1L MY
me sin® Jf\ MTF PMGY‘/”
i 3 4
L cos® MTF:sin(®)
(
L

Figure 3.28. Ball Joint Table: Bond Graph from Current Method
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The method presented in Section 3.3 produces a similar bond graph structure but
recognizes that the gyrator modulus contains momentum elements. The bond graph is
drawn in figure 3.28 with this detail called out specifically. Naturally, either bond graph
may be converted to the other through inspection. For example, it can easily be seen that
the gyrator structure of figure 3.28 gives the same equation of the gyrator in figure 3.27.
This is due to the fact that they are both correct representations of the same system. The
methods for creating the bond graph from the Lagrangian, however, are different. The
method presented here does not need overly complicated transformer and gyrator moduli.
Each transformer/gyrator modulus is very simple. Also, the method presented here
specifically shows that the gyrator moduli are momentums of differential causal elements
of the bond graph, which is insightful when trying to understand the interrelationships of

the state variables.

3.5 Conclusions

This chapter introduced bond graph modeling. Bond graph modeling was presented
as a method of system representation that maps the power flow through the system.
Since the bond graph deals with power flow, the modeling method can be used with equal
efficiency in all energy domains. Consequently, this modeling method is very useful

when modeling systems that cross multiple energy domains.
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Also, the bond graph maps the flow of information through a system by assigning
causality to the modeling elements. The causal mapping is done in a consistent and
meaningful manner that gives insight to the model. The causal and power flow
information are used together to determine the state equations of the system.

This chapter also presented a method for converting the Lagrangian into a bond graph
model. Lagrangian and Hamiltonian elements of the system were used to create the bond
graph model. A pendulum and gyroscope were used as examples of bond graph creation,
given the Lagrangian.

The method presented here was compared to a method presented previously by F.
Brown. The method presented here shows that, for rigid body systems, gyrators are often
modulated via a momentum signal from another part of the bond graph. This insight is
unclear when using Brown’s method. Also in Brown’s method, although the structure of
the bond graph is very simple and compact, the transformer moduli contain complicated

functions of the inertias of the system.
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CHAPTER 4: Object-Oriented Bond Graph Modeling

4.1 Introduction

As seen in Chapter 3, bond graph modeling is a useful tool for generating the
equations of motion of a mechanical system from the power flow map of a physical
system. However, once the equations of motion have been generated it is still necessary
to develop computer code in order to perform simulation and analysis of the system.
Ideally, the computer code would be generated directly from the bond graph model of a
system with the simulation software.

Modelica [Dym] is a modeling framework used for simulation of complex physical
systems. Within the Modelica framework, models of systems can be included as sub-
models within larger systems. The code for the overall system is then generated
automatically, thus allowing the user to use the sub-models in an object-oriented, plug
and play manner. Dymola [Dym, Brii02] is a software package that enables the user to
use the Modelica framework with a graphical interface.

Dymola/Modelica, however, have no knowledge of bond graph modeling. For this
reason a bond graph library was developed to combine the object-oriented abilities of

Dymola with the power based system representation of bond graph modeling [Cel03al].
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4.2 Dymola

The Dymola framework allows the user to create system models such that they can be
used in the next upper hierarchical level. Dymola uses four windows to define each
model: an equation window, a diagram window, an icon window, and a documentation
window.

The lowest level of a model/sub-model resides in the equation window, i.e., when all
sub-models are expanded to the lowest hierarchical level, the code will reside in the
equation window. The equation window contains code written in the Modelica language
[Brii02]. Modelica is a fairly straightforward language to understand and can be read by
anyone possessing basic programming knowledge in FORTRAN or C. The equation

window of a bond graph power sensing bond is shown in figure 4.1.

Power_F_Bond - BondLib_Extras.Power_F_Bond - [Modelica Text] i ] |
E File Edit Simulation Plot Apimation Window Help _|5|1|
@& R/ mey AL & HH,| =
¢ »=EAE

Fackages =

[JModelica o

] Madelicatdditians _ OutPortl.signalll] = eBondConl.e*fBondConl.f;

i-Unnamed

[CJBondLib

E| [CJBondLib_Estras
+ -Power_F_Bond
f;—‘e Power_E_Bond

E Bl el x|

wodel Power F_Bond
|| =

end Power F_Bond;

Components

E||B ondLib_Estras.Power_F_Bond
fBondl

eBondCaoni

fBondCaoni

- [l OutPort]

| Modeling | 2 Simulation | o

Figure 4.1. Power Sensing Bond Model: Equation Window
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The power sensing bond of figure 4.1 is dependent on other bond graph models as can
be seen by the diagram window of the same model. This window is shown in figure 4.2.
The diagram window allows the user to include sub-models and connect them in a block
diagram fashion. In figure 4.2 the sub-model, fbondl, is included in an object-oriented
fashion. fbondl is connected to two output ports labeled e and f, such that the model can
later be dropped into larger models. The output signal that is output at the bottom of

figure 4.2 is defined in the equation window, shown in figure 4.1.

ISPower_F_Bond - BondLib_Extras.Power_F_Bond - [Diagram] 3 i ] |
Eile Edit Simulation Blot Apimation Window  Help _|5|1|

@& R/ a0 AL &y I,

i

¢ %=/ =ABEw o

Packages I
EI [ Modslica

(M odelicatddiions

i Unnamed

= [JBondlib
| [CJBondLib_Estras

|5—_1 Power_F_Bond |

5--f!—_EF'0wer_E_Bond e \I # 1
= Bl ¢ || x| Teondr

Components

E||B ondLib_Estras.Power_F_Bond
fBond1

- M eBondCont

- W fBondCon1
-l QutPort]

| Modeling | 2 Simulation |

Z
Figure 4.2. Power Sensing Bond Model: Diagram Window

The icon window of the power sensing bond model is shown in figure 4.3. The icon
window contains a graphical description of how the model will be represented at the next

hierarchical level. The text name, shown in figure 4.3, leaves a generic text place holder
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such that the user can assign a distinct name at the next hierarchical level. This is
necessary in case multiple instances of the same model are used at the upper level.
The Power F Bond model was used here to show the workings of the three primary

Dymola windows. The internal details of the Power F Bond model are discussed in

Section 4.3.

ElPower_F_Bond - BondLib_Extras.Power_F_Bond - [Icon] 3 i ] |
4 File Edit Simulation Flob Animation Window  Help _|5|1|

lEEE(RIFODOC AL BTN

i

¢ »=8HE0 =

Packages I
3 [ Modslica
Modelicatdditions
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| [CJBondLib_Estras
|5—_1 Power_F_Bond |
f!—_e Power_E_Bond e ‘ 1

B E|lel»|w| name

Components

E||B ondLib_Estras.Power_F_Bond
fBond1
- M eBondCont

[l fBondConl
-l QutPort]
[ Modeling Simulation
=2 | » I

Figure 4.3. Power Sensing Bond Model: Icon Window

4.2.1 Equation Sorting

In a laboratory setting, a motor may be driven forward such that an input voltage
drives the motor to observe the angular velocity of the motor shaft as the output. Also, it
is possible to hook the motor up backwards and input a torque to the motor shaft and
observe the generated current as the output. Similarly, Dymola allows the user to hook

up models in different configurations. Dymola must then be able to sort the equations
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such that they can be converted into assignment statements at compilation time. For
example, it is perfectly acceptable to write in the equation window of a Dymola model
the following
A+B+C=D+E+F (4.1)

At the time the model is compiled Dymola must sort through all equations to create
assignment statements for all variables. It is possible that in one instance of a model
containing equation 4.1, the equation is solved for 4. And, in another instance, it is
solved for E, depending on the manner in which the model is connected at the upper
hierarchical level. This is a powerful advantage that Dymola has over other modeling
software since the object-oriented capabilities allow the user to plug and play models as
they would in a laboratory setting [Brii02, Cel93].

As an example of how this is accomplished, consider the system shown in figure 4.4.
Here a 4™ order, spring, mass, damper system is shown with gravity neglected and X/ =
0, X2 = 0 are defined as the unloaded spring displacements for K/ and K2, respectively.

Displacement X1

Velocity V1
Mass M1
Sprng K1 |::| Displacement X2
Damper Bl Veloeity V2
Mass M2

. Velocity Input, Vi
Spring K2 |::l eloatly Input, ¥1

Damper B2 I

Figure 4.4. Spring Mass Damper: Example
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A possible set of equations for this system is

Vol=v2-Vv1

Vo2 =Vi-V2
m2*¥V2—X52*%K2—B2*V52+ XS1* K1+ B1*V51=0
ml*V1—XS51*K1-B1*V51=0

X52=V52 4.2)
X51=V51

X2 = X651+ X1

X2 =Xi— X652

Xi=Vi

Naturally, equation set 4.2 does not represent a minimum set of equations, since a

minimum set of equations would make the example trivial. Dymola does not require that

a set of equations be minimal either.

test_two_mass - test_two_mass - [Modelica Text] ] 101 x|
E File Edit Smulstion Elob Animation Window Help = | E'lil

jsasgR/ mevrs b Hn[Z¢dnSBEW
model test_two_mass
Packages | parameter Real ml=l "Mass of M1 (hg";

|jModeIica parameter Real mZf=Z "Mass of MZ (kg)";
parameter Beal kl=Z "Springl Stiffness (kg/fsec™Z)";

ﬁModelicaAdditions parameter Real kZ=32 "Spring? Stiffness (kg/sec Z)";
~ nnamed parameter Real bl=0.Z "WViscous Damperl (kg/sec)';
~test bwo mass Bl parameter Peal bZ=0.4 "Viscous DamperZ (kg/sec)";
2 (JBorc Reat vez,
G a3z Real Hdl;

Deal Mdz;

Leal V1;

Real VZ;

Real X1;

Real Xz;

Beal Wi;

Real Hi;
equation

=8 :E:l ‘l *l ‘l Vi = sinitime™6. ZEILEE3I0TLTIE) ;

Wdl = ¥z - Vl;

vdz = Wi - VE;
Components mZ*der (WZ) - HdEZ*RZ - b2*VWdz + Xdl*kl + bl*Vdl = 0;
[test_two_mass ml*der (F1) - Hdl*kl - bl*Wdl = 0;

der (Xd2) = VdZ;

der (Mdl) = Vdl;

¥z = Hdl + Xl;

¥z = ¥i - HdZ;

deri{X¥i) = Wi;
end test_two_nass;

test_two_mass | Modehng | “y® Simulation |

4
Figure 4.5. Spring Mass Damper: Dymola Equation Window
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The equation window of Dymola is shown in figure 4.5 for this example. The icon
window, and diagram window, for this model have been left blank since this model is
self-contained and not intended to be used at any higher hierarchical level.

Note the der notation. This is the symbol Dymola uses to show the derivative of a
variable. The notation is somewhat misleading as no numerical derivatives are
calculated. The equation sorter works such that only numerical integration is needed to
perform the simulation. Also note that the equations shown in figure 4.5 are in the exact
same form as those in equation set 4.2.

In order to represent the sorting algorithm’s functionality, an equation notation is
adopted. A bracket around an entity indicates that the equation is solved for that entity.
An underlined entity indicates that the variable is known from some other source. This
notation was developed by Elmqvist, and Otter [EIm94]. For example, if equation 4.1
were solved for £ the equation would be written as shown in equation 4.3 indicating that
the values for 4, B, C, D, and F' must be obtained from some other source.

A+B+C=D+[E]+F (43)

In order to sort the equations shown in figure 4.5, Dymola first solves any statement
containing a der for this entity. Naturally, if der(Y) is known, then Y is also known as it
is the output of the integration scheme. With this, equation set 4.2 becomes that shown in

equation set 4.4. Vi is known as it is an input to the system.
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vsl=y2-V1
VE2=Vi-V2

m2* (2]~ X562 K2~ B2*V52 + X81* K1+ BI* V51 = 0
ml*[71]- X81% K1 - BI* V81 =0

[x52]=vs2 (4.4)
[x51]=rs1

X2 = X851+ X1

X2 = Xi- X582

[xi]=vi

All equations containing a single unknown variable are then solved and the information is

extended to the remaining equations. Equation set 4.4 becomes

e1]=r2-r1

vs2]=vi-v2

m2*[72]- X52% K2 - B2* V52 + X51* K1+ BI* V81 =0
ml*[1]- X51* K1- B1*751=0

[xs2]=752 (4.5)
[xs1]=ws1

X2 = Xx51+[x1]

[x2]= Xi- Xx52

[i]=vi

For all equations in set 4.5, there exists exactly one bracketed variable with the other

variables underlined. Assignment statements can be generated and this system can then

be solved using an integration scheme.
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4.2.2 Algebraic Loops

Obviously, the above sorting system breaks down in the presence of an algebraic
loop. Systems containing algebraic loops are all too common. These systems occur in

resistive networks and are easily shown by a bond graph example.

4.2.2.1 Algebraic Loops within Bond Graph Modeling

This section discusses the typical bond graph method of eliminating algebraic loops.
As discussed in Chapter 3, after all integral and necessary causal marks are defined, if
there still exists bond graph R-elements with unassigned causality then there is at least
one algebraic loop in the system. There is exactly one algebraic loop for every free-
causal R-element in the system.

The Wheatstone bridge circuit shown in figure 4.6 is created entirely in the diagram
window. Each element of the circuit is a sub-model from the Electrical Library that is

standard with the Dymola software.

===
=181

Wndow Help

,:E;e:;cygg-g—;:.n{ &+ + =20 0 -

SignalVoltaged

B Modeing | Semiaion

Figure 4.6. Wheatstone Bridge Circuit Example: Dymola Diagram Window
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The icon window has been left blank since this model is not intended to be dropped into

higher models.

information is found within the sub-models.

bridge_BG - bridge_BG - [Diagram]

& Ele Edt Smulstion Bt Anmation Window Help

[zEa R[/Oo ¢ ALB-Hh, =@ ¢ o E e

The equation window has been left blank since all the equation
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L] =
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Figure 4.7. Bond Graph of Wheatstone Bridge Circuit

A bond graph model of the Wheatstone bridge circuit is shown in figure 4.7. The n"

bond in figure 4.7 is designated by Bn. All necessary causalities and integral causalities

have been assigned. Notice that not all bonds have causal marks. The unassigned R-

elements make up a network of resistors that contains an algebraic loop. A complete

causal bond graph can be obtained by choosing the causality on bond B9 to define the
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effort signal on the 0-junction. Alternatively, the model could be completed by choosing
the causality on bond B13 to define the effort on the 0-junction. Either way, the final sets

of equations are identical. The completed model is shown in figure 4.8.

= bridge_BG_rComplete - bridge_BG_Complete - [Diagram] E == x|
& Ele Edt Smulstion Blot Anmation Window Help _|8lx

[eEa R[/Oo¢ALB-Hh, =@+ o -]
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% Unnamed
bridge_BG_Complele i o R4
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/\/ mSE =1 1 B3 0 Bs 1 B14
= Ele|»|® I
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Figure 4.8. Complete Bond Graph of Wheatstone Bridge Circuit

In order to complete the causal assignments of the bond graph in figure 4.7, a
minimum of one causality choice was made on the unassigned R-elements. This
observation implies that there is a single algebraic loop in the equations [Cel91, Kar90,
Kar83] that needs to be broken with a single tearing variable [EIm94]. The tearing
variable will be the effort signal on R3, since this was the causal assignment choice that
completed the bond graph. A variable used to break an algebraic loop is referred to as a

tearing variable. The tearing variable is then egg, or the effort on bond B9. In order to
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derive the equations for a bond graph containing an algebraic loop, the equation
derivation rules of Chapter 3 are followed. The normal bond graph equation derivation
rules apply up until the tearing variable is encountered. The tearing variable should be
left as an intermediate variable in the equation. However, the tearing variable should be
the only intermediate variable in the equation. After each equation is complete, an extra
equation for the tearing variable is derived. This is best shown via the above example.
The Wheatstone bridge example is a second-order system which can be seen by the
number of integral causal marks on the bond graph. Following the rules of Chapter 3, the

first set of bond graph equations is derived as

QB4:f33_f36_f35:fBz_fm_fBls (4-6)
. €z €37 Epis
— B2 BT _TBIS 4.7
T4=21 " R2 R4 “.7)
. 1] 9.1 1]q 1[q }
= |mSE1-184 |~ | dBs_, \___ |dB4_, 4.8
T4 = 1| c1l rR2| al 39} R4{C1 m2 (45)
g :L_mSEl_qﬂ__L_qﬂ_e _L Dba _| 951 —e j (4.9)
BRI cl1] rR2lct %] R4lc1 \c2 %
q =L ,,mgyyjl_qi4 _L qﬂ_e _L qﬂ_@Jre (4.10)
BRI c1| rR2lc1 | rRalc1 c2 %

Equation 4.10 is in typical bond graph equation form, with the exception of the
intermediate variable egg. In equation 4.10, all intermediate variables have been
eliminated with the exception of the tearing variable. Rearranging equation 4.10 to

isolate epg yields
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s :@_FM_FQB() BLSE N 7Y L_,_L_,_L (4.11)
R1 C2R4 R2 R4 CI\Rl R2 R4
Similarly;
) €p15 €13
A1 = 12 = Sp1a = o3 = Jais — fos = T (4.12)

R4 RS

. 1 _QB4 €12 1| gz, (qul } 1 (qul }
=—|284 _p — 82 —__ 1284 ) 2B, ——| 2Ll _p 4.13
T ="pal c1 3”} RS R4l cl \c2 )| Rs\c2 (+13)

. 1 _QB4 9511 1 (qp,

— | 4ss _Hmu,, |_ " [91_, 4.14
o R4lC1 2 P] Rs\c2 % (414
. 954 1 1 e [ ] 1

= teg|l —t— || =t — 4.15
To1 = Racl B{Rs R4j C2 (RS R4 (+15)

In order to eliminate the tearing variable from equations 4.11 and 4.15, a bond graph
equation is written to express the tearing variable. Since this is a known algebraic loop,
the tearing variable equation will be a function of bond graph states and itself, as shown

in the following equation:

€po = F(‘]B4vQBllveB9) (4.16)
The tearing variable equation for the Wheatstone bridge example is derived in equations

4.17-4.20.

€9 = R3™ fig = R3| f 5 _f310]=R3[fB7 _fBIZ]:R3[fB7 _(f314 _f313)] 4.17)

e e e
€z = R3 B7_f315+f313]=R3|:£_ﬁ+RB_§:l (4.18)

1 (¢q l (¢q e
e, =R3| —| 184 _o | —|TB4_, |4 TBI2 4.19
B9 {RZ(CI 39} R4(C1 B”} RS} 4.19)
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1 (q 1 (q q 1 (g
€go =R3| —| 2 —epy |——| 22— | Bl | |+—| 2l —¢ 4.20
7 {R2(C1 ”j R4(C1 (Cz B"D RS(C2 B (420)

Equation 4.20 shows the algebraic loop explicitly. If the sorting algorithm does not

recognize how to break an algebraic loop, then the steps taken to derive equation 4.20
repeat for every occurrence of the term epg, creating indefinite recursion. Obviously, ezg
needs to be determined algebraically in equation 4.20. Equation 4.20 becomes

. R3[q,,C2R5(R4 — R2)+ q,,,C1R2(R5 + R4)]
¥ C1C2[R2R4R5 + R3RAR5 + R2R3R5 + R2R3R4]

4.21)

Upon defining epoy algebraically, the result can then be plugged into equations 4.11 and
4.15 to completely remove the intermediate variables from the equation set. The
algebraic loop has been broken.

The bond graph model of the Wheatstone bridge circuit not only predicted that an
algebraic loop exists, but also indicated what variable is needed as a tearing variable.
This information is not included in the circuit diagram of the same model. The causality
information on a bond graph provides added insight that is not readily available through
other types of models.

As seen in the above example, algebraic loops can appear in relatively simple bond
graph models. Even a simple system containing an algebraic loop, can contain fairly
complex recursion. Obviously, software that is intended to simulate bond graphs models

directly must be able to recognize when an algebraic loop exists, and how to break it.
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4.2.2.2 Algebraic Loops within Dymola

Dymola uses an algorithm by Tarjan [Tar72] to sort the equations describing a
system. Naturally the equations need to be sorted horizontally, as described in Section
4.2.1, and also vertically. Vertical sorting simply implies that the algorithm must order
the equations from top to bottom such that all information is available when needed. The
Tarjan algorithm, in order to be robust, must also be able to handle algebraic loops.

The Tarjan algorithm creates a structure incidence matrix. This matrix has a row for
every equation in the system and a column for every unknown variable. Naturally for the
system to be solvable this matrix must be square, one equation per unknown variable.
The matrix is populated with ones or zeros. In the <i, j> location of the matrix, a zero
indicates that the jth variable does not exist in the i”" equation. For example, equation set

4.22 has a structure incidence matrix shown in equation 4.23.

fl(xlaxz’xs) =0

f(xy)=0 (4.22)
f3(x1,x2) 0

X Xy X3
? (1) 1 (l)zs (4.23)
fr 110

By interchanging rows and columns of the structure incidence matrix it is possible to

rearrange it into lower-triangular form. Equation 4.23 becomes
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Xy X Xy
1 0 0
; . L1 o°S (4.24)
)
fir 11 1

Equation 4.24 represents a system of equations that are sorted both horizontally and
vertically.

It is possible that the structure incidence matrix, after row and column permutations,
is not entirely lower-triangular. In this case, it will be lower-triangular with blocks on the
diagonal. This occurs in the presence of algebraic loops. For example, equation set 4.25

has a structure incidence matrix shown in equation 4.26.

fl(xlsxzvx3) =0
fz(xlaxz) =0 (4.25)
f3(x19x2) =0
X Xy X
11 1
/ =S (4.26)
L1 1 0
S 110

Equation 4.26 can be permutated to equation 4.27, which has a 2x2 block on the

diagonal.
X Xy X3
1 1 0
; . 1 o =S 4.27)
-

fio 1 1 1
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In this case, either x; or x, can be used as the tearing variable. Algebraic loops will create

rank deficiency in the structure incidence matrix.
For dynamic systems, the equations have the form X = f (X , U ,t). Here X is

considered an unknown for the Tarjan algorithm, and X is considered known, since it is
the output of the integration routine.

The Tarjan algorithm does not solve the algebraic loops. In the Modelica framework,
matrix techniques are used for algebraic loops that are linear and moderate in dimension,
and Newton iteration is used on large and/or nonlinear algebraic loops.

It is seen here that the Modelica framework using the Tarjan algorithm together with

Newton iteration/matrix techniques is capable of handling bond graph models.

4.2.3 Structural Singularities: The Higher Index Problem

In a system, a structural singularity occurs when a potential degree of freedom is
constrained such that its dynamics are described entirely as a function of other state
variables. For example, two inertias connected by an ideal gear train create a structural
singularity. Normally, each of these inertias separately has its own degree of freedom.
The ideal gear train, however, constrains them such that they act as a single degree of

freedom.
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4.2.3.1 Structural Singularities within Bond Graph Modeling

The gear train example is described in figure 4.9 between the rotational inertias //
and /2. The bond graph for this system is shown in figure 4.10. Notice the differential
causal mark on bond B2. Differential causality in a bond graph shows up in the presence
of a structural singularity [Cel91]. Normally the /-elements would have their own
integral causal mark indicating a degree of freedom, but the gear train couples the two

inertias together such that movement by one can be described entirely by the dynamics of

the other.

Input Torque tl
‘\

(0YA

4

-
Ideal Gear Train

al*rl = w2*r2

E Torsional Spring K

/@3

Figure 4.9. Gear Train Example
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The number of integral causal marks on the bond graph indicates that the system is a 3™
order system. The inertia of the small gear between // and /2 has been neglected. The
bond graph shows that, even though there are four energy storage elements, two of these
elements are coupled together as one. The transformer constant comes from the gear
ratio of the gear train. The gear train, in figure 4.9, shows the relationship between the
angular velocities of the gears. This relationship must hold true for the transformer in
between the 1-junction representing w/ and the 1-junction representing w2. The causal
marks on the 1-junction show that the flow signal moves from the w2 1-junction to the
! 1-junction. Therefore, the transformer constant must be »//72 as shown in figure
4.10.

Also notice that the differential causal mark could have been placed on B/. This
would have caused the dynamics of // to be described by /2. As in the last section, a
choice on causality led to an algebraic loop. The same is true here only the loop comes
about in a slightly different manner. If the // element were differential causal, then the
causality on the transformer would change as well, which would in turn invert the
direction of the flow signal. Thus, the transformer constant would need to be inverted as

well.
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Figure 4.10. Gear Train Bond Graph

The first equation of the above bond graph is derived as before

. 1 1 1
Py =SE—e, =SE—"e, =SE-""[e,, + e, ]=SE—[e,, + e, ] (4.28)
r2 r2 r2

P, =SE - %{em + ‘%} (4.29)
Naturally the question is; what to do with ez,? The answer lies back in the definition of
the differential causal elements in figure 3.13.

ey =12% fy, (4.30)

Now f », can be followed through the bond graph in the same fashion as f, .

: . rl rl rl Pm
_ - - =58 431
S52 = Ss6 r2fBS rszl 2 11 ( )
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Substituting 4.31 and 4.30 into 4.29 yields

. rl| rl 12 . q ps
P =SE—-——|"~22p 4188 4.32
ol FZLZ nt c } (432)

Equation 4.32 shows an explicit algebraic loop on the derivative of the state variable PB1 .
Equation 4.32 needs to be solved algebraically for P,,. This type of algebraic loop will

always occur in the presence of a differential causal element. Equation 4.32 becomes

O SEFN*(r2) gy FIIFr2%
TolnE o) 2% ()| clnE(r2) + 2% (1)

(4.33)

Equation 4.31 shows how the generic acceleration term moves through the

. . rl . .
transformer, i.e., fj = f3s- In general, one must use the chain rule to develop this
r

relation, as shown in equation 4.34, since the transformer value may vary with time.

d d(rl d(rl rl d
E(fBG):E(Zstj:fBSE(Zj-i-__(fBS) (4.34)

Naturally »1/r2 is constant, so equation 4.33 reduces to the form shown in equation 4.31.
The other two equations of the gear train bond graph will not touch the differential

causal bond. For completeness they are

. Py, rl Py rl Py
—f _f —f _ B _ 0 "B _ " B3 4.35
q s f7 f3 fé I3 fs 23 fl 2 3 ( )
Py rl Py,
_Im "1 B3 4.36
=T (439
PB3 =€p3 =€p3 = Do (4.37)

C
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This section shows that bond graphs detect structural singularities and provide the
necessary means to solve them. Once the differential causal relationship is determined,
the structural singularity will usually generate an algebraic loop involving one, or more,

of the state derivatives.

4.2.2.2 Algebraic Loops within Dymola

Dymola uses a different method for handling structural singularities. An algorithm
developed by Pantelides [Pan88] is implemented in the Modelica framework to
accomplish this task. The Pantelides algorithm, like Tarjan, also uses the structure
incidence matrix. When a structural singularity exists in a system, the incidence matrix
will have a row that is empty. Thus, an equation exists that is not dependent on any
unknowns.

For the gear train example above the typical equations are found by balancing the

torques on the inertia elements. This set of equations is shown as

rl.nzll*a')1+r—;[[2*a')2+k*¢8]
r

$ = w8
k*¢, =13* @3 (4.38)
02 =08 + 03

rl*wl=r2*w?2
The unknowns are ordered wl, @2, @3, ¢58, and w8. Note that ®8 is an unknown,

since there is no equation containing @8 . Thus, the structure incidence matrix is
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11000

000 1 1
S=0 01 00 (4.39)
0000 1

000 0 0]

The last equation does not depend on any unknown variables. This is indicative of a
structural singularity. The equation that is independent of the unknowns is a constraint
equation. Upon finding a constraint equation, the Pantelides algorithm differentiates it
with respect to time. Thus, the constraint equation of the above example becomes
rl*ol=r2*w2 (4.40)
Equation 4.40 is then added to the list of equations. As a result, there is now one
equation too many. In order to balance out the number of equations with the number of
unknowns, one of the integral relationships is relaxed. For example, for the added
equation 4.40 it is no longer assumed that wl is known from the integration of @l.

Thus, wl is added to the list of unknowns. The new structure incidence matrix becomes

110000
000110
. 1001000
S = (4.41)
000010
00000 1
1100 0 0

The new structure incidence matrix does not have a row of all zeros. The unknowns are
now ol, @2, &3, 4158 , o8, and wl. The equations consist of equation set 4.38 and the

added equation 4.40. The added equation, together with the added unknown, increases

the index of the structure incidence matrix, thus the term the higher index problem
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[Pan88]. Also, note that the constraint equation 4.40 also comes out of the bond graph
derivation as equation 4.34. Equation 4.41, however, indicates an algebraic loop. Row 1
and row 6 are identical, which creates a block element on the diagonal after the matrix
has been permutated.

The relaxation of the state from its derivative should not be surprising. The end result
is that this state is not really a state at all. Its dynamics can be described entirely as a
function of the other true states. The fact that the derivative of the variable and the
variable itself, are not determined by an integral equation implies that the relationship
must be dependent upon other parameters. This was seen in the bond graph derivation of
equations in the presence of a structural singularity.

Upon derivation of the constraint equation, it is possible that new variables are

created. For example the variable  is created from y , when there is no instance of the
variable y in the previous set of equations. In this case, there already exists an equation
defining . This equation must also be differentiated. This process continues until no

new variables are created.
The Modelica framework is capable of handling algebraic loops and structural

singularities; both occur often in physical system modeling.
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4.3 The Dymola Bond Graph Library

By creating small, object-oriented models that represent bond graph elements it is
possible to create a bond graph library in the Dymola/Modelica framework [Cel03a,

Cel03b]. A model is created for each of the bond graph elements described in Chapter 3.

4.3.1 Connectors

The most basic model in the bond graph library is the connector. The connector
defines a 3-tuple [Cur84] signal to pass bond graph information in and out of models at
higher hierarchical levels. The 3-tuple is <e, f, d > representing effort and flow, while
d is a direction variable where +1 indicates the signal information is into the connector, -1

indicates the signal information is out of the connector. The equation window and icon

window, for the connector are shown simultaneously in figure 4.11.

=) BondCon - BondLib.Interface iCon - [ B[w[[E3] | = BondCon - BondLib.Inter 1 - [Dia =10l x]
B e Edit Smulation Plat Animation, Window Help =12 x|| & File Edit Simulstion Elot A Wwindows Help =@ %
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[+ » = 2 AR ¢ »=8ABEw -
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[BondLibInterfaces. BondCon ~BondLib Interfaces BondCaon
< 1]
BondLib.Interfaces.BondCon Madsling P Hadsling /
% 7

Figure 4.11. Bond Graph Connector
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The iconic representation of the connector is a grey dot. The equation window does

nothing more than declare the 3-tuple elements.

=l eBondCon - BondLib.Interfar “on - [M B [=[ b3 | = eBondCon - BondLib.Interfas c o [=] 9]
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Figure 4.12. e-Bohd Connector

There are two other bond graph connector models that will be used in causal bond
models. As seen in Section 4.2.1 the Modelica framework assumes all variables to be a-
causal. The equation sorting algorithm assigns causality. However, causality is an
important feature of bond graph modeling. The Dymola models can force causality by
declaring a variable as input or output.

Figure 4.12 shows an e-bond connector. The e variable is declared as an input and
the other two elements of the 3-tuple are declared as outputs. The iconic representation

of the e-bond is a grey dot with the letter e in the center.
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Figure 4.13. f-Bond Connector

Similarly the f~bond connector, shown in figure 4.13, declares the f variable as the
input and the other two variables as outputs. With these connectors, it is now possible to

define bond graph elements.

4.3.2 Bonds

An a-causal bond is created by dragging two bond graph connectors into the model.
Naturally, since two instances of the same sub-model are used in the a-causal bond
model, it is necessary to give them separate names. They are named BondConl and
BondCon?2, respectively. Figure 4.14 shows the a-casual bond model. In the icon portion
of figure 4.14, BondConl is at the left of the bond and BondCon? is at the right of the

bond.
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Figure 4.14. A-Causal Bond

As seen in the equation window portion of figure 4.14, the efforts of the two
connectors have been set equal, as well as, the flows. The direction variables have been
set to -1 for BondConl and +1 for BondCon2. The iconic representation is a bond graph
half arrow with no causality. The name designation is a generic placeholder for naming
multiple instances of the same model at the higher, hierarchical level. This placeholder is
created by inserting the text “%mname” in the icon window.

Naturally the causal bond models need the e-bond connector and the f-bond
connector. These two sub-models will be used to create the causal relationships needed
in a bond with assigned causality. The first of the two causal bonds is the e-bond. Figure
4.15 shows the e-bond with the f~bond connector to the left of the icon and the e-bond
connector to the right. The input/output definitions of the two connectors are used to
define the causality relationship of this bond. The icon is a bond with the appropriate

causal assignment.



112

[SleBond - BondLib.Bonds.eBond - [Modelic; B [=] 5 | S eBond - BondLib.Bonds.eBond - [Icon] i =] )
le Edit Simulation Piot Animation Window Help = |5 x|| # File Edit Smulation Plot Animation Window Help —|8] x|
leE& Wi/ mey Al & HF| = [EX= =R N AR R e
¢+ =@ B - ¢ »mESBEEw0: =
block eBond
Packages < Packages [l
ElmEET equation 2 (T BordLib
fBondConl. e = eBondConl.e; 2
& [T ntertaces eBondConl. £ = fBondConl.f; B [Tintertaces
(= (] Bond: fBondConl.d = -1; Bond:
Eﬂ e eBondConl.d = +1; Elﬁ o
—* Bond end =Band; i - —+Bond
= fBond | s—t.fBond
[Junctions [Pdunctions
[ Passive [JPassive y p
[Jsensors [Psensors

[ Sowrces = B [ Souces = name
e el =] E _E|lel*|w I I

Companents Companents |
SlbondLb Bonds cbond | |SBondLb.Bords sbond \
WfBondCon? - Ml BondCon
M eBondConl i WeBondConl

A 1S rodeig A
Figure 4.15. e-Bond

Notice that the model has been declared as a block in figure 4.15. In blocks, all variables
must have pre-assigned causalities.
An f-bond is constructed in a similar fashion. Figure 4.16 shows the equation and

icon windows for the f-bond. Here, the location of the connectors has been switched.
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Figure 4.16. f-Bond
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The bond models are complete and ready to be dropped into Dymola bond graph

models.

4.3.3 Junctions

Figure 4.17 shows a 3 bond 0-junction. Dymola provides matrix manipulation syntax

that is similar to that in MATLAB [Mat]. In order to take advantage of this syntax, as seen

in the equation window of figure 4.17, the O-junction inherits the bond connector

information through another model called ThreePortZero which is shown in figure 4.18.
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Figure 4.17. 3 Bo

ild 0-Junction

Three bond connector models have been dropped into the model ThreePortZero,

named BondConl, BondCon2, and BondCon3. The purpose of ThreePortZero 1s to map
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e and f'variables into a vector. Note that the d variable is multiplied by the f variable to

give the proper sign of the f'signal for summing around the 0-junction.
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Figure 4.18. Three-Port Zero

Figure 4.17 shows the efforts being set equal around the O-junction and the flows
summing to zero.

The bond graph junction models will need to have n bond graph connector models
dropped in to connect n bonds. In bond graph modeling, there is no limit to the number
of bonds that can be connected to a junction. However, in order to code a junction
model, it is necessary to know how many bonds will be connected to it a priori. To solve
this, many junction models are created with »n ranging from 2 to 6. By using
combinations of these junction models any number of bonds can be connected to a
junction. Similar to the 3 bond 0-junction model shown in figures 4.17 and 4.18, there is

a 0-junction model for 2, 4, 5, and 6 bond connections.
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Figure 4.19. Three-Port One

The 1-junction models are created in a similar fashion. The 3 bond 1-junction model
is shown in figures 4.19 and 4.20. The direction variable is multiplied by the effort
variable for summing around the 1-junction. The efforts sum to zero and the flows are

equated.

3 - BondLib.Junctions.11p3 - =] ] 1p3 - BondLib. Junctic b =100 x|
Flle Edit Simulation Blot Animation Window Help = || || # File Edit Smulstion Flat Animation Windew Help -8 x|
leds R/ mew Al & HH, @8 RO o&F AL B~
I« » =8 BN - |4 » =& HHE0:
model Jlp3
Packages N i merescas iThrearortoma; Packages [=I
] [Junctions — E [ Junctions
equation
0 J0p2 £12:3] = £[1:2]; el
0 Jip3 sum(el = 0; 0 .J0p3
L end Jlp3; 0 Jopd
0 J0p5 0 .J0p5
0 JOpE 0 JopE
1 1p2 1 J1p2
1 J1pd 1 J1p4
1 J1p8 ;I 1 J1p5 ;I
E Ele|ld|n| E BEle|l9» | x
Components Components
E[BondLib.Junctions.J1p3 E[BondLib Junctions.J1p3
[ T ThieePortOne - BondLib.In... [+ ThieePortOne - BondLibInterfaces. Th...
BondLib. Junctions.J1p3 Modeling BondLib. Junctions.J1p3 Madeling
P ¥ 4 P 'l A

Figure 4.20. 3 Bond 1-Junction
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Note that no causality information is provided to the junction models. The causality
information will be inherited from the bonds connected to the junctions. The junction

models are now ready to be used in larger models.

4.3.4 Passive Elements

The passive element models need one bond connector model associated with them.
Similar to the junction models, this is done through an inheritance structure. Using the
inheritance structure makes the creation of these models easier, since the inheritance
commands can be typed into the equation window rather then dragging the bond
connecter model in for each instance. The inheritance model is called PassiveOnePort.
This model is shown in figure 4.21. PassiveOnePort has the bond connector model

dragged into it and a definition of e and f. This code can be inherited by all passive

elements by using a Modelica Extends command in the equation window.

IS PassiveOnePort - BondLib.Interfaces.Passiv
File Edit Simulation Plot Arimation Window Help
leaa[el mee A L & =
|4 % =8 AENN0: -

—loj

PassiveOnePort - BondLib.Interfaces.Fa:

-1/
EE

= | @ || # File Edit Smulstion Flat Animation Windew Help

leEa WRrooFAs -1k =

¢ »/m@BBEw: =

BondLib. Interfaces. PassiveOnePort

artial model Passiwvel OnePort
Packages [ - Teal e "Bondgraphic effort; Packages [l
B [Jintertaces -Réal £ "Bondgraphic flow"; Bl [[intsrfaces
M BondCan = M BondCan
M eBondCon e M eBondCon
M fBondCon £ = BondConl.d*BondConl. £; M BondCon
end PassiveOneTart;
ModPassiveOnePort WModPassiveOnePort
ActiveOnePort ActiveOnePort
ModActivelnePort ModactivelnePort
TwoPort TwoPort
TwoPorZero TwoPortZer
TwoPortne TwoPortne
ModTwoPort ModTwoPort
ThreePorZemn LI ThreePorZen j
R E(els|n| R I . L. 9 |
Components Comporents |
ElBondLib Interfaces PassiveDne. | EBondLib. Interfaces. PassiveOnePort |
W BondConl W BondConl

Modeling | @ Simulation
2

BondLib. Interfaces.PassiveOnePort

[(Srorors [t ] |

Figure 4.21. Passive One-Port
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Figure 4.22 shows a bond graph R-element. The bond graph resistive equation is
stated in the equation window. The variable R is declared as a parameter, which means
that the user defines the parameter upon dropping it into the model. The parameter will
be constant throughout the simulation. The value for the parameter R defaults to 1. The
parameter value is echoed in the icon of the model by including the text “R=%R" in the

1icon window.

'SIR - BondLib.Passive.R - [Mad M=l || S r - Bondib.Passiver - [Tcon] — 1ol x]
B Fl= Edit Simulstion Blot animation: window Help — {8 x| # Ele Edit Smulation Plot Animation Windaw Help |8 x
lza@s (R mey A L &-HH,| = @& WNFOO ALy &~ | =
¢ » =3B -] ¢ » /@S A Ewx -]
model R
Fackages T || (I e R R s Packages [=]
£l (] Passive apeiemster Beal R=1 "Bondgraphic Resistance" 1 [ Passive
-
e
<R e = R*i; L. .mR
end R;
R HydioR - R HydioR
nR - AR name
G HydioG -G Hydiol
~HydromG ~Hydrom®G
G G
Gt e
nic =l - n =l
E E|le|[9| x| ER . | ® | R_1
Components Components |
=BondlbPassiveR | =[BondLib Passive R
@ PassivelnePor - BondLib ¥ PassiveDnePort - BondLib Interfaces
< | »l

Figure 4.22. R-Element Model

A nonlinear resistive element is shown in figure 4.23. This model does not declare
the R variable as a parameter. The R variable is passed into the model via an input signal

connector. In this way a nonlinear, or modulated, R-element is created.
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Figure 4.23. mR-Element Model

The 7 and C elements are created similar to the R-element. They are shown in figures
4.24 and 4.25, respectively. The / and C elements contain the Modelica der command to

express their relationship with the e and f'variables.
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Figure 4.24. I-Element Model
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Figure 4.25. C-Element Model
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The transformer and gyrator models are also passive models.

Figure 4.26. TwoPort

They inherit their

connector information from a model called 7woPort. This model is shown in figure 4.26.

TwoPort is similar to PassiveOnePort in that it 1s intended to ease the creation of the two-
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port models. The direction variables are used to define the sign convention of the f
variables.
Two transformer models are shown in figures 4.27 and 4.28. Figure 4.27 shows the

linear transformer and figure 4.28 shows the modulated transformer.
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The transformer model defines the transformer constant as a parameter and the
modulated transformer model receives the transformer constant as a signal from outside
the model. The equation window shows the necessary relationships between e and f'such

that no power is stored, or created in the transformer.
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The gyrator models are constructed in a similar fashion. For completeness, the gyrator
model and modulated gyrator model are shown in figure 4.29 and 4.30, respectively.
None of the passive models contain causal information. This information is inherited

from the bonds attached to these elements.

4.3.5 Sources

The source models inherit their bond connector model information from the model
ActiveOnePort. This model is similar to PassiveOnePort of figure 4.21, but the direction
of the flow variable is negated. Figure 4.31, and 4.32 show an effort source, and

modulated effort source models, respectively.
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Figure 4.31. Effort Source Model



nSE - BondLib.Sources.mSE - [Modelica Text (=] 3] mSE - BondLi urces.mSE - [Icon] i =] |
B = Edt simulation Blot Animation Window Help —| 51 x|| ® Ele Edi Smulation Elot Animation Window Help - |81
leE &l mew AL o Hh|=Z
¢ »=maAB: -]
wmodel nSE
Packages R ™ crcenss Tncertaces Hodherivatmerer Packages [=]
] Passive geal =0 "Bondgraphiz Iffore Sourcs': B (P Passive:
1 [ Sensors s B [ Sensars
£l [ Sources 0 - s; I Sauces
e = a0;
end wSE; SE
name
sinSE
SF
g " MSE «
sinSF singF
_.mSF2 =l _mSF2 =l
E Eleld x| B B + L2 L3
Components Companents |
=/BondLib Soucss mSE E[BondLib.Sources mSE
1M odActiveOnePort - Bond T Mod ctiveOnePort - BondLib Interfac
BondLib, Sources.msE Madeling BandLib. Sources mSE
A

lodeling | Simulation
4
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Bond graph source elements have a required causality associated with them. The

source models in the bond graph library inherit their causality from the bond connected to

them, and they define causality by setting either the e variable, or the fvariable, for effort

sources, and flow sources, respectively. Thus, if the source element is connected to the

incorrect bond, an error will be generated at the time the model is compiled.

4.3.6 Sensors

There are a few sensor models in the bond graph library; an effort sensor, flow

sensor, P sensor, and Q sensor. Aside from these four models, additional power sensor

models are used extensively in this dissertation.

The effort and flow sensor models are similar to passive element models in that they

rely on PassiveOnePort for the connector inheritance. The input to these models comes
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from the bond graph 3-tuple, and the output is a signal generated by either the e variable

or f'variable. Figures 4.35 and 4.36 show the effort sensor and flow sensor, respectively.
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The P and Q sensor are constructed in a different manner. Up until now, the models
in the bond graph library have not used the diagram window. All of the information
needed to construct the model was either inherited or explicitly stated in the equation
window. The icon window has been used to show the iconic representation of the model
at higher hierarchical levels. This window usage is not so for the P and Q sensors. These
models are constructed exclusively in the diagram window, with the exception of the
PassiveOnePort inheritance statement in the equation window. The sub-models used to
create the P and Q sensor models all come from the bond graph library and are discussed
above. Figures 4.37 and 4.38 show the P and Q sensor models, respectively. In these
two figures, however, the equation window is replaced with the diagram window. The
integrator, used on the output signal in both models, comes from the

Modelica.Blocks.Continuous library that comes standard with the Dymola software.
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Naturally P is an effort, and O is a flow. Thus, an effort sensor and flow sensor

were used in these models. The 0/1-junctions, together with the bonds, ensure that the

sensor models provide the proper causality to the model that they are connected to.
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The power sensor models use all three windows. These models are intended to sense
the power flow through a bond. Thus, there are two power sensor models; one for an e-
bond model and one for an f~bond model. The power sensor for the e-bond model is

shown in figure 4.39.
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Figure 4.39 shows the equation window on the left and the diagram window on the right.
The icon window for this model is shown in figure 4.40. The power sensor for the f~bond
can be seen in figures 4.1-4.3. These figures were introduced earlier, as an example of
the three different windows used by Dymola to describe a model. Naturally, the power
sensor models act the same as the bond models, since the bond model is the only thing

connecting input to output.
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These models can now be used to create large bond graph models. The large bond
graph models themselves can be used in an object-oriented fashion to create very

complex models.

4.4 A Gyroscopically Stabilized Platform: An Object-Oriented Bond Graph

Example

This section uses the bond graph library to create a model of a gyroscopically
stabilized platform. This model has many levels built up from the bond graph library.
The gyroscopically stabilized platform serves as a good example of how the bond graph

library, used in an object-oriented manner, can create very complex systems [McBO03].

4.4.1 The Gyroscope Model

The bond graph of figure 4.41 is the gyroscope model of Chapter 3. Here the bond
graph has been constructed using the bond graph library of the previous section. Figure
4.41 looks no different than a bond graph generated by any other bond graph drawing
tool. There is a major difference, however. The model can be dropped into larger
models as an object. Also, the Dymola framework used to create the models knows
nothing of bond graph modeling. This independence adds a degree of flexibility to the
modeling environment.

The gyroscope model of figure 4.41 is a very complicated model. This model takes

signal inputs from outside the model and converts them into effort sources using the
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modulated effort source model. There are two modulated transformer elements with
modulation signals of sin(@) and cos(H). The signal @ is calculated by integrating the

flow off of the @ 1-junction. This detail is done in the equation window since the

diagram window is very busy.
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Figure 4.41. Gyroscope Model
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Zeal theta_dot;

Real cos_theta;

Real sin_theta;

Real psi;
Real psi_dot;
Real phi:
Components Deal phi_dot:
Elawo LbGwe | Real P_A Bp;
#J0p3_1 Real P C.
HC o PO
Hd1pd 1 =
FImTF1 ﬂ equation

Mudehng %
Figure 4.42. Gyroscope Model: Equation Window (A).
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Gyro - Gyro_Lib.Gyro - [Modelica Text] ] ;Iglll
File Edit Smulation Flot Animation. Window Help =181 %]
lsd& W meysr s & gh zless B0
= = -
Packages —— »
equation

[ Modelica
[ [T] Modelicatdditions

when initial{} then
reinit (A _Bp. £, Theta dot_0);

Unnamed veinic (Cpp_ f, Phi_dot_0):

- platform_test1 reinit (C_.£, Psi_dot_0 + Phi_dot_0%cos(Theta 01);
51 [ Gyra_Lib reinit (theta, Theta 01

T reinic (phi, Fhi_0);

i-rafeInertial_Rats_5 end when;

e eit_mass

theta dot = A_Ap.f;
phi_dot = Cpp_.£7
psi_dot = fEondl.eBondConl. f;

deritheta) = theta dot;
deri(phi) = phi_dot;
deri{psi) = psi_dot;
cos_theta = cositheta);
sin_theta = sinitheta);
P_A Bp = [k + Bp)*h Bp._f;
EJ0p3_1 p_c_:p:c:*c ,f;p -
2o P_Cp = (Cp)*Cp_.f;
Hp41
mTF nGY3. InPorel.signal(l] = P_& Bp
dimTF2 nGYZ. InPorel.signal(l] = I_Cp;
IR wG¥1l.InPortl.signal(l] = P_C;
B2 wTFLl.InFortl.signal(l] = cos_theta;
+ 2 wTFZ.InPortl.signal (1] = =in_theta;
@Cp_ Outputs_sigmalll] = theta;
G eBondd Outputs. sigmallZ] = theta dot;
[ fBondl Outputs.signal[3] = phi;
[ fBond2 Outputs.signal(4] = phi_dot:
1 eBondi Outpucs. sigmallS] = psi;
1 Bonds = Ourputs signal[6] = psidet; a
end Gyro; E

Mode\ing 4
Figure 4.43. Gyroscope Model: Equation Window (B).

Also done in the equation window is the output vector signal definition. The large
amount of code in the equation window prevents it from being included as a single figure.
Two figures have been created. Figure 4.42 shows the parameter and variable
declarations and figure 4.43 shows the equations. The parameter and variable
declarations simply define all of the variables needed to run the model.

The code in the when initial() then clause initializes the states of the system. This
section of code is included to add the ability to initialize the states of the gyroscope
model to values other than zero.

The next section equates the variables theta dot, phi dot, and psi dot to their

appropriate bond graph values. The der function is used to integrate these values to get
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the variables theta, phi, and psi. The variables phi, and psi are used for outputs only.

The variable theta is an output, but it is also used as in input to the modulated

transformers as mentioned above.

The variables P A Bp, P Cp, and P_C are the momentums off of the 4 Bp, Cp, and

C, I-elements, respectively. These momentums are used as input signals to the modulated

gyrator elements mGY3, mGY2, and mGY1, respectively. The output vector is a 6-tuple

defined as <€, 0,4,é,v, 1/'/>. This discussion completes the dynamics of the equation

window. All other gyroscope dynamics are contained in the bond graph model of the

diagram window. The gyroscope model icon is shown in figure 4.44.
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Figure 4.44. Gyroscope Model: Icon Window.
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4.4.2 Inertial Rate Sensor Model

Inertial pitch, yaw, and roll rates can be sensed from three gyroscopes by orienting
the gyroscope models in three different directions. The above gyroscope model can be

used in an object-oriented fashion in three different instances to accomplish this task.

4.4.2.1 Pitch Gyro

Figure 4.45 shows the gyroscope model of figure 4.41 oriented to sense pitch motion.
The signals labeled SE Roll, SE Pitch, and SE Yaw are torques that move the platform
body. The gains scale these torques to the appropriate value such that, after scaling, the

inputs are the effective torques that act on the gyroscope body.

Gyva_LibPikch_Gyra - [lagram] alelxl
o [ eudvin B s et ab 18] x
FEE W Moo FAL-B-ilh E 4+ oS A QIEE-]

SE_Piteh

pe
Theta =
I | 4 :
> 1 4ai < .

SE_Yaw

Figure 4.45. Pitch Gyroscope
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The gain on the SE_Yaw torque is more complicated than just a gain. The formula for

scaling the yaw torque is

Plaform _Yaw_ Torque [(A +B')sin’(0)+ C'cos’(0)+ C"] (4.42)
IPlatform,,,

Gyro _Yaw Torque =

A, B', C',and C" are gyroscope inertia values and & is a gyroscope Euler angle, as

described by Section 3.3.4.  Platform Yaw Torque is the SE Yaw input, and

IPlatformy,, is the platform, yaw moment of inertia. This same formula is shown in

figure 4.46 with the icon window to the left and the diagram window to the right.
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Figure 4.46. Effective Inertia

The instantiated effective inertia model in figure 4.45 has been flipped about the
horizontal axis, thus the gyroscope variable theta enters nearer the bottom of the icon.
This scaling of inertias is a byproduct of the simulation environment. In the physical

world, the gyroscope would be strapped to the platform body. Thus, any torques felt by

the gyroscope would naturally have the appropriate magnitude.
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The gyroscope in figure 4.45 is oriented such that the Euler angle rate y is a

measurement of inertial pitch rate. By monitoring this angular rate, and integrating, the
gyroscope can measure the pitch, and pitch rate of the platform body. The icon window
for the pitch gyro model is shown in figure 4.47.

The model labeled Array Indexingl is simply a de-multiplex model. The input to

this block is the 6-tuple <€, 0,4,6,v, l,/'/> from the gyro and the output is .

S)Pitch_Giyro - Gyro_Libfikch_Gyro - [icen] alelxl
BB [ Srinin pot fraen fndue Wb 18] %
FEE W MO oFAL- it B4 +eSARN

S

SE_Roll l:"'.:..:‘::'f' .

SE_Pitch \ i

name >
N 8 wsirs

Figure 4.47. Pitch Gyro Icon Window

4.4.2.2 Yaw Gyro

Figure 4.48 shows the gyroscope model oriented such that the platform yaw motion
can be measured by monitoring the angle . Figure 4.49 shows the corresponding icon
window. Here, the effective inertia calculations are identical in form to those shown in

Section 4.4.2.1. The appropriate roll, pitch, and yaw platform inertias are associated with
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the signal values. Thus, the /Platformy,, value in equation 4.42 becomes IPlatformpi., in

this model.

Yam_Gyro - [Diagram] alel =]
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Figure 4.48. Yaw Gyroscope
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Figure 4.49. Yaw Gyro Icon Window |
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4.4.2.3 Roll Gyro
Figure 4.50 shows the gyroscope model oriented to sense inertial roll motion of the

platform. The corresponding icon window is shown in figure 4.51.
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Figure 4.51. Roll Gyro Icon Window
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Similar to the previous gyro orientation models, the form is identical but the inertia
parameters, and the torque signals, are connected in a roll orientation.
The complete inertial rate sensor model is created by dropping the pitch, yaw, and roll

gyro models into a single model. This model is shown in figure 4.52.

3 Inertial_Rate_Sensor - Gyro_Ubnertial_Rabe_Senser - [Dagram] alEl x|

e B Gl P A idoe Hek =8| x
SHE W Moo FAL-N-iy ++maBB
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' : » Z
SE_Roll o - Sered Fiol
. i .f';{é)_;
L4 Roll_Gyro Y N
Fimon o) | ¥
AR IEINT Sk o— o s d Posilions
Tomoamas N 2
iAo
WSE P _ Sensed_Fich
i SE_Pitch 3N
L ik > 5
= Pach_Gae e
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Anay_lndeargl $E,
7 Senced_Pich
2 hanag_lrcbuing] Sanand_aw
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> e
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Figure 4.52. Inertial Rate Sensor Model

The three Array Indexing models de-multiplex (demux) the gyro 6-tuples to output

the last element, which corresponds to the Euler angle rate i of each gyro. These three

signals are sent through a sensor block. The sensor block simply consists of an integrator
and sensor delays. The model is setup to subtract off initial conditions, if needed. This
model is shown in figure 4.53 with the icon window on the left and diagram window on
the right. As seen in figure 4.53, both the rate and angle are outputs of the sensor delay

model.
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The output of the inertial rate sensor model is again a 6-tuple. The signals are the

sensed rates and angles of the three gyros, i.e., <sensed roll rate, sensed roll angle, sensed

pitch rate, sensed pitch angle, sensed yaw rate, sensed yaw angle>. The icon for the

inertial rate sensor model of figure 4.52 is shown in figure 4.54.
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Figure 4.54. Inertial Rate Sensor Model Icon
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The inertial sensor rate model is now ready to be used in a larger model. By attaching
the above model to a platform model it is possible to sense the platform roll, pitch, and

yaw degrees of freedom.

4.4.3 Platform Model

The platform model for this example is a very simple model. The platform model is
kept very simple, since the focus of the platform example is the use of the gyroscope
model as an object-oriented bond graph.

The platform model consists of roll dynamics, pitch dynamics and yaw dynamics.
For simplicity, these models are independent of one another. Each of these three
channels is modeled with a simple bond graph consisting of an effort source, and

platform body inertia. This model is shown in figure 4.55
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Figure 4.55. Platform Channel Bond Graph
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As seen in figure 4.55, the platform channel bond graph is very simple. The torque
signal is converted to a bond graph value through the mSE model and the output is the
flow off of the 1-junction. The 1-junction flow and position are the outputs of the model.
The icon labeled Concat is a multiplex model that makes a 2-D vector from two 1-D
vectors.

Three instances of the platform channel bond graph are used to model the complete

platform body. This model is shown in figure 4.56.
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Figure 4.56. Platform Body

The outputs of this model consist of a vector of the three body rates and positions, and a
vector of the control efforts used to control the body motion. The control efforts output

from this model are input to the mSE elements of the platform channel bond graphs. As
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such, the control efforts are the body torques used to move the platform body. The icon

of the platform body model is shown in figure 4.57.
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The icon labeled Platform Cntrir is the body controller. This model is a simple rate
and position, proportional feedback controller to control the body position. This model is
shown in figure 4.58. The platform model is now ready to be connected to the inertial

rate sensor model.

4.4.4 Stabilized Platform

The platform and rate sensor models are combined to form a stabilized platform

model. This model is shown in figure 4.59.
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Figure 4.59. Stabilized Platform

The inputs to this model are body position commands. The outputs consist of two
vectors: first the true body rates and position, and second the sensed body rates and

positions. As can be seen by the diagram window of figure 4.59, the gyroscope model
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outputs are used as feedbacks to the platform model to stabilize the position. The icon of

the stabilized platform is shown in figure 4.60.
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Figure 4.60. Stabilized Platform Icon
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This completes the stabilized platform model. The stabilized platform uses three
instances of the gyroscope model, and three instances of the platform channel model.
The bond graph library forms the basis for the stabilized platform model. The controller
models, and supporting mathematics models, are built from the Dymola standard

libraries.

4.4.5 Camera Model

Another layer of complexity is added to the stabilized platform model. A gimbaled

camera is attached to the platform body. The camera sits on gimbals in order to remain
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pointed at a fixed inertial point regardless of the platform body motion. The camera
model uses another instantiation of the gyroscope model. The dynamics of the camera
gimbals are identical to the gimbals of the gyroscope. However, the implementation of

these dynamics is very different.

£ Camera - Gyre_Lib.Camera - [agram] alEl x|
e B Sl o reraion e tek =l x
SHES W oo CAL-A-1th, B4+ 8 SHB

Contart]
40 Sagrée subraton
b

ol %1 Cam, Cmnd. Rol — 1

— - AR - o

Bz s -

T Ta Gy ey x -nr\rln-]ll
W Pach e [ .

it ot e 2] &

Rray Jrebering! 14
i
Carnara =‘|.|-_-|'_u.m-.1 @j .
s Ll .
| ~

s
Cam, Cmnd. Pitch ComanCIiin ) 8 Camera Positions
psi, theta, phi
( .
Q .
[ b
35
Cam, Cmnd. Yaw T Camsra Posiions and Rates
S
.
Figure 4.61. Camera Model
amera - Gyro_Lib.Camera - [Icon] alElx
) =l8ix

B Geritir
SHE ¥ /oo TAL-B-1i B+ aSEBw ]

Cam, Cmnd Roll
LI

SR

r/}

>

Cam. Crond. Fitch Camera Positions

psi, theta, phi

» .
L. name

Figure 4.62. Camera Model Icon



146

The camera model is shown in figure 4.61, and the icon in figure 4.62. Figure 4.61
shows that the camera model dynamics are defined by an instantiation of the gyroscope
model. The initial angle on theta is 90°, due to the definition of theta in the gyroscope

model. The subtraction on the output signal of theta removes this value.
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Figure 4.63. Camera Controller

The camera controller model, inside the Camera Controllerl icon of figure 4.61, is
shown in figure 4.63. The controller has a simple proportional position and rate control
law. The inputs from the left are the camera roll, pitch and yaw position commands. The
outputs on the right are the theta, psi, and phi torques that will be used in the gyroscope
bond graph. The 90° rotation on the variable theta is also seen in the SE theta channel.
The effective mass model is included in this controller to scale the torque on phi

appropriately. From figure 4.63, it is apparent that a roll command induces a psi motion
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in the camera, a pitch command induces a theta camera motion, and a yaw command
induces a phi camera motion. With this orientation, and figure 3.20, it is seen that the
camera is oriented in the same fashion as the roll gyro. The camera model is ready to be

attached to the stabilized platform.

4.4.6 Stabilized Platform with a Two-Gimbal Camera

The model attaching the camera to the stabilized platform is shown in figure 4.64.
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As seen in figure 4.64, the sensed body motion is fed into a block to subtract the body
motion from the camera position commands. In this way, the effective camera position
commands remain fixed in inertial space. Since the body motion subtracted off of the

camera commands is sensed, it is expected that some error exists between the camera’s



idea of an inertial fixed position and true inertial fixed position.

is straight forward and shown in figure 4.65.
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The icon of the completed model of figure 4.64 is shown in figure 4.66. This camera
model contains four instances of the gyroscope bond graph model of figure 4.41. The
gyro model is a high fidelity model that includes gimbal inertia effects. Other sub-
models are low fidelity models. One of the advantages of working with object-oriented
models is that improvements to the fidelity of a core sub-model are reflected in every

instance. The camera and stabilized platform model is now complete and ready for

simulation.

4.4.7 Simulation and Results

The complete model used for the simulation is shown in figure 4.67.
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The simulation is setup to run from 0 to 15 seconds. Table 4.1 lists the inertia parameter
values for the camera and gyroscopes used during the simulation. The inertia values
were created arbitrarily for this simulation. The inertia values used for the platform are

Ipitch = 5E4 kg*m?, Iyaw = 4E4 kg*m® and Iroll = 3.5E4 kg*m®. The sensor delays

were set at 1 kHz.

Gyros Camera
A 400 kg*m” 1800 kg*m”
C 900 kg*m” 3600 kg*m”
A 40 kg*m” 160 kg*m®
B’ 80 kg*m” 320 kg*m®
C’ 40 kg*m” 160 kg*m”
c" 75 kg*m” 300 kg*m®
v, 1500 rad/sec 0 rad/sec
0, 0 rad/sec 0 rad/sec
bo 0 rad/sec 0 rad/sec

Table 4.1. Camera and Gyro Values used for Simulation

The simulation run consisted of commanding the camera to a specified point and then
commanding the platform to move. The camera, initially at 0° about all three inertial

axes, was commanded to maintain a constant inertial position of 57.3° about all three
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inertial axes. These inertial camera angles are expected to remain unchanged while the
platform is commanded to oscillate through a series of maneuvers. The platform was
commanded to pitch, yaw, and roll in a sinusoidal motion. This commanded sinusoidal
motion is described in figure 4.68. As seen in figure 4.68, roll, pitch, and yaw were
commanded to react to different magnitude and frequency sine waves. As seen in figure
4.68 the roll, pitch, and yaw command frequencies are .25Hz, .SHz and 1Hz,

respectively.
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Figure 4.68. Platform Position Commands (deg)

The pitch achieved response is shown in figure 4.69. The response is shown in the
top portion of the plot and the error is shown in the bottom portion. As seen in the error
portion of figure 4.69, the pitch response matches the command very well with an error

of less than 1°.
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Figure 4.70. Platform Yaw Response (deg)
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The yaw achieved response is shown in figure 4.70. As seen in the error portion of
figure 4.70, the yaw response generates up to 2.64° error. The frequency of the input

command is larger for the yaw response than for the pitch.

The roll achieved response is shown in figure 4.71. The error portion of figure 4.71
shows the roll response generates just over 7° error. The frequency of the roll input

command is the largest of the three channels.
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Figure 4.71. Platform Roll Response (deg)

Figure 4.72 compares the sensed positions to the achieved positions. This figure
compares all three channels at once to show that the sensed values are very close to the
actual. This result is not surprising considering the simplistic sensor model used. Note

that the error in the sensed and achieved values follows the same trend as the commanded
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and achieved values, i.e., roll, yaw, and pitch are the order of the channels from greatest

error to least.
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Figure 4.72. Actual and Sensed Achieved Positions (deg)

Figures 4.73 through 4.75 show the camera’s response for the three channels. The

top portion of each plot shows three separate signals; camera commanded position,

camera body position, and the platform achieved position. The bottom portion of each

plot shows the camera commanded position minus the camera achieved position minus

the platform body motion. This signal represents the inertial pointing error.
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Figure 4.73. Camera Pitch Response (deg)

Camera: Yaw
100 T T
| |
| |
A ! ALA A
o gl > ~—-_— __— __+t -~~~ v\ I\ A~ T _—__ —
3 50 | \/ | \/
© ! |
= | |
2
< | |
3 o ; LN -
> | | | — Camera Body Pos.
| | | = Camera Commanded
| I | — Platform Body Motion
50 ! |
5 10 15

Yaw: Camera Inertial Error (deg.)

10 15

Time

Figure 4.74. Camera Yaw Response (deg)



156

Camera: Roll
100
—— Camera Body Pos. ! !
80H| — CameraCommanded |+ - - - — - - — - -~ S —
—_ —— Platform Body Motion ! ﬁ !
2 60 ——— A N —
i ‘ VAR
> | ]
B MOf - ------- - T m - 4 ——————— —
< | |
S 0F—-—————=—=——- = + === = B —
& I I
0 - —
| |
20 1 |
0 5 10 15

=)
=3

N
S
T
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|

I
|
|
|
|
|
|
|
|
|
|
|
|

Roll: Camera Inertial Error (deg.)
o

N
=]
i
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|

N
=}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

‘ —— Camera Cmnd. - Camera Pos. - Body Mtn. ‘

A
S
[S)

5 10 15
Time

Figure 4.75. Camera Roll Response (deg)

Figure 4.73 shows that the camera pitch response follows the command and subtracts
out the platform motion very well. The lower portion of figure 4.73 shows the inertial
error which remains close to zero throughout the simulation. Also evident from figure
4.73 is the cross coupling between channels. Camera pitch motion is influenced by yaw
and roll motions.

Figure 4.74 and 4.75 show that the cross coupling between the roll and yaw motions
is even greater. It is clear from these plots that the simplistic camera control scheme of
figure 4.63 needs to include cross coupling terms in the camera roll and yaw channels.

The stabilized platform example has shown that object-oriented bond graph modeling
is a useful and powerful technique in the modeling process. The stabilized platform was

developed by using four instances of a complex gyroscope model. The ability to create a
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bond graph and drop it into a higher hierarchical level adds a degree of flexibility that, to

the best knowledge of the author, does not exist in any other simulation framework.

4.5 Conclusions

This chapter has shown that in order to simulate a bond graph model directly, the
software must be able to handle both algebraic loops and structural singularities. The
Tarjan algorithm and the Pantelides algorithm are quite capable of handling these
respective problems. The Dymola software package uses these algorithms to handle
these two issues. Also, Dymola is object-oriented in that sub-models can be dropped into
models at a higher hierarchical level. Thus, Dymola is a prime candidate for creating a
bond graph based simulation environment.

A bond graph library was presented within the Dymola framework. This library takes
full advantage of Dymola’s ability to sort equations, solve algebraic loops, and handle
structural singularities. Also, the object-oriented nature of Dymola provides the ability to
use bond graph models, created with the bond graph library, in an object-oriented
fashion.

The design and simulation of a system can be done quickly and meaningfully using
the tools presented in this chapter. As an example of the ability to model meaningful
systems, a complicated gyroscope model, created with the bond graph library, was used

in four separate instances to create a gyroscopically stabilized platform model.
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CHAPTER 5: System Efficiency Measurement Using the Power Flow
Information from a Bond Graph Model

5.1 Introduction

Bond graph modeling is a method of modeling a physical system by mapping the
power flow through the system. As shown in Chapter 3, the power flow information of a
bond graph can be used to develop the state equations for a given system. However, once
the equations of motion are obtained, often the power flow map and the system’s causal
relationships are discarded. As a result, useful information is lost.

In this chapter, the power flow information of a bond graph is used to develop a
method for measuring the efficiency of a system. Here, a method is presented in which
the power flow information can be used to monitor the effectiveness of a control scheme.
The energy output of a system divided by the energy put into the system gives a feel for
the efficiency of the system. Controller effectiveness can be measured by viewing the
system’s energy response to a given input. In this manner, controllers of different
topology can be compared to each other in a meaningful way [McBO05c].

In a given system, limitations exist on the amount of power that the system can use at
any given time. These limitations can be used to determine the theoretical limit of the
system’s response. In the case of a control system, often the performance of the system is
limited by the thermodynamic bounds of the input power supply. A properly designed
controller will make use of the total available energy delivered by the input power

supply. Since bond graphs map the power flow through a system, a bond graph model
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can be used to monitor the system’s thermodynamic response as compared to its
theoretical limit. In this way, one can determine if the control system has been properly
designed.

This chapter shows, by means of an example of a servo positioning system, a method
in which a bond graph model can be used to compare a system’s response to its
theoretical thermodynamic limit. Separate control schemes are shown and the system
responses are compared. A comparison of the effectiveness of the controllers is made, by
observing their ability to utilize the power supplied by the motor. By monitoring the
power flow through the actuator bond graph, for a given controller, one can get an idea of
the controller’s ability to effectively use the energy available to the system.

This chapter, however, is not concerned with controller stabilization. The control
schemes that are compared by the method presented here are assumed stable. This
analysis is meant to serve as a method of comparing the performance of controllers,

regardless of the control architecture, given that the controllers to be compared are stable.

5.2 Servo Positioning System

The equations obtained from a bond graph model are identical to equations obtained
through other modeling techniques. However, in this research the power flow map is
used specifically to monitor the used energy in the system and compare it to how much
energy the system could potentially use. Thus, bond graph modeling lends itself

naturally to this analysis.
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A controller, motor, and load dynamics are shown in figure 5.1. This system
represents a fin positioning system used in flight control. The model of figure 5.1, and all
models presented in this chapter are created in DYMOLA using the bond graph library as
described in Chapter 4. The motor and fin dynamics are objects that contain bond graphs

within.
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Figure 5.1. Fin Positioning System

Figure 5.1 shows the fin command as an input. The outputs are shown as achieved
fin position, energy and power. The output power vector is the power flow through
selected bond graph elements of the motor and fin dynamics models. The energy vector

is the integral of the power vector.
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Inside the motor block of figure 5.1 is a bond graph model of the motor dynamics.

The bond graph model of the motor dynamics is shown in figure 5.2.
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Figure 5.2. Motor Bond Graph

In order to make figure 5.2 more readable, figures 5.3 and 5.4 have been included, which

zoom in on the details of figure 5.2.
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Figure 5.3. Motor Bond Graph: Battery

The motor dynamics consists of three parts; battery dynamics, motor coils, and shaft
dynamics. The bond graph model of the motor could have been divided at the output of
the coils (at the gyrator), which would have lumped the shaft dynamics into the fin
dynamics model. This partitioning would have been a natural choice, if the models were
broken by energy domain, separating electrical from mechanical. However, the models
were built as shown to represent the physical system. A motor naturally has an electrical
input and shaft dynamics as the output. This small detail will later influence the models
when the fin dynamics model is linearized.

The battery has two capacitors to keep the voltage near the mTF element as constant
as possible [Ther]. The capacitor nearest the mTF element is cdriver, the remaining
capacitor is chatt. An inductor is placed between them to avoid a structural singularity.
The resistor between the two capacitors is a model of the resistive loss through the

inductor. The battery has a protective diode that is modeled as a nonlinear resistor. This
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diode is seen in figure 5.3 as the modulated resistor element. The logic for this resistance
is as follows:

if (Voltage of the capacitor chatt > Input voltage e0) then

mRI =rr
else

mRI1 =rf
end

In the Modelica language, the above logic is represented by the equivalent statement
mR1.s = if vbatt > CBATT.e then rf else rr,
Although this detail is not explicitly shown in the bond graph diagram of figure 5.2, it is

stated in the Dymola equation window of the model.
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Figure 5.4. Motor Bond Graph: Coil and Shaft
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Shown in figure 5.2 is a modulated transformer. This element is used to implement
the pulse width modulated (PWM) signal. As seen by the motor bond graph, the PWM
signal limits the amount of power flow from the battery to the rest of the servo-system.
In this way, the fin can be commanded to a specific position. It is seen in figure 5.2 that
no usable power comes from the controller. All of the power supplied to the motor is
stored in the battery section. The controller simply limits the power flow through the
modulated transformer.

As seen in figure 5.2 the power signals on some of the bonds are passed to the higher
levels of the Dymola model. This chapter focuses on the analysis that can be performed
by monitoring these power signals. The elements in figure 5.2 labeled concat act to
multiplex the power signals such that they can be passed to the upper levels of the model
through a single vector.

The fin dynamic equations are modeled in the bond graph of figure 5.5. The output

of the model is the fin position.



165

{5 CAA_Fin_Dynamics - CAA.CAA_Dynamic_Elements.CAA_Fin_Dynamics - [Diagram] - [=lx]
@ Ele Edit Smulation Plot Animation Window Help |8l x

ZEE R/ OoTAI-B- 0 2 ¢ » = o0 E -]

| Packages B

oFin_Model
- agoFin_Model_C

Concat2_1

o DA Motor_
- C_Fin_Dyp.. o ’VF“
o Linear_Actua.. W"z
- oFin_Model_S

+) ey Handing
5 [ BordLib

Gear Train with Backlash Fin Dynamics
= FinF.

e fE (% || b R .

C = Integrator  Deg_per_Rad
omponents Gea.. Gea... 2
(S[CaA CAR_Dynamic,_E1 P TE s BL N TF 5\ . /
[ ACFTOROUE B o = T LANS HJ‘ 1 2= f
Fo FIMINERTIS, (=0 Li0RR)

1 Giear_1

1 eBondd 4 b

 eBond10

[+ fBond14 ACF.S FIMIL..

FIGear 2 mSE |

B fBond15 H I=jfin
inge Moment Input

E.LF‘“F“S Hinge_Gai

5

EJ1p5.2 Concatz_2

B eBondi2 -

k={hm_armi..

or A Concat2_3

[ Integrator - {N]
M BondConl Az]

I FinFriction ad]

&7 Hinge_Gain =

Deq_per_Rad

WPower F Bondl v

Figure 5.5. Gear Train and Fin Dynamics

The fin position is calculated by integrating the flow off of the 1-junction. The model of
figure 5.5 includes a modulated effort source that is used to model the hinge moment
torque. This hinge moment torque represents the aerodynamic load on the fin. For
simplicity, the hinge moment torque is modeled proportional to the fin position.

Similar to the motor bond graph of figure 5.2, the power signals from specific bonds
have been multiplexed and passed to the upper levels of the model to be used in the
analysis of the model.

The fin dynamics model of figure 5.5 shows a nonlinear backlash element. The
backlash model is expanded and shown in figure 5.6. As seen in figure 5.6, the gear

positions on both sides of the backlash model are sensed.
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A specified amount of torque is calculated and sent back through a modulated effort
source depending on whether or not the gears are in contact. Although the bond graph
depicts the torque transmitted as an effort source, it is really modeled as a torsional spring
as follows:
if (position error > backlash/2) then
Twist = (position error — backlash/2)
else if (position error < - backlash/2) then
Twist = (position error + backlash/2)
else
Twist =0

end
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The modulated effort source is then assigned a value of k*7Twist, where k is a torsional
spring constant that is set at a stiff value (340 N*m/deg). This nonlinearity causes
problems in the position control of the fin. The value of k& is passed into the backlash
model as KBL denoted in table 5.1. Similarly, the value of backlash is passed in as ABL.

Table 5.1 gives a list of values used in the actuator model.

Variable Parameter Figure Value Description
e0 vbatt 53 200 Supply Voltage (Volts)
mR1 rf 53 0.001 Forward-Biased Diode (Ohms)
mR1 rr 53 500 Reverse-Biased Diode (Ohms)
CB cbatt 53 0.002 Supply Capacitor (Farads)
BA battr 53 2 Supply Resistance (Ohms)
LB Ibatt 53 0.001 Supply Inductance (Henrys)
CD cdriver 5.3 1.00E-05 Driver Capacitance (Farads)
LM Imotor 54 6.00E-04 Motor Inductance (Henrys)
M jmotor 5.4 4.50E-07 Motor Inertia (kg*m”2)
KM kmotor 5.4 1.5 Motor Gyrator Value (Volts*Sec/Rad)
CoilR Rcoil 54 0.6 Motor Coil Resistance(Ohms)
Fri shaft friction| 5.4 0.3 Shaft Friction (N*m*Sec/Rad)
erl grl 5.5 0.02 Gear 1 Ratio
ar2 gr2 5.5 0.25 Gear 2 Ratio
jfin jfin 5.5 3.00E-04 Fin Inertia (kg*m”2)
Hinge Gain| hm amount| 5.5 -0.6 N*m/(Deg of fin deflection)
FinF fin_fric 5.5 0.04 Fin Friction (N*m*Sec/Rad)
k KBL 5.6 334 Backlash Spring K (N*m/Deg.)
backlash ABL 5.6 0.025 Amount of Play in Backlash (Deg.)

Table 5.1. Model Parameter Values

5.2.2 Servo Positioning System: Complete, Linearized System

Bond graph models can be linearized by changing the nonlinear bond graph terms to
linear terms. This linearization can help in the analysis of the system in that analysis can

first be applied to the linear system and then extrapolated to the nonlinear system. This
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section focuses on the linearization of the fin positioning system presented in the

previous section.

5.2.2.1 Linearized Fin Dynamics

The dominant nonlinearity of the fin positioning system, described above, is the
presence of backlash. By noting the structure of the bond graph in figure 5.6, it is seen
that the backlash nonlinearity can be replaced by a bond graph C element, where the C
element has the value of //KBL. The mechanical implication of doing this substitution is
that the gears are always in contact, yet the gear teeth have some compliance in them.
The resulting fin dynamics bond graph is shown in figure 5.7.

Note that the causal marks on the bond graph of figure 5.5 are essentially the same as
those in figure 5.7. Integral causality is maintained on all elements by choosing this
method of linearizing the gear backlash. A potential drawback of this method, however,
is that the stiff spring constant KBL used to calculate the compliance of the gear teeth
may place a pole far to the left of the rest of the poles in the system creating a stiff
system. Stiff systems cause difficulty in model simulation. “Stiffness occurs when some
components of the solution decay more rapidly than others.”[Lam91] Dymola allows the

user to choose between many integration schemes to help alleviate this difficulty.
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Figure 5.7. Linear Fin Dynamics Model (Integral Causal Model)

Another method of linearizing the backlash would be to remove the BL element of
figure 5.5 entirely. In doing this substitution, the gear train 7F elements, gr/, and gr2,
are linked together forcing the user to change the causality of the bond graph. One
possible choice of causality is shown in figure 5.8.

The backlash element has been replaced by a two-port O-junction. Since all power is
conserved in a bond graph junction, and the O-junction of figure 5.8 has only two ports,
the 0-junction has absolutely no effect on any of the bond graph equations. It has been
left in the bond graph of figure 5.8 to aid the reader in comparing the different bond

graph structures of figures 5.5, 5.7 and 5.8.
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Figure 5.8. Linear Fin Dynamics Model (Differential Causal Model)

Figure 5.8 shows that the /-element representing the fin inertia has a differential
causal mark. This causes a structural singularity in the bond graph. As discussed in
Chapter 4, Dymola is capable of handling structural singularities, but it does make the
algorithm more numerically intensive.

An alternative differential causal model is to keep the fin /-element integral causal
and reverse the causalities of the bonds on the gear train transformers. This option,
however, changes the causalities of the elements upstream, forcing the user to change the
bond graphs of two separate Dymola models. Thus, this choice is not used here.

The bond graphs of figures 5.9 and 5.10 show the complete mechanical dynamics of

the motor and fin of both the integral causal and differential causal models, respectively.
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Here the electrical dynamics are represented entirely as an effort source. The purpose of
such an analysis helps to determine if the chosen value of KBL is fine as is, too stiff, or

not stiff enough.
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Figure 5.9. Linear Mechanical Fin Model (Integral Causal Model)

The bond graph state space equations for figure 5.9 are shown in equations 5.1 and
5.2. As seen by the bond graph of figure 5.9, these equations are 4™ order linear,

coupled, ODE’s.



[ — shafiFriction
. jmotor
})shaﬂ grl
Qoeartran | _|  jmotor
PFin 0
qul1P0s
0

—grl*KBL 0

—gr2

Jfin
— fin _ fric

Jfin
1

0
gr2* KBL

0 _
Jfin

P

shaft

hm _amount * DPR

FinPos=[0 0 0 DPR] %™ | | [o}nsel

Fin

QF inPos

0

DPR represents the conversion from radians to degrees.

Lin_Fin_Diff - Lin_Fin_Diff - [Diagram]
B File Edt Smulation Flot Anmation Window Help

Pshaﬁ 1
quarTrain + 0 mSel
PFin 0
L 4 Finpos 0
EIE]
-8l x

@& WMo aL b-Fh 24 n S E R

Packages -

TR
- 1 T _Motor._
- 2~ Fin_Dy.

g Linear_Actua..
oFin_Mode]_5..

- - CAd_Fin_Dy.

s [ ey Handing

H (] BondLib

H (] Bondlib_Exras
Lin_Fin_Intcg

o
" Eeld|n]

Components &

E[Lin_Fin_Diff
&

wer_F_Bond3
mSET
FIACFTORGUET

Gear_2
W FinPost —

E1d1p5_1

eBond?

Fi

Integrator

FinFiiction

[ Hinge_Gain1 |

Linear Fin Dynamics
Differential Causality

Gear Train

mSE1
»mSE -

Gea 2
o] 1 Ianm TF Ieannuq 0 'pnﬁ

s

Gea

TF
=T

mSE |
I=ifin
Hinge Moment Input
Hinge_Gain1

FinE.
R=fi i
= 1

o
4 g 3
H
g
ack. & N Fn.

Fin Dynamics

Integrator! Deg_per_ R

k={him_ami

Modsling | Y Simulation

Figure 5.10. Linear Mechanical Fin Model (Differential Causal Model)

172

(5.1)

(5.2)
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Similarly, the state space equations of the bond graph, shown in figure 5.10, are given

in equations 5.3 and 5.4. As seen by the bond graph of figure 5.10, these equations are

2" order, linear, coupled ODE’s. The 2™ order, state space equations are somewhat

more difficult to derive due to the differential causal element of the bond graph.

shaft friction + fin_fric* (grl
gr

2
grl
2] (gﬁ

J *hm_amount * DPR * jmotor

Pshaﬁ _ - grl ’

. - Jmotor + jfin*| =—
49 Finpos gr2
grl

i gr2* jmotor

Jmotor

2
+| jmotor + jfin *(grlJ mSel
gr2

0

Pshaﬁ

FinPos =0 DPR]{

q FinPos

} + [0]mSel

Jjmotor + jfin *[

0

gr

gr2

1}2

Wi

shaft

_quani| (5.3)

(5.4)

Obviously, equations 5.3 and 5.4 represent the system when the gear tooth stiffness is

infinite. The modeling engineer has to choose among the options described in table 5.2.
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Option Description Differential | Stiff System? Disadvantages
Causality?
| A relatively low No No This option, although
value for KBL, e.g. The model | numerically  desirable,
KBL =34 diverges from | does not represent the
the others | physical system.
below .01 Hz
2 A mid-range value No No This model has a low
for KBL, e.g. KBL decrease in magnitude
=340 and phase at low freq.
3 Choose a large No Yes This stiff system causes
value for KBL, e.g. integration  difficulties
KBL = 3400 yet the freq. response is
not that different from
option 2.
4 Choose the 2™ Yes No Dymola can handle the

order, differential
causality model.

structural singularity but
the physical system
more then likely does
not have infinite gear
tooth stiffness.

Table 5.2. Linearized Backlash Modeling Options
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Figure 5.11. Bode Comparison for Different Values of KBL

Given the options from table 5.2 and viewing the frequency response from figure
5.11, option three will be used as the linearized version of the fin dynamics. This

analysis also helps verify the KBL value used in the nonlinear backlash model.

5.2.2.2 Linearized Motor Dynamics

There are two nonlinearities in the motor dynamics model of figure 5.2, the
modulated resistor mr/ and the PWM control signal input to the modulated gyrator. The
first nonlinearity is simple enough to change. The linearization is made by simply

assuming that the value of mr/ is constant and set to the forward-bias diode value, rf,
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which implies that the capacitor voltage chatt never exceeds the input voltage vbatt. This

set of linearizing assumptions results in the state space matrices shown in equations 5.5

through 5.8. These equations represent both the motor and linearized fin dynamics in

terms of the values defined in table 5.1.

T
X - [qcbatt p lbatt chriver p Imotor p Jjmotor qbacklash p Jfin q fin_ pos ] :

1
rf * cbatt
1
chatt

0

0

0

1

- 0 0 0 0
Ibatt
b
_ bamtr 1 0 0
Ibatt cdriver
PWM
- 0 0
Ibatt Imotor
PWM  Rcoil _ kmotor 0
cdriver Imotor Jmotor
0 0 kmotor — shafi _ friction — gr*KBL
Imotor Jjmotor
0 0 0 _etl 0
jmotor
0 0 0 0 gr2*KBL
0 0 0 0 0

T
0000000}

c=[0 0 0 000 0 DPR]

D=]0]

The input to this system is the constant voltage vbatt.

0

0

_g?
Jfin
_ fin_ fric
Jfin
1

Jfin

0
DPR*hm _amount

0

The state vector for equations 5.5 is

(5.5)

(5.6)

(5.7)

(5.8)

The system is controlled by

changing the value of the PWM signal, which is an internal element to the 4 matrix,



177

showing up on terms (3, 4) and (4, 3). Obviously, for constant values of PWM these state
space matrices are entirely linear. This insight, at first glance, does little to help when
attempting to control the fin’s position. However, if the integration technique is set up
such that the motor/fin dynamics are integrated at a much higher rate than the control
signal is updated, then, in between control signal updates, the above system can be
treated as a linear system.

Further investigation into the bond graph of figure 5.2 shows that the model can be
broken at the battery/coil, i.e., where the PWM signal enters the model. The causal marks
on the gyrator show that the output of the battery is the effort signal on the capacitor
cdriver and the output of the coils is the current in the inductor /motor. These outputs
serve as corresponding inputs to the respective models, the capacitor voltage is an input
to the coil model and the inductor current is an input to the shaft model. Breaking the
model in this fashion, converts equations 5.5-5.8 to equations 5.9-5.12. Equations 5.9
and 5.10 represent the battery portion only; equations 5.11 and 5.12 represent the rest of
the system. The single input to equation 5.11 allows the user to perform analysis on the
type of control effort that needs to be generated to position the fin at the desired location
in the desired amount of time. Breaking the model in this fashion aids in the controller
design process. The bond graph modeling approach allows the user to break the state

space matrices in a straight-forward manner.
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Equations 5.11 and 5.12 show that a completely linear model is created when the entire

battery model is collapsed down to an effort source. This insight is obvious from the

bond graph of figure 5.2. This linear reduction is shown in figure 5.12. Inside the block

labeled Linear Fin is the bond graph of figure 5.9. The input is the control effort and the
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outputs are fin position and select power signals from the bond graph, as before. A
significant difference of this motor model compared to those presented above, is that the
controller must output a different control effort, since the control effort is converted
directly into the input effort through the mSe element. For the analysis presented here,

the output voltage of the battery is assumed to remain at 200 volts.
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Thus, including a gain of 200 on the control signal, outside of the controller, the

controller output will more closely resemble the nonlinear PWM control signal.
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5.3 Power Flow Considerations

As can be seen in figures 5.1 and 5.2, no usable power comes from the controller of
the nonlinear fin positioning system. The controller simply signals the power flow in the
actuator through the modulated transformer. This signal governs the amount of power
flow throughout the entire system. By monitoring the power flow through the system, a
method can be derived to classify the effectiveness of the controller. A comparison of the
effectiveness of different controllers can be made by observing their ability to utilize the
power supplied by the motor. By monitoring the power flow through the bond graph, one
can get an idea of the effectiveness of any given controller. In order to monitor the power
flow through the bond graph, the bonds connected to sources and passive elements are
special bonds that provide an additional power-signal output, as previously shown in
figures 5.2, 5.5 and 5.6.

The bond graph of figure 5.2 shows that a power limit exists in the system. It is clear
that the maximum power delivered to the fin cannot be more than exists in the power
supply (battery). In order to monitor the ability of the controller to utilize the power from
the battery, an integrator has been connected to the power-bond of the input source in
figure 5.2. Obviously, the power signals can be integrated to form energy signals. By
dividing the output energy by the input energy, a control designer can get an idea of how
efficient the controller is. Naturally, this analysis must be performed after a control

scheme has been found.
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5.4 Servo Controllers

Separate control schemes are presented in this section. Three linear control schemes
are used for the linearized system and two nonlinear control schemes are used on the
nonlinear system. All control schemes operate under the assumption that fin position is

the only state available for feedback.

5.4.1 Linear Control Schemes

The linear control schemes to be compared are three separate PID [Fra94] controllers
that are intended to be used to control the linearized fin dynamics model shown in figure

5.12. The three PID controllers are shown in table 5.3.

PID Controller Number Controller Transfer Function
PIDI 0.095 (S + 0.0909 )
S
PID2 0.8055 (S? +120.4762 S + 4.4872 )
S?+993.949 8
PID3 67.8408(S” +101.75745 +1.485)
S +100000.3774S

Table 5.3. PID Controllers

Obviously, PIDI is really just a PI controller but can be considered a PID with Tp=0.

The Bode plots for each of the three controllers are shown in figure 5.13.
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PID Bode Plots

Magnitude (dB)

Phase (deg)

Frequency (Hz)

Figure 5.13. PID Bode Plots

The output of the controllers is multiplied by a gain of 200 before it enters the fin
dynamics model. This setup is shown in figure 5.14. The icon labeled Linear Actuator

contains the bond graph of figure 5.12.
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5.4.2 Non-Linear Control Scheme 1

The first nonlinear controller is shown in figure 5.15. This figure represents the
internal workings of the controller block in figure 5.1. The block labeled P/ z contains
the transfer function stated by equation 5.13, which is the Z-transform of the continuous
PIDI [Fra98] presented in the previous section. This discrete transfer function operates

with a sample rate of 6000 Hz.

0.095 * [z — 0.999985]

z—1

G(Z) = (5.13)
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The quantizer relationship is shown as

input
0.015

output = 0.015 * sign(input) * ﬂoor(

) (5.14)

The +1 limit is to keep the PWM output of the controller within the physical capabilities
of the modulated transformer in figure 5.2. Unlike the PID controllers of the previous
section, there is no gain of 200 on the output since this gain is created when the PWM
signal is multiplied by the output of the battery through the modulated gyrator of figure

5.2
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5.4.3 Non-Linear Control Scheme 2

Figure 5.16 shows the second controller considered to handle the system of figure 5.1.
The quantizer block and the +1 limit block are the same for the two nonlinear controllers.
Controller 2, however, is designed to operate at 1200 Hz. The delay on the output of

controller 2 accounts for latency between the controller and the actuator.
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Figure 5.16. Non-Linear Controller 2

As seen in figure 5.16, controller 2 has a distinctive anti-backlash element in the
controller to counteract the backlash in the gear train. This backlash element adds a sign-
dependent bias to the control signal to push the gear train through the backlash region,

such that the gears stay in contact as much as possible. As expected, the backlash in the
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system causes a limit cycle in the steady-state response. The anti-backlash element
works to reduce the effects of the gear train backlash. The anti-backlash bias, denoted
Slide_Delta in figure 5.16, is set at 0.02, which is the amount added to the PWM signal to
counter-act the gear train backlash. The anti-backlash element is setup to add the
Slide Delta amount only if the input is non-zero.

The transfer function for the element Y2 is given by equation 5.15 with a sample rate

of 1200 Hz. Y2 provides phase lead at lower frequencies.

0.172 * [z - 0.688]
z-0.453

Y2(z) =

(5.15)

The Y3 element of figure 5.16 is expanded and shown in Figure 5.17. The Y3 element
serves as a nonlinear limiter, which depending on the conditions shown in figure 5.17,
moves a controller zero between 0 and -1 in the z-plane, which adds conditional phase

shift to the control signal. The value used for L;; is 0.11, and the value of L;, is 0.06.
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Nonlinear controller 1 (NC1) is a much simpler scheme that does not actively try to

cancel out the backlash of the system. The backlash will then add phase lag to the overall

system. Nonlinear controller 2 (NC2) actively attempts to account for the backlash in the

gear train. The anti-backlash in controller 2 allows for a controller that can run at a

slower rate without significant phase loss.



5.5 Step Response Comparisons

5.5.1 Step Response Comparisons of Linear Systems
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Step responses of the system in figure 5.14 for each of the PID controllers are shown

in this section. Both 5° and 20° fin position commands are used as step inputs. The hinge

moment amount, used to simulate an aerodynamic load on the fin, is set at 0, -.6 and -6

N*m/(Deg of fin deflection). These three settings simulate zero, medium and high fin

loads which will demonstrate each controller’s ability under varying circumstances.

The Dymola model of figure 5.14 has been modified to include the analysis of the

power signals from the bond graphs. This modification is shown in figure 5.18.
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The power signal vector is passed through an analysis block labeled Nrm_ Pwr. This
block divides the 2" through the n™ element of the input vector by the /*' element. This
normalizes the /" element by the /*' element. The new normalized vector is of dimension
n-1. This n-1 normalized vector is passed as an output. Also, this normalized vector is
passed through an integrator to calculate the integral of the normalization. The Dymola

code for this block is shown below in figure 5.19.

model Normalized Eneroy
o]
]
parameter Integer nimin=z2) = Z "Order of input wector";
parameter Real dn wmin=lE-¢& "Min. Diwvisor (divide by zero protection)";
Beal x[n - 11;
Beal int x[n - 1];
Beal dn:

Beal dnl;
|
]

equation
dnl = if f(abs(Input.signallll) < dn min) then dn min*sign(Input.signallll)
else Input.signalll];
dn = if {dnl < dn min) then dn nin else dnl;

for i in l:n - 1 loop
x#[i] = Input.signalli + 1] /dn;
deriint_x[i]l) = =[i];
Horm Energy.sigmnalli] = =x[i]:
Int_Norm Energy.signallil = imt_x([il:

end for;
end Normalized Enerqgy:

Figure 5.19. Dymola Code for Vector Normalization

The first element of the power vector is the power on the mSE input bond of figure
5.12. In this fashion, all of the output power signals from the bond graph of figure 5.12
are normalized by the input power. Figure 5.18 shows the power signal passing through
an integrator to create an energy signal. Each element of the vector is integrated

separately. This energy vector is passed through another normalization block, called
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Nrm_Enrgy, to perform the same analysis on the energy vector as was done on the power
vector. Plots of these vectors are also included in the step response analysis.
By using the Dymola model of figure 5.18 in an object-oriented fashion, the three

PID controllers can be compared at once. This model is shown in figure 5.20.

SRun_3 Limear Models - Run_3_Linesr_Medels - [Diagram]

=l8lx]
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{Fin_ T Do Flodde
i [
% [Jhney Handing
Stmn
.l
startTimea 1}
it e with sbipls. sagrante. 1D Madeing

Figure 5.20. Three PID Actuators with Power Signal Analysis

As seen in figure 5.20, the same input is used in all three models. The step starts at
0.1 seconds. Figure 5.21 shows the three step responses for a 5° step command with no
hinge moment load. Obviously PIDI gives the best response of the three, since it rises

just as quick, settles faster and has less high frequency oscillation.
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0 (N*m/deg)

5 (deg) Step: Hinge Moment

(Bap) uomsod ui

Time (sec)

Figure 5.21. 5° Step Response, No Hinge Moment

Figure 5.22 shows the input power for the three controllers. This signal is equivalent

to 200 times the control effort.
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5 (deg) Step: Hinge Moment

PIDL
-= PID2

--- PID3 ||
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0.13

0.11
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0.095

5° Step Response, No Hinge Moment

Figure 5.22. Power Input
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Initially a relatively small amount of power is delivered to the system by PIDI
compared to the other two controllers. The amount of power delivered to the fin for each
of the controllers is shown in figure 5.23. Similar to the input power, the power delivered

to the fin is smaller for PID1 then the other two controllers.

5 (deg) Step: Hinge Moment = 0 (N*m/deg)
T T T T

Output Power (N*m/s)

1
0.15 0.16 0.17 0.18 0.19 0.2
Time (sec)

Figure 5.23. Power Output: 5° Step Response, No Hinge Moment

However, figure 5.23 does not clarify how efficient the controllers are. It simply states
that less power was delivered to the fin for PID].

The output power is normalized by the input power to get an idea of the efficiency of
the controller. An efficiency calculation is obtained by dividing the output power signal
by the input power signal for each of the three controllers. This calculation is shown in

figure 5.24.
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Figure 5.24. |[Fin Power|: 5° Step Response, No Hinge Moment

The signals of figure 5.24 are impossible to compare. There are very large
differences in the scales of the signals mostly due the input power signal getting close to
zero when the output power signal is non-zero, as seen in figure 5.22 and 5.23. These
large values, caused by division by numbers close to zero, make the comparison useless.
The integration of the normalized power would still not make a fair comparison due to
the integration of the large values shown in figure 5.24.

Although this analysis proved useless for the power signals, this same analysis can be
used on the energy signals. The input energy signals are shown in figure 5.25. It is not
surprising that PID] delivers less energy to the system than the other two controllers.
This normalization analysis of the energy signals, at this point, seems more feasible, since

the energy signals do not go to zero after the step input. Obviously, they will not go to
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0 (N*m/deg)

5 (deg) Step: Hinge Moment

zero since a positive amount of power was needed to move the fin to begin with, and

energy is the time integral of power.
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Figure 5.26. Energy Output
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PIDI delivers less energy to the fin than the other two controllers. Again, by normalizing
the output energy by the input energy one can create a measurement of efficiency. The
output energy divided by the input energy is shown in figure 5.27. This unitless signal
does not have the divide by zero problems that the normalized power signal had, after the
step input is applied, since the input energy is positive for all time. This is true for all
stable controllers. The input energy is zero before the step input is applied, yet the
normalized energy signals shown in figure 5.27 all have a value of zero up until the step
input is applied at a time equal to 0.1 seconds. This detail is somewhat artificial, but is
not very significant. The way that this is accomplished is through the divide by zero
protection logic shown in figure 5.19. When the divisor is below a certain threshold, 1E-
6 by default, then the divisor is set equal to this value. Thus, the denominator is non-
zero. The numerator, however, is zero. Since no energy has yet been delivered to the
system, the output energy must, by definition, be zero. Thus, the numerator is identically

zero, and therefore the output of the calculation is zero.
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Figure 5.27.

The slightly oscillatory nature of the signals in figure 5.27 still makes them difficult

to compare. One can sum up the values of these signals by integrating them over time.

The integrated signals are shown in figure 5.28.
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Figure 5.28. Integral(|[Fin Energy
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Figure 5.28 shows a clear and concise calculation of efficiency. Therefore a

measurement of controller efficiency can be defined by

i J‘OT(OWPWP ower )dt dr— Itf OutputEnergy i

: (5.16)
’ jo(lnputPower)dt 0 InputEnergy

ncontroller = I

The symbol 7 is taken from the thermal dynamic symbol for thermal dynamic 1% law
efficiency [Bej97, War95].

Figure 5.28 shows PID] is the most efficient of the three controllers. Obviously, the
worst outcome for any stable system is a zero value for n, where the InputPower is non-
zero. This absolute worst case occurs for trivial systems, which is shown graphically in

figure 5.29.

Positive
Power In

Zero
>Power Out

Complete System

Figure 5.29. Efficiency Worst Case
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Obviously, the complete system of figure 5.29 is stable. The calculation of n is zero for
all time regardless of the input, since the two sub-systems are not connected together.

Once the power input to a system has moved from zero to a non-zero value, it is
impossible for the InputEnergy term of equation 5.16 to return to zero. This behavior is
true for any single input, physical system. In order for the /nputEnergy to return to zero,
the system source would need to become a sink, and the system would need to sink as
much power into that element as it received. This is in violation of the 2" law of
thermodynamics.

The efficiency calculation shown in figure 5.28 is for an ideal case. In this case, there
was no external load to the system, so the controller was able to apply zero power to the
system once the fin reached the commanded position. In this case, the efficiency signals
rose sharply and then flattened out. Equation 5.17 shows the efficiency definition
expanded to bond graph generic terms. At ¢=tf the angular rate of the fin, Flowoy, is
zero, since the fin reached steady state. This condition allows the controller efficiency to

reach a constant value.

J. (OutputPower dt I Eﬁ”ortOut*FIOWOu,)dt

dr=" dr (.17

if
ncontroller = J‘o

I(InputPower )dt J. Effort, * Flow, )dt

In the case where the output power approaches, but never reaches zero, the efficiency
signal will not reach a constant value. This behavior can be seen by applying an external

load to the linear systems.
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The step responses and efficiency measurements have been provided for different

input commands and external load configurations in figures 5.30 through 5.39. Figures

5.30 and 5.31 correspond to a 5° step with -.6 N*m/deg hinge moment.

-0.6 (N*m/deg)

5 (deg) Step: Hinge Moment

Time (sec)

(Bap) uonisod ui

0.6 (N*m/deg.)

Figure 5.30. 5° Step Response, Hinge Moment
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5 (deg) Step: Hinge Moment
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5° Step Response, Hinge Moment = -

Figure 5.31. n
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Figures 5.32 and 5.33 correspond to a 5° step with -6 N*m/deg hinge moment.

5 (deg) Step: Hinge Moment = -6 (N*m/deg)

(Bop) uomisod ulg
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Figure 5.32. 5° Step Response, Hinge Moment
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5° Step Response, Hinge Moment = -

Figure 5.33. 0
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Figures 5.34 and 5.35 correspond to a 20° step with 0 N*m/deg hinge moment.
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Figures 5.36 and 5.37 correspond to a 20° step with -.6 N*m/deg hinge moment.
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Figure 5.36. 20° Step Response, Hinge
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Figure 5.37.
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20 (deg) Step: Hinge Moment = -6 (N*m/deg)

Figures 5.38 and 5.39 correspond to a 20° step with -6 N*m/deg hinge moment.
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As seen in figures 5.30 through 5.39, the value of # must be viewed together with the
overall shape of the curve. In each of the cases presented above, PIDI exhibits the best
response. The plot of # with respect to time for PID] rises sharply in each case and then
flattens off. This comparison shows that initially the energy put into the system is
delivered directly to the fin, as much as possible. Once the fin is close to the commanded
value, the controller then stops the fin motion.

For this analysis, no restrictions are made on the architecture of the controller, nor are
there any restrictions on the linearity of the system. The only restriction is that the closed
loop system be stable. Thus, this analysis provides a good method for comparing the

efficiency of control schemes for a given system.

5.5.2 Step Response Comparisons of Non-Linear Systems

The same analysis is performed in this section for the complete nonlinear system.
Nonlinear controllers 1 and 2, NLI and NL2 respectively, are connected to the complete
nonlinear motor model of figure 5.2. Similar to the Dymola model of figure 5.20, using
the Dymola model of figure 5.2 in an object-oriented fashion allows the two control
scheme simulations to be performed at once. This model is shown in figure 5.40. The
normalization analysis block has not been included on the power signals, as it was for the
linear systems of figure 5.20. Since the power signal analysis was shown to be of little
use, it is not calculated. The models labeled Fin Cntrll and Fin Cntrl2 contain the
nonlinear fin dynamics, together with NL/ and NL2, respectively. Analysis for the same

load conditions as the linear systems is performed and the results are shown.
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il
i

Figure 5.40. Two Non-Linear Actuators with Power Signal Analysis

Recall, that NLI is the discretized version of PIDI with a quantization element and an
output limit, shown in figure 5.15. NL2 contains the anti-backlash element and
considerable nonlinear logic as described by figures 5.16 and 5.17. Figure 5.41 shows
the step response for the 5° step command with O(N*m/deg) hinge moment load.

5 (deg) Step: Hinge Moment = 0 (N*m/deg)
T T

Fin Position (deg)

|

|

|

|

1
0 0.5 1 15
Time (sec)

Figure 5.41. 5° Step Response, Hinge Moment = 0 (N*m/deg.)
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The backlash effects are most clearly visible in figures 5.41 through 5.43 near 0.15
seconds as NLI is rising. The stair step, as the fin moves into position, is caused by the
backlash. For zero hinge moment load, the steady state error from NL/ is caused by
quantization of the control effort. The controller NL! is able to zero out the fin position
within the quantization limit. After that, although the error input into the controller is
non-zero, and the output of the controller is non-zero, it is not big enough to generate a
quantized control effort. Figure 5.42 shows the input to the quantizer together with the

quantized output.

0.1-
0084
006+

0044

— Qutput
— Input

0024

|||||
5

Figure 5.42. Quantizer 1I/O for 5° Step Response, No Hinge Moment

The input to the quantizer is the output of the discretized PID1, as can be seen in figure
5.15. The positive slope on the quantizer input is from the integral term of PID/. The
error is slowly integrating up until it will eventually cause a small output. This small
quantizer output is a very slow limit cycle that will keep the fin from reaching zero steady

state error.
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Figure 5.43 through 5.47 show the step responses and efficiency calculations for 5°
step command with 0 (N*m/deg), -.6 (N*m/deg) and -6 (N*m/deg) hinge moment load.
The step response plots have been zoomed to view the controller’s response near a 0°

feedback error.
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Figure 5.44. n: 5° Step Response, Hinge Moment = 0 (N*m/deg.)
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5 (deg) Step: Hinge Moment = -0.6 (N*m/deg)
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Figure 5.45. 5° Step Response, Hinge Moment
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The oscillation of the NL/ response on the loaded configurations is caused by the
external hinge moment moving the fin away from the commanded value. Thus, the
controller cannot settle with the quantization limit as it does in the unloaded case.

The nonlinear elements of the NL2 cause the oscillation about the commanded value,
in figure 5.43, 5.45, and 5.47. Figures 5.44, 5.46 and 5.48 show that NL2 makes good
use of the input power initially to achieve a quick rise time, but continually use system
power to sustain the oscillation about the commanded position. NLI shows more of an
ideal use of input power for low to medium hinge moment load configurations.
However, for large hinge moment load configurations, NL2 is clearly superior, as seen in

figure 5.48.
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Figure 5.49. 20° Step Response, Hinge Moment = 0 (N*m/deg.)
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Figures 5.49 through 5.54 show the step responses and efficiency calculations for 20°

step command with 0 (N*m/deg), -.6 (N*m/deg) and -6 (N*m/deg) hinge moment load.

20 (deg) Step: Hinge Moment = 0 (N*m/deg)
T T

Fin Position (deg)

|

|

|

T S
| |

| |
+--—+-—-"=A-"="=-=—"4+-- - —
| | --- NL1
o
L L
0.3 0.35 0.4 0.45 0.5

Time (sec)

Figure 5.50. 20° Step Response (zoom), Hinge Moment = (0 (N*m/deg.)
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Figure 5.51. n: 20° Step Response, Hinge Moment = 0 (N*m/deg.)
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Figure 5.52. 20° Step Response (zoom), Hinge Moment = -0.6 (N*m/deg.)
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Figure 5.53. n: 20° Step Response, Hinge Moment = -0.6 (N*m/deg.)
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20 (deg) Step: Hinge Moment = -6 (N*m/deg)
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The results for the 20° step inputs are identical to the 5° step input results. For large
hinge moment loads, NL2 makes better use of the input power. Also, although the
oscillation about the commanded value is undesirable from a power consumption point of
view, it at least ensures that the achieved fin position passes through the commanded
value periodically, even with the backlash and quantization errors. NL/ has non-zero

steady state error.

5.6 Conclusions

This chapter presented a nonlinear actuation system that was built in Dymola with the
bond-graph library of Chapter 4. Bond graph methods were used to linearize the system.

This chapter showed how the power flow through a bond graph model of the plant
can be used to compare the effectiveness of different control schemes regardless of the

architecture of the controller design, and without limiting the analysis to linear systems.

OutputEnergy

i
The controller efficiency was defined as 77.,,,o1er =I { }dt in equation

InputEnergy

5.16. The 2™ law of thermodynamics was used to prove that the /nputEnergy cannot be
zero for any single-input physical system after an initial input has been given.

Separate control schemes were presented for both the linearized actuation system and
the nonlinear system. The system response of each control scheme was compared using
the definition of controller efficiency to show the ability of each controller to utilize the

available energy in the system.
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CHAPTER 6: Optimal Gain Comparison Using the Power Flow
Information of Bond Graph Modeling

6.1 Introduction

This chapter applies the controller efficiency measurement, developed in Chapter 5,

to an autopilot design. Chapter 5 was concerned with comparing two separate controllers

of different architecture to determine which is more efficient. The same analysis can be

applied to comparing two separate autopilots using the power flow through the actuator

to determine the more efficient autopilot design. Also, power flow analysis is used in this

chapter to determine the optimality of controller gains for a classical three loop autopilot.

Typically in the design of an autopilot, the actuator dynamics are ignored during the

design process. Figure 6.1 shows a block diagram of a missile system. In the design of

an autopilot, the sensor dynamics and actuator dynamics are omitted, as shown in figure

6.1. Often in a missile system, the power flow through the actuator limits the response of

the system, since fin position applies the control effort that influences the body dynamics.

1

" Error Fin Position Commands

Guidance Acceleration
Commands

Fin Position Commands

FinFaositions

Autopilot

2!

Actuator

Sensed Body Accele:‘ayaAssxle Body Motion

la—]

Missile Body Molion

FinPositions

Sensors

Missike Body

Figure 6.1. Autopilot Loop with the Autopilot Design Assumption
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During the autopilot design process, the actuator dynamics are assumed to be ideal in
that the commanded fin position (output from the autopilot) is the achieved fin position
(input to the missile dynamics). Naturally, the system response will only worsen with the
inclusion of the actuator dynamics. The actuator dynamics become a bottleneck for the
system response, since the actuator has limited power flow. The autopilot forms a loop
around these dynamics. Thus, the autopilot control structure will influence the actuator
power flow. This insight provides a means for classifying the efficiency of the autopilot
in the same fashion that was presented in Chapter 5. Autopilot efficiency can be defined
by the actuator efficiency. Autopilot efficiency analysis can be used to compare different
controller designs or to compare efficiencies of different gains within the same design.

In this chapter, the nonlinear fin positioning system of Chapter 5 is used to measure
the controller efficiency of the autopilot. The nonlinear fin actuator of Section 5.4.3 is
used as the actuation system throughout this chapter. As seen in figure 6.1, the autopilot
loop encompasses the actuator controller/dynamics loop. Thus, the autopilot is another
level removed from the power flow in the actuator.

In the design of a controller, the selection of controller gains is the most time
consuming and ad hoc of tasks. The difficulty lies in the fact that optimization tools
cannot always find global optima, thus the solution found is more than likely sub-
optimal. However, trying to find a more optimal solution quickly becomes cost
ineffective. The controller gain selection process lacks a method for measuring the

balance between 'good' and 'good enough'. The question of whether the controller gains
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need to be optimized further, or re-optimized in the instance of an existing design, often
goes unanswered.

This chapter uses the efficiency calculation method of Chapter 5 for evaluating the
efficiency of controller gains for a given control system. If the current set of controller
gains makes the most efficient use of the actuator’s available energy, compared to other
controller gain sets, and these gains satisfy classical control criteria, then this set of gains
is as close to the optimal solution as it needs to be. Further optimization would then be a
waste of time and money, since the system performance cannot be improved. On the
other hand, if the current set of gains does not make good use of the system’s available
energy, then the gains need to be optimized further [McBO05a].

This chapter uses the servo-positioning system of Chapter 5 to control a two degree-
of-freedom missile model. The controller discussion of Chapter 5 discussed primarily the
control of the servo-system itself. Here, the controller discussion focuses on autopilot
control of a missile system. The actuator control scheme is buried inside the

missile/autopilot system.

6.2 Two Degree of Freedom Missile

A two degree of freedom missile is used in this chapter to apply the analysis of
Chapter 5 to a missile/autopilot system. Full blown missile dynamics are not necessary
to demonstrate the usefulness of the methods developed in this chapter. Explanation of

the analysis is better done on a two degree of freedom (2DoF) missile system to keep the
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complexity at a minimum. In this fashion, the usefulness of the analysis is not clouded
by the complexity of a six degree of freedom (6DoF) system. Although a 2DoF is used
here, this analysis has been tested using a complete missile 6DoF system [McBO05b]. It
was found that the 6DoF analysis produces similar results as the 2DoF analysis.

The missile dynamics model presented here can be found in the book Tactical and
Strategic Missile Guidance by Zarchan [Zar02 pp. 461-465]. Figure 6.2 shows a

schematic of a two degree of freedom missile.

Figure 6.2. Two Degree of Freedom Missile

The two degrees of freedom, as described by figure 6.2, consist of a translational degree-
of-freedom normal to the missile body, and a rotational degree-of-freedom about an axis

coming out of the page. The normal force is described by equations 6.1 through 6.5.

mr A =0%S,, *Cy (6.1)

" 2
_ P Vm (6.2)
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of =y (6.3)

2
1'5*Splan*a S*Sw*a S*ST(OZ+5)
+ +
S

Cy =2a+ (6.4)

ref B Sref B*s ref

p= \/Mach2 -1 (6-5)

A description of the variables is given in table 6.1.

Variable Description Variable Description

m Missile Mass Mach Missile Velocity with Respect to Sound
Az Lateral Acceleration b Normalized Speed
(0] Dynamic Pressure d Missile Body Diameter

Sref Reference Area p Air Density

CN Normal Force Coefficient 0 Tail Defection

Splan Planform Area~ LM * d LM Missile Body Length

Sw Wing Area XCPN Dist. from Nose Center of Pressure to Tip
ST Tail Area XCG Dist. from the Center of Gravity to Tip
o Angle of Attack XCPB Dist. from Body Center of Pressure to Tip
0 Missile Body Angle XCPW Dist. from Wing Center of Pressure to Tip
Vm Missile Velocity XHL Dist. from Hinge Line to Tip

Table 6.1. Missile Dynamics Variable Description

Note that Splan is approximated by the length of the missile multiplied by the missile
body diameter. Also note that, although axial motion of the missile is not a degree of
freedom, it is still necessary to define the missile’s velocity in this direction in order to
properly calculate the normal force of the missile.

The moment is described by
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GW*éZQ*Smf*d*CM (6.6)
and
2
Ch =20 X —-X 127 S plan ~ X -x
M = cg CPN * S cg CPB
ref (6.7)
8* S *a( j S*STQ1+5)( )
+—2 "y —x +—alx -x
B* Sref cg CPW B* Sref cg HL

The missile distance values are described graphically in figure 6.3.
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Figure 6.3. Missile Distance Definitions

The relationship between the angle of attack and the missile body angle is given by

4
a:e-;ﬂ (6.8)

m

As seen by equations 6.1-6.8, the 2 degree-of-freedom missile is described by a set of

non-linear ODE’s. The bond graph representation of this system is shown in figure 6.4.
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Figure 6.5 shows a Dymola model of the pitch plane dynamics, diagram window and icon

window.
Ly
.I.
d*(XCG_XCPW):TF = 1 [t TF: d*( X~ Xpg)
’ VAU i
d*(xcc‘xcpn) :TF TF: d*(XCC_XCPB)
SE—"I 0 F—SE
20QSggr \ / 1.5a? QSPLAN
SE—0 314 0 —SE
8aQSy 1 8(0+8)QS;
B B
I
m

Figure 6.4. Missile Pitch Plane Dynamics Bond Graph

Note that in figure 6.5 sensors have been added to the bond graph to detect the flows on
the 1-junctions and to detect the effort on missile mass. These values are used in the
equation window to calculate the angle of attack, which is fed back into the effort sources

as described by equations 6.4 and 6.7.
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Figure 6.6 shows the equation window. The equation window has been broken into two

sections: the section on the left is the upper portion of the window showing parameter

and variable declarations, the section on the right is the lower portion of the window

showing the equations used to execute the model.

Arination Window Help

n Window Help

mey AL - -Hh,

¢ =S BN o

AL > HFL 2 ¢ m@BEN

Wl——

parameter Real diam=0.5 "Missile Diem

il model Missile EOM B
]

LRy

parauster Real L=7.0 "Missile Length (fT)';
paremeter Real Lp=1.0 "Radome Length (fo)';
parauster Real In=1.0 "Length to wing(ft)';
parcmeter Real mass=9.0 "Missile Mass (slugs)";
parauster Real mach=z.0 "Missils Mach';
paremeter Real Vs=1000.0 "Speed of Zound (ft/s)";
parauster Real ht=2.0/3.0 "Tail Height (f£)";

parsueter Raal
parcmeter Real

.0 "Tail Tip Cherd (fe]";
"Tail Root Chord (ft)";

paraueter Real hw=0.0 "Wing Heighe (fe)";

paremeter Real
paranster Real
paremeter Real altitude=1000.0 "Missile Alt

.0 "Wing Tip Chord (ft]";
.0 "Wing Root Chord {fc)';

paraueter Real alpha in=0.0349 "Initial alpha (rad)"';

Real
Deal
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Deal

=

DPR=57_2557795130823 "Deg. per rad ';
beta=sqrtfmach”2 - 1.0};
srefe3.l4*dian~2/4.0;

splan=L*diam;

st=.E*hu*icte + erch;

sw=_5*hu* (ctw + crul;
Vmissilesuach*Vs;

rho=_.002378%exp (~altitude/30000.0) ;
Q=rho*Vaissile”2/2.0;

dell;

alpha(start=alpha in);

alphadet;

thetadat ;

Az:

qmissile;

=
equation

(ft) assumed < B0kfL.";

Real dsll;
Real alphaistart=alpha in);
Real alphadet;
Real thetadot;
Real Az;
Real emissile;
o

=
equation

//Fin Deflection Input
dell = FinPosl.signallll:

//Thetadot Flow Signal Definition amd alpha definition

thetadot = Thetadot.OucPorcl.siguallll;
alphadot = thetadot - (Az/Vmissile);
alphadot = deri{alpha);

cmissile = thetadot;

/7hz acceleration definition = effort/mass
Az = Fn DucPortl signallll/mass;

Ff0utput definitions
Alphadot_out.sigmalll] = alphadet;
Omissile_out.signal[l] = gmissile;
alpha out.sigmallll = alpha;

AZ_out.sigmal[l] = Az/3Z.1740436;

//Effort Source Definitions
mEE_Hose. InPortl.signalll
uIE_Body. InPortl.signalll]
mEE_Wing. InPortl. signal(l]
WIE_Tail.InPorcl.signalll

Z.0%alpha®™(*sref;
0*1.5*splantalpha*2;
Q*8.0*su*alpha/beta;
Q*8.0%sc* (alpha + dell)/beta;

end Missile BOM BG:
4

Figure 6.6.

Modeing |

Dymola Pitch Plane Dynamics: Equation Window



223

The equations used to execute the model use the fin deflection input, and body motion
values of the bond graph, to calculate the effort source inputs. The effort source signals
are then sent back into the bond graph. In this fashion, the effort sources are modulated
with the angle of attack value. Also shown in figure 6.6 are a number of outputs. These
output signals are used to pass information to an upper hierarchical level.

Note the parameters, on the left portion of figure 6.6, are declared using default
values. These default values will not be used in this chapter. The parameter values that
will be used throughout this chapter are shown in figure 6.7. Figure 6.7 is a screen
capture of the parameter assignment window that is activated upon instantiation of the

pitch plane dynamics model.

Missile_EOM_BG in test_airframes I 2xl

neral | Add Modifiers
— Component

Mame  |Missile EOM_BG

Comment |

i Model
Path AP Simulation. Mizsile EOM_BG
Comment

=

diam 1 Missile Diam. [ft]

[E; 20 Missile Length [f]

Lp 3 Radome Length [ft)
Ln 4 Length to wing(ft)
mass 3 Missile Mass [shugs]
mach 3 Missile Mach

W 1000 Speed of Sound [ft/s]
ht 2 Tail Height [ft]

ctt 0 Tail Tip Chard [f)

cit 2 Tail Root Chord [ft]
b 2 Wing Height [ft]

chw 0 Wing Tip Chord [ft]
(=" E  ‘“wing Root Chord [ft]
altitude 0 Missile Ak [ft] assumed < 30k,
alpha_in 0 Initial alpha [rad)

0K | Cancel |

Figure 6.7. Dymola Pitch Plane Dynamics: Parameter Values
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The parameter values used in this chapter were also taken from Zarchan [Zar02 pp 465-
466]. Note that in figures 6.6, and 6.7, a parameter for the initial angle of attack is
included. This value is used in the equation window as an initial condition on the
integration of alpha. Also, figure 6.6 and figure 6.7 show that the model uses chord
lengths. These dimensions are described in figure 6.8.

Tip

Chord
<>

Height

<>
Root
Chord

Figure 6.8. Wing and Fin Chord Definitions

Figure 6.9 shows a Dymola instantiation of the pitch plane dynamics bond graph.

This upper hierarchical level was used to subject the 2DoF model to a fin deflection of 5°.
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Figure 6.9. Dymola Pitch Plane Instantiation
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Angle of attack and body acceleration results for two seconds of simulation are

shown in figures 6.10 and 6.11, respectively.

5 Deg. Fin Deflection, at Sea Level, Mach 3
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Figure 6.10. Angle of Attack
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226

Figures 6.10 and 6.11 show that without an autopilot, a 5° fin deflection will
eventually result in -12.92 G’s of body acceleration. The system is stable, but very
oscillatory. The angle of attack settles down to about -4.448° degrees after about 2
seconds. The inclusion of an autopilot can improve the response of this system by

reducing the amount of ringing and reducing the settling time.

6.3 Linear Pitch Autopilot

6.3.1 Missile Pitch Autopilot: 3-Loop Controller

A classic three loop autopilot [Zar02 pp. 507-509] will be used throughout this
chapter. The classic three loop design is shown in figure 6.12 which is drawn in the form

of figure 6.1.

P 1
b delta C: delta
Guidanee Aeceleration &
C tniiands Crainl Graind Gam? Integrator Gramd
Actuator
1 Missile Body Motien
/' q = thetadot
q Sensed q 2 delta [4——1
1o (s Ay Matian
Sl Az Fate Gymo Missile Body

A?Z Az— 4z delta ot
Accelerormeter Mliseile Body

Figure 6.12. Classic Three Loop Autopilot
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A Dymola model of the above autopilot is shown in figure 6.13, with the diagram

window on the left and the icon window on the right.

IS ThreeLoopAP - AP_Simulation.Autopilots.ThreeLoopAP - [Diagram] 98 ] [E9| tion.Autopilots.T np - =101 x|
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Figure 6.13. Classic Three Loop Autopilot: Dymola Model
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The pitch plane dynamics/autopilot connection is shown in figure 6.14. This system
is connected in the form of figure 6.12 in that the actuator and sensor dynamics have been
omitted from the closed loop system. The omission of these dynamics implies that the
system is assumed ideal during the autopilot design. The system in figure 6.14 was
simulated using controller gains KA=0.06493 rad/(G*s), WI = 11.2 rad/s, KR = 0.098 s,
and KDC = 1.165. A 12.92 G step command was used as the input, which allows a
comparison of missile response to figures 6.10 and 6.11. Angle of attack and achieved
G’s are shown in figures 6.15 and 6.16, respectively. Also, the control effort of fin

position is shown in figure 6.17.

3-Loop AP: -12.92 G step response
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Figure 6.15. Three Loop AP: Angle of Attack
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3-Loop AP: -12.92 G step response
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Figure 6.16. Three Loop AP

3-Loop AP: -12.92 G step response
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The achieved acceleration response with the 3-loop autopilot, in figure 6.16, is
considerably better than the open loop response of figure 6.11. The overshoot is removed
and the settling time is reduced considerably with the closed loop system. Figure 6.15
shows that the angle of attack behaves much better than the open loop response of figure
6.10. Figure 6.17 verifies that a 5° fin deflection is still necessary to achieve the desired

amount of acceleration with or without the controller.

6.3.2 Missile Pitch Autopilot with Actuator Dynamics

Naturally the step response shown in Section 6.3.1 will only worsen with the
inclusion of the actuator dynamics. As mentioned previously, the actuator dynamics
become a bottleneck for the system response, since the actuator has limited power flow.
The autopilot forms a loop around these dynamics. Thus, the autopilot control structure,
and choice of gains, influences the actuator power flow.

Figure 6.18 shows the Dymola model of figure 6.14, including the actuator dynamics.
Note that the vector normalization code of figure 5.19 has been included in the closed
loop autopilot model to calculate the efficiency of the actuator power flow. The gain
between the autopilot and the actuator is to convert the actuator input to degrees. The
gain between the actuator and the body dynamics model is to convert the fin position to
radians. The actuator model is the non-linear controller 2 of figure 5.40 that contains the
anti-backlash element. Recall that this model contains a hinge moment model
proportional to fin deflection. For this simulation, the hinge moments were set at -0.6

N*m/(Deg of fin deflection).
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Figure 6.18. Three Loop AP: Closed Loop System with Actuator

The -12.92 G step response simulation was repeated for the above system. Figure
6.19 through 6.21 show angle of attack, achieved acceleration, and achieved fin position
for the system of figure 6.18. These plots contain the results of the previous section,
included as over plots, for reference. Thus, the influence of the actuator dynamics can be

seen by looking at plots 6.19 through 6.21 without referring to figures 6.15 through 6.17.
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3-Loop AP: -12.92 G step response
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Figure 6.19. Angle of Attack with Actuator Dynamics
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3-Loop AP: -12.92 G step response
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Figure 6.21. Necessary Fin Deflection with Actuator Dynamics
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Figure 6.22. Angle of Attack with Actuator Dynamics: Zoom

Figures 6.22 through 6.24 are a repeat of figures 6.19 through 6.21 zoomed in to point
out the detailed difference between the ideal actuator dynamics and the nonlinear actuator

model.
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3-Loop AP: -12.92 G step response
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Figure 6.23. Achieved Acceleration with Actuator Dynamics: Zoom
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Figure 6.24. Necessary Fin Deflection with Actuator Dynamics: Zoom

The ~ 80 Hz frequency, seen in all three plots, is due to the nonlinearities of the
actuator. Obviously, the autopilot gain selection does not drive the actuator near its

power limit since figures 6.22 through 6.24 show the actuator dynamics are much faster
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than the missile response. Proper gain selection will bring the missile response time

much closer to the actuator response time.

6.4 The Autopilot Gain Selection Process

As seen in figure 6.1, during the autopilot design process the dynamics of the actuator
are assumed ideal. Thus, actuator dynamics do not form a part of the gain selection

process.

6.4.1 The Autopilot Gain Selection Process: The Performance Index

Typically, the autopilot gain selection process involves the minimization of a
constrained performance index. A common performance index, P/, is shown in equation

6.9. This performance index is meant to be minimized [Clo96b].

wl(AZC - AZA)2+ WZ(AYC - AYA)2+ WP Z]dt (6.9)

Ayc and Ayzc are the commanded accelerations in the Y and Z directions, respectively.
Similarly, 4y, and Az4 are the achieved accelerations in Y and Z directions. P is the
missile roll rate, and w;- w; are the respective weights. Equation 6.9 shows the
performance index for a 6DoF missile model. For the 2DoF missile model, equation 6.9

reduces to

PI = t:j:[(AYC -4, A)Z]dt (6.10)
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Typical constraints for this optimization are shown in equations 6.11 through 6.13.

Gain Margin > 3dB (6.11)

Phase Margin > 20° (6.12)

Overshoot < 20%
Undershoot < 30%

(6.13)
For a step response y, overshoot is defined as (max(y) — step command)/step command,
and undershoot is defined as abs(min(y))/step command.

Obviously, the constraints of gain and phase margin imply that the system is linear.

Linearization of the missile pitch plane dynamics model is therefore necessary.

6.4.2 Linearized Missile Pitch Dynamics for Gain Optimization

6.4.2.1 Pitch Plane Linearization
Linearization of the pitch plane dynamics is relatively straightforward. Equation 6.4

can be written as

1.5*S *a  gxg 8% S g* g
Cy=0a|2+ Spla" + *SW * *ST * * - za*CNa+5*CN5 (6.14)
ref P ref P ref B S”f
Where
1.5*S .. *a 8*§ 8*S
Cy, =2+ ol + L L (6.15)
Srt?f 'B *S ref 'B *S ref
and
*
_ 8%, (6.16)

C
Ns
ﬁ * Sref
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Equation 6.15 shows that C,, is not constant but a function of «. The angle y is
defined as
y=0-a (6.17)

For a small angle assumption for both angles & and @, it is seen, from figure 6.2, that
) v,
~siny =~ —= 6.18
4 Y v (6.18)
Therefore, for constant missile velocity, the turning rate ¥ can be approximated by
y~—% (6.19)

Solving equation 6.1 for 4z and substituting the result into equation 6.19 yields

Q * *Sref * C?\/
oy ———— 6.20
7/ % Vm ( )

Substituting equation 6.14 into 6.20

*S Fla*c,, +0*C
]/zQ ref l *I]/Va N5J=_Za *a_Z§ *5 (621)
m m

Where

Za=—g—2%;—ﬂi (6.22)

m

and

0*S,, *Cy.
Z, =—="1 D4 6.23
; I (6.23)

Rearranging equation 6.17, differentiating with respect to time, and substituting equation

6.21:



G=0-y=0+Z,%a+Z,*5
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(6.24)

The moment coefficient equation 6.7 can be written in a similar form as equation

6.14.
Where
c., =2lx -x 1.S*Splan*a)( X
Mo — cg CPN * S cg CPB
ref
o Vs )
+ X -X + X -X
CPW HL
B *Sref 8 B* Sref 8
and

8*Sp [
Cirs = X -X
Ms HL)
ﬂ*Sref &

Using equation 6.25, equation 6.6 can be written

o*S  *d*C o*S _*d
- ref M ref
b= [ -— le*Cy +6%C, ]
Yy Yy

Equation 6.28 can be simplified by writing
O=a*M_, +0*M;
Where

* * *
Q Sre d CMa
Ma =
I
»

and

(6.25)

(6.26)

(6.27)

(6.28)

(6.29)

(6.30)
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o*S *d*C
M,-— "4 Mo (6.31)

Note that M, and Z, are both functions of . M, and Z; are constants. However,
equations 6.24 and 6.29 form a linear set of equations only if all four parameters M,
My, Z,, and Z; can be treated as constants. In order to bypass this difficulty, a trim

condition is defined. The missile trim condition is defined as the combination of @ and
o that create zero moment on the missile body. Thus, for a given ¢, equation 6.7 is set

to 0 and solved for o . This value of o is used to calculate M, and Z,, which are then

treated as constants, making the equation set linear about the trim condition.

Figure 6.25. Linearized Pitch Plane Block Diagram

Figure 6.25 shows the linear set of equations in block diagram form. The state space

equations are shown in equation 6.32 and 6.33.
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(6.32)

(6.33)

Figures 6.26 and 6.27 show a comparison of the open loop, linear system to the open loop

nonlinear system. The nonlinear signals are those presented in figures 6.10 and 6.11,

respectively. oiim 15 -4.4489°, for 6 = 5°, Mach 3, and Altitude 0.

Alpha: Angle of Attack (deg)

Figure 6.26.

5 Deg. Fin Deflection, at Sea Level, Mach 3
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5 Deg. Fin Deflection, at Sea Lewel, Mach 3
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Figure 6.27. Open Loop Linear and Nonlinear Missile Body Acceleration

Figures 6.26 and 6.27, show a reasonable match for the linear system versus the

nonlinear system.

6.4.2.2 Linearized Pitch Plane and Three Loop Autopilot
Figure 6.28 shows the block diagram of the linear system within the three loop
autopilot. This system is a 3 order system that has state space equations shown in

equations 6.34 and 6.35.
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Missile Body Motion

Miszile Body Motion
Az

Figure 6.28. Linear Pitch Plane and Autopilot Block Diagram

—WI*KA*Z,*KR*V,, WI*KA*KR*Z,*V, —WI*KA*Z, *V,

. Wi —
al g g g al
g|= M, *KR M, *KR M, q |+
; Z,*KR 147, *KR Z, o
—WI*KA4* KDC
+ 0 A,
0
(6.34)
V., *KR*Z V., *KR*Z V., *Z al
AZ:{_ = 2 _u S—_ a} q +[0]AZC
g g g
[04
(6.35)

The symbol g represents the unit conversion from ft/(sec’) to G’s. The linear and
nonlinear plots, with the inclusion of the three loop autopilot, are shown in figures 6.29
through 6.31. The nonlinear signals are those shown previously, in figures 6.19 through

6.21, without actuator dynamics.
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3 Loop AP: -12.92 G step response
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Figure 6.29. Closed Loop Linear and Nonlinear Angle of Attack

3 Loop AP: -12.92 G step response
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3 Loop AP: -12.92 G step response

55 T T T T T T
i | | | | | i | |
| | | | | | | | |
] S S W . , ; ; ;
| | | | | | -
I I I I I | | Linear
45 - — - - A - — —p ———|———4—— — — — —— | — NonLinear | - —
| | | | | | | I I
| | | | | | | | |
Ar— - -1~ " T T T r T TS oA T
g A T N S S S B
R K R T T e e —
P | i | | i | | i
i) | | | | | | | |
Y | (O N A S N
B | | | | I | | I
a | | | | | | | |
i 25b - f1- -~ T
2 | | | | | | | |
@ | | | | | | | |
@
@ 2 —f-1--- 4 —bF - mlm——H - — k- ——lm——H——— - ——
2 | | | | | | | |
| | | | | | | |
L5 o= == -~ B At iy B S e A e
| | | | | | | |
| | | | | | | |
S 7 A B et e B S it Bty Bt e
| | | | | | | |
osll — — ' 0 _d___L______J4___t___
| | I | | | | | |
| | | | | | | | |
0 1 1 1 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 12 14 16 1.8 2
Time (sec)

Figure 6.31. Closed Loop Linear and Nonlinear Necessary Fin Deflection

The closed loop transfer function of the state space equations is shown in equations

6.36 through 6.38.
2 Num

G(S)=C*(SI-A)'B+D= (6.36)
Den
Vim 2

Num = KDC* KR*WI * KA*~" (- 2,8 + M ,Z, - M ,Z,,) (6.37)
g

3 Vm 2
Den=S —(M(g *KR+Z, —WI*KA*KR*—*Z(SJS +
g
—(M, +M;*KR*WI+Z;M,*KR—Z_,M,*KR)S + (6.38)

+KR*WI*(Z,M, —ZaM(s)*(HKA*V—m]
g

Equation 6.37 shows that the system zeros are a function of flight condition and not
influenced by the selection of autopilot gains. This of course is expected. The third order

denominator, however, is dependent on the selection of four autopilot gains. This insight
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can be exploited to place the closed loop poles as desired and maintain zero steady state

€Iror.

6.4.3 Linear Missile Pitch Dynamics: Sample Optimal Gains

This section focuses on selecting autopilot gains for the closed loop pitch plane
missile. The previous section developed the closed loop transfer function symbolically
for the linearized pitch plane system.

A third order denominator can be written in the general form of equation 6.39, for
poles pl, p2, and p3.

Den =(S - pl)(S - p2)S - p3)=

(6.39)
=5° —(pl+p2+p3)S2 +(p1p2+p1p3+p2p3)S—p1p2p3

Equating the terms of equation 6.38 and 6.39, gives three equations to define the

autopilot gains as a function of the system poles.

Vimsyg. (6.40)
g

pl+p2+p3=M,*KR+Z, —WI*KA*KR*
plp2+ plp3+ p2p3=—(M, + My *KR*WI+Z,M,*KR-Z,M ;,*KR) (6.41)

—plp2p3=KR*WI*(Z;M, -7 M, )*(1+KA*V—mJ (6.42)
g

The four autopilot gains can be determined explicitly by adding an equation to the set,

which forces zero steady state error. The zero steady state error equation is found by
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forcing the last terms of equation 6.37 and 6.39, to be equal, thus creating four equations
with four unknowns.

—p1p2p3=KDC*KR*W1*KA*V—m(MaZ(5—M(sZa) (6.43)

g
Equations 6.40 through 6.43 form an equation set with four equations and four
unknowns, which can be solved for the four autopilot gains. Obviously, untangling this
set to solve for the autopilot gains is quite computationally intensive. In order to solve
equations 6.40 through 6.43, for the four autopilot gains, the Maple symbolic manipulator

was employed [Map]. The results are shown in equations 6.44 through 6.47.

KA == g (Md%p1 p? p3 = Md® Za® +pi Z4° Ma® +pl Md° Za® +p2 Md® Za° = 2 p3 Mid Za 7 Ma— 2 p2 Md Za Zd Ma +p3 Md° Za°

403 Zd° Ma® = Za Td° Ma® +p? Zd° Ma® — Md® Za Ma+ Md Zd Ma® = 2 p2 Mid Za 7d Ma — Md® Za pl p3 — Mi® Za pl p? - Md® Za 2 p3

+Ma‘Za‘Map2p3+Ma‘ZdMapfp3+Ma‘Za‘Mapfp2+2Ma‘Za2ZdMa)/(Vm (pl Md® Za® — 2 p1 Md Za 7d Ma +pl Zd° Ma®

— 227 Md Za 74 Ma +p3 Md® Za® +p3 Zd° Ma® + 2 M Ta® 24 Ma - Md® Za pl pl - Ta Zd° Ma® + Md 24 Ma® + Md Zd Ma pil p3

— Md® Zap2 pd — Md® Za Ma + M 7d Ma p2 p3 + Md 74 Ma pl p2 — Md® Za® - 2 93 Md Za 7d Ma +p2 Md® Za® 422 74° Ma® - Md® Zapl p3

+Zd2Mapip2p3—ZdeZapfp2p3))

(6.44)
KR =- (Zdz Ma2+Zd2 Map£p3+2d2 MapIpZ’+Zd2Map2p3+MdZdMap27 2 Md Za Zd Ma + Md 24 Ma p3 + Md 24 Mapl
—ZdeZapfp,?—ZdeZap2p3+de1p2p3Md—ZdeZappr—Md2Zap3—Md22apf +Md22a2—Md22ap2) /(
(—MdZa+ZdMa)(—Md2+Zd2 Ma— Zd Md Za))
(6.45)

KDC =—plplp3 (*Md2+Zd2Ma72deZa)/(MdzpprprMdzzangpi 7% Ma® +pl Md® Za® +p3 Md® Za® — 2 p3 Md Za 5d Ma

— 2p2 Md Za Zd Ma +p3 Md2 Za2+p3 Zd2 Ma272cx Zd2 Ma2+p2 Zd2 Ma2fMd2 Za Ma+MdZdMa2f 2pl Md Za ZdMand2 Zaplpd

7Md2Zapz’pz’7Md2Zap2p3+MdZdMap2p3+MdZdMapIp3+MdZdMapip2+2MdZa22dMa]

(6.46)

Wi=—((-MdZa+Zd Ma) (Zd Mapi+Zd MapZ2 + Zd Mapl - Zd ZaMa+ Zdpl p2 pi+ Md Ma —pl Md Za + Mdpl p2 + Md pl p3 — Md Zap3

+Mdp2p3+MdZa27p2MdZa))/(Zd2Ma2+Zd2MapIp3+Zd2Mapfp2 +Zd2Map2p3+MdZdMap27ZMdZaZdMa

+MdZdMap3+MdZdMapi—ZdeZapfpﬁ—ZdeZaprS+defp2p3Md—ZdeZapipZ—Mdzzapﬁ—Mdzzapf+Md23a2

- Md2 Zap2)

(6.47)
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Although equations 6.44 through 6.47, are lengthy and complicated, they can be used in a
MATLAB script to determine the necessary autopilot gains for a given set of pole
locations. The optimization necessary to minimize the performance index of equation
6.10, while satisfying the constraint equations 6.11 through 6.13, becomes a matter of
selecting pole locations for the system, and calculating the performance index, or
rejecting the pole locations if the constraints are not met. For the flight condition

described by figure 6.7, mach 3, altitude 0, the system zeros are at £39.0639376644535.

A non-minimum phase zero is a common occurrence for airframe dynamic systems

[Zar(02].
Variable Set 1 Set 2 Set 3
KA 0.07836 0.10696 0.06493
KR 0.30587 0.23254 0.09800
w1 36.11504 24.68886 11.20000
KDC 1.13686 1.10027 1.16500
Pl 0.06014 0.06105 0.11335
Gain Marg. 3.465 dB 3.000 dB 12.803 dB
Phase Marg. 180° 61.535° 180°
Overshoot 0% 0.92% 0%
Undershoot 30.00% 25.60% 4.90%
Polel 51.51505 (-1 +1) | 32.68964 (-1 +1) | -22.449 + 21.864i
Pole2 51.51505 (-1 - 1) | 32.68964 (-1 -1) | -22.449 - 21.864i
Pole3 -17.17168 -29.27869 -7.83147

Table 6.2. Optimal Gain Table

Table 6.2 shows three sets of gains with the performance index, and constraint values,
using ayim = -4.4489°. Gain set 1 has the lowest performance index and is limited by the
undershoot constraint. Gain set 2 is limited by the gain margin constraint but has a

slightly higher performance index. Gain set 3 is the original set of gains used to
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introduce the three loop autopilot in Section 6.3.1. Gain set 3 has almost double the
performance index value than the other two sets. Obviously, gain set 3 is nowhere near
the optimum but has been included for reference. Figures 6.32 and 6.33, show the

relatively slow rise time of gain set 3.

Optimal Step Response
T

.

Alpha: Angle of Attack (deg).

Time (sec)

Figure 6.32. Optimal Gain Selection Angle of Attack

Optimal Step Response

Missile Acceleration (G's).

Time (sec)

Figure 6.33. Optimal Gain Selection Missile Body Acceleration
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Figures 6.32 through 6.34, show the step responses for gain sets 1 through 3. Figure
6.32 shows angle of attack, figure 6.33 shows missile acceleration, and figure 6.34 shows

the necessary fin deflection to achieve the response.

Optimal Step Response
T

Necessary Fin Deflection (deg).

[
| |
1 1
0 0.05 0.1 0.15 0.2 0.25 0.3
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Figure 6.34. Optimal Gain Selection Necessary Fin Deflection

Naturally, the optimal gains will have zero steady state error, since this requirement
was factored into the gain selection process. Figure 6.33 shows that gain set 1 achieves
the desired acceleration much faster than set 3. Figure 6.34 shows that gain set 1 requires
much more response from the actuator than gain set 3.

It is interesting to note that gain set 2 seems more optimal than gain set 1, when
simply viewing the time response of figures 6.32 through 6.34. Gain set 2 does not have
as much non-minimum phase response as gain set 1, gain set 2 has a faster settling time,

which was not considered in the performance index, and gain set 2 does not require as
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much initial fin dynamics as gain set 1. Regardless, gain set 1 is the optimal set
according to the performance index criteria. Figures 6.35 and 6.36, graphically show the
performance index calculation. Figure 6.35 shows the derivative of the performance

index, and 6.36 is the performance index, with respect to time.
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Figures 6.35 and 6.36, show how the performance index of gain set 1 is lower than the
performance index of gain set 2. During the first 0.025 seconds, gain set 2 has the lower
performance index. However, the slightly wider peak of gain set 2, in figure 6.35, causes

the performance index to increase beyond the performance index of gain set 1.

6.5 Actuator Power Flow Analysis Using Optimal Autopilot Gains

Naturally, the optimal gain set, developed in the last section, is intended to be used in
the complete nonlinear system with actuator dynamics. The linear assumptions in the
plant, and the idealized omission of actuator dynamics, are simplifications used to
develop the autopilot gain set.

In this section the nonlinear plant/actuator is tested using the gain sets derived from
the linear plant model. The nonlinear plant is used to determine the optimal gains. The
optimal gains are then used to define autopilot efficiency, nap, using the efficiency

calculation method of Chapter 5.

6.5.1 Actuator Power Flow Efficiency from the Optimal Gain Set

The three sets of gains, from the previous section, are used to control the complete

nonlinear model with actuator dynamics, described in figure 6.18. The step responses for



these models are shown in figures 6.37 through 6.39.
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As before, the three plots

correspond to angle of attack, missile acceleration, and fin deflection, respectively.

Complete System: -12.92 G step response
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Figure 6.37. Nonlinear Missile with Optimal Gains: Angle of Attack

Missile Acceleration (G's)
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Figure 6.38. Nonlinear Missile with Optimal Gains: Body Acceleration
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Complete System: -12.92 G step response
T

Fin Deflection (deg)

Figure 6.39. Nonlinear Missile with Optimal Gains: Fin Deflection

For clarity, figures 6.38 and 6.39 have been zoomed to show the first 0.25 seconds of

activity. These signals are shown in figures 6.40 and 6.41 respectively.

Complete System: -12.92 G step response
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Figure 6.40. Nonlinear Missile with Optimal Gains: Body Acc. (zoom)
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Complete System: -12.92 G step response
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Figure 6.41. Nonlinear Missile with Optimal Gains: Fin Deflection (zoom)

By looking at figures 6.37 through 6.41, it is not apparent that gain set 1 is the
optimal set of gains. This fact is masked by the nonlinear system dynamics. The optimal
gains have pushed the overall system’s response time closer to the actuator’s response
time. As in the linear case of the previous section, the response shown by gain set 2
looks much more optimal. The efficiency signal is shown in figure 6.42. The actuator
power efficiency measurement reveals that gain set 1 provides the more optimal
response.

It was shown in Chapter 5 that the desired shape of the efficiency signal is an initial
steep rise and then an abrupt flattened signal. Figure 6.42 shows that gain set 1, clearly is
more optimal than the other two sets. Gain sets 1 and 2 were very close from a

performance index point of view, but are clearly different from an efficiency point of
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view. Gain set 1 rises higher initially, and has a flatter slope after the sharp rise. Using
0.25 seconds and 1 second as reference points, the calculated slopes of the three signals
are 4.8952e-007, 7.9617e-007, and 9.9538e-007, for gain sets 1, 2, and 3, respectively.

Gain set 1 has the smaller slope.

x10° Complete System: -12.92 G step response
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Figure 6.42. Autopilot nap: Autopilot Efficiency Signals for Gain Sets 1-3

Figure 6.42 clearly shows that gain set 1 is the more optimal, since it rises higher,
initially, and has a flatter slope. Recall that gain set 1 was chosen because it reached the
30% undershoot constraint, identically, in the linear case. Gain set 2 was chosen because
it reached the 3dB gain margin constraint, identically. Figure 6.40 shows that both gain
sets 1 and 2, violate the 30% undershoot criteria in the nonlinear case, since the achieved
acceleration for these sets peak up above 4 g’s (30% of 12.92 g’s is 3.876 g’s). The

nonlinearities of the pitch plane dynamics, and the nonlinear actuator dynamics, cause the
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complete model to act differently than the linear, ideal system. Due to the performance
difference between linear and nonlinear models, often, gains are optimized using the
complete nonlinear model [Rei93]. The gain and phase margin criteria are calculated
using the linear model, and the overshoot/undershoot criteria are calculated with the time
response of the complete nonlinear model. This works well when the autopilot scheme is
linear, otherwise gain and phase margins are meaningless.

In order to meet the 30% undershoot criteria, another gain set is added to the list of
table 6.2. Gain set 4 is shown in table 6.3, along with gain sets 1 and 2 for reference.
Gain set 4 is limited by the gain margin constraint. Also, the undershoot of the linear
system is at 24.05%, which will place the nonlinear undershoot right at the 30% limit.
Naturally, the performance index of gain set 4 is higher than that of gain sets 1 and 2,

since the undershoot was further constrained.

Variable Set 1 Set 2 Set 4
KA 0.07836 0.10696 0.11625
KR 0.30587 0.23254 0.21848
/44 36.11504 24.68886 21.86830
KDC 1.13686 1.10027 1.09226
PI 0.06014 0.06105 0.06224
Gain Marg. 3.465 dB 3.000 dB 3.000 dB
Phase Marg. 180° 61.535° 45.0055°
Overshoot 0% 0.92% 6%
Undershoot 30.00% 25.60% 24.05%
Polel 51.51505 (-1 +1) | 32.68964 (-1 +1) | -26.845 + 28.459i
Pole2 51.51505 (-1 -1) | 32.68964 (-1 -i) | -26.845 - 28.459i
Pole3 -17.17168 -29.27869 -36.70808

Table 6.3. Added Gain Set
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Figures 6.43 and 6.44 show the achieved acceleration for gain set 4. Figure 6.44 zooms
in on the undershoot to show that gain set 4 achieves 30% undershoot, identically, for the
nonlinear system. The amount of undershoot is shown explicitly in the achieved

acceleration plot of figures 6.43 and 6.44.
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Figure 6.43. Optimal Gain Set 4: Body Acceleration
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Figure 6.44. Optimal Gain Set 4: Body Acceleration (zoom)
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Figure 6.45 shows the autopilot efficiency for gain set 4. Naturally, gain set 4 is not as
efficient as sets 1 and 2. Gain set 4 is the optimal set of gains that meets both linear and
nonlinear design constraints. Since gain set 4 meets all requirements for the constrained
optimum, it is defined as the optimal gain set. The corresponding efficiency signal is
then defined as the optimal autopilot efficiency, for the three loop autopilot. The optimal
efficiency signal can then be used as a benchmark when comparing controllers of

different designs.
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Figure 6.45. Optimal Gain Set 4: Autopilot Efficiency nap

6.5.2 Optimal Efficiency Comparisons

In the previous section, the optimal efficiency signal for a given controller design was

defined as the actuator efficiency of the optimal gain set. This signal can be used to
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compare controller efficiencies of varying architectures. In the design of a nonlinear
controller, for a nonlinear plant, the performance constraints of gain and phase margin are
of no use. However, a nap signal, defined with linear tools, can be used to warn the
design engineer when the nonlinear system is beginning to approach areas of low stability
margin. The efficiency of the actuator, for a linear autopilot, can be used as a limit when
considering nonlinear designs. As seen in figure 6.45, controller designs with efficiency
signals that show greater efficiency than the defined optimum, can be discarded with the
assumption that the design violates the design constraints. Unfortunately, it is not true
that if the efficiency of the controller design is less than that of the defined optimum, then
a constraint has not been violated. It is necessary for a design to have an efficiency signal
less than or equal to, the optimal efficiency in order to be a potential candidate.
However, this condition is not sufficient to guarantee that all constraints have not been

violated. In order to illustrate this point, two more gain sets were added to the list in table

6.3. These two gain sets are described in table 6.4.

Variable Set 4 Set 5 Set 6
KA 0.11625 0.11601 0.12330
KR 0.21848 0.21630 0.18061
/44 21.86830 21.68998 21.07446
KDC 1.09226 1.09245 1.08698
PI 0.06224 0.06243 0.06355
Gain Marg. 3.000 dB 3.089 dB 1.949927 dB
Phase Marg. 45.0055° 46.3686° 24.425°
Overshoot 6% 6% 9%
Undershoot 24.05% 23.70% 22.92%
Polel -26.845 + 28.4591| -26.577 +28.1741| -22.429 + 32.989i
Pole2 -26.845-28.4591 | -26.577 - 28.174i| -22.429 - 32.989i
Pole3 -36.70808 -36.70808 -29.68812

Table 6.4. Suboptimal Gain Sets
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Form the previous section, gain set 4 is the gain set that provides the defined optimal
efficiency. Gain set 4 is limited by the gain margin constraint, and undershoot constraint
using the nonlinear actuator/plant. Gain set 5 has been chosen intentionally to meet all
constraints but with a slightly larger performance index than the defined optimum. Gain
sets that have a lower performance index, but violate design constraints, were considered
in the previous section, and shown in figure 6.45. Thus, gain set 6 has been chosen
intentionally to violate the gain margin constraint, but have a higher performance index
than gain set 4, and therefore are not as optimal. Neither gain sets 5, nor 6, will violate
the undershoot constraint for the nonlinear system since they have a linear undershoot of
no more than 23.7%.

The step responses, shown in figure 6.46, look very similar for each of the three sets

of gains.
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Figure 6.46. Body Acceleration: Gain Sets 4-6
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Figure 6.47. Autopilot nap Gain Sets 4-6

Figure 6.47 shows the efficiency signals, and that the efficiencies of these three gain
sets are easily compared. Gain set 5 does not violate any constraints and shows a lower
efficiency signal. Gain set 6 violates the constraints yet is not as efficient as gain set 4,
thus showing that a lower efficiency signal does not guarantee that the design (gain sets
in this case) meets all constraints.

Gain sets 4 and 5, meet all linear and nonlinear criteria. However, if the efficiencies
of gain sets 5 and 6, had been created with a nonlinear design, then the gain margin
information for these sets would not have been known.

Thus far, all performance index calculations have been done for the linear plant.
Figure 6.48 shows the performance index, as a function of time, calculated using the
achieved acceleration of the nonlinear plant. Figure 6.48 shows these signals for gain

sets 4 through 6, normalized to a unit step.
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Figure 6.48 Nonlinear PI for Gain Sets 4-6

As expected, gain sets 4 and 5 are nearly indistinguishable, since the linear performance
indices were so close. Figure 6.49 zooms in on the details of figure 6.48 in the 0.05

second region.
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Figure 6.49. Nonlinear PI for Gain Sets 4-6 (zoom)
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It is interesting to note, that gain set 5 shows a smaller performance index than gain set 4
up until 0.0678 seconds. Figure 6.47 shows that the efficiency signals clearly
distinguishes gain set 4 as the more optimal set, even prior to 0.0678 seconds, even
though gain set 5 has a smaller performance index during the initial time period. Figure

6.50 zooms in on figure 6.47 using the same time scale as figure 6.49.
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Figure 6.50. Autopilot Efficiency nap. Gain Sets 4-6 (zoom)

It has been shown here, that the autopilot efficiency signal, nap, can be used to
measure the efficiency of an autopilot design, and how these efficiencies can be
compared to a predetermined efficiency signal. The predetermined efficiency signal was
calculated by finding a set of gains that satisfies the frequency domain constraints in the
linear case, and the time domain constraints in the nonlinear case. This signal, generated

by gain set 4, is then defined as the optimum. This efficiency signal is then used as a
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boundary of efficiency, that can be used to benchmark efficiency signals generated by
any other autopilot architecture. If the efficiency is greater than the optimum, the design
can be discarded under the assumption that it violates a constraint. If the efficiency is

less than the optimum, then no conclusion can be made.

6.6 Nonlinear Pitch Autopilot: An SDRE Approach

This section introduces a nonlinear autopilot design that is based on solving the state
dependent Riccati equation (SDRE) at each time step, to determine feedback gains

[Clo96a]. The basic approach behind the design follows the standard LQR problem.

6.6.1 LQR Formulation and General Solution

The standard linear quadratic regulator (LQR) problem is described by equations 6.48

through 6.53 [Mra05, Kir98]. The performance index to be minimized is

minJ =I(ZTQZ +uTRu)it (6.48)
0
Subject to the dynamics
X=Ax+ Bu (6.49)
y=Hx (6.50)

0 is a positive semi-definite matrix and R is a positive definite matrix. The optimal state
feedback is

u=Kx (6.51)
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where
K=-R'B"P (6.52)
and P is the stabilizing solution to the algebraic Riccati equation
0=A"P+PA-PBR'B"P+H"QH (6.53)

Rearranging equations 6.32 and 6.33, the missile pitch dynamics can be written as

HEFHEH
e el 20 s (6.54)
g1 |\m, ofé|"|m,
4=z, o{g}[—zsm]a (6.55)

Unlike equations 6.32 and 6.33, equations 6.53 and 6.55 allow Z, and M, to be

functions of «, as described by equations 6.15, 6.22, 6.26, and 6.30. Thus, trim

condition is not used for this analysis.

6.6.2 LQR General Solution for Nonzero Feed-Through

Note, that equations 6.54 and 6.55 are in the form of equations 6.49 and 6.50, with the
exception of the nonzero feed-through term of equation 6.55. Mracek and Ridgely show
how to handle the linear quadratic optimal control problem for a system containing a

nonzero feed-through in the plant equations [Mra05]. The analysis is as follows:
min.J = [ (" 0z + u” Rulit (6.56)
0

Subject to the dynamics
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X=Ax+ Bu (6.57)
z=Hx+ Lu (6.58)

Substituting equation 6.58 into 6.56 yields

minJ = T[(Hx+Lu)T Q(Hx+Lu)+ uTﬁu]dt (6.59)
Let
O=H"OH (6.60)
S=H"OL (6.61)
R=R+L'OL (6.62)

The resulting performance index is

minJ:I[xTQx+xTSu+uTSTx+uTRu]dt (6.63)

0

The Hamiltonian is then

*

T
H=xTQx+xTSu+uTSTx+uTRu+(aaLj [Ax+Bu] (6.64)
X

Taking the partial of H with respect to u# and setting to 0 yields

a—H=2STx+2Ru+BT o =0 (6.65)
ou ox
Solving equation 6.65 for u
u =—r|Lpr o +8"x (6.66)
2 ox

The Hamilton-Jacobi equation is
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* «\71
-—=H = -SR™S" k4| —| Ax+
ot ! (Q )x ( Ox ] g
; (6.67)
_l 8L BR'BT GL —x'SR'BT GL
4\ ox Ox ox
Assuming
J =x"Px (6.68)
A (6.69)
ot
o =2Px (6.70)
Ox

Substituting equations 6.69 and 6.70, into the Hamilton-Jacobi equation, and rearranging

terms yields
—x"Px=x" [(A ~BR'S") P+P(4-BR'S")-PBR"B"P+(0- SR“ST)]x (6.71)

For P — 0 the algebraic Riccati equation is

0=(4-BR'S™) P+P(4-BR'S")-PBR'B"P+(0-SR"'S") (6.72)
P is the stabilizing solution to equation 6.72. Using full state feedback, the optimal
control is given by

' =—R(B"P+S" )= Kx (6.73)
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6.6.3 LQR Solution for Nonzero Feed-Through and Output Feedback

Equation 6.73 assumes full state feedback. In the case of the missile system, output
feedback is desired. Mracek and Ridgely define full state observability as the
requirement that C’ and /I+K C’'DJ” exist [Mra05]. The three-loop autopilot uses
missile achieved acceleration 4z, and missile pitch rate g, signals as feedback to the

autopilot. Keeping this same standard, the dynamic equations have the form

, al [z, 1Ta] [z,

X=Ax+Bu=| .. |= |+ o (6.74)
6| |M, 06| |M,

(04

z=Hx+Lu=A4,=[-2V, o{g}r[—ngM]é (6.75)
A -ZV, 0 —ZV

y= Cx+Du=| Zeror || TGl DN T A0 (6.76)

q 0o 16 0

The following argument eliminates the dependence of full state feedback from equation

6.73
u" = Kx (6.77)
y=Cx+Du (6.78)

Solving equation 6.78 for x yields

x=C"y-Du'] (6.79)
Pre-multiplying both sides of equation 6.79 by K

Kx=KC'[y—Du’] (6.80)

Equating 6.77 and 6.80 yields
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u =KC'[y-Du'] (6.81)

Solving equation 6.81 for u"
u' =[1+kCc'D|'KCy (6.82)

Equation 6.82 shows the optimal control calculation as a function of output feedback.
Using equation 6.73 for K, 6.82 becomes

W =[1-rR'(B"P+S")c'D]'R' (B P+ST)C 'y =K,y (6.83)
Therefore, K, is

K, =—1-rR'(B"P+s")c"'D|'R"(B"P+S")C" (6.84)
Equation 6.84 shows the optimal gain set for output feedback, and a nonzero feed-

through term in the plant equations.

6.6.4 LOQR Tracking Solution for Nonzero Feed-Through, Output Feedback and

Zero Steady State Error

The steady state gain must be defined before the optimal control autopilot can be

implemented [Mra05]. The output feedback y, was defined in equation 6.76 as A4

Zerror

and g, which can be written

|:AZerror:| |:AZm - Kss AZC:| |:Hx + Lu - Kss AZC
y = = =

KSSAZC
=Cx+ Du— (6.85)
q q q 0

Substituting 6.85 into 6.83 gives
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Kss AZc
u=K,,[Cx+Du]-K,, ) (6.85)
Thus, the optimal control is
-1 Kw AZc
u=|r-x,0["K,,| Cx- § (6.86)

Using the control of equation 6.86, in the dynamic equations 6.74 and 6.75, closed loop
state space matrices can be found.
x=Ax+B.A, (6.87)
A, =Cx+D_A, (6.88)

Where the state vector is the same as before and the closed loop state space matrices are

A, =A+BlI-K,,D['K,,C (6.89)
LK

B, =-B[I-K,,D] KW{ 0} (6.90)

C,=H+L[I-K, DI'K,,C (6.91)
L[k

D, =-L[I1-K,,D] Kopt[ 0} (6.92)

Equations 6.90, and 6.92, can be written such that K, is not part of the state space

matrices.

1 —1 Kss
B =-BK,=-BlI-K,D'K,, . (6.93)

D, =-D'K. —-L[-k, DI'K, | ** 6.94
c T TRy T — Beopt opt 0 ( . )
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Where
B =B[I-K, D['K R 6.95
c — Beopt opt 0 ( . )
p =1]r-k,,nl'k,, . (6.96)

For zero steady state error, equation 6.97 must hold.

timlc, (57~ 4.)"B.+D,] =1 6.97)
Therefore
—C.A"B.+D, = |ca B -Dk, =1 (6.98)

Solving equation 6.98 for K
K.=lca s -p]' (6.99)

The optimal control autopilot can now be implemented in Dymola.

6.6.5 Dymola Implementation of the LQR Tracking Solution

The Dymola model used to implement the nonlinear optimal feedback has many

layers. The discussion here uses a top down approach.
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6.6.5.1 SDRE Autopilot

The top hierarchical level is shown in figure 6.51, depicting both the icon and
diagram layer. The icon layer shows missile angle of attack a, missile pitch rate ¢, and
acceleration error as inputs. The outputs are the optimal control and the steady state gain.
The diagram window shows that the autopilot calls a Riccati equation solver. No
connections are shown to the inputs of the Riccati4 block. These connections are made in
the equation layer of the model. The equation window contains the code that calls
Riccati4, calculates the optimal gains, and calculates the steady state gain. A complete

code listing can be found in Appendix Al.
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Figure 6.51. SDRE Autopilot: Icon and Diagram Window

For a given value of a, three matrices Ah, Bh, and Ch are defined such that
Ah=(4-BR'ST) (6.100)

Bh=BR'B" (6.101)
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ch=(0-SR"'S") (6.102)
These three matrices are sent to the Riccati equation solver. These three matrices come
from equation 6.72. The solution of the Riccati equation is used to determine the optimal

control, and the steady state gain, as described in the previous sections.

6.6.5.2 Algebraic Riccati Equation Solver Riccati4
Unfortunately, Dymola does not have a linear algebra library. Thus, the code to solve
the Riccati equation was done from the ground up. Figure 6.52 shows the diagram

window of the Riccati4 solver.
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Figure 6.52. Algebraic Riccati Equation Solver Riccati4: Diagram Window

The Riccati4 solver is set up to receive three, separate, 2x2 matrices 4, B, C and find the

stabilizing solution P, such that
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0=A"P+PA-PBP+C (6.103)
[Zho96 pp. 328-333]. This algorithm was not set up for the general nxn case since the
intent here is to stabilize the 2" order pitch dynamics model. Appendix A2 contains a
code listing for the equation window of figure 6.52.

The Hamiltonian matrix is formed such that

4 -B
H :[_C _AT} (6.104)

The 4x4 Hamiltonian matrix is sent to an eigenvalue/eigenvector solver Heig4. Heig4
passes back the four eigenvalues, and four eigenvectors of H. The eigenvalues of the
Hamiltonian matrix are symmetric about both axes in the complex plain. A proof of this
is found in Appendix B1. Thus, for the 4x4 Hamiltonian, two of the eigenvalues have
negative real parts. The eigenvectors, V, and V,,, associated with the stable eigenvalues,

An and Ay, are used to form the two 2x2 matrices X; and X>.

I/r/l le
X V., V
X — 1 — n2 m2 (6. 1 05)
X2 Vn3 Vm3
Vn4 I/1114

The stabilizing solution of the algebraic Riccati equation [Zho96 pp. 333-341] is then
P=X,X, (6.106)
Dymola does not handle complex numbers directly, so the eigenvalues are passed back

from Heig4 with two variables for each eigenvalue, representing the real and imaginary

parts. The same is true for the elements of the eigenvectors. Thus, Riccati4 passes out a
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real matrix, and an imaginary matrix, of the solution P. The imaginary matrix associated

with P should always be zero, but is passed out for debugging purposes.

6.6.5.3 Hamiltonian Eigenvalue Solver Heig4

Figure 6.53 shows the diagram window of Heig4. This routine receives the
Hamiltonian 4x4 matrix and passes out a 4x4 matrix, for the real part of the eigenvectors,
a 4x4 matrix for the imaginary part of the eigenvectors, and a 1x8 vector containing the
four real parts of the eigenvalues, and four imaginary parts of the eigenvalues. The
Hamiltonian matrix is passed to a generalized eigenvector solver, gen_eigs, internal to

this routine.

= Hamiltonian_eigs - Linear_Algebra Hamilionian_ekg4 - [Disgram] =lsix
L + g edon tek : =l8=
@8 W (MOOTAL- Sl 2e»n@ABN

Real(Eigen Vectors) 4xd| >

gen_sigs

Hamiltonian Matrix (4,4) P

p - >

» Eigen Values 1x8

Imag(Eigen Vectors) 4x4 ’

S roteing | e seiion |

Figure 6.53. Hamiltonian Eigenvalue Solver Heig4: Diagram Window
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A complete code listing of the equation window can be found in Appendix A3. To
find the eigenvalues of the Hamiltonian matrix, the characteristic polynomial was found

by converting the matrix to controller canonical form [Kai80 pp. 50-51]. A B vector is

defined as
0
B= 0 (6.107)
0
1
The controllability matrix is then
c, =|p HB H*B H’B| (6.108)

1

C.on 18 then inverted. [r defined as the last row of [Cm ]_ . The transformation matrix

that converts the Hamiltonian into controller canonical form is then

Ir
T = :;Iz (6.109)
IrH?
Thus,
H =THT™ (6.110)

is in controller canonical form. The characteristic polynomial is then
CharPoly = S* — H(4,4)S* — H(4,3)S* — H(4,2)S — H(4.,)) (6.111)
Appendix B1 shows that the eigenvalues of the Hamiltonian matrix are symmetric about

both axes in the complex plain. This symmetry property forces all odd powers of S, of
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the characteristic polynomial, to have a coefficient of zero. Thus, both H(4,4) and
H(4,2) are zero. The characteristic polynomial can be written

CharPoly = S* — H(4,3)S> — H(4,]) (6.112)
Also, for a controllable system, H does not have any eigenvalues on the imaginary axis
[Zho96]. The symmetry property forces ~H (4,]) to be positive. Thus, the 4™ order

characteristic polynomial can be reduced to two 2" order polynomials, with real

coefficients

CharPoly = §* — H(43)S* — H(41) = (S + alS + a2)S* + b1S +52)  (6.113)

such that
a2 = b2 =+— H(4]) (6.114)
bl =/2%b2+ F(43) (6.115)
and
al = —bl (6.116)

The values of al, a2, bl and b2 are all real. Thus, the eigenvalues of H can be found by
using the quadratic equation on each of the 2" order polynomials. A Dymola function
was written to find the roots of a 2™ order polynomial using the quadratic equation. Two
values are passed back for each root, one for the real part of the root, and one for the
imaginary part. For completeness, a listing of the quadratic equation function is found in

Appendix AS.
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The eigenvectors are found using a Vandermonde matrix. Appendix B2 shows that,

for a matrix A in controller canonical form, the eigenvectors are

- - |
A A .. A
7o 6.117)
ot L e
where 4, is the j/” eigenvalue. Thus,
H=THT' =VAV ' = H=T""WAV™'T (6.118)

Therefore, the eigenvector matrix, V', corresponding to the Hamiltonian matrix can be
written

V=T"" (6.119)
It is important to note that the possibility of finding a repeated eigenvalue for the
Hamiltonian is limited to two, i.e., there can be no more than two repeated roots for the
4™ order Hamiltonian. Repeated roots occur when the roots sit on the real axis such that
there are two at +A, and two roots at —A. Therefore a generalized eigenvector routine,
gen_eigs, is employed to check for a repeated root situation. A complete code listing for

gen_eigs is found in Appendix A4.
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6.6.6 Nonlinear Autopilot Results
6.6.6.1 Ideal Actuator
Figure 6.54 shows the pitch plane bond graph dynamics controlled by the nonlinear

autopilot, without actuator dynamics. The acceleration error is input to the SDRE

autopilot, along with missile states a and g. SDRE calculates the value of Kss and Uopt,

as described by the previous section.
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Figure 6.54. Pitch Plane Dynamics with SDRE Autopilot

As before, the input command is a step of -12.92 G’s.



6.6.6.2 Nonlinear Actuator Dynamics

280

Figure 6.55 shows the SDRE autopilot connected to the pitch plane dynamics model

via the actuator model. The actuator energy normalization logic, developed in Chapter 5,

1s included in the model.
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Figure 6.55. Pitch Plane Dynamics with SDRE Autopilot and Actuator

6.6.6.3 Nonlinear Autopilot, Ideal and Nonlinear Actuator Dynamics Compared

Figures 6.56, through 6.60, show the results of the SDRE autopilot simulation with

and without actuator dynamics.
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Complete System: -12.92 G step response
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Figure 6.56 shows the amount of undershoot of the achieved acceleration is greater

than 30%. The undershoot of the SDRE autopilot, with actuator dynamics, is 45.18%.

The amount of undershoot, however, can no longer be adjusted with the SDRE autopilot.

Also seen in figure 6.56, the actuator dynamics cause a steady state oscillation due to the

backlash in the system. Figure 6.57 shows that the fin dynamics do not cause much

difference in the angle of attack response. Figure 6.58 shows the same steady state

oscillation in the fin response. Figure 6.59 shows how the steady-state gain, calculated

by the SDRE autopilot, changes with time.

performance index due to the presence of the fin dynamics.

Figure 6.60 shows an increase in the
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Figures 6.61 through 6.64 show comparisons of the SDRE autopilot and the linear,
Figure 6.61. Achieved Acceleration: SDRE, Set 2, Set 4

6.6.6.4 Linear and Nonlinear Autopilots Compared

three-loop autopilot, for gain sets 2 and 4.

Figure 6.62. Angle of Attack
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Figure 6.64. Autopilot Efficiency nap: SDRE, Set 2, Set 4

The signals are more pronounced for the SDRE autopilot, in each of the plots 6.61

through 6.64. The SDRE autopilot gives the most efficient signal in figure 6.64. It is
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interesting to note that the three efficiency signals have the same general shape. The
signal with the least efficiency of the three is that of gain set 4, which is the gain set with
the most constraints, at 24.05% undershoot. Obviously, if gain set 4 were held as the
standard of efficiency, the SDRE signal would be rejected under the assumption that
some constraint has been violated. This can be seen by the 45.18% undershoot of the
SDRE response. However, since the SDRE response is optimal, by solving the algebraic
Riccati equation at each time step, the SDRE response may be used to find a set of linear

three-loop autopilot gains by relaxing some of the design constraints.

6.7 Power Flow Analysis with Varying Mass Parameters

Often, parts procurement becomes an issue for aging systems. The introduction of
new parts over time may eventually lead to the question of whether or not the current
controller design is close to its optimum. If the gains of an existing control scheme are in
doubt, as to whether or not more performance might be obtained in their re-optimization,
or if the existing gains sufficiently control the current system, then this analysis provides

a method in determining the cost benefit of a controller re-design.

6.7.1 Center of Gravity Shift
For the missile system described in this chapter, the center of gravity (cg) was simply
calculated as half of the missile’s length. This section shows how the autopilot efficiency

signal varies with a changing center of gravity.
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Shifting the cg towards the nose of the missile has a stabilizing effect. Shifting the cg
towards the tail of the missile has a destabilizing effect. Figure 6.3 shows that a smaller
value for the center of gravity represents a shift forward, and larger values shift the center
of gravity aft. Thus, larger values are limited much more than smaller values. For this
analysis the center of gravity is set at Xcg = [8.5, 8.875, 9.25, 9.625, 10, 10.375, 10.75] ft,
where 10 ft is the nominal value used in the previous sections of this chapter. This
section uses the three-loop autopilot, with gain set 4, for the analysis.

Figure 6.65 shows how the achieved acceleration changes with a shift in cg.
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Figure 6.65. Achieved Acceleration: CG Shift

Recall that gain set 4 was designed to reach the 30% undershoot limit in the nonlinear
case. Thus, a destabilizing cg shift will immediately violate this boundary. A cg shift to
10.375 ft has an undershoot of 30.87%, and a cg shift to 10.75 ft has an undershoot of

31.79%. Obviously, these constraint violations alone may not be sufficient to indicate the
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need for re-optimization of the controller gains. Also, seen in figure 6.65, is that the rise

times and settling times, with the cg changes, remain essentially unchanged.
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Figure 6.66. Angle of Attack: CG Shift

Figure 6.66 shows the effect that a cg shift has on the achieved angle of attack. A
stabilizing cg shift requires more angle of attack to achieve the same amount of
acceleration. A destabilizing shift in cg requires less angle of attack to achieve the same
amount of acceleration.

Figure 6.67 shows the effect that a cg shift has on the required control effort to
achieve the same amount of acceleration. A stabilizing cg shift requires more fin
deflection to achieve the desired missile acceleration, and a destabilizing cg shift requires

less fin deflection.
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Figure 6.68 shows the effect that a cg shift has on the unit step performance index.

The performance index values do not change in a monotonic fashion with a change in cg.

Figure 6.69 shows the same plot zoomed in to help illustrate this further.
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Figure 6.70 shows that a stabilizing cg shift decreases the efficiency of the autopilot,

and a destabilizing shift increases the efficiency of the autopilot. The efficiency signals

can be used to determine a threshold to signify the need for controller redesign. Too
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much increase in efficiency reduces the stability of the missile. Too much decrease in
efficiency signifies the loss of performance. The design engineer can use this
information to determine upper and lower efficiency values to signal the need for gain re-
optimization. In the case of a new controller design, the efficiency signal can be used to

help determine an allowable amount of mass parameter shift.

6.8 Conclusions

This chapter introduced a two-degree of freedom bond graph of a missile pitch
dynamics model. A linear, three-loop autopilot was given for use in the gain selection
process. Actuator efficiency, developed in Chapter 5, was used to measure the efficiency
of different sets of autopilot gains. It was shown that the efficiency signal, of the
nonlinear system, can be used to set an upper limit of efficiency to determine the
violation of design constraints.

A nonlinear autopilot was developed, which solves the algebraic Riccati equation at
each time step. This optimal solution was used to determine the efficiency signal of an
optimal autopilot design. The optimal efficiency signal was compared to the efficiency
signals of the linear autopilot with different gain sets. It was shown that the optimal
autopilot produced an efficiency signal that is much more proficient than those of the
linear controller with different gain sets.

Often the system parameters, such as mass, length, and center of gravity, of aging

systems change over time, due to component changes, parts procurement, etc. Thus, after
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time, the controller gains used may no longer perform as they did on the original system.
This chapter provides a method for determining the need for a gain redesign using the
efficiency measurement of the autopilot. This analysis was performed on the two-degree
of freedom missile bond graph, using the linear autopilot, for a change in center of
gravity. It was shown that the efficiency signal can be used to set an upper and lower

limit of efficiency to signal the need of a gain redesign.
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CHAPTER 7: Summary

7.1 Contributions

The contributions of this thesis are divided among; modeling, simulation, system

analysis and controller design.

7.1.1 Modeling

Bond graph modeling was introduced as a means of generating dynamic equations for
systems that cross multiple engineering domains. Since the bond graph deals with power
flow, the modeling method can be used with equal ability in all energy domains.

A method for converting the Lagrangian of a system into a bond graph model was
presented. Lagrangian and Hamiltonian elements of the system were used to create the
bond graph model. Systems with complex geometries are often described by the
Lagrangian. The Lagrangian can be converted into a bond graph model using the method

presented here.

7.1.2 Simulation

A method was provided to simulate a bond graph model directly. Simulation
difficulties arising from structural singularities, and algebraic loops were studied. The

ability of the Dymola software to handle these difficulties was investigated.
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A bond graph library was presented within the Dymola framework. This library takes
full advantage of Dymola’s ability to sort equations, solve algebraic loops, and handle
structural singularities. Also, the object-oriented nature of Dymola provides the ability to
use bond graph models, created with the bond graph library, in an object-oriented
fashion. Object-oriented bond graph modeling is now possible.

The design and simulation of a system can be done quickly and meaningfully using
the Dymola object-oriented bond graph framework. As an example of the ability to
model meaningful systems, a complicated gyroscope model, created with the bond graph
library, was used in four separate instances to create a gyroscopically stabilized platform

model.

7.1.3 System Analysis

A nonlinear actuation system that was built using the bond-graph library was
presented. Bond graph methods were used to linearize the system.

The power-flow through a bond graph model was used to compare the effectiveness
of different control schemes. The analysis presented can be performed on controllers of

varying architectures, and is not limited to linear systems. The controller efficiency was

OutputEnergy

tf
defined as 7...010r =J { }dl‘ . The 2™ law of thermodynamics was used

InputEnergy

to prove that the InputEnergy cannot be zero for any single input, physical system, after

an initial input has been given.
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Various control schemes were presented for both the linear system and the nonlinear
system. The system response of each control scheme was compared using the definition
of controller efficiency. In this manner, the ability of a controller to utilize the available

energy in the system is observed.

7.1.4 Controller Design

A two-degree of freedom bond graph model of missile pitch dynamics was
introduced. A linear, three-loop autopilot was given for use in the gain selection process.
Actuator efficiency was used to measure the efficiency of different sets of autopilot gains.
It was shown that the efficiency signal, of the nonlinear system, can be used to set an
upper limit of efficiency to determine the violation of design constraints.

An SDRE autopilot was developed which must solve the algebraic Riccati equation at
each time step. This optimal solution was used to determine the efficiency signal of an
optimal autopilot design. The optimal efficiency signal was compared to the efficiency
signals of the linear autopilot with different gain sets. It was shown that the optimal
autopilot produced an efficiency signal that is much more proficient than those of the
linear controller with different gain sets. The optimal efficiency provides a benchmark
for the linear design.

A method is provided for determining the need for a gain redesign using the
efficiency measurement of the autopilot. This analysis was performed on the two-degree

of freedom missile bond graph using the linear autopilot, for a change in center of
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gravity. It was shown that the efficiency signal can be used to set an upper and lower

limit of efficiency to signal the need of a gain redesign.

7.2  Future Work

7.2.1 Modeling

Added insight into a model was obtained by viewing it from both Lagrangian and
bond graph modeling view points. Other modeling methodologies exist for dealing with
multibody systems. One such methodology is known as Kane’s method [Kan80]. Kane’s
method is well suited for dealing with spacecraft dynamics. The potential exists for
further insight into spacecraft dynamics modeling by mapping Kane’s method into the
bond graph method. Upon retrieving a bond graph model, bond graph based analysis

would be possible, such as efficiency measurement, and power flow model reduction.

7.2.2 Simulation

The bond graph library presented here can be further expanded to include bond graph
models of mechanical joints. In this way, a multibody library can be created where each
component contains a bond graph. The advantage of having an underlying bond graph

allows the modeling engineer to monitor power flow in the system.
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Naturally this expansion is not limited to mechanical joints. Chemical reaction
components, hydraulic components, and thermodynamic components would further

expand the applications of object-oriented bond graph modeling.

7.2.3 System Analysis and Controller Design

This research uses the power flow information of a bond graph to develop a method
for measuring the efficiency of a system. Power flow analysis can further be used to
develop a controller that monitors and limits power flow through certain areas of the
plant. By monitoring the power flow through a specific bond graph branch, and selecting
a control law that keeps the power flow on this branch below a specific threshold, a
control system can be created that is designed to protect specific portions of the plant.
This control scheme can be set up in an observer design fashion where a bond graph
model is used as the observer.

The efficiency measurement defined in this research was not limited to linear models.
The power flow and causal relationships of a bond graph hold for both linear and
nonlinear bond graph models. Currently, there is continuing research involved in
understanding the relationships between bond graph causal loops/paths and system
controllability/observability [Sar04]. The causal loop techniques developed can be
further extrapolated to nonlinear systems such that controllability and observability of

nonlinear systems can be determined.



APPENDIX A1l: Dymola Model, SDRE Code Listing

model EOM_State_Space
// Author: Robert McBride
// EOM_State_Space is also referred to as SDRE

parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
protected

Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real

diam=0.5 "Missile Diam. (ft)";
L=7.0 "Missile Length (ft)";

Lp=1.0 "Radome Length (ft)";

Ln=1.0 “Length to wing(ft)";
mass=9.0 "Missile Mass (slugs)";
mach=2.0 "Missile Mach";

Vs=1000.0 *'Speed of Sound (ft/s)";
ht=2.0/3.0 "Tail Height (ft)";
ctt=0.0 "Tail Tip Chord (ft)";
crt=2.0/3.0 "Tail Root Chord (ft)";
hw=0.0 "Wing Heigh (ft)";

ctw=0.0 "Wing Tip Chord (ft)*;
crw=0.0 "Wing Root Chord (ft)";
altitude=1000.0 "Missile Alt. (ft) assumed < 30kft.";
wric=2.0 "Qh[1,1] weight";

Rric=1.0 "R weight";

constant Real DPR=57.2957795130823 "'Deg. per rad.";
constant Real pi=3.14159265358979 "PI";

Real beta=sgrt(mach”2 - 1.0);

Real sref=pi*diam™"2/4.0;

Real splan=L*diam;

Real st=.5*ht*(ctt + crt);

Real sw=.5*hw*(ctw + crw);

Real rho=.002378*exp(-altitude/30000.0);

Real Vm=mach*Vs;

Real Q=rho*Vm"2/2.0;

Real Xcpn=.67*Lp;

Real An=.67*Lp*diam;

Real Ab=(L - Lp)*diam;

Real Xcpb=(.67*An*Lp + Ab*(Lp + .5*(L - Lp)))/(An + Ab);

Real Xhl=L

Real Xcg=L/2;
Real Xcpw=Lp + Ln + .7*crw - .2*ctw;
Real lyy=mass*L"2/12;

Real alpha;
Real thetad;
Real Az_err;

Real all;
Real a21;
Real b1l;
Real b2;
Real hi;
Real 11;
Real 1[2,
Real A[2,
Real B[2,
Real C[2,

Real Ci[2,

Real D[2,

Real Qw[1,
Real Rw[1,
Real Qh[2,
Real Rh[1,
Real Rhi[1, 1];
Real Sh[2,
Real Ah[2,
Real Bh[2,
Real Ch[2,

2];
2];
11;
2];
2];
1];
1];
11;
2];
1];

11;
2];
2];
2];

.5;

Real Pric[2, 2];
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Real Hric[l, 2];

Real Lric[l, 1];

Real Ktemp[1, 2];

Real Temp[l, 1];

Real Temp2[1l, 1];

Real Temp2i[l, 1];

Real Kopt[1l, 2];

Real X[2, 1];

Real Y[2, 1];

Real 11[1, 1];

Real ind[2, 1];

Real Acc[2, 2];

Real Acci[2, 2];

Real Bpc[2, 1];

Real Ccc[l, 2];

Real Dpc[1, 1];

Real KDtmpi[l, 1];

Real KDtmp[1l, 1];

Real KD[1, 1];

Real Kssi[l, 1];

output Real Kss[1l, 1](start=[1]);

output Real Uopt[1l, 1];

public

Modelica.Blocks. Interfaces.InPort AZ_error_in(n=1) annotation (extent=[-
10, -100; 10, -80], rotation=90);

Modelica.Blocks. Interfaces.OutPort Kss_out(n=1) annotation (extent=[100,
-70; 120, -50]);

Modelica.Blocks. Interfaces.OutPort U_opt out(n=1) annotation (extent=[100
, 50; 120, 70]);

Modelica.Blocks. Interfaces. InPort alpha_in(n=1) annotation (extent=[-120
, 50; -100, 70]);

Modelica.Blocks. Interfaces. InPort ¢_in(n=1) annotation (extent=[-120, -70
; -100, -501);

Linear_Algebra.Riccati4 Riccati4 annotation (extent=[-40, -20; 20, 40]);

equation

//Read in the input signals

alpha = alpha_in.signal[1];

thetad = g_in.signal[1];

Az_err = AZ error_in.signal[1];
//Fill the state vector and Meas. vector Y

X[1, 1] = alpha;
X[2, 1] = thetad;
Y[1, 1] = Az _err;
Y[2, 1] = thetad;

//Assign weights
Qw[1l, 1] = wric;
Rw[1, 1]
111, 1]

o
)
C=
Om
"0

//Create the state space matrices A, B, C, D, H, L
all = -Q/(Vm*mass)*(2*sref + 1l.5*splan*alpha + 8*sw/beta + 8*st/beta);
a2l = Q*diam/lyy*(2*sref*(Xcg - Xcpn) + 1.5*splan*alpha*(Xcg - Xcpb) + (
Xcg - Xcpw)*8*sw/beta + 8*st*(Xcg - Xhl)/beta);

bl = -8*Q*st/(Vm*mass*beta);

b2 = (Xcg - Xh1)*8*st*Q*diam/(beta*lyy);
// D = -8*Q*st/(Vm*mass*beta);
hl = -all*Vm;

11 = -b1*Vm;

A[1, 1] = alil;

A[1, 2] = 1.0;

A[2, 1] = a21;

A[2, 2] = 0.0;

B[1, 1] = bil;

B[2, 1] = b2;

C[1, 1] = h1;
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CI[1, 2]
C[2, 1]
C[2, 2]
D[1, 1]
D[2, 1]
Hric[l, 1] = ;
Hric[1l, 2] = 0.0;
Lric[1l, 1] = 11;

//Create the matrix inputs to Riccati4 Ah, Bh, Ch

Qh = transpose(Hric)*Qw*Hric;
Sh = transpose(Hric)*Qw*Lric;
Rh = Rw + transpose(Lric)*Qw*Lric;

Rhi[1, 1] = 1/(Rh[1, 1]);
Ah = A - B*Rhi*transpose(Sh);
Bh B*Rhi*transpose(B);
Ch Qh - Sh*Rhi*transpose(Sh);
//Call Riccati4
for i1 in 1:2 loop
for j in 1:2 loop

Riccati4._Amat_input.signal[j + (i - 1)*2] = Ah[],
Riccati4.Bmat_input.signal[j + (i - 1)*2] = Bh[j,
Riccati4.Cmat_input.signal[j + (i - 1)*2] = Ch[j,
I[J, i] = if (g == i) then 1.0 else 0.0;
end for;
end for;

//Fill the matrix Pric with the ARE Solution
for i in 1:2 loop
for j in 1:2 loop

Pric[j, 1] = Riccati4.RP_output.signal[j + (i - 1)*2];

end for;
end for;
//Calculate optimal feedback gain.
Ktemp = -Rhi*(transpose(B)*Pric + transpose(Sh));
Ci*C = 1I;
Temp = Ktemp*Ci*D;
Temp2[1, 1] = Temp[1, 1] + 1;
Temp2i*Temp2 = 11;
Kopt = Temp2i*Ktemp*Ci;
//Calculate the optimal input Uopt.
Uopt = Kopt*Y;
U_opt_out.signal[1] = Uopt[1l, 1];
KDtmp = Kopt*D;
KDtmpi[1, 1] = 1 - KDtmp[1, 1];
KD*KDtmpi = 11;

ind[1, 1]
ind[2, 1]

1;
0;

//Calculate the closed loop matrices
Acc = A + B*KD*Kopt*C;

Acci*Acc = I;
Bpc = B*KD*Kopt*ind;
Ccc = Hric + Lric*KD*Kopt*C;

Dpc = Lric*KD*Kopt*ind;
//Calculate Kss

Kssi = Ccc*Acci*Bpc - Dpc;

Kss*Kssi = 11;

Kss_out.signal[1] = Kss[1, 1];

annotation (Diagram, lcon(

Rectangle(extent=[-100, 100; 100, -100], style(fillColor=43,

fillPattern=1)),
Text(
extent=[-58, 138; 54, 94],
style(fillColor=43, fillPattern=1),
string=""SDRE"),

i]l;
il;
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Text(
extent=[-16, -62; 18, -80],
style(fillColor=43, fillPattern=1),
string="AZ_Err"),

Text(
extent=[-94, 68; -60, 50],
style(fillColor=43, fillPattern=1),
string="Alpha"),

Text(
extent=[-96, -52; -62, -70],
style(fillColor=43, fillPattern=1),
string="q""),

Text(
extent=[60, 70; 94, 52],
style(fillColor=43, fillPattern=1),
string="Uopt"),

Text(
extent=[66, -50; 100, -68],
style(fillColor=43, fillPattern=1),
string="Kss")));

end EOM_State_Space;



APPENDIX A2: Dymola Model, Riccati4 Code Listing

model Riccati4

Linear_Algebra._Hamiltonian_eig4 Heig4 annotation (extent=[-50, -40; 30, 40]);

// Author: Robert McBride
// Solve the Algebraic Riccati Eq. A"™*X + X*A - X*B*X + C = 0
input Real A[2, 2];

input Real R[2, 2];

input Real mQ[2, 2];
output Integer indxl;
output Integer indx2;
output Real RP[2, 2];
output Real IP[2, 2];

protected

Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real

// constant Integer il
// constant Integer i2

mAt[2, 2];
RX1[2, 2];
RX2[2, 2];
I1X1[2, 2];
1X2[2, 2];
RX1inv[2, 2];
IXlinv[2, 2];
H[4, 4];
RV1[4, 1];
RV2[4, 1];
RV3[4, 1];
Rv4[4, 1];
RV_used[4, 4];
RV_lout[4, 1];
1V_1lout[4, 1];
RV_2out[4, 1];
1V_2out[4, 1];
1Ivi[4, 1];
1v2[4, 1];
1vV3[4, 1];
Ivar4, 11;
1V_used[4, 4];
Rel;

Re2;

Re3;

Re4;

tstl;

tst2;

tst3;

tst4;
detX1linv[2];
detX1linvl[2];
detX1linv2[2];
divi[2];
div2[2];
div3[2];
div4[2];

constant Integer n=2;

public

Modelica.Blocks. Interfaces

public

, 50; -80, 70D);

Modelica.Blocks. Interfaces

public

, -10; -80, 101);

Modelica.Blocks. Interfaces

, -70; -80, -501);

Modelica.Blocks. Interfaces

20; 100, 40D);

- InPort Amat_input(n=4)

- InPort Bmat_input(n=4)

-InPort Cmat_input(n=4)

.OutPort RP_output(n=4)

annotation (extent=[-100

annotation (extent=[-100

annotation (extent=[-100

annotation (extent=[80,
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Modelica.Blocks. Interfaces.OutPort IP_output(n=4) annotation (extent=[80, -

40; 100, -20D);

equation

//Build the Hamiltonain
for i in 1:n loop
for j in 1:n loop

ALl, 1] = Amat_input.signal[j + (i - 1)*n];
R[J, i] = -Bmat_input.signal[j + (i - 1)*n];
mQLj), 1] = -Cmat_input.signal[j + (i - 1)*n];
end for;

end for;

mAt = -transpose(A);

H[1, 1] = A[1, 1];

H[1, 2] = A[1, 2];

H[2, 1] = A[2, 1];

H[2, 2] = A[2, 2];

H[1, 3] = R[1, 1];

H[1, 4] = R[1, 2]:

H[2, 3] = R[2, 1];

H[2, 4] = R[2, 2];

H[3, 11 = mQ[1, 1];

HL3, 2] = mQ[1, 2];

H[4, 11 = mQ[2, 1];

H[4, 2] = mQ[2, 2];

H[3, 3] = mAt[1, 1];

HI[3., 4] = mAt[1, 2];

H[4, 3] = mAt[2, 1];

H[4, 4] = mAt[2, 2];

//Call Hieg4

for i1 in 1:4 loop
for j in 1:4 loop
Heig4.Amat_input.signal[j + (i - 1)*4] = H, i];

end for;
end for;

//Collect the eigenvectors output from Heig4
for i1 in 1:2*n loop

RVi[i, 1]
Rv2[i, 1]
RvV3[i, 1]
RVALi, 1]
IVi[i, 1]
1Iv2Li, 1]
1V3[i, 1]
v4ri, 1]
end for;
Rel
Re2
Re3
Re4d

Heig4.Reigvec_output.signal[i];
Heig4.Reigvec_output.signal[i + 4];
Heig4.Reigvec_output.signal[i + 4 + 4];
Heig4.Reigvec output.signal[i + 4 + 4 + 4];
Heig4.leigvec_output.signal[i];
Heig4.leigvec_output.signal[i + 4];
Heig4.leigvec_output.signal[i + 4 + 4];
Heig4.leigvec output.signal[i + 4 + 4 + 4];

Heig4.eig_output.signal[1];
Heig4.eig_output.signal[3];
Heig4.eig_output.signal[5];
Heig4.eig_output.signal[7];

//Find eigenvalues with neg. real parts

tstl
tst2
tst3
tst4

if (Rel < 0.0) then 1.0 else
if (Re2 < 0.0) then 1.0 else
if (Re3 < 0.0) then 1.0 else
if (Re4d < 0.0) then 1.0 else

[cNeoNoNa]
[cNeoNoNe]

//Collect the corresponing eigenvectors
for j in 1:4 loop

RV_used[j,
RV_used[j
RV_used[j
RV_used[j
1V_used[})
1V_used[]j,
1V_used[]j,
1V_used[]j,
end for;

1] = tstl*RVi[j, 11;

2] = tst2*Rv2[j, 1]:
3] = tst3*Rv3[j, 1]:
4] = tstd*RV4A[j, 1]:
1] = tstl*Ivi[j, 11;
2] = tst2*1v2[j, 1]:
3] = tst3*IV3[j, 1]:
4] = tst4*1va[j, 1]:

//Find the indices of the stabilizing eigenvectors
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indxl = if (RV_used[1, 1] > .5) then 1 else if (RV_used[1, 2] > .5) then 2
else 3;

indx2 = if (indx1 == 1) then if (RV_used[1l, 2] > .5) then 2 else if (
RV_used[1, 3] > .5) then 3 else 4 else if (indx1 == 2) then if (RV_used[1
, 3] > .5) then 3 else 4 else 4;

RV_lout[:, 1] = if (indx1l == 1) then RV_used[:, 1] else if (indxl == 2)
then RV_used[:, 2] else RV_used[:, 3];

RV_2out[:, 1] = if (indx2 == 2) then RV_used[:, 2] else if (indx2 == 3)
then RV_used[:, 3] else RV_used[:, 4];

IV_lout[:, 1] = if (indx1 == 1) then IV_used[:, 1] else if (indxl == 2)
then 1V_used[:, 2] else IV_used[:, 3];

1IV_2out[:, 1] = if (indx2 == 2) then IV_used[:, 2] else if (indx2 == 3)
then 1V_used[:, 3] else IV_used[:, 4];

//Create X1 and X2 to solve P = X2*inv(X1)

RX1[1, 1] = RV_1lout[1, 1];
RX1[1, 2] = RV_2out[l, 1]:
RX1[2, 1] = RV_1lout[2, 1]:
RX1[2, 2] = RV_2out[2, 1]:
RX2[1, 1] = RV_1lout[3, 1];
RX2[1, 2] = RV_2out[3, 1]:
RX2[2, 1] = RV_1lout[4, 1]:
RX2[2, 2] = RV_2out[4, 1];:
IX1[1, 1] = IV_lout[1, 1];
IX1[1, 2] = IV _2out[l, 1]:
IX1[2, 1] = IV_lout[2, 1]:
IX1[2, 2] = IV _2out[2, 1];:
IX2[1, 1] = IV_lout[3, 1];
IX2[1, 2] = IV_2out[3, 1]:
IX2[2, 1] = IV_lout[4, 1]:

I1X2[2, 2] = 1IV_2out[4, 1];

//Calculate inv(X1)
detXlinvl = complex_mult(RX1[1, 1], IX1[1, 1], RX1[2, 2], IX1[2, 2]);
detX1linv2 = complex_mult(RX1[2, 1], IX1[2, 1], RX1[1, 2], IX1[1, 2]);
detX1linv[1l] = detXlinvl[1l] - detXlinv2[1];
detX1linv[2] = detXlinvl[2] - detXlinv2[2];

//detXlinv = complex_mult(RX1[1, 1], IX1[1, 1], RX1[2, 2], IX1[2, 2])-
complex_mult(RX1[2, 1], I1X1[2, 1], RX1[1, 2], IX1[1, 2]);

divl = complex_div(RX1[2, 2], IX1[2, 2], detXlinv[1l], detXlinv[2]);
div2 = complex_div(-RX1[1, 2], -IX1[1, 2], detXlinv[1], detXlinv[2]);
div3 = complex_div(-RX1[2, 1], -IX1[2, 1], detXlinv[1], detXlinv[2]);
div4d = complex_div(RX1[1, 1], IX1[1, 1], detXlinv[1l], detXlinv[2]);
RX1inv[1, 1] = divi[1];

RXlinv[1, 2] = div2[1];

RXlinv[2, 1] = div3[1];

RXlinv[2, 2] = div4[1];

IXlinv[1l, 1] = divl[2];

IXlinv[1l, 2] = div2[2];

IXlinv[2, 1] = div3[2];

IX1linv[2, 2] = div4[2];

//Calculate P = RP+IPi (IP should always be zero)
RP = RX2*RXlinv - IX2*IXlinv;
IP = IX2*RXlinv + RX2*IXlinv;
for i1 in 1:2 loop
for j in 1:2 loop
RP_output.signal[j + (i - 1)*2]
IP_output.signal[j + (i - 1)*2]
end for;
end for;

non

53
oo
e

annotation (Diagram(
Text(extent=[-92, 66; -50, 52], string="A"),
Text(extent=[-92, 6; -50, -8], string="B"),
Text(extent=[-92, -54; -50, -68], string="C"),
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Text(extent=[36, 38; 78, 24], string="Real(P)"),
Text(extent=[38, -22; 80, -36], string="Imag(P)'")), lcon(Text(
extent=[-64, 102; 70, 78],
style(fillColor=6, fillPattern=1),
string="%name'), Rectangle(extent=[-80, 80; 80, -80], style(FfillColor
=77, TillPattern=1))));
end Riccati4;



APPENDIX A3: Dymola Model, Heig4 Code Listing

model Hamiltonian_eig4
//Author: Robert McBride

//This routine is referred to as Heig4

input Real A[4, 4];

output Real
output Real
output Real
output Real
protected

eigl[4] "Real(el) imag(el) Real(e2) imag(e2)";
eig2[4] "Real(el3) imag(e3) Real(ed4) imag(ed)";

RV[4, 4]:
IV[4, 4];

constant Integer n=4;

Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
public

Modelica.Blocks. Interfaces. InPort Amat_input(n=16) annotation (extent=[-100
, -10; -80, 10]);
Modelica.Blocks. Interfaces.OutPort eig_output(n=8) annotation (extent=[80,

Modelica.Blocks. Interfaces.OutPort leigvec_output(n=16) annotation (extent=
[80, -70; 100, -50]);

Modelica.Blocks. Interfaces.OutPort Reigvec_output(n=16) annotation (extent=
[80, 50; 100, 70]);

Linear_Algebra.gen_eigs gen_eigs annotation (extent=[-20, -30; 40, 30]);

B[n, 1];
AB1[n, 1];
AB2[n, 1];
AB3[n, 1];
cm[n, n];
icm[n, n];
I[n, n];
cpoly[1l, n + 1];
Ir[1, n];
Irl[1, n];
Ir2[1, n];
1r3[1, n];
T[n, nl;
iT[n, n];
Ah[n, n];
al;

az;

bl;

b2;

RVh[4, 4];
IVh[4, 4];
el _2[2];
e2 2[2];
e3 2[2];
ed_2[2];
el 3[2];
e2_3[2]1;
e3_3[2];
e4_3[2];

-10; 100, 10]):

equation

//Create

for i

the A matrix
in 1:n loop

for j in 1:n loop

ALi. i1 = Amat_input.signal[j + (i - 1)*4];

end for;
end for;

//Create

for i
B[i,

B=[000O01]"
in 1:n - 1 loop
1

1 = 0.0;

end for;

B[4,

//Create the controllability matrix

1] = 1.0;

AB1 = A*B;
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AB2 = A*AB1;

AB3 = A*AB2;

for j in 1:n loop
cm[j, 11 = B[O, 11;

end for;

for j in 1:n loop
cmj, 2] = AB1[j, 1];
end for;
for j in 1:n loop
cmj, 3] = AB2[j, 1];
end for;
for j in 1:n loop
cm[j, 4] = AB3[j), 1];
end for;
for i in 1:n loop
for j in 1:n loop
I[i, jJj] = if (i == j) then 1.0 else 0.0;
end for;
end for;
//1Invert the controllability matrix
icm*cm = 1;
//Retrieve the last row of the inverted controleabilty matrix
for i in 1:n loop
Ir[1, i] = icm[n, i];

end for;
//Create the transformation matrix T
Irl = Ir*A;
Ir2 = Irl*A;
Ir3 = Ir2*A;

for j in 1:n loop
T[L, j1 = Ir[1, j1:
end for;
for j in 1:n loop
T2, j1 = Irl[1, j]1:
end for;
for j in 1:n loop
T3, j1 = Ir2[1, j1:
end for;
for j in 1:n loop
T[4, 31 = Ir3[1, j1:
end for;
iTT = 1;
//Transform A to controller canonical form
Ah = T*A*iT;
//Create the characteristic polynomial
cpoly[1, 1] = 1;
for j in 1:n loop
cpoly[1, j + 1] = -Ah[4, 4 - j + 1];
end for;
//Break the 4th order char. poly. into two 2nd order char. polys.
bl = cpoly[l, 2] - al;
a2*b2 = cpoly[l, 5];
a2 = b2;
bl = sqrt(2*b2 - cpoly[1l, 31);

//Find the roots of the two 2nd order char. polys.
// eigl[1]=real(eigvall),eigl[2]=imag(eigvall)
// eigl[3]=real(eigval2),eigl[4]=imag(eigval2)
eigl quadroots(1, al, a2);
eig2 quadroots(1, bl, b2);

//Pass out the eigenvalues
for i1 in 1:n loop
eig_output._signal[i] = eigl[i];
end for;
for i in 1:n loop
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eig_output._signal[i + 4] = eig2[i];
end for;

//Create the eigenvector Vandermonde matrix
for i in 1:n loop

RVh[1, i] = 1;
IVh[1, i] = O;
end for;
Rvh[2, 1] = eigl[1l];
IVh[2, 1] = eigl[2];
RVh[2, 2] = eigl[3];
IVh[2, 2] = eigl[4];
Rvh[2, 3] = eig2[1];
Ivh[2, 3] = eig2[2];
Rvh[2, 4] = eig2[3];
IVh[2, 4] = eig2[4];
el 2 = complex_mult(RVh[2, 1], IVh[2, 1], Rvh[2, 1], 1Vh[2, 1]);
e2_2 = complex_mult(RVh[2, 2], IVh[2, 2], RVh[2, 2], IVh[2, 2]);
e3_2 = complex_mult(RVh[2, 3], IVh[2, 3], Rvh[2, 3], IVh[2, 3]);
ed4_2 = complex_mult(RVh[2, 4], 1Vh[2, 4], RVh[2, 4], IVh[2, 4]);
el 3 = complex_mult(el_2[1], el 2[2], RVh[2, 1], 1Vh[2, 1]);
e2_3 = complex_mult(e2_2[1], e2_2[2], RVh[2, 2], 1Vh[2, 2]);
e3_3 = complex_mult(e3_2[1], e3 2[2], RvVh[2, 3], 1Vh[2, 3]);
ed4_3 = complex_mult(ed4_2[1], e4_2[2], RVh[2, 4], IVh[2, 4]);
RVh[3, 1] = el_2[1];
IVh[3, 1] = el_2[2];
RVh[3, 2] = e2 2[1];
IVh[3, 2] = e2_2[2];
RVh[3, 3] = e3_2[1];
IVh[3, 3] = e3_2[2];
RVh[3, 4] = e4 2[1];
IVh[3, 4] = e4_2[2];
RVh[4, 1] = el_3[1];
Ivh[4, 1] = el_3[2];
Rvh[4, 2] = e2_3[1];
IVh[4, 2] = e2_3[2];
RvVh[4, 3] = e3_3[1];
IVh[4, 3] = e3_3[2];
RVh[4, 4] = e4_3[1];
IVh[4, 4] = e4_3[2];

//Call gen_eigs

gen_eigs.eig_input.signal[1] = eigl[1];
gen_eigs.eig_input.signal[2] = eigl[3];
gen_eigs.eig_input.signal[3] = eig2[1];
gen_eigs.eig_input.signal[4] = eig2[3];
gen_eigs.eig_input.signal[5] = eigl[2];
gen_eigs.eig_input.signal[6] = eigl[4];
gen_eigs.eig_input.signal[7] = eig2[2];
gen_eigs.eig_input.signal[8] = eig2[4];

//Use inv(T) to calcuate the eigenvectors from the
//control canonical eigenvectors
RV = iT*RVh;
IV = iT*1Vh;
for i in 1:4 loop
gen_eigs.eig_vec_input.signal[i] = RV[i, 1];

gen_eigs.eig_vec_input._signal[i + 4] = RV[i, 2];
gen_eigs.eig_vec_input.signal[i + 8] = RV[i, 3];
gen_eigs.eig_vec_input.signal[i + 12] = RV[i, 4];
gen_eigs.eig_vec_input.signal[i + 16] = IV[i, 1];
gen_eigs.eig_vec_input.signal[i + 20] = IV[i, 2];
gen_eigs.eig_vec_input._signal[i + 24] = IV[i, 3];
gen_eigs.eig_vec_input.signal[i + 28] = IV[i, 4];

end for;

//Pass out the eigenvectors
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for j in 1:n loop
Reigvec_output.signal[j + (i - 1)*4]
leigvec_output.signal[j + (i - 1)*4]

end for;

end for;*/

for i in 1:16 loop
Reigvec_output.signal[i] = gen_eigs.eig_vec_output.signal[i];
leigvec_output.signal[i] = gen_eigs.eig_vec_ output.signal[i + 16];

end for;

RVh[], i];
Ivh[j, il;

annotation (Diagram(
Text(extent=[-98, 36; -30, -2], string="Hamiltonian Matrix (4,4)"),
Text(extent=[-6, 80; 90, 40], string="Real(Eigen Vectors) 4x4"),
Text(extent=[-6, -40; 90, -80], string="Imag(Eigen Vectors) 4x4"),
Text(extent=[60, -6; 124, -32], string="Eigen Values 1x8")), lcon(
Rectangle(extent=[-80, 80; 80, -80], style(fillColor=45)), Text(
extent=[-56, 106; 52, 82], string="%name')));
connect(Amat_input, gen_eigs.Amat_input) annotation (points=[-88, 0; -17, O
], style(
color=3,
fillColor=6,
FfillPattern=1));
end Hamiltonian_eig4;
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APPENDIX A4: Dymola Model, Gen_Eigs Code Listing

model gen_eigs
// Author: Robert McBride
input Real A[4, 4];
input Real eigl[4];
input Real eig2[4];
input Real RV[4, 4];
input Real 1V[4, 4];
output Real eig_vecs[32];
protected
constant Real tol=0.00001;
constant Integer n=4;
Integer tstl2;
Integer tstl3;
Integer tstl4;
Integer tst23;
Integer tst24;
Integer tst34;
Real R1_in[n, 1];
Real R2_in[n, 1];
Real R3_in[n, 1];
Real R4_in[n, 1];
Real 11_in[n, 1];
Real 12_in[n, 1];
Real 13_in[n, 1];
Real 14_in[n, 1];
Real R1_out[n, 1];
Real R2_out[n, 1];
Real R3_out[n, 1];
Real R4_out[n, 1];
Real 11_out[n, 1];
Real 12_out[n, 1];
Real 13_out[n, 1];
Real 14_out[n, 1];
Real RLaml_I[n, n];
Real RLam2_I[n, n];
Real RLam3_I[n, n];
Real RLam4_I[n, n];
Real gen_R2[n, 1];
Real gen_R3[n, 1];
Real gen_R4[n, 1];
/* public
Modelica.Blocks. Interfaces. InPort Amat_input(n=16) annotation (extent=[-100
, -10; -80, 101);
Modelica.Blocks. Interfaces. InPort eig_input(n=8) annotation (extent=[-100
, -70; -80, -50]);
Modelica.Blocks. Interfaces. InPort eig_vec_input(n=32) annotation (extent=[-100
, 50; -80, 701);
Modelica.Blocks. Interfaces.OutPort eig_vec_output(n=32) annotation (extent=[80,
-10; 100, 10]);*/
equation
//Fill the 4x4 A matrix with the elements of the 16x1 input vector Amat_input
for i1 in 1:n loop
for j in 1:n loop
ALJ, 1] = Amat_input.signal[j + (i - 1)*4];
end for;
end for;
//Fill the 1x2 eig vectors with the elements of the 8x1 input vector eig_input

eigl[1] = eig_input.signal[1];
eig2[1] = eig_input.signal[2];
eig3[1] = eig_input.signal[3];
eig4[1] = eig_input.signal[4];
eigl[2] = eig_input.signal[5];

eig2[2] eig_input.signal[6];



eig3[2] = eig_i
eig4[2] = eig_i

nput.signal[7];
nput.signal[8];

//Fill the 4x4 RV, and IV matrices with the 32x1 input vector eig_vec_input

for i in 1:n lo
for j in 1:n
RV[j, 1] =
v, il =
end for;
end for;

op

loop
eig_vec_input.signal[j + (i
eig_vec_input.signal[j + (i

- 1)*4];
- 1)*4 + 16];

//Expand the eigenvector matrix to 4 separate vectors

for i in 1:n lo

R1_in[i, 1] =
R2_in[i, 1] =
R3_in[i, 1] =
RA_in[i, 1] =
11 in[i, 1] =
12_in[i, 1] =
13_in[i, 1] =
14_in[i, 1] =

op

RV[i, 11;
RV[i, 21;
RV[i, 3];
RV[i, 4];
IV, 17;
IV[i, 2]:
IV[i, 3]:
IV[i, 4];

//Make a lambda*l matrix for each eigen value with the real part of the eigen value.

//For the 4th order
for j in 1:4

RLaml_I[i, j]
RLam2_I1[i, j]
RLam3_I[i, j]
RLam4_1[i, j]

end for;
end for;

//Calculate an gene

(RLam2_1 - A)*g
(RLam3_1 - A)*g
(RLam4_1 - A)*g

//Test to see if th
tstl2 = if (abs
< tol) then
tstl3 = if (abs
< tol) then
tstld = if (abs
< tol) then
tst23 = if (abs
< tol) then
tst24 = it (abs
< tol) then

tst34 = if (abs

< tol) then

//The first eigenve
R1_out = R1_in;

11 out = I1_in;
12_out = 12_in;
13_out = I13_in;
14_out = 14_in;

//Assign a generalized eigenvector if needed else pass back the vector that was input.

system if the gen. eigvec.
loop

if(i==j) eigl[1l] else
if(i==j) eig2[1] else
if(i==j) eig3[1] else
if(i==j) eig4[1] else

is needed then the imag. part is zero.

[cNoNoNe]

ralized eigenvector, gen_R*, whether its needed or not.

en_R2 = -R2_in;
en_R3 = -R3_in;
en_R4 = -R4_in;

e generalized eigenvectors
(eigl[1] - eig2[1]) < tol)
1 else 0 else 0;
(eigl[1] - eig3[1]) < tol)
1 else 0 else 0;
(eigl[1l] - eig4[1]) < tol)
1 else 0 else 0;
(eig2[1] - eig3[1]) < tol)
1 else 0 else 0;
(eig2[1] - eig4[1]) < tol)
1 else 0 else 0;
(eig3[1] - eig4[1]) < tol)
1 else 0 else 0;

ctor is never generalized

R2_out = if (tstl2 == 1) then gen_R2

else if (tst
else if (tst
else R2_in;

23 == 1) then gen_R2
24 == 1) then gen_R2

R3 out = if (tstl3 == 1) then gen_R3
else if (tst34 == 1) then gen_R3

else R3_in;

R4_out = if (tstl4 == 1) then gen_R4

else R4_in;

for i in 1:4 loop

are needed.
then if (abs(eigl[2] - eig2[2])

then if (abs(eigl[2] - eig3[2])
then if (abs(eigl[2] - eig4[2])
then if (abs(eig2[2] - eig3[2])
then if (abs(eig2[2] - eig4[2])

then if (abs(eig3[2] - eig4[2])

311
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eig_vecs[i] = R1_in[i, 1];
end for;
for i in 1:4 loop
eig_vecs[i + 4] = R2_in[i, 1];
end for;
for i in 1:4 loop
eig_vecs[i + 8] = R3_in[i, 1];
end for;
for i in 1:4 loop
eig_vecs[i + 12]
end for;
for i1 in 1:4 loop
eig_vecs[i + 16] = I11_in[i, 1];
end for;
for i in 1:4 loop
eig_vecs[i + 20] = 12_in[i, 1];
end for;
for i1 in 1:4 loop

R4_in[i, 1];

eig_vecs[i + 24] = 13_in[i, 1];
end for;
for i1 in 1:4 loop

eig_vecs[i + 28] = 14_in[i, 1];

end for;

end gen_eigs;
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APPENDIX AS: Dymola Models, Misc. Functions, Code Listing
AS5.1 QuadRoots

function quadroots
//Author: Robert McBride
//Solve a*S”"2 + b*S + C = 0
input Real a;
input Real b;
input Real c;
output Real roots[4] "Real(rootl) imag(rootl) Real(root2) imag(root2)";
protected
Real i1;
Real i2;
Real ri;
Real r2;
algorithm
//Calculate the imaginary part of root 1.
il := if (b”2 > 4*a*c) then 0.0 else sgrt(4*a*c - b"2)/(2*a);
//Calculate the imaginary part of root 2.
i2 1= -il;
//Calculate the real part of root 1.
rl := if (b”"2 > 4*a*c) then -b/(2*a) + sqgrt(b”2 - 4*a*c)/(2*a) else -b/(2*a);
//Calculate the real part of root 2.
r2 := if (b”"2 > 4*a*c) then -b/(2*a) - sqrt(b”2 - 4*a*c)/(2*a) else -b/(2*a);

roots[1] := ri;
roots[2] := i1;
roots[3] := r2;
roots[4] := i2;

end quadroots;

AS.2 Complex_Mult

function complex_mult
//Author: Robert McBride
//Calculate (rl+il*i)*(r2+i2*i)
input Real rl;
input Real il;
input Real r2;
input Real i2;
output Real mi[2] "Real ((r1+il*i)*(r2+i2*i)) Imag((ri+il*i)*(r2+i2*i))";
algorithm
mi[1] := rl*r2 - il1*i2;//Real part of the multiplication
mi[2] := r1*i2 + r2*il;//Imag part of the multiplication
end complex_mult;

AS5.3 Complex Div

function complex_div
//Author: Robert McBride
//Calculate (rl+il*i)/(r2+i2*i)
input Real rl1;
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input Real il;

input Real r2;

input Real i2;

output Real mi[2] "Real ((ri1+il*i)/(r2+i2*i)) Imag((ri+il*i)/(r2+i2*i))";
protected

Real alpha;

Real beta;

Real gamma;

Real delta;

Real temp_num[2];

Real temp_den;

algorithm
alpha := ri;
beta = i1;
gamma = r2;
delta := i12;

//Multiply num and den by conj(den)
temp_num := complex_mult(alpha, beta, gamma, -delta);
temp_den := gamma”2 + delta™2;

//Perform division
mi[1] := temp_num[1l]/temp_den;
ml[2] := temp_num[2]/temp_den;

end complex_div;
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APPENDIX B1: Symmetry of Hamiltonian Eigenvalues

B1.1 Eigenvalue Symmetry about the Real Axis

The eigenvalues of any real valued matrix are symmetric about the real axis of the
complex plain. To see this consider a real valued matrix 4 with an eigenvalue 4 and an
eigenvector V. Thus

AV = AV (B1.1.1)
Taking the conjugate (without transpose) of both sides

conj(AV) = conj(AV) (B1.1.2)
which can be written

conj(A)* conj(V) = conj(A)* conj(V') (B1.1.3)
Since A4 is real valued B1.1.3 can be written

A* conj(V) = conj(A)* conj(V) (B1.1.4)
Thus, if 4 is an eigenvalue then conj(4) must also be an eigenvalue, QED.
For real valued 4, conj(Z) = A. No new information is obtained. For complex 4,, an

eigenvalue and eigenvector can be found by A, = conj(i;), and V, = conj(V;) [Cur84,

Kai80, Zho96].
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B1.2 Hamiltonian Eigenvalue Symmetry about the Imaginary Axis

The algebraic Riccati equation (ARE) is

AX + XA+ XRX +0Q =0 (B1.2.1)

where 4, O, and R are real n x n matrices with O and R symmetric. The Hamiltonian

matrix associated with the ARE is

H:{ 4 R*} (B1.2.2)
-0 -4

Introducing an n x n transformation matrix J with the property J* = —I

0 -7
J = (B1.2.3)
I 0
Note J ' =—J . Use this matrix to transform H in the following fashion
J'HJ =—JHJ] =-H" (B1.2.4)

herefore H is similar to —H . Thus, if A is an eigenvalue, then —conj(4) is also an

eigenvalue, QED [Zho96 pp.327-328].

Note that the eigenvalues of H are symmetric about both axes. This implies that the
characteristic polynomial of A does not contain odd powers of S. This insight helps in
finding the eigenvalues of H in that the characteristic polynomial can be broken down

into n, second-order polynomials with real coefficients.
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APPENDIX B2: Vandermonde Representation of Controller Canonical
Eigenvectors

Given a matrix 4 that can be transformed into controller canonical form A4 , with a

transformation matrix 7, such that

A=TAT"! (B2.1)
where
o . _
0 0
q-= (B2.2)
o 0 0 . . . 1
|4, a, a, . . . a,,]

Let 4; be an eigenvalue of 4. Then there exists an eigenvector VA; such that
AVh, = Vh,2, (B2.3)
Let Vh;(1) = 1, since the eigenvalue/eigenvector problem is over-determined. Thus, from

B2.2 and B2.3

Vh =| . (B2.4)
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The complete eigenvalue/eigenvector problem becomes

AVh =VhA (B2.5)
where A is a diagonal matrix made up of the eigenvalues of 4, and V4 is a Vandermonde
matrix formed from the eigenvalues as shown by equation B2.3, QED [Kai80 pp. 54-55].

Since equation B2.1 can be written

A=T7'AT (B2.6)
and B2.5 shows

A=VhAVH™ (B2.7)
Substituting B2.7 into B2.6 gives

A=T"'VhAVR™'T (B2.8)

Therefore 7~'Vh form the eigenvector matrix of 4.



2DoF
6DoF
ARE
cg
LQR
NCI
NC2
PID
PWM
SDRE

APPENDIX C: Glossary of Terms

Two Degree of Freedom

Six Degree of Freedom
Algebraic Riccati Equation
Center of Gravity

Linear Quadratic Regulator
Nonlinear Controller 1

Nonlinear Controller 2
Proportional Integral Derivative
Pulse Width Modulation

State Dependent Riccati Equation
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Bro72

Brii02
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Cen&9

Clo96a
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