
CESA ’96, IMACS Multiconference, Lille, France, July 9–12, 1996, pp. 1113–1119 1

TEARING IN BOND GRAPHS WITH DEPENDENT STORAGE ELEMENTS

Wolfgang Borutzky
Dept. of Computer Science

Cologne Polytechnic
D-51643 Gummersbach

Germany
wolfgang.borutzky@uni-koeln.de

Francois Cellier
Dept. of Electr. & Comp. Engr.

University of Arizona
Tucson, AZ 85721

U. S. A.
Cellier@ECE.Arizona.Edu

Abstract

In a previous paper [1] we have shown that information

about possible tearing variables added to a Bond Graph

(BG) with dependent storage elements can be exploited by

a program like Dymola [6], if the stores are replaced by a

so-called resistive companion model originally introduced

in integrated circuit analysis [13].

In this paper it is shown how tearing information added

to a BG with causal paths between stores of the same

type can be exploited directly by a program like Dymola

allowing for a mixed symbolic, numerical solution of the

underlying Differential Algebraic Equation (DAE) system.

For didactic reasons, the method is explained by means

of some fairly small examples. Nevertheless, it is quite

general.

Keywords: Bond Graphs, dependent storage elements,

DAE systems, residual sinks, tearing.

1 Introduction

For many engineering systems, e. g. for multibody sys-

tems (MBS) reasonable modeling assumptions lead to al-

gebraic dependencies between some of the state variables

such that only a smaller number of them is independent.

Consequently, the mathematical model has the form of a

Differential Algebraic Equations (DAE) system. Its nu-

merical solution requires an appropriate package like the

DASSL code [3]. Before DAE solvers have become popu-

lar, a commonly used method was to turn the DAE system

into an explicit Ordinary Differential Equations (ODE)

system by adding small resistors in appropriate locations

such that causal paths between storage ports of the same

type vanish. The disadvantage of that approach is that

equations may become stiff. A different option we advo-

cate in this paper is to add information to the Bond Graph

(BG) such that a program like Dymola [6] can apply its

formulae manipulation capabilities to the model equations

to allow for a subsequent efficient numerical solution. The

key issue is tearing that is, the partitioning of an overall

large system of equations into a number of smaller sys-

tems. The method was introduced by G. Kron [11] already

in the early 60’s and is not limited to linear equations. In

order to be able split a system into smaller subsystems,

so-called tearing variables must be determined somehow.

Once these tearing variables are known, all other non-state

variables can be computed by means of the tearing vari-

ables and the independent state variables. Of course, for

general non-linear systems a (modified) Newton iteration

will be needed, while for systems that are linear, at least

in regard to the tearing variables, the original DAEs can

be transformed into an explicit ODE system.

The objective we are aiming at is to give information

to a program at the BG level such that tearing based for-

mulae manipulation can take place automatically. For a

system of hundreds of equations and variables derived au-

tomatically from a BG it is almost impossible to inspect

the generated equations and to decide which variables can

be used to tear the overall set of equations into a number

of smaller sets. For fairly small systems the modeler might

represent variables and their functional relations by a so-

called dependency graph in order to see which variables

are involved in which algebraic loops. However, since it is

an NP complete problem to find a minimal set of tear-

ing variables that cut all loops [12], the modeler might be

seeking not for a minimal but small number of tearing

variables that reduce the computational amount, at least

to some extent and a method that is generally applicable.

That is the issue we are addressing in the sequel. First, for

a better understanding, the principle of tearing is briefly

recalled. More information on tearing may be found in

[11], [8].

2 Tearing

If an index-one DAE system is to be reduced symbolically

to an explicit ODE system, then after analytical differenti-

ation of the constraint equations a system must be solved

that may be of considerable size. For simplicity reasons

we assume a set of linear equations, although tearing is

not limited to the linear case. Suppose that it has been

decided which components of the vector z of unknowns

including the dependent state variables are the tearing

variables. If they are grouped into a subvector z2, then



W. Borutzky and F. Cellier: Tearing in bond graphs with dependent storage elements 2

permutation matrices P and Q can be determined such

that the system can be written in the following way:(
L A12

A21 A22

) (
z1

z2

)
=
(

b1

b2

)
(1)

If L is non-singular, the symbolic solution of the equation

L z1 + A12 z2 = b1 (2)

with respect to z1 is not expensive, since the submatrix L
is least lower block triangular. If its solution is substituted

into

A21 z1 + A22 z2 = b2 , (3)

then we obtain an equation that determines the subvector

z2 of tearing variables. Once these are known, the other

subvector z1 can be computed at low cost. Obviously, if

we are lucky to find a small number of tearing variables,

then only a small subsystem must be solved, and all other

unknowns z1 are obtained essentially by evaluation of the

expressions in eq. (2). The question is, how such a set

of tearing variables can be found. In the following we

will show that information about tearing can be expressed

already in the BG.

3 The underlying idea

Let us start with an example by considering a Bond Graph

with a tree structure with five capacitances as shown in

Fig. 1. Application of the standard Sequential Causality

Assignment Procedure (SCAP) [10] reveals that two of

the five capacitors must have derivative causality. Conse-

quently, their co-energy variables are not state variables.

This is indicated to the program Dymola by the command

- variable unknown C3.e C5.e

(C3.e denotes the effort of capacitance C3.) Since there

are more unknown variables than equations, the right

hand side of the ODE’s for the three independent state

variables cannot be computed. For that reason, by means

of the command

- differentiate

we invoke an implementation of Pantelides’ algorithm [14],

which provides the missing equations. The equations de-

rived from the BG can be written in the DAE form(
C11 C12

0 0

)
·
(

ėi
ėd

)
+(

G11 0
G21 G22

)
·
(

ei
ed

)
=

(
F
0

)
(4)

with ei = (e1, e2, e4)T , ed = (e3, e5)T and F =
(E/R, 0, 0)T . As the matrix

C = C11 − C12G−1
22 G21 (5)

! SORTED AND SOLVED EQUATIONS

one1. [R.e] = Cnet.E - C1.e

R. [one1.f1] = R.e/R.R

! SYSTEM OF 9 SIMULTANEOUS EQUATIONS

! UNKNOWN VARIABLES

! C4.dere

! C5.dere

! one3.f1

! C2.dere

! C1.f

! C1.dere

! C3.dere

! C3.f

! one2.f1

!

! EQUATIONS

! C4. C4.C*[C4.dere] = one3.f1

! one3. [C5.dere] = C3.dere - C4.dere

! C5. C5.C*C5.dere = [one3.f1]

! C2. C2.C*[C2.dere] = one2.f1

! Cnet. [C1.f] + one2.f1 = one1.f1

! C1. C1.C*[C1.dere] = C1.f

! one2. [C3.dere] = C1.dere - C2.dere

! C3. C3.C*C3.dere = [C3.f]

! Cnet. C3.f + one3.f1 = [one2.f1]

!

! INCIDENCE MATRIX

!

! X X

! XX X

! XX

! X X

! X X

! XX

! X XX

! XX

! X XX

!

Figure 2: Dymola output for the BG with five capac-
itances

is non-singular, the index of that DAE system is one.

Hence, the sum of all efforts at the second and the third

one junction

e1 = e2 + e3 (6.a)
e3 = e4 + e5 (6.b)

is differentiated only once.

Now, after causality assignment Dymola comes up with

a system of nine simultaneous equations and solves them

symbolically without exploiting the system structure in

order to produce the state equations for the independent

capacitances C1, C2, C4. The corresponding Dymola out-

put file including the incidence matrix of that system of

simultaneous equations is given partly in Fig. 2. In that

figure a variable in square brackets means that the variable

is considered the unknown in that equation.

By looking at the BG it can be seen immediately that

if the flows f3 and f5 would be known, all other algebraic

variables could be computed from these flow variables and

the state variables. Of course, this is expressed by the

incidence matrix as well (cf. Fig. 2) , but it is less ap-



W. Borutzky and F. Cellier: Tearing in bond graphs with dependent storage elements 3

Se 1 0 1 0 1 C : C5

R : R C : C2 C : C4

C : C1 C : C3

��
E

�� �� �� �� ��

e5

f5

AA AA
e2

AA
e4

��

e1

��

f3e3

Figure 1: Bond Graph with a tree structure with dependent storage elements

C : C3

C : C1 1 rSf rSf

Se 1 0 1 0 1 C : C5

R : R C : C2 C : C4

�� �� �� �� �� ��

AA AA AA

�� �� ��

��

��

E

e2 e4

e1

e3

f5

f3

e5

e ≡ 0

e ≡ 0

Figure 3: BG with residual flow sinks added

parent. In regard to the BG the condition becomes even

more evident, if we add residual flow sinks rSf to the BG

(cf. Fig. 3). Residual sinks have been introduced in [1].

They simply represent a Lagrange multiplier λ. There are

two types of residual sinks. Residual flow sinks provide a

flow such that their corresponding effort vanishes, while

residual effort sinks are the dual elements. Apparently, by

adding such sinks to the BG we do not modify the model.

Such elements have been used as well by Gawthrop and

Smith [9] in order to make algebraic variables associated

with algebraic loops explicit on the BG. They have termed

them sensing sources and label them SS.

In Dymola the role of a residual flow sink is expressed

by means of a residue() operator:

e = residue(f) , (7)

which means that f is a possible tearing variable, while

residue(f) is made to be zero. By following an idea of

H. Elmqvist [7] we modify eq. (7) for a reason that will

become obvious shortly:

e = Time ∗ residue(f) (8)

From the BG in Fig. 3 we see that the sum of efforts in

equations (6.a), (6.b) become:

e1 = e3 + e2 + Time ∗ residue(f3) (9.a)
e3 = e5 + e4 + Time ∗ residue(f5) (9.b)

Apparently, since residue(. . . ) vanishes, two capacitances

are still dependent. When Pantelides’ algorithm differen-

tiates these equations, we obtain

der(e1) = der(e3) + der(e2) +
residue(f3) (10.a)

der(e3) = der(e5) + der(e4) +
residue(f5) (10.b)

The last term in the differentiated equations is the reason

why we slightly changed the constitutive equation of the

residual flow sink. Apparently, the algebraic constraints

have just been differentiated. However, for Dymola the

meaning is that f3 and f5 are possible tearing variables

and equations (10.a), (10.b) are the associated residual

equations that determine the tearing variables. That is,

after solving the residual equations for f3 and f5, the right



W. Borutzky and F. Cellier: Tearing in bond graphs with dependent storage elements 4

hand side of the ODE system for e1, e2, e4 can be com-

puted. As can be seen from the corresponding Dymola

output (cf. Fig. 4), adding the residual sinks to the BG, en-

ables Dymola to identify tearing variables and their asso-

ciated residual equations. With that information it solves

symbolically for the tearing variables, and after that step

determines all remaining non-state variables by means of

the tearing variables and the state variables (C1.e, C2.e,

C4.e).

By writing the simultaneous equations in Fig. 4 as a

matrix equation, it can be seen that the system indeed,

has the form of equation (1)

4 The general case

In the previous section we considered a small and fairly

simple example. The method however, can be well ap-

plied to more general cases. In the above example a de-

pendent capacitance has been replaced by a C-element

and a residual flow sink, both attached to a one junction.

Correspondingly, if dependent inertances occur as they do

for instance, in BGs of rigid multibody systems, they are

replaced by an inertance and a residual effort sink, both

connected to a zero junction (cf. Fig. 5).

First, for simplicity let us exclude the case of kinematic

loops in mechanical systems. Now, if xi denotes the vector

of state variables and xd the vector of output variables of

the dependent stores, then assuming that the state vari-

ables depend linearly on the outputs λ of the residual

sinks, equations can be derived straightforward from a BG

in the following form:

Di ẋi = G · λ + g (xi,xd,u) (11.a)
Dd ẋd = λ (11.b)

xd = B xi + Time ∗ residue(λ) (11.c)

In many cases the storage elements are not directly cou-

pled such that the matrices Di and Dd are diagonal.

Equation (11.a) represents just the state equations of all

independent storage elements, in which the Lagrange mul-

tiplier λ is treated like a known input. True external sys-

tem inputs are denoted by the vector u. Equation (11.b)

is due to the above mentioned replacement of dependent

storage elements (cf. Fig. 5) and eq. (11.c) is just a summa-

tion of efforts at one junctions, to which residual flow sinks

are attached, or a summation of flows at zero junctions

respectively, to which a residual effort sink is connected.

Since the last term vanishes, the equation expresses the al-

gebraic dependencies between storage elements. Differen-

tiation of that constraint equation gives the residual equa-

tion for the tearing variable λ

ẋd = Ḃ xi + B ẋi + residue(λ) (12)

Substitution of ẋi and ẋd by means of equations (11.a),

(11.b) yields the linear system determining the Lagrange

! SORTED AND SOLVED EQUATIONS

one1. [R.e] = Cnet.E - C1.e

R. [one1.f1] = R.e/R.R

! SYSTEM OF 9 SIMULTANEOUS EQUATIONS

! UNKNOWN VARIABLES

! C2.dere

! C4.dere

! RSf1.f

! C3.f

! RSf2.f

! C5.dere

! C3.dere

! C1.dere

! C1.f

!

! EQUATIONS

! C2. C2.C*[C2.dere] = RSf1.f

! C4. C4.C*[C4.dere] = RSf2.f

! Cnet. C1.f + [RSf1.f] = one1.f1

! C3. C3.C*C3.dere = [C3.f]

! Cnet. C3.f + [RSf2.f] = RSf1.f

! C5. C5.C*[C5.dere] = RSf2.f

! one3. [C3.dere] = C5.dere + C4.dere +

! RSf2.residuef

! one2. [C1.dere] = C3.dere + C2.dere +

! RSf1.residuef

! C1. C1.C*C1.dere = [C1.f]

!

! TEARING VARIABLES AND RESIDUES

! RSf1.f RSf1.residuef

! RSf2.f RSf2.residuef

!

! SOLVED SYSTEM OF EQUATIONS

Q101 = 1/C3.C

Q102 = 1/C1.C

Q103 = 1/C2.C

Q104 = 1/C4.C

Q105 = 1/C5.C

Q106 = Q102 + Q103 + Q101

Q107 = Q101 + Q104 + Q105

Q109 = Q106*Q107 - Q101*Q101

Q108 = Q102*one1.f1

Q110 = - Q108

Q111 = Q107*Q110

RSf1.f = - Q111/Q109

Q113 = Q101*Q110

RSf2.f = - Q113/Q109

! NON-TORN VARIABLES

Cnet. [C1.f] = one1.f1 - RSf1.f

C1. [C1.dere] = C1.f/C1.C

C2. [C2.dere] = RSf1.f/C2.C

Cnet. [C3.f] = RSf1.f - RSf2.f

C3. [C3.dere] = C3.f/C3.C

C4. [C4.dere] = RSf2.f/C4.C

C5. [C5.dere] = RSf2.f/C5.C

! END OF SYSTEM OF SIMULTANEOUS EQUATIONS

RSf1. [RSf1.e] = Cnet.Time*RSf1.residuef

one2. [C3.e] = C1.e - (C2.e + RSf1.e)

RSf2. [RSf2.e] = Cnet.Time*RSf2.residuef

one3. [C5.e] = C3.e - (C4.e + RSf2.e)

! END OF SORTED AND SOLVED EQUATIONS

Figure 4: Dymola output for the BG with residual
sinks



W. Borutzky and F. Cellier: Tearing in bond graphs with dependent storage elements 5

I 0 I

rSe

�� �� ��

��

λ

≡

Figure 5: Replacement of a dependent inertance

multipliers

[I − Dd B D−1
i G]λ = Dd Ḃ xi

+ Dd B D−1
i g (13)

Once λ is known, the derivatives of the state variables ẋi
can be easily computed.

If there are kinematic loops in a mechanical system,

they introduce an algebraic dependency between the com-

ponents of the vector xi. If we add residual sinks repre-

senting Lagrange multipliers λkl to the kinematic loops,

and if we partition the vector x into a subvector xii of

state variables and a dependent subvector xid, then a

weighted sum of both subvectors vanishes at those junc-

tions, to which the additional residual sinks have been

attached:

C1 xii + C2 xid = Time ∗ residue(λkl) , (14)

which can be written in the form

C xi = residue(λkl) (15)

with C = (C1 |C2). In order to distinguish between

those residual sinks added to the dependent storage ele-

ments and those inserted into the kinematic loops, we re-

place λ in eq. (12) by λd and partition λ in eq. (11.a) into

subvectors λd and λkl. Correspondingly, the matrix G
can be partitioned into two submatrices: G = (G1 |G2).
Now, if the above eq. (15) is differentiated

Ċ xi + C ẋi = residue(λkl) , (16)

then equations (12) and (16) are the residual equations

for the tearing variables λd and λkl. Substituting ẋi and

ẋd gives lengthy expressions for the unknown tearing vari-

ables λd and λkl similar to that in eq. (13). As a result,

systems with kinematic loops can be treated by the tearing

approach in the same manner as those without kinematic

loops. In case of kinematic loops only additional residual

sinks are needed.

5 Applications of the method

The presented tearing approach has been applied to a

number of examples ranging from BGs of rather small sys-

tems to those of medium size, including mechanical sys-

tems with kinematic loops like the well known slider crank

mechanism. Due to the lack of space not all BGs of those

examples along with explanations can be given here. Nev-

ertheless, statistics of the program Dymola for a number

of examples are listed in table 1. The input to the program

has been a description of the BG in the language Dymola.

By means of a library containing model classes for the BG

elements Dymola generates the model equations. These

are differentiated by Pantelides’ algorithm. After indicat-

ing to Dymola which outputs of storage elements are no

state variables, and after assigning variables to equations,

Dymola can produce an input file for a number of simu-

lation programs. In our experiments we produced ACSL

code. If Dymola’s tearing capability is activated by the

command

- set tear on ,

the equations are automatically torn. Of course, for con-

venience all necessary commands and settings of switches

can be collected in a command input file.

Table 1 clearly shows two results. If a symbolic re-

duction of an index-one DAE system is wanted, then after

differentiation, tearing of the system of simultaneous equa-

tions can significantly reduce the computational amount

in terms of arithmetic operations. Even in the case of a

small system with two capacitances connected in parallel

the number of arithmetic operations is reduced by 40 %.

The second result is that for larger linear systems the

number of algebraic operations increases considerably. As

has been experienced by Bos [2] and others as well, the

symbolic solution of larger linear systems indeed, requires

much memory. Consequently, for some systems a symbolic

reduction without tearing turns out to be impossible. In

that case a possible remedy is to calculate the coefficients

of the right hand side of the ODE system numerically.

One disadvantage of course, is that the impact of system

parameters cannot be directly analyzed any longer.

For modeling of the 2D mechanical systems the basic

building block of a free rigid body given by Bos [2] has

been used accounting for simplifications due to planar mo-

tion. The ring structure listed in table 1 is a simple BG

that involves a causal path between two stores of the same

type, as well as an algebraic loop between resistors R1 and

R2 (cf. Fig. 6). In each causal path a residual sink has

been added as it is shown in Fig. 7. Of course, differ-

ent types of dependent storage elements can be treated as

well.

6 Conclusions

In this paper we have shown that by adding residual sinks

to a BG with dependent stores, information specifying

tearing variables and corresponding residual equations can

be given to a program like Dymola. As a result, the for-

mulae manipulation capabilities of that program enable

it to use that information directly to reduce without any

further help an initial DAE system (of index-one) sym-



W. Borutzky and F. Cellier: Tearing in bond graphs with dependent storage elements 6

System No. of No. of No. of arithmetic operations Reduc-
storage ports simultaneous equations without tearing with tearing tion

two parallel Cs 2 4 20 12 40 %

ring structure (cf. Fig. 7) 2 6 + 6 99 29 70.7 %

C network (cf. Fig. 3) 5 9 166 32 80.7 %

mechanical lever 4 12 233 58 75.1 %

2D pendulum 3 21 1636 109 93.3 %

2D double pendulum 6 53 — 604

slider crank 8 9 + 61 — 2253

Table 1: Numbers of arithmetic operations for some examples

Sf

0

RR1 : 1 1 R : R2

CC1 : 0 0 C : C2

1

Se

��

@
@
@AA

HH

��

HH

�
�
���

��

@
@
@AA

��

��

��

�
�
���

F

E

Figure 6: BG with dependent capacitances and an
algebraic loop

bolically to an explicit ODE system. That is, the mod-

eler can support symbolic processing of the equations gen-

erated from a BG description without having to inspect

them, which obviously, becomes impossible for larger sets

of equations. The method presented is quite general and

has been applied to a number of BGs of electrical and me-

chanical systems, including those with kinematic loops.

Considering the general case, we have only assumed that

the equations are linear in the tearing variables.

With our approach smaller non torn subsystems may

occur in the reduction phase for instance, if the equations

of a coordinate transformation need to be inverted, or in

case kinematic loops are present. Since the symbolic so-

lution of larger linear systems needs much memory, it is

important to exploit tearing even more comprehensively.

One possible way is to exploit information given by the

modeler at the BG level and in addition to tear emerging

smaller subsystems formally at an embedded level matrix.

Whatever additional approaches are used, the major goal

should be that once equations have been generated, the

modeler should not be concerned with their inspection.

Acknowledgment

This paper is based on research work carried out dur-

ing the first author’s sabbatical leave at the University of

Arizona in Tucson, in 1995, who gratefully acknowledges



W. Borutzky and F. Cellier: Tearing in bond graphs with dependent storage elements 7

Sf

0

0 1 1 R : R2

CC1 : 0 0 1

1

Se

RR1 :

rSe

rSf

C : C2

��

@
@
@AA

HH

��

HH

�
�
���

��

@
@
@AA

��

��

��

�
�
���

��

AA

HH

��

E

F

Figure 7: BG with residual sinks added

a grant from the German Research Council ”Deutsche

Forschungsgemeinschaft” (DFG) in Bonn, Germany.

References

[1] Borutzky, W.; Cellier, F.: ”Tearing Algebraic

Loops in Bond Graphs”, submitted for publication

[2] Bos, A. M.: ”Modelling Multibody Systems in

Terms of Multibond Graphs with application to a

motorcycle”, Ph.D. Thesis, Twente University, En-

schede, 1986

[3] Brenan, K. E.; Campbell, S. L.; Petzold, L. R.:
”Numerical Solution of Initial-Value Problems in Dif-

ferential Algebraic Equations”, North-Holland, New

York, 1989

[4] Cellier, F: ”Hierarchical non-linear bond graphs: a

unified methodology for modeling complex physical

systems”, SIMULATION, April 1992, pp. 230-248

[5] van Dijk, J.; Breedveld, P. C. (1991): ”Simula-

tion of System Models Containing Zero-order Causal

Paths – I. Classification of Zero-order Causal Paths”,

J. Franklin Institute 328(5/6), 959-980

[6] Elmqvist, H.: ”Dymola - User’s Manual”, Dynasim

AB, Park Ideon, Lund, Sweden, 1995

[7] Elmqvist, H.: Private communication, June 12, 1995

[8] Elmqvist, H.; Otter, M.: ”Methods For Tearing

Systems of Equations in Object-Oriented Modeling”,

Proc. 1994 ESM, Barcelona, Spain, June 1-3, 1994,

pp. 326-332

[9] Gawthrop, P. J. and L. P. S. Smith (1992):

”Causal augmentation of bond graphs”, Journal of

the Franklin Institute, 329(2), pp. 291–303

[10] Karnopp, D. C.; Rosenberg, R. C.: ”Analysis and

Simulation of Multiport Systems”, M. I. T. Press,

Cambridge, MA, U. S. A., 1968

[11] Kron, G.: ”Diakoptics - The Piecewise Solution of

Large-Scale Systems”, MacDonald & Co., London

1962

[12] Mah, R. S. H: ”Chemical Process Structures and

Information Flows”, Butterworths, 1990

[13] Nagel, L. W.: ”SPICE2: A computer program to

simulate semiconductor circuits”, Univ. of Cal., Elec-

tronic Research Lab., ERL-M 520, 1975

[14] Pantelides, C. C.: ”The consistent initialization

of differential-algebraic systems”, SIAM, J. Scientific

and Statistic Computing, September 1988, pp. 213-

231


	Introduction
	Tearing
	The underlying idea
	The general case
	Applications of the method
	Conclusions

