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Abstract

The ultimate goal of this work is to provide a general giobal optimization method.
Due to the difficuity of the problem, the complete task is divided into several sections that
can be summarized as a modeling phase followed by a global minimization phase. Each of
the various sections draws from different engineering fields. What this work suggests is an
interface and common grounds between these.

The modeling phase of the procedure consists of converting a general problem into
a given formulation using a particular type of neural network. The architecture required for
the neural network forms a new class: the pseudo multilayer neural network. It is introduced
and compared to more classical neural network architectures such as the regular multilayer
neural network. However, a key difference between these is that the behavior of the usual
multilayer network has to be programmed, while an extremely efficient procedure is given
here to synthesize the pseudo multilayer neural network. Therefore any initial problem can
be systematically converted into a pseudo multilayer network without going through the
undesired programming steps such as the backpropagation rule.

The second phase of the work consists of translating the initial global optimization
problem into the global minimization of a target function related to the neural network
model. Systematic procedures are again given here.

The last phase consists of globally minimizing the target function. This is done via
the so-called DC programming technique where DC stands for "Difference of Convex".
The pseudo multilayer was created such that it can systematically be converted into a DC

formulation, and therefore be compatible with DC programming. A translation procedure to



go from the pseudo multilayer neural network model to the DC formulation is given. When
a DC program is applied to this last formulation, the resulting solution can be directly
mapped to the global minimum of the target function previously defined, thereby producing
the global optimal solution of the neural network modeling the initial problem. Therefore,

the optimal solution of the original problem is known as well.
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Chapter 1: Introduction

[t has been said that equality has been a driving concept for mankind for centuries:
equality of every citizen, equality of rights, equality of opportunity, and others. If there has
been so much attention toward reaching equality, it is probably because nature by itself
tends to provide inequality. In fact inequalities are omnipresent, from abstract ideas to
concrete measurements. Life is based and surrounded by inequalities and measures which
define an order.

The inequality is always modified to introduce competition. For example, consider a
very simple inequality: a-b<0. This equation is automatically translated into a<b, and
immediately interpreted as "a is less than ", or "a is not as good as b", or "b is better than
a", or "between a and b, b is the better, or the best". When introducing another inequality
b<c, b becomes "not as good as ¢", while it was "best" in the previous case. ¢ happens to
become the "very best". It is clear that a situation x (x may be an idea, a fact, or a data) can
be compared only to its environment, and depending on this environment the same x can be
called good, bad, better, or best.

It occurs everywhere all the time that people want to find the "very best" among a set
of various circumstances. The cook looks toward finding the best recipe to prepare some
dishes, the politician tries best to convince the people about his program, the teacher
organizes his lectures so that students understand best, the army general positions best his
army to fight the enemy, the manager integrates his employees in a manner that makes the
company the most productive. In more theoretical areas, the chemist finds the best
components to perform a given reaction, the optician uses filters to achieve best desired
interferences, the mathematician wants to find the best method to solve some equations. In

short, everywhere, it is desired to find the best of something. The field of study for finding
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the best is called the field of optimization. Where is the difficulty of this field? There are
several problems, from the difficulty of defining the goals to having to deal with trade-offs.
If there are such difficulties, how do people search for the "best"?

A "best" is only such in a given environment. It is therefore clear that the process
which finds it must perfectly know where to search. The search domain consists of every
possible situation in an environment which the process has full knowledge of. However, is
having complete knowledge of the environment a sufficient condition for finding the "best"
within the search domain. The knowledge of the search domain and the problem itself
enable to finding the "best". However, there are problems so complex that this solution can't
be found without an infinite amount of time using infinite resources. What happens in these
situations?

Following Descartes' remarks, according to whom intelligent people separate
complex problems into several simpler ones, each of them being solvable, a problem that
wouldn't be directly solvable might be solvable after the decomposition.

In different engineering fields, people have recently imagined that they could create
machines that would be able to solve problems humans can't. An application is for example
the field of optimization: finding the "best".

These suggestions have often been considered unrealistic, and the little current
progress seems to confirm this. A machine seems unable to perform something a human
can't do by himself. If the human can do it, the machine can be programmed to do it as well,
quicker, and in larger quantities, but trying to have the machine do something humans can't
is going in a wrong direction.

Therefore, if it is desired for a machine to perform an optimization task, then it must
follow a route that has before been proven successful to humans. The machine can improve

by the fact that it is able to process faster than humans and in larger quantities.
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Such a cartesian approach is suggested in this dissertation. There exist optimization
algorithms that are successful in finding solutions for some particular problems formulated
in a certain manner. Similarly there exist techniques to transform a problem into one such
formulation. Hence, the task is to create an interface between the two. A given problem is
transformed in such a manner that it becomes amenable to the optimization algorithm.

To be specific, in this project, a problem is modeled, and the model 1s optimized.
The process of modeling is performed by a neural network, and the optimization is
performed by DC programming.

First, the modeling section is presented. Chapter 2 is a general review of neural
networks, and of function approximations in particular. Chapter 3 presents an introduction
to a class of neural networks: the pseudo multilayer feedforward networks, along a method
to synthesize them. This creates the desired model.

Then, the optimization section is presented. Chapter 4 is a review of global
optimization techniques, in particular deterministic methods. Chapter 5 presents an
implementation of DC programming that allows to solve problems formulated in the manner
previously mentioned.

Finally, the two sections are interfaced together. Chapter 6 is the actual
implementation of the modeling followed by optimization: A given problem is first modeled
by a pseudo multilayer network the output of which is in turn minimized using DC

programming. At last, some concrete example are presented.
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Chapter 2:
Review of Neural Networks

In this chapter neural networks in general are reviewed, along more specifically
those used for continuous mapping and function approximations. These are the kinds of
networks that are later used for interfacing with the global optimization algorithms. As it
was stated in the introduction, the neural network performs the modeling phase, that

precedes the optimization phase.
2.1 General information

Before dealing with neural networks, it is imperative to first describe a neuron by
itself. What exactly is a neuron? It must be made clear that there are two major classes of
neurons: the biological neurons and the engineering neurons, also called artificial
neurons.

The brain of any animal is made up of a huge quantity of very similar cells,
interconnected in a very extensive and complex manner. Each of these cells is called a
biological neuron [Block, 1964]. They each have a very simple behavior, but due to the
large number and the interconnections, what is called intelligence can exist. The number
of neurons in a human brain is about 10! .

The cell is composed of several parts. An aquisition section consists of receiving
signals from neighbor neurons. These signals are electrical pulses. They are accumulated
in anoiher area until a threshold level is reached. This storage area clearly acts like an
electrical capacitor. Once the threshold level is reached, the neuron discharges itself and

"fires". This means that all the stored energy is released to the environment: to all
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surrounding neurons in the neighborhood. At this point there is no longer any energy left
in the neuron [Cotterill, 1988].

What makes a neuron different from its neighbor is the way it is connected.
During what was just described as aquisition and firing phases, the quantity of travelling
energy is not identical in every direction. Therefore, for a given neuron that fires, all its
neighbors receive a different amount of energy, which implies that they in turn fire at
different times since they don't recharge all at the same rate.

This was the description of a biological neuron. The artificial neuron is a
mathematical model of what was just described, to be used by engineers [Koch, 1989].
The connections are modeled by resistors or matrix weights, the threshold firing process
is modeled by a nonlinear activation function, and the output propagation is modeled
again by matrix weights. In the coming section, complete descriptions of artificial
neurons are given. From now on the biological neuron is no longer mentioned and what is
refered as 'neuron’ indicates an artificial neuron. Now that the very basic of neurons have
been presented, what is a neural network?

The simplest definition of a neural network is a "set of neurons combined in a
particular manner". It is therefore clear that both the neurons themselves and the
connections determine the network response. A neuron can be modeled as an extremely
simple multi input single output (MISO) subsystem.

There are several different models for neurons, which all have common
characteristics. The general formulation for a neuron input-output behavior is provided by

the following equation: [Wasserman, 1989]

y=f(x) and i=-ax+w-u (2.1)
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where u is the input vector, w the input weight vector, y the scalar output, x the

scalar state, f{.) the so-called non-linear activation function, and a the self feedback
connection. With no special assumption on any of its parameters, this neuron is called a
dynamic neuron, or a dynamic node of a neural net. Its block diagram representation is

shown in Figure 2.1.

Figure 2.1. A model for a dynamic neuron.

The X symbol doesn't stand for the simple sum of the inputs #,, but for a sum of
the inputs u, associated with weights w,. Some restrictions may be applied which make
the model described by equation (2.1) to become a member of another class: the static
class instead of the previous dynamic class. Considering now only a stable system (i.e.
a>0) and its steady state, it is clear that the input-output relationship of the neuron

becomes:

y=f(x)= f(’—" L a) 2.2)

This model is called a static neuron, or a static node of a neural net [Simpson,
1990]. The input vector is multiplied (dot product) by the weight vector to produce a state
that in turn is passed through the non-linear activation function to produce the output. A

block diagram is shown in figure 2.2:
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Figure 2.2: A model for a static neuron

The two models just presented define the two major classes of neurons: static and
dynamic.

The activation function is the only non-linear element in a neuron, independent of
its type [DARPA, 1988]. It is a scalar real-valued function of a scalar real-valued

argument:
fOr: R-R x— f(x) (23)

There are several kinds of these functions but once again, most of the time, they
have common characteristics and properties. These are:

- Odd symmetry about the (0,f(0)) point: f{-x) = 2f{0)-f(x)

- Monotonicity: Vx€R, f'(x)=0

-Saturation: f(®) = f(0) +Sat and f(-%)= f(0) - Sat

Among the functions mostly used are: threshold function, piece-wise linear
function, sigmoid type function. The analytical formula for a sigmoid type function can

be, but is not limited to Atan(x), Tanh(x), and %1 rey A few of these activation

functions are plotted in Figure 2.3:
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Figure 2.3: Plots of several common neuron activation functions.

In addition to the characteristics and properties giVen in (2.3), the following

- statements hold in addition:
- Convexity for a negative argument: f"(x)=20 for x <O

- Concavity for a positive argument: f"(x) <0 for x>0
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These last two properties play a critical role for the optimization analysis
presented later in this project.

Names have been given to some particular neuron configurations. For example, a
static neuron with a threshold function is called a perceptron [Rosenblatt, 1962]. As it
was stated earlier, a set of interconnected neurons is called a neural network. Similarly to
the neurons themselves, there are several types of neural network architectures. The most
common of these are feedforward and recurrent networks.

In a feedforward network, all the connections between the different neurons must
be laid in a forward manner, no feedback is allowed. Most of the time this network is
composed of static nodes. However, in some special cases, such as for example to
produce delays, it may be desired to include a dynamic node. In that case, the self
feedback may be allowed. It is therefore clear that there is no stability problem for a
feedforward network.

In the special case that all the neurons in the network have their inputs connected
only to system external inputs and not to the output of other neurons, the neural network

is called a single layer net.

Figure 2.4: A 4-neuron, 4-input, 4-output single layer neural network
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If neurons are assembled into subsets such that every neuron from a given subset
has its input connected to the output of neurons of a subsequent subset, then the neural

network is called a multilayer feedforward network. Each subset is called a layer.

\t) \b Wa

f
o4

Figure 2.5: A 12-neuron, 4-input, 4-output 3-layer neural network

Later in this project a "pseudo-multilayer" architecture will be introduced and its
characteristics, properties and advantages presented in due course.

Contrary to feedforward networks, the recurrent networks have feedback
connections. In order for them to work it is clear that any possible closed loop from any
starting point must include at least one dynamic node. Otherwise for the same node at the
same instant, its ending value would be different from the initial one, which is clearly an
error. Similarly to the feedforward networks, elements of the recurrent networks are
allowed several types of activation functions.

The recurrent neural networks are used for modeling dynamical systems, and any
phenomenon that requires "memory". However, in this project this kind of network is not

used because only static and memoryless systems are considered.
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Before completing the presentation on neural networks in general, it is necessary
to quickly mention yet another class. It is a feedforward network in terms of
"instantaneous behavior" and overall architecture, but it has quite different rules: the
counter-propagation network [Hecht-Nielsen, 1987b]. It looks like the single layer
network of figure 2.4, with all the neurons having a perceptron type activation function.
Furthermore, the bias vector (which controls the threshold) is actively controlled so that
at every instant one and only one neuron is active.

It is clearly a pattern classifier network [Hecht-Nielsen, 1990]. There are as many
neurons as there are patterns to be classified. They are positioned by the input weight
matrix in an equidistant manner in the space so that the network information is optimized
and any noise perturbation minimized. The output weight matrix is a direct mapping of
the desired output for each situation.

When a noisy pattern is presented to the input, its distance toward all the valid
patterns is computed (one by every neuron) and the smallest one is selected (by means of
the active bias control). Only the corresponding neuron is fired which produces the noise
free pattern on the output.

The main drawback of counter-propagation networks is that the number of
neurons becomes extremely large, even for small systems. Another disadvantage is that a
master must look after all the neurons all the time in order to actively control the bias
level. This is clearly in contradiction with a fully parallel architecture which is the basic
structure of neural networks.

A very important consideration in neural network theory is the question of
programming the network. There are quite many ways to look at the problem and its
implementation. Among the various studies, [Montana, 1989], [Green, 1989], [Holland,
1975], and [Werbos, 1988] can be mentioned. However, this list is far from being a

complete review of all the various ways for programming a neural network since there are
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virtually dozens of such studies. It can be viewed as an optimization problem where
parameters of the network such as weights and biases are optimized so that the difference
between the desired behavior of the network with its actual behavior is minimized.

There are several different approaches for the programming task. Because the
problem is fairly complex, the minimization does not have a single solution. In other
words, the optimization finds minima among which only one is the desired global
minimum. Therefore, the parameters can't just be updated using a steepest descent
algorithm because depending on the starting point they would reach various local minima,
and probably never the desired global minimum. Over the years, several methods have
been developed that are usually successful.

The most popular one is the so-called back-propagation [Rumelhart, 1986].
Although it is globally a gradient descent algorithm, it has some hill-climbing
capabilities. However, it has several problems. On a theoretical aspect, even though it is
able to occasionally climb, it has no guarantee to always converge toward the global
minimum. It may be trapped in a local node. Only a trial and error approach with
different starting points can drive to a desired solution. On a practical point of view, it is
extremely slow to run, and furthermore the speed depends on some gains and parameters
that must be carefully chosen, but for which there is no general rule. If the gain is chosen
too small, the convergence takes forever, if it is chosen too large, the overall stability of
the algorithm is at risk.

Assuming a multilayer neural network of the type depicted in figure 2.5. It is

described by the following set of equations:
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(2.4)

where the various Ws and bs are weights and biases as shown in the figure.

During the programing process a set of desired (u,y, ) pairs is given and the
algorithm must figure out the best Ws and Bs so that the network behavior (u,y,,)

matches the desired (#,y,, ).

Backpropagation is an iterative algorithm with a two step process at each iteration.

A forward pass computes the overall error signal y,_ - y,,. A backward pass updates the

parameters for every layer. It starts by the last one, and propagates the correction back

toward the input layer. The gradient of the activation function is used for backpropagating

the error signal. At a given iteration the network behavior (u,y,,) for a given input u is

computed using equation (2.3).

Then the overall error signal y, -y, ,and the backpropagated error signals for

each layer are computed as:

€rT0T 4 = Yies = Yaa
error; =W, * error , * ¢9_f(x3)
ox
(2.5

J
error, = W, ¥ error; * -éj: (x,)
X

error, = W, * error, * ?— (%)
x

Finally, the parameters of every layer are updated following the rule:
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W, =W, +g-error,-u

W, =W, +g-error, - x, 2.6
W, =W, + g-error, - x, ]

W,=W,+ g-error,-x;

where g is the gain to be carefully adjusted.

Proceeding in this manner makes the actual behavior of the network progressively
match its desired one. Notice that the bias vectors are combined with the weight vectors:
a bias is equivalent to a weighted unit signal.

This was an overwiew of the backpropagation algorithm. For practical
implementation, and improvements, further reading is available [Korn, 1991].

To this date, backpropagation is the most popular algorithm for programming a
neural network in spite of its lack of global convergence and its speed. There doesn't exist

a universal algorithm that guarantees global convergence to the "best" solution.
2.1.2 Continuous function approximation

There are many applications for neural networks. Among the most popular ones
are speech and pattern recognition [Grossberg, 1968] [Naylor, 1988], speech processing
[Sejnowski, 1987], associative memory [Kohonen, 1989], robotics [Brooks, 1986], and
system identification [Narendra, 1990]. In this project the facet of neural networks of
interest is function approximation [Lippmann, 1987].

A function approximation can be interpreted as an expansion of a given arbitrary
function into a set of other functions. For example the Fourier approximation of a
function is its expansion in terms of Sin(nx) and Cos(nx) where n corresponds to various

harmonics. A Fourier series can be interpreted as a single layer neural network where the
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activation function is a Cosine instead of the regular sigmoid shaped activation function.
The first layer weights are the harmonic coefficients and the biases correspond to the
phases that match the Cos/Sin proportions. The second layer weights are nothing but the
Fourier coefficients. From the Fourier theory, a periodic function y=f{x) can be

decomposed with no error using an infinite number of terms, or approximated with some

truncation error using N terms as:

Y=Yo+ EaiCOS( iwx) + b,Sin(i wx)
i=1
N
y=y,+ EaiCos(iwzx) + b, Sin(iwx) 2.7
i=1
N
Y=y, + Ec,.Cos(imx + @)

i=1

where

c, = ‘/aiz + b?

@ = _Tan_l(b

a

i

(2.7a)
)

Figure 2.6: A Fourier Sernes represented as a single layer neural network
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As stated earlier, the activation functions usually are not allowed to be Cosine
shaped. The main reason being that they must be monotonic and go to saturation at both
ends. This is why the particular function decomposition shown in Figure 2.6 is not of
great interest for neural network studies. |

There have been several sets of basic functions used for approximation with
neural nets. From the Fourier example, it follows that the basic functions are used as
activation functions for the neurons. Among the most popular of these, in addition to
usual sigmoid shaped functions, radial basis functions must be mentioned, as well as
hyper-ridge functions [Flacke, 1993]. However, the later are fairly close to the sigmoid
type even though they are not monotonic for the simple reason that a hyper-ridge function
| is nothing but the difference between two threshold functions. At this point it must be
noticed that both feedforward networks and recurrent networks can be used for the
purpose of function approximation. However, throughout this project, only feedforward
networks are considered for the reason stated before that only static and memoryless
systems are considered.

To conclude this introduction on function approximation by neural networks,
several important background works must be mentioned. The whole function
approximation theory started when Hecht-Nielsen related it to the Kolmogoroff theory
[Hecht-Nielsen, 1987a]. At that point the existence and feasibility of the function
approximation was proven: For a given continuous function, it is always prossible to find
a neural network that approximates this function with as much accuracy as desired.
Several works then proceeded in order to refine those statements, and provided some
methods for the construction of the expansion. Among the numerous researchers, Koiran
worked on the complexity of the problem [Koiran, 1993]; Cybenko [Cybenko, 1989],
Funahashi [Funahashi, 1989], and Ito [Ito, 1991] worked on construction techniques

using sigmoidal shaped activation functions; and Hornik [Hornik, 1989] [Hornik, 1990}
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showed that the original function to be approximated need not be continuous. Funahashi's
and Hornik's works will be described in detail in due course since their work is closely

related to some aspects of this project.
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Chapter 3:
Neural Networks as Multi Input Single Output
Function Approximators

This chapter is the description of the study on the approximation of a wide class of
MISO (Multi Input Single Output) functions by a neural network. First theoretical
background to support the feasibility of this model is presented, then an object oriented
approach to build the corresponding neural network is introduced. In other words,
considering a MISO function from a particular class described later, there exists a neural
network for approximating it; a few theorems that prove its existence are recalled.
However, even though the network exists, its construction may be very difficult in
practice. The purpose of the object oriented approach is to make it easier.

The interest of this study has several aspects. First, using neural networks for
function approximations has already been studied, and as it is shown in a comparative
study near the end of this chapter, it seems that the here suggested approach presents
several advantages. A second reason is that the approximating neural network output can
be ‘'minimized' using the procedure described in the chapter 4, thereby 'minimizing' or
‘optimizing' the initial target function. A last interest of approximating functions by a
neural network lies in the computer architecture area: Such a neural network is
particularly well suited for the so popular new RISC (Reduced Instruction Set Computer)

architecture.

3.1. Theoretical background.
3.1.1 SISO case.
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This study begins with a look at neural networks as SISO (single input single
output) function approximators. Considering a single layer network with N neurons,
where the activation function is piecewise linear, and where each neuron is allowed a bias

input, the system equation that describes this network can be written as,

N N
y=y0+2cif(xi)=y0+Ecif(aiu+bi) 3.1

i=1 i=1

where u is the single network input, y the single network output, x, the state of the

i neuron, a, the input weight of the i neuron, b, the bias of the i neuron, c, the

output weight of the i neuron, and Y, the output bias. In matrix notation, the system

equation becomes
Y=Yo+c - flau+b) (32)

where a, b, and ¢ are vectors of components a,, b,, ¢, and respectively. The

piecewise linear activation function f(x), figure 3.1, is defined as,

f(x)=0, for x<0
f(x)=1x, for O<x<1 3.3)
f(x) =1, for x=1

Note that this activation function, on the contrary to the usual activation functions,
does not pass through the origin and is not odd. However, without loss of generality it
could be shifted as desired along both axis since this transformation would occur only on
the linear part of the network. Using this function simplifies the equations and algorithms

presented later.
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Figure 3.1: The piecewise linear activation function f{x).

This neural network is depicted in the following figure 3.2:
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Figure 3.2: Single hidden layer SISO neural network.

In the remainder of this section, it is shown that this kind of network can
approximate a wide class of SISO functions. Furthermore, an algorithm to find the
required values of the coefficients a,, b,, and c, for performing the correct approximation
1s introduced.

A SISO function y= g(u) is considered, where both # and y are scalar real
variables. Furthermore, g is assumed to be continuous over a compact domain
u E[Al, Az], and the 1% derivative exists and is continuous everywhere over that domain.

Theorem 3.1: Considering a function g(u) that follows these assumptions, then for
every point u, E[)Ll,)uz], and for every tolerance 7, there exists a real number ¢, and

there exists an affine function w(u)=1Ilu+1, with constraints w(u,) = g(u,) and
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w(u, + €) = g(u, + &) so that over the sub-domain [uo,uo + e] the difference between the

original function and the affine function is less than .
Mathematically, it can be written:

Yu, qkl,lz], Vz €N,
de €R,Aw(u) = Lu+1,
where w(u,) = g(u,),w(u, + €) = g(y, + €)
3.4

so that Vu, & u,,u, + € J[lg(u,) - w(w )| < =

Proof 3.1: Because it is required that w(u,) = g(u,) and that w(u, + €) = g(u, + ¢)
the two parameters /, and [, are actually directly related to ¢, and there really is only one

degree of freedom: €. In other words, it is known that for all ¢, the original function

and the affine function will intersect at both #, and u, + £. Since one and only one

straight line can pass through two distinct given points, for every ¢ there is therefore only

one possible w(u). Figure 3.3 illustrates these relations.

_ . —w(u)

g(u)

Uo Uote u

Figure 3.3: Illustration of the relation between g(x) and w(u) for a given u, and €.
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Therefore it can be noticed that the theorem is equivalent to saying that a function
from C, can always be locally approximated by a piece a straight line, and that is a well
known result the proof of which can easily be found in math books. This concludes the
proof 3.1.

It is along these lines that a single layer neural network for approximating any
SISO function that belongs to C, over a finite domain [AI,AZ] can be constructed: The
neural network intersects the original function at a number of points, and has pieces of
straight line in between. Each piece corresponds to a neuron being activated.

At this point another function W(*) needs to be introduced. It is used in the
algorithm for constructing the neural network. In the theorem above, the existence of &
and of the corresponding w(u) were stated. However, these are certainly not unique. The
purpose of this new function ¥(*) is to find among all the possible {€,w(u)} the set of
most interest: the largest ¢, and the corresponding w(u). The larger the value of e, the
larger the range covered by each neuron. Using the notation above, for every u,, this new
function returns the largest & such that an affine function the distance of which from the

original function is less than 7 indeed exists:
€ =lp(g(u),”o:‘5) (3'5) -

There is no major difficulty coding this function W¥(*) in a computer program.
The procedure is to increase £, compute the corresponding w(#) and check the distance
between w(u) and g(u). As long as this distance is less than 7, £ is kept increasing. Once
this distance is equal to 7, the corresponding & is assumed to be the desired solution.

At this point it can be questioned how good this simple algorithm is.

Some computations can be performed on g(#) and w(u). A 2" order Taylor series

of these can be written as:
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_ 2
2(1) = gtg) + (1= 1) g"(tg) + =20 g7y 4 07 (3.62)

8(u, +£) — 8(uy)
€

w(u) = (U —uy) + g(uy)

2
g(uy) + £8' () + fz—g"wo) - g(u,)

= (U~ uy) + g(u,) + 0> (3.6b)
€

= g'(u, U -u,) + g-g”(uo)(u —Uy) + g(u,) + o’

The distance between g(u) and w(u) is now computed. Notice that the common

terms g(u,) + (u— u,)g'(u,) in both equations cancel out. The equation becomes:

_ 2
ls@) - w(w)] = "(12“—°)g"(u0) - -;—g"(uo)(u —u,)+ 0

i, (u - u0)2 _ 8(” _uo) 3

- "g (uo)( > > ) +0 3.7)
"g"(uo)( (u—zuo))((u 1) &)+ O

Note that 0 = "u - u0"s ¢ . Therefore the distance can be bounded by:

le(w) - ww)| < }g(u)(g) @]+l ’%g"(uo) +lo’] (38)

Functions for which higher order terms can be neglected are first considered.

2
Under such an assumption, the maximum distance is bounded by I%— g”(uo)l. It is clear

that this distance increases monotonically with ¢. This confirms that the simple algorithm
that slowly increases the value of ¢ indeed computes its correct value: there can't be a

larger £ that would produce a smaller distance than the one that is found.
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Considering functions for which higher order terms cannot necessarily be
neglected, it can be realized that the algorithm may sometimes fail. A function for which
|03|| is large for small &, but decreases as & increases is considered. At that point it can
be seen that the bound on the distance doesn't necessarily increase with & since a
decreasing term and an increasing one are summed up. This situation can be also
described on figure 3.4 where it happens that as ¢ is increased, the distance between the
function and the affine line becomes larger than 7, but if £ were to be increased further
the distance would decrease and become again smaller than the tolerance. The algorithm
produces the value ¢, while the value &, is the desired value. It is clearly seen in this

example that the function g(u) has locally a strong cubic coefficient which is the same as

saying that |03" can't be neglected.

A g(u)

Uo Uo + €1 Uo + €2

Figure 3.4, example where the 'get epsilon' algorithm would fail.

It can be noticed that for most functions the higher order terms can indeed be
neglected, and therefore the cases where the algorithm fails are very rare. In addition it
has to be realized that even when the algorithm fails, this has no major consequences. The

only thing that happens is that two neurons are required while in theory one would have



-309-

been sufficient. Since a typical neural network deals with overall several hundred or
thousand neurons, one more or one less certainly shouldn't be much of a worry.

The code for this algorithm is shown in the Appendix. It is called GetEps(). The
input arguments are a pointer to the function g(u), a real value for u,, and a real value for
. It returns a real value for €.

All the required elements have been presented and therefore an algorithm for
constructing a network of the type of equation (3.1) for approximating a SISO function
from C,, with a tolerance T can be introduced. Usually such a construction is performed
using algorithms for programming single hidden layer neural networks such as the so-
called backpropagation rule. However, the algorithm about to be presented is extremely
simple to implement, and perfectly adapted to this application: the input vector is a set of
continuous values. The backpropagation rule requires any arbitrary set of values; with this
algorithm that continuity fact is made use of, and the overall programming is therefore

more efficient.

Algorithm for approximating a SISO function y=g(x) over an interval [Al,/\z].

Step 1. The output bias y, is set equal to g(A,), N=0, u,,,,, = A,

work

Step 2. Find € =¥(g(w),u,,,,;,T)

Step 3. N=N+1: A neuron is added to the network for that sub-domain.
Step4-1. a, = /¢

Step4-2. by = -u,,, ay

Step 4-3. Cy= g( Uyorr + 8) - g(uwark)

Step 5. u,,,,; = Uy + €

work wor,

Step 6. If u,,,, = A,, exit, the construction is finished, N neurons have been

programmed. The weights and biases a,,b,, and ¢, are known. Otherwise, go back to Step

2 and continue putting more neurons.
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The code for this algorithm is shown in the Appendix. The routine is called
ProgSISO(). Input arguments are a pointer to the g(#) function, real values for 7, A,, and
A,, and pointers to the a,,b,, and ¢; arrays. It fills up the arrays and returns the values y,
for the output bias and N for the number of neurons required by the network .

Here is an example of approximation over a domain of a SISO function by a
single layer neural network using this implementation.

The approximation of the function y= g(u)=2u + Cos(2nu) over the domain
[-0.2,1.2] 1s reqﬁired. The maximum tolerance is set to 7 =107>. After completion, the
programming requires 80 neurons. The approximation is then checked by computing both
the original function and the neural network approximation, and plotting them against one
another. In between the bounds, the result is indeed excellent. Outside the bounds, no
neurons are active, i.e. they are either saturated or at rest, and therefore the network
approximation is constant. The code for this example is in the Appendix, it is called

ChkSISO.c.

4 -
3 Lower bound -~
7N
, -
2 - ! -
/
!
1~ -~ 4
RN /
/ Ny Upper bound
(s —_— ~
-1 7 = = =Neural Net
5 «====2u + Cos(21u)
3 T T T T T 1

-1 05 0 0.5 1 1.5 2
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Figure 3.5, Example of approximation of a SISO function by a neural network.

It has just be shown that any SISO function that belongs to C, over a finite
domain can be approximated by a single layer network with as much accuracy as desired.
The more accurate the model, the larger the number of required neurons. Similarly, if the
domain is increased, the number of neurons has to be increased if the overall accuracy has

to stay the same. Furthermore, an algorithm for programming this single layer network

was presented, i.e. for the approximation of a given function, a set of values for a,, b, ,

and ¢, was found.

3.1.2 MISO case.

3.1.2.a Previous approaches.

It was shown in the previous section how a SISO function can be modeled or
approximated with a single layer neural network. This coming section summarizes a
similar study, except that now the input is a vector instead of being a scalar. Therefore,
the function is a so-called multi input function, or MISO function. There are theorems
which state that MISO functions belonging to some classes can be approximated by
neural networks. However, construction techniques similar in some sense to the ones
described in the previous section for SISO functions are unfortunately not as explicit.

Some results have been reported relating to the existence of such models. The
next paragraph summarizes two different approaches for approximating a MISO function
by a neural network.

First, Ken-Ichi Funahashi considers a continuous (for each variable) MISO

function being a continuous mapping from the n-dimensional space R” to the single
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dimensional space R . He shows that this mapping can be approximated by a single layer

neural network over a finite compact subset of " with as much accuracy as desired.

However, this work considers only the existence of the realization, and a couple of
problems arise. The first problem is related to the topology of the network. Because all
the layers are on the same single layer, they are all acting in a similar manner. This
produces a rather inefficient realization where the number of required neurons becomes
extremely large. The second problem is related to the programming. Indeed, there is no
systematic and efficient way to program the network. Once again backpropagation may
have to be called.

In contrast to Funahashi's work, K. Hornik et al. show that this approximation can
be realized using a neural network with several neuron layers (multilayer) rather than
with a single layer. Proceeding in this manner improves tremendously the efficiency of
the approximation. The number of required neurons drops by orders of magnitude
compared to Funahashi's architecture. There is no longer a huge single layer, but several
smaller ones instead. However, it must be noticed that an accurate topology of this
multilayer network is unknown. The multilayer feedforward network is not a simple
extension of the single layer network, it is not just a "scale-up". There is currently no
definite approach to optimize, or even determine the overall number of required neurons,
and worse, there is no rule to determine the number of hidden layers, and the size of each
of these layers.

With respect to programming the network, the problem has unfortunately gone
even worse than it was in the previous case. As stated before, it is difficult to program a
single layer network. It can be stated now that it is much worse to program a multilayer
network since it is extremely difficult to observe, understand, and control effects of

parameters associated with neurons that lie on deep hidden layers.
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In the coming section, an alternate approach for programming a neural network
for approximating a MISO function is presented. From the previous results, it is clear that
having several layers is advantageous in terms of efficiency. However, it must be kept in
mind that programming must still be feasible. What is suggested here is a multilayer
network where each layer is actually directly related to a SISO function, for which a
systematic programming algorithm was presented. This is a trade-off where the
multilayer efficiency is preserved and the programming is kept within firm grounds. The
cost for that trade-off is that the MISO function to be approximated must have some
particular characteristics. In other words, it will not be possible for all MISO functions to
be approximated using this scheme, but only for a class of them. However, this class

includes almost all the functions that are "used" in engineering applications.

3.1.2.b The unary* decomposable functions.

This section starts with the recall and the introduction of a few terms.

A 'unary’ function is a real scalar function of a real scalar variable. It is a mapping
from R to R. It actually is what was called so far a SISO function. For example Cos(x)
is a 'unary' function.

A 'binary' function is a real scalar function of a pair of real scalar variables. Itis a
mapping from R xR to R. It is a MISO function where there are 2 inputs. For example

Cos(x+y) is a 'binary' function.

The term "unaryt decomposable' function is now introduced:.

Definition 3.1: A unaryt decomposable function is an n-input MISO function

(from R” to R) that can be decomposed into a set of unary functions interconnected in a

particular manner: The elements of this set can be cascaded one to the next one, and their
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outputs can only be combined by linear combinations to feed another input. In addition,
only feedforward is allowed, which is equivalent to saying that absolutely no signal can
go back through feedback.

A mathematical representation of unaryt decomposable functions is the

following:

y = f(u,,u,,U,,....,u,) is a unary* decomposable function

<>

EI{}I(.), fz(. ) - fp(.)} a set of p unary functions

El{xl, Xgeon xk} a set of k state variables

Hs)H v}, 3o}y, all real coefficients

such that

Y=Y+ igix,- and x = Ell Yyl (%)) + Sléi,f.z(u,-)

= = <

Even though this definition seems somewhat restrictive, these unaryt
decomposable functions are very general, and almost all the MISO functions used by
engineers are actually of that type.

Notice that constants can always be entered using a constant f,( .) function.

It can also be noticed that any function that can be decomposed into unaryt
decomposable blocks, interconnected only by linear combination, is also a unary*
decomposable function, i.e. the set of unaryt decomposable functions is closed under
decomposition. |

As an example, the unary* decomposition of a very fancy MISO function (3-

input) is shown. The function is

S, uy,us)=u, + JLog(Cos(u3)) + Tan(u1 + "10“l + uz) (3.9
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This particular function has probably no interest whatsoever except to show how a
rather complex mathematical expression can be decomposed into unary functions,
interconnected by the binary operator 'addition'. At this point it can be noticed that for this
application a 'binary operator' or 'binary function' are absolutely equivalent terms. From

now on, it will be refered to multiplication or addition as 'binary functions'.
X5
Upe —>{ +

fluyuzuj

X F
Tan X
10 X X, 6
. V'

U, e—>| Cos——e—>|Log

Figure 3.6, example of the unary* decomposition of a MISO (3ISO) function.

The nomenclature of the definition 3.1 above can be illustrated after this example.

Six unary functions are introduced. Using the notation above, they are:

f,(x)= Cos(x), f,(x)=Tan(x), fy(x)=Log(x)
Fa(x) =10%, fyx)=+x,and f(x)=x (3.10)

Six state variables x,,x,,X,,%,,%;, and x, as shown in the figure (3.6) are also

created. The system equation can be written as:
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X = i4(u1) + fo(uz)
X, = is(xl) +]~co(u1)

& =f,:1("3) i 3.11)
Xy = fo(x,) + f3(x3)

x5 = fo(,)

X = fs(x,)

It is straight forward to check that y = f(u,,4,,u,) = x, + x,
The decomposition of a unaryt decomposable function using the correct
procedure was just presented. Notice that the dependence of any state variable x, to

another state variable x; occurs indeed only for j<i as required by the definition.

As a verbal argument to show that most functions used by engineers are indeed
unary* decomposable, a small HP calculator is considered. It happens that functions that
are realizable using an HP calculator are unaryt decomposable. It is pretty unusual to be
stuck with a function that cannot be realizable with an HP. It is therefore very unusual to
be stuck with a function that is not unary+ decomposable!

It is fairly straightforward to show that an HP computes only unary*
decomposable functions. The HP works with reverse polish notation, which means that
data are stored into the stack, operations affect only the first register, or the first two
registers. Functions using only the first register such as cos(x), sqrt(x), or 1/x are clearly
unary functions. Functions using the first two registers are addition, subtraction, and a
few others. Addition is the basic binary element, subtraction is nothing but an addition
where the second argument has been applied the unary function 'times -1', and the other
few binary functions such as multiplication, division, and y* (y to the x) are unary*
decomposable too, as it will be shown in due course. Therefore, any function realizable

on an HP calculator is indeed unary* decomposable.
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To conclude this section on unary* decomposable functions, one has to be fair
and show a few examples of functions that are not unary* decomposable. These are
basically from 3 different classes. The first class includes functions that can't be
computed as a one step process, such as a function that involves an integral operator. The
second class includes the non-continuous functions. However, these are rarely used to
describe a real life engineering process. Lastly, the third class includes the functions that
are given through a tabulation rather than through an analytic expression. Such a
tabulated SISO function is no problem, but for such a tabulated MISO function, it is very

difficult to perform the decomposition into smaller SISO blocks.

3.1.2.c The 'pseudo multilayer' neural network.

A new feedforward-only neural network architecture is now introduced and
defined: it is called the 'pseudo multilayer' topology. It has first to be recalled that a
regular multilayer network is a set of neurons that are grouped into subsets, the layers,
where connections occur only from one layer to the next.

Definition 3.2: A 'pseudo multilayer' network is a multilayer network with the

usual grouping configuration, i.e. the 'layers', and 2 additional properties:

1. Each layer is actually a SISO single hidden layer network.

2. A finite number of discrete direct connections, or connections by means of
linear combinations, are allowed between the input and output element (there's only one
of each per layer since they are SISO layers) of layers that are not necessarily
consecutive.

The next figure (3.7) is a representation of such a 'pseudo multilayer' network. For

the simplicity of the drawing, neither the linear weights between layers, nor the input or
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output weights and biases of the SISO stages are shown. However, every connection is
weighted by a real constant. This example is a 4 input, single output network with a
pseudo multilayer architecture. It is clear how to locate the single layer sub-networks,
along the linear combinations of their outputs to be fed into the input of another stage, not

necessarily the very next one, contrary to regular multilayer networks.

Figure 3.7, example of a 'pseudo multilayer' neural network.

The mathematical representation of a pseudo multilayer network can now be
considered. Similarly to every other network, state variables can be assigned to different
elements of the network. Two distinct types of state variables are provided. A "macro”
state variable, and a "micro" state variable. The macro state variables are used to describe

the interconnections among the inputs and the SISO sub networks that constitute the
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network; this section of the network is linear. Notice that there must be 2 kinds of macro
state variables: those that correspond to the inputs of the sub networks and those that
correspond to their outputs. Each of these SISO sub networks can be described on a
smaller scale by means of the micro state variables. This description includes the

nonlinear elements.

The following assigments are made: the inputs are called u,, the output y, the
micro state variables x,, the macro state variables corresponding to the SISO inputs &,

and the macro state variables corresponding to the SISO outputs &, . The following

statements can be written:
Macro state variables: each input macro variable is a linear combination of the

outputs of previous stages, along with the network inputs:
E=M u+M L (3.12)

Notice that the M, matrix is a stricktly lower triangular square matrix: no

feedback is allowed, not even self feedback.

The next step is to look at the k™ subnetwork: SISO,. Its output macro state

variable is {, and its sole input is &,. The description of a SISO single layer network,

equations (3.1) and (3.2), that was presented at the very beginning of this chapter can

therefore be used here:
& =&y + 6 f(x) (3.13)

where x, is a state vector corresponding to the micro state variables for the
description of the k** subnetwork SISO, . The micro state variables are connected to the

SISO input as:
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X =85 +b (3.14)

The global output is a linear combination of the macro states with weights Q:

Output description: y =7y, +Q" - (3.15)

At this point the pseudo multilayer network can be summarized by the following

set of equations:
E=M, u+M L
x=A5+p
£=¢ +C"- f(@ (3.16)
y=Y%+Q" -

There is now a single vector of micro state variables x which is the vertical

concatenation of all the previous x, vectors, each of them being the micro state variable

vector of the SISO, sub network. A and C are now block diagonal matrices where each

block k is the previous vector g, or ¢, . Similarly to x, the b vector is constructed as the

vertical concatenation of the previous individual b, vectors.

3.1.2.d The neural network for MISO approximation.

At this point the 2 concepts introduced earlier need to be related to each other: the
'pseudo multilayer' feedforward neural network, and the ‘unary+ decomposable' functions.

The following theorem can be stated:
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Theorem 3.2: Every unary* decomposable function can be approximated with as
much accuracy as desired over a finite compact domain by a pseudo multilayer
feedforward neural network. The complexity of the function determines the required
number of pseudo layers (i.e. SISO blocks) in the network, and the required accuracy
determines the size of these layers.

Proof 3.2: In order to prove this theorem, it is necessary to have a look at the
definition of a unary* decomposable function. The required unary functions can be
directly mapped into the SISO sub networks of the pseudo multilayer network. Similarly,
the required function state variables can be directly mapped into the input macro state
variables of the pseudo multilayer network.

Depending on the complexity of the original function, its unaryt decomposition
includes more or less unary functions, hence the network includes more or less pseudo
layers.

Depending on the required resolution, each of the SISO blocks is programmed
differently, hence determining the number of neurons in each pseudo layer. This

concludes the proof 3.2.

A unary* decomposable function which is decomposed according to the definition
(3.1) can be immediately converted into a pseudo multilayer network using the mapping
that was just presented. The state variable mapping is quite simple. The mapping for the
unary functions involves the conversion of a unary function into a single hidden layer
neural network: A method for systematically programming such a network with as much
accuracy as desired was introduced earlier. It is therefore suggested to follow this route

here.
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It was shown so far that a wide class of MISO functions can be approximated by a
neural network with as much accuracy as desired. It was also shown how it is possible to

actually construct the corresponding network.

3.2. Object oriented approach for building the desired network.

In the previous section he existence of the approximation of a MISO function by a
neural network, and a method for constructing the network were shown. However, even if
this method works well, it is sometimes cumbersome to use; for example it is still
necessary to program single layer subnetworks for approximating the unary functions.
The purpose of this section is to show an implementation using an object oriented
methodology of that construction method in order to perform the network synthesis more

easily and efficiently.

3.2.1 Objects and SISO functions.

What is really desired is to avoid the programming phase when it is required to
convert a unary function into a single layer subnetwork. The alternative that is suggested
here is to have a list of very basic unary functions that are already preprogrammed, from
which more complex functions are constructed. By means of further combinations, every
possible unary function can eventually be assembled.

What was said in the SISO section is that every unary function could be
converted into a subnetwork using the algorithm presented. What is now said is that these
functions must first be decomposed into simpler unary functions that are chosen from a

given list. This list contains functions that were programmed once for all using the
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algorithm presented, and the result was stored for further use. Proceeding in this manner
allows to 'synthesize' single layer subnetworks, rather than 'program’' them.

These preprogrammed subnetworks are called 'objects' and are chosen from what
is called the 'basic element list'.

The next figure (3.8) presents the whole picture of the process of decomposition
of a unary*t MISO function not only into subnetworks, but also into elements from the
basic element list. Once that decomposition has been performed, a pseudo multilayer
network for approximating that function can be directly synthesized instead of being

programmed.

Unary * decomposable
MIS0 function

v

$150 function blocks
interconnected only
through linear combination

Y

S$150 blocks decomposed
into SISO basic elements
chosen among the list

v

Synthesis of the
approximating pseudo
multilayer neural net

Figure 3.8, Complete decomposition of a MISO function.
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More specification and information of the 'basic element list' is now needed. How
should these elements be selected? They certainly need to be basic enough so that other
SISO functions can be decomposed into them. They also need to be the functions that are
used most often. The operations that are already by default directly possible through the
network architecture without any 'list' are the addition and multiplication by a scalar.
These are linear operations and are performed on what was defined earlier as the macro
state variables, for which the network is linear. The list of non-linear basic elements
needs to be constructed.

Due to lack of real and strong guidelines, it is clear that the list is certainly not
unique. It requires a minimum of about half a dozen elements, but could include many
more. These non-required elements could possibly be decomposed into the required
elements, but are however desirable to include if they are used often.

A few SISO basic functions are required. There are two families: 'trigonometric'
and 'exponential’ .

With respect to the 'exponential' family, 2 basic elements are needed: the natural
logarithm Ln(x), and the natural exponential function e¢*. Considering these basic
elements along with already legal linear operators, the following SISO functions can be

constructed:

x2 = e2Lr(x)

,x - eLn(x)/Z

1/ x =et"®

xP = ePLn®

(3.17)

le =ean(10)
Log,((x) = Ln(x%n(lo)
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Similarly, the whole 'hyperbolic' family can be constructed as well. It includes
functions such as Cosh(x), Sinh(x), Tanh(x), and their inverses.
In addition, it is possible to construct the very important binary multiplication

operator, ¥, and the binary division operator, /, according to:

- e(Ln(x)+Ln(y))

x¥*y and = plLn-Ln) (3.18)

X
y
However, at that point it must be noticed that the Ln(x) function is defined only

for positive numbers, and therefore the multiplication by a negative number would be

erroneous. A better alternative for computing multiplication of 2 numbers is the

1
following: x-y= E((x + y)2 -x*- yz). Notice that now the multiplication operator is

based around the 'square' function, which itself in turn is built around the exponential
family. It is therefore needed to find a way to program the square function independently

from the exponential. There will be more details on this particular problem later.

After the 'exponential' family comes the 'trigonometric' family. Assuming that an

approximation of Cos(x) is known, the approximation for Sin(x) is readily available. The

formula Sin(x)=Cos(“2—-x) can be used. The 'other' well known relation

Cos®(x) + Sin*(x) = 1 could have been used instead, but a sign uncertainty would have
appeared in Sin(x) = m. Besides, it is easier to just change a sign rather than
computing a square followed by a square root! With known approximations for Cos(x)
and Sin(x), the construction of Tan(x), Sec(x), Csc(x), and Cot(x) is straightforward.
Therefore, the construction of all the 'forward trigonometric' functions can be built around

the single Cos(x) approximation.
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To approximate Cos(x) the general method described earlier for approximating a
SISO function can be used. However Cos(x) is periodic, and it is desired to try to use that
fact in order to make the approximation more efficient. Assuming that for a given
accuracy N¢ neurons are required for the approximation of Cos(x) over one period, it is
clear that using the general method, n*N; neurons will be required for the same
approximation over n periods. In order to improve the efficiency, the solution is to
transform Cos(x) over n periods, into a function that 'takes care' of the periodicity
(compute the residual modulo 2m), followed by the approximation of Cos(x) over a single
period. Each of these 2 functions is a SISO function. Therefore Cos(x) is approximated by
a 2-layer neural network. The function that removes the periodicity in theory could be a
tooth saw function from O to 2. It is shown in figure (3.9). However, it is clear that this
function is not continuous. Hence it absolutely can't be approximated by a single layer

neural network.

-1 T T T T T T T
-1 0 1 2 3 4 5 6 7
X/ MT—

Figure (3.9), Plot of the tooth saw function to remove the 27t periodicity.
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Due to the fact that Cos(x) is periodic and even, the relation Cos(x)=Cos(m-x) can

be used. For an argument the residual of which is in the interval [0,5] the function to be

used is Cos(x). For an argument the residual of which residual is in the interval [rt,27] the

function to be used is Cos(m-x). With these assumptions, the original tooth saw function

to remove the periodicity can be replaced by the new tooth saw function shown on figure

(3.10).

| 1 1 |} I 1
-1 0 1 2 3 4 5 6 7
X/ —»

Figure (3.10), Plot of the improved tooth saw function.

This function is now continuous, it can therefore be approximated by a single

layer neural net. In terms of 'cost', every period on that function needs 2 neurons.

Therefore the total cost for approximating Cos(x) over n periods is 2*n+N¢, which is

much smaller than the original cost #*N¢, especially when n becomes large.
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With respect to the inverse functions, both ACos(x) and ASin(x) are needed for
uncertainty concern. ASin(x) = ACos(J 1-x* ) or vice versa is a valid expression only for
results in the 1% quadrant. Otherwise there is an uncertainty between the 2" and 4"
quadrants. However, with some trigonometric manipulations, it is easy to show that

Atan(x) to ASin(x) in all situation can be related by the always true expression:

ATan(x) = ASin( y m) (3.19)

Notice however, that ATan(x) is a possible neuron activation function. This
function can. therefore be realized using a single element neural network, i.e. a single
neuron. That short alternative may be desirable since it is an efficient model.

Several functions that must be included in the basic element list were presented,
as well as some more that could be included, if desired. Once the basic element list is
determined, these functions must be converted to single layer subnetworks by means of
the SISO algorithm. Once this is performed, the subnetworks must be saved, i.e. for each
one, the number of required neurons, the weight vectors and biases are saved. When a
MISO function has to be approximated by a neural network, it is first decomposed in a

correct manner, then synthesized using these preprogrammed and stored elements.
3.2.2 Improvements of the set of primary elements.

The object oriented approach that was just presented is so far missing a few
important elements that deserve more attention. A few key functions that do not exist as
such, but only as 'built ups' out of other functions were noticed. In this coming section an

efficient construction of these missing functions is presented.
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3.2.2.a Synthesis of the "square" unary function.

In the previous section the importance of the "square” function was shown . This
unary function is used not only as-is, but also, for example, for computing the magnitude
of an error signal. However, its most important aspect is that it is the basic element to
construct the fundamental binary "multiplication" operator, so far missing in the network
architecture.

Because of its importance and its frequent use, it is most desired to have a very
efficient synthesis for it, rather than just a usual program as for other unary functions,
such as 'cosine' or 'square root'. It happens, as it is shown in the coming paragraphs, that
with only 2 neurons the 'X square' function can be synthesized with an accuracy almost
only limited by the numerical precision of the machine, roughly 10~ in single precision.
Note that a "regular" programming (following the SISO algorithm) could never be that
accurate, and would require at least 32 neurons for a 10~ accuracy over the domain [-
1.0,1.0].

As previously said, there is no real reason for having a completely homogenous
network (all neurons having the same activation function), and for a reason that will

become clear in due course, these 2 neurons have the sigmoid activation function

s(x) = rather than the piecewise linear activation function mostly used so far.

-

The function ¢, (x) is introduced and constructed as:

1 1
L) =S(xX=y)=SX+Y) =T =5 ~ [

Ta (3.20)
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x is considered as being the only variable, and y being a fixed parameter. From
a previous section the symmetry relation s(—x) = 1- s(x) stands.

Using the two previous equation, it can be computed:

t,(-x)=s(-x—y)-s(-x+7) =(1-s(x+y))-(1-s(x-v))
=-s(x+y)+s(x-y)=t,(x)

(3.21)
This clearly implies that z (x) is an even function.
t,(x) can now be expanded into a 5™ order Taylor series around the origin. Since

t,(x) is even all the odd power coefficients are equal to 0. Hence,

2 4
,(x) =1,(0) +1(0) -’52— ¥ z;4’(0)-;4-+ 0(x°) (3.22)

1 1

It is straight forward to compute ¢ (0) = ~ — -
’ 1+’ 1l+e

Y

However, computing the second derivative of 7 (x), keeping along the y

parameter involves longer computation, and computing the 4™ derivative is even worse.
In order to perform these symbolic manipulations, a mathematical software package can
be used.
Mathematica finds that
e’ 2e7¥ 2e% e’

@ (0) = _ - 2
O (1+e")2 (1+e")7§+(1+e7)3 (1+e’)2 (5:232)

and that,
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7’ 14e7% 36¢7 246~
t(74)(0) - 2~ 3+ i 3
(1+e'7) (1+e’y) (1+e'7) (1+e-y)
e’ 1462 14 36637 24e4y (323b)

ey Qre) (xe) (re)

To this point, the y parameter is still free. It can be assigned a value of particular

interest for the rest of the study. Indeed if #,”(0) were equal to O, that would imply that

the Taylor series of 7, (x) becomes:

2
@ mE 6 )
t,(x)=1t,(0)+1, (O)-2—+ O(x”), hence t,(x) would approximate a parabola, the

error being only of 6 order.

t‘f) (0) can be looked at assuming y as the single variable. There is interest in

finding the values of y , so that £, (0) = 0. #.”(0) can be plotted as a function of y

03 1 1 | 1 1 1 ] I

02 —

0.1 - —

(D)

(4]
¥
o

01 -

02 - -

03 I I I 1 I 1 I 1
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Figure (3.10), Plot of t(y4) (0) as a function of the variable y

This function is odd. It passes through the origin, crosses the x-axis at 2 more
points, and goes to O at infinity. Clearly the point of current interest is the x-axis crossing

for y between 2 and 3. Once again using mathematica, it is found that for

E= Log(l—mz—‘/gé) ~2.2924, 1, (0) = 0. For this value,
2, (0) = 1 L . 08165 (3.24a)
Y 14eb 14et ) '
and,
-t 272t 2 4
(PO ey 2 2 € 01361 (3.24b)
(1+e'§) (1+e‘§) (1+eg) (l+e§)
The function square(x) is introduced and constructed as:
x-C)-slx+C)-¢(0
square(x) = x-¢) (2)( )~
1 (OV
o) (3.25)

s(x —2.2924) — s(x +2.2924) + 0.8165
0.0680

It can be noticed that this function is perfectly "legal" in terms of being built using

the pseudo multilayer neural network architecture. It can be rewritten as,
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(ts (%) -1, (0))

square(x) = (3.26)
e
2
Performing a 5" order Taylor expansion produces:
x2
@0y 2- 6y|
( 1,(0)+1.(0) > +O0(x )) tg(O))
uare(x) =
5q (%) t(;)(O)
2
(3.27)

(té” © 5+ O(x“))

The function square(x) that has just been synthesized is approximating x* with

= x> +0(x%)

onlya 6" order error.

It can now be pondered up to what point that small error can be neglected. In
order to investigate this, for an increasing value of x both x*> and square(x) are
computed. The error between the two can be computed, and therefore an unacceptability
bound can be determined. These are summarized in the plot and table below, figures

(3.11) and (3.12). Because both x* and square(x) are even functions, only the positive

real axis is studied.
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Square(x)

Squere(x) ond x°

0 04 08 12 16 2
X — 3

Figure (3.11). Comparison of synthesized square(x) against original x

X Error
0.10 0.0000
0.20 0.0000
0.30 0.0000
0.40 0.0000
0.50 -0.0001
0.60 -0.0002
0.70 -0.0005
0.80 -0.0011
0.90 -0.0021
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1.00 -0.0040
1.10 -0.0070
1.20 -0.0117
1.30 -0.0186
1.40 -0.0287
1.50 -0.0427

Figure (3.12). Tabulated error of the synthesized square(x) function

It is no surprise to notice that the error magnitude increases as the function is
evaluated further away from the origin. The 6™ order error term can no longer be ignored
when x is around unity. At that point both x* and x° are unity, hence the signal to noise
ratio is close to 1. It is clear that this square(x) function can be used only when the
argument is less than 0.80 if a 10™ accuracy is required, or less than 0.50 if a 10™*
accuracy is required. However, this limitation is not a problem for computing squares of
larger numbers. Indeed it is always possible to scale down the input by a constant factor
a, and scale up the output by a constant factor ¢”. Scaling by a constant factor is again a
"legal" operation. However, it is not recommended to scale down by a too large factor,
the reason being that the computation would be made with numbers too close to the
machine numerical resolution.

The square(x) function just designed is indeed accurate enough for the current
needs, and is simple enough in terms of neural network topology to be included in the

basic element list for further use.

3.2.2.b Synthesis of the "multiplication" binary operator, *.
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When the neural network topology and "legal" operators were defined, it was
stressed that the very basic and fundamental multiplication operator was missing. It was
shown why it would be unwise to build a muitiplication around addition, logarithm, and

exponential, although all these are legal, and an alternate approach was suggested, namely

1
that x-y= E((x+ y)2 -x*- yz). It is clear that this method involves another unary

operator, the square function. Meanwhile, in the previous section an efficient model using

only 2 neurons to compute the square of a number was developed. This square(x)
function is used for synthesizing the "multiplication" operator.

From the previous section,

(x-C)-s(x+&)-1.(0 ,
(2)
f, (0% (3.28)

where £, 1,(0), and #”(0) are constants defined earlier. The multiplication

square(x) =

operator mult(x,y)1is introduced and defined as,

mult(x,y) = %(square(x +y) - square(x) — square( y)) (3.29)

Combining the two previous equations, it can be obtained,
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s(x+ y—C)—s(x+y+C)—tC(O)

@(0)
mult(x,y =-1- c 4
’ S(x-8)-s(x+£)-4(0) {y-£)-s(y+&)-21(0)

tg”(o% zg”(oz

__1_(s(x+y—C)—s(x+y+C) )
_téz)(o) —s(x—C)+s(x+§)—s(y—§)+s(y+§)+tg(0)

N

(3.30)

It has to be remembered that the square(x) function produces a valid result only

when the argument has a small magnitude. Otherwise a scaling is required. It is obvious
that some care is required when computing the multiplication of 2 numbers using the
mult(x,y) operator as well.

Figure (3.13) presents some examples of the usage of mult(x,y), along with the

errors. Note that the scaling factor was 100.

X y x*y mult(x,y) | Error |
2 4 8 8.0000 0.00000
3 6 18 18.0000 | 0.00001
-1 5 S -5.0000 0.00000
5 9 45 449999 | 0.00015
-7 -11 77 76.9993 | 0.00067
9 12 108 107.9983 | 0.00171
10 -14 -140 | -139.9998 | 0.00018

13 13 169 168.9938 | 0.00622




-338-

Figure 3.13, examples of the use of the muli(x,y) operator, along the error.

The synthesis of the mult(x,y) operator is acceptable. The errors are of small
magnitude. Similarly to the square(x) function, it can be included in the basic element
list to be used when assembling more complex functions. It can be noticed at this point

that mult(x,y) requires only 6 neurons.

3.3. A case study for comparison with classical methods.

In this section, the object oriented method that was presented for constructing a
neural network for function approximation is compared against more classical methods
for solving the same problem. As it was said before, it is possible to approximate a MISO
function by a single layer neural network, following Funahashi, or by a multilayer neural
network following Hornik. Both of these use the backpropagation rule as a mean for
programming the networks.

In order to duplicate those results, backpropagation has also to be used. The
algorithms are implemented using Granino Korn's package Neunet/Desire presented in
‘Neural Network Experiments on Personal Computers and Workstations'. This package is
run on a Sun-4 station, in single user mode. In this way, the elapsed CPU time can be
tracked more easily. As shown later, the deal is days of CPU time...

The case study is an arbitrary function. It is desired that it has a nice 'look' and be
easily presentable. Therefore a dual input function is welcome, to be plotted in three
dimension. The arbitrary function to be approximated by a neural network is chosen to

be:
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y = fcase(ul’uZ)

ot s (3.30)
=[u, +cos(5u, +2)[u, +sin(2u,)]+ 2¢ (t-1F +fus-F)

The approximation is to be performed over the domain [0,3] x[ 0,3]. Figure (3.14)
is a Matlab plot of :

case”

\ |
N
""’ : ":'; ;///////;;l'-; L7/
[N
llll';' 07 , {/

i

00 = 00
y=(ul+cos(5*ul+2)).*(u2+sin(2*u2))+2*exp(-(ul-1).*(ul-1)-(u2-1).*(u2-1))

Figure 3.14, Plot of the case study function.

The case study consists of approximating this function with different network
architectures. In order to perform a meaningful comparison there must be some common
ground between all the cases. For every case the network has the same number of
neurons, and the corresponding residual errors are compared. Another indicator is the

time it takes to perform the programming, and these are compared as well. With respect

to this last point the number of times f__ has to be evaluated is the base of the

case

comparison, which is a better indication that just the CPU time.
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3.3. 1 Approximation by classical feedforward networks.

In order to perform the programming of a feedforward neural network for
approximating a function, Korn's example in his section 7.2 is followed. This example
has to be modified a bit in order to accommodate two inputs instead of one, but the
overall programming scheme is the same. Throughout the analysis, a different number of
hidden layers are considered. Overall, the approximating capabilities of feedforward
networks having one to six hidden layers in addition to the input and to the output layers
are studied. Similarly to Korn's example, and more importantly, similarly to the pseudo
multilayer network architecture to be compared to, the output layer neuron doesn't have
an activation function, but is a purely linear element.

In order for the backpropagation to run, the activation function needs to be
continuous and have a derivative. Similarly to Korn, tank(x) is used. With respect to the
backpropagation rule, Komn's improved version (faster convergence) is used as shown in
the next paragraph. With respect to neuron biases, each layer is allowed to be biased,
before the activation function, i.e. on the linear part of the neuron.

As just said, the back propagation rule used here is Korn's improved version. For
each layer i, both the weight matrix W, with the previous layers and the bias vector b,
have to be updated.

The algorithm works in 3 steps:

- For a given input, the information is propagated forward, up to a value for the

- output. For each layer, the neuron states are computed as:

x,=tanh(Wx,_. +b) : (3.31)
i i™i-1 i
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- The error between the target output and the obtained output is backpropagated
through the network, according to the rule:

delta, = W/, -delia

i1 N 10 (3.32)
where tri(.) is the triangle function, this is Korn's improvement: it replaces the
derivative used usually.

- The weight matrices and the biases are updated according to the rules:

W, =W, +gain-delta, - x,_,
b, = b, + gain- delia,

(3.33)

This describes the backpropagation algorithm used for the case study. A sample
code is shown in appendix A. This sample code is for the 4 hidden layer network case.

The complete process of running all the cases is fairly long. The results are
summarized in the coming section. The common ground for all the different networks is
that they all have an overall number of neurons equal to 100 (or closest to 100 as
possible). Every layer within the network has the same number of neurons. Figure (3.14)
below summarizes these results. The residual error is computed as the average over the
domain of the norm of the difference between the original function and the approximating
network:

Error=(|f....— NN

appronl)[Q 31x[0,3] (334)
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Hidden | # Neurons | Architecture Residual # [ ease
layers Error Evaluation
1 100 100 0.238 10°
2 100 2050 0.031 2¢10°
3 99 333 0.030 6010°
4 100 4925 0.022 1010°
5 100 5020 0.017 1310°

Figure 3.14, Summary of the case study for backpropagation networks

It is clear from these results that any network with more than one hidden layer
does a fairly good job of approximating the function. However, it can be noticed that the
number of function evaluations grows much faster than the error gain when increasing the
architecture complexity.

The reason that it was decided to use a common ground of only 100 neurons, and
that examples with more hidden layers than 5 were not run is just a pure technological
constraint: The last example, 100 neurons over 5 hidden layers, 20 neurons each, took
more than 4 days CPU time on a Sun-4 workstation in single user mode! The study could

have been pursued further, but the computations were getting out of hand.
3.3. 2 Approximation by the suggested network.
The suggested approach works in two steps. First the MISO function, which is

unaryt decomposable, is decomposed following the description from definition 3.1, or

the example that was shown thereafter. The second step consists of converting this
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decomposition into a pseudo-multilayer neural network following what was said in

section 3.1.2.d. Therefore this has to be done for f_,, too.

The unary* decomposition of f_,, is shownin figure (3.16)

Cos

u1'

uz.

2 > Sin

Figure 3.16, Unary* decomposition of the case function f,,.
At this point this decomposition can be converted into a pseudo-multilayer
network, where the SISO subnetworks correspond to the unary functions cos(x), sin(x),

and exp(x). The square and multiplication operators required in this example can be
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directly synthesized using the square(x) and mult(x,y) elementary functions described in
detail in sections 3.2.2.a and 3.2.2.b respectively.

In order to program this network, it can be remembered that there are 2
possibilities. The direct approach calls for programming individually the 3 SISO
subnetworks according to the algorithm described in section 3.1.1. Once these are
programmed, the complete network can be assembled. The object orieﬂted approach
assumes that the 3 SISO subnetworks represent 'basic' functions that have already been
programmed and are stored in memory somewhere. In both cases, the square and
multiplication are synthesized into the 2 neuron and 6 neuron special sub networks as it
was said in the previous paragraph.

The number of neurons required for programming cos() is called N¢os, Ngip for
sin(), and Nexp for exp(). The overall number of neurons of the approximating network,
including the square and multiplication subnetworks, therefore is

# =N, +N,

neurons sin

+ Ny, +2 +2 +6

'squarey 'squaregg mult

(3.35)

Figure (3.16) shows the pseudo-multilayer network that performs the

approximation of f

case*
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N e N

u2 +
e
e
Nsin (2)

-1 C
+ Nexp

)

3

Figure 3.16, Pseudo multilayer network for approximating f

case"®

Similarly as in the previous study, the residual error (defined as before) and the

number of times a function must be evaluated are recorded. For this last parameter, the

function to be evaluated is not f

case

but the three unary functions instead. Furthermore,

this is for the direct approach only, since for the object oriented approach the number of
function evaluations is O.
Since it 1s desired to know more about this network and since the programming is

very easy and fast, the study is not limited to only 100 neurons. Other cases are run as



-346-

well to perform a more complete study. However, the data for 100 neurons will be the
basis for the comparison against the straight feedforward networks that were studied in

the previous section. The table shown in figure (3.17) summarizes the results.

# of Neurons Residual Error # Unary Function
Evaluations

73 0.023 3039

75 0.021 3129

77 0.019 3151

81 0.017 2992

84 0.016 3128

91 0.014 3137

97 0.011 3014
105 0.009 3023
119 0.008 3088
134 0.006 3062
162 0.004 3121
226 0.002 3122

Figure 3.17, Result for approximating f, ., with the suggested network.

From this study it can be concluded that a small number of neurons does a very
nice job in approximating the function. It can also be noticed that the number of function

evaluations for the direct approach is very small, hence the programming is very fast.
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Once again, with the object oriented approach the number of function evaluations is 0,
hence the programming is instantaneous!

An interesting fact is that the number of function evaluations seems unrelated to
the required accuracy, or to the number of neurons. This is due to the way the SISO
programming algorithm works. The number of function evaluations is related to the step
size by which ¢ is increased in the W(*) function as described in section 3.1.1., equation
(3.4). What happens is that the whole function domain is scanned with this step size

resolution, independently of the required tolerance.

3.3. 3 Conclusion of the comparison.

An extensive test on both the classical approach and the suggested approach for

approximating the case study function f,,, has been run. All elements are present for

concluding the comparison.

Considering 100 neurons as test bench as said earlier, it is noticed that the
suggested network, in terms of residual error, performs twice as good as a feedforward
network with 4 hidden layers, and performs 35% better than a feedforward network with
5 hidden layers. In terms of function evaluations, and therefore speed of programming,
the comparison shows a terrific improvement: more than 4000 times for a similar

accuracy! Furthermore, it terms of real time for programming, the difference is much

more than that since one single evaluation of f, ., is much more CPU intensive than one

single evaluation of any unary function. Therefore the gain in terms of CPU time is much

more than 4000.
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Chapter 4:
Review of Global Optimization

This chapter is a review of current global optimization techniques. First,
optimization and minimization are defined and related to one another. Then, several
methods for various optimization problems are presented, and those of interest for this
project, including D.C. programming are reviewed, where 'D.C." stands for 'Difference of

Convex'.
4.1 General information

Before considerihg global optimization, it is necessary to first look at optimization
by itself, and then the difference between the two. A problem is said to be "optimized"
when it is in a "best" situation in some sense. In order to measure how good the situation
is, a performance function (also called cost function) is created. Optimizing a problem is
equivalent to minimizing (or maximazing) its associated performance function. A general
problem deals with a number of variables from several classes: the input variables which
are independent to the system, the state variables of the system which depend on both
themselves and the inputs, and the output variables that depend on the state variables and
the inputs. When the general problem is translated into a performance function, it is
composed of two parts: static and dynamic. The static part corresponds to a snapshot ook
at the system, the dynamic section corresponds to what was involved to drive the system

to the actual state. The cost function is often represented as:

J(T) = (D), 5T, y(T)+ [, 8u,20, y0))dt @1
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By the fact that the state variables considered here are possibly depending on
themselves, the system is implicitly assumed to be recurrent. For a feedforward system
(memoryless), the state variables depend only on the input; similarly to the previous case,
the outputs depend on both inputs and state variables. However, because there is no
feedback present, a given input results in a unique possible output. The system cost
function no longer involves what it took to drive the system to the present state since that

task is direct. It can therefore be measured instantaneously, and be represented as:

J(T) = flu(T),x(T),y(T)) 4.2)

Only this later class will be considered from now on. The cost function may
depend on output variables which depend in turn on state variables that depend further on
input variables. Therefore the cost function ultimately depends only on input variables. A

complete feedforward system along the cost function may be written as:

J(T) = fu(T), 2@(D)),yw(T),xu(T))) = f(w(I)) (4.3)

which clearly shows the dependency of the cost only on the inputs.

As it was stated earlier, the system is optimized when the performance function is
minimized. Equation (4.3) clearly shows that the cost function is a MISO function.
Assuming it belongs to C; a given input vector # that satisfies the equations (4.4) is

called a minimizing set of J, and J is said to be minimized when these conditions hold:
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i o1/ -
VJ=0 [Vl, o, = 0 s
{YLIZ(_)@ 1Vi,a%u220 .

The first equation, sometimes referred as Fermat's rule, states that J is "flat" in
every direction. However it might be a maximum, or a minimum, or a flat section,
independently in every direction. If it is of the same type in every direction and not of the
flat type, then this point it is what is called an extremum. The second equation states that

J is convex in every direction, implying that it is overall a minimum.

A

Figure 4.1: Plot of an arbitrary function that shows "zero derivative" points

In Figure 4.1 a sample function is shown. Points A, B, C are minima, D, E are
maxima and F is a flat point. All of these points satisfy the first equation of (4.4), but only
points A, B, and C satisfy also the second equation. From this example it is clear that a
function doesn't necessarily have only a single minimum. Therefore a cost function that
has several minima produces the same number of optimal solutions for the system it

represents.



Up to now, optimization has been related to minimization of a cost function. How
about global optimization? As it was just illustrated a system may have several optimal
solutions. A system 1is said to be globally optimized when among all the possible optimal
solutions, the very best one is determined: it is the global optimal solution.

It is straightforward to conclude that the global optimization of a system
corresponds to the global minimum of the performance function J.

The equation set (4.4) provides conditions for a point to be a minimum, but in no
sense does it give information with respect to global performance. At this point the
contradiction between a local study and a global result becomes obvious: a derivative and

a curvature used in equation (4.4) are local quantities:

h)- f(u-h
of | gu= @) - fu ))/211

(4.5)
) 2 _(fu+ h)=2fw)+ f(u- h))
0°f ] ou* = /hz

where h is a "very small" number. Clearly only the close neighborhood of a point
is explored when determining whether it is a minimum. In contrast, a global minimum
has to take into account the whole search space. When is a point u satisfying (4.4) a
global minimum?

If it can be determined that a function has a single minimum over the search
domain, then for sure there is only a unique solution to (4.4), and it corresponds to the
global minimum. For example a convex function is of this type. This is why it is simple to
globally minimize it. However, for an arbitrary function there is no such rule.

As a matter of fact there is no general method to determine the global minimum of
an arbitrary function. On a pessimistic but realistic note, Press [Press, 1991] can be

quoted as saying: "It is not hard to see why very likely there never will be any good,
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general methods"! Well, although there might never be general methods, several methods
which work in particular cases have been developed.

Before summarizing these methods for some particular problems, it is necessary
to present the two general classes of global optimization methods: deterministic and
stochastic. A deterministic algorithm proceeds step by step following straight rules.
Starting from a given initial state, the trajectory is always identical from one experiment
to another. In contrast, a stochastic algorithm proceeds in a manner that is disturbed by
noise. It is therefore clear that different trajectories are produced for different
experiments, even if all the initial conditions are alike.

When searching for a global minimum, an algorithm may try to "go down" in
order to reach the minimum. However, if it happens that the search proceeds into a valley
that doesn't include the global minimum, the deterministic algorithm stops when the
bottom of the valley is reached, without a chance to find the global minimum. In contrast,
the statistical algorithm may have a chance to "shake up" the system and have the search
continue in another valley. This situation describes the main advantage of a statistical
algorithm versus a deterministic one. However, there are disadvantages to this kind of
algorithms as well. For example, the amount of noise to be added to the system is system
dependent. Therefore, an a priori knowledge of the system is required. However, the
purpose of this introduction is not to do a complete comparative study of the two classes
of algorithms for global optimizations, but just a summary. There are good reference texts
for this task [Christofides, 1979]. Before finishing with statistical algorithms, the most
popular of these must be mentioned: the Simulated Annealing method [Kirkpatrick,
1983], [Sejnowski, 1986]. The system is "heated up" (i.e. a large quantity of noise is
added), and the minimum is looked for. As the iterations progress, the system is
progressively "cooled down" (i.e. the noise level decreases through time). Eventually the

system is "cold" (no noise at all) and the estimate of the minimum is supposed to be the



global minimum. The reason for this temperature change is the following: As the noise
level is extreme, the small details of the target function are ignored and only the main
structures are apparent to the algorithm. As the noise level decreases, the search may
move from one valley to a lower one, but hardly vice versa: more energy is required to go
up than down, therefore there exists a temperature when there is enough energy to go
climb the mountain from the upper side, but not enough from the lower side. Hence,
progressively the lowest valley, the one containing the global minimum is selected for the
final search where the noise is eliminated.

Throughout the rest of the project, deterministic methods are used. This therefore

concludes the presentation of statistical methods for global optimization.

4.2 Deterministic methods for global optimization

Contrary to the previously mentioned statistical methods, deterministic methods
are organized in such a manner that at every instant, for a given situation, the search
toward the global minimum continues in a direction determined by some strong
guidelines and rules. This implies that the algorithms must be able to deal with many
different events. They must also be designed in such a way that their efficiency to move
in the right direction is strong: From the knowledge of the problem accumulated through
the search so far, they must have good induction to where to search next.

It is clear that a deterministic algorithm for global optimization is a set of rules to
be continuously applied according to the performance of the search. This is why these
deterministic methods are called "programs". From the initial condition until the success
of finding the global minimum, or the failure not to do so, every event and decision is
"programmed". A deterministic method for global optimization is indeed fully

deterministic.
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As previously mentioned, the task of finding the global minimum of an objective
function may be very simple, or quite difficult depending on the complexity of the
problem. In order to achieve best success for various types of problems, several methods
have been developed for solving a particular problem. As the problem becomes more
complex, so does the method.

How is it possible to classify a problem as being easy or difficult? What are the
important parameters in a problem that may simplify the task? An optimization task is
made of essentially two components: the objective function to be minimized and the
domain over which the function must be minimized. Both of these are equally important:
For example a very simple objective function such as a linear function has no solution if
the considered search domain is not bounded. On the other hand, minimizing a periodic
function over single period domain is very easy, even though the function by itself has an
infinite number of minima. These two extreme examples illustrate that both the domain
and the function determine the overall complexity of the problem.

In addition, it can be shown that they are both related: it is always possible
through change of variables to simplify the domain at the expense of a more complex cost
function, or vice versa. This is why every algorithm is designed for solving a problem
presented as a pair: the domain and the function.

Before presenting a brief summary of various problems, some mathematical
definitions have to be recalled.

The definition of a convex function over a domain  is the following:

f(.):Q — Ris aconvex function <>
Vu,,u, €Q,Vt €0,1] (4.6)

Sl + A -Dw) stf ) + A -1) f(w,)
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In other words this means that every point on the curve is always below the line
segment connecting any other two points.

A more practical definition of a convex function is to say that its curvature is
"upward" or equivalently that its second derivative is non-negative in every direction.
Obviously, the second definition applies only to functions from C> while the first one is
valid even for non-continuous functions. For example the function y=x2 is convex.

A convex domain is one f{or which the line segment connecting any two points

belonging to the domain is fully included in the domain. Figure 4.2 illustrates a convex

domain and a non-convex domain.

Convex domain Non-convex domain

Figure 4.2. Example of convex and non-convex domains.

The next term to be recalled is a concave function. It is closely related to a convex

function:

{ f(w is concave} = {-— f(w is convex} 4.7

Therefore a function from C> is concave if its second derivative is non-positive.

A convex constraint is an inequality involving a convex function:

S (@) =0 where fis convex is a called a convex constraint.

A reverse convex constraint is also an inequality involving a convex function:
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g(u) =0 where g is convex is a called a reverse convex constraint.

Now that some definitions have been stated, a few common optimization
problems can be summarized.

The simplest problem in global optimization is a convex problem. Both the

domain and the objective function are convex. Therefore, there exists a unique minimum.
This implies that any descent method such as a simple Newton method can solve the
problem.

The next problem is called concave minimization. A concave objective function
has to be minimized over a convex domain. For this problem, it is known that the solution
has to be on the boundary of the domain. It is easy to observe that any point located in the
inside of the domain cannot be a minimum, otherwise the objective function wouldn't be
concave. It must be said that this problem has been studied very extensively for centuries
and that there exist several very efficient algorithms to solve it. However, concave
functions are of a very particular type and concave minimization lacks generalization to
other problems.

The next problem, which is more general, is called reverse convex. A convex

objective function is minimized over a domain which is the intersection of a convex
domain with the complement of another convex domain. Figure 4.3 illustrates such a

domain.

/ Reverse convex constraint

Convex constraint

<«
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Figure 4.3. Search domain for a reverse convex and canonical DC problem.

Finally, the last problem recalled here, which is the most general in comparison
with the previous ones is called a DC problem. "D.C." stands for Difference of Convex.
In a DC problem a DC function f, along a set of DC constraints {g;} is minimized over a
convex domain €. A function or a constraint f is DC if it can be written f=f-f" where both

J and f" are convex functions. A DC problem is written in the following manner:

Minimize f(x)
st.x€EQ, g(x)s0 4.8
where Q is convex, f& g: R” — R are DC.

Due to the duality principle between the domain and the objective function as
stated earlier using variable transformations, a DC problem can be transformed into a

canonical DC problem that is easier to solve [Tuy, 1985]. A canonical DC problem can be

stated as the minimization of a linear objective function over a domain made up of two
constraints: one convex, the other reverse convex. It is written in the following manner:
Minimize cx
s.t. i(x)=<0,g(x)=0 4.9
where c ER", h & g: R” — R are convex.

It must be specified at this point that the general solution of DC problems is a
very important result in global optimization since DC functions actually form a wide class
of functions. Hiriart-Urruty reviewed their importance, and discussed their generality

[Hiriart-Urruty, 1985]. It must be stated that a function from C> is a DC function, and
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therefore most of the functions used in engineering are DC functions. However, even if it
is known that a given function f is a DC function, it is not necessary that its DC
decomposition (finding f' and f" so that f=f-f") is easily known. This is one important
drawback of DC functions since this decomposition must be known in order to use the
minimization algorithms.

Assuming that the DC decompositions of both the objective function and of all the
constraints are known, through a transformation of variables, and the addition of
additional variables, a general DC problem can be converted into a canonical DC
problem. As stated in the definition, this problem is equivalent to solving a linear
minimization over the intersection of a convex domain with the complement of a convex
domain: the convex constraint corresponds to the convex domain, while the reverse
convex constraint corresponds to the complement of the convex domain. Therefore, the
search domain for a canonical DC problem is of the type represented on Figure 4.3.

Since the objective function is linear, it is certain that the minimum has to be on
the boundary of the overall domain. However, two situations can occur. Solving the
convex problem while ignoring the reverse constraint results in a solution S on the
boundary of the convex domain corresponding to the convex constraint. If this point §
satisfies also the reverse convex constraint, then the later is said to be a nonessential

reverse convex constraint. On the other hand, if the point § does not satisfy the reverse

convex constraint, then the constraint is called an essential reverse convex constraint. In

the latter situation, it is clear that the point § is not the solution of the original problem.
However, it can be said that the solution belongs to the intersection of the boundaries of
the constraints.

The canonical DC problem solution S can be summarized as:

-If g(u#) = O is a nonessential reverse convex constraint, then A(S)=0.

-If g(#) = O is an essential reverse convex constraint, then h(S)=g(S)=0.
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In any case, the solution must be on the boundary of the convex constraint. It is

not possible that A(S) = 0. The proof of this statement can be found in [Horst, 1993].

Figure 4.4 illustrates the different possibilities.

The solution lies at an intersection of the two boundaries if
the reverse convex constraint is essential

The solution is never
on this boundary

N\

The solution lies on this boundary if the reverse
convex constraint is not essential

Figure 4.4. Various possibilities for the solution of a canonical DC problem.

Now that various global optimization problems have been presented, methods for
solving them must be mentioned as well. The common principle for every method is that
the search space for the global solution is modified following some rules and facts. The
modification can be an enlargement of the space, or its reduction. It just depends on the
algorithm and the problem itself. Notice that there are a priori no reductions on the search
domain: it can be convex, concave, reverse convex, or nothing specific.

The first method mentioned here is called branch and bound. The search domain

is relaxed and subsequently split into parts (brancvhing) over which lower and upper
bounds of the objective function value can be determined (bounding). Depending upon
the respective bounds, certain subsets can be dropped, and others be expanded further for

refining the solution. A known disadvantage of this method, similarly to every branch and
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bound method, is that the correct solution might be known for quite some time before it is
confirmed that it is indeed the global solution.

The second method, which has many variations, is based around what is called a
"cut". A cut is nothing but the introduction of an additional inequality constraint during
the iterations of an algorithm [Tuy, 1964]. A constraint can be viewed as a hyperplane
(dim=n-1) in the search space (dim=n). Therefore the constraint creates a boundary and
splits the search space in two sections. This boundary is referred to as the "cut". Since the
constraint is an inequality, this implies that one of the two sections is dropped or cut off
from the search domain, while the other one must contain the solution.

The most popular among the cutting methods is the outer approximation

algorithm. It starts with a large and simple feasible set D that includes the search domain
Q. The feasible domain is relaxed to a smaller set still containing . The objective
function is minimized over the newer set. This solution clearly belongs to D and is the
global solution if and only if it also belongs to Q. Otherwise, an appropriate section of
D\Q is determined by a cut and dropped off, yielding to a new relaxed set that is a better
approximation of the search domain. The algorithm keeps iterating in this manner until
the solution is found. Figure 4.5 illustrates the evolution of the search domain as the

iterations progress using the outer approximation algorithm.

Figure 4.5. The domain reduction for the outer approximation algorithm
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The advantage of this method is that it allows to use a very simple working set for
which it is easier to determine the minimum than for the original domain. Furthermore, at
each iteration, only a part of the set is modified which helps tracking and finding the new
minimum if the previous one was known.

The drawback is that if the original domain €2 is very fancy, then it may require
quite many cuts to approximate € with the required level of accuracy. As the number of
cuts grows, the complexity of the set does too. This involves a lot of record keeping and

makes it more computationally intensive to find the minimum at each iteration. In order

to minimize the amount of book keeping a constraint dropping strategy is recommended.
This involves checking for constraints that may have become redundant and can therefore
be dropped off. Removing redundant constraints does not affect the set itself, but
simplifies its representation.

Another algorithm which is not based on cutting is the inner approximation

method. However, it can easily and quickly be described as the dual of the previously
mentioned cutting method. In this éase the search domain €2 is approximated from inside
by a sequence of nested sets, while before it was coming from outside. The cuts have
been mapped to annexations. Figure 4.6 illustrates the evolution of the search domain as

the iterations progress in the inner approximation algorithm.

Figure 4.6. The domain expansion for the inner approximation algorithm
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There are a few other popular algorithms such as convex underestimation,

concave polvhedral underestimation, and conical and simplical algorithms. However,

there are good books reviewing these [Horst, 1993], and therefore they will not be
discussed further in this presentation.

Before finishing this section on global optimization, it is necessary to present
which of these problems and methods are later used in this project.

For reasons that become apparent in due course, the problem of interest in this
project is to solve a DC optimization, which is transformed into a simpler canonical DC
problem using the variable transformations as stated earlier. In order to solve this
problem, the algorithm of choice is an outer approximation cutting algorithm developed
by Thoai [Thoai, 1988]. It must be said that this algorithm is an improvement over a
similar one developed by Tuy [Tuy, 1987] and that Pham Dinh and Bernoussi developed
a good possible alternative [Pham Dinh, 1989]. Thoai's algorithm is dealing only with and
is specialized for DC problems. Following what was said earlier, in order to maintain a
reasonable number of constraints, a constraint dropping strategy is also used. This part of
the algorithm follows what was developed by Horst [Horst, 1988]. Both Thoai's and
Horst's algorithms have been slightly modified to match this project's requirements. These
changes are exposed in Chapter 5. Here, a quick review of the original algorithms is
presented.

Once again, the definition of a few terms must first be recalled.

A polytope is a bounded polyhedral convex set. In other words it is a closed
domain that is bounded by linear inequalities. It can be viewed as a convex domain
bounded by hyperplanes.

A vertex (pl. vertices) is a point located at the intersection of n constraints of a

polytope (assuming that the space dimension is #).
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Figure 4.7 illustrates a polytope along its vertices. In this example the inequalities

making up the polytope are:

-x,=0 )
3x-x,-9s0 (2)
-x, +4x,-8<0 (3)
-x, =0 4

(4.10)

The vertices can be found to be:

(A: (0,0) {(H&(4)}
B: (3,00 {)&1)}
(O: (43) {3&©2)}
(D) (0,2) {(H&3)}

4.11)

©

3

1 - @

(D

Figure 4.7. Sample polytope showing constraints and vertices.
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In this particular example, it can be noticed that the number of constraints and the
number of vertices are identical. This is true when the dimension of the space is 2.
However, for higher dimensions, there is no direct relation between the number of
constraints and the number of vertices.

As stated earlier, Thoai's algorithm solves a canonical DC problem. This means
that a linear objective function is minimized over the intersection of a convex domain Q1
and the complement of another convex domain €27 as shown on Figures 4.3 and 4.4. It
uses what was described as an outer approximation algorithm. |

Thoai starts with a large polytope Py containing entirely the convex domain Q.
Its vertices are computed. The objective function is minimized over Py . Because Py isa
polytope, it is known that the minimum § must be located at one of the vertices.
Therefore, looking for it involves a search among a known finite number of points.

If S belongs to both €21 and the complement of €2 then it is the global solution of
the initial problem.

If S belongs only to 22 then a cut parallel to the boundary of Q1 at the closet
distance between § and Qg is created. A smaller polytope and its vertices are then
generated. The procedure starts again. This cut allows the working polytope to
approximate 27 better.

Similarly, if § belongs only to Q1 then a cut is generated for approximating ;.
This particular cut is more complex to compute and is not discussed here.

The algorithm keeps iterating along these lines until it finds the global minimum.
It may happen that the solution is an accumulation point in which case the algorithm must
be stopped when the required accuracy is achieved.

For a complete discussion, Thoai's paper should be consulted. However, it can be
stated at this point that the bottom line and strongest point of this algorithm is that the

search for a minimum is always performed among a list of a finite number of points. This
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list is updated at each iteration as the working polytope is modified by successive cuts for
better approximation of the desired domain.

It is clear that as the number of iterations grows, so does the number of
constraints, hence the number of vertices. It is very desirable to reduce these as much as
possible. A constraint dropping strategy is recommended.

The algorithm presented next was developed by Horst. It must be applied at every

iteration, first thing after a new cut C:A, (x) < O has been created.

Consider the set V(P) of all the vertices of the polytope P and create a subset V-
(P) of those which strictly satisfy h,:

V' (P) = {u EV(P):h,(u) < O} 4.12)

A previous constraint k(x) <0 is said to be redundant and can therefore be

dropped off if:

Vu€eV (P), h(u) <0 (4.13)

Once a constraint is dropped off, its corresponding vertices are also removed from
the list of vertices. Proceeding in this manner at every iteration is the most efficient way
to reduce the number of active constraints and vertices.

The last point to be discussed here is how to expand the list of vertices once a new
cut is performed. Several approaches have been introduced [Hoffman, 1981], [Thieu,
1983], and [Falk, 1976]. The manner chosen here for doing this was developed by Horst
[Horst, 1988]. Once a new cut is introduced, the first thing to do, as just previously

mentioned, is to check for redundant existing constraints and drop off what can be
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deleted. Once that is performed, the new constraint has to be appended to the list of valid
constraints, and new vertices have to be created.

Once again the subset V-(P) is created. Every element of this subset is a vertex
corresponding to the intersection of n constraints (assuming total space dimension is n).
Each element is therefore the solution of a set of n linear equations.

For each element u €V (P) consider the set §, = {hui (x)=0, i=12, ..n} of the

constraints intersecting at . Build »n successive sets of equations where every equation of

S, is successively replaced by the new constraint h,(x) =0. For each new set of
equations §, = {hc (x)= 0} us, \ {huj (x) = O}, the corresponding solution is computed. If
it belongs to the polytope (every constraint must be satisfied), then it is a new vertex to be
appended to the list of existing vertices. Otherwise, it can be forgotten and the algorithm
continues.

Proceeding in this manner at every iteration of Thoai's algorithm (check for
redundant constraints and build the new vertices) allows to have the minimum sized but
correct set of vertices for computing the required successive minima.

This concludes for the moment the presentation on global optimization
algorithms. In chapter 5, some improvements of Thoai's and Horst's algorithms are

presented, as well as how they can be used in relation with neural networks.
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Chapter 5:
Global Optimization via D.C. Programming

This chapter is the complete description of one method to solve a DC problem. It is
based around Thoai's algorithm [Thoai, 1988]. A few subtasks are also presented such as
problem formulation which must be able to accept neural network models, and a constraint
dropping strategy and computation of vertices which follow the work by Horst [Horst,
1988].

The preliminary materials are first presented which include the required changes of
variables for converting a DC problem into a canonical DC problem [Tuy, 1985], along with
some properties of convex topology that are used. Then Thoai's algorithm is stated and
described, followed by Horst's complementary methods. It must be said that all the material
through this section is similar to what was presented during the introduction on optimization
in Chapter 4. However, at this point, the definitions and results are no longer the original
definitions by Tuy, Thoai, or Horst, but are formulated again, now in a manner that matches
the requirements for the case of minimizing a neural network output, later presented in

Chapter 6.

5.1 Preliminary material.

A result concerning convex functions must first be recalled.

Result 5.1: Consider a set { fi(x),i=12,...N } of N convex functions. Consider the

function f{x) defined by:

F(x) = Max( f,(x)) (5.1)
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Then, the function f{x) is convex too.

Proof 5.1: Consider two convex functions f,(x) and f,(x), and the function f{x)
defined by f(x)= Max( Si(x), fz(x)) . J{(x) can be represented as successive pieces of either
Jfi(x) and f,(x). Within a section, f{x) is uniformely equal to one of the two. It is therefore
convex over that domain. At the intersection between two successive sections, Figure 5.1
shows that the definition (2.10) can be directly applied to show that f{x) is convex there too.

Therefore, f{x) is a convex function.

fFO) £2(x)
f1(x)

Figure 5.1: The intersection of two convex functions f; (*¥) and f,(x).

Taking the maximum of a set { [i(x),i=12,....N } of N convex functions can be

viewed as successively taking the maximum of 2 functions that make another convex
function, which is in turn further combined. Therefore, the maximum of the whole set of

convexX functions is also a convex function.

Another similar result:
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Result 5.2: Consider a set {gi(x),i = 1,2,...,N} of N concave functions. Consider

the function g(x) defined by:

8(x) = Min(g,(x)) (5.2)

Then, the function g(x) is concave too.

Proof 5.2: Consider the function A(x) = -g(x). It can then be related to the

definition of g(x) as:

H(x) = ~g(x) = ~Min(g,(x)) = Max(-g,(x)) (53)

Since g,(x) is concave, then, using equation (2.11), -g,(x) must be convex. Using

the result 5.1, this implies that A(x) is convex too. Therefore g(x) is concave.

Now a result on DC constraints:
Result 5.3: A DC constraint of the form f(x)= f,(x) - f,(x) =0, where both
J1(x) and f,(x) are convex functions, can always be transformed into a set of convex and

reverse convex constraints as:

Si(x)-z2=s0
2—f,(x)=0

(5.4)
after the introduction of an additional independent variable z.

This transformation can be viewed as a trade-off between the complexity of the
constraint and the complexity of the search domain over which the optimization process is

performed. By introducing the new variable z, each of the two new equations has a nicer



topological structure, but the overall dimension of the search space has increased by one.
This however implies no overall major topological change: Assuming the search space
dimension originally was N. Since there was one constraint, the number of degrees of
freedom therefore was N-1. After the transformation, the space dimension has been
increased to N+ and there are two constraints. Therefore, the number of degrees of
freedom still is N-1.

Proof 5.3: The initial constraint (C1), and the new constraint set (C2) are equivalent:

(C1) = (C2): Because the optimization process has no requirement on z in the
constraints, it is always possible to find a value that bounds both f,(x) and f,(x) as
desired. Because z is linear, it does not affect the convexity of the new constraints, which
therefore maintain the same convexity as f, (x) and — f,(x): convex and reverse convex.

Consider for example the DC constraint f(x)= x* — 5x* + 4 0. This constraint is

plotted in figure 5.2. It is clear that its solution domain is [-2, -1]U [1,2].

f(x)>0

f(x)<0

|
3 2 -1 0 1 2 3
X ——P

Figure 5.2: Sample DC constraint f(x)= x*-5x* +4<0
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After the separation of the convex and concave parts, and the introduction of the

additional variable z, the resulting two convex and reverse convex constraints are:

fl(x)—z=x4+4—z <0
2-f,(x)=2z-5x* <0

(5.5)

Each of them defines a boundary in the (x,z) plane where solutions are or are not
acceptable. The intersection of the two constraints determines the overall acceptable region.
The (x,z) plots of the constraint set is shown in figure 5.3. It is clear that the solution
domain is again x €[-2,-1]U[1,2] as it was determined for the original DC inequality.
Once again, there are no restrictions on z which varies between various values, which are of

no interest.

30 — X4+4- z<0
7-x%<0

25
T2O—
le_

10 -

3 2 -1 0 1 2 3

Figure 5.3. Two constraints in the (x,z) plane replace the original DC constraint.



(C2) = (C1): Assuming both inequalities of (C2) are satisfied, the sum of the two

is therefore satisfied, and this happens to be (C1).

Now that these preliminary results have been stated, DC problems can be
introduced. What is referred to as a DC programming problem is the minimizatiqn of aDC
function over a convex domain with additional DC constraints:

Definition 5.1: A DC programming problem is a global optimization problem of the

form:

minimize f(x)
. (5.6)
x€Q, {g(0=0, i=12,..m}

where Q is a convex closed subset of R”, fix) and {g,.(x)} are DC functions on R".

The first step is to perform a change of variable of this DC problem in order to
transform it into a more desirable form: the canonical DC problem [Tuy, 85]. A canonical
DC problem consists of the minimization of a linear objective function where all the
constraints are convex functions except at most one which is concave. Notice that using the
result 5.1, the set of all the convex constraints can be simplified and written as a single
convex constraint.

Definition 5.2: A canonical DC problem is a global optimization problem of the

form:
minimize c¢’x

(5.7)
xEQR, g(x)<0

where Q is a convex closed subset of R", ¢ is a constant vector of R”, and g(x) is a concave

function.
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It may seem that the definition 5.2 drives more restrictions on the type of problems
than definition 5.1. In other words it may seem that canonical DC problems form a subset
within DC problems. However, this is not so. The next results states so:

Result 5.4: Any DC problem can be transformed into an equivalent canonical DC
problem.

Proof 5.4: The problem described by (5.5) can be equivalently written in the

following manner:

minimize

x€Q, {g(xns=0, i=12,..m}, f(x)-w=0 G®
which is the minimization of a linear target function with a set of convex constraints (x €Q)
and a set of m+ I DC constraints. Following Result 5.3, these m+. DC constraints can be
converted into a set of m+1 convex constraints, and a set of m+1 reverse convex
constraints. Problem (5.6) is therefore transformed into the minimization of a linear target
function with a set of convex constraints (m+1 & x €Q) and a set of m+ I reverse convex
constraints.

Following Result 5.1 all the convex constraints can be converted into a single
convex constraint, and following Result 5.2 all the reverse convex constraints can be
converted into a single reverse convex constraint.

Therefore, the original DC minimization problem (5.6) is transformed into the
minimization of a linear target function with a single convex constraint and a single reverse
convex constraint, which is stated as problem (5.7): the canonical DC problem.

The transformation can be viewed as a trade-off between the target function to be
optimized and the domain over which the optimization is processed. The target from being a

DC function is simplified into a linear function, but the search space is enlarged: its
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dimension is increased by m+ I resulting from the introduction of the m+1 independent
variables necessary to convert the m+1 DC constraints into a single pair of convex and

reverse convex constraints.

5.2 Thoai's algorithm.

Consider a canonical DC problem of the form:

minimize c¢’x
(5.9)
xER", h(x)<0, g(x)<O
where c is a vector of R”, h(x) a continuous convex function and g(x) a continuous concave
function. In the case there are more than one convex or concave contraints, they can be
combined into a single one using Result 5.1 or Result 5.2.

Before all, the following notations need to be summarized:

- T is the convex set defined by the convex constraint: T = {x ER"h(x) < O} .

- Consider a set of points X and a general function % (x), then argmin {1/; (x)lx EK}
is the solution among all the points from X of the minimization of ¥ (x).

- Jh(x) is the gradient of the function A(x) at the location x.

- V(S) is the set of all vertices of a polyhedral convex set S.

- kis the iteration counter, and the corresponding index.

- Superscripts are indices: z* is the value at iteration k of a point z.

Now Thoai's algorithm is presented. First a general flowchart is shown for laying
out the program, then explanations are provided, and finally a precise step by step

implementation is given.
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Step 1: Generate initial polytope
and vertices

¥

C StoQ(—

Step 2: Compute z <
h(z)>0 Set case=1
Y Y
Step 3: Compute x Set y=z
Set case=2 g(x)>0
N Step 4: Compute t
1(x)=(x-y)t+h(y)
Set case=3 g(x)=0 ¢
Vv exists
Y
N Step 5: Perform cut 1(x)
Generate new vertices >
Compute u A
Set y=u
Set v=u
Set case=4 1(x)=cx-cu

Figure 5.4: Flowchart of the minimization algorithm.
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This algorithm has a simple structure in terms of program flow. Step 1 is an
intialization step. Step 2 is a minimization step, the result of which indicates whether the
process should be continued either along step 3 or step 4. Both of those determine a
required cut that is performed by step 5, which in turn branches back to step 2.

Several situations can occur while running this program. It can either finish and exit
by one of the case points, or it can get into an infinite loop. In the situation it finishes after a
finite time, the case variable is set to various values the meanings of which are the following:

case=1: The solution is the current point z*.

case=2: The problem has no solution.

case=3: The solution is the previously computed point v.

case=4: The solution is the current point u*.

In the case the program gets itself into an infinite loop, there are two possible
situations:

* This means that the solution is an accumulation point. In other words, the estimate
of the solution is closer and closer to the true solution at each iteration without ever reaching
it. However, by putting a required tolerance ¢, the infinite loop may be detected by
comparing two successive estimates of the solution, and the execution may then finish.

* The program cycles through all the possible solutions: Assuming there are more
than a single global minimum (i,e, several minima that are not local), then a sequence { Z'}is
generated by the algorithm. Everyone of these points which also satisfy g(z*)<0 is one of
the global solutions.

For more information, and proofs of these various situations, looking at the
complete algorithm [Thoat, 1988] is recommended.

Now that the overall structure and flow of the algorithm have been presented, some
of the individual tasks need more explanation.

Twice throughout the program a minimization has to be performed:
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e arg min {chlx EV(Sk )} (5.10a)
x* € argmin{g(x)x €V(S")} (5.10b)

Either the linear objective function or the reverse convex constraint have to be
minimized among the set of vertices. The most efficient way to achieve this task is to keep
the finite set of vertices in a structure that stores also the values of both these functions for
each vertex. In addition, both minima can be stored too. Whenever a new vertex is appended
to the list, its corresponding function values can be computed and stored. They can be
compared to the stored minima and if one of them is less than the current minimum it
becomes the new minimum. Proceeding in this manner makes the minimization steps very
simple: the algorithm just has to go and fetch the minimum value that is strored as a variable
in a lookup table.

Another possible difficulty is the computation of u* during step 3:

u* € {xg(x) =0} U[ ] (5.11)
However, this task is nothing more than solving a convex equation: The solution is

the intersection of the line segment [zk , xk] with the set of points g(x)=0. The line segment

can be parameterized with a single variable A and the equation is reduced to solving
g(AZ +(1-1)x*) =0, O0s=sAs1 (5.12)

where A is the single variable. Therefore, this reduces to solving a one-dimensional

convex problem. A Newton or bisection method works perfectly well.
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In step 4, the computation of #* € §h(x) involves the gradient dh(x) of h(x) and
may be tricky. There are two solutions. If the analytical formulation of A(x) is known and if
its derivative can be computed, then it should be implemented in the program, and finding
the derivative is just a function evaluation. In the case that 2(x) is not known analytically or
thatits derivative can't be directly implemented, then a numerical differentiation needs to be
used. However, the required accuracy is such that this is not a major problem.

At last, step 5 presents the difficulty of performing a cut that involves a new
constraint, resulting new vertices, possibly dropping redundant constraints and removing
past vertices, and keeping track of the minimum of both the linear target function and the
reverse convex constraint. This is the most difficult task: Horst's specific algorithm for that
purpose, and more are presented in the next section.

A complete step by step implementation of the algorithm is now shown:

Step 1: Generate a polytope S'suchthat §' D T.
Compute V(S).

Setindex k <1

Step2: Compute z* € argmin {chIx ev(s* )}
If g(z") > 0, then goto Step 3.
Hise,
If h(zk ) =0, set Case <1, then stop.

Else, set yk <« 7" then goto Step 4.

Step3: Compute x* € argmin {g(x)lx EV(S")}.

If g(xk) > 0, Set Case < 2, then stop.
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If {g (xk) = 0 and v, defined below , from a previous iteration } ,

set Case < 3, then stop.

Otherwise,
Compute the point #* of intersection of the set {xl g(x) = O} and the

line segment [zk xt ] Notice that the solution is unique because g(x)

is convex. Any classical descent method can solve this step.
If h(z") <0, set y* < z*, then go to Step 4.

If {h( W')<Oandc'u* = cTzk} , set Case < 4, then stop.

Otherwise, set v < u*, I(x) = c¢"x-c"u*, then go to Step 5.

Step4: Compute a vector t* Eoh(y").
Generate a cutting plane: I(x) = (x - y")t" +h(y")

Go to Step 5.

StepS:  Generate a new polytope §*' = §* N {x I(x) <0}
Compute V(S**)

Set k < k+1 and go to Step 2.

5.3 Horst's complementary material and keeping track of minima.

All the independent points in Thoai's algorithm have been developed except what
was called the step 5. This section comes at the point when a required new cut has been
determined. The purpose of step 5 is to perform this cut.

The state of the algorithm at the entrance of step 5 consists of the following:
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- A set of linear constraints that form a convex polytope P.

- The set of all the vertices of this polytope P.

- The minimum among these vertices of the target function cx.

- The minimum among these vertices of the reverse convex constraint g(x).

- An extra linear constraint that corresponds to the required new cut.

The desired state after the completion of step 5 is:
- An updated set of linear constraints that for a new smaller convex polytope P".
- The updated set of all the vertices of this new polytope P,

- The minimum among these new vertices of g(x) and cx.

In order to achieve this transformation, the manner to proceed here is to perform the
following tasks in this particular order:

- Determine which constraints become redundant due to the new cut and can be
dropped out.

- Remove from the set of vertices the elements that were corresponding to these past
dropped constraints.

- Create new vertices corresponding to the intersection of the new cut with previous
constraints that are still valid.

- Keep track of the two minima as vertices are created.

Figure 5.5 shows an example that illustrates what is happening when a new cut

h(x) <0 is introduced.
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Figure 5.5. Example of a cut (h) over a polytope.

Assuming that the cut is toward the right, then the constraints (4) and (5) become
what is called redundant and can be eliminated. Vertices D, E, and F are removed as well.
The new boundary of the polytope with the new constraint (h) is defined by the two new
vertices M and N that must be created. After the cut is performed, the polytope is defined by
the constraints (1), (2), (3), (6), (7), and (h). Its vertices are A, B, C, G, M, and N.

The first part consists of checking for any redundant constraint. A redundant
constraint can been seen as a "weaker" constraint than the new cut. It has therefore been
superceded by the new cut and can be removed. How is it possible to measure if one
constraint is weaker than another? Following Horst [Horst, 1988] the following method can
be used:

- Consider V(P) the set of all the vertices of the polytope P.

- Consider a cut generated by the constraint h(x) <O.

- Construct the set V" (P) = {u €V(P): h(u) <0}

- Then a constraint g(x) < O is redundant for Prelative to h(x) if and only if:

YueV (P), g(uw) <0 (5.13)
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The procedure to identify all the redundant vertices when a new cut A(x) is
performed is therefore the following:

- Construct the set V' (P) = {u EV(P):h(u) < O}.

- Loop through all the existing constraints to check which ones are redundant.
Notice that the set V™ (P) depends only on the new cut and is therefore the same for all the
constraints to be checked.

- All the constraints that have been determined to be redundant are dropped.

Once redundant constraints have been dropped, the corresponding vertices must be
removed as well. This task is fairly easy if the vertex database has been constructed
correctly. As stated before, the minima of two functions must be saved in order to recall
them as needed without recomputing them. Similarly, once a vertex is created, its supporting
vertices must be saved as well. There are as many supporting constraints as there are
dimensions in the working space. The vertex database must therefore have the following
data for each entry, assuming that the dimension of the space is N:

- Real valued vector of size N for the position of the vertex.

- Integer valued vector of size N for the index of supporting constraints.

- Value of the target function cx at the vertex location.

- Value of the reverse convex constraint g(x) at the vertex location.

- Flag to indicate if the vertex is active, or was active and has been removed.

Assuming such a database is created and maintained, then when a constraint is
dropped, the database has to be scanned for vertices that had this constraint as one of their

supports, and their flag can be switched from active to inactive.
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At this point, the half space on the "wrong" side of the hyperplane created by the
new cut A(x) <0 has effectively been removed from the algorithm environment. The
polytope containing the feasible set has been reduced in size. The next step is to create and
classify the new boundaries between the previous polytope and the new cut. The constraint
1s known, but the vertices must be created.

Assuming a space of dimension N, a vertex can be viewed as the solution of N
simultaneous linear equations, each being the boundary of a cut (i.e. if the cut constraint is
h(x) =0, then the equation is i(x)=0). It can also be viewed as the intersection of edges of
the polytope P. Every edge connects two vertices. These two vertices and all the points in
between that lie on the edge can be each described by a set of N equations. However, all
these points have N-1 equations in common.

It can be assumed that a new cut always intersects every edge of the polytope. In the
case that an edge is parallel to the cut, then the intersection is assumed at infinity. Because
of the way cuts are created in Thoai's algorithms, an edge can't be included in the cut.
Therefore, the intersection point always exists and is unique following the previous
assumptions, and it is described by a set of N equations: N-1 from the edge and one from
the cut.

When a cut is introduced, the set of existing vertices can be split into two classes:
the ones that satisfy the cut (previously called the set V™ (P)), and the ones that are on the
"wrong" side of the cut (called the set V*(P)). It is clear that the new boundary lies in
between these two sets. In order to compute the vertices of the new polytope, it is sufficient
to check all the edges which are defined by a couple of points one from each set, and
compute the intersection with the new cut. As stated earlier, this defines a unique point that
1s a new vertex. The edges of interest can be found by checking vertices from V™ (P) and

V*(P) thathave N-1 constraints in common. As stated earlier, these N-1 equations are the

equations defining the edge.
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Once all the new vertices have been found, the vertex database must be updated. This
includes computing the two functions (target and reverse convex) for each vertex, check if
they happen to be a new minimum, and filling all the entries in the database.

This concludes step 5 of the algorithm.

5.4 Conclusion of this section: Ready to use Thoai's algorithm.

The independent tasks for solving a DC problem have been presented, along with
Thoai's algorithm. All the difficult points in that algorithm have been exposed and practical
implementations have been suggested. The behavior of the algorithm in terms of termination
points or infinite loop have been described. The algorithm can now successfully be

implemented and used for the purpose of minimizing a neural network output.
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Chapter 6:
Global Minimization of a Neural Network output
via D.C. Programming

This chapter is the bridging chapter of this project. What was presented earlier is all
put together here: the problem of globally minimizing the output of a neural network is
studied. The outer approximation algorithm for solving a DC problem (Difference of
Convex) introduced by Thoai is used. The target neural network is a MISO (Multi Input
Single Output) pseudo multilayer feedforward network.

The pseudo multilayer architecture was introduced in Chapter 3. In Chapter 5 an
algorithm for DC programming was presented. In this chapter an interface between this type
of neural networks and DC programming is introduced. The neural network is programmed
to approximate some function or model some phenomenon. The interface translates it into a
DC problem that is solved using the optimization algorithm presented earlier. By
minimizing the DC problem, the neural network is thereby optimized as well, which implies
that the original problem modeled by the neural network is in turn optimized.

In this chapter, a review of previous studies related to both neural networks and
global optimization is first presented.

Then, the relation between a single neuron and DC programming is introduced. As a
direct application, this allows to globally minimize the output of a single layer neural
network. First the single input case is considered, then the multi input case. The complete
procedure is fully described.

The next presentation is an adaptation and enhancement of the previous single layer
network case just mentioned to accommodate the pseudo multilayer architecture described

in Chapter 3. A gain, the complete procedure is described.



-602-

For each section, algorithms and methods are illustrated by concrete examples from
various application areas. In particular the problem of programming a neural network using

another neural network is developed in the final section of this chapter.

6.1 Neural networks and global optimization

This first section reviews the relationship between neural networks and global
optimization. There are two aspects of this relationship: the neural network can be viewed
either as the tool or as the object. In the case of the tool, the neural network is a model of the
performance index of an object, or a model of the object itself to be optimized. By
minimizing the neural network response, the performance index it represents is minimized,
thereby optimizing the original object. On the other hand, in the case the neural network is
viewed as an object, a global optimization algorithm can be used to perform the most
difficult and delicate task of programming the neural network to match some desired

behavior.

6.1.1 A neural network as an optimization tool

Neural networks have been used extensively to perform optimization tasks.
However, it must be differentiated between various situations. Frequently, a particular neural
network, modeling a particular system, is designed to perform a required optimization. In no
way can this kind of situation be described as a generic approach for solving optimization
problems: the reason is that the optimization algorithm chosen to perform the minimization
depends on the network, which in turn depends on the problem itself. For example a robot
arm may be modeled by a neural network and the optimization of the joint parameters may

be performed by minimizing the network output.



-603-

However, in this present project, general solutions and algorithms to be used in
various fields and applications are of larger interest. Unfortunately, only few results have
been reported for such general approaches. Several studies have been performed towards
this direction. A brief summary of those comes here.

The most complete work of a global optimization task solved by a neural network
deals with quadratic minimization. The network used is a Hopfield network of the form

[Hopfield, 1982]:

x=u+Wf(x)-Ax (6.1)

where x is the network state vector, ¥ the network external input vector, W the
network interconnection matrix, and A a positive diagonal matrix representing the passive
decay rate of the state vector. f{.) is a piecewise linear activation function as shown in figure
2.3. Clearly, this network is built around a recurrent architecture.

The Hopfield network is known for its ability to minimize an energy function E

defined as [Hopfield, 1984]:
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where a,; is the threshold of the ## neuron. A quadratic minimization problem is

written as:

1 T

J(v)_E "Qv-v'u (6.3)



where Q is a positive definite matrix. By appropriate changes of variables and
variable assignments, a network of the form (6.1) can be constructed so that the energy
function E that it is being minimized corresponds to the quadratic minimization performance
index J.

These variable transformations exist and the network was shown to solve quadratic
minimization problems. Shi and Ward [Shi, 1990] were the first to write a procedure to
perform this task. Sudharsanan and Sundareshan [Sudharsanan, 1991] then ameliorated the
network in order to facilitate preconditioning, improve and bound the rate of convergence.
Bouzerdoum and Pattison [Bouzerdoum, 1993] further generalized the procedure.

The main advantage of solving this problem is that it produces the solution of a
global optimization problem in a finite amount of time, with known convergence rate.
However, it falls short of being a general global optimization method for the simple reason
that a quadratic minimization is an optimization task with particularly well behaved
topological properties.

For example the solution of a linear matrix equation of the form Ax=b where A is a

rectangular matrix can be turned into an optimization problem of the form:

J(x) =(Ax - D) (Ax - b)
=£TATA£_£TATQ_QTA£+QTQ

(6.4

This can easily be turned into a problem of the form (6.3) since the term b7b is a

constant and therefore drops out from an optimization .point of view. It must be realized that
the initial problem Ax=b is known to be a very simple optimization problem.

Even though solving a quadratic minimization problem by a neural network is a very

nice result, it is clear that it lacks generalization by the fact that the objective function is too

constrained.
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However, there are unfortunately very few other complete studies of a problem

independent method for solving a global optimization task using a neural network.

6.1.2 Programming a neural network with an optimization method

As it was stated earlier, there are two ways to combine optimization and a neural
network: either the network is the tool or it is the task. In the previous section the case where
the neural network was the optimization tool was considered. In this section the neural
network is "optimized" using an optimization method.

What does "optimizing a neural network" mean? In this particular context, a neural
network is said to be optimized if its actual input-output behavior coincides with the desired
one. This is clearly related to the "programming" of the network.

In the first section of this chapter, it was recalled that there exist several methods for
programming a neural network and that the most popular among those is the so-called
backpropagation. There are two major problems with backpropagation. First, the algorithm
is very slow, the speed scales very poorly with the size increase of the network (the increase
in term of layers is worse than in the increase in terms of neurons). The second reason is
that there is no guarantee that the eventual solution is the "best" solution.

For these reasons people have first looked into improving the original algorithm.
This has been performed with quite some success. There are now several known "tricks" to
improve either the speed of convergence or the chance for reaching a better final point.
These are well documented in Korn's book [Korn, 1991]. A brief summary may include
adaptive gain values, added moments, multi random restarts, and modified derivatives for

the activation functions.
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The alternative to improving the backpropagation was to look into using global
optimization algorithms to replace the backpropagation techniques as a whole. Three areas
have been looked into: simulated annealing, genetic algorithms, and deterministic methods.

Good progress, although no perfect results yet, have been made in these three areas.
To match the scope of this project, only deterministic methods are surveyed here. The most
general and encouraging success was obtained using a "tunneling" method.

The tunneling methods were introduced by Levy and Montalvo [Levy, 1985]. They
are composed of a sequence of cycles, each of which has two phases: a local minimization
followed by tunneling. The local minimization searches for the closest local minimum.
When found, a pole in the performance index is positioned at that location. Then starts the
tunneling which consist of going "away" from that pole. The search then continues toward
another local minimum which is lower than the previous one. Eventually, the global
minimum is found. Among the various tunneling methods, the Terminal Repeller
Unconstrained Subenergy Tunneling (TRUST) was introduced recently [Cetin, 1993a]. In
this approach, the optimization is formulated as the solution of a deterministic dynamical
system which incorporates a novel subenergy tunneling functional and terminal repellers.
This algorithm guarantees to find the global minimum of a one-dimensional problem, and
works "most of the time" in multidimensional cases.

The programming of a neural network can be put into the form of solving a global
optimization problem. This is what Cetin and al. did [Cetin, 1993b]. They converted this
task into a format well suited for TRUST, and solved the resulting optimization problem
following the manner described earlier. The results are promising. However, the
programming of a neural network is a multidimensional optimization process, and as it was
stated earlier, TRUST only guarantees global convergence in the one-dimensional case.

Therefore, the programming of a neural network only works "most of the time".
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Because of this problem with the multidimensional search, it is not known at this
point if tunneling is more efficient than multiple-random-restart improved back propagation
methods after all. They may be more efficient than tunneling in the context of neural
networks, because the tunneling phase itself is rather inefficient and close minima can be
overlooked easily. The tunneling phase follows the steepest descent trajectory and must take
quite small steps, otherwise minima lying on the trajectory are missed. Because the regions
around a minimum are often very flat, the repeller effect in case of the TRUST algorithm is
dominant and the trajectory approximates a straight line away from the minimum. The
function evaluations used for tunneling may be better used for a random exploration of the
minimum's neighborhood.

It can be concluded after looking at the TRUST analysis that there is interest for
looking into global optimization methods for solving the problem of programming neural
networks. Global optimization methods are a promising alternative to backpropagation since
this algorithm will always lacks hill climbing capability and efficiency, even if partial

improvements such as speed increase and global performance are found.

6.2 Minimizing a single layer neural network output via DC programming.

In this section, the study of minimizing the output of a single layer neural network is
presented. First, the relation between neurons and DC problems is introduced: the nonlinear
activation function is a DC function, and one DC decomposition of interest is shown. Once
a neuron activation function is converted into a DC formulation, writing the neuron input
output behavior in a DC form immediately follows. The next enhancement is to write a
single layer neural network as a DC problem, first with a single input, then with multiple

inputs. All these steps are presented in this order in the coming sections.
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6.2.1 Neurons and DC functions.

The first task is to convert a neuron activation function into a DC form. It was
recalled in Chapter 4 that any continuous function is a DC function. It is therefore no
surprise to state that a neuron activation function is a DC function. However, it was also
recalled that even though a function is known to be DC, it is not necessarily easy to find a
decomposition for it. Its existence is known, but its construction is not. However, for the
problem of decomposing a neuron activation function into a DC form, a construction
technique is readily available. It is now presented.

It was recalled in Chapter 2 that a neuronlactivation function f{x) has some given
characteristics and properties: f{x) has an odd symmetry about the point (0,/0)), f(x) is
monotonic, and f{x) saturates at infinity. These are well known properties. However, another
property which is not well publicized was also stated: f{x) is convex for a negative argument,
and concave for a positive argument. The reason that this last property is not often used is
that convexity theory and neural networks are very rarely put together. The change from
convex to concave when x becomes positive implies that the origin x=0 is an inflexion point.

Considering f{x) being an activation function. The two functions f,(x) and f,(x)

are introduced and defined as:

Vx=0 f(x)=f(x)
Ji= {Vx>0 fi(x)=f'(0)-x+ f(0)
‘ Vx<0 f,(x)=0 (63)
fi= {Vx>0 F2(0) = f'0) x+ f(O) - f(x)

where f'(0) is the value of derivative of f{x) at the origin.
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Result 6.1: The pair of functions ( f,(x), fz(x)) as defined above form a DC
decomposition of the activation function f{x).

Proof 6.1: It is necessary to prove that both functions f,(x) and f,(x) are convex,
and that their difference is uniformely equal to the activation function f{x).

* f,(x) is a convex function:

For a negative argument, f,(x) is uniformely equal to f{x) which is known to be
convex for negative arguments.

For a positive argument, f,(x) is a linear function, therefore its curvature is zero,
and hence it is convex.

At the origin, f,(x) as defined above is continuous f,(07) = f,(0") = f(0), has a
continuous first derivative f,(07) = £;(0") = f'(0), and azero second derivative.

Therefore f,(x) is a convex function over R.

* f,(x) is a convex function:

For anegative argument, f,(x) is a constant function, therefore its curvature is zero,
and hence it is convex.

For a positive argument, f,(x) is uniformely equal to the difference between a linear
function and f{x). The linear function is known to have no curvature, f{x) is known to be
concave for a positive argument, therefore -f{x) is convex which implies that f,(x) is convex
too over the same domain..

At the origin, f,(x) as defined above is continuous and has a zero value:
f,(07) = £,(0")=0, has a continuous first derivative which is also zero:
f2(07) = £,(0) = 0, and a zero second derivative.

Therefore f,(x) is aconvex function over R.

* The difference between f,(x) and f,(x) is uniformely equal to f{x).



-610-

Following the two definitions for f,(x) and f,(x), the difference between f,(x)

and f,(x) can be written as:

f1 _fz:
Vx<0 fi(x)-f(x)=f(x)-0= f(x) (6.6)
Vx>0 fi(x)=f,(0)=(f'©0)x+f(0)-(f'(0) x+ F(O) - f(x)) = f(x)

Itis clear that the difference between f, (x) and f,(x) is indeed equal to f{x).

Therefore, the pair (fl(x), A (x)) indeed forms a DC decomposition of the
activation function f{x).

As an example, the DC decomposition of the Atan(x) activation function is shown in

figure 6.1. In that particular example, the two convex componenents are:

YO lVx>0 fi(x)=x

Vx<0 f,(x)=0
Vx>0 f,(x)=x-Atan(x)

u {sz 0 f,(x)= Atan(x)

6.7)
fzz =
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Figure 6.1. DC decomposition of the activation function Atan(x).

In this manner other activation functions may be decomposed into DC components
as well. However, the threshold activation function shown on figure 2.3 can't. The reason
being that the threshold function is not continuous and that its derivative is not defined at the
origin. However, the threshold function can be assumed to be the limit as € goes to zero of
the Aran(x/e) function for which the DC decomposition exists. Therefore the DC
decomposition of the threshold function is the limit of the DC decomposition of Atan(x/e)
as € goes to zero.

Another activation function was introduced in Chapter 3. It was called the piecewise
linear activation function f?*(x). Because this particular function is used extensively in
what is coming up next, it is necessary to explicitely write its DC decomposition. The

function was defined as:
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FP(x) ={(x <0,0=x < 1,1s x)—(0,x,1)} (6.8)

Because it doesn't follow the regular assumptions for DC functions (symmetry and
convexity with respect to the origin), it is not possible to use the DC decomposition rule
(6.5) explained earlier. However, a DC decomposition for (6.8) exists nevertheless.

At this point the usual "ramp" function r(x) must be recalled:

r(x) = {(x<0,0 = x)— (0,x)} (6.9)

The DC decomposition of f”*(x) is now presented:

Result 6.2: The DC decomposition of f7"*(x) is {r(x),r(x - 1)).

Proof 6.2: Following the definition of r(x) and of convexity, it is clear that r(x) is a
convex function. Because shifting doesn't affect convexity, this implies that r7(x-1) is a
convex function as well.

Because r(x-1) is a shift of r(x) it can be written as:

r(x - 1) ={(x <L,1=x) = (0,x- )} (6.10)

The difference between r(x) and r(x-1) can be written as:

r(x) ~r(x-1)={(x<0,0= x) = (0,x)} - {(x <L1sx)— (0,x - 1)}
={(x<0,0sx<Llsx)—> (0-0,x -0,x— (x-1))} (6.11)
={(x<0,0sx<11=x)— (0,x,D}

This can be recognized as what was earlier called f7"(x).
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The difference between r(x) and r(x-1) therefore is the desired f?*(x) function.

Hence, this concludes the proof 6.2.

f7(x) along with its DC decomposition {r(x),r(x - 1)) are shown in figure 6.2.
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Figure 6.2. DC decomposition of the activation function f*"(x).

Up to this point, the nonlinear activation of a neuron has been shown to be
expressable as a DC function. For two such functions of interest, namely Azan(x) and
fP"(x) ,an explicit DC decomposition was also given. The next step consists of relating a
whole neuron to DC programming, not only its activation function.

A static neuron input output relationship was given earlier in equation (2.2). With an

additional bias and output weight, the relation becomes,

y=w, f(w,u+b) (6.12)
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where y is the neuron output, « is the neuron input vector, b is the neuron bias, w, the input

welght vector, w, the output weight vector, and f{.) the activation function.

Before relating this relation to DC programming, yet another result on convexity
theory is needed.

Result 6.3: If g(x €R) is convex (or concave), then Vw ER" Vb ER, g(w - u + b)
is convex (or concave) along every direction of the vector u.

Proof 6.3: Assuming a function g(x) from C; to be convex (or concave) for a real
scalar argument. Then following the definition, its second derivative g”(x) is positive (or
negative). The second derivative of g(w-u + b) with respect to any component #; of the

vector ¥ 1s:

a‘z
ou’

(g(w-u+b))=wlg"(w-u+b) (6.13)

This is clearly positive (or negative). Therefore if the scalar function g(x) is convex
(or concave) in the space R, then the vector function g(w-u + b) is convex (or concave) in
the space R".

Earlier in this section it was shown that a neuron activation function f{x) can be
written f(x)= f,(x) — f,(x) where both f,(x) and f,(x) are convex functions. Therfore

the neuron input output relation (6.12) can be now written as

y=wz'(fl(ﬁ'wb)—fz(m'wb))

=w2‘f1(ﬁ'y+b)_w2'fz(‘il_‘li"'b)

(6.14)

Following the Result 6.3, the functions f, (ﬁ ‘u+ b) and fz(_‘]’_;'l + b) are both

convex in the space R". If w, is positive, then w, - f,(w,-u +b) is convex and
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-w,* f,(w,-u+b) is concave. If w, is negative, then w, - f(w, ‘u + b) is concave and

-w, f,(w, " u+b) is convex. Therefore the DC decomposition of a neuron input output

relation is:

% (Wz'fl(ﬁ'-’!*‘b)’ w, 'fz(ﬁ‘li”?)) if w is positive. (6.15)

* ('Wzl'fz(ﬁ'k“' b),lwzl'fl(}ﬁ"i + b)) if w; 1s negative.

This completes the presentation of relating a single neuron to DC programming.

The next step is to consider a set of neurons: a neural network.
6.2.2 Minimizing a SISO single layer neural network.

In the previous section, the translation of a neuron input output relation into DC
formulation was presented. In this section, the translation of a single input single output
neural network into DC formulation is first introduced, followed by several illustrative
examples of actual minimizations of mathematical functions.

Consider a single layer neural network with a scalar input # and a scalar output y.

The network is represented by the following equation set:

— R (6.16)

assuming there are N neurons, the values of which are represented by the state vector x. The

vectors w, and w, are again the input and output weight vectors, while b is the bias vector.

All the vectors are of length V.
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Jix)is the neuron activation function. It has a DC decomposition ( (%), fz(x)) that

can be explicitely computed as explained before. Introducing this DC decomposition, the

neural network equation set becomes:

U
- 6.17
y =w, «(fi(2) - () ©17

Following what was said in the previous section, the set of neurons must be split

into two disjoint sets X, and X,,: the neurons that have a positive output weight (w,>0), and

the ones that have a negative output weight (w,<0):

R,:= in:wzi >O{ CardX )= N,

R, =1{x:w, <O CardR,)=N,

(6.18)
N,+N,=N

From this last relation separating the neurons, and relation (6.15) regarding the DC

decomposition of a single neuron, the neural network equation set becomes:

w, (fu®) = fox)) + Zows | (G0 - £13)) (6.19)

i P xie(n

It can be further reduced to:
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y= 2w21 (fl(wliu +b)~ fo(w u+ b,.))+

14

Eiwzi l(fz(wl,” +b)- fl(wll_u + bl.))

y= [ szifl(wliu +b)+ 2 Wz.lfz(wl,-”"' bi)] -

n

(6.20)

[ Dwo frwyu+ )+ Y |y | fi(w,u +b.)]

y=F(u) - F,(u)

where F;(u) and F;(u) are both convex functions. Therefore (6.20) is a DC decomposition
of the neural network originally written (6.16).

The procedure for converting a SISO single layer neural network into a DC
formulation has now been presented. This decomposition will subsequently be used for
performing a global minimization on the neural network output.

Consider a SISO function @(u) being modelled by an approximating neural
network v (#). Because this approximation is valid only over a finite domain
u€lu_, ,u_,1,the input ¥ must be constrained to this domain. The neural network can be
transformed into a DC format as it was just shown. Therefore, globally minimizing ¢(u) is
equivalent to solving the DC problem:

minimize F,(u)- F,(u)

(6.21)
U <-U_. U< um

This is clearly a DC programming problem of the form (5.6). However, it is simpler
in the sense that only the target function is DC, the constraints are not, they are linear. In
order to use the algorithm developed in Chapter 5, this problem must first be converted into

a canonical problem of the form (5.7).



-618-

This is performed following what was described in Chapter 5. A variable w is first
introduced to replace the target DC function, and another constraint F)(#) - F,(u)-w <0
is added. The next step consists of replacing each DC constraint by a pair of convex and
reverse convex constraints. In this case there is a single DC constraint. This is performed by
introducing yet another independent variable z and decomposing the single DC constraint
F(u)- F,(w)- w <0 into the set F(#)-w-zs0 and z- F,(#)<0. The last step
consists of regrouping convex and reverse convex constraints together. The linear
constraints can go either way since they are both convex and reverse convex. Following this
route, the problem (6.21) is now replaced by a canonical DC problem for which the

algorithm of Chapter 5 is perfectly suited.
The complete process of minimizing a SISO function using a neural network model

followed by performing a DC program on the network is now illustrated by two examples.

Example 6.1: Consider the function y = @) = 4 +0.4+(u - 5)* + cos(8-u). It is
desired to find with an accuracy ©=0.001 its global minimum over the interval » €[0,10].

This function is plotted on figure 6.3.
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Figure 6.3. Target function for example 6.1.

The first step is to model @(x) by an approximating single layer neural network
1 (u) . This can be performed using the method described in Chapter 3. This function with
the given accuracy and given interval requires 854 neurons for the approximation. Therefore
the single layer neural network has 854 neurons.

The second step is to convert the neural network into a DC objective function.
Following the method described earlier in this chapter, the neurons must be grouped into
two sets: the ones with positive and those with negative output weights. This is done by
looking at each neuron individually and building the two sets. In this example there are 421
neurons making up the "positive" set and 433 making up the "negative" set. Once the two
sets are created, using formulation (6.20) the DC objective function is written.

The third step consists of converting the DC problem into a canonical DC problem.
This part was just explained. Two extra variables w and 7 are introduced. The convex and
reverse convex constraints are grouped together.

The last part consists of running the algorithm which was explained in details in
Chapter 5 and which is based on Thoai's algorithm. Once the algorithm has converged, the
following is observed:

* The algorithm converged after 211 iterations.

* At the end there are 146 active vertices and 75 active constraints.

* The solution for the independent variables are: #=5.10, ©v=3.005, and z=58.23.

It is clear that the solution of interest is #=5.10. This value is the solution of the
minimization of the output of the neural network 4 (u) . Thereby it is the solution of the
minimization of the initial function @(u). The algorithm was able to recognize the global
minimum among the 13 local minima present over the interval of interest. This concludes

the first example.
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Example 6.2: This example is similar in nature to the first one. The target function is

a little more complex. Consider the function y = @(u) =4 -0.1- e 1) cos(8-u). Itis

desired to find with an accuracy t=0.001 its global minimum over the interval u €[0,15].

This function is plotted on figure 6.4.

T
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Figure 6.4. Target function for example 6.2

The procedure is the same as the one described in the first example. The
approximating single layer neural network requires 1281 neurons for the desired
approximation. Out of these 1281 neurons, 638 are "positive" and 643 "negative".

After convergence of the DC program, the following information is recorded:

* 608 iterations before convergence.

* 390 active vertices and 196 active constraints.

* Solution of the independent variables: #=11.39, ©=2.90, and z=255.27.
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Therefore the minimization of the function over the desired interval is #=11.39.
Once again, the algorithm was able to recognize the global minimum among 19 local
minima which happen to be very close from one another.

This concludes the presentation of the minimization of the output of a SISO single

layer neural network.

6.2.3 Minimizing a MISO single layer neural network.

In this section, an enhancement over the previous section is presented. In the
previous section the minimization of a SISO single layer network was considered. In this
section the input is no longer required to be a scalar u, but can be a vector u. Hence, the type
of networks considered here is the class of MISO single layer networks.

Such a network is represented by the system of equations:

X =W1 Uu+o
y =Wy f) (622)

where u is the input vector of length p, and W, is a matrix of size N x p. Similarly to what
was previously done, the network must first be translated into a DC problem formulation,
which is in turn converted into a canonical DC problem, and then solved.

The translation from (6.22) into DC formulation is extremely similar to the previous
section. The fact that the input is multidimensional doesn't affect that the neurons have to be
spilt into two sets X, and X,,, nor the manner in which this is accomplished. The same rules
apply. Once the two sets are assembled, every neuron for each set is translated into a DC
formulation. It must be noticed at this point that the result 6.3 was proven for the

multidimensional case and that in the previous section it was used in a particular and simpler
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case. Now, it is used in its general form. Following the analysis as before, the network

(6.22) is transformed into the DC formulation:

y= [ szifl(ﬁ'ﬂ"'bi) + Elwz,lfz(vili'*'b,)j -

[EWZ,fz(ﬁ,_'wbiH S [fl(ﬁ-wb,-)J 6.23)

y=F W - F,(w)

where w, is a vector of length p. It is identical to the row i of the matrix W, and

corresponds to the p input weights of the neuron i. It is clear that this formulation is indeed
a DC form since both F,(u) and F, () are multidimensional convex functions.

Once the problem has been translated into DC, it must be converted into canonical
DC form. This is performed in the exactly same manner as for the single dimension case.
The fact that there are several input variables doesn't affect the creation of the two extra
independent variables w and z. In terms of the bounds for each input variable, two
constraints are required for each dimension: every input variable must be bounded in an
interval. At this point the algorithm for the multidimensional case has been exposed and can

now be illustrated.

Example 6.3: Global minimization of the 2-dimension space. Consider the function:

y = @(u,u,)

= 10-(e7 4 e 4 7MW 4 2O (6.24)

4- (e—(ul-4)2 e WD | 2D 20T )
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Itis desired to find with a tolerance ©=0.001 its global minimum over the section of

plane {u,,u,} €[0,10]x [0,10] . This function is shown in figures 6.5 and 6.6.

|
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W \MO,,/”:;,,,//", ,
= \\\&“\;&\ \\"'l””[ll/’lt,,,/\i'ztzill’
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R

Figure 6.6. Contour plot of the function for example 6.3.
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The first stage constists of modeling (p(ul,uz) by a neural network q;(ul,uz). This

1s achieved using 640 neurons. Out of that number 324 are "positive" neurons and 316 are
"negative" ones. The next stage consists of translating w(u,,uz) into a DC form, and then
into a canonical DC form. The last stage consists of running the canonical DC program.

After convergence, the following results may be recorded:

* Convergence reached after 355 iterations.

* At that point there are 803 active vertices and 204 active constraints.

* The solution is: #, =2.02, u, = 2.02, w=0.51, and z=23.83.

From this analysis it can be concluded that the global minimum over the required
interval of the original function (p(ul,uz) therefore is u, = u, = 2.02. Once again, this
method succesfully found the correct global minimum among 9 local minima, which were
very close from one another.

This concludes the presentation of the minimization of MISO functions using single

layer neural networks and DC programming.

6.3 Minimizing a pseudo multilayer neural network output.

This section covers an "upgrade" of the method for globally minimizing the output
of a single layer neural network that was described in the previous section. The
enhancement consists of considering more general neural networks: the pseudo multilayer
architecture that was introduced in Chapter 3. This section is made of three portions: first, a
recall and introduction of theoretical results that are required in the analysis, then the
implementation of an algorithm for globally minimizing the output of a pseudo multilayer
neural network, either SISO or MISO, and lastly some examples and applications of this

minimization procedure are shown.
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6.3.1. Preliminary material.

The global minimization of the pseudo multilayer neural network is again performed
using the DC programming technique. Due to the enhanced generality of the network, a few
more results concerning DC programming are needed: All the results on DC formulation
and operations presented so far are not sufficient for converting the network into a DC
format. The missing results are now presented. These follow Hiniart-Urruty [Hiriart-Urruty,

1985].

Result 6.4: Considering a set {f,.} of DC functions having decomposition

{ fo- 1, } , the pointwise maximum function of the set g = max { fi} is also DC, and its

decomposition is given by (6.25):

= zr-r}a},(k{f’} - zllrllaxk{f'i + Esz } - Ef: (6.25)

J=1,jmi i=

Proof 6.4: Since all f,'s (sub-1 and sub-2) are convex, the two parts on each side of

the minus '-' sign are each convex (using the result 5.1). Therefore the equation (6.25) is

indeed a DC form. Is it equal to the desired g = max { fi } ?

Consider that the maximum of the set { f,.} is f, having DC decomposition

fal _faz-
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fo=max{f,} = f, - fy, =max{f, - 1.}
= fo~fo, + X0 = m,ax{f,-l ~fut ), f,,}= mgX{f,-l + > 1

i } (6.26)
:{nax{fil+2sz}—2sz=f6,‘f,52+2sz‘zsz

Jjmi
=fal _foz = fs

Result 6.5: Considering a DC function f{x) having decomposition f,(x)- f,(x),

then the absolute value function |f(x)| is also DC, and its decomposition is given by (6.27):
[Fol= A0 - £,(0] = 2- max( £,(0), £,(0) - (£i(2) + £,()) (6.27)

Proof 6.5: Since both f,(x) and f,(x) are convex, the two parts on each side of the

minus "-' sign are each convex (using the result 5.1). Therefore the equation (6.27) is indeed

a DC form. Is it equal to the desired |f(x)|?

If f(x)>0=> f,(x)> f,(x)=>max(f,(x), f,(x)) = fi(x)
= 2-max(f,(x), f,(¥) = (f;(x) + [,(x)) = 2" f,(X) = (f (%) + [, (x))
= [i(®) = () = f(x)=|f()]
If f(x)<0=> f,(x) < f,(x) = max(f,(x), £,(x)) = f,(x)
= 2-max (f,(x), f,(X)) = (f,(x) + [,(x)) = 2* f,(x) = (f,(2) + f,(x))
= f,(x) = f(x) == f(x) = |f(x)]

(6.28)

This terminates the proof 6.5.

This concludes the presentation of preliminary material. The interface between DC

programming and pseudo multilayer neural networks can now be introduced.



-627-

6.3.2 Pseudo multilayer networks and DC programming.

The pseudo multi layer neural network was introduced in Chapter 3. It is defined by
the set of equations (3.16). It was noted that there are several types of state variable due to
the internal architecture of the network. Macro state variables & and { are linearly
interconnected, with the connections always going "forward", no feedback is allowed. The
micro state variables describe the nonlinearity of the system and are grouped into clusters.
Every cluster is connected to two macro variables: to one component of § and to one
component of . The network is constructed so that every of these clusters is actually a
SISO single layer neural network. The pseudo multilayer neural network can therefore be
viewed as a series of SISO single layer neural networks interconnected in a forward linear
manner.

The idea for the procedure for converting such a network into DC formulation is to
convert every cluster into a DC formulation following the previous section, and the
interconnections being linear should not have a terrible effect on convexity. However, the
path is not straightforward. There are actually two stages in the process. The first part
consists of converting the network into DC formulation, and the second part is to translate
this formulation into a formulation the global minimization algorithm presented before can
understand and work on.

The procedure is to perform transformations into DC formulation in a backward
motion manner: To start from the output and work backward to eventually reach the inputs.
The network output node to be globally minimized is a linear combination of one or several
SISO single layer network outputs. These single layer networks constitute the final stage of
the pseudo multilayer network. They can be viewed as a MISO single layer network where

the inputs are intermediate 'macro' variables. Following the previous section, this last stage
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can be converted into a DC formulation. However, when doing so, the inputs are not the
external inputs # but some of the linear macro state variables & and { . However, what was
called the 'last stage' has effectively been converted into a DC problem. It has to be noticed
that this DC problem is the target function for the desired global minimization.

The next sequence consists of relating the inputs of the last stage to other variables
closer to the input, to eventually reach them. In a similar manner, each of these inputs can be
related to the output of another MISO single layer neural network that can be called yet
another stage. This is done following the construction of a pseudo multilayer neural
network. This new stage is in turn converted into a DC formulation relying on input
variables that are closer to the external inputs of the overall network than were the ones of
the last stage. It is clear that proceeding in this manner allows to travel toward the external
inputs and eventually reach them.

To illustrate this construction, an example is now presented.

Example 6.4: Consider the pseudo multilayer neural network depicted on figure

(6.7). It has 4 external inputs and is composed of 7 internal SISO single layer networks

numbered S; to S,. Each of them has a scalar input I and a scalar output O. They are called
L to I, and O, to O, respectively. Following the previous section, it is known that each of
these SISO network can be represented by a DC formulation O, = f, (I,) - f, (1) where

both f,(.) and f,(.) are convex functions. The numbers along the links represent the

weights for the linear part of the network. For the segments where no number is shown, a

unity gain 1s assumed.
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Figure 6.7. Pseudo multilayer neural network for example 6.4.

The pseudo multilayer network shown in figure (6.7) can be converted into DC
formulation using the following route: Starting from the output y, write the internal structure
as DC functions with the introduction of extra variables that are in turn represented as DC
functions of other variables until external inputs are reached.

The network of figure (6.7) can be described by the set of equations:
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y=2:0,-2-0,-6-0,+4-0,+4-0,

L=3u

L,=2-0,-0,

Li=u +2-u,

1, =0,

I,=-2-u, (6.29)
I, = O

L = —2'03 +4'05 +06
Oi = fil(Ii)—fiz (Ii)

In order to remove a few variables, some equations can be combined:

y=2-fo,(L)=2-f, (L) =2 f3 Uy +2-u3)+2- f; (U, +2-u3) - 6" f, (1,)

+6° fo (L) +4- fo (=2°u) =4 fs (-2-u)+4- f, (I,)- 4" f, (I,)
L,=2-f, G u)-2f, G u)—fi (U +2-u) + f5 (4, +2-1;)
Lo=f3(uy+2-u3) - f5,(, +2-u,) (6.30)
I = fs,(-2-u,) - f5 (=2-u,)
L =-2-f; ( +2- )+ 2 f3 (s +2-u3) + 4~ fg (-2-u,) -4~ fs (-2~ u,)

+fos (Is) = fo, (I)

Each of these equations is a "first order” DC function. This means that the output is
related to the input vector by successive known DC decompositions involving intermediate
variables. If these extra variables were removed, the set of equations would become a single
equation, but it would not explicitely show the DC decompostion since a composition of
convex functions is not generally a convex function too. Therefore the equation set (6.30)
can't be reduced further. However, it can be written as (6.31) to show better the convex and

Teverse convex parts:
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y= {2 £ () 42" £, +2°1) 4 6 fo (L) +4- f5 (<2:u) + 4 [, ()}
2 £ (1) 2 fy (0 +200) + 6+ £, (L) + 4+ £, (27 1) +4- f, (1)}

L={2f,Gw) + fi,a+ 2w} {2 £, w) + £, (0 + 2 )}

1, = {fy ty + 201} = { i, (0 +2-0)}

I = {2} - {1, (2 u)} (631)
I = {2-f32(u2 F2:u)+ 4 f (2 u) + [y (15)}

oA 2w+ 4 £ (20u) + £, ()

It can be noticed that the linear weights have no real effect on the DC
decompositions except by swaping the convex and reverse convex parts whenever this
coefficient is negative. At this point the pseudo multilayer neural network has been written
into a DC formulation as it was desired. The next point consists of performing the global
minimization on the output y.

As the goal is to globally minimize the external output y, following the DC
decomposition just presented the problem can be written with an objective function and

forcing constraints as:

{2f2, I, + 2f32 (u, +2-uy) "'6f42 (L) + 4']051 (=2-u,)+ 4f71 (17)}

_{2f22(12)+2f31(u2 +2:u)+6 f, 1) +4fs (-2-u,) +4f;, (17)}
Subject to (u,u,,u,,u,) EQ and

L={2/,G )+ fo, i+ 2 w)} - {20 £,6-m) + £, 0, + 2]
{7+ 22w} {0 0y 4270
{fsl (-2 -u4)}— { fi, (22 u4)} (6.32)
L= {20 i, (e 420 m) + 4 f, (200 + [, (1))
{2 fo  r 2w 14 (2w + fo ()}

Minimize

1,
I
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where Q is a convex domain including all the valid values for the external input vector. This
represents a convex inequality constraint.

It is clear that this problem is the minimization of a DC objective function along a
set of DC inequality and equality constraints. In the original DC programming problem as
shown in the section dealing with single layer networks, equality constraints are not allowed.
Only inequality constraints can be used. However, the formulation of this new problem
requires equalities in order to force the input of a cluster to match the linear combination of
outputs of previous clusters as desired.

How can the DC algorithm be modified to handle these equality constraints? The
whole optimization procedure is based around the algorithm developed by Thoai that deals
exclusively with inequality constraints. The reason that is doesn't handle equality constraints
is because "the algorithm works only on problems with a feasible set of full dimension. So,
it can't be applied for solving problems with equality constraints" [Thoai, 1993]. Therefore,
an alternative must be found since it seems impossible to modify the algorithm so that it
handles this case.

The alternative suggested here is to modify the statement of the problem so that it
can still be solved by the previous algorithm, rather than finding another algorithm. There
are two ways to achieve this, and they are both presented next. Each of them has some
advantages and some drawbacks, and depending on the problem itself, one may be desired
over the other. In one case, the equality constraints are modified to be included into the
target function, in the other case, the equality constraints are modified to become inequality
constraints. In both cases, the resulting problem is the minimization of a DC objective
function along DC inequality constraints. That problem can be handled by the previously

used optimization algorithm.
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As just mentioned, in the first suggested alternative, the equality constraints are
modified and included in the objective function. An equality constraint of the type a=b can
be written as a-b=0. Considering the function f(a,b) =|a- bl, this function has a unique
minimum at the location a=b and the value of this minimum is 0. Therefore solving an
equation of the type a=b is equivalent to succesfully minimizing the function
f(a,b) = |a- b|. Therefore the equality constraint a=b to be enforced can be replaced by an
objective function to be minimized. Since the original equality constraint is DC, the new
function is also DC and following the Result 6.5 mentioned earlier, the DC decomposition
is directly known. It must be noticed however that the constraint has to be satisfied,
therefore the corresponding part in the minimization process must be fully minimized, i.e.
reach 0. This can be simply achieved by putting a large weight on this part in the objective

function. For example consider the DC problem:

Minimize f, - f,

8,- & =0 & other DC inequalities (6.33)

where f,, f,, g,-and g, are all convex functions. This problem can be replaced by the

equivalent new DC problem:

Other DC inequality constraints

{Minimize (fl - fz) + M(Igl —& I)} =

(6.34)

Minimize (f, - f,)+ M-(2-max(g,.g,) - (g + &))
Other DC inequality constraints

where M is a Lagrange multiplier, i.e. a large weighting factor. In the case there are several

equality constraints, they are successively transformed into terms in the objective function to

be minimized. The fact that there is a large coefficient associated with each of them insures



-634-

that they are all satisfied. In some sense the minimization of the parts corresponding to the
equality constraints have a higher priority than the minimization of the original objective
function. That should be since the constraints are the strongest requirements in the whole
optimization process. This concludes the presentation of the first suggested alternative.

In the second alternative, it is suggested that the cumbersome DC equality
constraints be replaced by pseudo-equivalent DC inequality constraints. As it was
mentioned all along, tolerance levels are omnipresent in the whole project, from the
modelization into a neural network, to the synthetization of the pseudo multilayer neural
network, to the threshold levels in determining redundant constraints and vertices in the
optimization algorithm, and to the convergence of the algorithm itself. The bottom line of
this comment is that there is a limit in the resolution achieved by the whole process.
Assuming this limit is €, then an equality of the type a=>b, equivalently written as a-b=0 is
actually no different than |z — H < £ . This shows that an equality can be transformed into an
equivalent inequality. Using again the result on the absolute value of a DC function (result

6.5), a DC equality has an equivalent DC inequality for a given resolution &:

{A0) - £,(x)=0} & {|fi(x) - £(0)]= ¢}
< {2 max{f,(x) - (O}~ (f,() - f,(x) = e} (639

Following this route, similarly to the first suggested alternative, this second method

allows to transform a DC problem with DC equality constraints into a DC problem without
DC equality constraints but only DC inequality constraints. The difference between the two
approaches is that one performs the transformation by increasing the complexity of the
objective function, while the other increses the complexity of the constraints. This is another
example of the trade-off and duality there exists between objective functions and constraints

as 1t was mentioned in Chapter 4.
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To this point, the minimization of the output of the pseudo multilayer neural network
has been successfully converted into the minimization of a DC objective function along with
DC inequality constraints. The last step before executing the optimization algorithm is to
convert all the DC constraints into a single DC constraint as it was explained in Chapter 5.
This step was not necessary in the case of the single layer network for the reason that a
single DC inequality constraint was present. The conversion of a set of DC inequality

constraints into a single DC inequality constraints is performed easily when using the result

6.4. Considering a set of DC constraints {f, - f,, <0}, the resulting single constraint

{max(f, — f,) =O}is stronger than each of them individually, and its DC decomposition is

immediately known using the result 6.4. Once the set of DC coinstraints has been converted
into a single DC constraint, then the optimization algorithm can be run. The solution it
produces corresponds to the global minimum of the output of the original pseudo multilayer

neural network.

6.3.2. Examples and Applications.

In this section, some examples and applications of the global minimization of the
output of a pseudo multilayer neural network are presented. The first example is a direct
implementation of the method. An arbitrary mathematical function is modeled by a neural
network that is synthesized using the procedure described in Chapter 3. The network
equations are then converted into DC formulation, which in turn is translated into a problem
the optimization algorithm can understand following what was said in the previous section.
Solving the DC problem drives to the desired solution.

After showing this academic example, it is interesting to look at some actual
engineering problems. Needless to say that there are numerous global optimization

problems around in various engineering fields waiting to be solved. Following what was
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said concerning the generality of the modeling of any physical phenomenon or system by a
pseudo multilayer neural network, it is clear that the procedure described above can be used

to solve these problems.

Example 6.5: This example is once again an academic example, i.e. it has no
particular interest except for demonstrating that the method works, and to show the
successive steps required for its implementation.

Consider the real function f{.) of the real variable # which is shown on figure 6.8
and which is defined by the equation (6.36). This is a cosine function the argument of
which is modulated by a Log function. The Exp function (actually Gaussian function) is

here to create a global minimum.

y=3+Cos(2-u+10-Log(u + 1)) - 0.2 - & %’ | (6.36)

Sample Function

10

Figure 6.8. Sample function for example 6.5.
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Itis desired to find its global minimum over the interval [0,10] with a given tolerance
of 0.01. It is clear that this function could be modeled by a single layer SISO neural
network. It could therefore be minimized by the procedure shown in section 6.2. However at
this point it is desired to illustrate the procedure for minimizing a pseudo multilayer neural
network. Therefore the function f{x) is modeled by a pseudo multilayer neural network the
output of which is globally minimized following the procedure described so far in section
6.3. A pseudo multilayer neural network modeling f{x) is shown on figure 6.9. This
network clearly is of the right form since each nonlinear object is of the SISO type, and all
the interconnections between objects are linear. Let's define the so called 'macro' state

variables X, and X, as:

X, =2'u+10-Log(u+1)

X, (45 (6.37)

Figure 6.9. Model of the example function.

The complete equations describing the network are:
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X, =2'u+10-Log(u+1)

X, =(u-5) (6.38)
y=3+Cos(X,)-0.2- Exp(-X,)

Following the procedure, each of the nonlinear objects has to be modeled by a SISO
single layer neural network to be then converted into a DC formulation. However, it can be
noticed that some of the objects are convex or concave: Both (u — 5)* and Exp(-X,) are
convex, while Log(u + 1) is concave. Therefore, there is no need to transform them first into
a SISO single layer neural network. Hence, only the objects which have no 'obvious' DC
decomposition are first transformed into a neural network. It is clear that the Cosine block is
of this type. Since the input variable u varies from O to 10, it can be noticed that X, varies
from O to 44 since the Log function is strictly monotonic. Therefore the SISO neural
network modelling the Cosine block must be performing correctly over that domain.
Following the synthesis procedure from Chapter 3, the Cosine object can be synthesized
with the required tolerance over the domain [0,44] using 114 neurons. The modeling

problem can be described by the following set of equations:

X, =2-u+10-Log(u+1)
X, =(u-5)° (6.39)

114

Y=3+|Yo+ 2w, f(w, X, +b) |- 0.2 Exp(-X,)

i=1

The next step consists of converting these equations into DC format. As it was
already stated some equations already are. However, the neural network part is not. It has to
be converted following the usual procedure, separate the positive output weights from the

negative ones. It so happens in this case that out of the 114 neurons, 56 are 'positive'
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neurons and 58 are 'megative ones'. They form the sets X, and R, as defined before.

Therefore the model can be written in DC format as:

X, =2-u+10-Log(u+1)
Xz =(u"5)2

N ACNETY

y=3+y,+ [ szifl(wliu+b,.)+ 2
X &, x

i~*'n

(6.40)

_[ szifz(wliu +b)+ EIWL- lfl(wliu +b)+0.2 Exp(- X,)

x,-ENP x,-e<,,

The next step consists of performing a global minimization of the DC model. As it
was explained earlier, only the output equation has to be minimized, the other ones actually
are DC equality constraints. This type of constraints is not allowed and must be converted
once again. Following one of the routes that were suggested for solving this problem, each
of the constraints is transformed into an absolute value form that is minimized using a large
weighting factor. The two DC equality constraints are therefore converted according to the
equations (6.41) and (6.42) that must be minimized as well as the original target output, but

with larger weight.

X, =2-u+10-Log(u+1)
—|X,-2-u-10- Log(u+1)| (6.41)
— (2-Max{0, X, - 2-u—10- Log(u+1)},X, - 2-u -10- Log(u +1))

X, =(u-5)*
— |(u - 5)2 - le (6.42)
— (2 Max{0,(u - 5" - X, }.(u - 5)" - X,)



The problem has therefore been translated into solving the global minimization of

the output y in the following DC problem:

y=3+Yy,+ [ sz,.f1(w1,.u+ bi) + Elwzilfz(whu + b,)
5eR,

x84

n

_[ sz,-fz(whu +b)+ zlwz, lf1(w1,u+ b)+ 0.2-Exp(-X,)

x; €EX,

+M-(2- Max{0,X, -2 u-10-Logu + 1)}, X, -2 u—10- Log(u+1))  (6.43)
+M-(2-Max{0,(u - 5)° - X, },(u- 5" - X,)
subject to {u,Xl,Xz} e

where M is a large weighting factor (chosen to be 20 in this particular example) and

€21s the convex domain containing the three independent variables #, X, and X, . To show

better the DC decomposition, (6.43) can be written again as:

3+ + [ 2w2,f1(w1,u+ b)) + Elwz,lfz(w1,.u + b;)]
xex, X e,

+2-M-[ Max{0,X, - 2-u~10- Log(u+ 1)} + Max{0,(u- 5 - X, }]
‘ (6.44)

[ E w, f(wu+b)+ EIWZgLfl(Wl,u-'-bi) + 0.2 Exp(-X,)

x,B(l,

+M[X, -2 u-10" Loglu+1)+ (u~5)* - X, ]

subject to {u,Xl,Xz} €Q

The problem can then be converted to a canonical DC problem after the introduction

of the two extra independent variables z and w as it was explained before:



-641-

Minimize w
. (6.45)
Subject to {u,Xl,Xz} eQ
2 M [ Max{0,X, -2-u - 10- Log(u + 1)} + Max {0, (u - 5" - X,}]
) <0

3+, + [ sz,.f1(w1,.u +b)+ 2]“’2, |f2(W1iu +bi)] -z

.

(2- 0 -M[X,~2-u-10- Logu+1)+ (-5~ X, ]

—[sz,fz(w,,wbm D

x &, n

A

<0

WZ,»Ifl(wliu-'- b)+ O.2-Exp(—X2)

where the second and third constraints are convex and reverse convex respectively.
This problem is now solvable by the DC minimization algorithm. After this

algorithm is run, the convergence is reached with the following characteristics:

u=5.09, X;=0.01, X,=28.28, w=1.80, and z=0.63. (6.46)

Itis clear that the desired solution has indeed correctly been found. The value of the
function at that location is @ which is correct. With respect to the DC equalities, they have

indeed been fully satisfied since:

2:u+10-Log(u+1)=2825 and X =28.28

(u-5)*=0.01 and X, =0.01 (6.47)

This concludes the presentation of the 'academic' example.

Application 6.1: Programming of a neural network.
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[t was recalled in Chapter 2 that the task of programming a neural network to behave
according to some given directive is fairly complex. The method generally used for general
feedforward networks is the so-called backpropagation. However it has several drawbacks
such as lack of guarantee of global convergence to the "best" set of network gains and
parameters. However, note that the task of programming a neural network can be put into a
global optimization problem form. Once this is done, the problem can be modeled by yet
another neural network. When the output of the model is globally minimized via DC
programming, the desired solution for the initial problem then follows. This sounds close to
"a neural network used to program another neural network".

A 'neural network desired response is described by a set of input-output pairs: when
any of the vectors from the input set is applied to the network, it is desired to obtain the
corresponding output. If the network is not programmed correctly or if the network can't
achieve the desired behavior, then an error measure is available. For a given input, the
measure of the error is the distance between the desired output with the actual output. This
number is required to be as close to O as possible. Since there are usually a large number of
input-output pairs, each of these error measures are summed up to create an overall
performance index of the network. Ultimately the global error is equal to O which means
that the network is programmed perfectly: for every input from the set, the actual network
output is equal to the corresponding desired output.

It is clear that this formulation shows the relation between the programming of a
neural network and a global optimization problem where a scalar performance index must
be globally minimized. The input-output pairs represent parameters for the optimization
problem, as well as the network architecture. The inputs of the optimization problem are the
weights and biases of the neural network to be programmed: these quantities are the

unknown variables to be determined.
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Consider a single layer neural network with N neurons, with m inputs (given by the

input vector »), and with p outputs (given by the output vector y). The desired behavior of

the network is given by a set of k input output pairs {Ik,Ok} to be satisfied as well as
possible. The parameters to be determined are the input weights given by the matrix W,, the

neuron biases given by the vector b, and the output weights given by the matrix W, . The

neural network equations are:

x=f(W,u+b)

y=W, x }=>X=Wo'f(Wi'u+_lz) (6.48)

For the pair t, the error is defined as:

LW, W,.b)=|0,-W,- f(W,- 1, +b) (6.49)

It is therefore clear that the overall performance index of the neural network J when

including all the pairs can be written as:

k k
J(W, W)=Y j (W, W,b) = 2|0, - W, f(W,-I, +b) (6.50)
=1 tel

This is a continuous MISO function. Therefore, it 1s possible to model it with a
pseudo multilayer neural network, thereby using the procedure described earlier to convertit
into a DC programming formulation and successively finding the optimal parameters after

running a DC minimization algorithm.

This concludes the examples and applications. The method described in this chapter

for globally minimizing the output of a neural network was shown to be successful for



performing global optimizations when the initial problem is first modeled by the neural

network.
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Chapter 7: Summary and Conclusions

This dissertation presented a bridge between modeling and global optimization.
Following this route general global optimization problems can be solved. On the modeling
side, this bridge is interfaced to the desired problem via a new class of neural networks: the
pseudo multilayer neural network. On the global optimization side, the bridge is interfaced

to the searched solution via the so-called DC programming.

7.1 Introduction.

In order to efficiently construct these interfaces, advanced knowledge of both neural
networks and global optirhization techniques are required. Neural networks in general were
reviewedin Chapter 2. This involved various classes of neural networks, the programming
aspect of the desired behavior of a neural network, as well as a literature review concerning
neural networks in general and those dealing with function approximation in particular.
Global optimization techniques in general were reviewed in Chpater 4. This involved a
review of several families of methods including deterministic methods and Tuy's cuts.
Again, a literature search was presented.

After the general reviews, Chapter 3 and Chapter 5 described the two interfaces. A
new class of neural networks was introduced in Chapter 3 and a complete study of these
was then described. This included presentation of the architecture of the networks, synthesis
aspects of the network rather than backpropagation, followed by some concrete examples
showing a comparison with more familiar architectures such as the classical multilayer
feedforward neural network. In Chapter 5, a review and complete implementation of Thoai's

algorithm for solving DC programming problems was presented. This included the
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theoretical aspects of converting a DC problem into a canonical DC problem, as well as
practical aspects such as constraint dropping strategies and computation of new vertices
after a new cut is performed.

Finally, in Chapter 6 the bridge between pseudo multilayer neural networks and DC
programming was introduced. This connection required several problem conversions and
translations, as well as changes of variables in order to find general common grounds. Once
these requirements were presented, actual implementations for practical examples were

shown.

7.2 Contributions.

It is clear that the major contribution of this work has three aspects: showing the
possibility of solving general optimization problems using neural networks and DC
programming; the complete introduction of a new class of neural networks including a
performance study and synthesis for construction; and finally the implementation of a
modified version of Thoai's algorithm that can optimize problems formulated using pseudo

multilayer neural networks.

7.2.1. Neural networks and DC programming.

The 1dea of mixing neural networks and global optimization techniques together was
not new. In Chapter 2 several previous studies were mentioned. However, the approach
shown in this thesis is more general. A larger class of problems can be considered, and the
global convergence is guaranteed. The two phase process, modeling followed by
minimization is probably where most was gained. On the one hand, the modeling is very

general due to the wide capability of modeling various systems by the pseudo multilayer
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neural network, and on the other hand, the minimization task is guaranteed to globally
converge following the work by Thoai. It is therefore clear that each of the two phases is
very promising by itself. Since it was shown in Chapter 6 that it was possible to put them
together, and the complete procedure was derived and explained, the advocated method is

therefore successful.

7.2.2. The pseudo multilayer neural network.

Although the pseudo multilayer architecture for neural networks was primarily
introduced for an interface purpose with DC programming as described earlier, it so
happens that it has a much larger application field. In many instances it can replace a regular
multilayer feedforward neural network. It has the key advantage of being synthesized rather
than programmed which implies that the procedure is systematic and fast compared to the
classical backpropagation. In terms of actual implementation, the pseudo multilayer is a
subset of the regular multilayer, i.e., the very same VLSI chips that are used for the
hardware implementation of a feedforward multilayer network can be used for the pseudo
multilayer neural network as well.

In order to model a mathematical function, a process, or a general system by a
pseudo multilayer neural network, it must follow certain rules which were described, i.e. for
a mathematical function, it must be unary* decomposable. However, it was mentioned and
proven that these requirements are not very stringent and that engineering systems almost
always fall into these categories.

The strong point of the synthesis of a pseudo multilayer neural network is that the
procedure is based around objects that are assembled and interconnected. The complete
procedure was fully explained and its efficiency was illustarted by means of a few

examples. A reason for this efficiency is that several "special situations" are implemented in
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a direct manner. Those were carefully explained and developed. They include direct
implementations of the "square" function, of the "multiplication" operator, and of the
"modulo" computation used with periodic functions. Overall the pseudo multlayer
architecture along with its synthesis procedure both described in Chapter 3 offer a
promising alternative to the classical feedforward multilayer neural network and allow

interfacing with DC programming and global optimization techniques.

7.2.3. Global optimization via DC programming of a problem formulated

with a pseudo multilayer neural network.

Chapter 6 provided the completion of the bridge between neural networks and global
optimization techniques. It was the chapter in which it was proven that it was possible to
interface a pseudo multilayer neural network with DC programming. The procedure was
shown by starting with a simple neuron; the DC decomposition of the input output behavior
of the neuron was written. Then single layer neural networks were explored; such networks
are sets of single neurons with their outputs linearly connected. It was henceforth shown
and explained how to convert a single layer neural network into a DC formulation. The
procedure was shown to be working with both SISO and MISO type networks. This was
illustrated by means of examples for each kind. The step that followed was to expand the
method to be able to deal also with pseudo muitilayer neural networks. At every step
through this enhancement process to increase generalization, theoretical results supporting
the validity of the extension were recalled or introduced, and proven. At the end a systematic
procedure had been derived that allows to convert any SISO pseudo multilayer neural
network into a DC formulation such that the global minimization algorithm presented erlier

could be successfully applied.
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A practical implementation of this was shown by means of examples and
applications. It was noticed that due to the generality of treatable problems, there are lots of

possible applications.

7.3 Further research.

Itis clear that any further research on any subject involves what has not been fully
completed, or what could be improved oh the original process. Therefore, the drawbacks and
problems of the current method must be further explored and possibly improved. From
what was said and shown concerning the wide possible use and guarantee of giobal
convergence of the optimization process, it is clear that the theoretical aspects of this work
are in fairly good shape. Problems lie more in its practical implementation.

There are two major areas that could be improved: on the one hand, there is the
possibility of an implementation of automatic procedures to build a pseudo multilayer
neural network from a given optimization problem, followed by an automatic
implementation of the conversion of this neural network into DC formulation. On the other
hand, improvements or alternative to Thoai's algorithm for solving the DC programming
phase of the process can be looked for.

To begin with the practical implementation of automatic procedures, what could be
envisioned is a compiler like process that would convert given problems into an object
oriented structure. Once the object model is formed, what is left to do is to convert each
individual object into a SISO single layer neural network as it was explained, and connect
the objects through an external linear structure. The "special efficient cases" should be
recognized and taken care of. Then, following the steps introduced in Chapter 6, the pseudo
multilayer neural network can be converted into a DC formulation, then translated into a

canonical DC formulation. What is suggested here is not any new work, it is just an
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automatic implementation of all the steps described in the thesis that were manually taken
during the various given examples. However, it must be said that implementing these
automatic procedures is mandatory if the method is to be widely used.

With respect to a better and more efficient way of solving a DC problem, the
question is more difficult. Starting with the current status, it can be said that it is actually
working. It drives successfully the minimization process to the global minimum. However,
the procedure is too slow for having much practical interest at this point. Why is the
procedure so slow? There are two reasons. The first reason is that Thaoi's algorithm
performs cuts and tracks vertices. The procedure is time consuming due to the large number
of vertices created and eliminated after each cut. More efficient algorithms could probably
be found by researchers in operations reasearch and optimization areas. The second reason
however is more pessimistic. It is well known that global general optimization is an NP hard
problem. It is therefore clear that DC programming which is able to solve global general
optimization is also an NP hard process. No miracle can be found that will resolve this
difficulty, and any DC programming algorithm will hence always be "slow". However, this
does not mean that it always will be "useless" for that reason. With the advent of parallel
computing and ever faster computers appearing on the market, a hardware implementation
of Thoai's algortihm could for example be imagined, where there would be one simple
process for each vertex, but due to the parallel architecture, all the vertices could be updated
simultaneously. This would make DC programming problems solvable within an acceptable
amount of time. However, the method described in this thesis addresses an NP hard

problem, and therefore there is no possibility of finding a "very fast" algorithm.
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