Diss. ETH No:

MAN-MACHINE INTERFACES AND
IMPLEMENTATIONAL ISSUSES IN
COMPUTER-AIDED
CONTROL SYSTEM DESIGN

A DISSERTATION

submitted to the
SWISS FEDERAL INSTITUTE
of
TECHNOLOGY ZURICH

for the degree of
Doctor of Technical Sciences

presented by
CARL MAGNUS RIMVALL

Civilingenjor LTH, Lund, Sweden
born February 24, 1957
Swedish citizen

accepted on the recommendation of
Prof. Dr. M. Mansour, referee
Prof. Dr. F.E. Cellier, co-referee

Zurich 1986

© Copyright Magnus Rimvall, 1986
All rights reserved.

Contents

Contents .

.........................

List of Figures

Acknowledgements

Summary

.........................

Zusammenfassung L0000

INTRODUCTION

GENERAL ASPECTS OF CACSD

2.1 CACSD in a global perspective
2.2 Computers in control systems design
2.3 Integrated CACSD-facilities
2.4 The educational value of CACSD

MAN-MACHINE INTERFACES IN CACSD

31 Introduction : : ¢ « « s v e S s e @ s % & & &
3.2 Batch versus interactive CACSD software
33 Modesof interaction . « « « < < @ & 5 % & « & & @

3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6

Graphieal fipibs » s s 5 9 5 5 3 2 5 5 5 &
Question-and-answer dialogue
Menu-driven operation
Form-driven input
Command-language interaction

Command-language interaction vs. other
alphanumeric methods

i

3.4 The command-driven interface of MATLAB . . .
B85 IMPAGT ;::somwmmess 2488 3% 888854
3.6 The basic command-language of IMPACT
3.7 Structured language elements in IMPACT . .
38 SiUbPrograing < w e os 5 5 §8 6 8 8 5 5 5.4 &4
3.8.1 Function subprograms
3.8.2 Procedure subprograms
3.9 The use of parallel sessions
3.10 The query feature
3.11 Query mode and soft-coded subprograms AR
3.12 Data-base interfacesin CACSD
313 CORCIUSIOHS =+ » 5 5 5 5 5 5 ¥ 5 8 ¢ 686w @S & & 50

DATA STRUCTURES FOR CACSD
4.1 Totroduetion « . « « « s « ¢ « ¢ v o % o e e s
4.2 Matii088 o« o 4 5 « 4 5 5 0 v o s w o w w EwE w
4.3 Polynomialmatrices v swwwmwows w6 5 s
4.4 'Transfer-function matrices
4.5 System descriptions« . oi v ...
4.6 Polynomial system descriptions
4.7 Domain and trajectory variables
4.8 Non-numeric structures
4.8.1 Symbolic representations in CACSD . .
4.8.2 Elementary non-numeric structures
4.8.3 Composite structures
4.9 Nonlinear systems
4.9.1 Nonlinear system descriptions
4.9.2 Modular system interconnections

4.10 Conclusions

IMPLEMENTATION CONSIDERATIONS
5.1 INroduckion . . o 5 o o 0.6 5 5 5 K 5 F 85 5 b w b ow

43
44
45
48
53
53
57
29
65
69
71
73

75
75
78
79
82
86
90
91
95
96
97
98
104
107
111
114

117

5.2 Programming conventions 122

5.3 Error handling in CACSD 123
5.3.1 The detectionof errors. 126

5.3.2 Recoveryfrom errors. . . . « s w s = = = 127

5.3.3 The exception-handler of IMPACT 129

5.4 Numeric data structures 136
5.5 Maintaining dynamic structures 141
5.5.1 Single-access structures 142

5.5.2 Multiple access structures 145

5.6 Ada as a command-language interpreter 153
5.7 The modularity of IMPACT . . . < « o4 « & o 2 s 160
5.8 The robustness of Ada-code 165
5.9 Conclusions 168

6 FUTURE DIRECTIONS IN CACSD 171
6.1 Graphicsin CACSD 174
6.2 Standards in CACSD . « v wov v v v o s v w5 o & 4 176
6.3 Expert systemsin CACSD 179
6.4 Conclusions 181

7 CONCLUSIONS 183
A THE SYNTAX OF IMPACT 187
A.1 Thesyntaxin EBNF 187
A.2 The syntax diagrams 194

B LIST OF PUBLICATIONS 209
BIBLIOGRAPHY 213

CURRICULUM VITAE 225

111

v

List of Figures

1.1 The control design cycle
1.2 CACSD components and related areas

2.1 History of CACSD tools
2.2 Mouse controlled program

2.3 Relative code size in IMPACT
3.1 FORTRAN interface

3.2 Question-and-answer interface
3.3 Command-driven interface
3.4 Graphical interface
3.5 Form-driven interface.
3.6 Examples of CACSD dialogues
3.7 Structured programming in IMPACT
3.8 Indexed loop of IMPACT
3.9 Matrix expression power of IMPACT
3.10 Interactive commands solving Riccati.
3.11 A function definition (metal rod)
3.12 Another function definition (Riccati)

3.13
3.14
3.15
3.16
3.17
3.18

Function definition with type declarations . .

Function definition with defaulted parameters . .
A procedure definition (metal rod)
Overloaded use of a procedure.
Starting MAIN session

Opening new session v v v

3.19
3.20
3.21
3.22

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2
5.3
5.4
5.9
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19

Switching session 63
Invoking the query feature 66
Help on individual parameters. 67
Query-information in soft-coded subprograms . . 70
Series and parallel connection 83
Feellbaek 100D < « c wsmwmms 5 2 a @ « o x 5 & €. 84
Cable roll system 85
General interconnection topology 89
Simulation operator in IMPACT 93
Rigid control-oriented data structure 100
Nonlinear model in IMPACT 108
Registormodels « v =96 95 s 8 8 8 8 98 88 ¢5 112
Error-message after operating error 124
Error-message after run-time error 125
Example of an Ada exception-handler 127
Example of a Pascal “exception-handler” 128
Local error-recoveryin Ada 129
Minimal IMPACT exception handler 130
IMPACT exception-handler elements 132
Main error-recovery in IMPACT 133
Internal error-message tree 135
Mathematical declarations in Pascal 137
Mathematical declarations in IMPACT 138
Creating dynamic structures of varying size . . . 139
Overloaded basic operators 140
Visible part of a single-access data manager . . . 144
Declarations of a single-access data manager . . . 145
Garbage collector of a single-access data manager 146
Body of a single-access data manager 147
Visible part of a multiple-access data manager . 149
Declarations of a multiple-access data manager . 150

vi

5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31

6.1

Body of a multiple-access data manager
“Read-only” tests for multiple-access data
Example of IMPACT input
Syntax of an IMPACT WHILE loop
ICODE of the sample input
Parser decoding a while-loop.
Interpreter executing a WHILE loop
Packages constituting the IMPACT project

Definition of a hard-coded subprogram
Error message by missing subprogram body . . .
Inclusion of hard-coded subprogram
Hardcoded subprogram body

The problem of making predictions in CACSD

Vil

152
156
156
157
158
159
161
162
163
164
166

172

viil

Acknowledgements

I wish to express my sincere gratitude to Professor Mohammed
Mansour for giving me the opportunity to conduct the research
presented in this thesis at the Department of Automatic Control
of ETH. I am especially thankful for the help stemming from his
farsightedness of the general trends in this research area and for
his generous provision of travel funds, which has enabled me to
establish many invaluable, international contacts. Furthermore,
[am greatly indebted to Professor Frangois Cellier, University of
Arizona, Tucson, for introducing me to this field of research, for
agreeing to act as co-referee of this thesis, and for everything else
he has done for me. I am particularly grateful for the frequent
and most rewarding scientific discussions during his time at the
ETH, and for our unfortunately more infrequent, but still very
rewarding, discussions and collaborations since his relocation to
Arizona.

Furthermore, I would like to express my thanks to all col-
leagues in the field of CACSD around the world with whom 1
have collaborated. Special thanks goes to Professor Karl-Johan
Astrom, Sweden, Dr. Jan Maciejowski, England, Professor Dean
I'rederick, USA, Dr. Charlie Herget, USA, and all the members
of their respective research groups. I also appreciate many fruit-
ful discussions with Kent Diehl, Dr. Michael Floyd, John Little,
Brad Schrick, Dr. Steven Schladover, Dr. Peter Thompson, and
other developers of commercial CACSD products.

Credit must also be given to my co-workers at the Depart-
ment of Automatic Control and to the various students who have
assisted me during Semester- and Diploma-projects in the de-
velopment of the software described in this thesis. Among these

1X

students, special credit must be given to Lars Bomhold for the
implementation of the basic data structures and driving pro-
grams of the Query-feature, and to Iredi Schmid for the devel-
opment of the nonlinear system description syntax and parser.

[finally want to thank everybody else who in any way have
contributed to the completion of this thesis. I would like to
thank Franz Kuster for forsaking his laser-printer during several
weeks at the end of this project, and for his willing assistance
by all technical problems. A special thanks goes to my friend
Selim Sedat Hacisalihzade, with whom I have shared office the
last four years. I enjoyed our discussions over a broad range of
topics and appreciate his decision to act as a sparring partner
for the completion of our respective research projects. I was also
delighted to win this competition with a margin of 45 minutes.
Last, but not least, I would like to thank my wife, Dr. Karin
Rimvall-Vallin, for her patience and her practical assistance in
the end phase of this work. However, with Karin there was no
competition — I lost with over half a year...

Summary

This thesis deals with different issues of Computer-Aided
Control System Design (CACSD) software from a control
engineering and computer engineering viewpoint. Emphasis is
given to the design of user interfaces to interactive CACSD pack-
ages, to the control-oriented data structures to be supported by
such packages, and to the software engineering problems of im-
plementing large CACSD packages.

The design of a good user interface to CACSD packages is of
utmost importance for user acceptance of the package and for
the applicability of the software to of-the-shelf problems. Dif-
ferent approaches to the design of user interfaces are discussed
and a complete, algorithmically extendable, command driven,
interface is presented. This interface has been implemented in
the IMPACT package as an integral part of the research project
presented here and numerous examples from IMPACT illustrate
different CACSD aspects throughout the thesis.

An obvious requirement of any CACSD package is that the
program must be able to represent, manipulate and properly dis-
play the numerical, symbolic or logical entities which are needed
during the control design cycle. However, this basic requirement
was hitherto not necessarily fulfilled even in commercially suc-
cessful CACSD packages. Therefore, this topic is discussed in
detail, with special emphasis on assembling an adequate and
yet perspicuous set of data structures. An unambiguous scheme
for overloading mathematical operators, and thus to enhance
the expression power of the command language manipulating
on these data structures, is presented.

Despite recent and not-so-recent advances in the theory of
structured programming and software engineering, there is a
longstanding “tradition” to implement all scientific programs in

xXi

FORTRAN. This was hitherto partially due to a lack of viable
alternatives. Hence, the aptitude of the Ada programming lan-
guage as an alternative for implementing large interactive pro-
grams in general, and CACSD packages in particular, is inves-
tigated. Several implementational schemes for error handling,
data management, command language interpreter, overall pack-
age design et cetera are presented to validate the suitability of
Ada for this task.

CACSD is a multifaceted field and therefore this thesis in-
volves issues from a large number of fields including control
theory, software engineering, computer graphics and formal lan-
guage theory. Since most readers will be specialists in only some
of these areas, the background needed for understanding each
section is to a certain extent provided and ample references to
relative literature is also given. However, a working knowledge
of basic control theory and some structured programming lan-
guage is assumed.

X11

Zusammenfassung

Diese Dissertation behandelt verschiedene Aspekte des CACSD
(Computer-Aided Control System Design oder Rechner-
unterstutzter Regelungsentwurf) sowohl aus der Sicht der Rege-
lungstechnik als auch von der Seite der Informatik und des Soft-
ware Engineering. Die Schwerpunkte der Dissertation liegen
im Entwurf von flexiblen Bentitzerschnittstellen zu interaktiven
CACSD-Programmen, in der Erstellung einer Gruppe der Rege-
lungstechnik angepassten Datenstrukturen, und bei der Proble-
matik des Software-Engineering in der Implementation grosserer

CACSD-Pakete.

[Fir einen erfolgreichen Einsatz eines CACSD Paketes bei
seinem Bentitzer ist die Unterstiitzung einer an die Bedurfnisse
der Regelungstechniker angepassten Benutzerschnittstelle von
ausserordentlicher Bedeutung. Insbesondere muss diese Bentit-
zerschnittstelle erweiterbar sein, so dass das Paket tiber die Be-
handlung von Standardprobleme hinaus einsetzbar bleibt. In
der vorliegenden Arbeit werden verschiedenste Ansatze zum Ent-
wurf solcher Benutzerschnittstellen diskutiert und eine vollstan-
dige, algorithmisch erweiterbare, kommandosprachgesteuerte Be-
nutzerschnittstelle vorgestellt. Diese Schnittstelle wurde im Rah-
men dieser Forschungsarbeit auch im CACSD-Paket IMPACT
implementiert. Zur Veranschaulichung des Stoffes werden samt-
liche Teile der Dissertation durch Beispiele von IMPACT illu-
striert.

Eine selbstverstandliche Anforderung an alle CACSD-Pakete
ist, dass sie die numerischen, symbolischen und/oder logischen
Daten, die der Bentitzer wahrend der Entwurfsarbeit braucht,
auch abspeichern, verarbeiten und geeignet darstellen konnen.
Leider ist diese Grundanforderung nicht einmal in den heuti-
gen kommerziell erfolgreichsten Paketen erfullt. In dieser Arbeit

X1il

wird deshalb die Problematik der Unterstiitzung hinreichender
aber immer noch tuberschaubarer Datenstrukturen vorgestellt
und diskutiert. Eine kompakte, “liberladene” (overloaded) aber
immer noch eindeutige algorithmische Notation, mit der die
Ausdruckbarkeit der Eingabe gesteigert werden kann, wird vor-
gestellt.

Trotz allen wohlbekannten Theorien des strukturierten Pro-
grammierens und des Software-Engineering, gibt es nur wenige
Ausnahmen zur allgemeinen Tradition, alle wissenschaftlichen
Programme in FORTRAN zu implementieren. Dies war bisher,
mindestens teilweise, auf mangelnde Alternativen zuriickzufth-
ren. In dieser Arbeit werden die Einsatzmoglichkeiten der Pro-
grammiersprache Ada fur die Implementation grosserer interak-
tiver Programme im allgemeinen, und CACSD im besonderen
behandelt. Mehrere Implementationsbeispiele auf den Gebi-
eten der Fehlerbehandlung, der Datenverwaltung, des Komman-
dosprachinterpreters, des globalen Software-Entwurfs etc., wer-
den vorgestellt, um die vielseitigen Einsatzmoglichkeiten von
Ada in CACSD zu illustrieren.

Wegen der vielschichtigen Probleme auf dem Gebiet der
CACSD werden in dieser Dissertation Themen von einem sehr
breiten Spektrum der Ingenieurwissenschaften behandelt, ins-
besondere aber Themen der Regelungstechnik, des Software-
[Engineering, der formalen Sprachtheorie, der Rechnergraphik
wie auch andere Aspekte der Informatik. Da die meisten Leser
dieser Arbeit nur in einem paar dieser Gebiecte spezialisiert sind,
wird in jedem Abschnitt eine einfiihrende Uebersicht gegeben,
mit ausreichenden Hinweisen auf weitere Literaturstellen. s
werden jedoch einige Basiskenntnisse der Regelungstechnik und
des strukturierten Programmierens vorausgesetzt.

Xiv

Chapter 1

INTRODUCTION

Over the past 30 years, computers have gained, and they still
continue to gain, an ever increasing importance in automatic
control. Thereby, computer programs for automatic control
have traditionally been constructed for two different purposes
— to aid the control engineer during the design of a control sys-
tem for a plant (the topic of this thesis), and to implement a
real-time program for the digital realization of a control system.
Correspondingly, the terms off-line and on-line programs are
frequently used to classify control-related software.

Unfortunately, the terms on- and of-line are not mutually
exclusive. For example, a real-time (on-line) data acquisition
and/or identification package may be used during an otherwise
off-line design cycle. Conversely, the automatic tuner of an
adaptive controller may be seen as a design component build
into an on-line program. To avoid this confused terminology,
more distinctive terms have to be adopted.

Computer-Aided Control System Design (CACSD), a
term which gained wide-spread usage only a few years ago (Her-
get and Laub, 1982 and 1984), was originally used to describe
only the off-line design of controllers (Cuenod, 1979 — Fore-
word by M. Mansour). However, the actual analytical or nu-
merical design of a controller is but one of many steps between
the conception and the implementation of a control system, as
illustrated by the complete control cycle in Figure 1.1 (adapted
from Mansour et al., 1985).

In order to clarify the terminology used in this thesis, and
thereby also to somewhat generalize the term CACSD according
to more recent usage (Jamshidi and Herget, 1985 — Foreword),
we define CACSD to be

the use of digital computers as primary tool dur-
ing the modeling, identification, analysis and design
phases of control engineering.

Moreover, and again consistent with recent usage of the term,
we define CACSD packages as being

stand-alone, interactive software programs to be used

for CACSD.

As depicted in Figure 1.1, these definitions are broad enough to
encompass software for all phases of the design cycle except for
the actual real-time implementation of the controller.

Alternative terms used by some authors to categorize ap-
proximately the same field as CACSD include Computer-Aided
Engineering (CAE) (/Tstré'm, 1984; Walker et al., 1984) and
Computer-Aided Control Engineering (CACE) (Taylor et al.,
1984). These terms will, however, not be further used in this
thesis.

Over the last half dozen years, several conferences have been
held in the field (Cuenod, 1979; Leininger, 1982; Hansen and
Larsen, 1985; IEEE 1983, 1985 and 1986). Also, some spe-
cial collections of CACSD articles have been published in re-
cent years (Herget and Laub, 1982, 198/; CASCADE, 198/;
Jamshidi and Herget, 1985). Early projects in CACSD and
related areas not covered by these publications have been doc-
umented by Wieslander (Man-machine interfaces, 1979), Cel-
lier (I;/[odelling and simulation, 1979) and Elmqvist (Modelling,
1978).

The thesis will deal with man-machine communication in-
terfaces as well as implementational issues of CACSD software
packages. After a general excursion into the world of CACSD
and its surroundings in Chapter 2, we will turn to the design of

Conceptual phase

- problem definition <t
- requirements formulation

T e

Data <

acquisition Modelling

e

. Identification
Signal

processing < - on-hpe ——
- off-line
AnMign
- observability, e - optimization i —————
controllability - heuristic methods
- stability
- sensitivity
- dynamic behaviour
(simulation)
h 4

Implementation
- Real-tfime languages
- Real-time operating
systems

;

Use

Figure 1.1: The design cycle in control theory.

flexible user-interfaces and the closely related aspect of including
support for adequate data structures in Chapters 3 and 4. The
increasing importance of software engineering concepts for the
design and construction of large software packages is reflected
in a detailed study of the suitability of Ada ' (ANSI, 1983) as
an implementation language for CACSD software in Chapter 5.
Chapter 6 will conclude the thesis with a discussion of expected
future trends in CACSD.

The design of modern CACSD packages is resolved in three
main areas, namely control algorithms, man-machine interfaces
and implementational deliberations. Each of these areas is im-
perative for a successful design. Moreover, the advances in each
of the areas is dependent upon developments in other, related
fields, as illustrated in Figure 1.2. Thus, aspects from the man-
machine interface and implementational side of CACSD software
design will be discussed in this thesis, and will be put in relation
to their neighbouring non-control fields. It will be shown that
these two areas are closely interrelated, and it will be argued
that the hitherto frequently perceived incongruity between the
interests of CACSD software tmplementors and CACSD pack-
age end users has essentially been obliterated with the advent of
open, command-driven and user extendable CACSD tools. As a
basis for this discussion, a flexible command language adapted
to the needs of control engineers will be presented, and a com-
prehensive discussion of necessary data structures will be given.

The lack of a chapter on CACSD algorithms may in no way be
seen as a depreciation of the importance of this field. Rather,
the necessity of ever better control algorithms is reflected by
the sections on the design of flexible, ”plug-in” algorithmic in-
terfaces of CACSD packages. However, the major thrust of this
thesis is to create an environment which optimally supports the
development and implementation of new control algorithms and
strategies rather than the development of such algorithms by
themselves.

Any pure paper-and-pencil research in the field of CACSD
package design is bound to produce theoretically interesting,
but impractical and /or unimplementable results. Therefore, this

1Ada is a registered trademark of the U.S. Government, Ada Joint Pro-
gram Office

Numerical
Analysis

-
Software .
engineering (E:Lgn‘:;::z;cs
Computer . _
engineering . interaction

J

Figure 1.2: CACSD software components and related areas. The
fields treated in this thesis are within the shaded area

work has been accompanied by the implementation of an ad-
vanced CACSD-package, IMPACT. All examples presented in
this thesis, except those marked otherwise, are coded in the
syntax of the new package IMPACT. It would be an exaggera-
tion to call the present version of IMPACT operational though.
The package has been developed as a research tool acting as
a test-bed for the results of this thesis. However, it is not
the framework of IMPACT that makes the software inoperable.
The framework has been carefully designed, implemented, and
tested. It is merely the lack of appropriate control algorithms
currently implemented in IMPACT that makes the software still
inoperable. Through plug-in incorporation of an adequate num-
ber of control algorithms, the package should become a well
functioning CACSD product in the near future.

Chapter 2

GENERAL ASPECTS OF
CACSD

2.1 CACSD in a global perspective

During the past decades, computational tools available to and
design methods used by control engineers have wholly changed
in pace with the rapid advances of digital computer technology.
In particular, the graph-based frequency-domain methods used
prior to the "computer-era” have been complemented with, and
for some time overshadowed by, numerical, matrix-based state-
space design methods. Lately, computers have given the tra-
ditional frequency-domain methods a renaissance through the
use of new, computer-based graphical algorithms for multivari-
able controller design (Frederick et al., 1985; Leininger, 1982).
This evolution of computational control-tools has been primarily
spurred by developments in the following five fields:

e A tremendous development in computer hardware. Dur-
ing the past three decades, the processing power of digi-
tal computers (both with respect to their execution speed
as well as their memory availability) have doubled every
second to third year, whereas during the same time, the
size as well as the price (per computational unit) of this
hardware has been halved at approximately the same rate.
This development has made several computational meth-
ods popular among control engineers that were previously
known in theory, but were not practically usable, such

7

CHAPTER 2. GENERAL ASPECTS OF CACSD

as the digital simulation of continuous-time processes by
means of numerical integration, as well as the iterative,
on-line identification of physical processes. Also, new con-
trol methodologies have been initiated most of which are
based on intricate numerical computations that were not
feasible without computers (e.g. matrix-based methods
such as Kalman filtering and state-feedback design).

A slower, but equally impressive, development of system
software such as operating systems, programming languag-
es and program execution environments. These develop-
ments have been accelerated in recent years primarily due
to the increasing cost of software as compared to hardware.
In modern computer-systems, software cost amounts to
80% or more of the total installation cost (Sommerville,
1985)). Hence, results from newly developed fields such as
software engineering must be employed to lower the overall
system cost by increasing software productivity, ensuring
software reliability, and assisting software maintenance.

Better hardware and software for graphical displays. This
development has already led to a renaissance of graphi-
cal control methods (e.g. the inverse Nyquist method).
Moreover, utilization of fast bit-mapped displays will soon
lead to a general acceptance of more flexible means of man-
machine communication involving techniques such as pull-
down menus, windowing, and graphical animation.

Quality numerical software. Standard numerical routines
which are efficient, accurate and reliable have been col-
lected into wide-spread libraries for general use. Many of
these routines were developed during the 70’s and are now
in the public domain (for example LINPACK (Smith et
al., 1974; Dongarra et al., 1979), EISPACK (Garbow et
al., 1977), MINPACK (Moré€ et al., 1980), ODEPACK
(Hindmarsh, 1983), and ELLPACK (Rice et al., 1985)).

New concepts as well as ready-to-use software in related
application fields such as simulation and signal-processing
have influenced and/or preempted developments in the

field of CACSD.

2.1. CACSD IN A GLOBAL PERSPECTIVE

CACSD
Simulation
Numerical
softvware
Graphics
Software FORTRAN Pascal Ada
Hardware |Batch Interactive Workstatior
Operation PL's
1 L N
| T 1 7
1950 1960 1970 1980
-oo.] Early 7] Growth Consolidation
----- packages 3] period period

Figure 2.1: The “historical” development

of interactive CACSD

tools versus the availability of related (not necessarily inter-

active) software.

state-of-the-art.

A few products illustrate the prevailing

10 CHAPTER 2. GENERAL ASPECTS OF CACSD

The relationship between CACSD software and these five
fields is illustrated in Figure 2.1.

From this figure, the timely transfer of concepts from other
fields to the control area can be easily envisaged. However, most
of these related fields have been developed somewhat earlier.
They are generally more mature, and have advanced beyond
their phases of strongest growth into phases of consolidation.
Therefore up to this point, the flow of ideas has been mostly
unidirectional. For instance, the design of continuous simulation
languages has been fairly well coordinated since the adoption
of the CSSL’67 standard (Augustin et al., 1967). Contrary to
this, the control community has only recently begun to discuss
the need for world-wide guidelines in CACSD, and a first IFAC
working-group for the development of CACSD-standards has
just been formed (IFAC, 1986). Furthermore, recent develop-
ments in computer hardware, computer languages, and operat-
ing software should have wide-spread IMPACT (sic) on CACSD
tools in the near future.

Despite the time-lag of CACSD in comparison with the other
fields in Figure 2.1, fundamental results from the field of CACSD
have already diffused into other disciplines. For example, many
algorithms that originated in control are widely applicable also
in other areas (Kalman-filters, Riccati-equation solvers, etc.).
Also, some control-originated packages such as CTRL-C (Luttle
et al., 1984; CTRL-C, 1986) and MATRIXx (Shah et al., 1985)
find use in other application fields such as signal processing and
simulation.

As CACSD matures, increased cross-fertilization between dif-
ferent application fields can be expected. Moreover, despite the
relatively small size of the CACSD community, special purpose
CACSD-systems based on customized hardware and system soft-
ware may become feasible in the intermediate future (Schmid,
1985), just as special purpose simulation workstations and ar-
tificial intelligence workstations are currently emerging.

2.2. COMPUTERS IN CONTROL SYSTEMS DESIGN 11

2.2 Computers in control systems de-
sign

As illustrated by Figure 1.1, the actual controller design is only
one phase out of several in the total control cycle. Each of these
phases require special algorithms operating on a wide range of
different data structures.

e The first part of the iterative control cycle, the concep-
tual phase of problem formulation and requirements speci-
fication, is seldom supported by todays CACSD-packages.
The major reason for this current lack in software support
stems from the fact that decisions made during this project
phase are mostly based on non-numerical operations and
reasoning. The currently available CACSD packages lack
both the data structures and the algorithms needed for
symbolic processing. Recently, a tighter cooperation be-
tween control experts and expert system designers has
been noticed. This link may soon produce software able
to support the design engineer during this initial project
phase.

e The analytical first phase of the control cycle, the mod-
eling phase, is the least uniform among the phases, and
thereby it is also the step that can least easily be auto-
mated. The user may deal with linear as well as nonlinear
systems, continuous as well as discrete/sampled-data sys-
tems, systems with known as well as unknown parameters,
the models may be self-containing, or they may be hier-
archically organized, and so on. Due to the abundance of
different model types, the user interface must support a
large variety of model-representation structures as well as
algorithms for general model interconnections. Hitherto,
the most versatile modeling capabilities have been found
in general purpose simulation languages such as ACSL
(1986) or SYSMOD (Baker et al., 1983; SYSMOD, 1986).

e The data acquisition was traditionally performed over an
analog data-logger and transferred to the computer in a
manual or semi-automatic fashion over e.g. a digitizing

12

CHAPTER 2. GENERAL ASPECTS OF CACSD

tablet. Today, stand-alone data-logging hardware or spe-
cial purpose, combined software-hardware products for
process computers or even small PC’s will perform this
task automatically. These systems may include signal pro-
cessing elements for data compression and signal analysis,
or the raw data is passed on to some off-line signal pro-
cessing program. The real time acquisition of data is not
explicitly treated in this thesis, however, the data struc-
tures presented in Section 4.7 cover the requirements of
the data acquisition and signal processing phases as well.

During the parameter identification phase, the parameters
of a given model structure are estimated from measured
data by the use of some optimization techniques. In addi-
tion to a parameterized model representation, the identifi-
cation algorithms require signal representation(s) as input.

The central part of any CACSD package contains the al-
gorithms for model analysis and controller design. De-
pending on the structure of the model and the design
methodology used, the algorithms used and the structures
operated upon may vary greatly. Most CACSD packages
work on linear system representations, and design tools
operating in the time (state-space) and/or the frequency
domain. Correspondingly, data structures to represent or-
dinary (eventually complex) matrices as well as rational-
function matrices must be supported. Nonlinear simu-
lation, model linearization, model reduction, and model
transformations are other operations needed during this
project phase.

The tmplementation phase does not, according to our def-
inition, belong to the sphere of CACSD. Nevertheless, dif-
ferent attempts to add automatic generation of real-time
code to traditional CACSD tools (e.g. Lehman et al.,
1986) have been made lately. However, it was never tried
in any of these attempts to incorporate real-time software
within large, integrated CACSD tools. This field is cer-
tainly worth a closer study, and, although not explicitly
treated in this thesis, the parallel capabilities described in
Chapter 5 together with the data-structures described in

2.2. COMPUTERS IN CONTROL SYSTEMS DESIGN 13

Chapter 4 could form a solid base for any further work in
this direction.

Despite the large range of data representations and algorithms
needed during the different phases of the control-cycle, there
are some common traits: data structures in CACSD software
usually represent systems or signals in some form, and/or they
are used to store intermediate results in matrix/symbolic form.
Hence, CACSD packages can be seen as a blend of

e numerical software for the implementation of control algo-
rithms. Many of these algorithms, and particularly those
working on systems described in the time-domain, con-
tain standard linear-algebra routines as their basic build-
ing blocks. Other control algorithms are based on poly-
nomial operations or numerical integration. The trend is
to rely on standard numerical software for economy and
reliability.

e symbolic software for defining and manipulating nonlinear
systems. Traditionally, symbolic software was either hid-
den in simulation languages for the translation of a paral-
le]l model description (ODE’s) to a sequential and thereby
executable program, or directly used in general symbolic
packages for algebraic equation manipulations (Wolfram,
1985). In some newer control packages, linearization algo-
rithms are used to connect (symbolic) modeling languages
to (numeric) design/analysis parts.

None of the presently wide-spread CACSD tool give direct
access to pure symbolic manipulations, and few implemen-
tations based on numeric software can be easily extended
to facilitate symbolic descriptions. Nevertheless, the use of
symbolic manipulations in CACSD will probably increase
in the future.

o “intelligent” software for the use of expert systems within
control packages. The term ”expert systems” has un-
doubtedly become the newest buzzword in all computer
fields. Nevertheless, the current expert system develop-
ment must be taken seriously. Pioneer work has shown
that expert systems can be meaningfully employed in a

14

CHAPTER 2. GENERAL ASPECTS OF CACSD

control environment (James et al., 1985;, Taylor and Fred-
erick, 1984).

graphical software. Practically all modern CACSD pack-
ages support graphical display of time-histories (simula-
tion) and/or frequency plots (design in the frequency do-
main etc.). Moreover, a few packages allow the user to
enter system descriptions graphically in a block diagram
form (King et al., 1984; Elmquist et al., 1986). Neither
of these applications call for the highest-resolution graph-
ical displays (as they are used e.g. in VLSI-design) or for
the highest-speed communication links, yet the advent of
modern workstations with fast and high-quality graphics
opens a wide range of new possibilities. For instance, it
will be feasible to support multi-windowing, ”on-line” ani-
mation of control processes, and interactive ”on-line” tun-
ing of controller parameters. This has been illustrated by
the experimental teach-ware program shown in Figure 2.2
(Schaufelberger et al., 1986).

Graphical output does not suffer from the limitations of
alphanumerical terminals in displaying indices, etc. We
can therefore expect to get better readable output of for
instance polynomials and system descriptions on modern
workstations.

parser software and user interfaces. Most early developers
of CACSD software concentrated their efforts on numer-
ical problems and thereby neglected the development of
good (that is: flexible and robust) man-machine commu-
nication interfaces. In recent years, the design of powerful
user interfaces has become the dominant issue in the devel-
opment and/or assessment of CACSD tools (Bongulielms
and Cellier, 198/; Jamshidi and Herget, 1985).

While early control packages contained up to 80% numer-
ical software (Agathoklis, 1979, 1986), modern CACSD tools

display a more balanced distribution between the different soft-
ware components. Figure 2.3 shows the estimated relative size
of the different software components in IMPACT. Other modern
packages exhibit similar distributions.

2.2. COMPUTERS IN CONTROL SYSTEMS DESIGN 15

" & Inhalt Eingang Entwurf des Zustands-Reglers
r X1
10 Sek 10 Sek
X2
i - ; 11 ilG
IR 10 Sek i 2 ~
10 Sek

Figure 2.2: Mouse controlled program illustrating state-feedback
controller design. This experimental program is used in class-
room exercises and runs on a Maclntosh.

Obviously, multifaceted knowledge is needed to design and
develop a modern CACSD package. The package developer can
partly rely on the specific knowledge of others (by using pre-
coded commercial or public domain software). This is, however,
only possible when the imported software can be used as a ”black
box”. In particular, the development of a suitable user-interface
will remain a major software undertaking until suitable kernel
systems such as IMPACT or the system described by Goodfel-
low and Munro (1985) become widely available. Such a major
development must involve people with knowledge in all of the
above mentioned fields and, most important of all, experience
in software engineering.

16 CHAPTER 2. GENERAL ASPECTS OF CACSD

15.00%

26.25% B User Interface
6.25% B Numerical algorithms

Graphical software

1 Symbolic software
(linearization)

22.50%
[J Memory management,

error handler etc.

30.00%

Figure 2.3: Relative size of different code segments of IMPACT

2.3 Integrated CACSD-facilities

We have seen that CACSD tools exist for all phases of the design
sequence, but that each single package normally is suited for
only one or two of these phases. However, particularly in a
student environment, the use of a single, multi-purpose package
is advantageous. Conceptually, the development of such a multi-
purpose CACSD facility can be approached on three different
levels:

e several independent programs communicating through a
common data base

e several control packages connected via a common data
base and a common user interface

e a fully integrated CACSD package

The simplest approach is the one using a common data base
through which intermediate data can be transported from one

2.3. INTEGRATED CACSD-FACILITIES 17

part of the facility to another. It is mainly used when already
existing packages are to be interconnected (a typical example
is the link between the CTRL-C design package and the ACSL
simulation language (CTRL-C, 1986), another example is the
Federated Computer-Aided Control Design System from Gen-
eral Electric, which combines four different CACSD packages
(Spang, 1985)). Major drawbacks of this approach are that the
user has to get acquainted with several different systems which
are conceptually different and which do not provide for consis-
tent data structures, and that information is often lost in the
transfer or has to be added after the transfer (a typical exam-
ple is the run-time information which is needed by the analysis
and nonlinear simulation modules of the CACSD software, but
which is redundant in and incompatible with the linear design
module).

The approach of combining many individual programs over
a common user interface has been successfully used in several
larger CACSD projects, for example in the Lund control suite

surveyed by Wieslander (1980) and Astrém (1988). This suite
is built upon a common macro handler (INTRAC). The macro
handler gives the user access to a basic set of general com-
mands (edit/execute macros, change/show parameters). The
other parts of the package add specific context-adapted com-
mands, like commands for identification (IDPAC), polynomial
operations (POLPAC) and simulation (SIMNON). Using this
approach, the user needs to know only one system - the common
interface. A further advantage is that the individual parts of the
package can be designed quite independently of each other using
their own data structures. However, the context-dependency of
the available commands and data structures makes an overview
of the full package and all its possibilities difficult, especially for
the beginner.

The fully integrated approach differs from the previous ones
in that the user is presented with a single, context-independent
interface from which all phases of the design sequence can be per-
formed. This means that, at any moment, the user is presented
with a much more powerful, but not necessarily more intricate,
tool. In fact, the very integration of the different segments into
one interface can make the system easier to use. For example,
it is possible to design the package in such a way that the com-

18 CHAPTER 2. GENERAL ASPECTS OF CACSD

mands for the simulation of linear and nonlinear systems look
exactly the same, despite the fact that these simulations have
nothing in common from an algorithmic point of view.

In our opinion, this third approach is to be preferred. Not
only does the integrated interface shorten the total familiar-
ization time, it also precludes all errors deriving from concep-
tual differences in the packages (e.g. varying specifications of
closed/open loops or different tolerance indications). An exam-
ple of such an integrated system is IMPACT.

IMPACT will give access to algorithms for all parts of the
design sequence (except for the data acquisition and real-time
implementation phases) using a common set of data structures.
Moreover, in addition to the standardized interface to all al-
gorithms, IMPACT provides the user with a full-fledged algo-
rithmic command language and a wide selection of applicable
data structures. This makes the package user extendable and
therefore usable not only in education but also in a research
environment.

2.4 The educational value of CACSD

Design is by its very nature an iterative process. Several tri-
als have to be made until a reasonable control system results.
If done by pencil and paper, this requires much work (draw-
ing frequency responses, calculating dominant pole responses,
etc.), and the methods used are only approximate ones. This
can be considerably improved by the use of computers. Meth-
ods that are not important for the understanding of the subject
matter (e.g. the manual drawing of Root-Locus curves) can be
removed, giving time for the introduction of additional control
concepts. Thereby, the essential facets of control engineering
can be brought to bear over a shorter time-span.

Moreover, many problems arising in control theory are solv-
able only by numerical methods. Through the use of CACSD
packages, these problems can now, for the first time, be treated
in the exercises of intermediate control courses. For example in
conventional paper-and-pencil exercises, the students almost ex-
clusively work on linear (linearized) systems. Through the use

2.4. THE EDUCATIONAL VALUE OF CACSD 19

of CACSD packages supporting linear design techniques as well
as nonlinear simulations, the students can compare the system
behaviour of the regulated linearized system with that of the
regulated original, nonlinear process after the controller design.

However, although the use of CACSD indisputably opens up
new perspectives in control education, an indiscriminate replace-
ment of conventional exercises with CACSD sessions may prove
contra-productive. Several manual schemes, which can be per-
formed much faster using numerically better suited methods on
a computer than by hand, often help the students to get a bet-
ter understanding of the underlying theories during their use.
For example, many CACSD packages support algorithms trans-
forming systems from the time to the frequency domain and vice
versa. Nevertheless, we feel that it is pedagogically better to let
the students perform this translation by hand a few times using
simple examples, as this provides a better feel for the physical
meaning of the translation. Moreover, the student should al-
ways have means to roughly verify the results he gets from the
computer.

From our own experience, we conclude that the use of CACSD
tools enables an enhancement of the overall scope of a course,
but that during carelessly formulated CACSD exercises, the stu-
dents often overlook the actual theoretical/numerical difficulties
and loose the overview of the treated subject matter.

20

Chapter 3

MAN-MACHINE
INTERFACES IN CACSD

3.1 Introduction

In Section 2.1, we discussed how the rapid advances in several
areas of computer hardware and software have influenced the
development in control theory, and how this has triggered a
dramatic expansion of methods and tools available to control
engineers. However, from the perspective of a control engineer
using the computer only as a tool, the impact in these five areas
has neither been uniform nor simultaneous. A control engineer
assigned to solve a particular problem using a given computer
tool will first and foremost be confronted with the user interface
of the tool (independent of whether this tool is an interactive
package, a library of algorithms, or simply a compiler/linker).
Only when this user-interface has been mastered will other prob-
lems (like computing speed, dimensional limitations or insuffi-

cient accuracy) appear.

Obviously, an easy-to-use and flexible user-interface is a most
important prerequisite of any (control-oriented) computer-tool
to be used efficiently, yet the development of such interfaces has
for a long time lagged behind the advances in other areas such
as robust methods and efficient algorithms. Let us illustrate this
with an example:

Assume a control engineer wishes to calculate the sets of
eigenvalues and the inverse modal matrices (the inverse of matri-

21

22 CHAPTER 3. MAN-MACHINE INTERFACES IN CACSD

ces with the eigenvectors as their columns) of several 5*5 system
matrices.

Forty years ago, he would have needed a lot of paper and even
more patience to solve this problem (on the other hand at this
time, state-space methods were not used, so no control engineer
would have felt the urge to solve such a problem).

Twenty years ago, our control engineer might have had a dig-
ital computer at his disposal. However, he would have had to
write by himself a program which calculated the eigenvectors
and inverted the modal matrices.

Ten years ago, most control engineers had access to some li-
braries containing standard mathematical algorithms, such as
SSP (IBM, 1968), LINPACK (Dongarra et al., 1979), EIS-
PACK (Smath et al., 1974; Garbow et al., 1977), and IMSL
(1982). Nevertheless, our engineer still had to construct a pro-
gram to read the matrices, call the algorithm-routine(s) and
print out the results. Figure 3.1 lists a minimal program solv-
ing this problem through calls to IMSL routines, together with
a sample input and output. A lot of time was lost before the
user knew which library routines to call, what values to give the
numerous parameters of these routines and how to compile and
link this program with the correct library routines. More time
was then lost until the input format corresponded to the input
data, the result was properly displayed and all small program-
ming errors had been detected. At the end of this tedious work,
the engineer had a re-usable, but inflexible, special-purpose pro-
gram.

Five years ago, the situation was again slightly improved.
Several interactive numerical control packages had become avail-
able. These allowed the user to enter his data and perform a
limited number of operations without writing any programs of
his own. Unfortunately, the form employed for the user-dialogue
was seldom very efficient. More often than not, a rigid question-
and-answer dialogue had to be used. Such a conversation is il-
lustrated in Figure 3.2 by an example from INTOPS, a package
developed by Grepper and coworkers (1977) for use in under-
graduate control exercises at the ETH. This tedious kind of con-
versation slowed down the use of these packages and gave the
user very little flexibility in the actions he could take.

3.1. INTRODUCTION

C##%%*PROGRAM TO 1/ READ A SYSTEM MATRIX
C %ok sk 2/ CALCULATE THE MODAL MATRIX
Cotostskse o 3/ CALCULATE THE INVERSE MODAL MATRIX
COMPLEX CMAT(100),CVAL(10),CVEC(100)
REAL RVEC(100) ,RINV(100)
CALL READA(N,CMAT)
CALL MODAL(N,CMAT,CVAL,CVEC)
CALL WRITM(N,CMAT,CVAL,CVEC)
DO 10 I=1,N=N
RVEC(I)=REAL(CVEC(I))
IF (AIMAG(CVEC(I)).NE.0.0)GOTO 11
10 CONTINUE
CALL INVMO(N,RVEC,RINV)
CALL WRITI(N,RINV)
STOP

11 WRITE(6,100)
100 FORMAT(40H IMAGINARY EIGENVECTORS, CAN NOT PROCEED)
STOP
END
C
SUBROUTINE READA(N,CMAT)
Cx#x*%*READ A REAL SQUARE MATRIX ROWWISE
COMPLEX CMAT(1)
REAL CINP(10)
READ(5,100) N
IF(N.GT.10) GOTO 11
DO 10 I = 1,N
READ(5,101) (CINP(J),J=1,N)
DO 5 J = 1,N
CMAT((J-1)*N+I) = CMPLX(CINP(J),0.0)
5 CONTINUE
10 CONTINUE
RETURN

11 WRITE(6,102)
STOP
100 FORMAT(I5)
101 FORMAT(10F10.0)
102 FORMAT(33H DIMENSIONAL LIMIT OF 10 EXCEEDED)
END

(Continued)

23

24

CHAPTER 3. MAN-MACHINE INTERFACES IN CACSD

SUBROUTINE MODAL(N,CMAT,CVAL,CVEC)

C##%%x*CALCULATE THE MODAL MATRIX

11

100

C

REAL WK(250)

CALL EIGCC(CMAT,N,N,2,CVAL,CVEC,N,WK,IER)
IF(IER.NE.O)GOTO 11

RETURN

CONTINUE

WRITE(6,100)

FORMAT(35H ERROR CALCULATING THE MODAL MATRIX)
STOP

END

SUBROUTINE INVMO(N,RVAL,RINV)

C##%#%CALCULATE THE INVERSE OF A MATRIX

11

100

C

REAL RVAL(1),RINV(1),WKAREA(250)

IDGT = 0

CALL LINV2F(RVAL,N,N,RINV,IDGT,WKAREA,IER)
IF(IER.NE.0)GOTO 11

RETURN

CONTINUE
WRITE(6,100)

FORMAT(33H ERROR INVERTING THE MODAL MATRIX)
STOP

END

SUBROUTINE WRITM(N,CMAT,CVAL,CVEC)

Cx##x*xPRINTS SYSTEM MATRIX, EIGENVALUES AND MODAL MATRIX

C

COMPLEX CMAT(1),CVAL(1),CVEC(1)

CALL USWCM(14H SYSTEM MATRIX,14,CMAT,N,N,N,2)
CALL USWCV(12H EIGENVALUES,12,CVAL,N,1,2)
CALL USWCM(13H MODAL MATRIX,13,CVEC,N,N,N,2)
RETURN

END

SUBROUTINE WRITI(N,RINV)

Cxx%xxPRINTS THE INVERSE MATRIX

REAL RINV(1)

CALL USWFM(17H INVERSE MODAL M.,17 ,RINV,N,N,N,2)
RETURN

END

(Continued)

3.1. INTRODUCTION 25

(Input to the program)

5
18 0] 0 10 -10
20 = -3 7 -13
10 =3 -3 2 -8
=10 0 0 -6 5
10 0 0 5 -5

(Partial output from the program)

EIGENVALUES
(5.3375, 0.0000) (-8.6056, 0.0000)
(2.4326, 0.0000) (-0.7702, 0.0000)
(-1.3944, 0.0000)
MODAL MATRIX
1 2
3 4
5
I 0.5000, 0.0000) (0.0000, 0.0000)
(3.1856, 0.0000) (-0.1381, 0.0000)
(0.0000, 0.0000)
o ¢ 0.2580, 0.0000) (8.0000, 0.0000)
¢ 1.1685, 0.0000) (0.2013, 0.0000)
(-3.3282, 0.0000)
a8 A 0.1077, 0.0000) (4.2815, 0.0000)
(0.1875, 0.0000) (-0.9543, 0.0000)
(6.2188, 0.0000)
4 (-0.2894, 0.0000) (0.0000, 0.0000)
(-2.0568, 0.0000) (0.3695, 0.0000)
(0.0000, 0.0000)
5 (0.3437, 0.0000) (0.0000, 0.0000)
(2.9023, 0.0000) (0.1103, 0.0000)
(0.0000, 0.0000)

Figure 3.1: FORTRAN program calculating the eigenvalues of
a system and the inverse of the corresponding modal matrix.
The program uses the IMSL library. Note that IMSL does not
contain a subroutine for calculating the inverse of a complex

matrix (!).

26 CHAPTER 3. MAN-MACHINE INTERFACES IN CACSD

Today, many control engineers have access to modern CACSD
packages offering easy-to-use and yet flexible command-driven
user interfaces as illustrated in Figure 3.3. Comparing this figure
with the previous ones, it is easy to envision how the time needed
for a simple eigenvalue computation has been reduced by a factor
of 100 (10) during the last ten (five) years.

The described evolution is true not only for innovative de-
velopments at exclusive sites, but also for the broad, worldwide
development of CACSD software. However, there is a 5-6 year
delay until the mainstream of CACSD developments catch up
with the forefront. This delay becomes obvious from study-
ing overviews such as ELCS, a regularly published Newslet-
ter which lists and describes control software packages (ELCS,
1986). Therefore, many of the concepts described in this thesis
cannot be expected to be in common use for some years to come
(cf. Section 6.2 on standardization).

This chapter will deal with properties of easy-to-use, efficient
and yet flexible user interfaces to software implementing control
algorithms. Thereby, we will start by differentiating between in-
teractive control packages and batch-oriented control programs.
Thereafter, we will present different approaches to interactive
interfaces. The bulk of the chapter will discuss the individual
elements of such an interface.

3.2 Batch versus interactive CACSD
software

In ELCS (ELCS, 1986) and elsewhere, a clear distinction is
made between interactive CACSD packages and control-oriented
subroutine libraries. The latter are source-/object-code libraries
intended to be included in user written programs, which then are
executed in a batch fashion. This thesis will deal with CACSD
packages which can be run interactively according to the follow-
ing, CACSD-relevant definitions:

e Batch-oriented computer programs are defined as programs
which execute autonomously (possibly using a predefined

3.2. BATCH VERSUS INTERACTIVE CACSD SOFTWARE 27

INTOPS>

I> FOR SELECTING PROGRAM OPTIONS:
OPTION = POLOPS (POLINOMIAL OPERATIONS), OR
OPTION = MATOPS (MATRIX OPERATIONS), OR
OPTION = LTDOPS (LINEAR TIME DOMAIN OPERATIONS),

I> OPTION = MATOPS

MATOPS>

M> 0P CODE = ENTER

M> NAME = A

M> COMMENT = A-MATRIX

M> ROWS = &

M> COLUMNS = 5

M> A (1, 1) = 18

M> A (1, 2) =0

M> A (1, 3) =0

M> A (1, 4) = 10

M> A (1, B) = -10

M> A (2, 1) =20

M> A (2,2 =-7

M> A (2, 3)=-3

M> A (2, 4) =7

M> A (2, B) = -13

M> A (3, 1) = 10

M> A (3, 2) = =B

M> A (3, 3) = -3

M> A (3, 4) =2

M> A (3, 5 = -8

M> A (4, 1) = -10

M> A (4, 2) =0

M> A (4, 3) =0

M> A (4, 4) = -6

M> A (4,5) =5 i

M> A (5, 1) =10

M> A (5, 2)=0

M> A (56, 3) =0

M> A (65, 4) =5

M> A (5, B) = -b

(Continued)

28 CHAPTER 3. MAN-MACHINE INTERFACES IN CACSD

INPUT MATRIX A 5 ROWS 5 COLUMNS
18.000 0.00000 0.00000 10.000 -10.000
20.000 -7.0000 -3.0000 7.0000 -13.000
10.000 -3.0000 -3.0000 2.0000 -8.0000
-10.000 0.00000 0.00000 -6.0000 5.0000
10.000 0.00000 0.00000 5.0000 -5.0000
M> 0P CODE = EIGVAL
M> NAME = A
M> THE EIGENVALUES AND -VECTORS ARE REAL
EIGENVALUES 5 ROWS 1 COLUMNS
5.3375
2.4326
-0.77016
-8.6055
-1.3944
M> DO YOU WANT TO SAVE THE EIGENVALUES (YES OR NO): Y
M> REAL PARTS (YES OR NO): Y
M> NAME = EVAL
M> COMMENT = EIGENVALUES
M> MATRIX SAVED
M> IMAGINARY PARTS (YES OR NO): N
M> DO YOU WANT TO SAVE THE EIGENVECTORS (YES OR NO): Y
M> REAL PARTS (YES OR NO): Y
M> NAME = EVEC
M> COMMENT = EIGENVECTORS
M> MATRIX SAVED
M> IMAGINARY PARTS (YES OR NO): N
M> OP CODE = LIST
M> NAME N * M COMMENT
M> A 5 5 A-MATRIX
M> ECAL 5 1 EIGENVALUES
M> EVEC 5 5 EIGENVECTORS

(Continued)

3.2. BATCH VERSUS INTERACTIVE CACSD SOFTWARE 29

M> OP CODE = SHOW
M> NAME = EVEC
SELECTED MATRIX EVEC 5 ROWS 5 COLUMNS
0.43022 -2.4148 -0.15262 -0.10803E-06 0.33713E-06
0.22199 -0.88577 0.22243 -10.984 3.3625
0.92644E-01 -0.14210 -1.0546 -5.8788 -6.2829
-0.24905 1.55692 0.40834 0.23096E-06 -0.55506E-06
0.29571 -2.2001 0.12186 -0.89407E-07 0.96857E-07
M> OP CODE = MINV
M> INPUT MATRIX TO BE INVERTED = EVEC
M> RESULT IN WORKING MATRIX
M> MATRIX OUTPUT (YES OR NO) : Y
WORKING MATRIX 5 ROWS 5 COLUMNS
12.079 0.11507E-06 -0.36006E-07 6.9926 -8.3027
1.6769 0.26701E-07 -0.14933E-07 1.0827 -1.5278
0.96416 0.98268E-07 -0.11169E-06 2.6795 0.76981
0.94668E-01 -0.70766E-01 -0.37873E-01 -0.17421E-02 -0.74206E-01
-0.11024 0.6621BE-01 -0.12372 -0.35276 -0.14766
M> 0P CODE = SAVE
M> NAME = INVE
M> COMMENT = INVERSE MODAL MATRIX
M> MATRIX SAVED
M> OP CODE = LIST
M> NAME N * M COMMENT
M> A 5 5 A-MATRIX
M> EVAL 5 1 EIGENVALUES
M> EVEC 5 5 EIGENVECTORS
M> INVE 5 5 INVERSE MODAL MATRIX

Figure 3.2: Question-and-answer dialogue of INTOPS for calcu-
lating the eigenvalues of a system and the inverse of the corre-
sponding modal matrix. The dialogue has been slightly modified

to fit onto three pages (!).

30 CHAPTER 3. MAN-MACHINE INTERFACES IN CACSD

<>

a=<18 0 010 -10
20 =7 =3 7T =18
10 -3 -3 2 -8
-10 0 0-6 5
10 0 0 & ~-5>;

<>

help eig

EIG Eigenvalues and eigenvectors.
EIG(X) is a vector containing the eigenvalues of a
square matrix X .
<V,D> = EIG(X) produces a diagonal matrix D of
eigenvalues and a full matrix V whose columns are the
corresponding eigenvectors so that X#V = VD

<>

<evec,eval> = eig(a)

EVAL =
-8.6066 0.0000 0.0000 0.0000 0.0000
0.0000 5.3375 0.0000 0.0000 0.0000
0.0000 0.0000 2.4326 0.0000 0.0000
0.0000 0.0000 0.0000 -0.7702 0.0000
0.0000 0.0000 0.0000 0.0000 -1.3944
EVEC =
0.0000 0.7432 5.1403 0.1532 0.0000
-0.8817 0.3835 1.8855 -0.2232 1.4190
-0.4719 0.1600 0.3025 1.0585 -2.6515
0.0000 -0.4302 -3.3189 -0.4098 0.0000
0.0000 0.5108 4.6832 ~0.1223 0.0000

invm = inv(evec)

INVM =
1.17956 -0.8817 -0.4719 -0.0217 -0.92456
6.90924 0.0000 0.0000 4.0479 -4 .8063
-0.7878 0.0000 0.0000 -0.5087 0.7178
-0.9607 0.0000 0.0000 -2.5703 -0.7671
-0.2612 0.1569 -0.2932 -0.8359 -0.3499

Figure 3.3: Command-driven dialogue of MATLAB for calcu-
lating the eigenvalues of a system and the inverse of the corre-
sponding modal matrix.

3.2. BATCH VERSUS INTERACTIVE CACSD SOFTWARE 31

set of input-files), whereas interactive programs communi-
cate with the user during the execution (e.g. to determine
the next action to be taken).

e Correspondingly, human operators may start programs in
a batch or interactive fashion. Batch programs will run
autonomously, unless the user crudely interrupts the pro-
gram by pressing CTRL-C, pulling the power cord, etc.

e For our purposes, it is enough to define the operating sys-
tem of a computer to be interactive if interactive programs
can be run on them, and batch-oriented otherwise.

Obviously, interactive programs can only run on computers
having an interactive operating system. However, the inverse is
not true. For example, the batch program in Figure 3.1 could
have been developed on an interactive computer using an in-
teractive editor, and yet it would execute in a batch fashion.
Moreover, interactive programs such as the one in Figure 3.3
can be executed in a batch fashion by specifying that the input
is to be read from an external file rather than from the terminal.

e Yet another, slightly misleading, use of the notations “in-
teractive” and “batch” is based on the program dewvel-
opment. Thereby, all programs where the user has to
construct program code of his own (by hand-coding or
through automatic code generation) to be compiled and
linked /loaded (possibly together with extensive libraries)
are called batch-programs.

This last classification is somewhat inaccurate, as thereby in-
teractively controllable programs with user-coded components
(e.g. an additional algorithm) still would be considered batch
programs. We will therefore refrain from this classification. In-
stead, we will use the term hard-coded algorithms/subprograms
to indicate program code implemented by the user and linked to
an already existing package (as opposed to so-called soft-coded
subprograms, to be defined later).

32 CHAPTER 3. MAN-MACHINE INTERFACES IN CACSD

3.3 Modes of interaction

When designing a new interactive system, one of the first actions
must be to decide in which form the man-machine interaction is
to take place. This decision should not be taken lightheartedly,
as the mode of interaction determines the user-friendliness, and
thereby also user acceptance, of the system; although this inter-
face is not the brain of any CAD-system, it certainly serves as
both eyes and mouth.

Moreover, the chosen mode of interaction influences the struc-
ture of the kernel controlling the package. In particular, the
data-structures of the kernel are very closely knitted to the user
interface. As any late changes in the central data structures are
the worst of all possible nightmares for any software developer,
the design of the interactive interface should be done carefully,
so that no later modifications need to be made.

Apart from some still exotic ways of communication, like
speech input and natural language input, five basically differ-
ent ways of interactive input exist:

e graphical input.

e question-and-answer method

e menu-driven operation

e form-driven input

e command-language communication

In the next sections, we will shortly discuss these five possi-
bilities and their application to CACSD packages.

3.3.1 Graphical input

Graphical input is particularly interesting for specifying system
descriptions (e.g. models of physical processes and controllers)
in topological form. Figure 3.4 depicts a fictitious system for en-
tering topological /equational system descriptions using a mouse

3.3. MODES OF INTERACTION 33

File Edit Define Connect Test [Operate
Linearize
Y versus t
V\/\’“ Simulate
—p-
U E Y
PID

Figure 3.4: Fictious graphical user-interface for entering system
topologies.

34 CHAPTER 3. MAN-MACHINE INTERFACES IN CACSD

and a keyboard. Similar academic/commercial software pack-
ages exist for entering control systems (SYSTEM_BUILD - Shah
et al., 1985; MODEL-C — announced companion to CTRL-C;
SAICAD - King and Gray, 1984; DOSU — Domeisen et al.,
1985) discrete network-simulation systems (TESS — 1986; CIN-
EMA - 1986) and general, hierarchical topological systems (Hi-
bliz — Elmgquist et al., 1986).

User acceptance of packages using a graphical input is quite
varied; on the one hand, the replacement of a formal model-
ing language with a self-explanatory mouse-driven operation is
much appreciated, but on the other hand, implementational lim-
itations of some of these early packages restrict their areas of ap-
plication. Especially for the modeling of large systems, the lack
of hierarchical concepts in DOSU, SAICAD, and TESS leads
to extremely large and messy graphs, whereas the limitation
to seven elements per hierarchical level of PC-based versions of
SYSTEM _BUILD limits the possible connections.

A more fundamental critique of graphical input is that it is
well suitable for describing and manipulating topological sys-
tems, but that operations using these systems become quite
cumbersome and slow if performed in a purely graphical man-
ner. Hence, some of the here mentioned packages (e.g. TESS,
CINEMA, and SYSTEM_BUILD), have automatic conversions
of systems to representations accessible over alphanumeric inter-
faces. These alphanumeric, command-driven interfaces are then
used for the “execution”, that is simulation, analysis or syn-
thesis, of the systems. This combination of graphical definition
parts and command-driven execution parts form very powerful,
integrated packages.

Although well-implemented graphical-input systems operat-
ing on modern workstations are very easy to use, they are some-
times criticized by skilled personnel for being considerably slow-
er than a corresponding alphanumeric input when the descrip-
tion of a large system is to be entered. However, graphs still have
an enormous documentation value. It would therefore make
sense to allow for alphanumeric as well as graphical input for
system definitions and to add yet another module to generate
the graph out of the coded program. This would also allow the
user to delete the graph from the data base to save memory.

3.3. MODES OF INTERACTION 35

The hitherto mentioned, presently available, graphical sys-
tems all have one serious drawback; they are highly hardware
dependent. Most of these packages will run on only one par-
ticular kind of computer using a specific (sometimes hardware-
extended) brand of terminal. This incompatibility with alter-
native hardware can only be avoided through consistent use
of a graphical standard such as GKS (ANSI, 1985) and Core

(ACM/SIGGRAPH, 1979).

3.3.2 Question-and-answer dialogue

The four interaction-modes described in the following are all
operating on alphanumerical information. This means that they,
at least in principle, can be implemented to run on a variety of
computers and terminals in a fairly portable manner. However,
“fancy” implementations of these conversational modes using
for example graphical pull-down menus or direct cursor control
may again be strongly hardware-dependent.

Question-and-answer interaction has a long tradition in inter-
active application-programming, including CACSD. A majority
of the CACSD-packages developed during the seventies had a
question-and-answer interface (ELCS, 1985) similar to the one
illustrated in Figure 3.2 There were several reasons why this
kind of interface was so widely spread:

e It is simple to program a question-and-answer dialogue,
as the text to be displayed on the screen can be statically
coded in the subroutine needing the information. Also,
the interpretation of user input is straight forward, as this
input has a simple structure and therefore does not need
to be parsed and decoded.

e As the program keeps the initiative at all times, such a
system is extremely simple to use. The user is rarely left
with any complicated choices, instead, he simply needs to
enter concise answers to simple questions in form of one
number or one name.

This last “advantage” is at the same time the major disad-
vantage of question-and-answer dialogues: the dialogue is to-

36 CHAPTER 3. MAN-MACHINE INTERFACES IN CACSD

tally controlled by the computer, and no deviation from the
pre-programmed path is possible. This becomes particularly
distressing when, after having entered an incorrect numerical
input, the user has to continue a now meaningless conversation
until the computer produces some mendacious results. More-
over, there is no way for the user to speed up the conversation
by entering more intricate, composite constructions.

3.3.3 Menu-driven operation

In a menu-driven system, the user performs a series of selections
from different menus to control the action taken by the pro-
gram. This scheme is implementationally similar to a question-
and-answer scheme and gives the same advantages, but unfor-
tunately also the same disadvantages. A further disadvantage,
also true for question-and-answer systems, is the inflexibility and
nonextendability of these systems. If a certain sequence of com-
mands needed to calculate certain results is not foreseen (pre-
programmed), it is impossible for the user to get the program to
perform the needed action. As an example, let us assume that
a main menu lets the user select between discrete-time state-
space operations, continuous-time state-space operations as well
as other choices. If, for some reason, an eigenvalue computation
has been defined only in the sub-menu containing continuous-
time operations, there is absolutely no way the user can get the
eigenvalues of a discrete-time state-space system, although the
necessary operation would be exactly the same as in the contin-
uous case, namely to calculate the eigenvalues of a real square
matrix.

A further disadvantage of most menu-driven systems is that
the user has no way of combining often used menu-selections
into compound commands (“dynamic super-menus”), making it
impossible to speed up the normal operation.

The mentioned drawbacks are prohibitive enough, so that no
more CACSD-packages purely relying on a menu-driven conver-
sation are implemented. However, menu techniques may still
be interesting for CACSD environments. So-called “pull-down”
and “pop-up” menus have become an integral feature of mod-
ern workstations and this has standardized the user interface to

3.3. MODES OF INTERACTION 37

many system and application programs. Their employment may
therefore be assumed to be well known to all users of any par-
ticular machine. Therefore in different sections of this chapter,
we will see how question-and-answer/menu driven operations
can be incorporated into other conversational modes to simplify
particular types of operations while circumventing the above
mentioned drawbacks.

3.3.4 Form-driven input

In this mode of interaction, a predefined form will be displayed
on the screen. An example of such a form is given in Figure 3.5.
Normally, this form will be partially filled out by the program
using default values, enabling the user to supply values for a
subset of the data fields of the form only.

Forms are particularly useful when the user has to control
a complicated algorithm, construct/scale detailed graphs, and
other instances where the program needs specification of numer-
ous parameters, some of which can be assumed to take default
(pre-calculated) values. The fields in a form can take numeri-
cal, boolean, name or string values. Advanced form-drivers may
even change/append the displayed form instantaneously when
certain key fields are assigned new values, and this change has
to be reflected in some additional fields.

3.3.5 Command-language interaction

This is the most complex among the alphanumeric conversa-
tional methods, both for the program implementor and for the
user of the program.

The user has to enter commands using a predefined, often
quite intricate, command language. This command language
may possess a syntax similar to a natural language, a procedural
programming language (e.g. Basic or Pascal), or may employ
a unique syntax of its own (Bongulielm: et al., 1985). Fig-
ure 3.6 shows examples of command-languages as used in differ-
ent CACSD packages. The L-A-S example calculates the time-
response from an optimal LQ regulator (West et al., 1985). The

38 CHAPTER 3. MAN-MACHINE INTERFACES IN CACSD

Domain(s) : OUTPUT_1
Main title : Output from stable system SYS1

X Lower limit O (0.000)
Upper limit 20 (16.000)
Axis Scale Linear (Lin/Log/Linrev)
Axix title TIME

Axis unit h

Y Variable(s) V VIN
Axis title Cable roll-off speed Desired speed
Axis unit m/s m/s
Lower limit O (0.000) 0 (0.000)
Upper limit 10 (8.473) 10 (5.000)
Color Red White
Line Solid Solid

Figure 3.5: Example of a form-driven input for describing a
plot-output. In this fictious display, the user should move
around with cursor-buttons or a mouse to change individ-
ual elements. Parenthesized entries either indicate the possi-
ble selections or show the minimum/maximum actual values.
Help-information should be available for every field. Note that
the screen should be fully dynamically controlled, if for example
the user decides to plot yet another variable, another column has
to be created or an old one has to be temporarily overwritten.

3.3. MODES OF INTERACTION 39

; Example of L-A-S input

(INP) = A,B,Q.R
B, R(INV), B(T) (%) (%) =8
A, S, A,Q,S(RIC) (%) (-) = AC
(INP) = XO
AC, XO (RCS) =Y

PROGRAM CC, Version 3

(C) Copyright 1984 by Peter M. Thompson, all rights reserved
HELP = list of commands

CC>QILICAUS

CC>BUILD & G=4/(S-1.5) + 5%S/(S72+2%S+5) & QUIT
CC>ILI,CAUSAL

SYST PROC REG CON

AXES H 0 100 V -1 1
PLOT yr yl[proc] ulreg]
STORE yr yl[proc] ulreg]

SIMU O 100

SPLIT 2 1

ASHOW y

SHOW yr

ASHOW u

// [gqs] = CONTROL(a,b)

// CTRL-C Function

[ma,na] = SIZE(a);

[mb,nb] = SIZE(Db);

IF ma <> na, DISPLAY('Non-square A-matrix’),

ELSE IF ma <> mb, DISPLAY(’Incompatible dimensions’),
ELSE gs = b; 1 = b; FOR i=2:ma, 1 = a*l; gs = [gs,1l];

Figure 3.6: Examples of different command-driven CACSD in-
terfaces.

40 CHAPTER 3. MAN-MACHINE INTERFACES IN CACSD

Program CC example shows the user entering a SISO-transfer
function to calculate the causal inverse Laplace transform (CC,
1986). The SIMNON example creates several plots from non-

linear simulation outputs (Astrém, 1985). The CTRL-C exm-
ple shows a small algorithm calculating the controllability ma-
trix of a linear system (1986). All the mentioned CACSD pack-
ages have copyrights and are listed in ELCS (1986).

The programmer implementing a program that is able to ac-
cept command language input faces difficulties similar to those
found during compiler construction (Aho et al., 1986) and/or
natural language processing (Barr and Feigenbaum, 1981, Vol-
ume 1). Moreover, the interactive nature of most CACSD pack-
ages causes a further problem of attaining an immediate and yet
efficient interpretation of the input (see Section 5.6 for a discus-
sion on data- versus code-driven execution).

Command-driven input is normally the fastest and most flex-
ible way of controlling an interactive package. However for the
beginner, it is also the most difficult one to master, as any pure
command-language interpreter gives the user relatively little as-
sistance. With present command-interpreter technology, which
is more comparable to programming language compilers than
natural language processors, the user must be knowledgeable
about a substantial subset of the language syntax before he even
can start to use the program. In particular, any incomplete in-
put is normally not acknowledged by the program as a base for
further inquiry on the action to be taken, but instead a cryptic
message like

#FATAL-ERROR FTN-INP-54/66B, Incomplete input.

is displayed on the terminal. This reaction can be compared
with the situation of a small child learning to talk, while all
adults refuse to understand anything except complete sentences!
Needless to say, computers have to become much more “human”
before they can be called user-friendly. In a later section of
this chapter, we will see how other conversational modes can be
integrated with command-languages to help the user when he
enters fractional or incomplete commands.

Once a command-language has been mastered, the user has
access to a very powerful tool. A nontrivial command-languages

3.3. MODES OF INTERACTION 41

supporting conditional and structural elements may be used to
enter virtually any combination of commands in a highly struc-
tured manner. This gives the user the freedom to modify, extend
or combine existing commands and, as will be shown later in this
thesis, the command interface becomes comparable to any pow-
erful programming language — in fact, we are then talking about
special-purpose interactive programmaing environments.

3.3.6 Command-language interaction versus
other alphanumeric methods

There is one fundamental difference between these methods —
the menu and the question-and-answer methods let the com-
puter be in charge of the conversation, whereas command lan-
guage interaction gives the user almost total control. A form-
driven input lies inbetween these extremes, as the user has full
“local control” in that he can modify any of the data fields in
arbitrary order, however, he can not extend this control beyond
the available, predefined data matrix.

A commonly found combination of the “computer-controlled”
methods is to have a menu-driven operation at the outermost
level(s), and question-and-answer conversation to obtain more
detailed information from the user, once the operation to be
performed has been selected from the menu (as in e.g. KEDDC,
Schmid, 1985).

If the only design goals are a minimum learning time and
maximum accessibility by non-specialists, the menu/question-
and-answer method i1s most certainly the correct choice. How-
ever, this method gets very tiresome after a while, as the user
tends to anticipate the next question, but cannot speed up the
input. As an example, again compare the conversational mode
of INTOPS in Figure 3.1 with the equivalent MATLAB com-
mands in Figure 3.3. One way to overcome this deficiency is
a type-ahead (answer buffer) facility. If each question may be
answered with a single symbol only (e.g. a simple name or num-
ber) or if a special character for separating answers to different
questions has been defined, the user may enter responses to the
present question as well as to future, anticipated questions at the
same time. Subsequent questions are suppressed until either the

42 CHAPTER 3. MAN-MACHINE INTERFACES IN CACSD

answer buffer is exhausted or an incorrect entry has been met in
which case the rest of the answer buffer is automatically cleared,
and the program returns to its indigenous question-and-answer
mode.

The advocates of menu-driven and question-and-answer in-
teraction rightly claim that their methods are specially advan-
tageous for users unfamiliar with the system. In our example,
the user of INTOPS needed to know only the existence of the
two commands ENTER and INV, whereas the user of MATLAB
must know how to form a matrix, and how to enter a variable
as parameter of a function. Despite this, due to the very natu-
ral notation of the MATLAB command language (an extension
of which will be described in more detail later), any inexperi-
enced user will be able to use MATLAB after a few minutes of
introduction only.

On the other hand, anyone familiar with both systems will
save a factor of 10 in time as well as in number of input lines
when he uses MATLAB to compute the inverse modal matrix.
This means that the command language interface pays off dras-
tically after not more than just a few hours of use.

One of the most noticeable drawbacks of menu/question-and-
answer driven systems is that only pre-programmed sequences
of actions can be performed. This is a serious handicap of many
CACSD-packages. As no general CACSD-package can include
every conceivable control algorithm, especially not if it is to be
used as a tool in scientific research, the user must be supplied
with an interface flexible enough to let him extend the package
according to his own needs. In particular, it must be possible
for the user to assemble existing basic algorithms to form more
powerful or more general algorithms. This is not possible in
a question-and-answer environment. We therefore believe that
the primary interface of a modern CACSD package must be
command-driven for both speed and flexibility. However, in or-
der to simplify the system for inexperienced users, several types
of help-facilities must be made available:

e a regular help-facility giving on-line explanations on avail-
able commands and their syntax/parameters,

e a query mode, giving the user the option to switch back

3.4. THE COMMAND-DRIVEN INTERFACE OF MATLAB 43

to a question-and-answer dialogue for more complicated
commands,

e a form-driven input to which the system automatically
turns whenever a selected operation requires specification
of numerous, but individually simple, parameters.

3.4 The command-driven interface of
MATLAB

One of the first persons to realize the importance of an interac-
tive command-language interface to packages containing reliable
mathematical algorithms was Cleve Moler (1980). In his pro-
gram MATLAB, a milestone in the history of interactive pro-
grams, an easy-to-use interactive interface was provided to the
LINPACK and EISPACK matrix manipulation libraries. Using
a very natural input command language, MATLAB allows to
perform matrix operations with the same ease as one executes
scalar computations on a pocket calculator.

MATLAB is extremely easy to use, and moreover, MATLAB
is very versatile in that new algorithms can be interactively de-
fined using the MATLAB command language. However, the
software was never intended to be used in control theory, and
therefore, many control problems are not solvable using MAT-
LAB. One reason for this is of course the lack of suitable algo-
rithms, another, more fundamental cause is the lack of appro-
priate data structures.

As MATLAB is written in a very well-structured manner,
it is quite simple to add new algorithms. MATRIXx (Walker
et al., 1982) and CTRL-C (Little et al., 1984) are well-known
examples of control-oriented code-extensions to MATLAB. Al-
though these new products are definite upgrades of MATLAB,
they only partially provide the control engineer with an ade-
quate tool. The major reason for the continuing deficiencies
of these systems is the above mentioned lack of adequate data
structures adapted to control problems. MATLAB uses the com-
plex double-precision matrix (with the scalar as a special case)
as its only data structure. All MATLAB upgrades added new

44 CHAPTER 3. MAN-MACHINE INTERFACES IN CACSD

algorithms to the software, but left the available data struc-
tures basically untouched. However, control engineers often
work with more intricate data structures such as polynomial
matrices, transfer-function matrices, and linear as well as non-
linear system descriptions.

Furthermore, although the input command language of MAT-
LAB is well suited for smaller problems, a better structured
command language is needed for more complicated problems. In
particular, a flexible macro/procedure facility accepting param-
eters must be supported. This feature is partially implemented
in MATRIXy and CTRL-C, whereas it is not available in most
other code-extensions of MATLAB.

Finally, versatile graphical output facilities and an interface to
a data base should be present. Some of the MATLAB upgrades
provide for appealing graphical output, whereas they are all
chronically weak it terms of data maintenance.

While MATLAB was implemented in FORTRAN, a few newer
CACSD-packages have been implemented in better structured
and modular programming languages. Thereby, more intricate
data structures can be supported, and modern software engi-
neering principles could be used during the implementation.
Some packages that are conceptually based upon MATLAB, but
were re-implemented in another language are PC-MATLAB (im-
plemented in C; Moler et al., 1985), EAGLES/M (implemented
in Objective-C; 1986) and IMPACT (implemented in Ada, de-
scribed in the following).

3.5 IMPACT

The rest of this chapter will discuss some important user commu-
nication features of modern CACSD programs. Unless otherwise
indicated, all examples will be given using the command-format
of IMPACT, the CACSD package designed and implemented
during the project described in this thesis. A full description of
IMPACT will be found in an upcoming User’s Manual, an early
version of IMPACT has been previously documented by Rimvall
(1983).

At a superficial glance, the user-interface of IMPACT might

3.6. THE BASIC COMMAND-LANGUAGE OF IMPACT 45

appear to be just another extension to that of MATLAB. How-
ever, seen from an implementational view, IMPACT is only a
conceptual superset of MATLAB. As IMPACT is implemented
in Ada, not one single line of code has been taken from MAT-
LAB. Furthermore, several new data structures are supported
(discussed in Chapter 4) and the user-interface is far more flex-
ible than the single-mode command language of MATLAB.

IMPACT has been designed with the particular objective in
mind to serve a very inhomogeneous group of users. On the
one hand, IMPACT is aimed at being used by students with
little experience in control theory and no experience at all in
CAD. Using only the most basic structures of the input com-
mand language which are simple enough to be mastered in a few
hours, these students will be able to access intricate algorithms
in order to solve demanding control problems with a minimum
amount of tutorial assistance. An on-line HELP facility contains
all necessary information on the command language syntax as
well as on the numerical algorithms, making self-tutorial possi-
ble. A query-feature guides the user through calls of involved,
multi-parameter functions.

On the other hand, the experienced control engineer is pro-
vided with a full-fledged structured command language contain-
ing all elements found in a high-level computer language in-
cluding WHILE and FOR loops, IF-THEN-ELSE statements, and so
forth. Furthermore, a large selection of IMPACT functions and
procedures gives the user access to a wide range of algorithms.
To further enhance the structurability, a number of different
macro facilities have been introduced.

3.6 The basic command-language of
IMPACT

The process of designing an interactive command language is
similar to that of formulating a new computer language. Con-
sequently, it is imperative that a formal notation for the syn-
tax (grammar) is used, and that this language representation
is tested by some automatic syntax-checker (Bongulielms et al.,
1984). Only then can the consistency and completeness of the

46 CHAPTER 3. MAN-MACHINE INTERFACES IN CACSD

new language be guaranteed. Thus, all language elements of IM-
PACT have been designed and tested using the general-purpose
parser (syntax-checker) of Bongulielmi and Cellier (1985). This
syntax-checker accepts languages adhering to the LL(1) class of
grammars. Please, refer to Appendix 1 for the complete LL(1)-
syntax of IMPACT.

In the tmplementation phase, programs to read, decode, in-
terpret, and execute user input have to be constructed. Here,
the relative simplicity of the LL(1) grammar leads to a fairly
straight-forward implementation if the implementation language
allows for recursive entry (as in the case of Ada but not of FOR-
TRAN). This will be shown in Chapter 5.6.

As most commands entered by a user during a normal session
are quite simple, the grammar implementing such typical oper-
ations has been given a very simple-to-use syntax. Some valid
IMPACT statements for entering data are

1.2,0
0,2,3
0,0,3

and
[9;8;7]

for entering a 3*3 matrix with the name A and a column vector
with the default name ANSWER. Similarly as in MATLAB, the
thus constructed variables can be used in more involved expres-
sions such as

B = [A,ANSWER
1,2,3,4]
C = [ANSWER;®6]

to form a 4%4 matrix and a 4x1 column vector. The expression

B\C

3.6. THE BASIC COMMAND-LANGUAGE OF IMPACT 47

will solve an equation system and store the result again under
the name ANSWER, thereby overriding the previous value of this
variable. Note that the latter statement is not consistent with
an LL(1) grammar: while the identifier B is parsed, it is not clear
if this marks the beginning of an explicit assignment statement
such as

B = A * ANSWER

or, as in our case, the start of an implicit assignment to ANSWER.
The only other non-LL(1) construction is the procedure call,
where during parsing, it is not clear if a non-reserved word refers
to a variable/function included in an expression, or a procedure
name such as

LOAD("myfile.macros")

These (at least semantically) ambiguous language elements are
solved by means of delayed interpretation in the construction of
threaded code, and semantical analysis of possible procedure-
names, respectively. Although language-theoretically unpure,
this solution seemed justified as the alternative would have been
a much more complicated syntax for these common operations.

Most, expressional language elements of MATLAB can be
found in IMPACT as well. Two examples are the selection of
entire rows (columns) from a matrix, and element-by-element
operations:

]
Il

B(1,:);
H=G .xC
Other expressional constructions have been added to describe

the more intricate data structures available in IMPACT (see
Chapter 4).

48 CHAPTER 3. MAN-MACHINE INTERFACES IN CACSD

3.7 Structured language elements in

IMPACT

While an LL(1)-consistent version of the MATLAB interface as
described in the previous section is sufficiently rich for forming
assignments and simple operations, the flow-control statements
of MATLAB are neither rich nor structured enough for a versa-
tile CACSD package. The user must be able to use such state-
ments to interactively define new or adapted control algorithms.
Thereby, he must have a tool powerful enough to let him com-
bine predefined primitives in a structured manner. On the other
hand if the command language is made too rich, the complexity
of the system makes it hard to use.

Thus, the designer has to make compromises in the design
of the complete command language, and thereby consider the
following aspects:

e Taking the development in software engineering during the
last decade into account, the designed language should be
highly structured and contain flow control elements like
FOR loops, WHILE loops, and IF statements.

e The command language could be developed from scratch,
giving the developer full freedom of design, or it could be
derived from any existing structured computer language
such as Algol, Pascal, or Ada. The latter approach will
decrease the learning time for all users familiar with that
particular programming language.

e Together with the available data structures, the command
language must be made rich enough to describe control al-
gorithm. Therefore, if an existing programming language
is taken as a starting point, some extra language elements
for handling the available data-structures must be added.
Other language constructions, such as involved variable
declarations (strong typing) and general input/output op-
erations may be omitted.

e As the user input, including all functions described in the
command language, has to be interpreted rather than com-

3.7. STRUCTURED LANGUAGE ELEMENTS IN IMPACT 49

piled, the execution of long algorithms described in the
command language must be rather slow. During the de-
velopment of new algorithms, this is offset by the time not
spent on compilations. However, to obtain shorter execu-
tion times, algorithms should be compilable, and it should
be possible to incorporate once compiled algorithms into
the package itself as soon as they are completely devel-
oped and tested. If the command language is made simi-
lar to the implementation language, such a transition can
eventually be automated, or at least partially automated
involving a minimum of manual re-coding.

Considering these aspects, a command language resembling
that of the Ada programming language has been developed for
IMPACT (see Appendix 1). Thereby, the necessary structured
flow-control elements are identical to those of Ada. We will
illustrate this with two examples:

Example 1: The heat-diffusion in a long metal bar isolated on

one side can be approximated by a set of N differential equations
(u is the temperature of a heat sink at the unisolated side):

‘ﬁe?zif“) = (=2#t(1) +¢(2) +u) x k
mmd—f(m = (—2%t(N)+2«t(N—1)) xk
dtezp(i) = (—2%t())+t(i— 1)+t +1)) %k, 1<i<N
where L heoef f
deltz?

In Figure 3.7 we show how the state- and input-matrices of
this model can be obtained through a nested set of FOR loops
and IF statements. Note the similarity to the Ada syntax.

As many matrix- and control-algorithms contain operations
performed on each individual element of matrix structures etc.,
a shorter notation of the above nested loop can be obtained with
a FOR INDEX statement, as shown in Figure 3.8. This unique lan-

50 CHAPTER 3. MAN-MACHINE INTERFACES IN CACSD

n = 25;
FOR i IN 1 .. n LOOP
FOR j IN 1 .. n LOOP
IF (j = i) THEN a(i,j) =
ELSIF abs(j-i)=1 THEN
IF (i = n) THEN a(i,j)
ELSE a(i,j)

I
[N

END IF;
ELSE a(i,j) = 0;
END IF;
END LOOP;
IF (i = 1) THEN b(i) = 1;
ELSE b(i) = 0;
END LOOP;

Figure 3.7: Creating the state- and input-matrices of the
metal-rod model using nested loops

25

ZEROS (25) ;

FOR INDEX IN a(i,j) LOOP
IF (j = i) THEN a(i,j) = -2;
ELSIF abs(j-i)=1 THEN

n
a

IF (i = n) THEN a(i,j) = 2;
ELSE a(i,j) = 1;
END IF;
ELSE a(i,j) = 0;
END IF;
IF (i = 1) THEN b(i) = 1;
ELSE b(i) = 0;
END LOOP;

Figure 3.8: Creating the state- and input-matrices of the
metal-rod model using the indexed loop construction

3.7. STRUCTURED LANGUAGE ELEMENTS IN IMPACT 51

n = 25;
z = ZEROS(n-1,1);
a = -2*%EYE(n) + [z,EYE(n-1);0,z’] + .

[z’,0;EYE(n-1),0];
a(n,n-1) = 2:
b = [1;z];
DELETE(z)

Figure 3.9: Creation of the state- and input-matrices of the
metal-rod model using connected matrix constructions

guage element of IMPACT create nested loops with incremental
or decremental counting of the indices. Thus, the statement

FOR INDEX IN a(REVERSE i, REVERSE j) LOOP

will decrement each counter from N (M) to 1 with i in the “outer
loop” and the statement

FOR REVERSE INDEX IN a(i,j) LOOP

will put j in the “outer loop”.

Although these structured flow-control statements are nec-
essary for programming more intricate algorithms, even in this
example, we can use the strong expression-power of IMPACT il-
lustrated in Figure 3.9 (using MATLAB-related constructions),
and thereby shorten the input compared to the previous FOR
loop based constructions considerably

Example 2: Let us consider the problem of solving the Riccati
Equation
= Asz+ B=x*xu
g = Cxzg

where

[T(&'*Qxz+u'« Rxu)dt = MIN

52 CHAPTER 3. MAN-MACHINE INTERFACES IN CACSD

<v,d> = EIG([a, -b*(x\b’); -q, -a’l);
k=0; n = DIM(a);
FOR j IN 1 .. 2%n LOOP

IF REAL(d(j,j)) < O THEN

k=k+1;
v(:,k) =v(:,j);
END IF,;
END LOOP;
p = REAL(v(n+1..2*n,1..k)/v(1..n;1..k));
fc = -r\b’*p

Figure 3.10: Interactive commands for solving the Riccati equa-
tion over the Hamiltonian matrix

After defining the matrices A, B, Q and R, this problem can be
solved by a simple algorithm first described by Potter (1966).
The IMPACT solution is shown in Figure 3.10. In this al-
gorithm, we first compute the eigenvectors and eigenvalues of
the Hamiltonian. We store the eigenvalues diagonally in d and
the eigenvectors as columns in v. Thereafter, we extract those
columns of v that correspond to negative eigenvalues, cut this
reduced eigenspace into an upper an a lower part, compute the
stable and positive definite Riccati matrix p as the solution of
a linear system, and finally evaluate from there the feedback
coefficients fc. We note the similarity with Ada, the main dif-
ferences originate in the notation of MATLAB and include the
use of = for assignment statements , [and | to describe the math-
ematical matrix structures, and : to form substructures (e.g. to
form column vectors out of matrices). < and > are used to de-
limit the output variables of a multiple-output function such as
EIG.

3.8. SUBPROGRAMS 53

3.8 Subprograms

In the previous section, we have seen examples of how sequences
of basic statements can be put together to form control algo-
rithms. However, the system could not be efficiently utilized
if the user were forced to enter all these statements anew each
time he wanted to compute a Riccati feedback. Therefore, IM-
PACT supports function and procedure subprogram (macro)
facilities, permitting the user to describe entities (sequences of
action) once, and then use them repetitively. These user-defined
subprograms may thereafter be called using exactly the same
syntax as for the standard, Ada-coded subprograms that are
intrinsic parts of the IMPACT system (such as EIG and REAL
in the previous example). In the following, we will call Ada-
coded subprograms hard-coded, and subprograms defined using
the interactive command-language of IMPACT soft-coded. Note
that soft-coded is not synonymous to user-coded. Many of the
standard IMPACT subprograms are actually soft-coded as well.
Inversely, the user may add hard-coded routines to his own ver-
sion of IMPACT.

IMPACT also supports another kind of macros, called system
macros, to describe nonlinear systems. Although the syntax
of these macros is similar to that of functions and procedures,
we will postpone their discussion to the next chapter on data
structures.

3.8.1 Function subprograms

As in conventional programming languages, the functions of IM-
PACT may be used freely within expressions to return a value
calculated from the given function parameters. However, just
as MATLAB, IMPACT supports functions returning more than
one value per call. The following example illustrates this:

If the previously described model of a metal bar is to be used
several times with different N’s, the user can save time by defin-
ing a function macro returning the wanted matrices. This func-
tion definition is shown in Figure 3.11. We note the similarity
to standard Ada function declarations. The characters < and >

54 CHAPTER 3. MAN-MACHINE INTERFACES IN CACSD

FUNCTION Bar_matrix(n) IS
BEGIN
z = ZEROS(n-1,1);
a = -2*EYE(n) + [z,EYE(n-1);0,z’] +
[z’ ,0;EYE(n-1),0];

a(n,n-1) = 2;
b = [1;z];
RETURN <a,b>;

END Bar_matrix;

Figure 3.11: Definition of a function to create the the state- and
input-matrices of the previously defined metal-rod model

are used in the RETURN statement as well as for the multiple as-
signments to delimit the return-list. The thus defined function
can then be called as

<aa,bb> = Bar_matrix(25);

Also the Riccati-example of the last section can be defined as
a function. This is shown in Figure 3.12. Note that no declara-
tive typing of the parameters was made, and local variables were
created without being previously declared. The reason for this
disparity to the strong typing of Ada is that, in IMPACT, com-
mand sequences (“algorithms”) may be entered interactively. It
would then be very cumbersome for the user to be forced to
define every single variable in the beginning of every session,
especially if he does not exactly know which method to use and
which intermediate variables he will need. On the other hand,
explicit variable declarations help detecting programming errors
in functions and increases the security of the functions by per-
forming run-time type checking on the parameters. Therefore,
as illustrated in Figure 3.13 the header of the Riccati function
could be complemented with type declarations in which case
all variables used in the function must be declared. After the
Riccati function has been defined, we can access it as a normal
function

3.8. SUBPROGRAMS 59

Function Riccati(a,b,q,r) IS
BEGIN -- Riccati
<v,d> = EIG(<a, -bx(r\b’); -q, -a’>);

p = REAL(v(n+1..2*n,1..k)/v(1..n;1..k));
RETURN -r\b’*p;
END Riccati;

Figure 3.12: Definition of a function to solve the Riccati equa-
tion

FUNCTION Riccati(a,b,q,r : MATRIX)
RETURN MATRIX IS
v,d,p : MATRIX,

k,n : INTEGER;
-- j is an implicitly declared loop counter
-- (cf. Ada)

BEGIN -- Riccati

Figure 3.13: Definition of a function solving the Riccati equation
with parameter and variable type declarations

56 CHAPTER 3. MAN-MACHINE INTERFACES IN CACSD

FUNCTION Riccati(a, b : MATRIX;
q : MATRIX
T : MATRIX
RETURN MATRIX IS
v,d,p : MATRIX;

EYE(DIM(a)),
EYE(DIM(b,2)))

nn

Figure 3.14: Definition of a function solving the Riccati equation
with defaulted parameter values for shortened call sequences

ffcc = Riccati(aa,bb,qq,rr)

It is currently foreseen that explicit declarations will be made
mandatory for functions to be automatically pre-compiled into
Ada for inclusion into the set of hard-coded IMPACT functions.

Characteristic for many control algorithms is that they rarely
appear in one version only. Often, this multitude of versions is
caused by structural variations in the treated systems. Other
times, these structural variations do not influence the algorithm
itself, but lead to particular parameter selections (affecting error
tolerances, type of input parameters, and so on).

In IMPACT, the combination of defaulted formal parameters
and named rather than positional actual parameters can be used
to take care of both algorithmic and parametric variations. For
example in our Riccati equations, the Q and R matrices are often
chosen to be unity matrices. In IMPACT, we could shorten
many calls to Riccati by defining default values as shown in
Figure 3.14. We have in this figure defined Q and R to be square
unity matrices of correct dimensions. We make use of the fact
that the actual assignment of default values is performed at the
time of call, when the dimensions of the A and B matrices are
known. A default value will only be used when no other value
is specified for the parameter in question.

After this re-declaration of function Riccati, it can be called
with a shortened parameter list For example, if Q is a unity
matrix, we would call Riccati as

3.8. SUBPROGRAMS o7

ffcc = Riccati(aa,bb,,rr)
or, a little more readable
ffcc = Riccati(aa,bb,R=>rr)

As in Ada, it is always possible to specify named rather than
positional parameters (useful for documentation to increase clar-

ity):
ffcc = Riccati(A=>aa,B=>bb,R=>rr)

Similar to the hitherto examples with defaulted unity-matrix
parameters, algorithms requiring error-tolerances are often de-
fined with default tolerances which can be overridden by the
user whenever needed. The function for pseudoinverse therefore
uses the machine tolerance as an annullable default:

pia = PINV(a);

but we can at any time override this default by an alternative
value:

pia = PINV(a,TOL=>1.e-5);

3.8.2 Procedure subprograms

The parameters of an IMPACT function were all IN-parameters,
that is, they could be accessed but never assigned a new value
within the function body. Conversely, procedures may have IN,
OUT and IN-OUT parameters (with obvious semantic meaning).
Hence, the computation of the state-matrices for our metal bar
could be made into the procedure of Figure 3.15 and called as

Bar_matrix(aa,bb,25) ;

Some hard-coded procedures have a variable-length implicit pa-
rameter declaration which lets the parser adapt itself from call
to call. As an example, Figure 3.16 shows that the procedure
DELETE can take any number of parameters, each of which is
the name of a variable to be deleted. Moreover, certain string
parameters change the meaning of the procedure completely.

58 CHAPTER 3. MAN-MACHINE INTERFACES IN CACSD

PROCEDURE Bar_matrix(a, b : OUT MATRIX;
n : IN INTEGER) IS
z : MATRIX;
BEGIN

z = ZEROS(n-1,1);
a = -2%EYE(n) + [z,EYE(n-1);0,z’] +
[z’,0;EYE(n-1),0];
a(n,n-1) = 2;
b = [1;z];
END Bar_matrix;

Figure 3.15: Definition of a procedure which creates the the
state- and input-matrices of the previously defined metal-rod
model

DELETE(pia) -- deletes the variable pia
DELETE(a,b,r,q) -- deletes a,b,r,q
DELETE("all") -- deletes all variables

DELETE("all",TYPE=>"function")-- deletes all user-defined
-- soft-coded functions.
-- System-defined subprograms
-- cannot be deleted by a user.

Figure 3.16: Overloaded use of the procedure DELETE. This pro-
cedure takes a variable number of parameters of different types

3.9. THE USE OF PARALLEL SESSIONS 59

3.9 The use of parallel sessions

Anyone remembering the times when research still was made
using pencil and paper can certify the advantages of using two
or more sheets of paper concurrently. On one sheet, the ac-
tual results (e.g. theorems and proofs) were painstakingly noted
down. On the other sheet(s), intermediate computations were
performed, alternative paths were examined, numerical exam-
ples were tested, and so on. When the investigation was com-
pleted, the scratch-sheet(s) were discarded, leaving only the
clean results. Then the computer became widespread and you
started to write large FORTRAN programs, possibly using sub-
routines from standard algorithmic libraries. As award for and
proof of your strenuous programming work, you received the re-
sults (together with program listings, memory dumps and inter-
mediate results) on over-sized sheets of papers which did not fit
into any loose-leaf binder, turning your book-shelves into paper-
shelves. Then, suddenly, you got your first interactive CACSD
package. You could now work on your CRT-terminal, and all
intermediate results appeared only on the terminal screen. At
the end of your session, you saved only the main results on an
external file to be printed, made an exit from the program and
all intermediate results disappeared.

Indisputably, these new interactive CACSD-packages have be-
come invaluable tools in modern control research and develop-
ment. However, they have not yet brought back the comfort
of your scratch-sheet. You normally work interactively with a
single set of variables, all residing in “one big bucket”. After an
hour or so of work, you have most certainly lost the overview of
your variables, especially since you may be forced to give each
of them a meaningless, four-letter name. The only remedy is to
delete every intermediate variable (giving you the function of an
eraser instead of a scratch-paper).

The man-machine interface of IMPACT avoids this accumu-
lation of variables, and gives the user his scratch paper back
by introducing a concept of sessions. Each session is a logical
work-area, conceptually comparable to the directory structures
of many operating systems (REF) and to the windowing tech-
niques of modern workstations like the VAX-station II, Apollo

60 CHAPTER 3. MAN-MACHINE INTERFACES IN CACSD

Domain, and Sun workstations. It is possible to open several
sessions during one call to IMPACT. These sessions are then
concurrent. The user can switch between sessions at any time,
and each session is completely independent of the others. In
each of these sessions, the user can define local variables, guar-
anteeing that the number of current variables in each session is
kept to a minimum, and that related data structures are kept
together. Moreover, the session feature does not add any un-
reasonable complexity to the basic IMPACT system described
in the previous sections. In fact, the novice user can ignore the
session facility to start with, and begin structuring his work-
environment only as he gets more familiar with the system.

To get an intuitive feel for how sessions can be used, let us
consider a user working on a control problem in both the fre-
quency and the time domain. Whenever IMPACT is started on
a modern workstation, a large window will be opened, and a
welcoming message will be displayed together with the prompt
of the main session. Figure 3.17 illustrates this on a fictitious
workstation. The user may now decide to form three additional
sessions: FREQ, TIME and SCRATCH. The first of these new ses-
sions is created with the command

>> SPAWN("FREQ")

which will propel the system to open another window, see Fig-
ure 3.18 On this new window, the prompt FREQ>> is displayed.
The user can now proceed to create (open) the sessions TIME
and SCRATCH. Thereafter, he can either use the mouse to click
on different windows (see Figure 3.19), or alternatively, he may
use the command SWITCH:

SCRA>> SWITCH("FREQ")

All sessions are logically non-hierarchical, they are ordered
alphabetically according to their names and given equal priority.
If a user closes a session without an indication to which session
he wishes to transfer, he will find himself in the MAIN session, or,
if the main session has been deleted as well, in the alphabetically
first session.

3.9. THE USE OF PARALLEL SESSIONS

$ IMPACT

Welcome to IMPACT
Version 1.0 running on

the CACSD Workstation
Help is available

>> SPAWN('FREQ") ki

CACSD Computers Inc.

61

Figure 3.17: Workstation where the main session has been
started.

62 CHAPTER 3. MAN-MACHINE INTERFACES IN CACSD

Version 1.0 running on
the CACSD Workstation

Help is available

>> SPAWN("FREQ")
%/FREQ SPAWNED

MAIN>>

FREQ>> SPAWN("TIME")
%%TIME SPAWNED
FREQ>>

CACSD Computers Inc.

Figure 3.18: Workstation where the session FREQ has been

opened.

3.9. THE USE OF PARALLEL SESSIONS 63

Version 1.0 running on
the CACSD Workstation

Help is available

TIME>> SPAWN("]
%%SCRATCH SPA
TIME>>

>> SPAWN("FREQ")
%%FREQ SPAWNED

MA|N>>§4\

FREQ>> SPAWN(] SCRA>> |
%%TIME SPAWN
FREC>

CACSD Computers Inc.

——
]|
I e L

Figure 3.19: Switching between different session using mouse
movement.

64 CHAPTER 3. MAN-MACHINE INTERFACES IN CACSD

On a normal, alphanumeric terminal not supporting window-
ing techniques, the logical sessions can not be displayed con-
currently as different areas on the screen. However, the SPAWN
and SWITCH commands are still available, and the prompt used
will remind the user to which session he is currently attached.
This corresponds to the present implementation. In a later up-
date, concurrent sessions will be handled by the tasking facility
of Ada, guaranteeing a fairly portable implementation despite
the heavy hardware/firmware host-dependency of any window-
ing techniques.

We have discussed how a problem can be decomposed into
several subproblems, and how each of these subproblems can
be treated in separate sessions to avoid large accumulations of
variables. However, sometimes the user needs a variable from
another session. Such a variable can be directly accessed using
a dot-/colon-notation. For example, if the user wants to work
in the frequency domain (session FREQ) on the transfer-function
equivalent of a linear system description sys1 defined in the
time domain (session TIME), he can access and transform this
system directly (TRANS transforms a linear system description
to a transfer-function) by

FREQ>> sys2 = TRANS(time:sysl)
or, alternatively, within session TIME:
TIME>> freq:sys2 = TRANS(sys1)

In the case where a new scratch session is started for some in-
termediate computations, it is sometimes meaningful to import
some or all variables from another session:

SCRA>> IMPORT(freq:,"all")

The colon indicates that freq is a session-name. Without this
colon, IMPACT would look for a string-variable with the name
freq. Alternatively, we may supply the procedure with a string
containing the name of the session:

3.10. THE QUERY FEATURE 65

SCRA>> IMPORT("freq","all")

Yet another alternative would be to create a string with the
name of the session from which all variables are to be imported,
and pass this string as a parameter to the procedure IMPORT:

SCRA>> dd = "freq"
SCRA>> IMPORT(dd,"all")

Note how a high flexibility of the use of procedure IMPORT is
attained through this overloading of allowed parameter types.

The command DELETE can be used to close active sessions
and delete any local variables. If the current session is deleted,
the user will find himself in the MAIN session:

SCRA>> DELETE("scratch")

>>

3.10 The query feature

With the data structures and command language of IMPACT,
the advanced control engineer is given a very powerful algorith-
mic environment which he can further adapt to his own needs.
On the other hand, if first time users are directly presented with
the full IMPACT package, they will most certainly be stunned
by its complexity. Many CACSD-packages try to resolve this
problem by including an interactive HELP facility. However,
while such help is excellent once a user has acquired a general
overview of the package and only needs information on a partic-
ular subject, to a novice user, it is as pedagogic as the index of
a 200 page reference manual. Of course, IMPACT does support
an interactive HELP facility, but to prevent the initial shock,
it also gives the user a gradual introduction. A tutorial will be
made available that presents the most simple language elements,
e.g. how to create variables and how to call standard functions.
Moreover, as even this might be too complicated for a begin-
ner unfamiliar with the standard concepts of control theory, a

66 CHAPTER 3. MAN-MACHINE INTERFACES IN CACSD

TIME>> FF = Riccati(HELP)

RICC>>The function Riccati solves a Riccati equation.
RICC>>A Riccati equation is defined by the A and B
RICC>>matrices of a linear systems and an
RICC>>integral involving two weighting matrices
RICC>>Q and R (often unity matrices) where

RICC>>

RICC>>. /inf !
RICC>>x=A*x+B*u and | (x'#Q%x + u’'xR*u)dt = MIN
RICC>> /0

RICC>>

RICC>>System matrix A (NO DEFAULT): [0,1;0,-1]
RICC>>Input matrix B (NO DEFAULT): [0;1]
RICC>>Weight matrix Q (DEF=Unity) : [1,0;0,0]
RICC>>Weight matrix R (DEF=Unity)

P =
1 0.7321

Figure 3.20: Invoking the query feature by including the stan-
dard parameter HELP in a function call

query-mode has been introduced. In this mode, the initiative
is transferred from the user to the system. Through a guided
question-and-answer conversation, the system will determine the
correct action to take.

Assuming that an inexperienced user wants to use the for him
new function Riccati. As illustrated in Figure 3.20 he would
then call the function using the HELP qualifier, forcing IMPACT
to enter the query mode. Thereafter the user will be asked
to supply values values for each of the parameter. Optional
(defaulted) parameters need to be specified only when another
than the default value is to be used.

Especially for functions with many parameters, this facility is
very useful. Moreover, if the user is uncertain about the mean-
ing of a particular parameter, he can enter HELP for further
information on that query-request, as illustrated in Figure 3.21.
If at this point the users has forgotten the name of an already
created system matrix, or if he has to perform some intermedi-

3.10. THE QUERY FEATURE 67

RICC>>System matrix A (NO DEFAULT): HELP
RICC>>Please enter a matrix describing the state
RICC>>connections of a linear system. This matrix
RICC>>is the A matrix in the system description
RICC>>

RICC>> x=A¥x+B*u

RICC>> y=C#x+D*u

RICC>>

RICC>>System matrix A (NO DEFAULT):

Figure 3.21: Requesting additional help on individual parame-
ters of a queried function call

ate computations, one of the options available to him would be
to open yet another interactive session through the command
SPAWN, and thereby get access to the general help facility, the
command DIRECTORY or any other IMPACT statements. He
can thereafter return the generated state matrix directly to the
Riccati query function:

RICC>>System matrix A (NO DEFAULT): SPAWN

This will start a new session (open a new window) with the
name RICC_1 (only the first four letters of the function-name are
retained) which automatically imports all the variables from the
currently active session.

RICC_1>> HELP

RICC_1>> A = A_MAT(sysl); -- extract A from sysli
RICC_1i>> RETURN A

Return to RICC and continue the query with the next parame-
ter.

RICC>>Input matrix B (NO DEFAULT):

68 CHAPTER 3. MAN-MACHINE INTERFACES IN CACSD

The user has three choices to close session RICC_1: With RE-
TURN ’value’, he deletes the intermediate session RICC_1, and
at the same time returns a value to the query-function. Newly
created or modified variables of the session RICC_1 will thereby
be destroyed, and will not be exported back into the currently
active session. The commands RETURN without parameters or
DELETE(RICC_1:) both close RICC_1 and force IMPACT to re-
turn to the original query for A.

RICC_1 is a subsession of session TIME. From RICC_1 the user
may SWITCH to any other session and perform any other ac-
tions. However, the original session TIME is blocked and can not
be SWITCHed to until session RICC_1 is closed (deleted). If the
user (recursively) calls function RICCATI from RICC_1 and again
SPAWNs out of the query-mode, RICC_1 is blocked and a further
subsession RICC_2 is created.

To tune the package to the level of proficiency of the individ-
ual user, IMPACT can be set by the user to activate the query
facility on three different trigger-levels:

e On the lowest and most comprehensive trigger-level, the
query-facility will be activated as soon as any subprogram
is called without a complete set of parameters. In par-
ticular, the query-facility will be invoked also when only
parameters with default-specifications are missing from a
parameter-list. This trigger-level is intended for the user
wishing to keep himself informed on every detail including
defaulted parameter values of the called algorithms.

e On the normal level, the query-facility is invoked when-
ever a non-defaulted parameter is missing. Once invoked,
the user will be asked to supply values for all parameters,
including those having default values. This should be ideal
for most users during normal operation.

e The highest trigger-level is intended for the experienced
user wishing to receive an error message each time he en-
ters an incomplete statement. On this level, there is no au-
tomatic query for missing parameters. However, the user
can activate the query for individual subprogram calls by
including the parameter HELP in the parameter-list.

3.11. QUERY MODE AND SOFT-CODED SUBPROGRAMS 69

The high trigger-level is always used within soft-coded sub-
programs, as unexpected queries caused by incomplete subpro-
gram calls from within another subprogram may get very con-
fusing to the user. However, it is possible to invoke the query-
facility from within a soft-coded subprogram body through a
HELP parameter. It is recommended to employ this possibil-
ity sparcely, and only in combination with adequate clarifying
messages to the user.

To economize in the time needed to formulate and type the
content of the three main textual information aggregations of
IMPACT (HELP- and QUERY-texts as well as sections of the
USER’S MANUAL), a single textual source is maintained for
all three descriptions of subprograms (cf. also Section 3.11).
During the automatic processing of this text, most of the in-
formation is sent to all three information aggregations, but it is
possible to limit some information to one or two destinations, for
example to place a more extensive example only in the off-line
manual.

3.11 Query mode and soft-coded sub-
programs

In the last section, we saw an example of how the query option
can be used in connection with the system maintained Riccati
function. We now have to ask ourselves the following obvious
question: How does IMPACT know what information to give
the user when HELP is requested for a function that was soft-
coded by the user just a few minutes ago? Well, the answer is
as obvious. Either IMPACT does not know, in which case the
query-mode only prompts for the parameters using the formal
parameter names (which is not much help for a person not fa-
miliar with the function), or we have told IMPACT what to ask.
The definition of our soft-coded Riccati function is therefore ex-
tended in Figure 3.22 once again

The syntax for parameter-/help-information is identical for
hard-coded subprograms. Each of these subprograms also has a
“soft-coded” definition for the parameter- and help-information.
Therefore, the same routines can be used for the parameter-

70 CHAPTER 3. MAN-MACHINE INTERFACES IN CACSD

FUNCTION Riccati(a, b : MATRIX;
q : MATRIX
T : MATRIX
RETURN MATRIX IS

EYE(DIM(a)),
EYE(DIM(b,2)))

I

Il

?BEGIN?

?GI? The function Riccati solves
A Riccati equation is

7PN? A

?7PS? System matrix A (NO DEFAULT)

?PI? Please enter a matrix
connections of a linear

?END?

v,d,p : MATRIX;
k.5 : INTEGER;

BEGIN -- Riccati

ﬁETURN -r\b’*p;
END Riccati;

Figure 3.22: Including query-information in a soft-coded sub-
program

handler and the query-controller for both soft- and hard-coded
subprograms.

3.12. DATA-BASE INTERFACES IN CACSD 71

3.12 Data-base interfaces in CACSD

Although large, integrated CACSD packages may be powerful
and versatile enough to serve the user during all phases of the
control cycle (see Sections 2.2 and 2.3), there are still several in-
stances where a communication with the outside external world
is needed, for example

e to store away or reenter individual sets of data or func-
tions. This could for example be used to save the descrip-
tion of a system or the definition of a soft-coded function
for later use.

e when it is necessary to exchange data with other programs
or processes. This is for example needed when measured
data are to be entered, or when the CACSD package does
not include any simulation facility, and a connection with
a nonlinear simulation package is needed.

e when the user wishes to exit from the interactive program,
but intends to resume operation at a later time. It is then
necessary to store away the complete interactive context
(including several sessions). It must thereby be possible
to reenter the whole context, so that operations can be
resumed exactly where the user left off.

Apart from saving the total context, which must be seen as
a single save-set deposit to be read as a whole again (and for
efficiency usually is implemented as a crude memory dump and
memory fill), the data may be stored within the file-handling
system of the computer in several manners:

e Fach variable or function may be stored in a single external
file.

e The user may group several variables and/or functions to-
gether and put them into one external file. This allows the
user to accumulate related data or subprograms (or both)
into libraries.

72 CHAPTER 3. MAN-MACHINE INTERFACES IN CACSD

e In the most general case, a complete data-base facility for
storing data externally is supported. This facility should
allow the user to group the data together in any fashion
he chooses, for example by collecting all data belonging
to a single problem into hierarchically organized groups.
Such a system should also provide tools with which the
user can search a large data-base and collect data or sub-
programs with a certain name, structure or dimension. An
automatic load facility which will search one or more data-
banks for internally undefined subprograms would also en-
hance the flexibility of the package.

The difficulties of implementing a data-base interface for a
CACSD package increases with both the complexity of the data
to be stored away, and the flexibility in which this data is to
be referenced in the external storage. The internal representa-
tion of control oriented data structures is in itself difficult (these
problems are discussed in greater detail in Chapters 4 and 5.4
as well as by Maciejowski, (1984). When this same control ori-
ented data is to be stored externally for later reference by either
the same or a different program, we are confronted with the even
more serious difficulty of storing this structured data efficiently
as well as in a portable manner. Portability problems occur on
the one hand when the same program is running on different
machines under different operating systems, and on the other
hand when different packages are to communicate with each
other. The only machine-portable solution is to use a sequential
ASCII-file. This, however, is neither efficient nor practical for
storing e.g. numerical floating-point values with high precision.
Package-portability can only be attained through world-wide
standards on how control structures and soft-coded control al-
gorithms are to be stored on external files, a problem which is
further discussed in Chapter 6.2.

Probably the most practical approach to the solution of this
problem is to use a highly portable, but slow and rather lim-
ited, standardized format for communication between packages,
and to adapt a commercially available data-bank to the require-
ments of CACSD to store data away for restricted re-use by the
individual CACSD package itself. Such developments, however,
are major undertakings worth deeper studies of their own.

3.13. CONCLUSIONS 73

3.13 Conclusions

In this chapter, we have discussed some important properties of
interactive user interfaces to CACSD packages. Most of these
properties were illustrated through examples from IMPACT, the
CACSD package that, in our view, provides currently the most
advanced user interface of all available CACSD packages.

Typical of all developments of interactive software, the de-
sign and implementation of the IMPACT user interface has been
more of an engineering task than a scientific endeavor — it is the
result of numerous compromises between factors such as expres-
sion power/ease-of-use, algorithmic completeness/package com-
pactness, speed of execution/implementation time, etc. In ret-
rospect, the following general rules have crystallized out as being
imperative for any design of CACSD user-interfaces:

e The basic commands of an wnteractive environment must
be fast yet flexible. When a program is used for the first
time or when an advanced problem is to be solved, one ex-
pects to face difficulties (and will be positively surprised
when this does not happen). However, when solving sim-
ple problems, the path one has to follow must be fast, easy
and self-evident. If the user has to know just as much to
solve simple problems as he needs for intricate ones, he (as
well as the terminal) will get turned off! In this respect,
the simplicity of the MATLAB ”matrix interface” is ideal.

e CACSD packages should support an algorithmaic interface.
No package designer can foresee the details of every prob-
lem to be solved by his program. Therefore, no extensive
fixed paths should be pre-programmed. Instead, compact
commands should be made available to the user together
with a mechanism to create his own paths (by means of
interactively defined macros and/or functions). Moreover,
no package can support all algorithms usable in control
theory. Hence the user should be able to define new algo-
rithms in a simple manner, preferably also as interactively
defined functions. This requires a structured and powerful
command-language interface.

74

CHAPTER 3. MAN-MACHINE INTERFACES IN CACSD

e The transition from basic to advanced use must be gradual.

The user of a CACSD tool is confronted with two different
complexities: the complexity of the user interface and the
complexity of the underlying theory/algorithms. In both
cases, extra guidance is needed for novice users. In the
package IMPACT, the user calling complex functions can
switch over to the question-and-answer interface of the

query-facility at will.

The system must be transparent. The user should not only
be in control of the executed actions. He should also be in
control of the environment in which this execution takes
place. This requires an interface with no hidden entities.
Algorithms should be incorporated as stand-alone func-
tions. All transfer of information must be made over user-
specified parameters. In particular, separately callable
functions must never share data over some hidden inter-
face.

Small and large systems should be equally treated by the
user-interface. Many numerical control algorithms will
work accurately only up to a certain system order. Ide-
ally, these algorithms will warn the user whenever this
limit is exceeded, and thereafter ”gracefully deteriorate”.
This leaves the user ”informed and in control”. However,
many traditionally implemented CACSD packages retain
a fixed dimensional cut-off limit. This simplifies package
implementation, but severely jeopardizes the usability of
the package.

The system must be able to communicate with the external
world. As a minimum, it must be possible to store and en-
ter data for later use and to communicate with other pro-
grams implementing any additional algorithms needed in
the complete design. For flexible external data-handling,
the employment of a special-purpose CACSD data-base is
needed.

Chapter 4

DATA STRUCTURES FOR
CACSD

4.1 Introduction

Three “buzz-phrases” have dominated the software world during
the past two decades:

e modular overall design
e structured procedure-level programming and

e the use of descriptive data structures.

The software-principles associated with each of these three
phrases are pertinent for the implementation of any CACSD
package (see Chapter 5). Moreover, in Chapter 3 we stressed
that these principles are just as relevant to the overall design
of the user-interface of such a package. Thereby, we treated
man-machine interface related issues associated with the first
two of the mentioned three phrases. In this chapter, we will
elaborate on the data-structures to be visible at a CACSD user
interface. It will be shown that the data-structures supported
by a CACSD package (or rather the absence thereof) delimits its
versatility and extendability quite brusquely. Therefore, a set
of data structures necessary and sufficient for most CACSD ap-
plications will be defined. As before, all examples not otherwise
indicated are taken from IMPACT.

75

76 CHAPTER 4. DATA STRUCTURES FOR CACSD

Many packages used in control theory perform all their oper-
ations on one single data structure, such as

e real matrices
MATOPS (Grepper et al., 1977)

e complex matrices
MATLAB (Moler, 1980)

e polynomial structures
POLOPS (Grepper et al., 1977)

e symbolic differential- and/or difference-equations
SIMNON (Astrém, 1982)

e general symbolic representations
MACSYMA (1986)

All of these single-structured programs are special-purpose
packages. For example, SIMNON is intended for the simula-
tion of continuous/sampled-data systems. Contrasting these
packages, the so-called matrix-environments (supporting com-
plex matrices only) are marketed as “general purpose control
packages” (e.g. the MATLAB code-extensions CTRL-C (Little
et al., 1984) and MATRIXx (Walker et al., 1982)). As long as
it is our aim to analyze/synthesize linear systems in the time
domain, the complex matrix is indeed an adequate data struc-
ture, since each system can be described by four such matrices.
On the other hand, if we work in the frequency domain, we
would like to describe our systems by transfer function matri-
ces. This four-dimensional structure (cf. Section 4.4) cannot
readily be represented by two-dimensional matrices. Therefore,
the above mentioned MATLAB-extensions limit their frequency
operations to the SISO-case, where a transfer function can still
be represented as two one-dimensional vectors (containing the
coefficients of the numerator and denominator polynomials, re-
spectively). More intricate frequency-domain studies cannot be
formulated in a straight-forward manner. This leads us to the
following conclusions:

e Software packages must support all descriptive units used
by human spectalists in the field. The main reason why

4.1. INTRODUCTION 7

pocket calculators are not too useful in control theory
is neither that they do not contain the right algorithms
(today’s calculators can be programmed) nor that they
are too slow (which they are). It is the total lack of
appropriate data structures that makes pocket calcula-
tors unsuitable for our task. Control engineers mainly
work with matrices and /or polynomial structures (for time
and frequency domain operations, respectively) as well as
graphical representations originating from these kind of
data structures. Such data structures are not available on
pocket calculators. Unfortunately, they are not available
in many CACSD packages either (!).

e Data representations should not be stmulated. While the
“matrix environments” support one data structure only,
namely the complex matrix, and (ab)use this represen-
tation for all storage needs (as “matrix booleans”, “ma-
trix text strings”, “matrix polynomials”, “matrix time re-
sponses”, etc), other approaches use strongly dedicated
data structures for system representations, signals, fre-
quency representations, etc. (Maciejowski, 1984).

The latter approach is safer to use for the control en-
gineer (for example, a matrix A denoting a continuous
state-matrix is indicated as such, and no mixup with its
corresponding sampled system equivalent can be made).
On the other hand, such a dedicated approach is not as
flexible when defining new algorithms. Program-code of
a command-language supporting dedicated structures will
contain a large number of conversion calls.

It is the opinion of the author that a middle road is the
optimal answer. Structurally different data (e.g. a matrix
and a transfer function) should be stored in separate data
structures, however, data with only semantical variation
(e.g. the state-matrices of a continuous and a discrete
system) should be treated equally by the system.

In the following, we will list the data-structures we deem nec-
essary in a control environment. Also, we will discuss the appli-
cability of overloaded arithmetic operations on these structures.

78 CHAPTER 4. DATA STRUCTURES FOR CACSD

4.2 Matrices

The most basic, and in some cases the only (!), data structure
of modern CACSD packages is the complex matrix. Vectors,
scalars, and real matrices are normally treated as special cases
with no separate data representation.

In IMPACT, as in MATLAB, all matrices are stored away

using complex elements of high precision. Matrix input is made
using the syntax presented already in Chapter 3. For example:

A = [1,
4,
7

, 3
,6
9

3

Q o1 N

1

constructs a 3*3 matrix A. If the column vector B has been en-
tered as

or
B= [1.6 ; 4.8 ; 1]:

the equation A * x = B can be solved by
X = INV(A)*B

(in which case the inverse of A is explicitly calculated and mul-
tiplied with the vector B) or

X=A\B

(in which case X is calculated using Gaussian elimination without
inverting A).

4.3. POLYNOMIAL MATRICES 79

4.3 Polynomial matrices

A polynomial matrix is a matrix where each element is a poly-
nomial with (complex) coefficients, such as

2+ 3%p+ 1% p? 3+1x*p
4+4xp+1xp? 1+3%xp+3*p°+1xp°

Polynomial matrices are entered into IMPACT using a short-
form notation similar to that used for normal matrices. For
example, the input line

Q=10[02"3"1, 371 ; 474"1, 1737371]

will result in the above polynomial matrix. Although IMPACT
stores away all numerical data in a complex high precision float-
ing format, IMPACT also retains information on the “com-
plexity” of each structure. Hence, the fact that the just en-
tered polynomial matrix Q contained integer real-only elements
only is recognized. IMPACT assigns each mathematical struc-
ture one of the values INTEGER_REAL_ONLY, INTEGER_COMPLEX,
FLOAT_REAL _ONLY and FLOAT_COMPLEX, this information may be
used by individual algorithms for checking the validity of certain
operations. For example, in the expression A**x where A is a
polynomial matrix, x must be an integer scalar. The complex-
ity information is also employed for selecting the proper output
format. Thus, Q is displayed on the screen as

Q(p) =
2 3.
+3. *p +1.%p
+1 . *p*x*2
4. 1.
+4 . *p +3.%p
+1-*P**2 +3-*P**2
+1 . %p**3

An alternative way of entering the polynomial matrix Q would
be to use the system variable _P, which has been predefined as

80 CHAPTER 4. DATA STRUCTURES FOR CACSD

P=["1];
Thereafter the polynomial matrix Q can be entered as

Q =[2 + 3*%_P + _P*x2, 3 + _P
4 + 4% _P + _Px%2, 1 + 3%_P + 3+_P**x2 + _Pxx%3]

The predefined variable _P is one of several system-defined, read-
only variables all having a name commencing with an underscore
(EAGLES/Controls, 1986). Other system variable include _I
for an imaginary value 1, _[EPS for the system-dependent ma-
chine resolution, _E for the natural logarithmic base, and _PI.
No names of user variables may commence with an underscore,
however, the underscore is a valid character within user-defined
names.

The basic matrix operations addition, subtraction, and mul-
tiplication may be used on polynomial matrices (using the sym-
bols +, -, and *) if the basic dimensional rules are satisfied. For
example, the input lines

Z = [1+_P , 2%*_P];

WROW = [1 y 2+2%_P];

WCOL = WROW’;

XADD = Z + WROW , XMULT = Z * WCOL

(where the * operator denotes the conjugate complex transpose)
will result in the output

XADD (p)
2. 2
+1.%p +4 . *p

XMULT (p)
1
+5*P
+4 *pH*2

Until now, all polynomial matrices have been entered in a non-
factorized manner, specified through all non-zero coefficients of

4.3. POLYNOMIAL MATRICES 81

the polynomial elements. Polynomials can also be represented
by their factors, hence

(p+1)*(p+2) (p+3)
(p+2)*x(p+2) (p+1)*x(p+1)*(p+1)

is the factorized version of the above introduced polynomial ma-
trix. This factorized structure can be obtained in IMPACT
though the command

QF = FACTOR (Q)

which then displays the result

QF(p) =
(p + 1.) (p + 3.)
*(P + 2.)
(p # 2.0 (p +1.)
*(p+2,) *(p-&- 1.)
*(p + 1.)

It is of course also possible to enter factorized polynomial
matrices directly:

QF = [-1]-2, [-3
-21-2, -1]-1]-1]

Due to the ill-conditioned re-factorization, operations on fac-
tored polynomial matrices, where at least part of the factors
need to be defactorized before the operation (like addition), can
be extremely badly conditioned. In IMPACT, the user is respon-
sible for testing the accuracy of the result. However, IMPACT
provides the user with a few tools to help him with the verifi-
cation of results: a smaller computer word-length can be simu-
lated by specifying the accuracy to be used in each arithmetic
operation (as in MATLAB). This allows the testing of the error-
propagation in the used algorithm. In addition, IMPACT will
issue a warning message each time a detectable ill-conditioned
operation is performed.

82 CHAPTER 4. DATA STRUCTURES FOR CACSD

4.4 'Transfer-function matrices

Only in special cases is the inverse of a polynomial matrix an-
other polynomial matrix. However, the inverse of a polynomial
matrix can (as long as the matrix is non-singular) always be
defined as a matrix with rational function elements, a so-called
transfer-function matrix.

Transfer-function matrices are entered in a manner similar to
that used by polynomial matrix entry. The input sequence

G=1[1/_P i Y/ _P*1)
1/(_P+1) , 1/(_Px(_P+1)) 1;

G = FACTOR(G)
and its short-form version
G = ONES(2) ./ [|lo, |-1; |-1, O]-1]

(where ONES(2) returns a 2*2 matrix filled with ones and ./
denotes an element-by-element division) both result in the fac-
tored 2*2 transfer-function matrix

i 1
- p (p+1)
_r
L (p+1) p*(p+1)

In control theory, transfer-function matrices are used to de-
scribe systems in the frequency domain. Interestingly enough,
many mathematical operations on transfer-functions have phys-
ical meaning. For example, the multiplication in reverse order of
two systems corresponds to a cascading and the addition of two
systems corresponds to a parallel connection, as shown in Fig-
ure 4.1. Thus, the multiplication and addition operators have
been overloaded! to work on transfer function matrices ac-
cording to standard mathematical rules, giving IMPACT basic

!The term overloading derives from Ada, in IMPACT it describes the
multiple use of one operator symbol or subprogram name to define several,
separate algorithms operating on different data structures.

4.4. TRANSFER-FUNCTION MATRICES 83

= S1
+
+
> S2
N\ /
V
STOT = S1 + S2
i S1 2 §2 ——
N\ /

V
STOT = S1 * 82

Figure 4.1: Series and parallel connection.

systems interconnection capabilities in the frequency domain for
free. In the next section, we will see how the same operators are
overloaded on systems described in the time domain.

A topological structure very common in control theory is the
feedback loop as illustrated in Figure 4.2 The total transfer-
function of this loop can either be described directly using the

formula:
GTOT = G / (1 + GxH)

or through the use of the special feedback operator \\ (which
does not correspond to any trivial mathematical operation):

GTOT = G \\ (-H)
(“G fed back with -H”).

84 CHAPTER 4. DATA STRUCTURES FOR CACSD

G >
H

N /
v

GTOT = G \\ -H
Figure 4.2: Feedback loop.

To illustrate the versatility of IMPACT in modeling control-
related systems, the benchmark cable-spool system depicted in
Figure 4.3 will be used. Linear approximations are used for the
motor and tachometer, as shown in the block-diagram picture
of Figure 4.3 In this section we assume that we can use a linear
model for the spool, in Section 4.9 we treat the case with a
nonlinear model of the spool.

We will start by defining representations for all subsystems
as shown in Figure 4.3. We commence by defining the propor-
tional controller KP, and thereafter we define the three rational
functions TACHO, MOTOR and SPOOL:

KP = 1;
TACHO = 3/[170.5];
MOTOR = 7./[1"1];

SPOOL = 0.019/["1];

Now, we can calculate the total transfer function of our sys-
tem as

SYS = (SPOOL * MOTOR * KP \\ - TACHO) * 3;

where SYS of course is again a rational function scalar.

4.4. TRANSFER-FUNCTION MATRICES 85

Spool

Motor

Tachometer

Controller -
Reference Reference , Error Control Torque 2
M3 Q M KP z : A _09_ Roll-up SDEEU:
speed voltage X~ signel ['**
Controller Motor Spool
dynamics

3

14+05s |

Tachometer

Figure 4.3: Cable roll system, physical setup and block diagram
description

86 CHAPTER 4. DATA STRUCTURES FOR CACSD

4.5 System descriptions

In the time domain, a linear system is normally described by
four different matrices A, B, C, and D:

T = Axz+Bx*xu
gji = Cxax+Dxu

where z is the state vector, u is the input (vector) and y is
the output (vector). As this is a very common representation,
IMPACT provides the user with a special data-structure, the
linear system description. Given three matrices A, B, and C of
right dimensions, the function LINCONT will form a continuous
linear system description out of these matrices,

CSYS1 = LINCONT(A,B,C)

whereas LINDISC will form a discrete linear system description
with a sampling rate of DT:

DSYS1 = LINDISC(F,G,H,DT)

The D-matrix was here assumed to be a matrix of correct
dimensions with zero elements. If the user wants to define a
D-matrix, this can be entered through the use of default redefi-
nition:

CSYS2 = LINCONT(A,B,C,D=>DD)

will include the matrix DD as the direct-path matrix.

The inclusion of a special data structure for linear systems
simplifies all calls to algorithms working on whole systems, as
the user then has to specify only one parameter rather than three
to four separate ones. However, the generality of the component
matrices is not lost. These can at any time be accessed as normal
matrices using a dot notation, thus

CS_EIG = EIG(CSYS1.A)

4.5. SYSTEM DESCRIPTIONS 87

will return the poles of a SISO system. Alternatively, the func-
tion POLES handles MIMO as well as SISO systems, and there-
fore requires a complete linear system as parameter:

CS_EIG = POLES(CSYS1)

A linear system given in the time domain by three (four)
matrices can always be transformed into a frequency represen-
tation, and vice versa. The transformation from the time to the
frequency domain is given explicitly through the formula

Gl = C *x INV(_P*EYE(A) - A) * B + D

This valid IMPACT statement determines the transfer-function
matrix inverse of (s * I — A) before the multiplications are car-
ried out. Alternatively, a predefined IMPACT function TRANS
directly implements the transformation, and thereby avoids this
time-consuming and possibly badly conditioned polynomial op-
eration:

G2 = TRANS(LINCONT(A,B,C))

A transfer-function matrix determined in this way is not unique,
as each transfer-function component might have reducible fac-
tors. The function REDUCE will cancel common factors of each
matrix component (using the machine tolerance, or any other
given tolerance, to determine if two factors are equal or not):

G = REDUCE(TRANS(LINCONT(A,B,C)))

As the transformation from the frequency to the time-domain
is not unique, IMPACT will provide the user with a range of
transformations resulting in linear system descriptions in differ-
ent canonical forms, such as the Jordan form, etc.

Mathematical operations on system descriptions should be
defined such that the physical meaning is the same as if the
same operation were performed on transfer-function matrices.
Thus, if a system of 2nd order has been defined through the
matrices

88 CHAPTER 4. DATA STRUCTURES FOR CACSD

A=1[1, 1
0, 1];
B = [0
1]
c = [1, 0];

SIMPLE = LINCONT(A,B,C);
the operation
CASC = SIMPLE * SIMPLE

describes a cascading of two identical subsystems SIMPLE, and
as a result we obtain a system of order 4 with component ma-

trices

CASC.A = [1, 1, 0, O
0. 1. 0.0
0, 0, 1, 1
1, 0, 0, 1]
CASC.B = [0
|
0
0]
CASC.C = [0, O, 1, O]

Notice that the dimension of the system matrix has doubled,
just as the order of the physical system has doubled.

Apart from concatenation, feedback, and parallel connections,
a more general interconnection facility for linear systems should
be supported. Thereby, the total state-space system description
of any physically realizable interconnection topology, as illus-
trated in Figure 4.4 can be calculated using a simple and yet not
widely known algorithm by DeCarlo and Saeks (1981). To de-
scribe such general topologies, a special representation is needed.
In IMPACT, an interconnecting SYSTEM structure having a syn-
tax similar to that of soft-coded subprograms is available. To

4.5. SYSTEM DESCRIPTIONS 89

—1 1 1
s1 2 - > s3 >0UT
IN —¢ 3 3
s2

Figure 4.4: General interconnection topology.

describe the interconnections in Figure 4.4, an interconnection
SYSTEM structure Sigma is created:

SYSTEM Sigma(sl,s2,s3) IS
CONNECT s1.IN(1) s3.0UT(1) = OUT,

s1.IN(2) = IN,
s2.IN = s1.0UT(3),
s3.IN(1..2) = s1.0UT(1..2),
s3.IN(3) = §2.0UT;
BEGIN
NULL;
END Sigma;

In interconnection system definitions, the reserved words IN
and OUT are used for the global input and output vectors, re-
spectively. U and Y denote the input and output of the indi-
vidual subsystems, respectively. The interconnection topology
can thereafter be applied to any correctly dimensioned systems.
For example, the interconnected systems SYS1 and SYS2 can be
constructed as

Il

SYS1 SIGMA(S1,52,83);

SYS2 SIGMA(S4,S5,56) ;

90 CHAPTER 4. DATA STRUCTURES FOR CACSD

if S1 .. 86 are defined as linear system descriptions having
the correct number of inputs and outputs.

The systems SYS1 and SYS2 are linear systems only when the
different component systems S1 .. S6 are linear. If any of
these systems is nonlinear, the same kind of interconnection de-
scription may be used, but the used connecting algorithm will be
symbolic rather than matrix-oriented, and the result is another
nonlinear system description. This case is discussed in greater
detail in Section 4.9.

4.6 Polynomial system descriptions

Transfer-function matrices and linear system descriptions are
intended to represent linear systems in the frequency and time
domains. A further common representation of linear systems is
the polynomial-matrix representation which describes the sys-
tem through a set of higher order differential equations (Kazlath,
1980):

P(s) xz(t) = Q(s) *u(t)
y(t) = R(s)*z(t) + W(s) = u(t)

Here, u is the input, y is the output, and z is the “partial
state vector”. Just as the “regular” linear system description, a
polynomial-matrix system description contains four components
(P, @, R and W). Each of these components is a (factorized or
non-factorized) polynomial matrix.

The method of entering and accessing polynomial-matrix rep-
resentations is equivalent to what we have seen so far. For ex-
ample, the system

* U

252 +3s+1 -1 .y
-1 s +4s+4 o

1
0

1 0
y:[s Ol*z

may be entered as

4.7. DOMAIN AND TRAJECTORY VARIABLES 91

P = [1"3"2,-1;-1,4"4"1]
Q = [1;0]

R = [1,0;°1,0]

PSYS = LINPOLY(P,Q,R)

Algorithms for transforming linear systems within and be-
tween the three different representations transfer-function ma-
trices, linear system descriptions and polynomial system descrip-
tions exist (Kadlath, 1980), and will be made available in IM-
PACT. However, when a transfer-function matrix representation
with elements

E;(s)
d(s)

where d(s) is the smallest common denominator of the transfer
function matrix, and

G'z--(s) =

ord(P;;) > ord(d) for some pair ¢, 7
or when a polynomial system description with
ord(W) > 0

is transformed to a linear (A,B,C,D)-matrix system description,
a polynomial D-matrix will result. To allow for these transfor-
mations as well, IMPACT will support polynomial D-matrices
of linear system descriptions.

4.7 Domain and trajectory variables

A domain is a sequence of ordered, discrete values (domain
points) which can be used to form the independent variable of a
table. Generally, each of the domain points may take arbitrarily
complex values, however, special domains exist. For example,
a time-domain must have monotonously increasing real values.
As an example of a time-domain,

TIME = LINDOM(O.,50.,0.1)

92 CHAPTER 4. DATA STRUCTURES FOR CACSD

would define a sequence TIME with 501 elements, the first of
which has the value 0 and the last the value 50, using an incre-
ment of 0.1. With the help of the '&’-operator, domains can be
concatenated. For example would

PULSE_BASE = LINDOM(O,1,.01)&LINDOM(1.1,10,.1)&20

be a non-equidistant time-domain with 202 points.

A tragectory is a table of function values using a domain as
independent variable. Such a table results from a variety of
operations performed on domains. For instance would the op-
eration

TRA = SIN(TIME)

result in a table where each entry contains an independent vari-
able copied from the domain TIME and the sine-value thereof.

Mathematical operations are defined on trajectories using the
same domain, e.g. would the operation

TRB = TRA + COS(TIME)

once again be a table with one row of values as function of the
independent variable TIME, whereas

TRC = [TRA, COS(TIME), TRA + COS(TIME)];

would be a table where each entry is a row-vector with three
elements. Note that TRB = TRC(3).

Furthermore, domains and trajectories can be used to stmu-
late system behaviour. If we wish to simulate the step-response

of our system in Figure 4.3 for 50 seconds with a 0.1 second
resolution on the output, we can use the domain TIME to define

the trajectory (signal)
U = ONES(TIME);

The simulation of the setup illustrated in Figure 4.5 is thereafter
invoked as

4.7. DOMAIN AND TRAJECTORY VARIABLES 93

TIN
——% BYS —EET

N

TOUT = SYS * TIN

Figure 4.5: Simulation invoked thorough a multiplication be-
tween a system and a signal (trajectory).

VOUT = SYS * U

The results of this simulation will be stored in the trajectory
VOUT sampled over the same independent range (domain) as
TIME. This trajectory may then be plotted with default scaling
by the command

PLOT (VOUT)

The use of the overloaded multiplication operator in this ex-
ample is unambiguous and gives the user a very compact com-
mand for straight-forward simulation of linear and, as we will
see in Section 4.9 on nonlinear systems. Moreover, this notation
allows for a clear distinction between the simulated model and
the simulation experiment, as proposed, among others, by Cel-
lier (1979) and Zeigler (1976, 1984), and implemented in more
recent simulation languages such as SYSMOD (SYSMOD, 1986;
Baker and Smart, 1983):

result = model_description * experiment_descriptor
The experiment_descriptor is a normal trajectory describing the

input driving function (if the system is autonomous, a domain is
used). The domain points of this domain/trajectory are used as

94 CHAPTER 4. DATA STRUCTURES FOR CACSD

output communication points, and thereby also determine the
domain point of the result trajectory.

For simple simulations, a trajectory over a predefined time-
domain completely describes the experimental conditions for a
simulation. In more involved cases, for example for simulation
of stiff nonlinear systems, more experiment-related information
such as integrational method, step-length, required accuracy,
etc. is needed. This information must then be stored in “hid-
den” attributes of the trajectory. As these attributes have not
yet been implemented in IMPACT, no detailed examples will be
given. Nevertheless, the attributes will be accessible for ex-
amination and/or change to the user over a dot-notation as
described in Section 4.8.3, or using a form-driven interface as
discussed in Section 3.3.4.

Trajectories may be used not only for storing input and out-
put signals for system simulations. Analogous to time domains,
we define frequency domains as domains having monotonously
increasing, normally logarithmically equidistant, imaginary val-
ues. For example would

FFRE = IMLOGDOM(1le-2,1e2,101);

create a domain with 101 logarithmically equidistant points be-
tween 0.01%z and 100*:7. Frequency domains may be used to
calculate frequency responses of systems through the overloaded
multiplication operator:

RESPONS = G1*FFRE;

RESPONS is now a trajectory with the real and imaginary value
of the frequency response. This trajectory can now be plotted
in any desired form through e.g.

PLOT(RESPONS, "BODE")

or

PLOT (RESPONS, "NYQUIST")

4.8. NON-NUMERIC STRUCTURES 95

Alternatively to specifying the plot-kind (BODE, NYQUIST, etc.)
at plot time, we could have assigned to the domain FFRE a hidden

attribute of the same value:
FFRE = IMLOGDOM(1e-2,1e2,101,PLOT=>"BODE") ;

This value would then have been copied into the list of hidden
attributes of the trajectory (RESPONS), and from there to the
plot function.

If one wants to compare the Bode-diagrams of two transfer-
functions, the trajectory vectors can be combined into larger
trajectory vectors, and thereafter be plotted:

PL12 = [G1*FFRE,G2*FFRE];
PLOT(PL12)

On the plot, you will now find two different-colored/shaped
curves from your two systems.

4.8 Non-numeric structures

Most CACSD packages are designed around a set of numeri-
cal algorithms. Even in packages supporting “graphical” meth-
ods (e.g. SUNS (Atherton et al., 1985) for limit cycle de-
tection and CONCENTRIC (Munro, 1979) for multi-variable
frequency-domain design), the underlying operations are of a nu-
merical nature with numeric results being converted to graphical
form for display. Hence, few CACSD packages directly support
non-numeric structures. However, there are several instances
where such non-numeric structures may prove useful in CACSD
packages, for example in the form of

e Symbolic representations.
e Elementary programming structures.

e Composite structures with each element again being of a
numeric or non-numeric nature.

96 CHAPTER 4. DATA STRUCTURES FOR CACSD

In the following, we will discuss the applicability of each of the
three cited classes of structures to CACSD packages. It should
be noted that general symbolic representations, as described in
the next sections, have not (yet) been implemented in IMPACT.

4.8.1 Symbolic representations in CACSD

None of the presently wide-spread CACSD programs allow for
general symbolic manipulations. The overwhelming complexity
of symbolic manipulation packages with implementation times
of ten or more man-years together with a certain lack of exper-
tise by the numerically oriented control engineers constructing
CACSD packages have hitherto hampered the incorporation of
any general symbolic processing power into control packages.
Hence, control engineers wishing to perform symbolic or par-
tially symbolic calculations have to resort to general purpose
symbolic manipulation packages, such as MACSYMA (1986) or
REDUCE (Hearn, 1978). However, although these packages
are extremely powerful, they are not tuned for solving control
problems. This forces each control-oriented users to construct
his own customized operating environment before he can solve
control problems with reasonable comfort.

Despite the present lack of control-oriented symbolic manip-
ulation packages, (partial) symbolic processing has great poten-
tial in CACSD. For example, after specifying a linear model that
contains a number of non-numeric parameters in the form

A=[1, 2
0, B*%UM%+6];

B= ...

where %M% is a parameter with yet unspecified numerical value,
results deriving from calculations on this model would contain
factors of %M%. Thus the influence of certain physical/control
parameters on the overall system description/behaviour can be
studied. Note that it would not be very wise to specify the
whole system in symbolic form, as the well known complexity-
explosion of symbolic calculations would render quite uninter-
pretable results.

4.8. NON-NUMERIC STRUCTURES 97

In the future, symbolic processing could be made available in
CACSD packages either by embedding a general symbolic pro-
gram into the CACSD package, or through an indirect link to
an independent symbolic software package. However, already
now some CACSD programs contain certain symbolic process-
ing power, allowing for the modeling of nonlinear systems us-
ing an internal symbolic representation. These models are then
either compiled /interpreted for nonlinear simulation, or a sym-
bolic/numerical linearization algorithm transforms the models
for further use in the linear parts of the package(s). In this
manner, the powerful simulator ACSL has been incorporated as
a nonlinear simulation environment within the CACSD package

CTRL-C (CTRL-C, 1986).

In a later section, we will discuss the user-representation of
symbolically stored nonlinear models.

4.8.2 Elementary non-numeric structures

Conventional, strongly typed computer languages such as Pas-
cal, Modula and Ada offer the programmer several elementary
non-numeric data-structures, including boolean, string, enumer-
ated, and set types. Of these, boolean representations must be
present in command-driven CACSD-packages for use within IF,
WHILE constructions, etc. Strings are e.g. useful to pass tex-
tual information (titles etc.) to routines producing graphs or
other reports. The support of enumerated and set types would
enhance the general expression-power of the command-language,
e.g. for the implementation of different menu-driven schemes.

Some packages, for example the “matrix-environments”, al-
low matrix-structures to be interpreted as logical (BOOLEAN)
structures. A possible scheme is to interpret all non-zero nu-
merical values as TRUE and all zero values as FALSE. Assum-
ing all values are non-negative, an addition then corresponds to
an (expensive) OR-operation and an element-by-element multi-
plication is equal to an AND-operation (assuming we work on
matrix structures). The main drawbacks of this approach are
higher error-rates due to the weak typing, and poor readability
of the resulting soft-coded programs.

In IMPACT, boolean variables may be created and manipu-

98 CHAPTER 4. DATA STRUCTURES FOR CACSD

lated using boolean expressions and the logical operations AND,
OR and NOT. Boolean elements may be composed using the struc-
tures presented in the next section.

Analogous to the case of “overloaded” boolean matrices, the
so-called matrix-environments allow vector structures to be in-
terpreted as strings (for example by interpreting the individual
elements as ASCII-code). This avoids the introduction of new
types, however, it also means that "HELLO" + "$$100" will be
displayed as "1i|" (note that the displayed string is shortened
as a result of a delete character!). In IMPACT, special string-
variables of variant length can be created. These string variables
may be manipulated in a meaningful way with the operations

747 7=7 " as well as extracted as substrings:

S = "Time-response of system S1 with ";
S1 = "M1 = 5";

$2 = "M1 = 10";

TL =S + Si;

T2 = S + S2;

T3 = "Frequency" + (T1 - "Time");

T4 = S(1..4);

will produce four strings T1..T4 with the content

"Time-response of system S1 with M1 5"
"Time-response of system S1 with M1 10"
"Frequency-response of system S1 with M1 = 5"
"Tlme n

4.8.3 Composite structures

In conventional programming languages, composite structures
such as arrays and records enable illustrative and robust data
abstractions. Such clustering of information is useful also in in-
teractive CACSD packages to enhance the expression power of
command-languages (as with the previously discussed 4 matri-
ces that were combined by the LINCONT operator to form one
linear system description), and to aid the user in managing and
structuring his data.

4.8. NON-NUMERIC STRUCTURES 99

Three approaches to clustering in interactive environments
could be taken:

e Predefined cluster structures, such as all previously dis-
cussed numeric structures. While most CACSD packages
limit these predefined clusters to basic mathematical struc-
tures such as matrices and trajectories, some authors sug-
gest a much more rigid data organization with only one
data structure: the system (Macrejowskr, 1984, 1985;
Mason et al., 1985). Such a system must then contain
some or all of a range of predefined entities, such as non-
linear equations, a linearized system description, a fre-
quency response of this linearized representation, etc. A
slightly simplification of the rigid structure proposed by
Maciejowski is shown in Figure 4.6. This approach struc-
tures the data in a manner natural to the control field, but
also severely limits the options of the user.

e Strongly but dynamaically typed structures. Similarly to the
typing used in regular computer languages, the user may
(dynamically) declare the elements and /or dimensions of a
new record/array type, and thereafter create and use vari-
ables of this type. This approach is advantageous during
semi-interactive definition of new soft-coded subprograms
where typing would enhance program robustness. How-
ever, in a fully-interactive command-mode, such an ap-
proach clashes with the requirements of a transparent and
flexible environment where the user dynamically creates
new structures as he needs them.

e Loosely typed structures which are created “at the whim”
of the user. Using this approach and allowing for user-
defined records, arbitrary elements of variable dimensions
could be added and deleted to/from existing records at
any time.

As discussed in Chapter 3, the IMPACT command language
has been designed considering the conflicting goals of algorith-
mic robustness and flexibility /ease-of-use. Consequently, a com-
promise has been sought between robust typing schemes and
flexible but sometimes spuriously “free” clustering.

100 CHAPTER 4. DATA STRUCTURES FOR CACSD

DEFINITIONS NAME PROPERTIES CLASSIFICATION CONNECTIONS
guations response
Stas: Frequency -
| space
Mpodel response '
—Transfer- Root-
function Locus
—|Slruciurel
——fystem)
-—i{Pori,Porl)l

k
(Port,Port)

Figure 4.6: Predefined, rigid structure for a fictious CACSD
package as suggested by Maciejowski. Some of the elements in
this figure have further internal structures, hierarchical mod-
elling is possible.

The typing in IMPACT is most rigid for basic numerical clus-
ters (such as matrices, transfer-function matrices and trajec-
tories) which are all of fixed types but with free dimensions.
Only certain elements of predefined record types, such as linear
system descriptions, have dimensional constraints to make the
components compatible.

In subprogram definitions, a semi-strong typing is recom-
mended. In IMPACT, type specification may be supplied for
parameters and local variables of hard- and soft-coded subpro-
grams, in which case type-checking is performed by each call.
As opposed to conventional programming languages, this type-

4.8. NON-NUMERIC STRUCTURES 101

checking is “semi-strong”, meaning that upwards compatible
structures pass the test. For example, if a function to return
the maximum order of a polynomial matrix has been defined
using the type POLY_MATRIX (which is one of several predefined
system types)

FUNCTION Order(p_poly : IN POLY_MATRIX)
RETURN INTEGER IS

BEGIN

all calls to this function where the parameter p_poly is a factor-
ized polynomial matrix, a non-factorized polynomial matrix or
a complex matrix are legal. The matrix is thereby treated as a
special case of a polynomial matrix of degree 0.

Users may define new clustered types and use instantiations of
these types as in strongly typed programming languages. This
feature may for example be used to increase the robustness and
readability of soft-coded subprograms, where user-defined dec-
larations such as

FUNCTION Xyz(...) RETURN ... IS

TYPE freq_sys IS RECORD
name : STRING;
coeff : NF_TRANS_FUNC_MATRIX;
fact : F_TRANS_FUNC_MATRIX;
bode : TRAJECTORY;
END RECORD;

open_loop, closed_loop : freq_sys;
BEGIN

are allowed. The robustness is thereby increased at the cost of a
more complex subprogram definition and a slightly increased ex-
ecution time due to the additional type checking. For example,
if an incompatible assignment to a record-element is performed
within the body, an exception will be raised, and the user will
be supplied with the appropriate error message. Assuming the

102 CHAPTER 4. DATA STRUCTURES FOR CACSD

elements of the record had not been typed, the error would have
been detected later, for example at the first usage of the erro-
neous element.

To enable type-checking of parameters of user-defined struc-
tured types, types may be “inherited” according to normal scope
rules. However, as any type declarations normally is of a more
permanent basis than dynamically created variables, a type dec-
larations should be protected against overwrite and deletion
Thus, all types interactively entered, such as

TYPE freq_sys IS RECORD
name : STRING;
coeff : NF_TRANS_FUNC_MATRIX;
fact : F_TRANS_FUNC_MATRIX;
bode : TRAJECTORY;
END RECORD;

must be automatically protected against any changes. The type
can be explicitly unprotected through a call to subprogram UN-
PROTECT (freq_sys), thereafter it may be deleted or modified
(which possibly makes any user-defined subprograms relying on
this type declaration useless or even erroneous). A companion
procedure PROTECT should be available for protecting precious
variables (etc.) from being destroyed by unindended overriding.

In interactive command-driven environments, strong typing
of dynamically created variables should never be mandatory.
IMPACT therefore allows, but never forces, the user to interac-
tively define new types in addition to the predefined numerical
ones. Moreover, the user wishing to group his data in an ad hoc
manner may create fully dynamic records. Let us assume that
a user wishes to dynamically create a record similar (but not
identical) to the previously declared freq._syst. If the open-loop
non-factorized transfer-function already is stored in the variable
SYS1, the following self-explanatory operations would be legal:

freql.name = "SYSTEM 1";
freql.coeff = sysi;

freql.fact = FACTOR(freql.coeff);

freql.xx = "You may create new elements";

4.8. NON-NUMERIC STRUCTURES 103

Note that a new variable freql with one element (name) is auto-
matically created during the first assignment. Thereafter, addi-
tional elements are added to this record. Records may of course
be nested, such as in

"A nested element"
"Another nested element"

freql.yy.yl
freql.yy.y2

In addition to user-defined records where each data element is
accessed with a dot-notation, data, in IMPACT, may be struc-
tured into so-called ndexed clusters. Such clusters are flexible
versions of the arrays in conventional programming languages
in that a unitary typing of the array elements is not mandatory.
Moreover, there is neither a limit on the number nor on the
range of indices; indices may even be used discontinuously. To
distinguish between the indices of predefined numerical struc-
tures and user-indexed clusters, square brackets are to delimit
the cluster indices. Thus, the following commands would be
legal (but not necessary meaningful) in IMPACT:

A =1[1,2;3,4];

AA[1] = A;
AA[2] = A + EYE;
AA[5] = B*EYE(A);

AA[5](1,2) = AA[1](1,1);
Naturally, if these commands were followed by
B = AA[3]

an error would occur, as AA[3] was never defined. Note the
difference between

A(I,I)

which denotes the complex element in row I and column I of
the matrix A,

A[T1]

104 CHAPTER 4. DATA STRUCTURES FOR CACSD

which denotes the I’'th component of the one-dimensional in-
dexed cluster A (where, of course, I has to be a defined, integer
scalar variable), and

A.1

which denotes the component I of a user record A.

User-indexed structures are intended to simplify the descrip-
tion of repetitive but inhomogeneous actions. For example, if
we wish to iteratively call a function user_design and store each
of the intermediate results, the code

-- SS1 is assumed to be an already defined system.
ko] = [1,2];
FOR i IN 1 .. n LOOP
k[i] = User_design(ssi1,k[i]);
END LOOP;

would give the final iterative result in k[10] and each interme-
diate results in k[1] through k[9].

4.9 Nonlinear systems

Until now, we have discussed data structures suitable for rep-
resenting linear systems in the time as well as in the frequency
domain. Unfortunately, these structures do not always suffice.
As we live in an imperfect world, control engineers often have
to use nonlinear models consisting of differential and/or differ-
ence equations to describe real systems. Such models could be
formulated using for example graphical definition packages such
as MATRIXy/SYSTEM BUILD (Shah et al., 1985) or Hibliz
(Elmguist and Mattsson, 1986), conventional simulation lan-
guages following the CSSL’67 standard (Augustin et al., 1967)
such as ACSL (1986), CSSL-IV (1984) or more modern, modu-
lar simulation languages SYSMOD (SYSMOD, 1986; Baker and
Smart, 1983). However, only SYSTEM_BUILD integrated with
MATRIXx can be classified as a CACSD package, the others
can “only” be used for simulation and/or documentation (ex-

cept for ACSL, which can be used together with the CACSD

4.9. NONLINEAR SYSTEMS 105

package CTRL-C (CTRL-C, 1986)). In control environments,
we are not satisfied with simulation capabilities alone. Instead
we expect to find a range of nonlinear tools such as

e a nonlinear time-simulator. It should be possible to de-
scribe nonlinear models separately from the simulation ex-
periment to be performed. The experiment description fa-
cility should contain mechanisms to specify model-external
driving functions which in themselves may be results of
previous operations, e.g. previous simulations. The re-
sults of the simulation should be stored away in a manner
such that they can be reused for other purposes by any
parts of the control package.

e algorithms for nonlinear controller design.

e nonlinear sensitivity analysis either through linearization
algorithms or by means of a worst-case multiple-simulation
approach, a so-called range analysis (Cellier, 1986).

e a linearizer creating models for further treatment within
the linear part of the control package. If a linear controller-
design is made, the results of this design must be trans-
ported back to the nonlinear model for verificational sim-
ulations.

e tools for hierarchical modeling of larger nonlinear systems
using subsystems in a modular fashion.

Not only does each of these facilities require separate sets of
commands and underlying algorithms. Also, the user-defined
models are accessed in completely different ways with the con-
sequence that alternative connections/parameter-sets for each
model may be needed. In the most general case, all of the fol-
lowing model interfaces may be needed for a generic model def-
inition:

e Physical parameters. During the modeling and/or design
phase, individual parameters of a physical system may not
be known or may not yet be determined. In particular, the
definition of predefined submodels with free parameters

106 CHAPTER 4. DATA STRUCTURES FOR CACSD

should be supported. Therefore, it should be possible to
define model types (templates), from which instantiations
with fixed parameter-values can be created.

e Input and output signals. In control environments where
simulations are invoked as simple operations (e.g. as mul-
tiplication between a system and a time trajectory), inputs
and outputs must be definable for each (sub-)system.

e [nitial conditions and equilibrium pownts. Before a simu-
lation can be started, the initial condition of each state
variable must be specified. Similarly, equilibrium points
for the state variables are needed by the linearizer.

e submodel connections. For simple submodel interconnec-
tions, the overloaded operations for parallel, series, and
feedback connections suffice. However, for a general mod-
ular modeling, possible interconnections (“cuts”) between
submodels must be defined in each subsystem. These
cuts are then connected to each other in the hierarchically
higher system.

Hence, our descriptive language for nonlinear models must be
a quite versatile description syntax supporting all these inter-
faces. In IMPACT, an attempt to support all these interfaces
with a minimum of overhead has resulted in the definition of the
nonlinear SYSTEM descriptions.

The nonlinear system descriptions of IMPACT must not be
seen as just another nonlinear modeling language, but far more
as an integration of a nonlinear modeling and simulation en-
vironment into a command-driven control environment. This
allows the user to work with a unified user-interface during the
entire design cycle. It also allows for a complete mixture be-
tween nonlinear (symbolic) and linear (numeric) models, some-
thing particularly useful when linear controllers are designed
for nonlinear systems. Moreover, the algorithmic interface of
IMPACT can be used as a flexible simulation environment for
invoking complex simulation operations.

4.9. NONLINEAR SYSTEMS 107

4.9.1 Nonlinear system descriptions

In this section, we will show how nonlinear operations can be
invoked without increased complexity compared to the linear
case. Returning to the example from Figure 4.3, the nonlinear
model for the spool is assumed to be:

v = r*av
dav torque
dt — inertia

inertia = cable* r* + roll

d

EE = —kl=*av

d*d

Blo= o

2 % T *x W
with the constant values

d = 0.03

w = 0.6

cable = 23.5

roll = 2.1

where v is the roll-on/-off speed, r is the time-dependent radius
of the roll, and av is the angular velocity of the spool. The two
constants d and w denote the cable diameter and spool width,
respectively. Typical values of w, d and the inertia constants
cable and roll are indicated to the right.

As the overall model consists of more than a dozen lines, the
risk of making errors during a line-by-line direct entry is rela-
tively large. We therefore invoke the systems editor from within
IMPACT and define the system using this editor as shown in
Figure 4.7 This system definition declares a spool-template with
not yet determined initial condition rO and system constants d
and w. These free parameters of the defined model must be
specified by all operations on the spool. The system-declaration
header also includes information on input and output parame-
ters to the system, which are implicitly used when we, for ex-
ample, perform a simulation using commands identical to those
used for linear systems:

108 CHAPTER 4. DATA STRUCTURES FOR CACSD

SYSTEM Spool(r0O,d,w : SCALAR)
IN torque : SCALAR
RETURN v : SCALAR IS

r : STATE := rO;
av : STATE := 0.0;
inertia : SCALAR;
cable : SCALAR := 23.5;
roll : SCALAR := 2.1;
k1 : SCALAR := dxd/(2*_pix*w);
BEGIN
v = r*av,;
inertia = cable*r**x4 - roll;
av' = torque/inertia;
r' = -kl*av;
END Spool;

Figure 4.7: Nonlinear IMPACT system. The system describes
the nonlinear model of the spool of the cable-roll example.

VOUT=(SPOOL(1.2,0.03,0.6)*MOTOR*KP\\-TACHO) *3*U

In the shown examples, default integration parameters have
been used during simulation. As described in Section 4.7, for
complete simulation control, trajectories may contain additional
information on integrational methods, step sizes, error condi-
tions, et cetera.

If we wish to “freeze” the parameter-values and initial condi-
tions, we may do so by creating a new nonlinear system as:

MYSPOOL = SPOOL(1.5,0.03,0.6);

Whenever a model is invoked with an incorrect number of
parameters, and specially if formatted textual information has
been included in the model definition, the powerful IMPACT
query facility described in Section 3.10 will jump into action.
For example, if we perform a simulation without specifying the
free parameters, such as in

4.9. NONLINEAR SYSTEMS 109

VOUT = (SPOOL * MOTOR * KP \\ - TACHO)*3x*U

IMPACT will prompt the user for missing parameters (user in-
put is underlined:

S>>The nonlinear system SPOOL has been invoked
S>>with missing parameters. This system models
S>>the roll-off of a cable from a spool.
S>>Please enter missing parameters.

S>>

S>>Initial roll-diameter RO (NO DEFAULT): 1.2
S>>Diameter of the cable D (NO DEFAULT): 0.03
S>>Width of the spool w (NO DEFAULT): 0.6

If the user is uncertain about the meaning of a particular pa-
rameter, he can enter a HELP for further information.

S>>Initial roll-diameter RO (NO DEFAULT): HELP
S>>This parameter indicates the initial diameter
S>>of the cable-spool (including the cable) at the
S>>outset of the simulation (this thickness is
S>>to be calculated as the radius of the spool
S>>plus the thickness of the cable-layers).

S>>

S>>Initial roll-diameter RO (NO DEFAULT): 1.2

The system query facility is particularly useful for systems
with many parameters, and for cases where the user and the
constructor of a system are different people.

Other operations that can be performed on nonlinear sys-
tems are, with the exception of the hierarchical modeling, in-
voked through commands implemented in the regular command-
language of IMPACT. For example, a linear state-space repre-
sentation of SPOOL may be generated by symbolic linearization
(Rall, 1981; Joss, 1976):

LINSPOOL = LINEARIZE(SPOOL(1.2,0.6,0.03));

Also here, the query facility would jump into action when either
the function LINEARIZE or system SPOOL (or both) were specified

110 CHAPTER 4. DATA STRUCTURES FOR CACSD

with missing parameters. If LINEARIZE was specified without
parameters, it would first ask for the system to linearize (SPOOL),
and thereafter ask for any parameters of the model SPOOL (the
query handler of LINEARIZE is programmed to allow for such a
query within a subprogram call, cf. Section 3.10).

Yet another example illustrates the use of the IMPACT com-
mand language as an experimental frame for simulation runs.
Assume that the parameters r0, d, and w are known with 10%
accuracy, and that we wish to plot the envelope of the step-
responses from all worst-cases of this parameter-variation (Cel-
lier, 1986). We would then create a matrix where each row
corresponds to one set of parameters:

MEAN = [1.2, 0.03, 0.6];
ERR = [0.1, 0.1, 0.1];
RUNS = PERMUTE (MEAN,ERR,"RELATIVE")

resulting in

RUNS =
1.0800 0.0270 0.5400
1.0800 0.0270 0.6600
1.0800 0.0330 0.5400
1.0800 0.0330 0.6600
1.3200 0.0270 0.5400
1.3200 0.0270 0.6600
1.3200 0.0330 0.5400
1.3200 0.0330 0.6600

A trajectory with the results from eight simulation runs using
the above parameter sets is constructed through the commands

FOR INDEX IN RUNS(I,:) LOOP
S(I)=(SPOOL(RUNS(I,1..3))*MOTOR*KP\\-TACHO) *3*U;
END LOOP;

The envelope of these eight time-responses is then obtained
through the command

PLOT(S,"ENVELOPE") ;

4.9. NONLINEAR SYSTEMS 111

4.9.2 Modular system interconnections

For general interconnections not describable through the arith-
metic operations and the feedback operator, the more general
interconnection facility described in Section 4.5, may be used
on nonlinear systems as well. Thereby, the valid specifications
of the input and output connections of nonlinear systems are
extended to be positional or named. Thus, the interconnection

SYS = (SPOOL * MOTOR * KP \\ - TACHO) x*3
of our cable-roll example could also have been obtained through

SYSTEM Totsys(spool,motor,kp,tacho)

IN u
RETURN y IS
CONNECT
kp.IN = IN - spool.v,
motor.IN = kp.OUT,
spool.torque = motor.0UT,
y = spool.v;
BEGIN
NULL;

END Totsys;

Naturally, the result is again another nonlinear system.

Despite the general appearance of these interconnection tools,
for true modularity in modeling we need to introduce yet another
concept. While linear systems in transfer-function or state-space
form have well defined inputs and outputs, this must not be the
case for systems described in algebraic and/or differential equa-
tion form. Even a model of the simplest of systems, a resistor,
may be used in two ways, depending on its surrounding connec-
tions, see Figure 4.8. Moreover, it is often not clear at the time
of subsystem modelling exactly how the subsystem is to be con-
nected to its surroundings (and thereby e.g. which of the two
resistor models is needed at “connect-time”). Hence, for a mod-
ular design of large systems in IMPACT, the interface concepts
of Elmqvist will be used. In his pioneer work, Elmqvist (1978)

112 CHAPTER 4. DATA STRUCTURES FOR CACSD

e

U=|*R or |l=U/R

Figure 4.8: The two possible resistor models.

allows the system equations to be entered in any form, for ex-
ample would Elmqvists program DYMOLA accept the equation

set

torque = av‘*inertia;

av*r = v;

inertia = cablexr**x4 - roll;
' = -klx*av;

just as well as our original equations. I.e., statements are no
longer assignment statements in a conventional form, but follow
the more general syntax

ETPression = exrPression

A symbolic formulae manipulation program not only sorts equa-
tions “vertically” into executable order (as this is done in most
CSSL’s), but simultaneously sorts equations “horizontally” for
the appropriate output variable. The sorter also checks the
equations for completeness and consistency, and detects any al-
gebraic loops requiring special treatment. This mechanism al-
lows the user to enter equations as they were first obtained e.g.
from physical laws.

To fully utilize the freedom of vertical and horizontal sorting
over different submodels, it must be possible to define modules
without having to specify whether a connection variable is an
input or output signal. Elmqvist has shown that there gener-
ally exist two kinds of connecting variables; ” ACROSS” variable

4.9. NONLINEAR SYSTEMS 113

which are set equal at the interfaces (as the voltages at the con-
nection of three resistors) and "THROUGH” variables which
are summed to zero at the interface (as the currents at the same
connection).

These concepts of Elmquist will be incorporated in IMPACT
as well. Returning to our example, if we wish to include the
inertia of the motor in our system, the motor would have to be
modelled in greater detail, and our spool model could be defined
having the torque as a through variable, and the angular velocity
as an across variable at the interface to the motor:

SYSTEM Spool(r0,d,w : SCALAR)
IN torque : SCALAR
RETURN v : SCALAR IS
CUT axis(torque : THROUGH;
av : ACROSS) ;
cable(v : ACROSS) ;

Note that this system has in/return parameters as well as cut
declarations. This allows us to use the same model either as
previously with fixed inputs/outputs or in a hierarchical model
as follows: assuming the motor has a similar cut axis, then the
two systems can be combined in a hierarchical system having
the header

SYSTEM Motor_spool(spool, motor : SYSTEM)
IN uin : SCALAR
RETURN vout : SCALAR IS
CONNECT spool.axis = motor.axis;
CONNECT vout = spool.cable;
CONNECT uin = motor.uin
BEGIN
NULL;
END Motor_spool;

This model can then again be used to form the system of Fig-
ure 4.3.

114 CHAPTER 4. DATA STRUCTURES FOR CACSD

4.10 Conclusions

Recent trends in computing have led to the introduction of mod-
ern hardware (workstations) and software (interactive environ-
ments) where professionals of different technical fields work with
conceptional entities of their speciality rather than underlying
programming elements such as ARRAYS and LISTS. These enti-
ties usually correspond to the elements used by the same profes-
sionals when they work(ed) with pencil-and-paper or “real mod-
els”. For example, the mechanical engineer works with geomet-
ric entities of his CAD-package, the numerical analyst is happy
with the different numerical structures of matrix-environments
such as MATLAB, and even a mathematician sometimes finds
consolation in the intricacies of packages for symbolic manipu-
lations.

Following this general trend, control engineers should also be
supplied with the conceptual structures they are used to work
with. This means that an ideal control environment should sup-

port entities for:

e numerical descriptions of systems (matrices, transfer func-
tions, etc.),

e symbolic elements for general system-equations,
e graphical elements for the definition of system topologies,

e support of large-scale data management, e.g. in form of
relational data-base support (cf. Section 3.12),

e support of small-scale data management, e.g. in form of
spreadsheets, and

e graphical displays of numerical computations, possibly to-
gether with graphical interactivity for requirement speci-
fications, etc.

The most popular present-day control-environments such as
PC-MATLAB (Moler et al., 1985), CTRL-C (CTRL-C, 1986),
and MATRIXx and SYSTEM_BUILD (Shah et al., 1985) only
partially support the first and last groups and ignore symbolic

4.10. CONCLUSIONS 115

and graphical system descriptions (MATRIXx together with
SYSTEM_BUILD allows for a graphical input of topologies, a
prototype system called MODEL-C to be used as companion to
CTRL-C has been shown recently). Not a single system known
to the author supports all six groups. Moreover, only few of
the systems are truly versatile in their offerings of numerical
structures, the most fundamental of the groups. In this chap-
ter, we have shown that a large number of different numerical
structures are needed to cover all methodologies used in control
engineering, and that a “simulation” of some of these structures
through other, simpler structures proves contra-productive due
to the limitations then put on the systems.

116

Chapter 5

IMPLEMENTATION
CONSIDERATIONS

5.1 Introduction

During implementation of the very first generation of interac-
tive CACSD packages in the 1970’s, software engineering princi-
ples and modern programming methodologies were seldom con-
sciously used. Although it would be only too easy to use our
enlighted eyes of the 80’s to patronizingly condemn some of these
programs as “unreliable-by-design”, we should keep in mind that

e the packages of the 70’s typically consisted of 80% numer-
ical routines, 10% “glue” between these routines, and 10%
user interfaces (Agathoklis, 1986). Most of the algorithms
were individually developed, separately from the CACSD
package (maybe even by different people), and inserted as
stand-alone black-boxes. This kind of program develop-
ment raised little need for any ingenious overall software
design.

e FORTRAN was the “lingua franca” among scientific pro-
grammers. This ensured a fair portability of programs,
but also delayed the introduction of modern programming
methodologies such as abstract data structures and struc-
tured programming.

e Most CACSD packages were not large enough, or did not
involve enough programmers, to induce the software man-

117

118 CHAPTER 5. IMPLEMENTATION CONSIDERATIONS

agement problems tormenting today’s CACSD software
developers. This was mostly due to the memory limi-
tations of older computers (including mainframes), com-
pelling the programmers to keep the individual programs
small or to tediously specify overlays. Today, these mem-
ory problems are all but gone (virtual memory), but in-
stead, software engineering methods (Sommerville, 1985)
are becoming indispensable; ten years ago, this computer-
science term had not even been coined. It is interest-
ing to notice that even a powerful package like MATLAB
(Moler, 1980) consisted of not more than some 7000 lines
of (FORTRAN) source code, whereas modern control en-
vironments are easily more than one magnitude larger in
size.

Although advances in computer science during the past two
decades have influenced application fields such as CACSD to
a certain extent, tradition and ignorance still foster outdated
principles. Some programmers of today have themselves had
formal education in structured programming and abstract data
structures, but most of them were educated in FORTRAN, and
like ones mother tongue, the first computer language mastered
seems to be the one that most programmers feel particularly
comfortable with. For these reasons and others, the vast ma-
jority of todays programmers still uses the most unstructured
programming language available — FORTRAN. This tremen-
dous gap between computer science theory and practice can only
partially be bridged by the use of schemes for structured FOR-
TRAN programming. Moreover, although standard FORTRAN
code is quite portable, both FORTRAN’66 and FORTRAN’77
lack elements for system-calls and more intricate input/output
— forcing the programmer to include system-dependencies into
his code. As a consequence to all this, recent implementors
of CACSD packages have considered using other programming
languages, for example one of the following more widely spread
languages:

e Algol. The first version of this language, Algol’60, made
structured programming (almost) mandatory. A second
version, Algol’68, was regarded as too complex and cum-
bersome to use, and for that reason never became very

5.1. INTRODUCTION 119

popular. Algol’60 remained popular in academic circles
until the mid 70’s, when it was superseded by Pascal.
Today, Algol itself has survived in Eastern Europe only,
whereas one of its more direct descendents (SIMULA’67,
Birtwistle et al., 1973) still enjoys some popularity in par-
ticular in Scandinavia.

e Pascal. This language was designed by Wirth and Jensen
(1975). It introduced a rich selection of data types and
a consistent instruction set for structured programming,
both prerequisites for reliable (CACSD) software. Because
of its relative simplicity, Pascal has become one of the most
popular programming languages in programming educa-
tion, for the implementation of small to medium sized
stand-alone programs, e.g. modestly sized parsers and
compilers (Bongulielms, 1984), and for simulation pack-
age translators (preprocessors) (Baker, 1983). For imple-
menting large (CACSD) programs, the lack of standard
language elements for a modular overall design (no mod-
ules, no separate compilation) and a rather weak input-
output facility put Pascal at a disadvantage against lan-
guages such as Modula-2 and Ada.

e Modula-2. Wirth’s (1985) most recent successor to Pas-
cal has a syntax similar to that of Pascal, but includes lan-
guage elements for modular design, flexible input-output,
real-time programming, and foreign language access. Far
better suited for implementing large programs than the
previous languages, it still remains to be seen how widely-
spread the use of Modula-2 will become. Modula-2 is
presently gaining popularity among academics with good
compilers running even on fairly small machines (e.g. Mac-
Intosh and IBM-PC). Modula-2 lacks certain features de-
scribed later in this chapter, for example discriminants and
exception-handling.

e Ada. The reference manual of this language (ANSI, 1983)
was developed according to specifications issued by the
U.S. Department of Defense, and is now a required im-
plementation language for embedded programs in many
defense systems. Despite its background, Ada is not a

120

CHAPTER 5. IMPLEMENTATION CONSIDERATIONS

“weapons oriented” product, but a general purpose pro-
gramming language to be placed last in the chain Algol —
Pascal — Modula-2 — Ada. The language has evolved
from Pascal rather than Modula-2, yet it incorporates
practically all new features of Modula-2, and a few ad-
ditional ones of its own.

Although slow in coming, there are now some 25 vendors
offering 55 validated Ada compilers (one validation per
host-target computer configuration is required) (AdalC,
1986), and more are expected. As for Modula-2, it still
remains to be seen how well Ada will become accepted.
However, already present commitments to Ada guarantee
that a rather large set of utility modules (numerical algo-
rithms, data-base programs, graphical drivers, etc.) will
be made available in the future.

Ada has been criticized by many for being too large and
too complex to be used efficiently. However, the language
itself is modularly constructed making it convenient to use
only a consistent subset of the language. This makes the
complexity comparable to that of Modula-2. It is our ex-
perience that students with working knowledge of Pascal
or Modula-2 need less than 2 weeks before they can use
the rather large subset of Ada used in IMPACT.

C. Among the hitherto mentioned structured program-
ming languages, C (Kernighan and Ritchie, 1978) is some-
what of an outsider. It supports language elements for
typing and structured programming, but does not enforce
their use. The C language therefore opens up for effi-
cient “trick programming”, something generally appreci-
ated by the people for which the language was originally
created — systems programmers. Because of its close link
to the UNIX operating system (UNIX is implemented in
C), the future popularity of C will at least partially depend
on the success story of UNIX. C is particularly powerful
for the implementation of hardware-close programs, that
is: hardware drivers, and system operating software in
general where the use of C often results in more efficient
run-time code. In the USA, C has meanwhile bypassed
Pascal in popularity, and has become a de facto industry

5.1. INTRODUCTION 121

standard. At least one CACSD-package (the matrix envi-
ronment PC-MATLAB; Moler, 1985) has meanwhile been

implemented in C with very good success.

e PROLOG (Clocksin and Mellish, 1984) and LISP (Win-
ston and Horn, 1981). These non-procedural languages
might be considered for CACSD projects where control de-
sign algorithms are combined with expert systems, other
artificial intelligence elements, or more general symbolic
processing elements. Hitherto, these languages have only
been used in CACSD to implement semi-independent “in-
telligent” units connected to parts implemented in normal
procedural languages for the numerical, graphical and/or
user communication tasks (7Trankle, 1986; Larsson and
Persson, 1986).

As previously stated, most CACSD-packages and CACSD-
libraries have until now been implemented in FORTRAN. With
the development of IMPACT, one of the first decisions to be
taken was NOT to use FORTRAN. Apart from the well-known
drawbacks of this language as discussed previously, we felt that
it is the obligation of academic research groups to be in the
forefront of their respective fields, and that generally valuable
experiences for the field of CACSD could be gained by inves-
tigating alternative implementation languages. Hence, several
FORTRAN-alternatives were evaluated, and Ada was made the
language of our choice. Not directly depending on the revenue
of our efforts, we were able to take a somewhat more risky deci-
sion, a decision which might not (yet) have been justified in the
commercial world.

In the remainder of this chapter, we will discuss different im-
plementational aspects of larger CACSD packages. Each aspect
will be illustrated by appropriate extracts from IMPACT to-
gether with comments on the suitability of Ada as an imple-
mentation language.

Some of the IMPACT code-extractions of this chapter have
been slightly edited /simplified for clearer illustrations. Such dis-
crepancies with the actual IMPACT code will not be specially
marked.

122 CHAPTER 5. IMPLEMENTATION CONSIDERATIONS

5.2 Programming conventions

The development of large software packages, such as modern
integrated CACSD packages, is a major engineering task involv-
ing a large number of persons over several years. Left alone,
each of these persons would have his own approaches to soft-
ware design and programming style, resulting in a collection of
heterogeneous modules. The discrepancies between these mod-
ules could range from deviating naming-conventions over vary-
ing input-output formats to different data structures. Such in-
consistencies would not only decrease the readability of the total
program, but also increase the risk of module incompatibilities.
Therefore, a certain style of program design (coding rules) has
to be adapted for larger software projects to ensure readability,
reliability, and maintainability of the code.

As mentioned previously, the portability and re-usability of
Ada programs was one of the primary goals behind the design
of that language. This is not only reflected in the strict re-
quirements on compatibility between Ada compilers and run-
time systems, which have to be wvalidated before they may be
released, but also in the plans for official style-rules on how Ada
programs “are supposed to look like”. The first draft of these
style-rules (Roskz, 1986) is too general for individual projects as
it mostly limits the use of certain language elements to increase
programming security (also see VanNeste, 1986). Therefore,
each software group/company must specify additional rules re-
lated to the particular requirements. Thereby, it is important
that these rules are formulated in such a way that the fantasy
and free inspiration of the programmer is not restricted. For
IMPACT, a set of rules has been adopted covering

e typographical rules on indentations, etc.
e naming conventions,
e package-interface rules,

e conventions on the error handler, the handling of dynamic
structures, and the mechanisms of input/output.

5.3. ERROR HANDLING IN CACSD 123

These detailed rules have been collected by Rimvall (1986).
To clarify the notations used in the following examples from
IMPACT, a few general rules will be mentioned:

e Reserved Ada-words (e.g. FOR, LOOP and END) are to be
written in upper-case characters. Variable, subprogram
and parameter names are generally to be written in lower-
case letters.

e Types, variables and subprograms exported from an Ada
package must take the prefix IMxy_, where xy is a two
lower-case letter package abbreviation.

e Variables declared within subprograms take the prefix 1_
to denote their local nature.

e Formal subprogram parameters take the prefix p_.

5.3 Error handling in CACSD

In interactive programs, such as the here treated CACSD pack-
ages, two basic groups of errors occur during execution of the
program — operating errors due to errors or inconsistencies in
the user input, and programming errors due to errors in the
IMPACT program itself.

In command-driven interactive programs such as IMPACT,
user-generated operating errors are unavoidable. These can
be of a syntactical nature, e.g. when the user enters

WHILE i <> 5 LOPP

where <> has been used instead of /= for inequality, and LOOP
1s misspelled, or of a semantical nature as in the assignments

A
B

[1,2,3,4];
A(1,2)

o

where the one-dimensional array A is referenced with two indices.
In both cases, the execution of the entered command must be

124 CHAPTER 5. IMPLEMENTATION CONSIDERATIONS

B = A(1,2)
~ sx%x ERROR
%I-USER-ERROR, Wrong number of indices.
%I-MESSAGE, You have specified too few or too many
»I-MESSAGE, indices during access to the variable "A".

Figure 5.1: Typical error message after an operating error.

halted to display a comprehensive error message of the form
shown in Figure 5.1. This error message contains all pertinent
components of an operating error report:

e an indication where the error occurred.
e a short, poignant error message.

e further information to resolve ambiguities or indicate hid-
den relations (in our example the indication that the error
occurred while accessing A).

After an operating error has been reported to the user, the
program should resume normal execution, for example by wait-
ing for further input from the user. Under no circumstances
may an interactive program “crash”, as then all interactively
created data would be lost. Neither may the program enter
undefined states leading to an unreliable further behaviour. In-
stead, the recovery from all operating errors must be made to
one predictable state, from which the user always knows how to
continue to operate the program.

Although the ultimate goal of all software design is to con-
struct error-free programs, such goals still remain utopian. It
is true that modern languages such as Ada have been designed
to minimize the “bug-rate” (number of errors per 1000 lines
of code). The rate of both design- and coding-errors tend to
decrease considerably when using modern design and program-
ming tools (e.g. Ada instead of FORTRAN); nevertheless, pre-
cautions should be taken to minimize the effects of remaining
programming errors.

5.3. ERROR HANDLING IN CACSD 125

%I-IMPACT-ERROR, An illegal attempt to deaccess a main
%I-IMPACT-ERROR, reference to a string of type
%I-IMPACT-ERROR, IMba_private_string has been made.
%I-IMPACT-ERROR, Still existing secondary references
%I-IMPACT-ERROR, blocked this deaccess.

%I-MESSAGE, The string was "SELF-GENERATED-ERROR".

%I-MESSAGE, This is a programming error in IMPACT.
%I-MESSAGE, Please submit a report to the IMPACT-manager
%I-MESSAGE, Include a diary-file of the action leading
%I-MESSAGE, to the error. Quote the exact error-name,
»I-MESSAGE, which is :BA_I_STR_ILL_DEACC_SEC_EXIST

%TRACE - IMPACT_basic $$ IMba_deaccess
%TRACE - IMPACT_math_arithmetic $$ Add
*TRACE - IMPACT_math_arithmetic $$ IMma_dual_operations

%TRACE - IMPACT_kernel_execute $$ E_dual_operation
HTRACE - IMPACT_kernel_execute $$ E_expression
%TRACE - IMPACT_kernel_execute $$ E_assignment
%TRACE - IMPACT_kernel_execute $$ E_statements
%TRACE - IMPACT_kernel_execute $$ IMke_execute
%TRACE - IMPACT_kernel_parser $$¢ PA_until_error

Figure 5.2: Typical error message after a run-time error caused
by a programming error.

As with the operating errors, a run time error caused by
some programming error must result in a comprehensive error
message. Contrary to the operating errors, these messages are
normally not to be interpreted by the user (although he must
be told that something went wrong), but to be passed on to the
software manager of IMPACT for corrective actions. Therefore,
the content of such a message centers on the type of the error,
where it occurred, and under which circumstances. A typical
report is shown in Figure 5.2. A traceback is included to help
the programmer find the bug. These kind of error-messages
tend to become rather voluminous, but they should hopefully
not appear too often anyway!

The implementation of a comprehensive and consistent error-
handler for both operating- and programming-errors throughout

126 CHAPTER 5. IMPLEMENTATION CONSIDERATIONS

a large program is not a trivial task. In the following two sec-
tions, we will discuss the detection of and recovery from errors
in general. Thereafter, we will present the error-handler of IM-

PACT.

5.3.1 The detection of errors

Most of the conventional programming languages, such as FOR-
TRAN or Pascal, contain no standard language elements for
the detection of run-time errors. Certain compilers/run-time-
systems offer a dynamic error-handler through the use of so-
called “traps”, but these implementations are all system de-
pendent. Hence, the only way to handle run-time errors in
a portable manner in conventional programming languages is
through defensive programming. This implies a cumbersome
precautionary testing on error-conditions (e.g. with IF state-
ments) prior to the execution of any operation which could lead
to an error. For example, numerical algorithms would have to
contain a test for zero denominators before each division, mak-
ing the programs notably larger, definitely slower, and certainly
harder to read.

To free programmers from such test-oriented defensive pro-
gramming and yet let them ensure that their programs will not
crash in a zero divisions, etc., many computers allow for so-called
“traps”. Thereby, any illegal operation is caught, and the pro-
gram resumes execution in some user-defined error-handling rou-
tine. Unfortunately, such trap-oriented programming is highly
system dependent, and it is not always possible to catch the er-
rors “locally”, that is, to remain in the routine where the error
occurred.

In Ada, language-integrated EXCEPTIONS take care of
the problem of detecting and, as we will see later, recover-
ing from run-time errors. The needs for language-integrated
schemes for handling errors have been discussed for some time
(Goodenough, 1975), and exception-handlers implemented on
top of existing languages havs been implemented for example
for real-time applications (Mazer, 1984). However, Ada is the
first widely spread language that includes exception-handling as
a standard language feature.

5.3. ERROR HANDLING IN CACSD 127

PROCEDURE Ada_1(...) IS
BEGIN

-- Body of the procedure

EXCEPTION
WHEN NUMERIC_ERROR =>

-- Do something against the occurred numeric error

END Ada_1;

Figure 5.3: Program skeleton including exception-handler for
catching all numerical run-time errors.

Ada defines six standard exceptions which will be raised au-
tomatically in cases of numerical under-/overflow, illegal access
to non-existing dynamic structures, task errors, etc. Moreover,
the user can define further exceptions of his own, and raise them
when error-conditions occur. As soon as an exception has been
raised, the execution of the present procedure/function is con-
tinued at the exception-section of the subprogram. If no excep-
tion section has been defined in the subprogram where the error
occurs, the control is passed on to the exception section of the
calling subprogram, and so forth. Hence, the procedure outline
shown in Figure 5.3 will let the program recover from a numeric
error within the procedure and return normally to the calling
routine. If another kind of error occurs, this is propagated to
the calling routine.

5.3.2 Recovery from errors

In the procedure of Figure 5.3, we assumed that the recovery
from a numerical error could be made locally. In many cases,
this is not possible. For example, after a division-by-zero by the
execution of the user input
X)

XX = 0;
A = [9/XX, 3*XX; 1, 3]

128 CHAPTER 5. IMPLEMENTATION CONSIDERATIONS

PROCEDURE Pascal_2(...;
VAR p_err : BOOLEAN);

LABEL
99;
VAR
error : BOOLEAN;
BEGIN
p_err := FALSE;
FOR i := 1 TO 10 DO
BEGIN
do_something_dangerous(...,err);

(* this routine may return with the error

parameter err=TRUE *)
IF (err) THEN GOTO 99;
do_something_else(...);

END;
99:
IF (err) THEN
BEGIN
(* local error-recovery and error propagation *)
p_err := FALSE;
END;
END;

Figure 5.4: Local error recovery and error propagation pro-
grammed in Pascal.

we wish to halt not only the division, but also the creation of
the matrix A. Therefore, certain errors must be propagated to or
through calling routine(s) until a level has been reached where
normal execution can continue (in our case the level where a
new statement is processed). Moreover, in each of the routines
that are recursively called during the illustrated operation, lo-
cal dynamic structures may have been created/accessed. These
must be deaccessed through error-recovery actions local to each
routine.

In conventional languages, the local recovery from and further
propagation of error conditions must be performed over error-
parameters and jumps to the end of each routine. Figure 5.4
illustrates how this compels the Pascal programmer to employ
“non-structured” programming elements such as GOTO’s.

In languages supporting exception-handling, both the local

5.3. ERROR HANDLING IN CACSD 129

PROCEDURE Ada_2(...) IS
BEGIN
FOR i IN 1 .. 10 LOOP
do_something_dangerous(...);
-- This routine may propagate the exception USER_ERROR_1
do_something_else(...);
END LOOP;
EXCEPTION
WHEN USER_ERROR_1 =>
-- Insert local recovery from error number 1 here.

RAISE USER_ERROR_1;
END Ada_2;

Figure 5.5: Local error recovery and error propagation recovery
programmed in Ada.

recovery and further propagation can be formulated in a struc-
tured and at the same time much more compact manner, as
shown in Figure 5.5. Note the absence of error-handling in the
actual body of the routine, this separation of “normal” code
from error-handling code makes the program easier to construct,
understand, and maintain. As we will see in the next section, it
also enables a standardization of the error-handling throughout
larger programs.

5.3.3 The exception-handler of IMPACT

In an interactive software package with the size and complex-
ity of IMPACT, the inclusion of a consistent error-handler is
imperative. Moreover in IMPACT, the mixture of local/global
dynamic structures with secondary access (as will be described
later) requires an error-handler with both local error recov-
ery and recursive error propagation. To keep the implemen-
tational efforts of such an error-handler within limits, an ap-
proach has been taken where the exception section of every pro-
cedure/function within IMPACT is highly uniform. Also, the
collection and display of error-reports is made by one central
set of routines.

130 CHAPTER 5. IMPLEMENTATION CONSIDERATIONS

PROCEDURE Ada_3(...) IS
BEGIN

-- body with further calls to other subprograms.

EXCEPTION

WHEN IMba_exception_propagation =>
IMba_trace_error(package_xy,"Ada_3");
RAISE IMba_exception_propagation;

WHEN OTHERS =>
IMba_report_other(package_xy,"Ada_3");
RAISE IMba_exception_propagation;

END Ada_3;

Figure 5.6: Minimal exception of each routine in IMPACT,

Using this streamlined approach, all subprograms of IMPACT
are protected by the same error-handler with little implemen-
tational overhead. Although the exception-handler constitutes
some 10-20% of the IMPACT code, it is so uniform that its im-
plementation time can be estimated to less than 5% of the total
programming effort. This error handler is activated by the first
occurrence of an error; it collects traceback and auxiliary infor-
mation during the entire error recovery period, and finally, it
displays a comprehensive error message when a stable state has
been reached. Thereafter, the error facility is deactivated until
the next error occurs.

In simple routines, where no local recovery from errors is
needed and where no special error-conditions need to be tested,
the exception-handler displayed in Figure 5.6 suffices. The de-
clared exception, IMba_exception_propagation, is propagated
through each level of subprogram calls until the level is reached
where normal execution can be resumed. On each level, the pro-
cedure IMba_trace_error is called to append the subprogram
name to the trace-list. Thereafter, the exception is propagated
to the next level of call. If an unexpected error should occur
in the body of procedure Ada_3 of Figure 5.6, the WHEN OTHERS
section of the exception-handler is executed. As the procedure
is supposed to be error-free, we just report that some unknown
(OTHER) error has occurred, and propagate the exception.

5.3. ERROR HANDLING IN CACSD 131

If there is a foreseeable chance that, for example, a certain
tasking-error occurs within a routine, an additional exception
section WHEN TASKING_ERROR should be included to handle and
report this error. This is one of the cases illustrated in sub-
program Ada_4 of Figure 5.7. The name of the reported er-
ror, XY _U_tasking no_process, follows a convention whereby
the first two characters of the error-name correspond to a stan-
dard two-letter abbreviation of the name of the IMPACT pack-
age where the error occurred (e.g. the abbreviation KP for the
package IMPACT kernel _parser), the fourth character indicates
whether this is an operating (User) or programming (Impact)
error, and the remainder uniquely identifies the exact error-
condition. In a central error-file, an entry with this name must
also exist.

To enhance the usefulness of the error-handler to the ad-
vanced user who wishes to include his own Ada algorithms into
the package, additional error-files may be added to the system.
Moreover, to insure consistency between the errors declared in
Ada code and the error messages given in the error-files, an al-
gorithm which checks each error-report in the Ada source-code
against all error-files has been developed.

Whenever the programmer needs a more detailed error report
than one of the six predefined Ada-exceptions, or when he wishes
to check whether a certain illegal state resulting in an Ada ex-
ception has occurred, he has two possibilities (Figure 5.7).

e If no special local error-recovery is necessary, the program-
mer would test for the error-condition and call one of the
routines IMba_propagate_error. In this routine, the given
error-name is stored away in the dynamic error-tree and
the IMba_exception_propagation is raised to halt the ex-
ecution of the body.

e If the programmer needs to include some special error-
recovery action, he would declare a local exception, raise
this exception, and include a corresponding exception sec-
tion (WHEN exception_extra in Figure 5.7).

In both cases, specific error-messages are read from the error-
file(s) for display.

132 CHAPTER 5. IMPLEMENTATION CONSIDERATIONS

PROCEDURE Ada_4(...) IS
exception_extra : EXCEPTION;
BEGIN

-- body with two examples of tests for error conditions
IF (...) THEN
RAISE exception_extra;
END IF;
IF (...) THEN
IMba_propagate_error ("XY_U_nonsquare_matrix");
END IF;
EXCEPTION
WHEN exception_extra =>
IMba_report_error("XY_U_extra_error",
package_xy,"Ada_4") ;
-- local error-recovery is to be inserted here.
RAISE IMba_exception_propagation;
WHEN TASKING_ERROR =>
IMba_report_error("XY_U_tasking_nonexisting_process",
package_xy,"Ada_4");
-- local error-recovery is to be inserted here.
RAISE IMba_exception_propagation;
WHEN IMba_exception_propagation =>
IMba_trace_error(package_xy,"Ada_4");
-- local error-recovery is to be inserted here.
RAISE IMba_exception_propagation;
WHEN OTHERS =>
IMba_report_other(package_xy.“Ada_4");
-- local error-recovery is to be inserted here.
RAISE IMba_exception_propagation;
END Ada_4;

Figure 5.7: Example combining several of the previously illus-
trated error-handling elements into one procedure.

5.3. ERROR HANDLING IN CACSD 133

PROCEDURE IMkp_parse_interactively
(p_session : IN OUT IMks_private_session;
p_stream : IN OUT IMkr_private_input_stream) IS
1_mode : parsing_mode_record;

PROCEDURE PA_until_error IS

1_statement : IMki_statement;

BEGIN

IMkr_advance_symbol(p_stream,l_mode.eol_action,

new_stat_prompt) ;

WHILE (IMks_continue_execution(p_session)) LOOP
PA_global_statement (1_mode,p_session,

p_stream,l_statement) ;
PA_stat“terminator(lumode,p_stream.new_stat_prompt);
IMke_execute(p_session,p_stream,l_statement) ;
IMki_deaccess(l_statement);
END LOOP;
EXCEPTION

WHEN IMba_exception_propagation =>
IMba_trace_error(package_kp,"PA_until_error");
IMki_exception_deaccess(l_statement) ;
IMkr_error_in_input_stream(p_stream) ;
IMba_display_error_and_negate;

WHEN OTHERS =>
IMba_report_other(package_kp."PA_until_error"):
IMki_exception_deaccess(1l_statement) ;
IMkr_error_in_input_stream(p_stream) ;
IMba_display_error_and_negate;

END PA_until_error;

BEGIN -- IMkp_parse_interactively

WHILE (IMks_continue_execution(p_session)) LOOP
PA_until_error;

END LOOP;

EXCEPTION

WHEN IMba_exception_propagation =>
IMba_trace_error(package_kp,"IMkp_parse_interactively");
RAISE IMba_exception_propagation;

WHEN OTHERS =>
IMba_report_other(package_kp,"IMkp_parse_interactively");
RAISE IMba_exception_propagation;

END IMkp_parse_interactively;

Figure 5.8: Main procedure of the parser implementing the er-
ror-reporting and final error-recovery.

134 CHAPTER 5. IMPLEMENTATION CONSIDERATIONS

When the program-execution has been propagated back to a
level where normal execution can be resumed, which often is at
the position where individual user-commands are interpreted,
routines are called to display the error-message and backtraces.
Thereafter, the execution is continued in a normal fashion. This
is illustrated in Figure 5.8, where the WHILE loop of the rou-
tine PA_until _error, which reads and interprets user input, is
executed until an error occurs. After the error-handling has
been completed with a call to IMba_display_error_and negate,
procedure PA_until_error is temporarily left. However, unless
an indication to halt the execution has been received, proce-
dure PA_until_error is immediately called again from the outer
WHILE loop for further parsing and interpretation of user input.

Although not illustrated here, the IMPACT error-handler also
allows for the inclusion of one or more occurrence-specific data-
fields with each error-message. This data, which must be in
string form, can be dynamically added to each error-message
either at the time of the original error-report, or later during
the recovery period. This data is thereafter inserted in the dis-
played error-message a,ccordmg to position(s) of special charac-
ters in the predefined, generic error-message. The error-message
in Figure 5.1 contained such a field, the name A on the last line
of the message.

The IMPACT error-handler can also cope with multiple er-
rors, for example when new errors occur during error-recovery.
In this case, each error will be separately reported back to the
user. This means that quite intricate structures may be created
between the occurrence of a first error and the final error-report.
Figure 5.9 gives a graphical view of such a dynamically created
error-message tree. Note that each error-message can be accom-
panied by a dynamic list of trace information and another list
with occurrence-specific data-fields.

To complement the error-handler, routines for the display of
warnings are available. These are, for example, to be used when
an error is of an intermediate nature allowing for immediate
recovery, but when a message is to be passed on to the user
anyway.

5.3. ERROR HANDLING IN CACSD 135

l TRACE TRACE TRACE
E_— : _

ERROR-1 I IMmv_xx IMmv_yy AMmv_zz
b MV_U_divo"
| 1,[MESSAGE] | IMESSAGE]
AT 'SYyS 1%
TRACE TRACE
| ™ e > ivm kd
ERROR-2 = aes

'MA_U_sing." |

l

Figure 5.9: Structure of an internal error-message tree as con-
structed during a multiple-error recover.

136 CHAPTER 5. IMPLEMENTATION CONSIDERATIONS

5.4 Numeric data structures

As we have seen in Chapter 4, a general purpose CACSD package
should support a wide range of control-related data structures.
Furthermore in an interactive package, it must be possible to
dynamically create new structures of these types with varying
sizes as described in Chapter 3. In this section, we will show
how these two requirements can be met in a very elegant manner
using Ada.

One of the data structures described in Chapter 4 was the
polynomial matrix with complex coefficients. This data struc-
ture can be thought of as a three-dimensional structure with the
matrix dimensions in the first two and the coefficients of each
polynomial in the third dimension. In a structured language
like Pascal, we could define a general three-dimensional array
with some maximum dimensions, and use this definition each
time we needed a variable of type polynomial matrix as shown
in Figure 5.10 New structures of this kind could thereafter be
dynamically created using the statement

local_poly := NEW non_fac_poly_matrix;

Note that we waste memory space each time the needed matrix
is smaller than the maximum allowed size.

In FORTRAN, there are no provisions for dynamically cre-
ated data structures. However, due to the weak typing of FOR-
TRAN, a common solution to these kind of problems is to map
all intricate structures onto one-dimensional array(s), and con-
struct appropriate formulas to access the different elements:

DIMENSION RNFPM(100000) ,TNFPM(100000)

where the real and imaginary components are stored in two dif-
ferent arrays. Individual coefficients of our nonfactorized poly-
nomial matrix can be accessed via the formula

IPOS = IX + IY+*IYDIM + (IP+1)*IPDIM*IYDIM + IOFSET
RNFPM(IPOS) =

5.4. NUMERIC DATA STRUCTURES 137

TYPE
IMba_complex = RECORD
re,
im : REAL;
END RECORD;

non_fac_poly_matrix =
ARRAY[1. .max_m_dim,1..max_m_dim,0..max_poly_dim]
OF IMba_complex;

nfpm_pointer = “non_fac_poly_matrix;

VAR
local_poly : nfpm_pointer;

Figure 5.10: Declarations for nonfactorized polynomial matrices
in Pascal.

where IX, IY and IP are the three positions within the poly-
nomial matrix, and IOFSET points to the beginning within the
stack of the data structure in question. This technique, which
is often referred to as garbage collection technique, and which
corresponds to the method used in MATLAB, guarantees some
dimensional flexibility (IXDIM*IYDIM*(IPDIM+1)<=1000), but a
program using this scheme will be far less readable and more
error prone than the aforementioned Pascal version.

In Ada, we use discriminants to obtain full dimensional flex-
ibility, and retain readable code. Figure 5.11 shows the parts of
IMPACT defining non-factorized polynomial matrices. Similar
declarations are used for all numerical structures. However, cer-
tain declarations can be kept simple by re-using previously de-
clared structures. For example, the matrix definitions are reused
in linear system-descriptions.

Using the declared type IMmt._nf poly matrix_record (see
Figure 5.11), it is possible to create polynomial matrices of ar-
bitrary dimensions. However, we do not only want to define
polynomial matrices statically, but we also want to dynamically
create new structures of this type during the execution of the
interactive program. Hence the last line in Figure 5.11 declares

138 CHAPTER 5. IMPLEMENTATION CONSIDERATIONS

-- Declarations in package IMPACT_basic

TYPE IMba_float IS -- SYSTEM DEPENDENT FLOATING TYPE USED
-- THROUGHOUT THE IMPACT PACKAGE.

TYPE IMba_complex IS RECORD

re,
im : IMba_float := 0.0;
END RECORD;
IMba_zero_complex : CONSTANT IMba_complex := (0.0,0.0);

IMba_unity_complex : CONSTANT IMba_complex := (1.0,0.0);

-- Declarations in package IMPACT_basic

TYPE IMmt_gen_nf_poly_mat IS ARRAY (IMmt_positive_dim RANGE <>,
IMmt_positive_dim RANGE <>,

IMmt_natural_dim RANGE <>)
OF IMba_complex;

TYPE IMmt_nf_poly_matrix_record

(x_dim,
y_dim : IMmt_positive_dim;
deg : IMmt_natural_dim) IS
RECORD
val : IMmt_gen_nf_poly_mat(1 .. x_dim,
1 .. y_dim,
0 .. deg);
END RECORD;

-- All coefficients of nonfactorized polynomials are stored
-- using indices from O to the order of the polynomial.
-- OSpaces are reserved according to the maximum order.

TYPE IMmt_nf_poly_matrix IS ACCESS IMmt_nf_poly_matrix_record;

Figure 5.11: Declarations for nonfactorized polynomial matrices
illustrating discriminants and dynamic structures of Ada.

5.4. NUMERIC DATA STRUCTURES 139

FUNCTION New_poly(p_x,p_y : IN IMmt_positive_dim;
p_deg : IN IMmt_natural_dim)
RETURN IMmt_nf_poly_matrix IS
BEGIN
RETURN NEW IMmt_nf_poly_matrix_record(p_x,p_y,p_deg);
END New_poly;

Figure 5.12: The creation of dynamic structures with varying
sizes.

an access-type to the polynomial matrix (corresponding to a
pointer in PASCAL). We could now, at any time, create new dy-
namic polynomial matrices of arbitrary sizes, as in Figure 5.12.
However, due to the lack of a standardized garbage-collector
in IMPACT, we will use a more general dynamic data handler
as described in the next section. In any case, the advantage
of working with dynamic discriminated variables is clear; at no
time do we allocate more memory space than required, and there
is no upper dimensional limit.

The use of structured types not only saves space, but also
enhances the readability of Ada programs considerably. Another
feature extensively used in IMPACT to increase program self-
documentation is subprogram overloading. Using the above
definition of the type IMba_complex, we can define functions
operating on complex numbers as shown in Figure 5.13. We
can now operate on variables of type IMba_complex using the
normal operators as in:

PROCEDURE Nonsense IS

a_c, c_1, c_2, d_2 : IMba_complex;
BEGIN

a_c := (c_1 +c_2) *d_2;
END Nonsense;

In this manner, we can overload the basic arithmetic opera-
tions and other IMPACT functions for all applicable numerical
as well as non-numerical data structures. We thereby obtain a
very simple and modular program structure, using a minimum
of different function names.

140 CHAPTER 5. IMPLEMENTATION CONSIDERATIONS

FUNCTION "+"(p_a,
p_-b : IN IMba_complex)
RETURN IMba_complex IS
BEGIN
RETURN (p_a.re+p_b.re, p_a.im+p_b.im);
END "+" .

FUNCTION "-"(p_a,
p_b : IN IMba_complex)
RETURN IMba_complex IS
BEGIN
RETURN (p_a.re-p_b.re, p_a.im-p_b.im);
END n_n l

FUNCTION "*“(p_a,
p_b : IN IMba_complex)
RETURN IMba_complex IS
BEGIN
RETURN (p_a.re*p_b.re - p_a.im*p_b.im,
p_a.re*p_b.im + p_a.im*p_b.re);
END "xn;

FUNCTION "/"(p_a,
p_b : IN IMba_complex)
RETURN IMba_complex IS
1_p,
1l gq: IMba_float;
BEGIN
IF (ABS(p_b.im) > ABS(p_b.re)) THEN
lq := p_b.re / p_b.im;
lp :=p_b.im + p_b.re * 1_q;
RETURN (((p_a.re * 1_q + p_a.im)/1_p),
((p_a.im * 1_q - p_a.re)/1_p));

ELSE
lq := p_b.im / p_b.re;
lp :=p_b.re + p_b.im * 1_q;
RETURN (((p_a.re + p_a.im * 1_q)/1_p),
((p_a.im - p_a.re * 1_q)/1_p));
END IF;
END »/":

Figure 5.13: Overloaded basic arithmetic operations on the type
IMba_complex.

5.5. MAINTAINING DYNAMIC STRUCTURES 141

5.5 Maintaining dynamic structures

Typically, the designer of interactive programs has a hard time
estimating the nature and size of the problems future users will
try to solve. Using conventional programming languages and
traditional programming approaches, the implementor would
therefore arbitrarily choose some maximum limits on different
entities of the program (for example maximum dimensions or
maximum expression complexity) and hope that no user would
ever need “more”. Therefore, even programs advertised as hav-
ing “no upper limits” will hit the ceiling if only the problem to
be solved is big enough. It is then of little consolation to the
user that, after he has lost all his interactively created data, he
can enlarge the allowed size of his problem by changing some
parameters/constants governing the memory-allocation and re-
compiling the whole program.

In IMPACT, we have taken another approach to the prob-
lem of dimensional and operational limits. IMPACT is the first
CACSD package to fully adhere to the 0/1/co principle, which
means that all limitations of the package are given by:

e 0 — Not allowed,

e 1 — One unit is allowed (e.g. only one keyboard may be
used for the input to any one session) or

e co — Any number/size is allowed (e.g. any number of
characters in a name/string)

As a consequence of our decision not to limit the size and/or
number of variables, sessions, and plots in IMPACT, all in-
teractively created entities correspond to dynamically created
Ada-structures with discriminated sizes. As the inclusion of
a run-time “garbage-collector” for dynamically created struc-
tures is optional even in validated Ada-compilers (!), and as even
programs on virtual-memory machines will eventually run out
of memory if no dynamic structures are reused, IMPACT also
contains a garbage-collector of its own for all reusable dynamic
structures.

142 CHAPTER 5. IMPLEMENTATION CONSIDERATIONS

As IMPACT supports a large number of different dynamically
created and deaccessed data structures, ranging from numerical
data over text strings to symbolically stored differential equa-
tions, a standardized scheme for creating, manipulating, and re-
cycling structures has been developed. This scheme, which will
be discussed in detail in the next three sections, also utilizes
the Ada-concept of information hiding for higher programming
security.

5.5.1 Single-access structures

In a package of IMPACT s size, it is normally impossible for any
one programmer to keep up-to-date on the details of all avail-
able data-structures and their correct employment. Therefore,
any implementation where a programmer can perform manip-
ulations on all available data structures in an indiscriminate
fashion inevitably leads to error-prone code. The creators of
Ada realized this and introduced the concept of “hidden” or
private types. Variables of these types can be accessed freely
only within the package (module) where they are defined. In all
other parts of the program, only operations supported by ex-
ported procedures can be performed. This increases program-
ming security without limiting generality, as the programmer
can define any number of subprograms to perform all necessary
operations.

There is yet another reason for limiting the visibility of dy-
namic data structures. While it is undisputed that structured
programming in general leads to robuster software, we should
not be led to believe that all Pascal programs are robuster than
corresponding FORTRAN programs. Pascal supports dynamic
structures and pointers, and although these features have be-
come indispensable for anybody developing packages such as
IMPACT, the shuffling of pointers to different dynamic entities
can result in so unstructured and error-prone programs that
some computer scientists advise people not to use pointers at
all. To counter this danger, a scheme to make “pointer pro-
gramming” safer will be presented in this and the next section.

In the single-access version of the IMPACT dynamic memory-
management scheme described here, the dynamic structures are

5.5. MAINTAINING DYNAMIC STRUCTURES 143

defined locally within a package with only a LIMITED PRIVATE
access-type being exported. As limited private variables have
unaccessible internal components and moreover may not be used
in assignment statements, this solves both the information hid-
ing and the pointer problem (with the drawback that each dy-
namic structure may be accessed by only one pointer).

This approach also places all memory-maintenance/garbage-
collection routines within the body of the package in a standard-
1zed fashion. Hence, only the type declaration, three routines for
creating and recycling variables, and some routines for manipu-
lating variables are exported. To guarantee maximum garbage-
collection, the recycling routines must be called for each variable
as soon as it is no longer needed.

In the following case-study, we will discuss the implementa-
tion of a dynamic structure IMxy_demo. The declarations in
the specification-part of the package are shown in Figure 5.14.
Only one LIMITED PRIVATE type is exported, as the information
in the PRIVATE part is accessible only to the compiler. Hence,
the user of this package can create, deaccess, i.e. recycle over
the garbage-collector, copy and manipulate dynamic structures
over procedure and function calls only. In particular, implemen-
tational details of IMxy_demo are not exported. This gives the
programmer of the package the freedom to change internal im-
plementational details at wish as long as he does not change the
visible behaviour of the package.

In the body of the package, the internal structure is declared
as shown in Figure 5.15. We here assume that the declared
structure contains a static element number as well as a possible
access to further dynamic entities some_access. The element
next_demo is needed by the garbage-collector. The access ele-
ment unused_demos_start is used by the garbage-collector to
store recycled and presently unused variables.

Figure 5.16 shows a garbage collector for the IMxy_demo struc-
ture. The code shown here is somewhat simplified. In real-
ity, these procedures also contain some statements for collecting
statistics. Sometimes, instantiations of generic templates are
used. In New_demo, we test whether an appropriate structure
can be found in unused_demo_start which is then extracted; if
not, a new dynamic structure is created. In Recycle_demo, we

144 CHAPTER 5. IMPLEMENTATION CONSIDERATIONS

-- Exported part of the package specification.

TYPE IMxy_demo IS LIMITED PRIVATE;

PROCEDURE IMxy_create_demo (p_demo : IN OUT IMxy_demo;
—"
PROCEDURE IMxy_deaccess (p_demo : IN OUT IMxy_demo);

PROCEDURE IMxy_exception_deaccess(p_demo : IN OUT IMxy_demo);

PROCEDURE IMxy_copy_second_and_deaccess

(p_new,

p_old : IN OUT IMxy_demo);
PROCEDURE IMxy_copy_second (p_new : IN OUT IMxy_demo;

p_old : IN IMxy_demo) ;

PROCEDURE IMxy_manipulating_demo (p_demo : IN OUT IMxy_demo;
-

-- Private part of the package specification. =

PRIVATE
TYPE demo_record;
TYPE IMxy_demo IS ACCESS demo_record;

Figure 5.14: The exported specification part for managing a
single-access dynamic structure.

return an existing dynamic structure to the garbage collector. If
further dynamic structures are accessed by the returned entity,
we recycle these, too.

Figure 5.17 shows templates of three of the standard exported
procedures for creating and recycling the dynamic data struc-
tures. IMxy_exception_deaccess is to be called from every
exception-handler where local variables or parameters of type
IMxy_-demo have been declared. These structures are then deac-
cessed if they exist, but no error is raised if they do not exist
(which is the case in IMxy_deaccess). The procedures perform-
ing the copying have not been shown in detail. Thereby, the

5.5. MAINTAINING DYNAMIC STRUCTURES 145

-- Declarations in the package body.

TYPE demo_record IS RECORD

number : predefined_scalar_type :=1;
some_access : predefined_access_type;
next_demo : IMxy_demo;

END RECORD;

unused_demos_start : IMxy_demo;

Figure 5.15: Elaborations of the limited-private type defined in
the previous figure. This declaration is placed in the package
body.

procedure IMxy_copy.-second_and_deaccess copies pointer val-
ues using the active statements

p_new := p_old;
p_old NULL;

whereas IMxy_copy-second makes a physical copy of the whole
structure, and therefore does not change p_old. Both procedures
contain tests to ensure that p_old exists and p_-new does not exist
at the time of the call.

5.5.2 Multiple access structures

A major advantage can be gained through liberal use of dynamic
structures with frequent copying of pointer-values, namely that
the number of copies of intricate (dynamic) structures in differ-
ent physical storage-locations can be kept to a minimum, saving
both CPU-time and memory. However, such copying of pointer-
values is always dangerous as one dynamic structure (one phys-
ical storage location) then may be referenced several times over
different pointers, giving the programmer ample opportunity to
produce “pointer-spaghetti”. Moreover, any garbage-collector
can easily be fooled by recycling elements having concurrent

146 CHAPTER 5. IMPLEMENTATION CONSIDERATIONS

FUNCTION New_demo RETURN IMxy_demo IS
1l_demo : IMxy_demo;

BEGIN
IF (unused_demos_start = NULL) THEN
1_demo := NEW demo_record;
ELSE
1_demo unused_demos_start;

1_demo.next_demo;
NULL;

mnnn

unused_demos_start
1_demo.next_demo
END IF;
RETURN 1_demo;
EXCEPTION
WHEN STORAGE_error =>
IMba_report_error("IM_L_no_dynamic_space",
package_xy,"lNew_demo") ;
RAISE IMba_exception_propagation;
WHEN IMba_exception_propagation =>
-- Normal exception-handler
END New_demo;

PROCEDURE Recycle_demo(p_demo : IN OUT IMxy_demo) IS
BEGIN

IF (p_demo.some_access /= NULL) THEN -- recycle
Recycle_something(p_demo.some_access); -- dynamic

END IF; -- elements

1_demo.number := 1; -- reinitialize static elements

p_demo.next_demo := unused_demos_start;

unused_demos_start := p_demo;

p_demo := NULL;

EXCEPTION

-- Normal exception-handler
END Recycle_demo;

Figure 5.16: Garbage collector for a single-access dynamic struc-
ture.

5.5. MAINTAINING DYNAMIC STRUCTURES 147

PROCEDURE IMxy_create_demo (p_demo : IN OUT IMxy_demo;
a0 I8
BEGIN
IF (p_demo /= NULL) THEN
IMba_propagate_error("XY_I_demo_exist");
END IF;
p_demo := New_demo;
-- transport additional input parameter
-- to the new structure.
EXCEPTION
-- Normal exception-handler
END IMxy_create_demo;

PROCEDURE IMxy_deaccess(p_demo : IN OUT IMxy_demo) IS
BEGIN
IF (p_demo = NULL) THEN
IMba_propagate_error("XY_I_demo_nonexist");
END IF;
Recycle_demo(p_demo) ;
EXCEPTION
-- Normal exception-handler
END IMxy_deaccess;

PROCEDURE IMxy_exception_deaccess
(p_demo : IN OUT IMxy_demo) IS
BEGIN
IF (p_demo /= NULL) THEN
Recycle_demo(p_demo) ;
END IF;
EXCEPTION
-- Normal exception-handler
END IMxy_exception_deaccess;

Figure 5.17: Body of the main routines for handling single access
dynamic structures.

148 CHAPTER 5. IMPLEMENTATION CONSIDERATIONS

pointers (causing logically different structures to occupy the
same physical memory location). This section will describe a
scheme which retains the flexibility of “pointer programming”,
and yet guarantees a proper handling in terms of an early de-
tection of most errors involving pointers.

As it is not possible to “both keep and eat the candy”, no soft-
ware scheme can be totally error-preventive, AND allow the pro-
grammer full freedom to manipulate every pointer. The scheme
presented here leaves the programmer fairly much freedom, for
example by allowing multiple access to dynamic variables, at
the cost of a somewhat delayed error detection. As any incon-
sistencies are detected and reported by the garbage collector,
the scheme is ideal for interactive programs where dynamic data
structures have generally a short “half-time”. In such programs,
the garbage-collector will detect any logical/programming error
early enough, causing an error-message to be passed on together
with a trace (see Figure 5.2).

As in the single-access case, the IMPACT implementation of
this scheme uses the LIMITED PRIVATE type-concept of Ada.
Thereby, the exported interface as shown in Figure 5.18 is iden-
tical to the single-access case with only one additional subpro-
gram, IMxy_access_second. The PRIVATE part reveals that each
IMxy_demo is not implemented as an access variable any more,
but as a record (this of course is of no consequence for the pro-
grammer using the package). In this record, ref kind clas-
sifies the access by taking the value nonexisting structure,
main_reference or secondary.reference. The element ref
corresponds to IMxy_demo in the single-access case.

The main idea behind this multiple-access dynamic memory-
manager is as follows: each dynamic structure has a main ref-
erence (main access pointer). As in the single-access case, this
main reference may only be copied from one variable to another
using the procedure IMxy_copy.-second_and _deaccess, thus al-
lowing for only one main reference per physical storage location.
In addition to the main reference, several so-called secondary
references to the same structure may be created through calls to
IMxy_access_second. These structures must also be deaccessed
through calls to IMxy_deaccess.

To ensure a consistent pointer-handler, the exported subpro-

5.5. MAINTAINING DYNAMIC STRUCTURES

-- Exported part of the package specification.

TYPE IMxy_demo IS LIMITED PRIVATE;

PROCEDURE

PROCEDURE
PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

IMxy_create_demo (p_demo :
i
IMxy_deaccess (p_demo
IMxyﬂexception_deaccess(p“demo
IMxy_access_second (p_new,
p-old
IMxy_copy_second_and_deaccess
(p_new,
p-old
IMxy_copy_second (p_new
p_old

IMxy_manipulating_demo (p_demo :

. B

: IN

IN

IN
IN

IN

IN

IN

IN

-- Private part of the package specification.

PRIVATE

TYPE demo_
TYPE demo_
TYPE IMxy_

oUT

0ouT
ouT

0UT

OuUT
ouUT

ouT

149

IMxy_demo;

IMxy_demo) ;
IMxy_demo) ;

IMxy_demo) ;

IMxy_demo) ;
IMxy_demo;
IMxy_demo) ;

IMxy_demo;

:= nonexisting_structure;

record;
access IS ACCESS demo_record;
demo IS
RECORD
ref_kind : IMba_reference_enum
ref : demo_access;

END RECORD;

Figure 5.18: Specification part of a multiple-access dynamic

structure.

150 CHAPTER 5. IMPLEMENTATION CONSIDERATIONS

-- Declarations in the package body.

TYPE demo_record IS

RECORD
number : predefined_scalar_type := 1;
some_access : predefined_access_type;
nbr_of _refs : NATURAL := O; -- internal "bean-
-- counter" of
-- secondary references.
next_demo : demo_access;
END RECORD;

unused_demos_start : demo_access;

Figure 5.19: Elaborations of the limited-private type defined in
the previous figure. This declaration is placed in the package

body.

grams shown in Figure 5.18 must be used according to the fol-
lowing rules:

e the main reference MAY NOT be deaccessed as long as
any further (secondary) references to the variable exists.
To ensure such a consistency, hidden “bean-counters” are
employed. These bean-counters are implemented as in-
teger elements of the main dynamic structure, as illus-
trated in Figure 5.19. The bean-counters are incremented
in IMxy_access_second, and either decremented or tested
upon in IMxy_deaccess, as shown in Figure 5.20.

e as in the single-access case, it is not permitted to directly
replace an already existing reference with another refer-
ence. Therefore, all routines setting pointer values, such
as the routine IMxy_access_second in Figure 5.20, contain
a corresponding test.

e to avoid data-consistency problems, it is recommended
that only a limited number of actions are made avail-
able for secondary referenced structures, for example by

5.5. MAINTAINING DYNAMIC STRUCTURES 151

PROCEDURE IMxy_access_second(p_demo : IN OUT IMxy_demo;
p_old : IN IMxy_demo) IS
BEGIN
IF (p_demo.ref_kind /= nonexisting_structure) THEN
IMba_propagate_error("XY_I_demo_exist"):
END IF;
IF (p_old.ref_kind = nonexisting_structure) THEN
IMba_propagate_error("XY_I_demo_nonexist");

END IF;

p_demo.ref_kind := secondary_reference;

p_demo.ref 1= p_old.ref;

Increment (p_old.ref .nbr_of_refs); -- bean-counter increment
EXCEPTION

-- Normal exception-handler
END IMxy_access_second;

PROCEDURE IMxy_deaccess(p_demo : IN OUT IMxy_demo) IS
BEGIN
CASE p_ref.ref_kind IS
WHEN nonexisting_reference =>
IMba_propagate_error("XY_I_demo_nonexist");
WHEN main_reference =>
IF (p_demo.ref.nbr_of_refs > O) THEN
IMba_propagate_error("XY_I_demo_secondary_exist");
END IF;
p_demo.ref_kind := nonexisting_structure;
Recycle_demo(p_demo.ref) ;
WHEN secondary_reference =>

Decrement (p_demo.ref .nbr_of _refs); -- bean-counter
p_demo.ref_kind := nonexisting_structure;
p_demo.ref := NULL;
END CASE;
EXCEPTION

WHEN IMba_exception_propagation =>
IMba"trace_error(package_xy.“IMxy_deaccess"):
p_demo.ref_kind := nonexisting_structure;
p_demo.ref := NULL;

RAISE IMba_exception_propagation;

WHEN OTHERS =>

-- Corresponding local error-recovery

END IMxy_deaccess;

Figure 5.20: Body of some exported routines for handling mul-
tiple-access dynamic structures.

152 CHAPTER 5. IMPLEMENTATION CONSIDERATIONS

IF (p_demo.ref_kind = secondary_reference) THEN
IMba_propagate_error("XY_I_demo_ill_oper_on_sec");
END IF;
IF (p_demo.ref_kind = main_reference) AND THEN
(p_demo.ref.nbr_of_refs > O) THEN
IMba_propagate_error("XY_I_demo_ill-oper_sec_exist") :
END IF;

Figure 5.21: Tests to be included in all exported manipula-
tion-subprograms to implement a “read-only” rule.

treating these as “read-only” entities. Depending on the
nature of the structure, it might even be advisable to ap-
ply the same limitation on main references with further
secondary references. The implementation of these limita-
tions is easily performed by including the tests shown in
Figure 5.21 in all applicable manipulation routines of the
package where the private type is defined.

If the main program includes a shut-down procedure deac-
cessing ALL dynamic structures (in IMPACT, this is made over
a handful of recursive deaccess-calls), all consistency errors in
the handling of pointers will be detected not later than when
the package is exited.

The here described scheme to increase program security and
robustness through the use of private types can be made manda-
tory in all packages of a project but one — the very package
where the private type is declared. Within this package, which
also is where the garbage-collector resides, all “normal” pointer
operations are allowed — and for some basic manuipulation even
necessary. It is, however, recommended that the exported, ro-
bust routines are used also within this package wherever pos-
sible. Anyhow, since most logical errors are created when pro-
grammers are unfamiliar with some data- or program-structures,
the error-rate should be lower inside this package.

Apart from unique manipulation routines, the following stan-
dard routines are normally also supplied for all dynamic struc-
tures:

5.6. ADA AS A COMMAND-LANGUAGE INTERPRETER 153

e IMxy_structure_exists to indicate whether a (private)
dynamic structure exists or not.

e IMxy_get_main reference. If a given reference is sec-
ondary, this procedure call will copy the whole structure
(using IMxy_copy-second), and return the new main ref-
erence (with the secondary reference deaccessed).

5.6 Ada as a command-language in-
terpreter

The flexible command-language and data-structures described
in Chapters 3 and 4 constitute a powerful user interface to the
IMPACT package. In the IMPACT project, these specifications
were the result of a first feasibility study made well before a
single line of Ada-code existed. However, as with all interac-
tive packages, such an initial definitzon must also be followed by
a tedious implementation of a parser actually interpreting and
executing the user-input. As suggested by Wirth (1977) and
others (Aho et al., 1986), a simple but yet general implementa-
tion includes a scanner to decode the input into basic terminal
symbols, and a parser to interpret these symbols. Apart from
the pure language-theoretical parsing-problem, the actual imple-
mentation of an immediate and yet efficient parser/interpreter
deserves additional attention. Thereby, several approaches are
possible:

e The conceptually simplest, but executably slowest, ap-
proach is direct interpretation which can also be denoted as
pure data-driven programming. Input strings are thereby
traversed and interpreted. The scanner groups individual
characters into primitive terminal symbols (tokens) such
as FOR, 1.3 and = and passes these on to the parser. The
parser then interprets the input, and directly calls the rou-
tines executing the entered command. This method is ac-
ceptable for command-languages where an entered line is
interpreted one time only (as e.g. most operating systems
commands). Whenever an entered command, or a section

154 CHAPTER 5. IMPLEMENTATION CONSIDERATIONS

thereof, is executed in a repetitive fashion, direct interpre-
tation becomes very slow as sections of the input strings
have to be scanned/interpreted over and over again.

e On the other extreme, a purely code-driven implementa-
tion will scan and parse the entered input as described
above. However, rather than directly interpreting the com-
mands, a compiled version of the commands is created,
and this compiled code (machine code) is then brought
to execute. Sometimes this transformation to compiled
code is made over several steps; the model description of
many simulation languages, for example, are translated
into another higher-level language (mostly FORTRAN)
before they are further compiled into assembly code. Al-
though this initial translation requires more time than the
direct interpretation, the execution of the code once com-
piled will be faster by several orders of magnitude. This
approach therefore pays off when structures need to be ex-
ecuted repetitively. However, this approach is either not
interactive, or the interactive program has to invoke com-
pilers/linkers and incorporate the linked program into it-
self to enable interactive execution with consistent data
(introducing extremely system-dependent self-modifying
code as in Essebo, 1981).

e Between these two extremes, any number of combinations
exist. One example of such a compromise is the “threaded-
code” (Loeliger, 1981; Korn, 1982) approach. Thereby,
the input is scanned into terminal symbols by the scanner,
and the parser translates these symbols into internal struc-
tures (for example dynamic tree-structures) corresponding
to the logical structure of the input commands. This ap-
proach enables the parser to take care of the syntactical
and of most of the semantical analysis of the input. The
internal structures are then brought to execution by a spe-
cial interpreter which will attain a resonable speed as only
part of the semantical analysis is left to be performed at
run time, i.e. “in the loop”.

In IMPACT, the threaded code approach has been chosen as
a reasonable compromise between implementational complexity,

5.6. ADA AS A COMMAND-LANGUAGE INTERPRETER 155

execution speed, and portability. Although the code-generation
approach is the fastest, providing at least a factor of ten in
speed-up as compared to the threaded-code approach, that ap-
proach was considered too system-dependent to warrant further
investigation. However, an off-line automatic compiling facil-
ity is planned for IMPACT which will accept soft-coded sub-
programs, and preprocess them into hard-coded Ada-programs.
These Ada programs adhere to a format consistent with the
hard-coded section of IMPACT, and can therefore be compiled
and linked together with the IMPACT package. Thereby, the
desired speed-up in terms of execution time will be gained at the
cost of a more time-consuming compilation-link cycle. Hence,
this method is be primarily used to transform tested and stable
subprograms from their soft-coded to a hard-coded form.

As already mentioned in Section 3.6, the syntax of IMPACT
belongs to the LL(1)-class of grammars (Aho et al., 1986). The
main reason for such a grammar was the availability of an LL(1)-
oriented general-purpose parser (Bongulielm: et al., 1984) with
which we could define the grammar of the IMPACT command
language (see Appendix 1) and check its consistency and com-
pleteness before we started to implement the parser of IMPACT.
Moreover, this general purpose parser allowed us to test whether
example programs adhered to the just defined grammar, and
thus gave us a tool to check early on the expression power of
the command language, and the suitability of the language for
describing control-related structures and algorithms.

As a consequence of choosing an LL(1) grammar, we could
construct a recursive descent parser without lookahead facility.
Such a recursive descent parser is extremely simple, and fairly
efficient (as long as we do not use a computer where subprogram
calls are unproportionally time-consuming, in which case the
high level of recursion takes its toll).

Together with the similarity between the IMPACT command-
language and Ada, the choice of a LL1(1) syntax and a recursive
descent parser made the parser-structure extremely simple. Let
us study the Ada-code needed to parse and interpret the WHILE
loop of the input sequence in Figure 5.22, which adheres to
the LL(1)-syntax in Figure 5.23. The task of the parser is to
interpret the WHILE structure correctly, and create the internal

156 CHAPTER 5. IMPLEMENTATION CONSIDERATIONS

i = Q3

WHILE (i > 9) LOOP
i =3 @ 13

END LOOP;

Figure 5.22: Example of IMPACT input to be treated.

{WHILE).expression {LOOP },statemems END LOOP

while_loop = ’WHILE’ expression ’LOOP’
statements
"END’ ’LOOP’

Figure 5.23: Syntax of an IMPACT WHILE loop.

IMPACT-code (ICODE) shown in Figure 5.24.

This ICODE is made up of dynamic statement and expres-
sion tree elements connected in a fashion corresponding to the
hierarchical structures of the entered commands. In Figure 5.25,
we see that the parser-section has a straight forward structure
with recursive calls to other routines for all non-terminal sym-
bols supplemented with external checks of all terminal symbols.
The thus created ICODE is passed on for execution as soon as
a complete statement has been parsed. Figure 5.26 shows the
WHILE section of the executional part of IMPACT. We note the
extreme simplicity obtained by mapping the WHILE loop of the
user-input onto an Ada WHILE loop with recursive calls for the
condition evaluation and statements execution.

The definition of the IMPACT command-language consists of
over 40 production rules (see Appendix 1). For a syntax of such
a relatively large size, the parser and executing part of IMPACT
are quite compact. The parser consists of approximately 3000
lines of code, and the executing part has less than 2000 lines, in-

5.6. ADA AS A COMMAND-LANGUAGE INTERPRETER 157

— [Assignment WHILE

° : Assignment

Oé

expression statement

Figure 5.24: ICODE to be constructed form the previous sample
input.

cluding a large percentage of standardized error-handling code.
Together, they make up less than 10% of the IMPACT kernel-
system. This can be attributed to the simplicity of an LL(1)
syntax, and the power of a recursive descent parser with all
current parsing-information “built into the recursion”.

A drawback of the current approach compared with a solu-
tion using e.g. an LR (1) syntax with a table-driven parser is the
relative difficulty of including good error-handler and, in partic-
ular, error-recovery mechanisms in the parser (Amman, 1978;
Poplawskz, 1978).

The simplest of approaches to error handling is taken in the
present version IMPACT - the parser will detect and report only
the first error occurring in the user input, without attempting to
parse any further symbols. However, as the input to the parser

158 CHAPTER 5. IMPLEMENTATION CONSIDERATIONS

PROCEDURE PA_while_loop

(p_mode :+ IN parsing_mode_record;
p_stream : IN OUT IMkr_private_input_stream;
p_stat : IN OUT IMki_statement) IS

-- This routine implements the production **while-loop**

BEGIN
IMki_create_statement(p_stat,p_stream,while_statement) ;

IMkr_advance_symbol(p_stream,p_mode.eol_action);
PA_expression(p_mode.p_stream,p_stat.first“expression);
IF (NOT IMkr_test_reserved_word(p_stream,word_loop)) THEN
IMba_propagate_error("KP_U_while_loop_expct");
END IF;
IMkr_advance_symbol(p_stream,p_mode.eol_action);
Pﬁ_statements(p_mode,p_stream.p_stat.first,substatement):
IF (NOT IMkr_test_reserved_word(p_stream,word_end)) THEN
IMba_propagate_error("KP_U_while_end_loop_expct") ;
END IF;
IMkr_advance_symbol(p_stream,p_mode.eol_action);
IF (NOT IMkr_test_reserved_word(p_stream,word_loop)) THEN
IMba_propagate_error ("KP_U_while_end_loop_expct");
END IF;
IMkr_advance_symbol (p_stream,return_eol_flags) ;
EXCEPTION
WHEN IMba_exception_propagation =>
IMba_trace_error(package_kp,"PA_while_statement");
RAISE IMba_exception_propagation;
WHEN OTHERS =>
IMba_report_other (package_kp,"PA_while_statement");
RAISE IMba_exception_propagation;
END PA_while_loop;

Figure 5.25: Part of the parser decoding a while-loop.

5.6. ADA AS A COMMAND-LANGUAGE INTERPRETER 159

PROCEDURE E_while_statement

(p_info : IN executing_info_record;

p_session : IN OUT IMks_private_session;

p_statement : IN IMki_statement) IS
1_while_value : BOOLEAN;

BEGIN

E_boolean_expr(p_info.p_session.

p_statement.first_expression.l_while_value);

WHILE (1_while_value) LOOP
E_statements(p_info,p_session,

p_statement.first_substatement) ;
E_boolean_expr(p_info.p_session.
p_statement.first_expression,l_while_value);

END LOOP;

EXCEPTION

WHEN IMba_exception_propagation =>
IMba_trace_error(package_ke,"E_while_statement");
RAISE IMba_exception_propagation;

WHEN OTHERS =>
IMba_report_other(package_ke,"E_while_statement"):
RAISE IMba_exception_propagation;

END E_while_statement;

Figure 5.26: The part of the interpreter executing a WHILE loop.

is mainly interactive with a normal unit to be parsed having
a size of only one or at the most a few lines, the drawback of
this error-recovery mechanism was not considered to be all too
serious. Moreover, the implementation of a more comprehensive
error handler by manually stacking away backtracking informa-
tion (as in the case of a table driven parser) would be possi-
ble. Thereby, for normal tree parsing, the recursion mechanism
would still be used, while for error recovery an alternative table-
driven scheme implemented within the exception-handling sec-
tions of IMPACT would attempt to recover from the error. This,
however, would create a certain implementational as well as ex-
ecutional overhead. Alternatively, ongoing research by other
groups might soon result in a mechanism for automatically de-
scribing and implementing error-recovery mechanisms for LL(1)

160 CHAPTER 5. IMPLEMENTATION CONSIDERATIONS

languages (e.g. Lewr et al., 1976, 1983).

5.7 The modularity of IMPACT

In large software projects, the coordination of different sub-
projects has proven to be an extremely difficult task (Som-
merville, 1985). More than one large program has been com-
pletely rewritten because nobody knew his way around the in-
terwoven program structures and data-flows any more. Attack-
ing this problem, Ada, more than any other programming lan-
guages, actively supports a modular overall design of large pro-
grams. The resulting modularity of the code will be of great-
est advantage not only during the programming phase, but also
during the testing and maintenance phases. For general purpose
CACSD packages such as IMPACT, this means for example that
each group of algorithms can be developed independently, and
with a minimum of interconnections to nonalgorithmic parts.

Presently, the IMPACT kernel-system contains some 35 pack-
ages divided into the 8 main groups as depicted in Figure 5.27.
These groups also have internal hierarchies of their own so that
only one or two of the individual packages of each group ever
need to be accessed from the outside.

This overall modularization has proven very advantageous for
the IMPACT development group which has included a large
number of persons, each working on a particular part of the
package for a shorter period of time (typically students working
during one semester of 14-16 weeks). In such an environment,
each new co-worker must be able to work effectively within a
week or so, a goal which was possible to attain with the present
modular construction of IMPACT. The ideal result of e.g. one
semester project has been a finished package to be used as a tool
during subsequent projects.

As stated previously, the advantages of modularization do not
limit themselves to the initial development phases. As IMPACT
is intended to be an open kernel-system, it will also be possi-
ble for the general user to add new algorithms to it, algorithms
that he needs in his own application. With the functional parti-

5.7. THE MODULARITY OF IMPACT 161

IMPACT

f

KERNEL

HARD-code

IGRAPHICS

BASIC FORTRAN

Figure 5.27: A global view of the packages constituting the IM-
PACT project.

tioning of the IMPACT packages and package groups, the user
incorporating a new Ada (or even FORTRAN) hard-coded algo-
rithm typically needs to access subprograms in only half a dozen
different packages, or less than 20% of all IMPACT packages.

As a case study, let us consider the incorporation of a new
hard-coded subprogram in IMPACT on the systems level (any
incorporation on the user-level is made in exactly the same man-
ner, but in package IMPACT_hard_user). Normally, the following
steps will be taken:

e To describe the user-interface of the new subprogram, a
declaration following the same syntax as for soft-coded
subprograms is entered (see Figure 5.28). The analogy be-

162 CHAPTER 5. IMPLEMENTATION CONSIDERATIONS

FUNCTION LINCONT()

: IN MATRIX;
IN MATRIX = O) RETURN STATE_SPACE

l"UI"U"U"U
oW

7BEGIN?

?GI7 Creates a continuous linear state-space description
out of four correctly dimensioned matrices according
to the formulae

7NA?

Axx + B¥u

Csx + Dxu

X

¥

?AJ7 where x denote the state vector, u the input signal
and y the output signal.
Example of a legal call:
TNA?
SYS1 = LINCONT(mya, myb, myc)

7PN? P_A

7PS? A-matrix or system matrix (no default)

7PI7 System matrix of the linear continuous system
description, which is the matrix A in the formulae

7NA?

Axx + B*u

Cxx + D*u

-
y

wn

7AJ7 The dimension of this matrix must be (N,N) where
N is the number of states of the system (equal to
the dimension of the x-vector).

?PN? P_B
7PS? B-matrix or input matrix (no default)
7PN? P_C
?PS? C-matrix or output matrix (no default)
?PN? P_D

7PS? D-matrix or direct matrix (DEF = Zero matrix)

Figure 5.28: Definition of the hard-coded subprogram LINCONT.
The help information for the parameters P_.B, P_.C and P.D has
been shortened.

5.7. THE MODULARITY OF IMPACT 163

%I-USER-ERROR, Some standard hard-coded IMPACT-subprograms no
%I-USER-ERROR, have no corresponding Ada-code in package
%I-USER-ERROR, IMPACT_hard_user.

%I-MESSAGE, The names of these subprograms are:

LINCONT

Figure 5.29: Error message displayed when the body of a
hard-coded subprogram has not been defined.

tween declaring soft- and hard-coded subprograms makes
this step trivial for anybody familiar with the interac-
tive interface of IMPACT. The thus entered declaration,
which includes parameter specifications and help-/query-
information, may be checked by the IMPACT parser for
correctness and consistency before it is incorporated into
the library of “system subprogram headers”.

e The inclusion of the header can be made without any Ada
compilations or link-sequences. However, as no Ada-coded
body has been incorporated, IMPACT would complain
during the next startup with the message shown in Fig-
ure 5.29. Consequently, we have to add the body of our
new subprogram to package IMPACT hard._system. First,
we complement the main enumerated type and the main
case statement of the package as illustrated in Figure 5.30.
Thereafter, we add the procedure E_LINCONT describing
the action to be taken during the execution of the subpro-
gram. Note that until now absolutely NO knowledge of
other parts of IMPACT was needed, hence the work to in-
corporate a stand-alone hard-coded subprogram without
parameters would end here.

e As normal hard-coded subprograms reference other parts
of IMPACT, for example the variable-handler and numer-
ical algorithms, the user must familiarize himself with a
few package specifications. In particular, a strong famil-
iarity with IMPACT basic is indispensable, as this package
contains not only the error-/exception-handler but also a

164 CHAPTER 5. IMPLEMENTATION CONSIDERATIONS

TYPE subprogram_enum IS (check_error,

length,
lincont, -- *x#%% NEW ENTRY =
lindiscr,

':):

PROCEDURE IMhs_execute_subprogram
(p_session : IN OUT IMks_private_session;
p_environment : IN OUT IMks_private_environment;
p_subprogram : IN NATURAL) IS
1_subprogram : subprogram_enum;
BEGIN
1_subprogram := subprogram_enum’VAL(p_subprogram) ;
CASE 1_subprogram IS
WHEN check_error =>E_check_error(p_session,p_environment);

WHEN length => E_length(p_session,p_environment);

-- *xx NEW ENTRY
WHEN lincont => E_lincont(p_session,p_environment) ;
== %x% NEW ENTRY #%x

WHEN lindiscr => E_lindiscr(p_session,p_environment) ;

*

o

END CASE;
EXCEPTION
-- Regular exception-handler.
END IMhs_execute_subprogram;

Figure 5.30: Compulsory changes to the body of the procedure
IMPACT hard_system when a new subprogram (LINCONT) is de-
fined.

5.8. THE ROBUSTNESS OF ADA-CODE 165

general name-/string-handler and several output-facilities.

e For each extraction or insertion of a parameter-value, a
subprogram of IMPACT kernel_session is called as in Fig-
ure 5.31. Also for the handling of numerical values, some
types found in IMPACT math_types must be used together
with the dynamic data-handler of IMPACT _math_variable.
Most likely, the developed subprogram uses some numeri-
cal algorithm as primitives in which case one or several
procedures from other mathematical packages must be
used.

e The thus modified package IMPACT hard_system can now
be compiled and linked to the IMPACT package. In the
cases where the actions can be described in the interac-
tive IMPACT command-language, the planned compila-
tion unit described in Section 5.6 will perform all of the
here described actions automatically, including the au-
tomatic change to the hard-coded environment routines
shown in Figure 5.30..

In this case-study, we have seen that a user can add new
hard-coded algorithms having detailed knowledge of only 5-6
of the 35-40 hitherto implemented packages of IMPACT. How-
ever, during normal execution of thus created subprogram, typi-
cally 50% or more of all IMPACT packages are involved, includ-
ing the full parser/executor, display and plot routines, different
garbage-collectors and the (unavoidable) error-handler routines.
Our experience shows that, although the same kind of sim-
ple/adaptive interfaces to hard-coded subprograms could have
been implemented in any other computer language, the modu-
larization of Ada gave us this simple interface more or less “for
free”.

5.8 The robustness of Ada-code

In discussions on the advantages and disadvantages of Ada, one
aspect is mostly forgotten, namely the sturdy syntax of the lan-
guage which is far robuster than the syntax of any other lan-
guage known to the author (including German!). This is best

166 CHAPTER 5. IMPLEMENTATION CONSIDERATIONS

PROCEDURE E_LINCONT
(p_session : IN IMks_private_session;
p_environment : IN OUT IMks_private_environment) IS

_a
_b
_Ci
-id

o

1l _result ¢ IMmv_private_math_variable;
BEGIN
IMks_access_variable(p_environment,"P_A",1_a);
IMks_access_variable(p_environment,"P_A",1_b);
IMks_access_variable(p_environment,"P_A",1_c);
IMks_access_variable(p_environment,"P_A",1_d4);

IMmb_build_cont_system(l_result,l_a,l_b,1_c,1_d);
IMmv_deaccess(1l_a);

IMmv_deaccess(1_b):

IMmv_deaccess(1l_c):

IMmv_deaccess(1_4);
IMks_save_return_chain(p_environment,l_result);

EXCEPTION
-- Regular exception-handler with "exception-deaccess"
-- of the local dynamic structures 1l_a .. 1l_result.

END E_LINCONT;

Figure 5.31: Example of a body implementing a hard-coded
subprogram. The actual numerical algorithm is to be found in
subprogram IMmb_build_cont_system, which is exported from
package IMPACT math_build.

5.8. THE ROBUSTNESS OF ADA-CODE 167

illustrated by an example (Bucher, 1984). A well known FOR-
TRAN bug involved the omission of a comma in a FORTRAN
DO loop (an error involving only one single character). This sim-
ple error transforms the DO loop into an assignment statement
without having the compiler produce even a warning message:

C#x#*%%«INCORRECT FORTRAN (#Equivalent Pascalx)
SUBROUTINE CACSD Procedure CACSD;

DO 899 I=1 100 Var D0O999I : Integer;
CALL CONTR Begin

999 CONTINUE D0999I := 1100;
RETURN CONTR;
END End;

In this case, Pascal seems to have a robuster syntax than
FORTRAN, something which advocates of Pascal like to think
is generally true. However also in Pascal, small lexical errors
can change the meaning of a program entirely:

(#Correct Pascal#) (*Incorrect Pascalx)
Procedure CACSD; Procedure CACSD;
Var i : Integer; Var i : Integer;
Begin Begin
For i := 1 To 100 For i := 1 To 100
DO Contr; DO; Contr;
End; End;

To the left, we see a correct Pascal version of the original
FORTRAN program. To the right; we have deliberately pro-
duced another “one-character error”, and voila, we obtain ez-
actly the same incorrect program we had in FORTRAN. On the
other hand, Ada has a syntax which is much more robust:

-- Equivalent Ada -- Correct Ada
PROCEDURE CACSD; PROCEDURE CACSD;
BEGIN BEGIN
FOR i IN 1 .. 100 LOOP FOR i IN 1 .. 100
NULL; END LOOP; Contr; LOOP Contr; END LOOP;
END CACSD; END CACSD;

In Ada, there is no risk that a similar error will occur as the
differences between the two versions are much larger (an “11
character error” must be made). This is true not only for the
above example; in general, the code of Ada is much more robust

168 CHAPTER 5. IMPLEMENTATION CONSIDERATIONS

than that of FORTRAN or Pascal. For example, no undeclared
variables or implicit statements may exist (except for FOR LOOP
counters which always are implicitly declared and thereby only
locally available), and each structural ENDing specifies what it

ends (END LOOP, END Chapter).

5.9 Conclusions

In this chapter, we have studied different implementational as-
pects of CACSD software and, in particular, the suitability of
the Ada language for interactive CACSD packages. As the re-
sults in this chapter have not been obtained in some feasibility
study of limited scope, but during the development of an actual
CACSD-kernel of some 60 000 lines of code with a coding effort
exceeding 4 man-years, our general assessment is that it can be
quite conclusively said that the general suitability of Ada for
large CACSD projects is ezcellent. For a complete evaluation,
however, the negative sides of Ada should also be mentioned to-
gether with suggestions on how the more serious consequences
of these drawbacks can be avoided:

e The use of Ada in a larger software project is certainly a
rupture with the old tradition of implementing every sci-
entific program in FORTRAN, in particular, since prac-
tically all existing CACSD or general numeric algorithms
are FORTRAN coded. However, ADA-libraries of algo-
rithms are expected to emerge on the market in the near
future. Therefore, IMPACT contains a well-defined inter-
face for later incorporation of new algorithms.

e As FORTRAN will remain the main implementation lan-
guage for control algorithms for some time, IMPACT must
be able to access these algorithms as well. Fortunately,
the developers of Ada have realized that this would be
a problem for all initial Ada projects, and thus have in-
cluded the PRAGMA concept by which it is possible to call
subprograms written in other languages in a well-defined
manner. In IMPACT, these pragmas have been concen-

5.9. CONCLUSIONS 169

trated into three small packages (one each for system calls,
FORTRAN-coded algorithms and the graphical package).

e During the next couple of years, only a few Ada com-
pilers of yet unknown quality will exist. Therefore, Ada
users risk serving as guinea pigs for the compiler construc-
tor. This is certainly a valid objection against Ada, and
therefore a trade-off has to be made between estimated
loss of time and money during the first implementation,
and the gain in the long run (in particular in the mainte-
nance and update stages). However, for exactly this rea-
son, it is probably correct that, in an industrial rather
than academic environment, we would not have been able
to convince our management to embark on such a ven-
ture. Also, despite the expected future long-term main-
tenance record of programs implemented in Ada, compa-
nies presently could have problems maintaining their Ada-
products (!). Currently, there are primarily FORTRAN
programmers on the market to be hired. Thus, any pro-
gram coded in another language faces the company with
a serious training problem in a world where the average
“company life span” of a software engineer may be below
two years (at least in the USA).

e More than in any other structured language, the code of
Ada-programs gets voluminous due to declarations, ex-
ception handlers and type conversions. In IMPACT, this
is countered by the above described standardization of
the error-handler and dynamic memory-managers which
shorten the implementation time and help decreasing the
error-rate.

These critical aspects of Ada are, however, outweighed by a
multitude of indisputable advantages. Although some of these
features partially exist in other languages as well, Ada is the
only language bringing them all under the same roof:

e Ada allows arbitrary types of data-structures to be directly
defined, avoiding the hazzle of redefining all structures into
arrays (the only structure available in FORTRAN). Fur-
thermore, through the use of discriminants, Ada allows for

170

CHAPTER 5. IMPLEMENTATION CONSIDERATIONS

the dynamic sizing of arrays which means that no unnec-
essary space has to be reserved, as would be the case in a

language like PASCAL.

Ada, due to recursiveness, allows for a much more elegant

coding of the IMPACT expression parser than FORTRAN
would do.

Ada is highly structured, making modular programming
possible, resulting in reliable and easily maintainable code.
Furthermore through the use of visibility rules, all imple-
mentational details and system-dependencies can be hid-
den from the user as well as from most of the people in-
volved in the development of IMPACT.

Ada is per definition portable, there may not exist sub-
and/or super-sets of Ada with that name. Therefore,
IMPACT shall be better maintainable and easier to port
to new computers than most other CACSD-packages.

Ada provides for a unique means of exception handling.
The main difference between the Ada exception handler
and most conventional (user defined) error handlers is that
Ada can handle user-errors (e.g. erroneous interactive
input sequences) as well as system-/programming-errors
(e.g. division by zero or array-index out of range) in the
same portable manner.

Together with the mentioned Ada features, the robust syn-
tax of Ada will ensure less error prone programs than what
could have been obtained using FORTRAN or even Pascal.

Chapter 6

FUTURE DIRECTIONS IN
CACSD

As noted already in Chapter 2.1, the evolution of present-day
CACSD tools has been highly dependent upon the technologi-
cal advances in other, related fields. Of the concepts presented
in this thesis, many would not have been implementable five
years ago. Moreover, most of these concepts have originated
from cross-fertilization between requirements from the control-
side and catalytic ideas from other application fields. Several

important conclusions can be drawn from this:

e Control engineering is a small speciality compared to the
comprehensive fields of electrical engineering, computer
science and computer engineering. Thus, the mentioned
cross-fertilization takes place on a one-way street, with the
CACSD designer sitting on the end of the road selecting
bits-and-pieces from the enormous flow of new knowledge
and products. Speaking in control terms, this makes the
future of CACSD uncontrollable, as one of the inputs to
the CACSD-process stems from an autonomous black-box
(Figure 6.1). Many issues mentioned in this chapter will
therefore remain pure wishes until the big black-box de-
livers the right signals.

It is for us impossible to quantify the speed of development
in the fields surrounding CACSD. However, we do notice
that the rate of impact of these general developments has
increased during recent years as control-programs have

171

CACSD Designer

CACSD-
Develop's DevEIAocianems —————pp-publications
in rel. fields |— P »-CACSD-
"Black-Box" packages
Software Eng. |<@—
Knowledge Eng. |«
Control Scientist
CACSD-
CACSD ; .
p ————p-publications
; Deve[oPs Developments P
in rel. fields f——up- ———»CACSD-
"Black-Box" packages

Figure 6.1: The control problem equivalence of making predic-
tions on future trends in CACSD.

172

173

seized to be “pure special-purpose programs”. The design-
ers of modern interactive control environments are more
susceptible to technological changes in the computer field
than a reluctant FORTRAN-programmer was only a few
years ago. Returning to our control model, we have an op-
timal controller (the CACSD designer) trying to perform
his best with an increasing amplitude of the signal from
the black-box.

e While early control packages were developed by control
engineers with some programming experience, the devel-
opment of modern control-tools requires much more dis-
tributed expertise. Control theory knowledge must be
combined with experience in numerical software, formal
language design/compiler construction (for the command
language), graphical software, data-base theory (to handle
voluminous and inhomogeneous data), and modern pro-
gramming languages (for an adequate implementation).
Due to the sheer size of a modern CACSD environment,
the overall design will only be successful if modern soft-
ware engineering principles are used. Needless to say, few
individuals can handle all this simultaneously. Hence, our
illustrative control system now becomes distributed with
the software-engineer acting as coordinator.

This chapter was given the innocent title “Future Directions
of CACSD”. It should now be clear that the content of such
a chapter is an estimate of the output from an uncontrollable
MIMO-system with a partial, destributed controller. Only with
the help of the futuristic IMPACT-package can we even attempt
such an estimation ...

174 CHAPTER 6. FUTURE DIRECTIONS IN CACSD

6.1 Graphics in CACSD

The use of graphical output (step responses, Bode plots, and
so on) has become an indispensable part of all modern CACSD
packages. In a student environment, the frequent use of plots
to verify results and give the students an intuitive feel for sys-
tems behaviour is imperative, and in the basic courses, where
everything still can be “calculated by hand”, it is often the only
reason for using a computer at all. Unfortunately, most pack-
ages only support special graphs adapted to the basic algorithms
of the package, giving the user little freedom in constructing his
own problem-adapted plots. This hampers the design sequence
where critical information often can be obtained by comparing
different curves or mathematically manipulated plot data (plot
state X1 versus state X2, plot the difference of output signals
Y1 and Y2 versus the time, plot an error signal using a log-
arithmic scaling). Here, the packages CTRL-C and IMPACT
are especially flexible, using their inherent data structures for
the description and manipulation of graphs. Moreover, CTRL-
C offers the user an interactive, “GKS-like” (ANSI, 1985) plot
interface for a very general plot facility.

While graphical output is employed in almost all CACSD
packages, the use of graphical input is still in its infancy. As we
have seen in Section 3.3.1, only few packages allow for a graph-
ical input. Nevertheless, most of these few already available
packages offer the user particularly natural-to-use and easy-to-
learn user interfaces. Thus, the user with little experience in
CAD and scarce knowledge of control theory is greatly assisted
by the use of self-explanatory graphical symbols rather than in-
tricate descriptions using formulae or program structures. When
larger systems can be entered using a hierarchical approach
(with zooming), the graphical input becomes particularly in-
teresting.

On modern engineering workstations supporting windowing
techniques, a very nice combination of a graphical input facil-
ity, an alphanumerical algorithmic (command-driven) environ-
ment, and an efficient form driven and/or “pull-down menu”
driven operating interface rendering a highly flexible, integrated
CACSD package can be obtained. Concurrent sessions and mul-

6.1. GRAPHICS IN CACSD 175

tiple windowing can be used to separate these modes which are
incompatible on most other terminals. However, the widespread
use of graphical input is hampered by the hardware presently
available:

e The connection of graphical input devices such as joysticks
and mice is seldom foreseen by standard graphical termi-
nals. No standard for these devices exists.

e Graphical terminals with high resolution and a fast refresh
rates are needed. Ideally, bit-mapped displays with intel-
ligent graphical processors as found on graphics worksta-
tions such as the Apollo Domain, Sun or MicroVAX-GPS
should be used. On these displays, the refresh rate is fast
enough for zooming and deletion /insertion of intricate, hi-
erarchical structures.

The required graphical facilities, together with the needed
computational power, dictate the hardware requirements for
CACSD applications. Modern workstations provide excellent
graphics and at the same time put enough computing power (in
the magnitude of a standard VAX-11/780 unit) on the user’s
desk - an ideal environment for the dedicated control engineer.
However, the price per computer-connection is rather high for
the workstations and comparable to that of a multi-user mini-
computer environment (another very common configuration for
CACSD applications). Engineering workstations cost today be-
tween $20.000 and $40.000 depending on the fanciness of the
graphics required, but already the next generation of worksta-
tions should be tagged at below $10.000. New developments in
workstation clustering allow for resource sharing that brings the
prices further down in a multi-workstation environment. In the
educational process, where literally hundreds of students have
to be given access to computers for their (control-) exercises,
more inexpensive solutions have to be sought. Economical al-
ternatives are the modern personal computers (e.g. IBM-PC or
MaclIntosh). These provide the user with decent graphics and
enough computing power for introductory to intermediate con-
trol exercises. Moreover, packages usable in control exercises
have already emerged for this type of equipment (e.g. the new
PC version of MATLAB, Moler et al., 1985).

176 CHAPTER 6. FUTURE DIRECTIONS IN CACSD

6.2 Standards in CACSD

With the advent of interactive CACSD-packages, data is entered
and algorithms are called through interactive conversation with
the control package, and new algorithms can be formed (cus-
tomized) as user-written macros. Moreover, a wide-spread use
of packages using an algorithmic, structured and thereby ex-
tendable, command-driven interface (MATLAB, PC-MATLAB,
IMPACT, CTRL-C and MATRIXx) can be seen as a de facto
“conceptual” standard of the user interface. However, a more
formal standardization is needed for several reasons:

e No control package can support all control structures and
control algorithms. Therefore, users knowing one package
should be able to switch to another package immediately
or after only a short familiarization period.

e In today’s control packages, a large percentage of the con-
trol algorithms are not “hard-coded” (in e.g. FORTRAN,
Pascal or Ada), but implemented as “soft-coded” macros
in the command-language of the package. Also, all re-
searchers/engineers will, after a few months of use of a
package, have extensive macro-libraries of “customized”
algorithms of their own. To save re-implementation time,
macros defined in one package should therefore run in
other control packages as well (as long as the required
algorithms are supported by both packages).

e As previously stated, no control package will ever be able
to support all algorithms. Consequently, a user may be
forced to utilize several different control packages in solv-
ing one particular task (e.g. using different packages for
the modeling, identification, analysis, synthesis and imple-
mentation) Therefore, a user should be able to exchange
data from one control package to another without having
to write conversion programs.

e To encourage the exchange of “hard-coded” algorithms,
the transportation of algorithmic subprograms from one
package to another should be facilitated.

6.2. STANDARDS IN CACSD 177

From these points, we deduce that a standardization is re-
quired on several levels:

e A standard, interactive, command-language is needed to
enable the exchange of macros, and to unify the user in-
terface of different packages. Such a standard can, and
should, be described consistently using a set of “BNF”-
productions for the syntax with textual additions for se-
mantic details (Bongulielm: et al., 1984). Any standard
on this level will be hard to enforce on already existing
packages, but is likely to be followed by new packages
(compare the development of simulation languages after
the publication of the CSSL’67 language standard, Au-
gustin et al., 1967).

e A standard data format (supporting all common control
structures) for the exchange of data between different con-
trol packages over external files. Such a standard is easy
to implement even in existing packages: as each program
can have several input/output modes, one such mode can
support the standard while the other modes are kept as
they are.

e A standard interface to the numerical algorithms to facil-
itate the exchange of algorithms. This is the level where
hitherto most standardization attempts have been made;
recent standardization proposals for subroutine libraries
have been published by the Benelux Working Group on
(Control) Syftware (WGS, 1983, 1985). However, we are
no longer only dealing with stand-alone algorithms (sub-
routines). In addition to the “old” parameter standardiza-
tions, we now have to specify how the algorithm is to be
accessed interactively. This couples the subprogram stan-
dardization with the interactive command-language stan-
dardization, and is not totally free from implementational
restrictions (e.g. the supported data structures of the im-
plementation language and target machine limitations).

As already discussed in Section 3.12, a common external data
interface for the exchange of data between different packages is
imperative. However, as the set of data-structures representable

178 CHAPTER 6. FUTURE DIRECTIONS IN CACSD

internally by the program vary from one CACSD-package to an-
other, any least common denominator of all packages is bound
to be much too limited (most likely only allowing for the ex-
change of real matrices). A possible solution to this problem has
been suggested within the IFAC Working Group on Standard in
CACSD Software (IFAC, 1986), namely that the standard is for-
mulated to encompass a superset of all data-structures available
in all packages. These structures may be stored on external, se-
quential ASCII-files using predefined formats with specific mark-
ings denoting the exact structure type. Each CACSD-package
can then produce files with all data structures the program sup-
ports. When reading an external file, only the data-structures
supported by the package can be loaded, but as the entities of
the external file are specifically typed, any external data of “un-
known type” can be skipped (with a possible warning to the
user that certain data was ignored).

A further important reason for obtaining standards should
be mentioned: the unique position of FORTRAN in the imple-
mentation of scientific software is already threatened by other
languages (Ada and Modula for algorithmic implementations,
C for system programming, and Prolog and Lisp for expert
system connections). Thus, several standards on the program-
interface to the numerical algorithms are needed (one for each
implementation language). However, we notice that the first
two levels of standardization (command-language and external
data exchange) are independent of the underlying implemen-
tation language. The construction of and adherence to such
implementation-language independent standards may thus well
counteract the increase in “entropy” of CACSD software caused
by any upcoming language confusion.

6.3. EXPERT SYSTEMS IN CACSD 179

6.3 Expert systems in CACSD

Studying the proceedings from recent and not-so-recent confer-
ences on CACSD (Cuenod, 1979; IEEE, 1983, 1985, 1986) the
“hot” topics in CACSD have changed in a quite rapid pace. In
the late 70’s, most contributions dealt with methods and algo-
rithms as well as special purpose packages. During the first half
of the 80’s, the emphasis switched to the design of user-friendly
interfaces, and other communication issues. In the last year or
so, expert systems and control has become an increasingly pop-
ular topic at CACSD conferences, leading to an approximate
parity in the number of papers about algorithms, user-interfaces
and expert systems. So far, most contributions on expert sys-
tems in control have been tentative in nature with elaborations
on possible impact of and feasible approach to expert system
employment, but also some progress reports on already imple-
mented intelligent packages have emerged (Taylor and Frederick,
1984; James et al., 1985; Larsson and Persson, 1986). Thereby,

three classes of expert-system employment can be distinguished:

e The implementation of new algorithms and methods (or
re-implementation of old ones) through the employment
of expert systems. Clearly, these methods will not be
as strongly numerically oriented as the previously used
methods, but be based rather on qualitative evaluations
and cognitive- and/or symbolic-reasoning. This approach
looks particularly promising in areas where hitherto avail-
able packages have given no or only little assistance, such
as modeling or model validation (de Swaan Arons, 1983;

Zeigler, 1985).

e The use of expert systems to guide the user in the uti-
lization of existing algorithms. This includes guidance on
the selection of proper methods, the specification of suit-
able constraints, starting points, numeric parameters, etc.
Such expert systems would be valuable in all phases where
nontrivial or nonstandard operations must be performed,
for example during the identification (Larsson and Pers-
son, 1986) or design phase.

180 CHAPTER 6. FUTURE DIRECTIONS IN CACSD

e The inclusion of expert systems within the user commu-
nication part of a package to assist the user during the
operation of the program itself. This could include front-
ends accepting natural-language input or a more intelli-
gent query-feature than the one presented in this thesis.
One such approach is the “command-spy” concept devel-
oped at in Lund (Larsson and Persson, 1986), where the
“expert” will only passively scan the user input until an
erroneous or inconsistent command is entered. At such a
point, the expert system will start to guide the user. This
approach lets the user work fast and efficiently over a nor-
mal command-langauge interface until he needs or wants
help.

Each of these groups of expert system employment certainly
opens up new dimensions to the field of CACSD, and the conse-
quences for the users of such packages is bound to be profound.
However, the changes in the implementational environment of
these packages will be equally profound. While current CACSD
packages have been implemented in procedural languages (FOR-
TRAN, C, Ada, etc.), expert system components may possibly
be implemented in Lisp (Winston and Horn, 1981) or Prolog
(Clocksin and Mellish, 1984) (or, rather, preimplemented ex-
pert system shells, which gives the implementor a higher level
tool than a direct use of Lisp or Prolog, and thus saves on im-
plementation time). These languages require a totally differ-
ent programming environment, and are, because of their totally
different approach to data representations and memory man-
agement schemes, not easily connectable to classical procedural
languages. However, as the vast amount of software available
in procedural languages cannot comfortably be translated into
either PROLOG or LISP, future CACSD programs may well be
implemented in a combination of different languages. One so-
lution to this problem is to work with two separate programs
communicating over mailboxes (Trankle, 1986). This approach,
however, is very slow. Another solution is to utilize a “common
language environment” as found for example on the VAX un-
der VMS, and on different UNIX machines where the interface
between subprograms is defined at the level of the operating sys-
tem rather than at the level of the individual languages. This
solution, however, is extremely non-portable. The last solution,

6.4. CONCLUSIONS 181

which is rather heretic among expert-system “buffs”, is to base
the “control expert” not on LISP or PROLOG, but on a normal
procedural language. As many presently available expert sys-
tem shells are developed in “conventional” computer languages,
e.g. C, this last solution is not as unwieldy as it sounds. It
would also solve the connection and communication problems
mentioned previously.

Despite these implementational problems, the general inter-
est in the control community for using expert systems (in one
way or another) in CACSD is strong and widespread. We can
therefore expect further interesting results in this direction in
the near future, possibly leading to a completely new working
environment for the CACSD package implementor as well as the
CACSD package user.

6.4 Conclusions

In Figure 2.1 we illustrated how the developments in CACSD
have been (at least partially) dependent upon advances in other,
related fields. Such cross-fertilizations will remain in the future
as well, and must be seen as vital injections to our fields. There-
fore, if we would draw the same picture in 5—6 years from now,
we most likely have to draw one more row for the expert-system
influence, we would put some markings in the graphics row and,
hopefully, we could write some entries of standardization results

in the CACSD row.

182 CHAPTER 6. FUTURE DIRECTIONS IN CACSD

Chapter 7
CONCLUSIONS

A CACSD package should ideally provide all control engi-
neers with all the computational, managerial as well as
documentational tools needed during their routine as well
as irregular work with a minimum of overhead. Unfor-
tunately, this is by most presently available CACSD software

packages not the case:

e Not many packages will provide all control engineers
with an adequate tool. The main reason for this is an in-
adequate flexibility of the user interface, which either as-
sumes the user to be an expert (and thereby gives the true
expert a fast and efficient tool, but makes the initial hurdle
to be taken by all non-experts too high), or assumes that
the user is almost an idiot (by asking him too many ques-
tions, which is great for the beginner or irregular user who
likes to be lead by the hand for a while, but turns off the
expert after a very short time). Moreover, neither of these
extremes are adequate for the average user. To counter
this problem, we have in Chapter 3 presented different
schemes which, combined into one package, will cover the
needs of all users. Our solution consists of a multi-mode
conversation with a fast and flexible command language
combined with an informative query-feature, forms-driven
input, etc.

e Most package will not supply the user with all the tools
he needs, but only the tools of one or two of all the steps
in a complete controller design cycle, or only tools for a

183

184

CHAPTER 7. CONCLUSIONS

certain class of operations (which for example may limit
the use of a package to time-domain operations only). The
main reason for this is a lack of adequate data structures,
preventing the implementation of all necessary algorithms.
In Chapter 4 we therefore presented a complete set of data
structures as required in any all-encompassing CACSD
package.

When working with conventional CACSD packages, much
time is lost managing data. The reasons for this is man-
ifold: the mentioned lack of the proper data structures
forces the user to store away data in inappropriate struc-
tures (and thus confuses the user as to the content of the
structures), a lack of structurability of the user interface
forces the user to save all data “in one big bucket” (and
thus gives him problems of retaining the overview of his
actions), and, finally, a lack of a facility for storaging away
large segments of data outside the package in a structured
fashion. Hence, in Chapter 3 we presented the session
concept which will help the user to manage his data and
thereby to increase his problem solving capability. More-
over, in Chapter 4 we presented concepts supporting dy-
namic, user-extendable data structures. In that chapter
we also discussed different requirements of an adequate
data-base facility for a CACSD package.

In “real life” much of an engineers time is spent docu-
menting and presenting results. Here a flexible graphical
capability of the package will do wonders, especially if this
facility allow for the presentation of control system struc-
tures as well as more conventional plots.

Looking at the advertisements of many commercial CACSD
products one may often be amazed by how easy it is to
solve routine problems. However, in buying a package
for long-term use, it is just as important to find out what
irregular problems can not be solved by the package.
Here the extendability of the package is of utmost im-
portance. As most control algorithms are of numerical
nature, an algorithmically extendable user interface (for
example in form of the interactive, structured, command

185

language interface presented in Chapter 3) will allow the
user to quickly incorporate new algorithms (or to make
slight changes to old ones) whenever needed.

e Even with the fanciest of command-language interfaces, it
is always possible to find one algorithm which is not imple-
mentable on the level of an interactive command-language,
as one or more algorithmic primitives are missing from the
package. In this case, the user must be able to add his own,
“hard-coded” algorithm to the package with a minimum
of overhead. In Chapter 5, we presented one such “plug-
in” program interface to a CACSD package, and thereby
also illustrated the advantages to the package-creator as
well as to the package user of using a highly modular pro-
gramming language such as Ada when implementing large

CACSD packages.

Looking at todays CACSD packages, even the best of them
suffer from one or several of the just mentioned problems. It is,
however, the sincere belief of the author that the basic concepts
of the new CACSD package IMPACT, the framework of which
has been implemented during this research projects, will provide
the answer to these fundamental problems hampering the use of
present-day CACSD package.

186

Appendix A
THE SYNTAX OF IMPACT

A.1 The syntax in EBNF

The EBNF-notation of Bongulielmi and Cellier (1984) is used.

(********#********##********#***##************************t***********

* *

* SYNTAX DEFINITION OF IMPACT: i
® *
* INTERACTIVE MATHEMATICAL PROGRAM FOR AUTOMATIC CONTROL THEORY *
* *
* THIS LANGUAGE WAS DESIGNED BY *
* *
* MAGNUS RIMVALL *
* INSTITUTE FOR AUTOMATIC CONTROL *
* SWISS FEDERAL INSTITUTE OF TECHNOLOGY (ETH) *
* CH-8092 ZUERICH *
* SWITZERLAND *
* +
* DEFINED APRIL 1983 *
* REVISED JANUARY 1984 *
* OCTOBER 1985 *
* SEPTEMBER 1986 *
+ -
sk ke ok o ok ok ok ok K ok ok ok oK ok ok ok sk ok ok o ok ok ok ok ok sk sk ok ok o ok o ke ok ok ok ok sk sk ok ok o ok o ok o ok ok ok ok ok ok ok o 3k 3 kR kR Kk)

187

188 APPENDIX A. THE SYNTAX OF IMPACT

(2o ke s o e s ke s e sk e sk ok ok ok ok e ok ok s ok ok o ok ok ok ok ok ok ok ok)

(k% *kxk)
(*** Top-level productions. *okok)
(ke Hkk)

(s e e s o s ok s s e sk 3k ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K ok)

{ global_statement statement_terminator }

IMPACT =
'EXIT’

statements = { single_statement statement_terminator } .

statement_terminator = ((’;’ { $ '<CR>’ })

(
[¢ 2,0 4§ 2<CR>? ¥)
({ '<CR>*" }))

single_statement
subprogram_definition
system_definition
help_statement
edit_statement)

global_statement =

—_———— —

assignment_proc_call
multiple_assignment
compound_statement
for_loop
if_statement
null_statement
return_statement
while_loop)

single_statement =

—_—————— o~

(35 ¢ o s o o s ok sk ok ok o o o ok o ok ok ok ok ok ok ok ok ok ok o ok ok)

(% ke ok)
(*** Statement productions. *kok)
(k% ddok)

(*********************###*******#*t)

((IMPACT_name [parameterlist] ’=’')
| ?<ANSWER=>'
| '<PROCALL>') simple_expression .

assignment_proc_call

'BEGIN’
statements
'END’?

compound_statement

A.1. THE SYNTAX IN EBNF 189

edit_statement

for_loop

range_or_domain

index_indication

help_statement

if_statement

multiple_assignment

null_statement

return_statement

while_loop

'EDIT’ [*(® (IDENT' | STRING) ')’]

'FOR’ ((’IDENT’ 'IN’ [’'REVERSE’]
range_or_domain)
| (*INDEX® ’IN® ['REVERSE’]
index_indication))
’Loop’
statements
'END’ °LOOP’

simple_expression [’..’ simple_expression]

IMPACT _name ’ (°
{(!:!
| (IDENT’ ["REVERSE’])) $ 7, }
1)1

"HELP' | *??

'IF’ boolean_expression
'THEN’ statements
{ ¢ ’ELSIF’ boolean_expression
'THEN® statements }
['ELSE’ statements]
'END’ ’IF’

‘<’ { IMPACT_name $ ’,” } '>?
’=’ IMPACT_name [parameterlist]

’NULL’

'RETURN’ ((expression) |
(’<’ { expression $ ',” } '>'))

WHILE’ boolean_expression
’LOOP’
statements
'END’ ’LOOP’

190 APPENDIX A. THE SYNTAX OF IMPACT

(*i****lk*t**#*****#**#t******#**#**)

(ke k *kok)
(*** Expression productions. *kk)
(%% *% %)

(35 3k ok o ok ok ok ok ok ok o o ok ok ok ok ok ok ok ok ok ok ok ok o ok o o o ok ok ok)

boolean_expression = expression .
expression = relation [(('AND’ ['THEN’])
| (’OR’ [’ELSE’])) relation]
relation = simple_expression
[(1= | :/=: [1 F Ye=1? I 15 I Tn=1)

simple_expression]

simple_expression = [B =]
{ term ¢ (’+’ -7 | 2N YR
term = { factor $
(I ? I S I L I
A S L L e
) N O N VR B
factor = [2NOT*]

((IMPACT_name [parameterlist])
| ([’ matrix_expression ']’)
| (°(C’ expression ')')

| STRING
| real)
[| {2}] ['*** factor]
IMPACT _name = IDENT’ [level_indication]
[*:* 'IDENT’ [level_indication]]
{$ ’.” "IDENT’ [level_indication] } .

level_indication = '[?” { simple_expression $ ’,’ } ']’

A.1. THE SYNTAX IN EBNF 191

parameterlist =N Y)
| ("HELP’ | 7’)
| (expression
[(’=>’ expression)

| (’..’ simple_expression)]))
$,-’ } ’)}
(* LL1 for (':7) | --legal in indices
(’HELP® | *?*) | --legal in calls
(expression) | --legal
(simple_expression
[’..’ simple_expression]) | --legal in indices
('IDENT’ ’=>’ expression) --legal in calls *)
matrix_expression = { { polynomial_expression $ *,’ }
$ (;7 | ’<CR>’) } .

pelynomial_expression = ((simple_expression
[({{’"" } simple_expression }

| { "]’ simple_expression })])
| ({{ '’} simple_expression })
| ({ | simple_expression }))
STRING = maoana
real = ("UINTEGER® [°.? [’UINTEGER®]]
[exponent]) |
(*.' 'UINTEGER’ [exponent])
exponent = Y ['+ '~ 1 'UINTEGER'

(3 s s ok ok s s ok ok sk ok ook ok ok sk sk ok ok sk ok ok ok sk ok ok ok ok ok ok ok k)

(x** e 3 3k)
(*** Subprogram productions. *ok k)
(k% *kk)

{****#t********************ttt*****)

subprogram_definition = (function_def
| procedure_def)

192 APPENDIX A. THE SYNTAX OF IMPACT

function_def = 'FUNCTION’ subprogram_name
[func_param_declaration] 'IS’
[help_declaration]
[variable_declaration]
"BEGIN’
statements
'END’ subprogram_name .

procedure_def = "PROCEDURE’ subprogram_name
[proc_param_declaration] ’IS’
[help_declaration]
[variable_declaration]
"BEGIN’
statements
'END’ subprogram_name .

subprogram_name = IDENT’ |
(*<* { "IDENT* § *,* } ">)
func_param_declaration = *'(* { { ’'IDENT’ $ ',’ }
[*:* ["IN’] variable_type]
[’=’ expression]
s:;:}:):
proc_param_declaration = *(’ { { ’IDENT’ $ ’,’ }
[:? [in_out_declaration]
variable_type]
[’=' expression]
$’;l}})l
in_out_declaration = (C°In” ['our’ 1)
[¢ >ouT’))
variable_declaration = { { "IDENT’ $ ’,’ }
’:? variable_type ’;’' } .
variable_type = 'IDENT?
help_declaration = '?BEGIN?’ { anything } '7END?’

anything = (any_char | any_word)

A.1. THE SYNTAX IN EBNF 193
auy_char m1 I l&! I 11 I LT r I**! I
B [R] ek] b [e | ko)
Vga B YTl Bgfa] BNl RGN Y)
v =] A |) | P k=2 | R |
1=1? I 1=>’| LS] | 1>=!| 1(} I 1t r
o I L Sl I (RN (o) (N AR s
any_word *ACROSS’ | *AND’ | 'BEGIN’
>CONNECT' | *CONSTANT' | ’CUT’ |
"EDIT’ | 'ELSE’ | *ELSIF’ |
"END’ | PEXIT’ | "FOR’ | "HELP’ |
*IF? | 1IN’ | 'INDEX' | 'IS’ |
’LOOP’ | 'NONE’ | *nOT? | ’NULL’
’OR’ | *out’ |
*RETURN’ | 'REVERSE’ | ’STATE’ |
»THEN® | *THROUGH’ | ’WHILE’ | 'WITH’ |
>FUNCTION’ | 'PROCEDURE’| ’SYSTEM’|
»IDENT’ | *UINTEGER’

(#**##*****************************)

(e ok

(*#** System productions.

(ke

*kk)
*k k)
* %)

(****************t*t*****##********)

system_definition

system_param_decl

signal_declaration

"SYSTEM' subprogram_name

system_param_decl 'IS’

[help_declaration]

{$ ((system_definition

statement_terminator)
| locals_declaration) }

{ $ cut_declaration }

{ $ connect_declaration }
'BEGIN’

(equations

| null_statement statement_terminator)
’END’ subprogram_name .

L {{ IDENT’ $ *,’ }

':? [?IN’] variable_type

[’=’ expression] $ *;” } ")']
["IN’ signal_declaration]
["RETURN’ signal_declaration]

{ ("IDENT’ |
(1g? { 'TIDENT? $ II: } 15))
*:?' variable_type [’=’ expression] ’;’ } .

194 APPENDIX A. THE SYNTAX OF IMPACT

locals_declaration = { { 'IDENT’ § *,” }
*:? ['CONSTANT’ | ’STATE’]
variable_type ['=' expression] ';’ } .
cut_declaration = ["NODE®] ’cuT’
{ cut_name *(* { { "IDENT’ $ ’,’ }
!:l [lINr [:UUT:]
('ACROSS’ | ’THROUGH’ | ’CUT’)
$:;:} 1): 1;: } i
cut_name = 'IDENT’

I

"CONNECT’ ’(’ { connect_variable
{ "WITH’ connect_variable } $ *;* } ?)* *;?

connect_declaration
connect_variable = ({ 'IDENT” $ ’.° } |

‘<’ { { "IDENT* $.7 } ¢ *, } >)

equations = { simple_expression ’=’
simple_expression ';’ } .

A.2 The syntax diagrams

IMPRCT

{ = global_sietement —— statement_terminztor =(EXIT >

slolements

[= singls_siniement —— stotemeni_ilerminnilor} J -

A.2. THE SYNTAX DIAGRAMS

stotement_terminator

195

Oy
TS
[omey)
global_stetement
smole stiolement |
subproaram_definition
- gystem definilion
help_stotement
edil_siztement
single_statement
< & pssignment_proc_csll F— e

= multiple_sssionreni }b—
& compound_sizlement b—m——

{for_Loop - -

W T lement |=—————
& rull _elpiementb—m A

————————+{ return_steterent }——
— =l hile loon ,

essignment_proc_call

IMPACT _name

0

{ simple_expression —+

L‘w

= <ANSHWER=>)

—(<PROCALL>)

196 APPENDIX A. THE SYNTAX OF IMPACT

compound_s ipiement

BEGIN istintemenis +{ FND) -

edil_siotement

EDIT o (O— =JDENT) =)) -
= STRING

for_loop

= ronoe_or_domein LOOP —=
= REVERSE

&~ index_indication
“+>{REVERSE)}~
Lam. +(END) (L 00P)————

ronge_or_domoin

— sl cimple exoression}-——ﬂr——*{:::}——————*4simnle expression | _j =

index_indication

{7 e
[o)
o IMPRCT _neme (1 =) J =0)—
L—»{]DENT_\,

= REVERSE

help_stotement

A.2. THE SYNTAX DIAGRAMS 197

if_statement

o JF } &~ boolesn_expression = THEN : r—‘-b

(ﬁ sistements j&—THEN }»— boolean expression%*——(ELSlF)ﬂ]
T o(ET5E {sTotlenents] ~(END ~aH—

mulliple_essignment

%
e

o<) > [MPACT _name (>) ==) = [MPACT _name

null_stotement

relurn_statement

RETURN ‘]exgreSSEOnl &~

¥ e

(NS]
oY | e | P
< LEXpression &

while_loop

—a{HH]LE) boolsan_expression —={L00P >~ siplements =END >(LOOP }—=

boolean_expression

| % T
L EXpression

expression

—{celotion} =(END) ~[relotion}
- THEN

OR

~(ELSE)

198 APPENDIX A. THE SYNTAX OF IMPACT

relalion

— = simple_expression| < 1 v(E:P-“7—<ﬁ simple_expression | a

simple_expression

@:0 9

] (2 = lerm

term

o samery ey |
= {oclor |

A.2. THE SYNTAX DIAGRAMS

foctor

199

= TMPACT _name

Ny LAt ¥ PG o) "4
~(NOT > paramelerlist |

([motrix_expreesion
=~ O = expression | =))
= STRING

|

IHPACT _name

—JDENT) e 1DENT —~
lFleel. indicntion‘}f Llevet Indicnlion‘)[

{1DENT >
L level indicaticn)‘j

level _indication

Ve

| L)
i ——B'(D = s imple expression |

peromelerlist

F i
e
=

ol =

~ simple_expression

200 APPENDIX A. THE SYNTAX OF IMPACT

malrix_expression

i~ \a
S
'
£ \a
[e S)
» polyromiol _expression} —t
polynemial _expression
——* simple_expression simple_expression | - =

simple_expression

- [o e, |] P 1 .

=D " simple expression}

| o n ,

> simple_expression |

STRING

(
0

real

~(JINTEGER

o} > UINTEGER)

= exponent

exponent

O— D ——

A.2. THE SYNTAX DIAGRAMS 201

subprogrem_definition

—&1 {funclion_def 'r =
> procedure _def |

funclion_def

= FUNCTION \ subprogram_name | {1S) \
‘_L {unc_porom dacLar‘ctionJ
R
L ~ g] rfE[!-:]N bl cintementis Fe{END
crhelp cdeclereliord Pxveriskble declerstiosd
' P

eubprooram_name | =

procedure_def

PROCEDURE [eubproorsm_ rons) o(I— -~
l—:proc poram cieclbr‘oiiun(j

>

[< e 1 [*;(BEGIN = sieiementis F={END

erhelp_declerationd =Cvariable declaratliord

s subproarom_name |

subprogrem_name

= JDENT } &

< 1DENT

9

202 APPENDIX A. THE SYNTAX OF IMPACT

func_perom_decleration

™ exXpression

proc_parom_declaration

=-voriable lvpe

out_declaralio

(ot
W —=(=) | expression | J "

in_oul_declaration

--{Tl_'\—; =
= OUT
= 0UT)

verisble_declaration

> voricble_type]

A.2. THE SYNTAX DIAGRAMS 203

variable_type

{ IDENT }— -
help_declaration
{FBEGIN?) L o anything }] (ZEND?)——+
anything
-q“" ony_char |l =
system_definition
—={SYSTEM —={ subproaram_nome® system_psram_decl }"B'@ W (Y

orhelp_declaratiord

statement_terminatorfsvstem definition

;1 lecals_declarationje——+— Feut .declarationye

B

Econnect _decloratiom<

= J BEGIN sgualions (

Stnull_sizlementy siatement_terminatory

[={ END) = subproaram_name F————

204 APPENDIX A. THE SYNTAX OF IMPACT

sys lem_poram_decl

F gy
NS

arioble typa?f(::}ﬂ expression

»y

= 5ignal dectnratioiﬁ————T?(RETURN)ﬂ signal_declaralion}———

signal _declaration

> variable_ typs]

locals_declaration

[;;gééég;:]—QCED vorisbla_type i

(: pR— i
1- *C;} B expression | J— = }

A.2. THE SYNTAX DIAGRAMS 205

cul_declaration

L j = CUT)
= NODE)
[» cul_name | (O— J 1

cutl_name
>(T0END) 5
connect_declaration
G e

)

= CONNECT > (r—=tconnect_variable PWITH »*{ connect _variable

(3

connect_variable

= JDENT)
A
o/

TDENT =5

squalions

——[e-(simpl.e expr‘ession}'—'—“‘"@_ﬁ'lsimpLE expression | =)] -

THE SYNTAX OF IMPACT

APPENDIX A.

206

any_char

A.2. THE SYNTAX DIAGRAMS

Bny_word

{ACRCSS)

= =(BEGIN)

D A
= CONSTANT

- @ :

- @D 4

B ~(ELSIF) 1

—ED) 4

h ol 'S A

= +{ RETURN) -

:

I~ ~STRIE)

- fm\ A

THROUGH

B = WAILE) 4

S CIED 1

h————————PROCEDURL

- (SYSTED) -

- (QDERD 1

UINTEGER

207

208 APPENDIX A. THE SYNTAX OF IMPACT

Appendix B
LIST OF PUBLICATIONS

F.E. Cellier, M. Rimvall, and A.P. Bongulielmi. Discrete pro-
cesses in COSY. In F. Maceri, editor, Procedings First Euro-
pean Svmulation Meeting on Stmulation Methodology, Cosenza,
Italy, April 9-11 1981.

M. Rimvall and F.E. Cellier. GASP-VI: Ein Simulationspaket
flir gemischt kontinuierliche und diskrete prozess-orientierte
Simulation. In M. Goller, editor, Proceeding ASIM-82,
pages 155-165, Informatik Fachberichte, Volume 56, Springer
Verlag, Berlin, April 26-28 1982.

M. Rimvall and F.E. Cellier. The GASP-VI simulation package
for process-oriented combined continuous and discrete system
simulation. In W.F. Ames, editor, Proceeding 10th IMACS
World Congress on Simulation and Scientific Computation,
pages 413-416, Volume 1, Montreal, Canada, August 8-13
1982.

F.E. Cellier and M. Rimvall. Computer aided control systems
design. In W. Ameling, editor, Proc. First European Simula-
tion Conference ESC’83, Informatik Fachberichte, Volume 71,
Springer Verlag, Berlin, 1983.

M. Rimvall. On the use of Ada in CACSD. In Proc. Workshop
on Computer Aided Control Systems Design, pages 7-11, Insti-
tute of Measurement and Control, Brighton, England, 19-21
September 1984.

209

210 APPENDIX B. LIST OF PUBLICATIONS

M. Rimvall and F.E Cellier. IMPACT - Interactive Mathemat-
ical Program for Automatic Control Theory. In A. Bensoussan
and J.L. Lions, editors, Proc. 6°th International Conference on
Analysis and Optimazation of Systems, pages 578-597, Springer
Verlag, Berlin, 1984. Lecture notes in Control and Information
Sciences, volume 63.

M. Rimvall and F.E. Cellier. MIDGET - Ein flexibles, sim-
ulationstechnisches Entwicklungssystem. In F. Breitenecker
and W. Kleinert, editors, Proceeding 2. Symposium Stmulation-
stechnik, ASIM-84, pages 470-474, Informatik Fachberichte,
Volume 85, Springer Verlag, Berlin, September 25-27 1984.

M. Mansour, W. Schaufelberger, F.C. Cellier, G. Maier, and
M. Rimvall. The use of computers in the education of control
engineers at ETH Zurich. Ewuropean Journal of Engineering
Education, 9:135-151, 1984.

M. Rimvall and L. Bomholt. A flexible man-machine inter-
face for CACSD applications. In Preprints 9rd IFAC/IFIP in-
ternational sympostum on Computer Aided Design in Control
and Engineering Systems, Copnehagen, Denmark, July-August
1985.

M. Rimvall and F.E. Cellier. The matrix environment as en-
hancement to modeling and simulation. In Proceeding 11th
IMACS World Congress on Stmulation and Scientific Compu-
tation, Oslo, Norway, August 5-9 1985.

M. Rimvall and F.E. Cellier. A structural approach to
CACSD. In M. Jamshidi and C.J. Herget, editors, Advances in
Computer-Aided Control Systems Engineering, pages 149-158,
North-Holland, Elsevier Science Publishers, Amsterdam, 1985.

M. Rimvall, M. Mansour, and W. Schaufelberger. Computer-
aided control-systems design in undergraduate education at
ETH Zurich. Transaction Institute Measurement and Control,
7:90-96, 1985.

M. Rimvall, D. Slagstad, and T. Iversen. Computer aided
modeling and simulation using a direct-executing simulation

211

language. In Proceeding 11th IMACS World Congress on Sim-
ulation and Scientific Computation, Oslo, Norway, August 5-9

1985.
F.E. Cellier and M. Rimvall. Distributed modelling and data

base management in simulation. In Proceeding SCS Multicon-
ference, San Diego, CA, January 24-26 1985.

M. Mansour, M. Rimvall, and W. Schaufelberger. Com-
puter aided design of control systems - an integrated ap-
proach. In Preprints 8rd IFAC/IFIP international symposium
on Computer Aided Design in Control and Engineering Sys-
tems, pages 28-33, Copenhagen, Denmark, 1985.

M. Rimvall. CACSD software and man-machine inter-
faces of modern control environments (keynote address). In
Proc. Workshop on Computer Aided Control Systems Design,
pages 21-28, Institute of Measurement and Control, Salford,
England, 2—-4 July 1986.

M. Rimvall and F.E. Cellier. Evolution and perspectives of
simulation languages following the CSSL standard. Modeling,
wdentification and control, 9:181-199, 1986.

M. Rimvall, F. Schmid, and F.E. Cellier. The different model-
ing capabilites of IMPACT. In Proceedings IEEE Control Sys-
tems Society 8rd Sympositum on Computer-Aided Control Sys-
tem Design (CACSD), Arlington, VA, September 24-26 1986.

F.E. Cellier and M. Rimvall. Computer-aided control systems
design - techniques and tools. In N. Kheir, editor, Systems
Modeling and Computer Simulation, Marcel Dekker, NY, 1986,

To Appear.

A. Fischlin, M. Mansour, M. Rimvall, and W. Schaufelberger.
Simulation and computer aided control system design in en-
gineering education. In Proceedings of the IFAC/IMACS In-
ternational Symposium on Stmulation of Control Systems, Vi-
enna, Austria, September 22-26 1986.

212 APPENDIX B. LIST OF PUBLICATIONS

Bibliography

ACM/SIGGRAPH. Status report of the graphics standards
committee. Computer Graphics, 13(3), 1979.

(ACSL) Advanced Continuous Simulation Language, Refer-
ence Manual. Mitchell and Gauthier Associates, Concord, MA
01742, 4th edition, 1986.

AdalC List of Validated Ada Compilers. August 1986. Ada
Information Clearinghouse Newsletter (AdalC), 3D139 (1211
Fern., C107), The Pentagon, Washington, DC 20301.

P. Agathoklis, F. C. Cellier, M. Djordjevic, P. O. Grepper, and
F. J. Kraus. Educational aspects of using computer-aided de-
sign in automatic control. In M. A. Cuenod, editor, IFAC
Symposium on Computer-Aided Design of Control Systems,
pages 441-446, Pergamon Press, London, 1979.

P. Agatoklis. 1986. Private communication.

A.V. Aho, R. Sethi, and J.D. Ullman. Comp:ilers: Principles,
Techniques and Tools. Addison-Wesley, Reading, MA, 1986.

U. Amman. Error Recovery in recursive descent parsers. Run-
teme Storage Organization. Technical Report 25, Department
of Computer Science, Swiss Federal Institute of Technology
(ETH), Zirich, Switzerland, 1978.

ANSI/MIL-STD 1815 A, Reference manual for the Ada pro-
grammang language. U.S. Department of Defense, 1983.

ANSI X8.124-1985, Functional description of GKS. ANSI,
New York, 1985.

213

214 BIBLIOGRAPHY

K.J. Astrom. Computer aided tools for control system de-
sign. In M. Jamshidi and C.J. Herget, editors, Advances
in Computer-Aided Control Systems Engineering, pages 3—40,
North-Holland, Elsevier Science Publishers, Amsterdam, 1985.

K.J. Astrom. Computer-aided analysis and design of control
systems - a perspective. I[IEEE Control Systems Magazine,
3(2):4-16, May 1983.

K.J. Astrom. Computer-aided design of control systems. In
A. Bensoussan and J.L. Lions, editors, Proc. 6°’th Interna-
titonal Conference on Analysis and Optimization of Systems,
pages 549-563, Springer Verlag, Berlin, 1984. Lecture notes in
Control and Information Sciences, volume 63.

K.J. Astrom. A Simnon Tutorial. Technical Report CO-
DEN: LUTFD2/(TFRT-3168)/1-52/(1982), Dept. of Auto-
matic Control, Lund Institute of Technology, Lund, Sweden,
October 1982.

D.P. Atherton, O.P. McNamara, M.D. Wadey, and A. Goucem.
SUNS: the Sussex university nonlinear control systems soft-
ware. In Preprints 3rd IFAC/IFIP international symposium on
Computer Aided Design in Control and Engineering Systems,
pages 173-178, Copenhagen, Denmark, 1985.

D.C. Augustin, J.C. Strauss, M.S. Fineberg, B.B. Johnson,
R.N. Linebarger, and F.J. Sansom. The SCi continuous sys-
tem simulation language (CSSL). Simulation, 9(6):281-303,
December 1967.

N.J.C. Baker and P.J. Smart. The SYSMOD simulation lan-
guage. In W. Ameling, editor, Proc. First European Simulation
Conference ESC’83, pages 281-286, Informatik Fachberichte,
Volume 71, Springer Verlag, Berlin, 1983.

A. Barr and E.A. Feigenbaum, editors. The Handbook of Arti-
fictal Intelligence, Volume 1(3). Pitman, London, 1981.

G.M. Birtwistle, O.-J. Dahl, B. Myhrhaug, and K. Nygaard.
Svmula Begin. Studentlitteratur, Lund, Sweden, 2nd edition,
1973.

BIBLIOGRAPHY 215

A.P. Bongulielmi and F.E. Cellier. On the usefulness of using
deterministic grammars for simulation languages. Simuletter,
15(1):14-36, January 1984.

W. Bucher. 1984. Private communication.

CASCADE - Issues wn the Design of a Computer-Aided Sys-
tems and Control Analysis and Design Environment. Qak
Ridge National Laboratory, TN 37831, 1984, ORNL-TM9038.
Contributions from M.T. Athens, R. Strunce, S.A. Bly, C.J.
Herget, A.L. Laub, J.D. Birdwell (Project Manager), R. Cock-
ett, R.W. Heller, R.W. Rochelle, M.T. Heath and J.P. Stovall.

CC - Program CC User’s Guide. Peter M. Thompson, Systems
Technology, Inc., 13766 So. Hawthorne Blvd., Hawthorne, CA
90250, 1985.

F.E. Cellier. Combined Continuous/Discrete System Simula-
tion by Use of Digital Computers: Techniques and Tools. PhD
thesis, Swiss Federal Institute of Technology (ETH), Ziirich,
Switzerland, 1979. Number ETH 6483.

F.E. Cellier. Enhanced run-time experiments for continuous
system simulation languages. In F.E. Cellier, editor, Languages
for Continuous System Svmulation, Proceeding SCS Multicon-
ference, pages 78-83, San Diego, CA, January 1986.

CINEMA. Systems Modeling Corp., P.O. Box 10074, State
College, PA 16805, 1986.

W.F. Clocksin and C.S. Mellish. Programming in Prolog.
Springer Verlag, Berlin, 2nd edition, 1984.

The CSSL-1V Stmulation Language, Reference Manual. Simu-
lation Services Div., Nilsen Associates, 20926 Germain Street,

Chatsworth, CA 91311, 1984.

CTRL-C User’s Guide. Systems Control Technology, Inc.,
1801 Page Mill Road, Palo Alto, CA 94304, 4.0 edition,
September 1986.

M.A. Cuenod, editor. Preprints IFAC Symposium on Com-
puter Airded Design of Control Systems, Pergamon Press, Ox-
ford, 1979.

216 BIBLIOGRAPHY

H. de Swaan Arons. Expert systems in the simulation domain.
Mathematics and Computers in Simulation, 25:10-16, 1983.

R.A. DeCarlo and R. Saeks. Interconnected Dynamical Sys-
tems. Marcel Dekker, NY, 1981.

H. Domeisen, B. Dorn, T. Sultzer, and S. Studer. In-
teractive graphic design of signal flow diagrams for simula-
tion. In Preprints 3rd IFAC/IFIP international symposium on
Computer Aided Design in Control and Engineering Systems,
pages 241-245, Copenhagen, Denmark, 1985.

J.J. Dongarra, C.B. Moler, J.R. Bunch, and G.W. Stewart.
LINPACK Users’ Guide. Society for Industrial and Applied
Mathematics, Philadelphia, 1979.

EAGLES/Controls Documentation. Lawrence Livermore Na-
tional Laboratory, P.O.Box 808, Livermore, CA 94550, May

1986.

ELCS - The Extended List of Control Software, Number 2. D.
Frederick, C. Herget, R. Kool and M. Rimvall, editors, Re-
quest copy from M. Rimvall, Department of Automatic Con-
trol, ETH-Zentrum, CH-8092 Ziirich, Switzerland, June 1986.

H. Elmqvist. A Structured Model Language for Large Contin-
uwous Systems. PhD thesis, Dept. of Automatic Control, Lund
Institute of Technology, Lund, Sweden, 1978. Number CO-
DEN: LUTFD2/(TFRT-1015)/1-226/(1978).

H. Elmqvist and S.E. Mattsson. A simulator for dynamic
systems using graphics and equations for modelling. In Pro-
ceedings IEEFE Control Systems Society 3rd Symposium on
Computer-Aided Control System Design (CACSD), Arlington,
VA, September 24-26 1986.

T. Essebo. Machine Code Generation for Simnon on VAX-
11. Technical Report CODEN: LUTFD2/(TFRT-7217)/1-
045/(1981), Dept. of Automatic Control, Lund Institute of
Technology, Lund, Sweden, 1981.

D.K. Frederick, T. Sadeghi, and R.P. Kraft. Computer-aided

control system analysis and design using interactive computer

BIBLIOGRAPHY 217 -

graphics. In M. Jamshidi and C.J. Herget, editors, Advances in
Computer-Aided Control Systems Engineering, pages 265-275,
North-Holland, Elsevier Science Publishers, Amsterdam, 1985.

B.S Garbow, J.M. Boyle, J.J. Dongarra, and C.B. Moler. Ma-
triz Eigensystem Routines, EISPACK Guide Eztensions. Vol-
ume 51 of Lecture Notes in Computer Science, Springer Verlag,
Berlin, 1977.

J.B. Goodenough. Exception handling: Issues and a proposed
notation. Communications of the ACM, 18(12):683-696, De-
cember 1975.

S.D. Goodfellow and N. Munro. An integrated environment
for computer aided control systems engineering. In Preprints
3rd IFAC/IFIP international symposium on Computer Aided
Design wn Control and Engineering Systems, pages 104-109,
Copenhagen, Denmark, 1985.

P. O. Grepper and M. Djordjevic. A computer program for in-
teractive control system design. In Preprints IFAC Symposium
on Trends in Automatic Control Education, Barcelona, Spain,

1977.

N.E. Hansen and P.M. Larsen, editors. Preprints 3rd IFAC-
IFIP wnternational symposium on Computer Arded Design in
Control and Engineering Systems (CADCE’85), Copenhagen,
Denmark, 1985.

A. Hearn. REDUCE 2 User’s Manual. Rep. UCP-19, Univer-
sity of Utah, Salt Lake City, 1973.

C.J. Herget and A.J. Laub. Special issue on computer-aided
control system design programs. IFEFE Control Systems Mag-
azine, 2(4), December 1982.

C.J. Herget and A.J. Laub. Special section on computer-aided
design of control systems: systems and algorithms. Proceedings

of the IEEE, 72(12), December 1984.

A. Hindmarsh. ODEPACK: a systematized collection of ODE
solvers. In R.S. Stepleman, editor, Numerical Methods for Sci-
entific Computing, pages 55—64, North-Holland, Elsevier Sci-
ence Publishers, Amsterdam, 1983.

218 BIBLIOGRAPHY

IBM. System/3860 Scientific Subroutine Package, Version III
Programmers Manual. IBM, 1968.

Proceedings of the IEEE Control Systems Society 1st Sympo-
stum on Computer-Aided Control System Design, MIT, Cam-
bridge, MA, USA, September 28-30 1983. Abstracts.

P?'oceedmgs of the IEEE Control Systems Society 2nd Sym-
postum on Computer-Aided Control System Design (CACSD),
Santa Barbara, MA, USA, March 13-15 1985. Abstracts.

Proceedings of the IEEE Control Systems Socrety 3rd Sympo-
stum on Computer-Aided Control System Design (CACSD),
Arlington, VA, September 24-26 1986.

Minutes from the first meeting of the IFAC Working Group
on Guidelines for CACSD software, Arlington, VA. September
24 1986. To be ordered from M. Rimvall, Dept. of Automatic
Control, Swiss Federal Institute of Technology, Ztrich, Switzer-

land.

IMSL Library, User’s Manual. IMSL, NBC Building, 2500
ParkWest Tower One, 2500 City West Boulevard, Houston, TX
77042, USA, 9.2 edition, November 1982.

J.R. James, D.K. Frederick, and J.H. Taylor. The use of
expert-system programming techniques for the design of lead-
lag compensators. In IEE International Conference Control

85, pages 180-185, 1985.

M. Jamshidi and C.J. Herget, editors. Computer Aided Control
Systems Engineering. North-Holland, Elsevier Science Publish-

ers, Amsterdam, 1985.

K. Jensen and N. Wirth. Pascal, User Manual and Report.
Springer Verlag, Berlin, 2nd edition, 1975.

J. Joss. Algorithmisches Differenzieren. PhD thesis, Swiss Fed-
eral Institute of Technology (ETH), Ziirich, Switzerland, 1976.
Number ETH 5757.

T. Kailath. Linear Systems. Prentice-Hall, Englewood Cliffs,
NJ, 1980.

BIBLIOGRAPHY 219

B.W. Kernighan and D.M. Ritchie. The C Programming Lanu-
gage. Prentice-Hall, Englewood Cliffs, NJ, 1978.

R.A. King and J.O Gray. A graphical man-machine inter-
face for CAD and simulation of dynamic system. In Proc. 6th
European Conference on Electrotechnics, Computers in Com-
munication and Control (EUROCON 84), Brighton, England,
September 26-28 1984.

G.A. Korn. EARLY DESIRE. Mathematics and Computers in
Simulation, 24(1):30-36, February 1982.

J.E. Larsson and P. Persson. Knowledge representation by
scripts in an expert interface. In Proceedings American Control
Conference, ACC’86, pages 1159-1162, Seattle, WA, June 18-
20 1986.

L.L. Lehman, S. Houtchens, M. Navab, and S.C. Shah. Auto-
mated synthesis of Ada real time control software. In Pro-
ceedings IEEE Control Systems Society 8rd Symposium on
Computer-Aided Control System Design (CACSD), Arlington,
VA, September 24-26 1986.

G.G. Leininger, editor. Computer Aided Design of Multivari-
able Technological Systems — Proceedings 2rd IFAC Symposium,
West Lafayette, IN, 15-17 September 1982, Pergamon Press,
Oxford, 1982.

J. Lewi, K. De Vlaminick, J. Huens, and M. Huybrechts.
Project LILA - The ELL(1) Generator Error Recovery. Tech-
nical Report CW8, Applied Mathematics and Programming
Division, Katholieke Universiteit Leuven, Belgium, September
1976.

J. Lewi, K. De Vlaminick, J. Huens, and E. Steegmans. Project
LILA - Error Recovery in Batch ELL(1) Parsers: Automatic
Generation. Technical Report CW30, Dept. of Computer Sci-
ence, Katholieke Universiteit Leuven, Belgium, January 1983.

J.N. Little, A. Emami-Naeini, and S.N. Bangert. CTRL-C and
matrix environments for the computer-aided design of control
systems. In A. Bensoussan and J.L. Lions, editors, Proc. 6’th

220 BIBLIOGRAPHY

International Conference on Analysis and Optimization of Sys-
tems, pages 191-205, Springer Verlag, Berlin, 1984. Lecture
notes in Control and Information Sciences, volume 63.

R.G. Loeliger. Threaded interpretative languages: their design
and tmplementation. Byte Books, Petersborough, NH, 1981.

J.M. Maciejowski. A Core Data Model for Computer-
Aided Control Engineering. Technical Report CUED/F-
CAMS/TR.257, Cambridge University, Engineering Depart-
ment, December 1985.

J.M. Maciejowski. Data structures for control systems design.
In Proc. 6th European Conference on Electrotechnics, Comput-
ers in Communication and Control (EUROCON 84), Brighton,
England, September 26-28 1984.

MACSYMA. Symbolics, Inc., Four Cambridge Center, Cam-
bridge, MA 02143, 1986.

G. Maier. Entwurf und Realisierung einer Methode zur Ezxcep-
tronbehandlung und Synchronisation in Echtzeitprogrammen.
PhD thesis, Swiss Federal Institute of Technology (ETH),
Zirich, Switzerland, 1979. Number ETH 7583.

M. Mansour, M. Rimvall, and W. Schaufelberger. Com-
puter aided design of control systems - an integrated ap-
proach. In Preprints 3rd IFAC/IFIP international symposium
on Computer Aided Design tn Control and Engineering Sys-
tems, pages 28-33, Copenhagen, Denmark, 1985.

J.M. Mason, C.P. Neuman, and B.H. Krogh. CACHE: an in-
teractive control system analysis and design package. [IEFFEE
Transactions on Education, 28(3):143-149, August 1985.

C. Moler. MATLAB, User’s Guide. Department of Computer
Science, University of New Mexico, Albuquerque, USA, 1980.

C. Moler, J. Little, S. Bangert, and S. Kleinman. PC-Matlab,
User’s Guide. The MathWorks, Inc., 158 Woodland St., Sher-
born, MA 01770, U.S.A, 2.0 edition, November 1985.

BIBLIOGRAPHY 221

J.J. Moré, B.S. Garbow, and K.E. Hillstrom. User Guide for
MINPACK-1. Technical Report ANL-80-74, Argonne National
Laboratory, 1980.

N. Munro. The UMIST control system design and synthe-
sis suites. In M. A. Cuenod, editor, IFAC Symposium on

Computer-Aided Design of Control Systems, pages 343-348,
Pergamon Press, London, 1979.

D.A. Poplawski. Error Recovery for Eztended LL-Regular
Parsers. PhD thesis, Purdue University, West Lafayette, IN,

1978.

J.E. Potter. Matrix quadratic solutions. SIAM Journal of
Applied Mathematics, 14(3):496-501, May 1966.

L.B. Rall. Automatic differentiation: Techniques and applica-
trzons. Springer Verlag, Berlin, 1981.

J.R. Rice and R.F. Boisvert. Solving elliptic problems using
ELLPACK. Springer Verlag, Berlin, 1985.

M. Rimvall. Ada-Guidelines for the IMPACT Project. Techni-
cal Report, Dept. of Automatic Control, Swiss Federal Institute
of Technology (ETH), Zirich, Switzerland, July 1986.

M. Rimvall. IMPACT, Interactive Mathematical Program for
Automatic Control Theory, a Preliminary User’s Manual. De-
partment of Automatic Control, Swiss Federal Institute of
Technology (ETH), Ziirich, Switzerland, 1983.

S. Roski. DOD-STD-2167A, Appendix D. Ada design and cod-
ing standards. ACM Ada Letters, 6(5):36-44, September, Oc-
tober 1986. Draft version.

W. Schaufelberger, H. Good, and A Itten. Education for mi-
crocomputer applications in control. In IFAC symposium on
Microcomputer Application in Process Control, Istambul, July
1986.

C. Schmid. KEDDC - a computer-aided analysis and design
package for control systems. In M. Jamshidi and C.J. Herget,

222 BIBLIOGRAPHY

editors, Advances in Computer-Aided Control Systems Engi-
neering, pages 159-180, North-Holland, Elsevier Science Pub-
lishers, Amsterdam, 1985.

C. Schmid. A workstation concept for computer aided analysis
and design of control systems. In Preprints IFAC-IFIP-IMACS
7th Conference on Digital Computer Applications to Process
Control, pages 691-694, Vienna, Austria, 1985.

S.C. Shah, M.A. Floyd, and L.L. Lehman. MATRIXx: control
design and model building CAE capabilities. In M. Jamshidi
and C.J. Herget, editors, Computer Aided Control Systems En-
gineering, pages 181-207, North-Holland, Elsevier Science Pub-
lishers, Amsterdam, 1985.

B.T. Smith, J.M. Boyle, J.J Dongarra, B.S. Garbow, Y. Ikebe,
V.C. Klema, and C.B. Moler. Matriz Eigensystem Routines,
EISPACK Guide. Volume 6 of Lecture Notes in Computer Sci-
ence, Springer Verlag, Berlin, 1974.

I. Sommerville. Software Engineering. Addison-Wesley, Read-
ing, MA, 2nd edition, 1985.

H.A. Spang. The federated computer-aided control design sys-
tem. In M. Jamshidi and C.J. Herget, editors, Advances in
Computer-Aided Control Systems Engineering, pages 209-227,
North-Holland, Elsevier Science Publishers, Amsterdam, 1985.

SYSMOD User Manual. Systems Designers, Farnborough,
England, 1.0 edition, April 1986.

J.H. Taylor and D.K. Frederick. An expert system architec-
ture for computer-aided control engineering. Proceedings of

the IEEE, 72(12):1795-1805, December 1984.

The TESS User’s Manual. Pritsker and Associates, P.O. Box
2413, West Lafayette, IN 47906, USA, 2.2 edition, Juli 1986.

T.L. Trankle, P. Sheu, and U.H. Rabin. Expert systems ar-
chitecture for control system desing. In Proceedings American
Control Conference, ACC’86, pages 1163-1169, Seattle, WA,
June 18-20 1986.

BIBLIOGRAPHY 223

K.F. VanNeste. Ada coding standards and conventions. ACM
Ada Letters, 6(1):41-48, January, February 1986.

R. Walker, C. Gregory Jr., and S. Shah. MATRIXy, a data
analysis, system identification, control design and simulation
package. IEEE Control Systems Magazine, 2(4):30-37, 1982.

R.A. Walker, S.C. Shah, and N.K. Gupta. Computer-aided en-
gineering (CAE) for system analysis. Proceedings of the IEEE),
72(12):1732-1745, December 1984.

P.J. West, S.P. Bingulac, and W.R. Perkins. L-A-S: a
computer-aided control system design language. In M. Jam-
shidi and C.J. Herget, editors, Advances in Computer-Aided
Control Systems Engineering, pages 243-261, North-Holland,
Elsevier Science Publishers, Amsterdam, 1985.

WGS. Implementation and documentation standards for
the basic subroutine library SYCOT (SYstems and COntrol
Tools). Technical Report, Werkgroep Programmatuur (Work-
ing Group on Software WGS), 1983. Order from R. Kool
(secr.), HG 9.89, Eindhoven University of Technology, NL-
6600MB Eindhoven, the Netherlands.

WGS. An Inventory of Basic Software for Computer Aided
Control Systems Design (CACSD). Technical Report, Werk-
groep Programmatuur (Working Group on Software WGS),
1985. WGS-Report 85-1, Order from R. Kool (secr.), HG 9.89,
Eindhoven University of Technology, NL-6600MB Eindhoven,
the Netherlands.

J. Wieslander. Interaction in Computer Aided Analysis and
Design of Control Systems. PhD thesis, Dept. of Automatic
Control, Lund Institute of Technology, Lund, Sweden, 1979.
Number CODEN: LUTFD2/(TFRT-1019)/1-222/(1979).

J. Wieslander. Interactive Programs - General gurde. Technical
Report CODEN: LUTFD2/(TFRT-3156)/1-30/(1980), Dept.
of Automatic Control, Lund Institute of Technology, Lund,
Sweden, 1980.

P.H. Winston and B.K.P. Horn. LISP. Addison-Wesley Pub-
lishing Company, Reading, MA, 1981.

224 BIBLIOGRAPHY

N. Wirth. Compilerbau. Teubner Verlag, Stuttgart, FRG,
1977.

N. Wirth. Programmang in Modula-2. Springer Verlag, Berlin,
3rd edition, 1985.

S. Wolfram. Symbolic mathematical computation. Communi-
cations of the ACM, 28(4):390-394, April 1985.

B.P. Zeigler, editor. FEzpert Systems and Simulation Models,
The University of Arizona in cooperation with NASA and
AFCEA, November 18-19 1985.

B.P. Zeigler. Multifacetted Modelling and Discrete Event Sim-
ulation. John Wiley and Sons, NY, 1984.

B.P. Zeigler. Theory of Modelling and Stmulation. John Wiley
and Sons, NY, 1976.

Curriculum Vitae

I was born in Laholm, Sweden on February 24 1957. I ob-
tained my primary level education in Laholm and Halmstad
(Sweden). In 1974-75 I spent one year as an exchange student
and High-School senior in Greenfield, Illinois. In the spring of
1976 I graduated from Sannarps Gymnasium (Halmstad, Swe-
den) with a specialization in the natural sciencis and mathemat-
ics. The same fall I commenced my studies at the Department
of “Technical Physics”, Lund Institute of Technology (LTH),
Lund, Sweden. Between my first and second year of higher ed-
ucation I spent 11 months in the Swedish army. In 1980 I got
selected to be an exchange student for my final 1.5 undergrad-
uate years at the Swiss Federal Institute of Technology (ETH),
Zurich. January 1982 I graduated as “Civilingenjor” (MS) from
the LTH with final exams from the ETH. In March 1982 I ob-
tained an employment at the Department of Automatic Control,
ETH, Zurich as a teaching assistant. I attended the postgradu-
ate courses in Automatic Control for three semesters, and since
1983 I have concentrated on the research project presented in
this thesis. Since January 1984 I have been a research assistant
with support in full from an ETH research grant. In 1984 I was
appointed Lecturer in Simulation Techniques at the ETH.

225

