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Numerical Integration of ODEs
Problem Formulation

We look for numerical solutions of an initial value problem given in
its state-space representation:

ẋ(t) = f (x(t), t)

x(t0) = x0.
(1)

Here, x ∈ �n is the state vector, and x0 is the known initial
condition.
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Numerical Integration of ODEs
Usual Solutions

Conventional numerical methods lead to solutions of the form:

x(tk+1) = xk+1 = F (xk , tk) (2)

or more generally
F (xk+1, xk , tk) = 0 (3)

or similar expressions.

These kind of solutions explicitely or implicitely define a discrete
time simulation model, where the numerical solution xk is only
defined for t = t1, t2, · · · , tk , · · · .
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Numerical Integration of ODEs
Some Important Concepts and Problems

In order to rely on the solutions given by a method, it is important
to analyze:

Numerical stability

Approximation accuracy

The following special cases must be treated carefully:

Discontinuous systems

Stiff systems

Marginally stable systems
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Quantization–based Integration
Introductory Example

Consider the second order LTI system

ẋ1(t) = x2(t)

ẋ2(t) = −x1(t)
(4)

with initial conditions x1(0) = 4.5, x2(0) = 0.5 .

Let us see what happens if instead of discretizing the time, we
discretize the states in the following way:

ẋ1(t) = floor(x2(t)) = q2(t)

ẋ2(t) = −floor(x1(t)) = −q1(t)
(5)
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Quantization–based Integration
Introductory Example – Cont.

We can easily solve
the quantized
system

ẋ1(t) = q2(t)

ẋ2(t) = −q1(t)
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Quantization–based Integration
Introductory Example – Cont.

We can easily solve
the quantized
system

ẋ1(t) = q2(t)

ẋ2(t) = −q1(t)
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Quantization–based Integration
Introductory Example – Cont.

We can easily solve
the quantized
system

ẋ1(t) = q2(t)

ẋ2(t) = −q1(t)
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ẋ1 = −2
a

Prof. Dr. François E. Cellier Quantization-based Integration of ODE Systems



Introduction
QSS Methods

Examples
Conclusions

Quantization–based Integration
Introductory Example – Cont.

We can easily solve
the quantized
system

ẋ1(t) = q2(t)

ẋ2(t) = −q1(t)
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Quantization–based Integration
Introductory Example – Cont.

We can easily solve
the quantized
system

ẋ1(t) = q2(t)

ẋ2(t) = −q1(t)
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Quantization–based Integration
Discrete Events vs. Discrete Time

Apparently, by replacing xk by qk on the right hand side of
any ODE, we obtain a new method for simulating it.

However, this new method does not fit the form of Eq.(2) or
Eq.(3), i.e., it does not define a Discrete Time simulation
model.

Thus, we will not be able to apply this method in a standard
way.

We shall see that this idea leads to a Discrete Event simulation
model in terms of the DEVS formalism.
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DEVS Formalism
Basic Notions

DEVS is a formalism proposed by Bernard Zeigler to represent
systems that have input and output event trajectories.

DEVS

A DEVS model processes an input trajectory, specified as a series
of input events, and according to these events and to its own
internal state, provokes an output trajectory.

DEVS models can be coupled similarly to block diagrams.
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DEVS Formalism
Atomic Model Definition

M = (X , Y , S , δint, δext, λ, ta)

X : set of input values.

Y : set of output values.

S : set of state values.

δint : internal trans. func.

δext : external trans. func.

λ : output func.

ta : time advance func.

X

Y

S

s1

s2 = δint(s1)

s3 = δext(s2, e, x1)

s4 = δint(s3)

y1 = λ(s1)

y2 = λ(s3)

x1

eta(s1) ta(s3)
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DEVS Formalism
Coupling

DEVS models can be coupled in a hierarchical way. DEVS closure
under coupling ensures that coupled DEVS models are equivalent
to atomic DEVS models.

Ma

Mb

N
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DEVS Formalism
Simulation

An ad–hoc computer program to simulate a DEVS model can be
easily written using any programming language. However, there
exist a number of software tools specifically conceived to simulate
DEVS models:

DEVS–Java (University of Arizona)

CD++ (Carleton University)

JDEVS (Université de Corse)

PowerDEVS (Universidad Nacional de Rosario)

PyDEVS (McGill University)

etc.
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Quantized Systems and DEVS
Block Diagram of the Original System

x1(t)x2(t) ∫∫

ẋ1(t) = x2(t)

ẋ2(t) = −x1(t)
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Quantized Systems and DEVS
Block Diagram of the Quantized System

x1(t)x2(t)

RR
q2(t) q1(t)

ẋ1(t) = q2(t)

ẋ2(t) = −q1(t)
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Quantized Systems and DEVS
Block Diagram of the Quantized System

RR

q2(t) q1(t)

ẋ1(t) = q2(t)

ẋ2(t) = −q1(t)
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Quantized Systems and DEVS
Quantized Integrator

Rdxi (t) qi (t)x(t)

Each change in the piecewise constant input trajectory dxi (t)
can be thought of as an input event.

Each change in the piecewise constant output trajectory qi (t)
can be thought of as an output event.

The piecewise linear state xi (t) can be treated as part of the
internal DEVS state, and is updated at event times.

We can easily build a DEVS atomic model that emulates the
behavior of the Quantized Integrator.
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Quantized Systems and DEVS
Static Function

q1(t)

dx2 (t) Each change in the piecewise constant
input trajectory q1(t) can be thought of
as an input event.

Each change in the piecewise constant
output trajectory dx2(t) can be thought of
as an output event.

We can easily build a DEVS atomic model that emulates the
behavior of this particular Static Function.
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Quantized Systems and DEVS
Static Function

dxi (t)

q1(t)

qn(t)

...
f (q1, · · · , qn)

Each change in any of the
piecewise constant input
trajectories qj(t) can be thought of
as an input event.

Each change in the piecewise
constant output trajectory dxi (t)
can be thought of as an output
event.

We can easily build a DEVS atomic model that emulates the
behavior of a general Static Function.
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Quantized Systems
General Idea

Given a continuous system

ẋ(t) = f (x(t), u(t))

the quantized system

ẋ(t) = f (q(t), u(t))

is equivalent to a DEVS model and, at least in principle, can be
simulated by coupling quantized integrators, static functions, and
source blocks.
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Quantized Systems
A Little Drawback

Let us analyze what happens with the following first order system

ẋ(t) = −x(t) − 0.5

and its associated Quantized System:

ẋ(t) = −floor(x(t)) − 0.5

around the initial condition x(0) = 0 .

Evidently, this idea does not work. The DEVS model is
illegitimate, and the simulation will get stuck performing an infinite
number of steps without advancing time.
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Quantized State Systems Method
Hysteretic Quantization Function

xi

qi

t

ΔQi

The basic idea to avoid infinitely fast oscillations is the use of
hysteresis in the quantization.
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QSS Method
Definition

Given an ODE in its state-space representation

ẋa(t) = f (xa(t), u(t)) (6)

with xa ∈ �n , u ∈ �m and f : �n → �n , the QSS method
approximates it by

ẋ(t) = f (q(t), u(t)) (7)

where q(t) y x(t) are related componentwise by hysteretic
quantization functions.

The QSS of Eq.(7) is equivalent to a legitimate DEVS model.

Prof. Dr. François E. Cellier Quantization-based Integration of ODE Systems



Introduction
QSS Methods

Examples
Conclusions

QSS Method
Block Diagram of a Generic QSS

q

u
x1

xn

f1

fn

q1

qn

...

∫

∫

The QSS method can be applied coupling DEVS models of
hysteretic quantized integrators and static functions.
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QSS Method – Properties
Perturbed Representation

Defining Δx(t) � q(t) − x(t) , we can rewrite Eq.(7) as

ẋ(t) = f (x(t) + Δx(t), u(t)) (8)

which is similar to Eq.(6) except for the perturbation term Δx .
Notice also that

|Δxi | ≤ ΔQi , i = 1, . . . , n (9)

Properties related to convergence, stability, and accuracy can be
studied as effects of bounded perturbations.
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QSS Method – Properties
Linear Time Invarying Systems

When we apply the QSS method to an LTI asymptotically stable
system, defining the simulation error as e(t) � x(t) − xa(t) , it
results that

|e(t)| ≤ |V | · |Re(Λ)−1Λ| · |V−1| · ΔQ (10)

Thus,

QSS gives always practically stable results. This property is
very important taking into account that the method is fully
explicit.

We can calculate a simulation global error bound.
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QSS Method
Example

The following equations represent a mass–spring–damper system.

ẋ1(t) = x2(t)

ẋ2(t) = − k

m
x1(t) − b

m
x2(t) +

1

m
F (t)

and the QSS approximation is

ẋ1(t) = q2(t)

ẋ2(t) = − k

m
q1(t) − b

m
q2(t) +

1

m
F (t)

For the parameters m = b = k = 1 , the simulation error bound is[|e1(t)|
|e2(t)|

]
≤ 2.3094 ·

[
ΔQ1 + ΔQ2

ΔQ1 + ΔQ2

]
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QSS Method
Simulation Results
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QSS Method
Simulation Results
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QSS Method
Simulation Results
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QSS Method
Main Features

Advantages

Stability and Error Bound.

Decentralization (only local calculations at each step).
Sparsity exploitation

Can reduce the number of iterations in some DAEs.

Very efficient discontinuity handling

Disadvantages

Problems with stiff systems.

We have to choose the quantum.

The number of steps grows linearly with the accuracy.
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QSS2 Method
First Order Quantization

First Order Quantizer

ΔQ

Input
Output
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QSS2 Method
Main Features

It follows the same idea of QSS, but the quantized trajectories
are now piecewise linear instead of piecewise constant.

Each event now must carry two numbers: the initial value and
the slope of each trajectory segment.

The quantized integrators and static functions are more
complex, because they must consider and compute the slopes.

Since the perturbations terms in Eq.(9) are still bounded by
ΔQi , QSS2 has the same error bound as QSS.

Now, the number of steps grows with the square root of the
accuracy.
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QSS3 Method
Second Order Quantization

Second Order Quantizer

ΔQ

Input
Output
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QSS Methods and Stiff Systems
Introductory example

The LTI system

ẋ1(t) = 0.01 x2(t)

ẋ2(t) = −100 x1(t) − 100 x2(t) + 2020
(11)

has eigenvalues λ1 ≈ −0.01 and λ2 ≈ −99.99 , so it is stiff.

The QSS method approximates this system by

ẋ1(t) = 0.01 q2(t)

ẋ2(t) = −100 q1(t) − 100 q2(t) + 2020
(12)

Taking initial conditions x1(0) = 0 , x2(0) = 20 , and quantization
ΔQ1 = ΔQ2 = 1 , the QSS integration does the following:
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QSS Methods and Stiff Systems
Introductory Example – QSS Simulation
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QSS Methods and Stiff Systems
Introductory Example – QSS Simulation
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QSS Methods and Stiff Systems
Introductory Example – QSS Simulation
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ẋ2(t) = −100 q1(t) − 100 q2(t) + 2020

Prof. Dr. François E. Cellier Quantization-based Integration of ODE Systems



Introduction
QSS Methods

Examples
Conclusions

QSS Methods and Stiff Systems
Introductory Example – QSS Simulation
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QSS Methods and Stiff Systems
Introductory Example – QSS Simulation
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QSS Methods and Stiff Systems
Introductory Example – QSS Simulation (Detail)
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QSS Method and Stiff Systems

Stiff systems provoke fast oscillations on the QSS solutions.

Thus, the number of steps is huge. In the simulated example
there were 21 changes in q1 and 15995 in q2 , for a final
simulation time tf = 500 .

Evidently, the QSS method is not appropriate for the simulation of
stiff systems.

Prof. Dr. François E. Cellier Quantization-based Integration of ODE Systems



Introduction
QSS Methods

Examples
Conclusions

Backward QSS
Basic Idea

The idea is that each quantized variable qj has always a future
value of the corresponding state xj . This is,

State trajectories always go to the corresponding value of q

Although this is backward integration, it does not call for
iterations, since each variable qj can only take two values (one
from below and the other from above of xj ).
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Backward QSS
Example
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Backward QSS
Example
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Backward QSS
Example
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Backward QSS
Main Fatures

Advantages:

BQSS is actually an explicit method.

It shares the main properties of QSS (practical stability, global
error bound, etc. ).

Additionally, it can deal with stiff systems.

Disadvantages:

Like QSS, BQSS is only first order accurate.

In some nonlinear systems, BQSS finds non existing
equilibrium points.
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QSS Methods and Marginally Stable Systems
Centered QSS

QSS methods have the same problems that Euler’s methods have
regarding marginal stability:

Forward QSS gives unstable simulation results.

Backward QSS gives asymptotically stable simulation results.

Forward and Backward Euler can be combined to form an F–Stable
integration method (the Trapezoidal Rule). Similarly, we can blend
QSS and BQSS:

The idea that each quantized variable takes the mean value of
the corresponding QSS and BQSS quantized variables,
namely, qi = 0.5(qiQSS

+ qiBQSS
) .

The resulting method is called CQSS (Centered QSS).

Unlike the trapezoidal rule, CQSS is only first order accurate.
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PowerDEVS and QSS Methods
Main Features

PowerDEVS is a general purpose DEVS simulation tool
developed at the Universidad Nacional de Rosario.

It has block libraries with Quantized Integrators, Static
Functions, Hybrid and Source Blocks that implement the
whole QSS family (QSS, QSS2, QSS3, BQSS and CQSS).

PowerDEVS has a GUI that permits drawing Block Diagrams,
similar to Simulink.

It is a free tool.

PowerDEVS can be downloaded from
www.fceia.unr.edu.ar/lsd/powerdevs
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Examples
Mass–Spring–Damper System

ẋ1(t) = x2(t)

ẋ2(t) = − k

m
x1(t) − b

m
x2(t) +

1

m
F (t)

See PowerDEVS Model
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Examples
Ball Bouncing Down Some Stairs

ẋ = vx , v̇x = −ba

m
· vx , ẏ = vy

v̇y = −g − ba

m
· vy − sw · [ b

m
· vy +

k

m
(y − h(x))]

where h(x) gives the height of the current stair, and sw (t)
switches between 0 (ball in the air) and 1 (ball on the floor).
Namely,

h(x) = floor(11 − x), sw (t) =

{
0 if y > h(x)

1 otherwise

See PowerDEVS Model
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Lossless Transmission Line

φ̇1(t) = u0(t) − u1(t)

u̇1(t) = φ1(t) − φ2(t)

...

φ̇j(t) = uj−1(t) − uj(t)

u̇j(t) = φj(t) − φj+1(t)

...

φ̇n(t) = un−1(t) − un(t)

u̇n(t) = φn(t) − g(un(t))

We consider an input pulse entering the
line:

u0(t) =

{
10 if 0 ≤ t ≤ 10

0 otherwise

and a nonlinear load:

g(un(t)) = (10000 · un)
3

See PowerDEVS Model
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Conclusions
Main Features of QSS Methods

Discretizing states instead of time, QSS methods offer a new
way of simulating continuous systems.

They have strong theoretical properties (stability and global
error bound).

QSS methods offer dense output.

QSS methods show important advantages when handling
discontinuities.

The capability of the explicit methods BQSS and CQSS to
deal with stiff and marginally stable systems represents one of
the most promising results.

Prof. Dr. François E. Cellier Quantization-based Integration of ODE Systems



Introduction
QSS Methods

Examples
Conclusions

Conclusions
Open Problems

BQSS and CQSS must be extended to obtain higher order
accurate methods.

PowerDEVS only admits Block Diagram models. It is very
important that the QSS methods are implemented to work
with object-oriented modeling languages, such as Modelica.

The use of uniform quantization implicitely controls the
absolute error. It is better to have control over the relative
error. This issue might be resolved with the usage of
logarithmic quantization.

QSS methods seem to be appropriate for parallel and also
real-time simulation. However, these problems have not been
studied yet in greater detail.
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