Fuzzy Adaptive Recurrent Counterpropagation Neural
Networks: A Neural Network Architecture for Qualitative Modeling

and Real-Time Simulation of Dynamic Processes

by
YaDung Pan

A Dissertation Submitted to the Faculty of the

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

In Partial Fulfillment of the Requirements
For the Degree of

DOCTOR OF PHILOSOPHY
WITH A MAJOR IN COMPUTER ENGINEERING

In the Graduate College
THE UNIVERSITY OF ARIZONA
1994



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . .. . it et i e
LIST OF TABLES . . . . . . . s e e
1 Introduction . . .. .. .. ... .. .. .
1.1 System Modeling . . . . ... .. .. ... .. ... ..
1.2 Research Motivation and Organization . . . . . . ... ... ... ..
2 Review of Neural Networks and Fuzzy Logic . . . . . . .. .. ...

2.1 Neural Networks . . . . . .. .. ... .. .. oo
2.1.1 Neural Networks in System Control and Identification
2.1.2  Using Neural Networks for Parallel Sorting . . . .. ... ..
2.1.3 Counterpropagation Networks . . . . . .. ... ... ... ..
2.2 Fuzzy Logic . . . . . . . . . . e
2.2.1 Fuzzy Logic Control . . . . . .. ... ... ... .... ...
2.2.2  Fuzzy System Estimation . . ... ... ... .........

Fuzzy Inductive Reasoning . . . . .. .. .. ... .. .. .......
3.1 The Representation of System Dynamics as a Finite State Machine .
3.2 Finding the Optimal Masks . . . .. ... ... ... ... ......
3.3 Fuzzy Recoding . . . . . . . . .. .o

3.3.1 Determination of Landmarks . . . . ... ... ... .. ...

Fuzzy Adaptive Recurrent Counterpropagation Neural Networks
4.1 Implementing Finite State Machines Using Generalized Counterprop-

agation Neural Networks . . . . ... .. ... ... .......
4.2 Implementing RCNNs Using Fuzzy Recoding . . . . ... ... ...
4.3 Implementation of the FRCNN Architecture. . . . . .. . ... ...
4.4 Learning Mechanisms . . . . .. .. .. ... ... ... .. .....

Experimental Simulations . . . . ... .. ... ... .0 00,
5.1 Static Continuous Nonlinear Function I . . . . . .. .. .. .. ...
5.2 Static Continuous Nonlinear Function IT . . . . . . ... ... .. ..
5.3 Discrete Dynamic Function . . . . ... .. ... ... ........
5.4 HydraulicMotor . . . . . . . ... L
5.5 Comparison of Different Fuzzy Reasoning Techniques . . . . . . . ..

10

15
16
17
21
22
26
31
33

35
36
40
48
51

o4



6 Conclusion and Future Research . . . ... ... .. .. .......
6.1 Future Research . . . . . . . . . . . @ o . e

REFERENCES

..................................



LIST OF FIGURES

2.1 Competitivenetwork . . . . . ... ... o o000 24
2.2 An on-center off-surround interconnection . . . . . ... .. ... .. 25
2.3 Fuzzy membership functions . . .. ... ... o 000000 28
2.4 Fuzzy reasoning system . . . . . .. .. ..o 29
3.1 Fuzzyrecoding . . . . . . . . .. . e 50
4.1 Counterpropagation network for XOR functions . . . . . .. ... .. 58
4.2 Counterpropagation network for Finite State Machine . . . .. . .. 61
4.3 Recursive counterpropagation network . . . . .. .. .. ... L. 62
4.4 Recursive counterpropagation network for continuous signals . . . . . 64
4.5 Fuzzy inferencing for counterpropagation network . . . . . . . . . .. 68
4.6 Basic FRCNN architecture . . . ... ... ... ... ........ 70
4.7 Implementational issues of FRCNN architecture . . . . . . . .. . .. 78
5.1 Error comparison for example 1 with 5 and 15 regions, 200 samples

areused . ... ..o e 89
5.2 Learning error curve for example2 . . . . . ... ... oL 92
5.3 FARCNN results for example 2 with differently sized training data sets 95
5.4 Position control diagram of a hydraulic motor . . . . . . ... .. .. 98
5.5 Hydraulic motor with four-way servovalve. . . . . . .. . ... ... 99
5.6 FARCNN structure for hydraulic motor . . . .. .. ... ... ... 102
5.7 Simulation and forecast behavior of hydraulic motor in open loop . . 104
5.8 Simulation and forecast behavior of hydraulic motor in closed loop . 105
5.9 Comparative results for example 2 with different fuzzy reasoning tech-

DIQUES . & v v v vt e e e e e e e e e e e e e e 107
5.10 Approximation of y = 0.1z by FARCNN using 5N algorithm . . . . . 109
6.1 Enhanced FARCNN architecture to cascade a reduced size CNN and

SNN . e 119



4.1

5.1
5.2
3.3

LIST OF TABLES

Truth table of XOR gate. . . . . .. ... ... ... ... ...... 57
Performance comparison for example 1 . . . . . . .. .. ... .... 88
Performance comparison for example 2 . . . . . .. ... .. ..... 93

Performance comparison for example 3 . . . . . ... ... ...... 97



CHAPTER 1

Introduction

With the emerging need for ever higher degrees of system autonomy, the design of
intelligent control systems has become the most active research area not only within
the control community, but also in modeling and simulation.

The goal of intelligent control systems is to address control problems that in-
volve system uncertainty, fault diagnosis, and system reconfiguration, which require
the capability of learning modified system behavior and adapting to it. Sometimes,
intelligent control systems are also expected to have the capability to respond to com-
mands issued at a high level of abstraction in terms of symbolic or linguistic variables.
These goals cannot be achieved easily by using conventional control methods only.
Therefore, intelligent control systems are integrating systems that not only contain
conventional control for low-level component control, but also use expert systems for
knowledge abstraction and fault diagnosis, fuzzy logic for qualitative reasoning and
modeling, and artificial neural networks for system learning and adaptation.

In conventional control methodology, the system to be controlled is viewed as a
plant consisting of a collection of interacting components. It can be conceptually
thought of as a source of data measurable through the system outputs, and offers

the capability to influence its behavior by exerting the system through the system



inputs. It is therefore easy to distinguish the controller from the system. However
in an intelligent control system due to the hierarchies of its functional structure, it
is not an easy task to separate the controller from the system to be controlled. The
various controllers are part of the overall system, and lower-level controllers may look
like part of the plant to the higher-level controllers.

Due to the inherent complexity of intelligent control systems, the control com-
munity has not yet even agreed upon a clear definition of what “intelligent control”
really means or entails. It is however useful to provide a few definitions of intelligent
control as they can be found in the contemporary control literature. [59] defines an
intelligent control system as “a control system with ultimate degree of autonomy in
terms of self-learning, self-reconfigurability, reasoning, planning and decision making,
and the ability to extract the most valuable information from unstructured and noisy
data from any dynamically complex system and environment.” [1] discusses intelli-
gent control from the point of view of a definition of intelligence per se, and explores

dimensions of intelligently acting or behaving systems.

1.1 System Modeling

Since an understanding of the underlying system characteristics is fundamental to
all control actions, the ability to mathematically describe, i.e., model, these system
characteristics is essential to control in general. Furthermore, a methodology capable

of describing basic system characteristics or modes of system behavior in the context



of incomplete system knowledge, accounting for potential changes in the very fabric
of these system characteristics as time passes, is paramount to the successful design of
an intelligent control system. Thus, an intelligent control architecture must contain,
as a central part, a modeling engine capable of dealing with uncertainty, and of
learning, on the fly, new modes of system behavior.

Due to the inherently hierarchical structure of all intelligent control systems, the
plant characteristics cannot be described as a set of operational data alone, it must
also include current set point information for the linearization module, scheduling
information for the event control module, elements of nominal operational modes and
significant variations thereof for the fault diagnosis module, and a symbolic processor
and reasoning algorithms for the human interface module.

Based on the most appropriate knowledge representation scheme and the available
form of information about the system, the plant characteristics can be described using
either a rule-based or a model-based approach, and either quantitative or qualitative
variables.

The rule-based approach is commonly used for the fault diagnosis module, since
the information needed for fault diagnosis is of a global nature, and since a conclusion
can often be reached without resorting to the detailed information at a microscopic
level that a model-based approach would provide. Thus, the rule-based approach is
for this purpose usually more practical and more economical. By using the “pat-

tern = action” rules generated by the expert employing heuristic problem-solving



techniques, the fault diagnosis module can easily be constructed on the basis of avail-
able expert knowledge and take action when it is triggered by a discrepancy in the
observed operational patterns.

Fuzzy logic control is a technique for implementing control strategies by using a
rule-based formulation, but instead of dealing with crisp information as would usually
be employed by expert-system controllers or programmable logic controllers, fuzzy
logic control 1s able to use fuzzy, i.e., imprecise, information.

Model-based approaches are used to describe the system’s causal and functional,
temporal and spatial information, and are commonly applied to constructing the
event-control and scheduling module. The distinction between rule-based and model-
based approaches is somewhat artificial. Does not any codification of information
about a system constitute a “model”? So, why then should a rule base not be called
a model as well? Evidently, there is no easy answer to these questions. Traditionally,
rule bases are static in nature, i.e., the conditions for firing a rule are instantaneous,
and the effects of such firings are equally immediate. Such a “rule base” (a very
narrow definition of the term) can evidently not cope with situations where the use
of information collected at different points in time is essential. In such a case, a model-
based approach is usually preferred, whereby the term “model” simply implies use of
more thorough information about the plant to be controlled. Model-based and rule-
based modules are often integrated into diagnostic units, whereby the model-based

component is used primarily for fault detection and isolation, and the rule-based



10

component is employed predominantly in the processes of fault characterization and
repair.

Using quantitative variables and data, a system can be described by sets of math-
ematical (differential and algebraic) equations. This description has the advantage of
being very compact, much more so than any behavioral description. Its accuracy and
interpretation capability have made this representation attractive for use by classical
control theory. This system representation is mostly used to describe the low-level
components of the system, where precise information is required for control.

Inspired by the human capability for reasoning and predicting physical system
behavior without the use of structural models, artificial neural networks have been
introduced to identify system input/output models through behavioral learning. Neu-
ral networks provide an unstructured approach to recognizing system behavior when
no or only very little structural information about the system to be modeled is avail-
able. Their capability of learning new modes of system behavior on the fly, thereby
adapting themselves easily to an environment that changes with time, have secured
them a prominent role in intelligent control architectures.

Qualitative modeling approaches have been inspired by the ways how hunians rea-
son about system behavior. Qualitative approaches are forgiving when dealing with
knowledge about a system that is only available qualitatively, when confronted with
unmodeled plant dynamics, or when exposed to unknown disturbances, i.e., when-

ever they have to cope with data uncertainty of one sort or other. Several qualitative
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modeling approaches have been proposed including naive physics, common sense
theory, qualitative reasoning, and qualitative simulation. Most of these approaches
however have difficulties accommodating pieces of precise knowledge, and are there-
fore overgeneralizing, with the negative effect that their predictions are unnecessarily
ambiguous.

Another emerging approach using fuzzy logic to describe system characteristics
through qualitative information is based on human thinking and natural language
processing. It provides a means to describe both the system behavior and control
strategy with varying degrees of detail. It can accommodate exactly as much quan-
titative information as is available and/or as is deemed suitable for the task at hand.
This approach therefore provides an ingenious compromise between the quantitative
and qualitative approaches to modeling. It is this approach to modeling that will be

studied and discussed in great detail in this dissertation.

1.2 Research Motivation and Organization

Expert system technology has been the most successful methodology in all of ar-
tificial intelligence. The use of expert systems is widespread across all branches of
science and engineering, and contrary to many other artificial intelligence methods
that work well for small textbook example but don’t scale up to industry-size appli-
cations, expert systems have been successfully employed in the solution of very large

and arbitrarily complex industrial applications.
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Currently, expert systems use a rule-based formulation to represent knowledge.
They have the advantage of an easy interpretation and implementation. The bot-
tleneck in today’s expert system technology is the process of knowledge acquisition.
Rules are usually generated from human experts’ experience, and are not being gen-
erated automatically from observations. Experts who are able to formulate their
implicit knowledge in the form of explicit rules are hard to come by, and make the
on-line design of expert systems or at least their on-line adaptation (incorporation
of new pieces of knowledge) not easily feasible. To this end, it would be very useful
to have a technology available that can synthesize expert systems directly from ob-
servations. Another shortcoming of contemporary expert system technology is their
computational dependence on the size of the rule base. With an increasing volume of
available knowledge, today’s expert systems have a tendency to soon become sluggish.
These two shortcomings are to be addressed in this dissertation. A methodology will
be shown that allows to design expert systems from observations alone, and a parallel
implementation scheme will be developed whose execution speed is independent of
the size of the rule base.

The objective of our research is to develop an efficient autonomous system model-
ing methodology combining the advantages of the quantitative approach (neural net-
works) with those of the qualitative approach (fuzzy logic). A novel neural network

architecture will be demonstrated that avoids the most prevalent pitfall of previous
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neural network architectures, namely their extremely slow behavior learning capabil-
ities, as documented e.g. by the popular feedforward neural networks trained through
backpropagation. The new architecture has been coined Fuzzy Adaptive Recurrent
Counterpropagation Neural Network (FARCNN). FARCNNSs can be directly synthe-
sized from a set of training data, making behavioral learning extremely fast. It takes a
single pass through the available training data set to learn every piece of information
that is contained in the data. FARCNNs can be applied directly and effectively to
model dynamic and static system behavior based on the observed input/output data
without need to know anything about the internal system structure. Due to their ca-
pability of automatic model construction and information extraction, the FARCNN
architecture also provides a new approach to constructing expert systems for real
time applications.

The FARCNN architecture adopts the technique of Fuzzy Inductive Reasoning
(FIR), an advanced behavioral modeling methodology based on the human ability to
find analogies among similar processes, to predict coarse system dynamic behavior.
A neural network architecture is presented that allows to rapidly implement a large
variety of different static and dynamic functional relationships with minimal need of
learning. The basic counterpropagation neural network (CNN) architecture provides
a parallel implementation mechanism for binary truth-table lookup. As a typical
application of the technology, an arbitrary combinatorial digital circuit can be realized

quickly and efficiently. A single pass through the Kohonen and Grossberg layers
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suffices to produce the desired outputs to an arbitrary set of inputs. The gate delays
will thereby be minimized.

A generalized counterpropagation neural network (GCNN) generalizes the CNN
architecture to deal with multi-valued logic. This enhanced architecture can for
example be used for efficient implementation of finite state machines (FSMs). Each
pass through the network corresponds to one clock of the FSM. This allows for real-
time implementation of Petri net simulators.

Another application of this technology is the real-time implementation of forward
chaining expert systems. The Kohonen layer can implement the conditions for rules
to be fired, while the Grossberg layer implements the consequences of such firings.

A recurrent counterpropagation neural network (RCNN) is also presented. Its
enhancement allows to incorporate memory into the network. It enables the transi-
tion from dealing with purely static relationships only to being able to handle fully
dynamic functional relationships. It enables us to efficiently implement electronic
circuits containing flip flops, it allows us to realize second generation time-dependent
expert systems for real-time applications, and it provides us with means to implement
crisp inductive reasoning models.

The processing of continuously changing information causes considerable diffi-
culties to the inherently digital network architecture. However, a solution to this
dilemma was proposed involving newly designed fuzzy A/D and fuzzy D/A con-

verters and a standardized backpropagation neural network (BNN). The problem of
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propagating fuzzy membership values across the network is addressed, and a network
architecture for accomplishing the fuzzy signal propagation is presented.

In Chapter 2 of this dissertation, the basic concepts behind neural network and
fuzzy system technologies are reviewed, and current state-of-the-art implementations
of both methodologies are discussed together with their most successful applications.

In Chapter 3, the methodology of fuzzy inductive reasoning is presented.

In Chapter 4, it will be shown how fuzzy inductive reasoners can be implemented
using a basic counterpropagation neural network, and the design strategy of the
FARCNN architecture is introduced.

In Chapter 5, several examples are shown that illustrate the application of the
FARCNN architecture to practical problems, and in some cases compare the results
obtained using the FARCNN technology to previously published inductive models for
the same applications using different inductive modeling approaches. The applica-
tions discussed in Chapter 5 include a static continuous nonlinear equation, a discrete
sequential equation, and a dynamic continuous nonlinear hydraulic motor system.

In Chapter 6, conclusions are presented, and open research questions are being

discussed.
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CHAPTER 2

Review of Neural Networks and Fuzzy Logic

Both the technologies of artificial neural networks and fuzzy logic are inspired by
the human ability to learn by observation and infer knowledge about unknown sys-
tems. Extensive research and application results have been published demonstrating
the potential promises of these two technologies for a variety of areas. These are
also the two most important technologies making intelligent control systems feasi-
ble. Some references even equate the term “intelligent control” with making use of
neural networks and/or fuzzy logic within the overall control architecture. With the
recent appearance and commercialization of neural chips and fuzzy chips, it has now
also become possible to use neural control and fuzzy control in real-time applica-
tions. As these two emerging technologies have attracted a lot of attention by many
researchers leading to hundreds if not thousands of new articles in journals and con-
ference proceedings every year, an exhaustive survey of either technology has become
quite impractical. It will not be attempted.

In this chapter, a brief overview of the basic concepts pertaining to both technolo-
gies is given, some relevant state-of-the-art research results are being examined, yet
only. those subjects with direct relevance to our own research efforts are presented in

more detail.
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2.1 Neural Networks

Since artificial neural networks (perceptrons) were first mentioned in the literature
by McCulloch and Pitts [43], the theory of neural networks has been advanced a lot.
Especially during the most recent decade, neural networks have been among the most
active research areas worldwide, leading to hundreds if not thousands of publications
in every year. Impressive results have also been reported relating to the applicability
of neural networks for solving complex problems of industry-size proportions. In our
view, the most promising results are those that show the universal applicability of
neural network technology. Stinchcombe and White have shown that a two-layer
neural network with sufficiently many neurons in its hidden layer can approximate
any continuous function [61]. Similar results were reported in the same year by
Funahashi [16].

As neural networks have the ability to learn and map the behavior of complex
systems without being provided with any knowledge about their internal structure,
neural networks have predominantly been applied to both static and dynamic pattern
recognition problems in signal processing, image processing, system identification,
and control.

Also due to the inherent parallelism in neural networks, they have the potential
to process information in very eflicient ways when appropriate hardware is available.

One example of exploiting the parallelism of neural networks for engineering problems
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is the application of parallel sorting. The computational complexity of straightfor-
ward sequential sorting algorithms grows quadratically with the number of elements
to be sorted. The theoretical lower limit of the computational complexity of any
sequential algorithm for sorting n elements is n - logn. With the advent of neural
network implementations of sorting algorithms, it has now become feasible to make
sorting (an important component of many engineering problems) even faster, and
implement the sorting function in hardware as a neural chip.

In the following sections, we are going to look at neural networks in more detail
from these two points of view: pattern recognition and parallelization. Finally, a
much more detailed review of one particular neural network architecture, the coun-
terpropagation network, will be presented. The reason for this selection is simple:
all these components are geared toward use in our own neural network architecture,
the Fuzzy Adaptive Recurrent Counterpropagation Neural Network (FARCNN), that

will be discussed in detail in the subsequent chapters of this dissertation.

2.1.1 Neural Networks in System Control and Identifica-
tion
The capability of neural networks to identify unknown systems from their in-

put/output behavior alone has secured them a prominent role in the design of intel-

ligent control architectures.
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Most of mathematical system control theory is based on complete knowledge about
the plant to be controlled. A model of the plant is described as a set of linear or
nonlinear differential equations, and the controller or control loop design is based
on this model. However, realistically complex problems always contain time-variant,
unknown parameters, or even unknown nonlinear terms associated with the system,
the so-called unmodeled dynamics of the system. Neural networks, with their in-
herent ability to identify system behavior on the fly and to adapt themselves easily
to changing situations, are earmarked for use in control applications where the in-
fluence of unmodeled dynamics is significant. The more nonlinear a plant and the
less is known about the plant to be controlled, the better will neural network con-
trollers perform in comparison with the more traditional control architectures. In
neural control, neural networks are either used to identify the plant to be controlled,
or to identify the controller itself. Often neural controllers come in pairs of neural
networks, one identifying the plant, and the other identifying the controller.

Two different classes of neural networks have traditionally been employed in sys-
tem identification and controller design: multilayer feedforward neural networks [74]
and recurrent networks [25]. From a system dynamics perspective, the multilayer
feedforward network is a static nonlinear input-output mapping system, i.e., a non-
linear multivariable function generator, whereas the recurrent network is a dynamic

nonlinear feedback system [49]. Each of these two classes has proven its utility by
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means of many realistically-sized applications, and extensions to the basic architec-
tures have been reported that improve their efficiency. Feedforward networks are
advantageous because of their simpler structure, and because they are somewhat
easier to use. Recurrent networks have the advantage of being able to learn more
complex behavior with a smaller number of neurons; they can, due to their inherently
dynamic nature, mimic the behavior of dynamic systems more easily; and they can
learn new behavioral patterns much faster than their static (feedforward) cousins.

Subsequently, we shall focus our attention on the multilayer feedforward networks,
since they are at the heart of our own FARCNN architecture.

Multilayer networks were first introduced by Werbos [74]. They make use of the
generalized delta rule with back-propagation for training the network by changing
its connection weights, biases, and the thresholds of the output activation functions.
Werbos’ original work went practically unnoticed for twelve years, after which this
network architecture was finally popularized in a frequently cited publication by
Rumelhart, Hinton, and Williams [55]. Since then, there have been written many
papers that either make use or extend the basic architecture of back-propagation
trained multilayer feedforward networks.

Multilayer networks exhibit some problematic shortcomings that need to be ad-
dressed: the slow convergence (learning) rate, the local minima problem, and the

network configuration problem. A number of publications have dealt with each of
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these three problems: [68], [54], and [33] suggest variations of the standard back-
propagation training algorithm for improved learning speed, [24], and [42] propose
strategies for optimally choosing initial weights. [44] and [23] use genetic algorithms
and simulated annealing to avoid getting stuck in local minima. [48] presents a
scheme to iteratively increase and decrease the number of neurons during the learn-
ing process. [5] uses Voronoi diagrams to determine the number of layers, the number
of neurons in each layer, and the connection weights needed to classify patterns in
a multidimensional feature space. [4] discusses lower and upper bounds on the re-
quired size of the training data set for training a feedforward neural network given
the desired approximation accuracy that the network is supposed to achieve.
Further, [50] proposes the “functional link network,” an architecture that uses an
enhanced input space to create complex nonlinear mappings from the input to the
output layer. With these high-order terms in the extended input layer, the hidden
layers can be eliminated, and thereby, the learning process is considerably simplified.
A number of interesting publications show the applicability of neural networks to
control. [49] demonstrates how the multilayer and recurrent neural networks can be
used for system identification as well as controller design in the adaptive control of
unknown nonlinear dynamic systems. [34] compares the neural network approach to
two more traditional adaptive controller design approaches: the self-tuning regulator
and the Lyapunov-based model reference adaptive controller. [52] uses the functional

link network to identify the system behavior, then uses the required control objectives
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and the emulated system to train a controller that is emulated by another neural

networks.

2.1.2 Using Neural Networks for Parallel Sorting

Sorting plays an important role in many engineering processes. Conventional
sorting algorithms are based on the sequential comparison of elements [3]. Due to the
inherent parallelism of neural networks, several authors have studied the possibility
of implementing sorting algorithms in a neural network for real-time applications.
Two different approaches have been reported.

The more direct approach uses a general-purpose neural network trained for this
application using specially chosen initial conditions. [22] uses a Hopfield network for
this purpose, whereas [70] makes use of a probabilistic neural network respectively.

The other approach uses a dedicated network. [57] and [78] employ custom-
designed neural networks especially constructed to solve the sorting problem. This
approach has the advantage that it makes better use of the massive parallelism real-
izable in neural networks. [57] uses three different types of neurons: linear neurons,
quasi-linear neurons, and threshold-logic neurons distributed over four layers of a
feedforward network structure. Its overall processing time is that of four neurons
placed in series, independent of the number of elements to be sorted. Only the num-
ber of neurons that are needed in each layer grows with the number of elements to

be sorted, not the processing speed. [78] uses a simplified parallel sorting algorithm.
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It is implemented by a network employing binary neurons with AND /OR synaptic
connections. The overall processing time is two clock cycles. The structure has been
implemented for sorting positive integers only, but the approach can be extended to
sorting real-valued numbers by making use of real-number comparators.

Both approaches are quite general. They lend themselves to use in industry-
size applications. The dedicated approach employing a specialized network has the
advantage of a constant processing speed regardless of the number of data points to be
sorted, whereas the direct approach has the advantage of being easily implementable
in a general-purpose neural chip. Either approach will work fine when used in the

context of the FARCNN neural architecture.

2.1.3 Counterpropagation Networks

By combining a competitive network with Grossberg’s outstar structure, [19] intro-
duces a two-layer network called counterpropagation network, which can be trained
quite rapidly in comparison with other networks. This network can be used to learn
any continuous function that maps the input u into the output z, z = ®(u), or, if the
inverse of ® exists, then this network can also learn the inverse mapping, u = ®~(z).

In the following chapter, we are going to show how a much simplified binary coun-

terpropagation neural network can be constructed instantaneously without any need
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for training. This network can be applied as an efficient approach to implement-
ing a finite state machine. However, for now, let us review the counterpropagation
architecture as proposed in [19].

The competitive network consists of a layer of instar processing elements as shown

in figure 2.1. Each instar element is governed by the equation:

t=—a-z+b-net (2.1)

where z is the output, net is the dot product of the input vector U and the weight
vector W, i.e, net = U- W, and a, b are positive constants. The weight learning rule

is as follows:

W = (—cW + clU) - sgn(net) (2.2)

where sgn is the sign function, and ¢ is a positive constant.

Based on this learning rule, the weight vector will align with the input vector, and
a single instar element can reach the largest output after the alignment has taken
place. The interconnection among the instars in the competition layer is an on-center
off-surround connection as shown in figure 2.2. The " output is determined by the

following equation [15]:

¥i = a yi + (b — y:)[f(y:) + neti] — y; (Z flye) + Znetk) (2.3)

ki k#i
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Figure 2.1: Competitive network

where f(y) is a quadratic function, f(y) = y>.

This equation emulates a winner-
takes-it-all function, i.e., it enhances the largest input and suppresses all the others.
The overall function of the competitive network is to recognize an input pattern
through a winner-takes-it-all competition, thus, the competitive network is acting
like a select function. Consequently, counterpropagation networks can be (and have
been) successfully applied to pattern classification problems.

Usually, we choose as many hidden units as there are classes to be identified.
Through the training process, the weights of the competitive layer settle near the
centroid of each cluster. Each class is represented by a cluster of training data. The
winner-takes-it-all competition selects the closest class for new testing data.

The outstar layer consists of a similar layer of instar processing elements that

are connected to the outputs of the competition network. As the output value from

the competition network is 1 for the recognized input pattern, and 0 for all other
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Figure 2.2: An on-center off-surround interconnection

patterns, the weight learning rule is only applied to the corresponding output pattern
z. There is no competition function in the outstar layer. The overall function of the
outstar layer is to identify the corresponding output for the selected class from the
competitive layer.

Interestingly enough, the counterpropagation network operates like an implemen-
tation of the nearest-neighbor algorithm {11]. The correct identification of the nearest
neighbor carries an error probability bounded by twice the Bayes probability.

If interpolation between neighboring classes is desired, more than one unit of the
competitive layer can be used to share the winning class. In this way, an average
score for the best matching can be applied instead of the single closest class. This
represents an implementation of the k-Nearest-Neighbors algorithm [13] using coun-
terpropagation networks.

One of the drawbacks of working with nearest neighbors is that finding them is
computationally expensive both in terms of memory allocation and computation time

needed for comparing the new element with every one of the training samples. In the
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following chapters, we are going to show how the fuzzy reasoning technique can be
applied to reduce this burden to some degree.

Several other research efforts are related to the task at hand. [80] shows how the
performance of the nearest neighbor algorithm can be improved by using a two-layer
perceptron network. [60] demonstrates how appropriate initial connection weights

can be produced using the nearest neighbor concept.

2.2 Fuzzy Logic

Since the introduction of fuzzy set theory by Zadeh [81], this theory has been used
in a variety of applications. The most fruitful application areas of this theory are
fuzzy logic control and fuzzy system estimation [51]. Fuzzy set theory represents an
extension to ordinary (crisp) set theory. As in crisp set theory, each element in the
set belongs to a class. All classes together form the referential set or the universe
of discourse. However, fuzzy set theory adds to each element z in the set F an
additional piece of information, the so-called membership value of z, which denotes
the degree of confidence in deciding that the element belongs to the class (or subset)

A. The fuzzy membership value is a real-valued number in the range 0.0 to 1.0.

Vz € E: pa(z) € [0,1] (2.4)
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E is the universe of discourse. The value z of E belongs to A with a level of confidence
pa(x). All the ordinary set-theoretic operators can be extended to fuzzy sets by
adding rules related to the propagation of membership values [28], [17].

Engineering applications deal predominantly with real-valued phenomena. Ap-
plying crisp set theory to real-valued data inevitably means to throw away a lot of
valuable information. The use of fuzzy set theory overcomes this problem. Real-
valued data are converted to fuzzy data using a fuzzification stage. The fuzzifier
maps a real-valued number into one or several fuzzy numbers consisting of a class
value and a membership value. The fuzzy membership functions describe the process
of mapping quantitative (real-valued) data points into fuzzy data points. One fuzzy
membership function is associated with each class value.

In most applications, the shape of the membership functions is convex and normal.
Typically, membership functions are either triangular, or Gaussian (bell-shaped), or
trapezoidal. Figure 2.3 shows a few typical examples of membership functions.

Where the traingular membership function can be characterized as: pg4,(z) =
1- Jxa;cl, and the Gaussian membership function can be formulated as: pa,(z) =
1/(1 + [(z — ¢/a)?]®), the parameter b adjusts the slope at membership value of 0.5.

It is possible that a single quantitative data point can be mapped into multiple
fuzzy numbers. For example, an outside temperature of 87° F maybe be mapped

into the fuzzy numbers < hot,0.75 > and < moderate,0.25 > meaning that 75% of
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H Gaussian membership function

c—a c c+a

Figure 2.3: Fuzzy membership functions
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Figure 2.4: Fuzzy reasoning system

the experts on temperature values would argue that 87° F is hot, whereas 25% would
consider this to be a moderate temperature.

The basic configuration of fuzzy reasoning systems for engineering applications
contains four components and is shown in Figure 2.4.

The fuzzification interface converts a crisp (quantitative) number into one or sev-
eral fuzzy numbers consisting of a (usually linguistic) class value and a fuzzy mem-
bership value. The knowledge base contains a set of fuzzy rules, usually expressed
in linguistic form, and a database that defines the linguistic values. The inference
engine is similar to the inference engine used in rule-based expert system. It performs
the inferencing operations on the rules. The only dissimilarity is that fuzzy inference
engines can fire more than one rule at a time, and they use either the product or

the minimum of the individual membership values on the premise part as the firing
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strength for each rule. The defuzzification interface transforms the result of fuzzy
inferencing back into a crisp (quantitative) value. The most commonly used strate-
gies for defuzzification are the centroid of area (COA) rule, and the mean of maxima
(MOM) rule. [38], [39], and [76] provide extensive surveys of the derivation of these
four fuzzy operation components, the different design strategies, and the different
defuzzification methods.

The rule base consists of n fuzzy rules written in the following form:

Ry : IF z{ is A]f and x4 Is AS and

THEN 2z is B*

where k = 1,2,---n, is the rule number, z; denotes the :*} input variable to the
fuzzy system, z is the output variable, and A¥ and B* are the linguistic values of
input z; and output z, respectively. The linguistic values of A¥ and B* are further
characterized by the fuzzy membership values 4 (z:) and ppr(2).

It is interesting to notice that fuzzy logic can be view as an alternative realization
approach to qualitative modeling, since both deal with information in qualitative
terms and infer qualitative information. However, fuzzy logic uses the membership
values to preserve some of the quantitative information, whereas qualitative modeling

approaches usually give this information away.
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In our FARCNN architecture, we will use a fuzzy A/D converter as the fuzzification
interface, a fuzzy D/A converter as the defuzzification interface, and some sort of

counterpropagation network instead of a rule base as the fuzzy inferencing engine.

2.2.1 Fuzzy Logic Control

A significant number of successful applications of fuzzy logic for control system
design have been reported in the literature. Those applications include: various
control tasks in robotics [67], vehicle speed, tracking, and lateral control [26}, [21],
automobile transmission control, and motor control [56], to mention just a few.

With the availability af a fuzzy chip [79], fuzzy control has become an attractive
low-cost alternative to classical control. Especially in Japan, fuzzy controllers are
being integrated into many household appliances, such as cameras (automatic focus
control), washing machines, air conditioners, and refrigerators (temperature control).

Fuzzy logic controllers use fuzzy rules that are initially derived from expert ex-
perience or engineering judgment, then manually fine tune these fuzzy rules. The
design and tuning of fuzzy controllers can be accomplished without any knowledge
of the dynamics of the system under control. Since the control logic is specified in
the form of coarse rules, it can be modified easily by adding more rules to the knowl-
edge base, or by changing the fuzzy membership values associated with any of the

assertions. Results have shown that fuzzy logic controllers can provide a smooth and
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highly effective control response. In some cases, fuzzy controllers have been shown
to be even more accurate than optimally tuned time-invariant PID controllers [12].

However, fuzzy logic controllers suffer from three major shortcomings. First, al-
though the fuzzy controller provides effective and conservative control, the control
solution may be far from the optimal control solution. Some authors have addressed
this problem. [58] describes the design of an expert fuzzy optimal control system,
whereas [20] derives the fuzzy rules from mathematical knowledge of the time-optimal
control law with some heuristics.

Second, no analytical approach for the derivation of fuzzy rules is currently known.
Thus, the design of a fuzzy controller is usually relying on heuristic knowledge, and
it may take a lot of experimentation before the controller is properly tuned. Also,
multivariable fuzzy controllers are so difficult to derive that, to this date, the fuzzy
control literature has mostly restricted its attention to SISO control problems. Several
approaches have been proposed integrating fuzzy learning mechanisms into the fuzzy
controller design. Some are based on the feedback system perfofmance, such as [66],
[62], and [53]. Others are based on comparing the feedback performance with a fuzzy
reference model [37]. [71] and [47] present automatic approaches to generate fuzzy
rules from learning.

Third, no analytical analysis technique is currently known that would allow to

analyze the stability properties of a fuzzy controller. Consequently, although fuzzy
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controllers have been demonstrated to provide satisfactory performance, no analyt-
ical proof can be given that the fuzzy control system will remain stable under all
excitations. This has led to a reluctance of accepting this new technology for critical
applications, where a failure of the control system to remain stable might lead to a

major catastrophe. No remedy for this shortcoming is currently in sight yet.

2.2.2 Fuzzy System Estimation

Due to the successful application of fuzzy logic to the design of control strate-
gies for many real-world applications and the requirement of a fuzzy reference model
for fuzzy model-reference adaptive controllers, a number of researchers have focused
their attention on the problem of employing fuzzy logic for identifying the structure
of a plant or estimating its parameters. Two different approaches have been pro-
posed for formulating fuzzy rules. One approach uses fuzzy sets in the consequence
[69], whereas the other uses parameterized variables in the consequence [64]. In the
latter approach, the output of the consequence is a crisp instead of a fuzzy number.
More recently, [76] proposed a generalized structure approach called “flexible struc-
ture fuzzy logic controller” parameterizing the basic operations used in fuzzy rule
processing. It has been shown that the two previously mentioned approaches can be

interpreted as special cases of this more general class of models.
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Each of these approaches uses a set of measured data as training data, and an
adaptive learning algorithm for adjusting the rule base, either by modifying the struc-
ture of the rules or by varying the shape of the membership functions. Since neural
networks have shown their capability to learn behavior from observations, some refer-
ences employ neural networks for training fuzzy systems. [27] and [65] use feedforward
multilayer networks to update the shape of the membership functions in the premise
part, and the parameters in the consequence part. Other references employ fuzzy
self-learning algorithms. [18] and {40] use fuzzy learning algorithm to modify the rule
base.

Evidently, any general fuzzy learning algorithm can just as easily be applied to
learning system behavior as control performance. Thus the approaches advocated in
[71] and [47] will also work for this modified task.

All these approaches show the feasibility of using fuzzy rules to identify a plant
without extensive knowledge of the system dynamics. They offer a promising alter-

native to the more traditional methods of system identification.
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CHAPTER 3

Fuzzy Inductive Reasoning

In system identification, the process of constructing an input-output model can be
decoupled into two separate steps. In the first step, the structure is identified that best
characterizes the observed input-output patterns. In the second step, the parameters
associated with the selected structure are identified, such that the observed input-
output patterns are optimally reproduced by the synthesized system.

Some algorithms don’t deal with the problem of structure identification at all,
but leave it up to the user to provide the structure. Their task is limited to finding
the most appropriate set of parameters for any selected structure. Other algorithms
lump the two stages into one. Which algorithm works best in any given situation
depends on the problem, i.e., the observed input-output patterns. No single system
identification algorithm has been found yet that works uniformly well for all problems.

In this chapter, the fuzzy inductive reasoning methodology is presented as a tool
for structure identification. A so-called “optimal mask” is introduced to describe the
optimal structure of the system to be identified. However, as the fuzzy inductive
reasoning methodology is a qualitative modeling approach, the optimal mask does
not describe the complete structure. It only selects a subset of variables from all

observed potential input variables that are best suited to be used in reproducing
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the observed input-output patterns in as unambiguous a fashion as possible. In the
next chapter, a methodology based on fuzzy neural networks will be presented for
parameter identification.

The inductive reasoning methodology had originally been developed by Klir [29].
It was used in his General System Problem Solving (GSPS) methodology as a tool
to describe conceptual modes of system behavior. SAPS-II is an implementation of
a large subset of the GSPS methodology developed at the University of Arizona [6].
Fuzzy measures were introduced into the GSPS methodology in 1989 [30], and the
kernel functions of fuzzy inductive reasoning were incorporated in SAPS-II one year
later [41]. SAPS-II is currently available as either a CTRL-C library or a Matlab

toolbox.

3.1 The Representation of System Dynamics as a Finite

State Machine

In order to describe the dynamics of a system without using any mathematical
equations, a time history matrix can be generated by measuring and recording its
inputs and outputs at a given set of time points, usually at equidistantly spaced
sampling points. The time history is called the system behavior trajectory matrix.
Each column of this matrix represents one of the recorded variables, and usually, the
output variables are concatenated from the right to the input variables. Each row

represents a set of measurements of all recorded variables at a given point in time.
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The system behavior trajectory matrix represents the characteristics of the system,
irrespective of whether it is a static or a dynamic system. However, in the case of
characterizing dynamic systems, the sampling interval must be chosen sufficiently
small to avoid aliasing effects.

As explained in [73], dynamic systems can always be approximated by difference

equations of the form :

y(t) = f(u(t), u(t — At), y(t — At),u(t — 2At),...) (3.1)

That is, the output vector, y, at time ¢, is a function of the input vector, u, at the
same time, the input and output vectors at one sampling interval back, etc.

Now that the system dynamics of function f are represented in a tabular rather
than an analytic form, the structure identification problem is transformed to one
of selecting a set of candidate input variables from all the available variables in
equation (3.1) that best characterize each of the output variables y;(t). A separate
structure will be identified for each of the output variables, i.e., the original multi-
input/multi-output (MIMO) structure identification problem for a p output system
is decomposed into p separate structure identification problems for p different multi-
input/single-output (MISQO) systems. The goal is to find minimal sets of variables
that characterize the observed input-output patterns, represented through the sys-

tem behavior trajectory matrix, in an optimal fashion. A performance index must
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be defined to evaluate the aptitude of a given set of variables to capture the ob-
served input-output patterns, and a search strategy must be defined for selecting the
candidate sets of variables to be tested.

Each entry is stored in the behavior trajectory matrix as a quantitative, i.e., real-
valued, number. The direct use of this information invariably leads to an infinite
number of combinations of input-output patterns. In order to reduce the variability
between input-output patterns, a qualitative form of the behavior trajectory matrix
can be generated. In the inductive reasoning approach, so-called “level” or “class”
values are being used to define ranges for both input and output variables. Each
level is identified by a positive integer. Different variables may use the same class
value to denote different ranges. This means that the landmarks, i.e., the borders
between neighboring ranges, are determined separately for each variable. An example
of discretizing two variables, u; and us, into three levels each with separate ranges

(landmarks) for the two variables is given below:

level «— U Uy
1 «—— [0,0.3] [0,0.5]
2 «— (03,09] (0.5,1.0]
3  «— (0.9,1.0] (1.0,1.5]
By mapping the continuous trajectories separately into discrete so-called “episodes,”

the continuous behavior trajectory matrix can be recoded into a qualitative form,
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called the discrete episodical behavior matrix. The episodical behavior of a system is
the qualitative counterpart of the quantitative trajectory behavior.

By defining a combination of legal levels of all variables in the set as a “state” of
the system, all possible states can now be enumerated, and the system description
is thus transformed into a Finite State Machine. The discrete episodical behavior
matrix is functioning as a transition table from the input state to the output state.
For a static system, the input state consists of one row only, but for a dynamic system,
the input state usually involves several rows in accordance with equation (3.1).

Qualitative modeling and simulation derived from the episodical behavior of a sys-
tem can be interpreted as a generalization of the naive physics approach [35] and [45].
Traditionally, naive physics uses only three qualitative values {—,0, +} to represent
the two legal levels negative and positive, and the landmark zero in between these two
levels. Inductive reasoning, on the other hand, always works with intervals that are
appropriately chosen for the modeling task. Naive physics usually employs first and
higher-order qualitative derivatives from measured variables to constrain the feasible
states, whereas inductive reasoning uses only the observed variables themselves. Fi-
nally, naive physics commonly induces all episodical behaviors that are compatible
with the imposed constraints, whereas inductive reasoning usually only reports the
most likely next behavior based on the episodical behavior matrix.

The choice of legal levels influences strongly the representation accuracy of system

dynamics in a qualitative form. It is similar to the choice of landmarks in some naive
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physics dialects, such as QSIM, and to tuning the premise conditions in rule-based
expert systems. Usually, this information is extracted from expert knowledge, and is
represented in the form of a crisp set, as in the example shown in this section. In the
next section, we are going to introduce the concept of fuzzy recoding and shall show
how the fuzzy logic approach can be applied to smooth out the abrupt transitions

from one level to the next, thereby leading to an enhanced representation accuracy.

3.2 Finding the Optimal Masks

In inductive reasoning, a mask is a matrix that denotes the dynamic relationship
between variables. Once the episodical behavior matrix has been constructed as de-
scribed in the last section, the purpose of qualitative modeling is to discover the most
appropriate finite automata relations among the recoded variables in the episodical
behavior matrix. Once such a relationship is found for each output variable, the
behavior of the system can be forecast by iterating through the episodical behavior
matrix. This corresponds to finding the next state in a finite state machine from
the state transition matrix. The more deterministic the state transition matrix, the

better the certainty that the future behavior will be predicted correctly.
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Assume an episodical behavior matrix for a two input, three output system to be

specified as follows:

time Ui U2 Y1 Y2 Ys
0.0
ot
2-6t

(3.2)
3.6t

(Npee — 1) - 6t

A possible qualitative input-output relation function for output y; may present itself
in the form:

yl(t) = f(yS(t - 2575% Uz(t - 5t)> yl(t - 575)’ Ul(t)) (3-3)

where f is the qualitative counterpart of function f in equation (3.1), hopefully rep-

resenting a fairly deterministic relationship. Equation (3.3) can be rewritten in the

form of the following “mask”:

£\ Uy U2 Y1 Y2 Y3
t—26tf 0 0 0 0 -1
t—6t | 0 -2 -3 0 0 (3-4)
t -4 0 +1 0 0
A mask is a matrix with as many columns as there are variables in the system, and

with as many rows as are needed to cover the dynamics of the finite state machine,
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the so-called depth of the mask. The negative mask elements denote inputs of this
qualitative functional relationship. In the above example, there are four mask inputs.
The numbering sequence is immaterial; mask inputs are usually enumerated from left
to right and form top to bottom. The single positive mask value denotes the mask
output.

The name “mask” is derived from the masks used in grading multiple choice tests.
Let the mask matrix be represented by a piece of cardboard. Negative elements
are denoted by round holes in the cardboard, whereas the single positive element is
denoted by a square hole. It is now possible to shift the mask over the episodical
behavior matrix and read out input-output states.

How is the optimal mask determined? It is necessary to define a syntax denoting
the ensemble of all feasible masks from which the optimal mask will be selected.
This is accomplished by means of the so-called “mask candidate matrix.” A mask

candidate matrix for the previous example might be specified as following:

\” g uz Y1 Y2 Y3
t — 26t —1 —1 -1 -1 -1

t—6t | =1 -1 -1 -1 =1 (3.5)

In the mask candidate matrix, —1 elements indicate potential inputs, whereas the
only +1 element still indicates the true mask output. 0 elements denote forbidden

connections. From the mask candidate matrix, the optimal mask is often determined
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in a process of exhaustive search, but more effective suboptimal search strategies have
also been devised [10].

A general rule for constructing the mask candidate matrix is to cover with the
mask the largest time constant of the system that we wish to capture in our model.
The mask depth should be chosen as twice the ratio between the largest and the
smallest time constants to be captured. A meaningful design procedure could be the

following;:

e Plot the Bode diagram of the system to be modeled.

e Measure the band width, wssg, and the drop-off frequency, wy.

e Approximate the largest time constant, ¢s, and the shortest time constant, ¢,,

as

27 2r

r
o W3dB

(3.6)

e Choose the mask such that it covers the largest time constant, t,, whereas the
sampling rate, ¢t, should be no larger than half the shortest time constant, t,.

Thus, the depth of the mask can be computed as:

At>t, 5 6t< % (3.7)
depth = round(%;) +1 (3.8)

where At 1s the time interval covered by the mask.
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In order to determine the optimal mask from the episodical behavior, constraints
limiting the search space can be specified through the mask candidate matrix by
blocking out forbidden connections by means of 0 elements, and by specifying the
maximum tolerated mask complexity, i.e., the largest number of non-zero elements
that the optimal mask may contain.

The exhaustive search process starts by evaluating first all legal masks of com-
plexity two, i.e., all masks containing a single input; it then proceeds by evaluating
all legal masks of complexity three, i.e., all masks with two inputs and finds the best
of those; it then continues in the same manner until the maximum complexity has
been reached. In all practical examples, the quality of the masks will first grow with
increasing complexity, eventually reach a maximum, and then decay rapidly. A good
value for the maximum complexity is usually five or six.

Each of the possible masks is compared to all others with respect to its potential
merit. The optimality of the mask is evaluated with respect to the maximization of
its forecasting power.

The Shannon entropy measure is used to determine the uncertainty associated
with forecasting a particular output state given any legal input state. The Shannon

entropy relative to one input is calculated from the equation:

Hi = 52 p(oli) - og2 p(ol$) (3.9)
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where p(o|¢) is the conditional probability of a certain output state o to occur, given
that the input state ¢ has already occurred. The term “probability” is meant in a
statistical rather than in a true probabilistic sense. It denotes the quotient of the
observed frequency of a particular state divided by the highest possible frequency of
that state.

The overall entropy of the mask is then calculated as the sum:

H, = -3 p()- H; (3.10)
Vi

where p(7) is the probability of that input to occur. The highest possible entropy
H . is obtained when all probabilities are equal, and a zero entropy is encountered
for relationships that are totally deterministic.

A normalized overall entropy reduction H, is defined as:

Hp

max

H,=1.0-

(3.11)

H, is obviously a real-valued number in the range between 0.0 and 1.0, where higher
values indicate an improved forecasting power. The optimal mask among a set of
mask candidates is defined as the one with the highest entropy reduction.

In the computation of the input/output matrix, a confidence value can be assigned
to each row, and this value indicates how much confidence can be expressed in the
individual rows of the input/output matrix.

The basic behavior of the input/output model can now be computed. It is defined

as an ordered set of all observed distinct states together with a measure of confidence
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of each state. Rather than counting the observation frequencies (as would be done
in the case of a probabilistic measure), the individual confidences of each observed
state are accumulated. If a state has been observed more than once, more and more
confidence can be expressed in it. Thus, the individual confidences of each observation
of a given state are simply accumulated. A normalized confidence of each input-
output state can then be calculated by dividing the accumulated confidence in that
input-output state by the sum of confidences for all input-output states sharing the
same input state.

Application of the Shannon entropy to a confidence measure is a somewhat ques-
tionable undertaking on theoretical grounds since the Shannon entropy was derived
in the context of probabilistic measures only. For this reason, some scientists prefer to
replace the Shannon entropy by other types of performance indices that were derived
in the context of the particular measure chosen [30] and [63].

There remains one problem. The size of the input/output matrix grows with
increasing complexity of the mask, and consequently, the number of legal states of the
model grows quickly. Since the total number of observed states remains constant, the
frequency of observation of each state shrinks rapidly, and so does the predictiveness
of the model. The entropy reduction measure does not account for this problem. With
increasing complexity, H, simply keeps growing. Very soon, a situation is encountered
where every state that has ever been observed has been observed precisely once. This

obviously leads to a totally deterministic state transition matrix, and H, assumes a
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value of 1.0. Yet the predictiveness of the model will be dismal, since in all likelihood
already the next predicted state has never before been observed, and that means
the end of forecasting. Therefore, this consideration must be included in the overall
quality measure.

From a statistical point of view, every state should be observed at least five times
[36]. Therefore, an observation ratio, O,, is introduced as an additional contributor

to the overall quality measure [41]:

O msx +4-nax +3-n3x + 2 nax + nix

O 5 - ireg (3.12)

where:

njeg = number of legal input states;

nix = number of input states observed only once;

nex = number of input states observed twice;

nsx = number of input states observed thrice;

nsyx = number of input states observed four times;

nsx = number of input states observed five times or more.

If every legal input state has been observed at least five times, O, is equal to 1.0. If
no input state has been observed at all (no data are available), O, is equal to 0.0.
Thus, O, can be used as a quality measure.

With the observation ratio, O,, the overall quality of a mask, @,,, is then defined

as the product of its uncertainty reduction measure, H,, and its observation ratio,



49

Qm = H, -0, (3.13)

The optimal mask is the mask with the largest @,, value.

3.3 Fuzzy Recoding

With the same arguments that are used to defend replacing crisp sets by fuzzy
sets in rule-based expert systems and in programmable logic control systems, the
advantages of using fuzzy sets can be preserved also in qualitative modeling and sim-
ulation. To this end, it is necessary to revise the manner in which the discretization
(or recoding) is done.

Two main advantages of using fuzzy sets as level intervals for episodical behavior
recoding are that: (i) the fuzzy membership value provides a smooth transition be-
tween neighboring levels, and (ii) trajectory behavior can be regenerated from fuzzy
episodical behavior using the membership information.

The overall process of this variant of qualitative modeling and simulation that
makes use of fuzzy recoding for the conversion of quantitative to qualitative signals,
i.e., the transition from trajectory to episodical behavior, and utilizes fuzzy signal
regeneration for the conversion of qualitative to quantitative signals, i.e., the reverse

operation, is called fuzzy inductive reasoning [41].
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In fuzzy inductive reasoning, the definition of level or class values is the same as
in crisp inductive reasoning. However, the fuzzy episodical behavior consists now of
three matrices rather than only one. Each class value is associated with two other
pieces of information: a fuzzy membership value, and a side value.

A usually bell-shaped curve is employed to define the fuzzy membership function.
This function has a maximum value of 1.0 in the middle between the two landmarks
that mark the borders of the interval characterizing a given level, and assumes a
minimum value of 0.5 at the landmarks themselves. Such a bell-shaped membership

function can be calculated as follows:

Memb; = exp(—; - (z — ps)?) (3.14)

where z is the quantitative variable to be recoded, y; is the algebraic mean between
two neighboring landmarks, and 7; is determined such that the membership function,
Memb;, degrades to a value of 0.5 at the landmarks. In some cases, triangular rather
than bell-shaped membership functions are being used.

The side function indicates whether the quantitative value is to the left or to the
right of the maximum of the fuzzy membership function. The side function assumes
a value of 0 at the point where the membership function reaches its maximum, it
assumes a value of —1 to the left of that point, and a value of +1 to the right of that

point.
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Membership Functions
memb
level 2 level 3 level 4

" ','" "-\ level =3
/ memb=0.84
side=+1

0.00 2.00 4.00 6.00 8.00 10.00
Figure 3.1: Fuzzy recoding

Evidently, the qualitative triple, consisting of the class value, the fuzzy member-
ship value, and the side value, contains the same information as the original quan-
titative variable. The quantitative value can be regenerated accurately, i.e., without
any loss of information, from the qualitative triple. An example of fuzzy recoding is
depicted in figure 3.1.

The episodical behavior matrix introduced in the last section is now replaced by
three identically sized matlrices, one containing the class values, the second storing
the fuzzy membership values, and the third maintaining the side values. The pro-

cess of determining the optimal mask remains the same, except that the measure of
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confidence of a row of the input/output matrix is now defined as the minimum mem-
bership value of all variables associated with that row, rather than as an observation
frequency of that particular state.

All modules needed for fuzzy inductive reasoning have been implemented in SAPS-
II [41). SAPS-II is available as either a Matlab toolbox or as a CTRL-C library.
The syntax of the SAPS-II function calls and the proper use of these functions are

presented in [7].

3.3.1 Determination of Landmarks

One of the more difficult tasks in both crisp and fuzzy recoding is selecting the
landmarks for each interval level. No analytical method is known for optimally se-
lecting the landmark values. Yet, the success of the qualitative simulation depends
critically on a good selection of the landmarks. In fuzzy logic control, we have the
same problem. There, the landmarks are chosen either by experience or by making
use of a learning algorithm that modifies the shape of the membership functions while
optimizing a performance index.

In this section, an efficient and effective approach for selecting the landmarks is
presented that is based on statistical considerations. The applications presented in
chapter 5 will demonstrate this approach in more detail, and will elaborate on some

trade-offs.
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Since, for any class analysis, each legal discrete state should be recorded at least
five times [36], a relation exists between the total number of legal levels and the

number of recorded data:

Nyec Z 5. Nleg — 5 H k,i (315)
Vi

where n,.. denotes the total number of recordings, i.e., the total number of observed
states; nieg denotes the total number of distinct legal states; ¢ is an index that loops
over all variables in the state; and k; denotes the number of levels for the 7** variable.
In real applications, the number of variables is usually fixed, and the number of
recordings is frequently predetermined. In such a case, the optimum number of

levels, njey, of all variables can be found from the following equation:

Njey = round( "“",/-7%) (3.16)

assuming that all variables are classified into the same number of levels. For reasons
of symmetry, an odd number of levels is often preferred over an even number of
levels. In most practical applications, it is found that either three or five levels for
each variable is sufficient.

Once the number of levels for each variable has been selected, the landmarks
must be chosen that separate neighboring regions from each other. There are several
ways to find a meaningful set of landmarks. The most effective way is based on the
idea that the expressiveness of the model will be maximized if each level is observed

equally often. In order to distribute the observed trajectory values of each variable



54

equally among the various levels, they are sorted into ascending order, the sorted
vector is then split into ni., segments of equal length, and the landmarks are chosen
as the arithmetic mean values of the extreme values of neighboring segments.

This approach provides an effective way to select initial landmarks without requir-
ing extensive knowledge of the system to be modeled, and some learning algorithm
can then be applied to adjust this set of landmarks based on the recorded data. We
shall demonstrate in the following chapters how such a learning algorithm can be

devised, and when the learning algorithm is necessary.
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CHAPTER 4

Fuzzy Adaptive Recurrent Counterpropagation Neural

Networks

As fuzzy set theory and fuzzy logic have the advantage of being able to integrate
qualitative information into a quantitative information system, they can be employed
to process linguistic information stemming from human knowledge describing, in
qualitative terms, aspects of the dynamics of a system without possessing precise
quantitative knowledge about those aspects in the form of mathematical equations;
yet they can incorporate the so obtained information in an otherwise quantitative
modeling and simulation environment. The interfaces between the quantitative and
the qualitative subsystems are the fuzzifiers and defuzzifiers, respectively.

Fuzzy logic has been one of the most active research fields lately both in the
contexts of controller design and system identification. It is believed that fuzzy logic,
due to its capability of mimicking the imprecise yet highly adaptive human reasoning
processes, will assume the role of a corner stone technology amongst the intelligent
system design methodologies of the 215 century.

Most fuzzy systems operate by applying knowledge inferencing techniques to a

knowledge base composed of fuzzy rules. The core of the knowledge base is normally
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constructed using knowledge acquisition from human experts. However, the knowl-
edge base needs to be fine tuned to the task at hand. To this end, it is common
practice to adjust the shape of the fuzzy membership functions by means of some
adaptation mechanism. However, the inherent nonlinearity of fuzzy logic makes the
learning mechanism difficult to develop.

Although classical optimization techniques may accomplish the desired fuzzy sys-
tem adaptation in some cases, a more promising approach employs neural networks
as the optimization techniques for adjusting the membership functions. The outputs
of the neural network are the optimized parameters of the fuzzy system. Learning
is then accomplished by adjusting the weights and nonlinear activation functions of
the neural network, rather than by modifying the fuzzy system parameters directly.
This approach has been briefly introduced in section 2.2.2 of this dissertation.

In this chapter, an alternative approach for constructing fuzzy systems shall be
introduced, a technique that relies entirely on input-output training data, avoiding
the need to employ knowledge obtained from human experts. Several eminent re-
searchers in artificial intelligence, such as Marvin Minsky, have identified the process
of knowledge acquisition as the most serious bottleneck in the whole of artificial intel-
ligence. Extracting knowledge from human experts is a tedious and highly heuristic
enterprise. No formal techniques are known that could accomplish this knowledge

extraction in a systematic fashion. Thus, a methodology capable of extracting the
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required knowledge directly and in a fully automated fashion from measured data
streams should be highly welcome.

In our methodology, we use generalized counterpropagation neural networks as
the fuzzy knowledge lookup mechanism for generating fuzzy output. This approach
differentiates itself from other fuzzy system techniques in several aspects. First, it
fixes the membership functions from the very beginning instead of fine tuning them
either through the use of a learning algorithm or by trial and error. Second, it uses
the counterpropagation network as a one-pass regression procedure to select fuzzy
knowledge embedded in the network instead of employing normal fuzzy inferencing
techniques applied to a fuzzy rule base. By combining this technique with the fuzzy
inductive reasoning methodology introduced in the previous chapter, we can construct
a Fuzzy Adaptive Recurrent Counterpropagation Neural Network from input-output
training data alone. This approach provides a highly efficient and effective way of
integrating a fuzzy logic system into the qualitative modeling paradigm.

A comparable approach called fuzzy basis function methodology proposed in [72]
also fixes the fuzzy membership functions from the beginning, then uses an orthogonal
least-square learning algorithm as the selection function to generate crisp output. The
authors also prove that their approach is capable of uniformly approximating any real

continuous function.
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4.1 Implementing Finite State Machines Using Generalized

Counterpropagation Neural Networks

We have already explained in section 2.1.2 how general counterpropagation neural
networks operate. In this section, we are going to introduce a much simplified Coun-
terpropagation Neural Network (CNN) that had first been proposed in [7]. We shall
then show how the basic CNN can be generalized for rapid implementation of finite
state machines. This so enlarged CNN will be called Generalized Counterpropagation
Neural Network (GCNN).

The basic properties of the CNN are best introduced by means of a simple exam-
ple: the infamous XOR problem. It is desired to design a neural network that can

reproduce the behavior of an XOR gate:

Table 4.1: Truth table of XOR gate.

The counterpropagation neural network for this problem is shown in figure 4.1.
The first layer, the so-called Kohonen layer, consists of four simple perceptrons
with threshold values of 1.0. Its weight matrix, W1, is the transpose of the matrix

that is composed of a horizontal concatenation of all legally possible input patterns
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Figure 4.1: Counterpropagation network for XOR functions

represented as column vectors. It is similar to the truth table of the input patterns

in table 4.1:

-1 -1
-1 +1

W= (4.1)
+1 -1
+1 +1

except that the representation of false is now —1 rather than 0, while the represen-
tation of true is still +1. In the sequel, superscripts shall always point to the layer of
the neural network, whereas subscripts shall denote elements of vectors or matrices.

If a particular input pattern, e.g. u! = (=1 +1)7, is shown to the neural

network, the matrix multiplication inside the Kohonen layer produces the vector

x!=Wl.ul =0 +2 —2 0)7, and the output activation functions of the four
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neurons produce the vector y* = F(W'.ul) = (0 1 0 0)" accordingly, where F
is the output activation function of the perceptron, a step function with a threshold
value of 1.0. Thus, the Kohonen layer acts as a powerset generator. It contains as
many perceptrons as there exist different legal input patterns. If the CNN has &
different binary inputs, a complete Kohonen layer will consist of 2* perceptrons, the
thresholds of which can be set to d} = k — 1. There is no competitive learning as in
the case of Hecht-Nielson’s CNNs. Both the weight matrix, W, and the threshold
vector of the perceptrons, d!, can be fixed from the onset, and the perceptrons do
not need to cooperate with each other at all.

The second layer, or Grossberg layer, consists of as many linear neurons as there
are output variables; in the case of the XOR example, a single linear neuron. The
weight matrix, W2 consists of a horizontal concatenation of the output patterns. In
the XOR example, it is similar to the transpose of the output patterns in the truth

table, thus:
w2 = ( 1 41 +1 -1 ) (4.2)

The Grossberg layer acts as a selector. The product W2 -y picks out the output
pattern that corresponds to the input pattern that was shown to the CNN. As in the
case of the Kohonen layer, no learning is necessary. The weight matrix, W2, can be

predetermined just like the weight matrix W1,
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In the remainder of this chapter, it is this type of neural network that will be
referred to as Counterpropagation Neural Network (CNN). A CNN is a binary neural
network in that all its inputs and outputs are binary.

The output layer of the CNN would not necessarily have to be binary. The W2
matrix elements could assume any values. In such a case, the network shall be called
Generalized Counterpropagation Neural Network (GCNN).

A Finite State Machine (FSM) is similar to a logic truth table, except that its
variables may employ multi-valued logic. Often, the number of output variables
equals the number of input variables, and the semantic meaning of the FSM is a
transition from the input state to the output state, i.e., the current values of the
set of input variables represent the current state of the system, whereas the values
of the set of output variables represent the next state of the system. This is where
the name “finite state machine” comes from. However, the concept of a FSM can
be generalized by defining it to mean an arbitrary truth table with ¢ input variables
and o oufput variables, each of which can assume a finite set of values that can be
represented either by integers, such as ‘1,” ‘2,” and ‘3,” or by symbols, such as ‘small,’
‘medium,’ and ‘large.’

The purpose of the CNN is that of a table-lookup function. Whenever one of
the input patterns is shown to it, it reacts by presenting the corresponding output

pattern at its output.
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Figure 4.2: Counterpropagation network for Finite State Machine

The realization of this finite state machine using a CNN is shown in figure 4.2. It
consists of a set of Finite State to Binary (FS/B) converters, followed by a regular
CNN, followed by a set of Binary to Finite State (B/FS) converters. The example
shown in figure 4.2 contains three input signals, u; to uz, and two output signals, y;
and y,. Each of the five signals is a multi-valued logic signal. The FS/B converter
converts one multi-valued logic signal into multiple binary signals. For example, if u;
has eight levels, it can be converted into three separate binary signals, u1, to u1, etc.
Each variable can be converted separately, thereby providing means to parallelize
also this operation.

The B/FS converters can themselves be realized as GCNNs. Since cascaded CNNs
can always be amalgamated into one, the B/FS converters could be combined with
the CNN to their left forming a single GCNN.

If a system involves a feedback and this feedback provides the necessary memory

to capture the system dynamics through a Finite State Machine, the neural network
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Figure 4.3: Recursive counterpropagation network

has become recurrent. Such a CNN is called Recurrent Counterpropagation Neural
Network (RCNN). An illustrative example is presented in figure 4.3. The RCNN of
figure 4.3 represents a dynamic system with a single input and three outputs. The
input and the three outputs are multi-valued logic signals with four levels each. Thus,
two-bit FS/B converters suffice to map these multi-valued logic signals into binary
signals. It is assumed that a history of two sampling intervals of input and outputs
suffices to capture the dynamics of the system. The boxes denoted as z~! in figure 4.3

represent delays.

4.2 Implementing RCNNs Using Fuzzy Recoding

Continuous-time systems can be approximated by difference equations just as well
as multi-valued logic systems can. Consequently, a multi-variable real-valued function

generator, such as a backpropagation-trained feedforward network (BNN) together
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with appropriate feedback loops containing delays, can be used to approximate a
continuous-time system with arbitrarily many inputs, states, and outputs.

However, since BNNs are so slow in their training, it would be useful if the pre-
viously presented GCNN architecture could be generalized to process real-valued
variables as well as multi-valued logic variables. This would enable us to synthesize
multi-variable continuous function generators directly rather than having to train
them first.

One obvious solution is to preprocess continuous input and output variables using
standard Analog to Digital (A/D) converters. An example of a continuous-time
system with three inputs and two outputs is shown in figure 4.4. It is assumed that
two sets of past values suffice to adequately characterize the plant dynamics. It is
furthermore assumed that 12-bit A/D converters are used, converting the 3+3 43+
2 4+ 2 = 13 analog inputs to 12 - 13 = 156 digital inputs, and the two analog outputs
to 12 - 2 = 24 digital outputs. A standard CNN can now be devised that relates the
156 binary inputs to the 24 binary outputs.

After identification of the Counterpropagation Neural Network, the outputs of the
CNN are converted back to continuous signals by Digital to Analog (D/A) converters.
Continuous inputs signals newly arriving at the neural network are first converted to
binary input signals using A/D converters. They are then processed by the CNN.

The resulting binary outputs are converted back to continuous output signals using
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D/A converters. The so generated continuous output signals are then delayed and
fed back to the input layer.

There are two problems with this approach. Since the discrete representation
of the system is only an approximation, it is not evident that the input/output
relationship is still fully deterministic, i.e., it is conceivable that, for the same set
of input values, different output values can be observed. This should not be a big
problem. If the representation is chosen carefully, the input/output relationship
should be fairly deterministic, or at least, if different digital output values result,
they should correspond to very similar analog output values. Consequently, any of
them may be chosen during forecasting, and it is usually quite acceptable to always
select the most frequently occurring input/output combination. Thus, the CNN can
still be made fully deterministic.

The more serious problem with this approach is the sheer size of the CNN. Since
the CNN has 156 binary inputs, there exist conceptually 2!% legal combinations
or input states. Thus, a complete CNN should have a hidden layer of length 2%,
which is quite unreasonable. Although not all of these combinations may occur in
practice, the required number of training data records for the CNN would still be
unmanageably large.

An alternative solution for this problem is to use Fuzzy Recoding as introduced in

section 3.3, which converts quantitative signals into qualitative triples consisting of a
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class value of the enumerated type, a side value of the binary type, and a real-valued
fuzzy membership function.

The class values are of the enumerated type, and the side value is even binary.
Thus, it is easy to generate an RCNN that translates the class and side values of
observed inputs into the class and side value of an observed output. Since the dis-
cretization is now much more coarse than before, the input/output relationship will
be even more deterministic, and the number of discrete inputs to the CNN 1is drasti-
cally reduced. Experience has shown that one usually gets away with three to eight
classes [8]. Thus, fuzzy two-bit converters will often suffice. Together with the binary
side value, an analog signal is thereby discretized into three binary signals and a real-
valued fuzzy membership function. In the presence of abundant training data, fuzzy
three-bit converters may yield slightly more accurate results. Fuzzy three-bit convert-
ers map analog signals into four binary signals and a real-valued fuzzy membership
function.

Fuzzifiers replace the A/D converters. In the example of figure 4.4, the fuzzifiers
now convert 13 analog inputs into 39 binary inputs plus 13 fuzzy membership values.
Defuzzifiers replace the former D/A converters. In the same example, they now
convert six binary outputs and two fuzzy membership values back into two analog
outputs. The approach is illustrated in figure 4.5. The CNN will only predict the

class and side values, which is a rather crude approximation. The purpose of the box
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marked with ¢?’ is to provide a means for smoothly interpolating between neighboring
discrete predictions.

The outlined approach can be viewed in the context of fuzzy measures. Most
fuzzy inferencing and defuzzification techniques, such as the Mean of Mazima (MoM)
technique and the Center of Area (CoA) technique, use the information stored in
the tails of the overlapping fuzzy membership functions of the inputs to generate
multiple discrete output values, and smoothly interpolate between them using the
relative importance of the input classes, i.e., the membership value of the output is
inferred by looking at the input space alone [14]. The advantage of this approach is
that no training data need to be stored away. If training data are used at all, they
only serve to help with the shaping of the fuzzy membership functions.

It was shown in [46] that —at least in a data-rich environment— it may be more
beneficial to store away the available training data set, to look at the input space
for computing a distance function between the new vector of inputs and the vectors
of inputs in the training data set, use this information to determine the relative
importance of the inputs stored in the training data set, pick out the five nearest
neighbors, and finally look at the output space to smoothly interpolate between the
output values of these five nearest neighbors from the training data set. This is the
approach we are going to implement in the ‘?’-box.

It was also demonstrated in [46] that the membership value of an output can be

written as a linear combination (weighted sum) of the membership values of the same
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Figure 4.5: Fuzzy inferencing for counterpropagation network

output from previous occurrences of the same input/output pattern. The weights
themselves are deterministic functions of the membership and side values of the
inputs. This fuzzy inferencing technique has been coined the Five-Nearest-Neighbor
(5NN) rule. The functions are independent of the shape of the fuzzy membership
function and of the landmark values that separate neighboring classes.

We can employ a feedforward multilayer neural network using a back-propagation
training algorithm to implement the 5NN rule. This training process is very slow.
However, this Backpropagation Neural Network (BNN) will be shown to be applica-

tion independent, and therefore, it can be trained off-line once-and-for-all.
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There is still a problem with this approach. Although the number of inputs of
the CNN has been reduced from formerly 156 to 39, there are nevertheless 23° legal
states left in the system, still a frighteningly large number. The Fuzzy Inductive
Reasoning (FIR) approach [7, 8] has demonstrated that not all of the possible inputs
are needed to predict the output correctly. A selector function picks a subset of the
available inputs. This subset is problem-dependent. The FIR methodology uses the
optimal mask as the selector function. A different optimal mask (selector function)
is needed for each of the output variables. Each optimal mask requires, on the
average, somewhere between three to five inputs. Figure 4.6 illustrates the proposed
architecture for the same example that was already shown in figure 4.5.

In this example, it is assumed that the optimal mask to compute y; has four
inputs, whereas the optimal mask to compute y, has only three inputs. Four classes
(fuzzy two-bit converters) are used for all analog variables. The top CNN that is
used to compute y; has now 12 binary inputs corresponding to 2!2 = 4096 states,
while the bottom CNN, used to compute y;, has nine binary inputs corresponding
to 22 = 512 different states. These numbers are now quite reasonable. The CNNs
predict the class and side values of the output from the class and side values of the
inputs. The BNN predicts the membership value of the output from the membership
and side values of the inputs. Notice that the two BNNs are identical (they use the
same weights) although the number of input variables is different. The BNN was

trained such that unused membership inputs can be fixed at 0.0.
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The network architecture depicted in figure 4.6 is called Fuzzy Recurrent Coun-

terpropagation Neural Network, or FRCNN.

4.3 Implementation of the FRCNN Architecture

In this section, a practical implementation of the FRCNN architecture shall be
described as well as some details of the design of the BNN implementing the 5NN
algorithm.

As we can always separate a multi-output system into a number of single-output
systems in the implementation of the FRCNN architecture, it suffices to consider the
FRCNN implementation of multi-input/single-output systems.

Let us assume that we are dealing with a system with m inputs and a single
output. A new input vector, r, of length m arrives. The five nearest neighbors are
those input-output training pairs, t; = (r},yj)T, with minimal distances of their
respective input spaces:

Ir —rj|= n\%n (4.3)

The :*® new input variable has a quantitative value of r;. The recoded r; variable
has a class value of ¢;, a side value of s;, and a membership value of M;. The j*®
nearest old neighbor of the :** new input variable has a quantitative value of r;;. The

recoded r;; variable has a class value of ¢;;, a side value of s;;, and a membership

value of M;;.
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For each input, ¢, so-called position functions, p;; and p;, can be defined as follows

[46):

pij = cij + i - (1.0 — M) (4.4)

pi =ci+si- (1.0~ M) (4.5)

The position functions represent normalized versions of defuzzified signals. They are
normalized since the lowest class (¢; = 0) corresponds to a position variable range
from 0.0 to 0.5, the next higher class (¢; = 1) corresponds to the range [0.5,1.5],
and so on. Each class, except for the lowest and highest, is exactly equally wide.
The slope of all membership functions is identical relative to the normalized position
variables.

All p;; elements can be combined to form the vector p;, and all p; elements together

make up the vector p:

p; =y ;i=12,m)7 (4.6)
P :(pz ) i:172v"'7m)T (47)
where m is the number of input elements, p; are the position vectors of the five
nearest neighbors from the training data set, and p is the position vector for new

testing data.

Distance functions, d;, can now be computed as follows:

d; = |p — pjl (4.8)
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The largest of these distance function is called dmax.

Absolute weights are then computed using the equation:

dmax - dj

Wabs;, = 4.9
- (49)
The sum of all absolute weights is:

Sw =D Wabs; (4.10)

Vi

From this, it is possible to compute relative weights as follows:

ety = 2 (4.11)

Sw

The relative weights are numbers in the range [0.0,1.0]. Their sum adds up to 1.0.

Since equation (4.4) depends not only on the membership values of the previously
observed neighbor inputs, but also on their class and side values, all these quantities
would have to be passed from the CNN to the BNN to enable the BNN to implement
equation (4.4). In order to avoid this, the old membership values are modified as
follows:

Mz'j = 3; - ((C, — Cij) + (S,' - Sij) + 8i5 - M;; (412)

where ¢;; stands for the current class value of the qualitative triple

< ¢ijy $i5, Mij >, which is used in equation (4.4), and ¢; stands for the class into
which the qualitative triple is to be mapped. The corrected qualitative triple has a
class value of ¢;, a side value of s;, and an extended membership value of M;;. Equa-

tion (4.12) is not valid for s; = 0, but this doesn’t matter, since, while individual
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data points may accidentally assume a value of M;; = 1 together with s;; = 0, the
“boxes” inside the CNN into which the five neighbors must be mapped never assume
a value of s; = 0.

This modification allows to rewrite equation (4.4) as:
pi; = ¢+ 8- (1.0 — M.,'j) (4.13)

thus, only the modified membership values are still needed.

In [46], it was proposed to simply search the input space for the five nearest
neighbors, irrespective of whether they belong to the same class or not. However,
this solution puts a heavy load on the sorting algorithm. The five nearest neighbors
(5NN) algorithm requires exhaustive search and comparison, an expensive proposition
in the context of a real-time modeling and simulation environment.

The computational effort can be reduced by searching for the five nearest neigh-
bors only within the (class/side) combination of the testing data point. These five
neighbors are not necessarily the true nearest neighbors, since it is perfectly possi-
ble that the testing data point is close to the border of the (class/side) combination
to which it belongs, and the true five nearest neighbors all belong to a different
(class/side) combination. The modified fuzzy 5NN method represents a compromise
between our desire for maximizing the approximation accuracy of the method and

that of keeping the computational effort low.
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The fuzzy 5NN method needs one additional rule. If the particular (class/side)
combination of the input vector of the current testing data record cannot be found
at least five times in the training data set, the training data must be searched for
input patterns that vary only in their side values, and these records are then used
as neighbors. If there are even not enough of those patterns available in the training
data set, neighboring cells of the input space are searched. The fuzzy 5NN method
still requires searching, but at least not over the entire training data set. It is thus
computationally much cheaper that the true 5NN method.

A yet cheaper alternative may be to use a predefined set of five neighbors (5N) for
each (class/side) combination, rather than searching the input space for the nearest
five neighbors (5NN). This 5N algorithm can be implemented efficiently in a GCNN,
since the Grossberg layer of the GCNN can generate the required M;; values instan-
taneously.

Using the 5N algorithm instead of the fuzzy 5NN algorithm will lead to a further
degradation in performance, as will be discussed in chapter 5. However, this does not
have to be so. The neural searching function, described briefly in section 2.1.3, allows
us to come up with a mixture between the 5N and the 5NN algorithm. In the mixed
algorithm, the GCNN finds all neighbors within the (class/side) combination, and if
there are less than five of those, adds all neighbors within the neighboring classes as
well. A neural searching network is then placed in between the CNN and the BNN to

determine the five nearest neighbors among those. These will certainly be the same
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five nearest neighbors that the fuzzy 5NN algorithm would come up with. Chapter 6
will explore this idea in a little more detail.

We still need to prove that the BNN is indeed application independent. In equa-
tions (4.13), (4.8), (4.9), (4.10), and (4.11), only current and past values of the fuzzy
membership, class, and side functions of the input variables are being used. The
output variable does not appear anywhere in these equations. A BNN can be used
to emulate these equations. Evidently, this BNN must be application independent,
since it does not contain any information about the input/output relationship of the
system to be modeled.

Such a BNN linked with other FRCNN architecture components is shown in fig-
ure 4.7. It is a general-purpose BNN that can be used for any system with up to five
input variables and up to five data records per input variable in the training data
set.

The BNN has been designed as a group of cascaded multi-layer feedforward neu-
ral networks. Each subnetwork consists of an input layer, two hidden layers, and
an output layer trained by means of backpropagation, and implements one of the
fuzzy inferencing equations. The overall BNN contains 32 layers with altogether 958
neurons.

The BNN was trained once using random input by comparing the BNN output

with the output obtained from fuzzy inferencing. The training process converged
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very slowly. However, it was a one-time effort. The same BNN without a single
modification has been used thereafter in all applications discussed in chapter 5.
According to the 5NN (or 5N) algorithm, the membership function of the output

can now be computed as follows:
M° =) wy, - M7 (4.14)
v

where wye; are the outputs of the BNN, and M7 are the —hitherto unused- mem-
bership functions of the outputs of the five neighbors found in the fuzzy inferencing
process.

Equation 4.14 can be realized by a neural network with five inputs and a single
linear neuron for the output. The network will be called Linear Neural Network
(LNN). The membership values of the output variable from the training data set,
M;, are fed into this LNN as inputs, whereas the relative weights are multiplied into

the LNN as weights.

4.4 Learning Mechanisms

Many technical applications are slowly time-varying, i.e., their parameters are not
truly constant. This has to do with various factors. The most typical factor that
leads to slowly time-varying behavior is temperature dependence of the behavior of

some system components.
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A good model should be able to adapt itself to changes in the system as time
passes. Neural networks use on-line self-learning to update their own behavior based
on observed modifications in the system’s behavior. This is an adaptation mechanism.
Adaptation mechanisms have also been reported for fuzzy systems. Often, this is
accomplished by adjusting the shape of the membership functions on-line. Thus,
the fuzzy inferencing scheme is slightly modified, whereas the defuzzification stage
remains the same.

This effect can easily be implemented in the FRCNN architecture. Once a new
pattern has been processed, a search determines whether this pattern has ever before
been observed. If this is not the case, an additional perceptron is added to the Ko-
honen layer of the CNN, and the new input/output pattern is added as an additional
row of its W! matrix and as an additional column of its W? matrix.

This mechanism can be used both for adaptation and for on-line learning. In
principle, it is possible to start out with an empty CNN. Of course, the predictions
made by this empty CNN will be dismal in the beginning, but each newly observed
pattern will be stored in the CNN at once, and already after a short while, the CNN
will start to become effective.

If a pattern has been observed before, the Kohonen layer will not be enlarged.
However, it is possible that this pattern has been observed less than five times before.
In this case, only the Grossberg layer is enhanced by adding the newly observed

membership information as additional “old” observation to it, possibly replacing a
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previous entry with M;; lying outside the range [0.5, 1.0], i.e., an entry that had been
borrowed from a neighboring class and mapped into the class of interest because of
a lack of a sufficiently large number of observations of that class.

Finally, if a pattern has indeed been observed at least five times before, it is
possible to replace, in the Grossberg layer, the oldest observation of the same pattern
by the newest one in a round-robin fashion. This is then truly a mechanism for taking
care of slowly-varying system behavior.

A FRCNN that implements these adaptation mechanisms will henceforth be called
Fuzzy Adaptive Recurrent Counterpropagation Neural Networks, or FARCNN.

In section 3.3.1, we introduced algorithms to decide, from the total number of
recorded data, i.e., from the size of the training data set, how many classes should
be used in the recoding of individual variables. We also introduced an algorithm for
the determination of the landmarks for each of these classes.

However, there are situations where the number of classes needs to be settled
in advance to ensure a sufficiently high degree of expressiveness of the qualitative
information, yet there are not enough training data available to support this decision.
The price to be paid for such a choice is a reduction in predictiveness of the qualitative
model. However, albeit the fact that a reduction in predictiveness may indeed be
unavoidable, it is essential to minimize the negative effects of having to work with

too many classes.
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This is a similar situation to that of a fuzzy system with an incomplete rule base,
i.e., a system, the fuzzy region of which is not exhaustive in the antecedent parts.

In the sequel, we shall discuss some simple learning strategies that can be ap-
plied to adjust the landmarks, originally determined using the approach suggested in
section 3.3.1. We shall also discuss a slightly modified fuzzy inferencing scheme, in
which the absolute weights, waps;, are computed using a different formula, in order to
improve the correctness of the prediction for testing data that have been previously
observed and are stored in the training data set.

Let us begin by looking at the problem where insufficient training data are avail-
able to provide at least five neighbors for each (class/side) pair, or even worse, where
insufficient training data are available to assign five neighbors to every class. In fuzzy
systems, this kind of problem is called the “incompleteness of rule base” problem.
Usually, a “completeness factor” of 0.5 is required for fuzzy logic control systems,
in order to guarantee that there is at least one rule whose antecedent significantly
matches every possible input, and that the dominant rule is associated with a mem-
bership value greater than 0.5 [38].

The property of completeness needs to be addressed even before designing the
fuzzification interface, such that the process of the fuzzy partitioning of the input
space should preserve the completeness property as well as possible. If there are still

unavoidable cases of not satisfying the completeness property for some of the classes,
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additional rules are added, derived from general human engineering knowledge, that
should overcome these deficiencies.

[62] elaborates on two methodologies that are commonly employed in image seg-
mentation and that can be applied to the process of region completion. The region
growing approach fills up empty regions by taking the average of nonempty neigh-
bors. This method iterates over all empty regions with nonempty neighbors until no
empty regions remain. The weighted averaging approach takes all nonempty regions
and uses a distance function to empty regions as a similarity relation to fill up the
empty regions. This method can be applied in a single pass.

In the FRCNN approach, the landmarks for the output classes are first computed
using the algorithm explained in chapter 3, placing an equal number of previous
observations into each of the classes. To this end, the previously observed output
trajectory values are sorted into ascending order, the sorted vector is then split into
several segments of equal length, and the landmarks are chosen as the arithmetic
mean values of the extreme values of neighboring segments. However, when using
equation (4.9) with either the 5NN or the 5N algorithm, the predicted output class
level might not be in the target class. We can use the training data to adjust the
landmarks in order to minimize the total number of misplaced output class values.
This can be accomplished using the optimization algorithm described below.

Assume that the output class ¢; is constrained by the two landmarks /;_; and ;.

The breadth of class ¢; is thus (I; — [;—1). We call the center point of this class g;, and
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the distance from either of the landmarks to the center point é;. These two quantities

can be computed as

g = Utz (4.15)
Li—li

In order to determine whether the predicted output y is in the correct class, a position

function 7; can be defined as follows:
n; = 6; — abs(g; — y) (4.17)

If y is in the correct class ¢;, then n; > 0, otherwise n; < 0.

We notice that the step function of 7; has the following property:

1 if y is in the correct class
step(;) = (4.18)
0 otherwise

If either the 5NN or the 5N algorithm is applied, the total number of misplaced

classes is
5

E=5— step(n;;) (4.19)

i=1

The step(n) function can be approximated by the sigmoid function

1
14+em

step(n) = sigmoid(n) = (4.20)

We can adjust the distance from either of the landmarks to the center of the class
by A(Si:

5,(]{: + 1) = 5,(]6) + A&,(k‘) (4.21)
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Using a gradient algorithm, we can make

0¢&;

Dropping the index ¢, we can thus write:

o€
P35

9 on

”an 06

_ eI
- p§(1+e‘"i)2 a6

As =

(4.23)

Consequently, the learning strategy for §; is

“77z;

5(k‘+1 +p2m (4.24)

This learning rule applies to a single target output. If there are n training data
points available, the learning rule should be applied to all training data before the

landmarks are adjusted. The learning rule can then be written as

~"Mijp

Yot Ty
Si(k +1) = 6:(k) +p Z (llv;rl r (4.25)

Notice that the landmark learning strategy only applies to situations where in-
sufficient data points are available to support the desired number of classes. If the
universe of discourse is properly covered by the training data, i.e., at least five neigh-
bors are observed in every discourse, or, using the FRCNN terminology, at least five

training data points are observed in every cell of the (class/side) combinations, then
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this learning strategy will not be needed. In chapter 5, we shall discuss one highly
data-deficient example to which the landmark learning algorithm will be applied.

A modification of equation (4.9) will prove beneficial in the situation where testing
data points may coincide exactly with a training data point. The equation computing

the absolute weights can then be modified to

10000 ifd; <e
’LUabs]. = (d2 _dz) (4.26)
max Z

) otherwise

where € is a small number. The modified weight equation has the advantage that
previously observed testing data will lead to an ezact prediction. In chapter 5, we
shall discuss by means of different examples what effect the modified weight equation

4.26 has on the overall quality of the prediction.
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CHAPTER 5

Experimental Simulations

The main objective of the FARCNN methodology is to model an unknown sys-
tem structure and its functional behavior from a set of recorded data, called the
training data set. In order to evaluate the effectiveness of this methodology in vari-
ous situations, several examples have been applied for the purpose of performing an
experimental analysis on them. These examples include two continuous static non-
linear equations, a discrete dynamic equation, and a true engineering application of
a hydraulic motor control system.

In all of these examples, the simulation results obtained using the FARCNN archi-
tecture are analyzed and compared to results obtained using other approaches that
have been advocated in the literature. Some of the conclusions and open questions

are postponed until the next chapter.

5.1 Static Continuous Nonlinear Function I

The simple function

f(z) = sin(27z) (5.1)
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is chosen as a first example of a static continuous nonlinear equation to be modeled
using the FARCNN approach. This example has been used frequently in the litera-
ture. In order to be able to compare our results with those given in [62], we selected
the same testing method that Sudkamp and Hammell used in their paper.

The training data set is comprised of k input-output pairs of (z, f(z)). Input
values are generated as random numbers uniformly distributed in the range [—1, 1].
After the training data set has been generated, the output values o(z) produced by
the FARCNN are compared with the output f(z) obtained from the target function.
The testing data are evenly spaced over the input domain, i.e., testing input samples
are obtained at intervals of 0.05 in the range [—1, 1]. The modeling error is defined

e(z) = | f(2) — o(x)] (5.2)

Two sets of training data were chosen, one with & = 100, and the other with
k = 200. Both the input and the output space were independently partitioned once
into 5 fuzzy regions and once into 15 fuzzy regions using the method advocated in
chapter 3. The two different weight equations (4.9) and (4.26) introduced in chapter 4
were applied for comparison. The results obtained are listed in table 5.1, where the
FARCNN el error indicates use of equation (4.9), whereas the FARCNN e2 error
indicates using the alternate equation (4.26).

The results show that the FARCNN approach performs considerable better for

the situation with more training data, yet it performs better for a smaller number of
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FARCNN el error | FARCNN e2 error [62] error
regions | examples ave. max. ave. max. || ave.| max.
5 100 0.0702 0.2624 || 0.0452 0.2452 || 0.544 | 1.000

200 0.0363 0.1411 || 0.0245 0.1225 || 0.544 | 1.000
15 100 0.1110 0.5797 || 0.0454 0.5797 || 0.090 | 0.216
200 0.0489 0.1856 || 0.0245 0.1830 || 0.071 | 0.179

Table 5.1: Performance comparison for example 1

classes. This has to do with the fact that the fuzzy SNN method was used for fuzzy
inferencing, and with 15 classes, there were not enough data points left in each class
for identifying the five nearest neighbors. The problem has become data-deficient.

A comparison of the performance obtained with 5 regions and 15 regions respec-
tively is presented in figure 5.1. In both cases, 200 training data were used, and the
weight equation chosen was equation (4.9).

The FARCNN method performed considerably better than the alternate solution
proposed in the literature [62] for 5 regions, whereas the performance was comparable
for 15 regions. The much better performance shown for 5 regions is due to the use

of the 5NN fuzzy inferencing method [46].

5.2 Static Continuous Nonlinear Function II

As a second example of a static continuous nonlinear function, we chose:

y = (1.0 +ud® 4+ uzt +uz'®)? (5.3)
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Contrary to the previous example, this is a multi-input function, where u,, us, and us
are three analog inputs, and y is the analog output. This function has been proposed
as a benchmark example by many researchers proposing new system identification
methodologies using either neural networks or fuzzy logic systems [27, 31, 63, 65].

In order to be compatible with [27], the most advanced among the previous papers
making use of this benchmark problem, only 216 training data points were used, which
makes this application highly data-deficient. The 216 training data are uniformly
distributed over the input range [1.0,6.0] x [1.0,6.0] x [1.0,6.0]. 125 testing data were
selected uniformly distributed over the range [1.5,5.5] x {1.5,5.5] x [1.5,5.5]. The
testing data set is completely distinct from the training data set.

The same performance index, the Average Percentage Error (APE), that had been
proposed in [27]:

1

_ L @ =301 oo
APE_k_ (; 900 ) - 100% (5.4)

is used in this example. & denotes the number of testing data pairs, y(¢) is the £8
true output value, and §(£) is the £'" output value as computed by the FARCNN.
In the FARCNN approach, two-bit fuzzy A/D converters are used as the fuzzifiers
for the inputs, along with a one-bit side value for each input. Hence there are 2° = 512
perceptrons in the hidden layer of the CNN, and consequently, the training data set
should ideally consist of 5 - 512 = 2560 records. In the given case, there are not even
10% of these data available. Thus, many of the patterns will in fact be observed only

once or twice during the training period, and some won’t be observed at all.
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We shall use the fuzzy 5NN method for fuzzy inferencing. However, since the ex-
ample is highly data-deficient, the landmark learning approach proposed in chapter 4
should be applied.

We first selected the output landmarks from the sorting approach, as we usually
do. However, due to the insufficient training data available, the FARCNN approach
leads to a value of APE = 10.75% when applied to the testing data. We then applied
the learning algorithm to modify the landmarks for the output variable, whereas the
landmarks for the input variables were kept the same.

The learning algorithm converges quickly. After only three iterations, the APE
value could be reduced by roughly 20% when using the training data as testing data.
The progress of the iteration is shown in figure 5.2. Notice that the APE values
shown in figure 5.2 are different from those mentioned in the text, since the numbers
shown in the graph are those obtained when using the training data themselves as
testing data, whereas the numbers given in the text are those obtained for the true
testing data.

The refined landmark values for the output variable were then applied for use
with the true testing data, leading to a value of APE = 6.187%, an improvement of
roughly 40% over the previously obtained APE value.

The best value reported so far in the literature is APE = 1.066% [27], a value
obtained after 199.5 epochs of the training cycle of the adaptive network advocated by

Jang. The results reported by other researchers using the same benchmark problem
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Model APE., (%) | APE s (%)
FARCNN el 9.42 6.18
FARCNN e2 0.0006 7.03
ANFIS [27] 0.043 1.066
GMDH ([31] 4.7 5.7
Linear [63] 12.7 11.1
Fuzzy 1 [63] 1.5 2.1
Fuzzy 2 [63] 0.59 3.34
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Table 5.2: Performance comparison for example 2

are tabulated in table 5.2. The column APFE;., reports the errors found when the
training data are used as testing data as well, whereas the column APFE_; reports
the errors found when the true testing data are used. The FARCNN el row refers
to the use of equation (4.9) for the weight equation, whereas the FARCNN e2 row
refers to the use of equation (4.26).

Notice the incredibly small error obtained for the FARCNN e2 method when
applied to the training data used as testing data. We would expect any decent
method to react in this way. Since we have seen the same inputs before, there is
absolutely no need to guess what the output might be. We can know the answer.
The results simply indicate that the FARCNN e2 method exploits all the information
available, whereas the other methods don’t.

The table shows that the FARCNN approach doesn’t fare well in comparison with
most of the other methods. Yet, we are proud of the results obtained. While the

other techniques took hours if not days of CPU time for training the system, our
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FARCNN architecture can be set up instantaneously. This is a big advantage of the
approach.

Furthermore, the example is highly data-deficient. The FARCNN approach isn’t
very well suited to deal with the problem of data deficiency. In order to compare
the performance of the FARCNN method for differently sized training data sets,
more uniformly distributed random numbers were generated to be used as additional
training data using the same range as before. The testing data were kept unchanged.
In this study, no landmark learning was applied, i.e., the output class landmarks were
calculated directly using the sorting approach. The results of the study are shown in
figure 5.3. It can be seen that the error decays exponentially with increasing number

of training data. The APE value is 2.99% when 2560 training data records are used.

5.3 Discrete Dynamic Function

As a third example, let us consider the following two-input/single-output bi-linear

dynamic function [40, 75]:

y(t) = 0.8 y(t — D)us(t) + 0.5 wr(t — y(t — 2) + ug(t — 4) (5.5)

where the inputs u;(t) and u,(t) are chosen as uncorrelated random sequences uni-
formly distributed over the range [0.1, 0.9]. Two sets of 400 data set are generated
from equation (5.5). One set is used as the training data set, whereas the other set is

used for testing. A performance index J(k) is used as a measure of similarity between
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the real and the predicted output:

k

T = 32wl - 90 (5.

=1

Due to the recurrent characteristics of this dynamic function, an optimal mask is
computed using the Fuzzy Inductive Reasoning approach introduced in chapter 3 to
determine the most deterministic input-output relationship. Starting with a mask

depth of three, the optimal mask returned is:

t\z [ ) y

t -2 =3 +1

which suggests the following candidate for a qualitative model to evaluate y:

y(t) = H(y(t — 1), u(t), ue(t)) (5.8)

Using a mask candidate matrix of depth four leads to the same relationship. However,
mask candidate matrices of depths five, six, and seven all suggest the qualitative

model:

y(t) = Fug(t — 4),y(t = 1), wa(2)) (5.9)
The results obtained using the model of equation (5.9) show a better performance,
and this is, of course, what should be expected for this system.

The earlier references, [75] and [40], used the same data set both for training

and testing. However, we decided to use a different data set for testing. The main
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Model J(400)
FARCNN el with relation (5.8) | 0.2086
FARCNN e2 with relation (5.8) | 0.1711
FARCNN el with relation (5.9) | 0.0555
FARCNN e2 with relation (5.9) | 0.0562
Fuzzy model 1 [75] 0.0230
Fuzzy model 2 [40] 0.0186

Table 5.3: Performance comparison for example 3

reason for this decision is that, when the modified weight equation (4.26) is used,
we will always get a perfect match when the same data are used for training and
testing, which is not of much interest. The results tabulated in table 5.3 compare our
FARCNN results with the best results obtained in [75] and [40] after long iterations.

In this example, two-bit fuzzy converters were used as fuzzifiers, so the required
length of the training data set should be 5 - 2% = 2560. Due to the complexity of
the optimal mask, the function to be learned has three inputs, although the system
only has two. However, the three mask inputs are correlated. This reduces the
need for data somewhat. Thus, although this example is almost equally much data-
deficient as the previous one, it can be noticed that the results obtained with the
instantaneously synthesized FARCNN are quite comparable to those obtained after

long training using the other two approaches.
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5.4 Hydraulic Motor
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In this section, a complete hydraulic motor control system [8] is chosen as an ex-

ample of a nonlinear dynamic system. The objective is to use a FARCNN to describe

the hydraulic part of the system, and compare the performance of the FARCNN ap-

proximation with that of the quantitative model, after which it was shaped, in the

closed loop control environment.

The quantitative model of this system will be used as a gauge to check the accuracy

of a mixed quantitative/qualitative model in which the mechanics of the servo-valve

and the hydraulics are replaced by a qualitative model (a FARCNN), whereas the

controller, the mechanics of the hydraulic motor, and the measurement dynamics

are kept as differential equation models. The position control diagram of the the

hydraulic motor is shown in figure 5.4.
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Figure 5.5: Hydraulic motor with four-way servo valve

The hydraulic motor consists of hydraulic and mechanical parts. It is controlled
by a hydraulic four-way servo valve, as shown in figure 5.5.

The equations describing the servo valve are the following [8]:

a1 =k(zo+2z)VPs—p1
72 =k(zo—2)vVp— R
g3 = k(zo+2)vpe —Fo
g1 = k(zo—2)v/Ps —p2 (5.10)

151 = C1(CIL1 —q; — gex — qind)

Py = cl(qind + ¢ — Ge2 — QLZ) (5'11)



101

where the parameter values are Ps = 0.137 x 108 N m~2, P, = 1.0132 x 10° N m~?,
zo = 0.05 m, k = 0.248 x 10~® kg™'/2 m5/2, and ¢; = 5.857 x 10'® kg m~* sec™2.
The internal leakage flow, ¢;, and the external leakage flows, ¢.1 and ¢, can be

computed as:

¢ =c¢i-pL=ci(pr—p2)
el =Ce PP

ge2 =Ce P2 (5.12)

where ¢; = 0.737 x 107*2 kg=! m* sec, and ¢, = 0.737 x 107!? kg™! m* sec.
The induced flow, g;nq4, is proportional to the angular velocity of the hydraulic
motor, wn:

Gind = P - W, (5.13)

with 9 = 0.575 x 107 m3, and the torque produced by the hydraulic motor is

proportional to the load pressure, pr:
T =% pr =%(p1 — p2) (5.14)

The mechanical side of the motor has an inertia, J,,, of 0.08 kg m2, and a viscous
friction, p, of 1.5 kg m? sec™!. The controller is a P-controller with limiter, —1 < u =
1-e <1, and the measurement dynamics contain one fast electrical time constant,

Omeas = 10000, — 10000,,.0,. Thus, the overall system is of seventh order and highly

non-linear.
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For the design of the FARCNN, we shall make use only of the knowledge that the
torque, 17, produced by the hydraulic motor somehow depends on the control signal,
u, of the servo valve and the angular velocity, w,,, of the hydraulic motor.

By realizing a qualitative model, we in fact replace a differential equation model
by a difference equation model. This model contains implicitly a sample-and-hold
circuit. Thus, the Shannon sampling theorem must be satisfied. Looking at the
eigenvalues of the system, we notice that we need a sampling rate of At = 0.0025sec
in order to guarantee the stability of the closed loop system.

When the FIR methodology is applied to find the most appropriate input-output

relation between T, u, and w,, the following qualitative model is obtained:
Trn(t) = f(u(t), wm(t — 0.05), T (¢ — 0.05)) (5.15)

which suggests a much larger sampling rate. Thus, both the angular velocity of the
motor, wy,, and the motor torque, T,,, need to be delayed by 20 - At.

The qualitative model operates on three analog inputs, the control input, u, at
the current time, the angular motor velocity, w,,, delayed by 20 - At, and the motor
torque, Ty, also delayed by 20 - Af. The FARCNN structure for this hydraulic motor
is shown in figure 5.6.

The data used for constructing the qualitative model are records of the three
variables u, wy,, and T,,, sampled once every 0.0025 sec. To this end, Binary Random

Noise (BRN) was applied to the quantitative model in closed loop: 0s;s = BRN. The
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clock for the noise generator was 0.1 sec, i.e., the value of 0., was randomly assigned
a new value of either = 1.0 rad or —1.0 rad once every 0.1 sec.

The quantitative model was simulated across 2.5 sec of simulated time correspond-
ing to 1001 data records. The first 2.25 sec, or 901 data records, were used as training
data, and the final 100 data records were used for model validation. Figure 5.7 shows
a comparison of the last 100 values of the torque, 75, stored during the quantitative
simulation (solid line) with the values, Tm, that were predicted by the FARCNN when
used in open loop (dashed line). In this experiment, v and w,, were driven by the
data stored during the quantitative simulation, and only T,, was fed back into the
FARCNN.

During the next experiment, the control loop was closed around the FARCNN.
Here, u and w,, were generated on-line by the quantitative model, and T,, was fed
back from the FARCNN to the quantitative model, thereby influencing future values
of v and w,,. Figure 5.8 shows the results of this experiment. The solid line shows
the results from the purely quantitative simulation, whereas the dashed line shows
the results from the mixed quantitative and qualitative simulation run.

As was to be expected, the results are slightly better for the open-loop case, but
even the closed-loop results are excellent. The results are almost identical to those
shown in [8]. This is not further surprising, since FARCNNs are simply a means
for fast implementation of the FIR qualitative modeling methodology for real-time

applications. In this example, three-bit fuzzy converters were used as fuzzifiers.
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5.5 Comparison of Different Fuzzy Reasoning Techniques

It is interesting to notice that when we combine equations (4.8), (4.9), (4.10) and

(4.13), the fuzzy output from FIR will be:

5
Zj=1 wabsj * yqtj

E?:l Wabs,

Oqt ==

(5.16)

where the subscript gt is used to represent the qualitative triple. This is exactly the
same value that we would obtain by using the Weighted Average Method, one of the
widely used fuzzy reasoning techniques. The main difference is that we always use
exactly five “rules,” and that the so-called premise value, i.e., the absolute weight,
Waps, using FIR terminology, is calculated by using the fuzzy 5NN (or 5N) algorithm
instead of the Mean of Maxima (MoM) or Center of Area (CoA) techniques. In [46],
it was demonstrated that the 5NN method performs much better than either MoM or
CoA in data-rich environments. If we replace the y,; with fuzzy singletons, i.e., crisp
values, equation (5.16) will become the same as the third type of fuzzy reasoning
mentioned in [39], operating in the same way as the standard 5NN technique.

The second nonlinear function in this chapter can be used as an example to demon-
strate the performance difference in fuzzy reasoning when either the 5NN, the fuzzy
5NN, the 5N, or the nearest neighbor (1NN) techniques are used. Comparative results

are shown in figure 5.9 plotted across the available number of training data.
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The results show that the true 5NN technique exhibits a better performance than
the fuzzy 5NN technique. This is not further surprising, since the true 5NN algorithm
will always work with the truly nearest five neighbors, whereas the fuzzy 5NN tech-
nique gives a preference to neighbors in the same class, even if they are farther away
than the truly nearest five neighbors. What is gained by the fuzzy 5NN algorithm
is a much reduced search space, which makes the fuzzy 5NN algorithm much more
economical, an important consideration especially in real-time applications.

It can also be noticed that the true INN technique always performs more poorly
than the fuzzy 5NN algorithm. Since the true INN algorithm requires a search
through the entire training data set, it is not an attractive algorithm. For this
reason, it was never used in this dissertation, except here in order to demonstrate its
poor performance.

It is interesting to notice that the fuzzy 5N technique is consistently the worst
technique of all, and that it becomes even less attractive when a large amount of
training data are available. For few training data, it suffers from the usual problems
of data deprivation, just like all the other techniques. Its performance improves up
to a point where we encounter five neighbors in every class (not in every class/side
combination), and then it stagnates. The availability of more data doesn’t seem to
do much good.

To analyze what happens in this case, let us look at the simple linear function,

f(z) = 0.1 z, and assume that there are exactly five training data available in
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Figure 5.10: Approximation of y = 0.1z by FARCNN using 5N algorithm

the range = € [1, 20]. We shall make two tests, one with the training data being
uniformly distributed in the range [1, 20|, the second with the training data uniformly
distributed in the range {1, 10]. The BNN presented in the last chapter and the 5N
algorithm are applied. Their are twenty testing patterns evenly spaced over the range
[1, 20]. The results are shown in figure 5.10.

Around the center of gravity of the five training data points, there is an area

where the FARCNN approximates the correct function adequately. However, this
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area is fairly small. Towards the border of the region, the approximation degenerates
rapidly.

This explains the difference in performance between the true 5NN and the fuzzy
5NN algorithms. The true 5NN algorithms will always look for the true five nearest
neighbors, which statistically seen will usually be grouped around the testing data
point, i.e., the center of gravity of the five nearest neighbors will always be in the
vicinity of the testing point. However, this assumption does not hold true for the fuzzy
5NN. If a testing point is located in the vicinity of the border between two classes,
the five so-called nearest neighbors are no longer grouped symmetrically around the
testing point, and therefore, the approximation error will be larger.

This also explains the stagnation of the 5N algorithm. If more data points are
provided to the fuzzy 5NN algorithm, it will look for the five nearest neighbors within
the class/side combination. If there are many candidates available, it is more likely
that these points will be grouped around the testing point. This is true in a larger
area within the class/side combination. Consequently, the inaccurate areas around
the borders between classes shrink in size with an increasing number of data points.
However, this is not the case when the 5N algorithm is used. The additional data
points are simply ignored.

The reason why the 5N algorithm is still attractive is purely economical. The 5N
algorithm does not require any sorting at all, and therefore, it is very attractive for

use 1in real-time applications.
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If there are about five training data available for each class, the fuzzy 5N algorithm
and the fuzzy 5NN algorithm perform similarly, because both will use the same five
training data points.

This argument can be turned around. If we wish to make the fuzzy 5N algorithm
perform about as well as the fuzzy 5NN algorithm irrespective of the amount of
training data available, we need to make sure that there are always about five training
data points in every class, i.e., the number of classes must be adjusted to reflect the
amount of available training data.

Unfortunately, with the number of classes growing, the size of the Kohonen layer
inside the CNN will grow rapidly, and the CNN will soon become unmanageably

large. A possible solution to this problem will be outlined in chapter 6.
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CHAPTER 6

Conclusion and Future Research

In this dissertation, a new Artificial Neural Network (ANN) architecture called
Fuzzy Adaptive Recurrent Counterpropagation Neural Network (FARCNN) has been
presented. FARCNNs can be directly synthesized from a set of training data, making
system behavioral learning extremely fast. FARCNNs can be applied directly and
effectively to model both static and dynamic system behavior based on observed
input/output behavioral patterns alone, without need of knowing anything about
the internal mechanisms of how the system to be modeled operates, i.e., without
knowing anything about the internal structure of the system under study.

The FARCNN architecture is derived from the methodology of Fuzzy Inductive
Reasoning (FIR), which is an advanced behavioral modeling technique based on the
human ability to find analogies among similar processes, to predict coarse system
dynamic behavior. FARCNNs also make the simulation of mixed quantitative and
qualitative models much more feasible, even under real-time constraints. Previous
implementations of mixed quantitative and qualitative simulation models using FIR
[8] were executing so slowly that they were of not much practical value.

The concept of Fuzzy Logic has been applied to FIR for its Fuzzy recoding stage

to convert crisp values to fuzzy values. A newly proposed fuzzy A/D converter was
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used for this purpose. Instead of using the regular fuzzy rules as the knowledge
base, a Generalized Counterpropagation Neural Network (GCNN) is applied for effi-
cient implementation of Finite State Machines (FSM). The GCNN is used for storing
knowledge obtained from training data. A recurrent counterpropagation neural net-
work (RCNN) has also been presented. This enhancement of the methodology allows
to handle fully dynamic system by adding memory to the network. Matched with
the form of the knowledge base used in the FARCNN architecture, the five nearest
neighbors (5NN) method has been adapted for use as the fuzzy inferencing stage.
It was also shown that a standard Backpropagation Neural Network (BNN) can be
applied to implement the 5NN algorithm in a highly efficient fashion. This BNN can
be applied to arbitrary applications without need for retraining. As the final stage
of the overall architecture, a fuzzy D/A converter has been applied to convert fuzzy
values back into crisp values.

In simulation experiments, we have shown that FARCNNs can be applied directly
and easily to different types of systems, including static continuous nonlinear systems,
discrete sequential systems, and as parts of large dynamic continuous nonlinear con-
trol systems, embedding the FARCNN into much larger industry-sized quantitative
models, even permitting a feedback structure to be placed around the FARCNN.
Comparisons were made to analyze the performance of the FARCNN architecture
relative to that of other techniques previously advocated in the open literature to

demonstrate the strengths and weaknesses of the new methodology.
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Since the FARCNN architecture is simply a real-time implementation scheme for
the FIR methodology, it inherits most of the advantages of the FIR approach to
qualitative modeling. In particular, in inherits the robustness properties of fuzzy
logic, i.e., the ability to perform adequately well under conditions of incomplete
knowledge. It also inherité, through the use of the 5NN algorithm, the superb fuzzy
inferencing properties of the FIR methodology, which, as has been shown in [46],
are far superior to those exhibited by other fuzzy inferencing techniques that are
commonly employed by fuzzy logic systems, such as the Mean of Maxima (MoM) or
the Center of Area (CoA) techniques, at least when used in a data-rich environment.

In [9], it was also shown that the 5 Neighbors (5N) technique, instead of the 5
Nearest Neighbors (5NN) technique, can also be employed in the FARCNN architec-
ture. The 5N algorithm does not perform as well as the 5NN algorithm with respect
to the accuracy of the prediction, but it is much more economical, since no sorting
is necessary in this case.

More importantly, by a similar approach as the one used in [72], it can be shown
that FARCNNs can approximate arbitrary real continuous functions. Similar to {32],
it can also be shown that linear combinations of the fuzzy rules employed inside the
FARCNN can approximate continuous functions to arbitrary accuracy.

Quite a bit of effort was spent in this dissertation on designing techniques that
would keep the size of the CNN inside the FARCNN reasonably small. In combination

with the optimal mask analysis of the FIR methodology, FARCNNs have been shown
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to be able to approximate the behavior of arbitrary dynamic systems without growing

unacceptably large.

6.1 Future Research

Although the usefulness of the FIR methodology and its FARCNN implementation
has been demonstrated by a good number of examples already, the methodology still
suffers from a number of shortcomings. In particular, it is characterized by a high
degree of heuristicism. Also, as has been shown in chapter 5, FARCNNs are quite
vulnerable to data deprivation. A few of the unsolved problems shall be mentioned
in this section to stimulate future students to continue with this line of research.

1. As we have shown in chapter 5, FARCNNs and other implementations of the
FIR methodology require a large namount of rich training data in order to approximate
functions with a high degree of accuracy. It was shown that the approximation
error of the FARCNN decreases exponentially with an increasing number of training
data. We can say that the FARCNN performs “exponentially well” with increasing
training data. It has been shown in [62] that, by applying the fuzzy region completion
technique, it is possible to obtain a good approximation accuracy with a much smaller
number of training data, i.e., that synthetic training data generated using the fuzzy
region completion technique can, under some circumstancés, replace real training data
with very good success. However, [62] shows these results only for static continuous

functions. It remains to be analyzed how the use of synthetic training data generated
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by the fuzzy region completion technique affects the forecasting power in qualitative
dynamic system simulation.

2. The FIR methodology, and with it the FARCNN architecture, is based on the
5NN algorithm for fuzzy inferencing. We have shown in chapter 5 that this algorithm
performs much better than other known algorithms for fuzzy inferencing at least in
a data-rich environment. In [11], it was shown that the error bound for the INN
algorithm is twice the Bayes probability, and [4] proves that the relation function for

k nearest neighbors is as follows:

n _
kE ~ = In(e 1)

M = o(= In(e™)) (6.1)

2
which means that the £ nearest neighbors yield an € accurate classifier when M train-
ing data records are used. Following the reasoning outlined in these two references, it
should be perfectly feasible to provide a formal analysis of the approximation accu-
racy of the 5NN algorithm when used in a FARCNN or another FIR implementation
scheme linking the approximation accuracy to the size of the training data set.

3. In chapter 4, a learning mechanism was outlined that would enable FARCNNs
to adjust themselves to a slowly changing system. Although off-line learning schemes
(such as the landmark learning strategy) have indeed been implemented, they are
comparatively harmless because they are not time-critical. However, to this date, no

on-line adaptation mechanisms have actually been implemented within our FARCNN
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architecture, and this is for a good reason. Whereas on-line learning can be easily
implemented in a simulation environment, such as the one used in this research effort,
it i1s not so clear how such a mechanism would have to be implemented on a chip.
What does it mean “to simply add another neuron to the Kohonen layer”? How is a
round-robin strategy implemented in hardware? Until now, although all the results
shown in this thesis were obtained by means of simulation only, we concentrated our
attention on features that can easily be implemented in hardware. For example, it
would be a very easy task to design a chip implementing the BNN proposed in this
thesis. More research is needed before the same can be said for the on-line learning
feature. The problem is that, whereas most on-line learning algorithms proposed in
the literature for other types of neural networks or fuzzy systems are parametric,
ours is non-parametric.

4. It was shown in chapter 5 that the 5N algorithm only operates efficiently in
the case where the number of legal states (combinations of classes of all variables)
equals one fifth of the number of training data records. In the case where a high
degree of approximation accuracy is required, we need many training data records,
and therefore, many classes. This will soon make the CNN inside the FARCNN
unmanageably large. Let us assume we have 30,000 training data records. This
means that our system should have 6000 legal states or 12,000 combinations of classes
and side values. Thus, the Kohonen layer will require 12,000 neurons. This may be

quite unacceptable.
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We could use the 5NN algorithm with only 1000 legal states, in which case there
would be 30 observations in each state. We would then have to find the 5 Nearest
Neighbors out of the 30. Alternatively, we can implement a 30N algorithm, also
reducing the number of neurons in the Kohonen layer to 2000, but now, the Grossberg
layer would have to generate 30 M;; values rather than only 5 of them. Thus, the
Grossberg layer would require 25 additional neurons per input variable.

We could then feed the membership values of the testing data record and the
old membership values generated by the Grossberg layer of the CNN into a Sorting
Neural Network, as outlined in chapter 2 that would find the 5 Nearest Neighbors
(5NN) out of the 30 Neighbors (30N). These could then be fed to the BNN as in the
past. The enhanced FARCNN architecture is shown in figure 6.1.

In this way, the job of searching the training data for appropriate information
would be split between the CNN and the SNN, thereby keeping each of the two
networks reasonably compact. However, it remains to be researched, how this should
be done in practice .

5. One of the most interesting properties of the FIR methodology has not been
preserved in the FARCNN architecture. The FIR methodology not only provides a
forecast, but with it, also provides an estimate of the quality of that forecast. We feel
strongly that this is an essential function that ought to be provided by any qualitative
simulation tool. More research is needed to come up with a scheme that would enable

us to duplicate this FIR functionality also within the FARCNN architecture.
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Figure 6.1: Enhanced FARCNN architecture to cascade a reduced size CNN and SNN
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6. Right ndw, the FARCNN architecture stores the knowledge of the training data
in a generalized counterpropagation neural network, instead of a set of fuzzy rules.
At least conceptually, each training data is treated as one fuzzy rule. However, these
fuzzy rules contain a lot of redundancy. How can a condensed fuzzy rule base be
generated from the CNN for use by other reasoners or for use in a modified neural
network that is able to store the available training data information in a more compact
fashion? This is another highly interesting research topic that ought to be looked at.
[71] provides some ideas that could be explored in the context of this research.

7. No serious discussion of fuzzy system technology should end without at least
mentioning the truly hard problems. How can we prove that a FARCNN used within
a feedback loop will keep this loop BIBO stable under all excitations? Several re-
searchers have addressed related questions in the past without too much of a success.
Maybe the reason for this failure is that the question has been posed incorrectly.
Maybe a better approach would be to ponder about the possibility of designing a
stabilizing circuit that can be placed within any feedback loop that would force the
loop to remain stable irrespective of what else is in the loop, thus also in the case of
dealing with one or even several FARCNNSs. It may be easier to answer this question
than to answer to original one, and, of course, the end effect would be the same.
However, this is a very difficult problem that will presumably haunt us for years to

come.
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