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ABSTRACT 

Bond graphs have established themselves as a reliable 
tool for modeling physical systems. Yet, they are highly 
abstract due to their domain independence. Wrapping 
techniques allow the modeler to preserve the better 
of two worlds: the flexibility and reliability of bond 
graphs on the one hand, and the intuitive appeal and 
familiarity offered by a domain-specific modeling 
methodology on the other. The talk introduces a new 
multi-bond graph library for Dymola that includes a 
partial re-implementation of Dymola’s standard multi-
body systems library using wrapped multi-bond graphs. 
 
INTRODUCTION 

In the early days of modeling and simulation (M&S), 
the systems that scientists and engineers were dealing 
with were so simple that the focus of  M&S research 
was primarily on simulation.  It didn’t matter, what 
modeling formalisms were being used, as any 
formalism was good enough for the task at hand. 
In later years, “fancy” (in terms of then available 
technology) M&S environments, like ACSL, were used 
to describe simple systems, where modeling 
methodology really didn’t matter much, whereas models 
of more complex systems, e.g. aircraft or missiles, were 
consistently coded in low-level languages, like Fortran 
or C, because the more advanced M&S environments of 
those days were incapable of producing sufficiently 
efficient simulation run-time code. 
In parallel, specialized codes were developed to capture 
models of particular application domains, e.g. Spice for 
electronic circuits or Adams for multi-body systems.  
These codes enabled the modeler to describe systems 
within the given domain efficiently and effectively, 
while guaranteeing an optimized execution speed of the 
resulting simulation code, but these tools were limited 
to a specific domain only.  Especially, mechatronic 
systems that reach into multiple energy domains could 
not be handled using such tools. 
M&S environments that enable modelers to capture 
arbitrarily complex physical systems in an object-
oriented fashion, yet generate simulation run-time code 

that is as efficient as if not more efficient than the best 
manually coded spaghetti Fortran or C programs of the 
past in terms of execution time are of a more recent 
vintage.  One such environment is Dymola (Dynasim 
2006). 
The Dymola M&S environment consists essentially of 
four separate programs.  At the top layer, Dymola offers 
a graphical user interface (GUI) that enables the 
modeler to assign icons to component models and store 
these component models with their graphical 
representations in model libraries.  More complex 
models can be graphically composed in a diagram 
window by dragging and dropping models from 
libraries into the diagram window and interconnecting 
them graphically on the screen.  New icons can then be 
assigned to the composed models, enabling modelers to 
create hierarchically composed models.  The Dymola 
modeling paradigm is thus closed under composition. 
At the next lower level, Dymola offers a model 
compiler that extracts the equations from the individual 
component models, performs significant symbolic 
preprocessing on the resulting set of equations, e.g. to 
automatically reduce the perturbation index of a 
structurally constrained model.  At the end, the model 
compiler generates a simulation run-time program 
coded in C. 
At the next lower level, Dymola offers a simulation run-
time environment that contains an appropriate set of 
numerical integration algorithms for simulating the 
previously generated simulation code. 
Finally, Dymola offers a graphical postprocessor for 
viewing and animating simulation results. 
 
THE BOND GRAPH LIBRARY 

Bond graphs are a graphical modeling technique, 
enabling a modeler to describe physical systems 
stretching over multiple energy domains in a unified 
framework (Karnopp et al. 2006).  Hence bond graphs 
are ideally suited for modeling mechatronic systems. 
Bond graphs model the power flow through a physical 
system.  Since the concepts of power and energy are 
domain independent, bond graphs can be used to model 
systems from any domain that subscribes to the concept 
of energy conservation, i.e., all physical domains. 
Bond graphs are object oriented, since bond graphs of 
subsystems can be connected to each other 
topologically to form a correct model of a composed 



 

 

system, and because it is possible to lump detailed bond 
graphs of subsystems together to form new bond graph 
elements that are hierarchically composed (Cellier 
1990).  Hence it should be possible to implement the 
bond graph modeling paradigm within Dymola. 
A first version of a bond graph library for Dymola was 
released in 1991 (Cellier 1991).  However at that time, 
Dymola did not offer a GUI yet.  Consequently, that 
version of the bond graph library was purely 
alphanumerical.  A fully graphical version of the bond 
graph library was released in 2003 (Cellier and McBride 
2003, Cellier and Nebot 2005). 
 
THE MULTI-BOND GRAPH LIBRARY 

Although bond graphs can be used to describe any and 
all physical systems, they are not equally convenient for 
all energy domains.  For example, bond graphs of 
mechanical multi-body systems operating in three-
dimensional space will be difficult to compose and even 
harder to read, because each independently moving 
body has six degrees of freedom, as it can translate in 
three directions and rotate around three axes.  Yet, the 
equations governing these six motions are essentially 
the same. 
Consequently, it makes sense to offer a vectorial 
version of a bond graph: 
 

 
 

Figure 1: Grouping Individual Bonds to Multi-bonds 
 
These vector bonds are called multi-bonds.  Figure 1 
shows a multi-bond of length three, as it might, for 
example, be used to describe a multi-body operating in 
a two-dimensional space. 
Each regular bond carries two variables, an effort 
variable, e, and a flow variable, f.  The power flowing 
through the bond is the product of effort and flow: 
 

  P = e·f               (1) 
 
In the multi-bond version, effort and flow are vectors, 
and the multiplication operator denotes the inner 
product of these two vectors. 
Clearly, the multi-bond graph library (Zimmer 2006) 
can also be used to describe regular bond graphs.  To 
this end, the user simply needs to employ vectors of 
length 1.  The default length of all vector bonds can be 
set by parameter assignment in the “world model.”  Yet, 

the regular bond graph library is still being offered, as 
multi-bonds are unnecessarily bulky for describing 
regular bonds, and as hardly any of the examples 
provided with the regular bond graph library have been 
copied over to the multi-bond graph library. 
Multi-bond graphs are well suited for describing simple 
mechanical multi-body systems.  For example, let us 
look at the multi-bond graph representation of a planar 
pendulum: 
 

 
 
Figure 2: Multibond Graph Model of Planar Pendulum 

 
The pendulum consists of a two-dimensional revolute 
joint and a mass-less bar translating the motion of the 
joint to the mass connected to the end of the bar. 
In a mechanical bond graph, the effort variables 
represent forces and torques, whereas the flow variables 
represent velocities or angular velocities.  The product 
of either force times velocity or torque times angular 
velocity represents mechanical power. 
The joint itself does not move in a translation.  Its linear 
velocity is zero, and consequently, we need a vector 
source of flow, Sf, of dimension two.  The joint is free 
to rotate, i.e., it doesn’t experience any torque.  Hence 
we need a source of effort, Se, of dimension one.  The 
two vectors are merged to a single vector of dimension 
three, whereby the first two components represent the 
linear translations in x and y directions, whereas the 
third component represents the rotation around the z 
axis. 
The mass-less bar that converts the motion of the joint 
to the motion of the mass is represented by a (multi-
port) transformer, TF. The transformation matrix is 
modulated by the angle of the revolute joint, which is 
measured by a sensor element, Dq. 
The mass itself is represented by the 1-junction.  In a 1-
junction, the flow variables are equal, whereas the effort 
variables add up to zero.  Hence the 1-junction 
represents the d’Alembert principle applied to the mass.  



 

 

 
Figure 3: Multi-bond Graph Model of a Bicycle 

 
The forces acting on the mass are the inertial force, I,  
and the gravitational force, which can be represented by 
another source of effort, Se, pulling in the negative y 
direction. 
The notation may look unfamiliar at first, but with a bit 
of experience, it becomes easily readable and 
understandable. 
Let us now proceed with modeling a more complex 
multi-body system: a bicycle consisting of a frame, two 
wheels, the handlebars, and a driver.  The multi-bond 
graph model is shown in Figure 3.  A similar model had 
been presented in the Ph.D. dissertation of Bos (Bos 
1986), although at that time, the graphical 
representation was drawn by hand and translated 
manually into corresponding equations.  In contrast, our 
own model represents a perfectly executable code. 
Let us refrain from trying to explain how this model 
works.  The model is clearly too big to fit easily on a 
single screen.  Furthermore, the sheer generality of the 
bond graph approach to modeling is also its downfall.  
In order to be general, bond graphs cannot conveniently 
be made specific as well.  In a bicycle, we can easily 
identify objects, such as wheels and handlebars, but not 
effort sources or modulated transformers.  Bond graphs 
offer a low-level interface, that is more readable than an 
equation-based interface, but not readable enough for 
modeling complex systems. 
 
THE STANDARD MULTI-BODY LIBRARY 

Dymola offers a standard multi-body systems (MBS) 
library, developed at the German Aerospace Center in 
Oberpfaffenhofen (Otter et al. 2003).  Using this library, 
multi-body systems can be easily and conveniently 
composed out of blocks that carry an intuitive meaning. 
Figure 4 shows a six degree of freedom (DoF) robot 
arm. 

 

 
 

Figure 4: Six degree of freedom robot arm 
 
The robot arm exhibits seven bodies that are connected 
by six revolute joints.  Each of the joints is controlled 
by a controller.  Together they determine the motion of 
the robot arm. 
The corresponding Dymola model is shown in Figure 5: 



 

 

 
 

Figure 5: Dymola model of a six DoF robot arm 
 
The model is perfectly understandable.  The lower-most 
body, i.e., the base, is connected to the inertial system, 
which in the MBS library also assumes the role of the 
world model.  It determines the world coordinate 
system, defines the gravity field, and sets up default 
animation parameters. 
The model represents an abstracted version of the 
system topology, and is easily understandable.  The 
MBS library is easy to use.  It can even be used by 
modelers without any deeper understanding of MBS 
dynamics. 
The occasional modeler will, however, be in deep 
problems, whenever and as soon as a model is not 
simulating correctly.  It will be an almost hopeless 
undertaking to try figuring out what went wrong. 
The reason is that the step from the component models 
of Figure 5 to the next lower hierarchical level in the 
model hierarchy is huge.  Bodies and joints are modeled 
in terms of matrix equations directly, which are difficult 
to understand.  In order to obtain efficiently executing 
simulation code, suitable coordinate transformations are 
taking place inside the code that make the code even 
more cryptic. 
 

WRAPPING BOND-GRAPH MODELS 

The previously introduced multi-bond graph library 
contains a modified MBS library that, from the outside, 
looks very similar to the MBS library offered as part of 
the standard Dymola installation. 
Let us revisit the bicycle example to demonstrate, how 
the modified MBS library works.  Figure 6 depicts the 
bicycle model coded in the modified MBS library. 
 

 
 

Figure 6: Dymola model of a bicycle 
 
The model is perfectly understandable.  At the right 
bottom of the graph, the rear wheel is depicted.  It is 
connected to the frame of the bicycle by a revolute 
joint.  At a certain distance from the center of the rear 
wheel sits the driver, who, together with the rear part of 
the frame, weighs 85 kg.  Also at a fixed distance from 
the center of the rear wheel are the handlebars. They are 
connected to the frame by a second revolute joint, and 
have a mass of 4 kg. Finally, a third revolute joint 
connects the front wheel to the handlebars. 
Let us examine the model of the rear wheel.  It is shown 
in Figure 7: 
 

 
 

Figure 7: Dymola model of a wheel 
 
 



 

 

The model consists of the inertia of the wheel together 
with a joint connecting the wheel to the road. 
The overall bicycle model contains a closed kinematic 
loop from the road through the rear wheel, the frame, 
and the front wheel back to the road.  Closed kinematic 
loops cause problems, because they introduce additional 
constraints, thereby reducing the number of degrees of 
freedom of the model. 
In older versions of the MBS library, the modeler had to 
manually break closed kinematic loops by introducing 
so-called cut joints (Otter 2000).  Cut joints are regular 
joints that, however, do not define integrators 
connecting the accelerations with the velocities and 
with the positions, thereby avoiding the creation of 
redundant equations. 
In the mean time, algorithms were built into both the 
standard and the modified MBS libraries that are 
capable of automatically breaking most kinematic loops 
(Otter et al. 2003). 
What is the advantage of the modified MBS library over 
the standard one?  To answer that question, let us 
examine the model of the wheel joint.  It is shown in 
Figure 8. 
 

 
 

Figure 8: Multi-bond graph model of a wheel joint 
 
The internal description of the wheel joint is a multi-
bond graph.  The corresponding model of the standard 
vehicle dynamics library (Andreasson 2003) would 
have shown a rather unholy mess of matrix equations 
instead. 
Although the multi-bond graph may require some 
explanation, use of the multi-bond graph library has 
enabled us to subdivide the step from the wheel model 
down to the equation model by introducing an 
additional graphical layer in between the two. 
Multi-bond graphs have been wrapped inside most of 
the MBS component models of the modified MBS 
library with the purpose of making these models better 
understandable and more easily maintainable. 

Let us analyze the wrapper model that converts the 
bondgraphic connectors to mechanical connectors and 
vice-versa.  It is shown in Figure 9. 
 

 
 

Figure 9: Wrapper icon of the modified MBS library 
 

In the modified MBS library, the three-dimensional 
mechanical bond vectors of length six are subdivided 
into two subvectors of length three each, one used to 
describe the translational motions, the other used for the 
rotational motions. 
The reason for this separation is simple.  We prefer to 
resolve translational motions in the inertial frame, 
whereas rotational motions are resolved in body-fixed 
coordinates.  This minimizes the number of coordinate 
transformations needed in the description of three-
dimensional mechanical systems. 
The bond-graphic connectors use thus either forces or 
torques as effort variables, and either velocities or 
angular velocities as flow variables.  The standard MBS 
library, on the other hand, uses positions and angles as 
potential (effort) variables, and forces and torques as 
flow variables. 
In a mechanical system, it is important to transmit the 
positional variables between neighboring bodies, as 
they allow the formulation of holonomic constraints, 
i.e., constraints that prevent bodies from transgressing 
each other. 
In order to be compatible with the bond graph 
methodology, the mechanical connectors of the 
modified MBS library have been augmented by the 
translational velocity vector1, i.e., the connectors of the 
standard and modified MBS libraries are incompatible 
with each other, and component models from the two 
libraries cannot be arbitrarily mixed. 
On the bond graph side, the positions and angles are 
made available as two additional connectors that enable 
the formulation of holonomic constraints on the bond 
graph. 
Figure 10 shows the internal description of the wrapper 
model.  This model is formulated at the equation level. 

                                                           
1 The rotational velocity vector is contained in the 
connectors of the standard MBS library as well. 



 

 

 
 
Figure 10: Wrapper model of the modified MBS library 
 
The translational effort, e, multiplied by the directional 
variable, d, which assumes a value of –1 at the 
beginning of a bond and a value of +1 at the end of a 
bond, is set equal to the mechanical force, f. Similarly, 
the rotational effort multiplied by the directional 
variable is set equal to the mechanical torque, t.  The 
translational flow vector, f, is set equal to the 
mechanical velocity vector, v, and the rotational flow 
vector is set equal to the mechanical angular velocity 
vector, w.  Finally, the mechanical position vector, x, 
and the mechanical angular position vector, R, are made 
available as x and R through separate connectors also on 
the bond-graphic side. 
We are now ready to discuss the multi-bond graph 
model of Figure 8.  The 0-junction represents the 
position of the center of the wheel.  The rotation of the 
wheel results in a translation at the contact point of the 
wheel with the road.  The translation at the contact point 
is calculated from the rotation by means of a 
transformer.  The second transformer further to the left 
in Figure 8 converts the contact point back to the center 
of the wheel. 
The position of the center of the wheel is thus 
determined twice, yet the two values must obviously be 
the same.  If there were only one wheel, there wouldn’t 
be a problem.  The bicyclist moves the wheel, i.e., 
causes a rotation, which in turn can then be used to 
compute the translation of the bicycle forward.  Yet, 
since there are two wheels, we face a closed kinematic 
loop.  This generates surplus equations that need to be 
removed again.  The MBS library is supposed to take 
care of this automatically. 
Yet, there is a second problem.  The weight of the 
bicycle would make the bicycle sink into the road.  Yet, 
this cannot be.  The distance of the center of the wheel 
to the contact point with the road must always be equal 
to the radius of the wheel.  Hence there is a holonomic 
constraint.  The holonomic constraint is satisfied by a 
reaction force that compensates for the force that wants 
to drive the bicycle into the road. 
Bond graphs have notoriously a hard time with 
holonomic constraints, as they don’t operate on 
positions at all.  They only deal with forces and 
velocities.  Consequently, rather than formulating a 
holonomic constraint, we calculate the reaction force 

that keeps the bicycle on the road.  This is done using 
the effort source, Se, at the top of Figure 7. 
 
GRAPHICAL VS. EQUATION MODELING 

Evidently, the bottom layer component models of any 
system description must be coded using equations.  The 
graphical models can only serve to describe the 
topology of a system, whereas the basic physical 
properties must be captured using equations. 
Using wrapped multi-bond graphs, we were able to ban 
the equations almost entirely down to the level of the 
bond-graphic components, i.e., the transformers, 
resistors, capacitors, inductors, etc. These models can 
be created once and for all, and they are flexible enough 
to capture the basic properties of essentially all physical 
systems. 
At the next higher level in the modeling hierarchy, i.e., 
the level, where bodies, joints, and force elements are 
being described, there is relatively little need for 
additional equations.  Almost all of these elements can 
be mapped onto a corresponding multi-bond graph, 
which enhances both the readability and the 
maintainability of these models. 
Additional equations are needed to describe the 
geometric properties of bodies for the purpose of 
animation.  The geometric model of the bicycle is 
depicted in Figure 11. 
 

 
 

Figure 11: Geometric model of the bicycle 
 

 
Although it would be possible to design the geometric 
model graphically using a CAD tool, this is not, how the 
geometric bicycle model was created.  Instead, the 
model was coded by means of equations associated with 
the four body models, i.e., the two wheels, the rear 
frame, and the handlebars. 
 



 

 

SUMMARY 

In this paper, we have shown that wrapped multi-bond 
graphs offer a means to minimize the need for equation 
modeling in the description of complex mechanical 
multi-body systems.  The equation models are forced 
down to the level of the bond-graphic component 
models.  These models are small, and therefore easily 
maintainable.  The level of the mechanical component 
models can thus already be described by graphical 
techniques, i.e., in the form of relatively small and 
compact multi-bond graphs that can be more easily 
debugged and maintained than the equation models 
used in Dymola’s standard multi-body systems library. 
The modified MBS library forms an integral part of the 
multi-bond graph library.  Beside from replicating 
component models of the MBS library, the multi-bond 
graph library also offers a separate set of component 
models for planar mechanics, as well as a set of models 
for describing mechanical systems undergoing 
collisions (impacts). 
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