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HIERARCHICAL NON-LINEAR BOND GRAPHS:
A UNIFIED METHODOLOGY FOR MODELING
COMPLEX PHYSICAL SYSTEMS

Frangois E. Cellier
Department of Electrical and Computer Engineering
University of Arizona
Tucson, AZ 85721

ABSTRACT

Bond graphs have been around for a quarter of a century. While
originally intended for modeling mechanical systems, they have
meanwhile found widespread applications in many areas of phys-
jcal system modeling. However, bond graphs, like all graphical
techniques, become unwieldy when applied to complex systems.
Also, bond graphs were traditionally used: to model predominantly
linear systems. This talk introduces a new concept for modeling
complex physical systems through hierarchical bond graphs which
can include arbitrary non-linearities. It introduces a software tool
that can be used to implement these hierarchical non-linear bond
graphs. Finally, a new application area for bond graphs will be
discussed. It will be demonstrated how these hierarchical non—
linear bond graphs can be used to model chemical reaction kinetics
and chemical thermodynamics together in very general terms also
farther away from equilibrium than traditional approaches would
permit. ‘

INTRODUCTION

It has been known for a long time that the mathematics behind the
dynamical behavior of systems from different disciplines of physical
sciences have much in common. In particular, it has been recog-
nized that mechapical systems can be treated by making use of
electro-mechanical analoga, i.e. by treating masses, springs, and
frictions as inductors, capacitors, and resistors.

This methodology was formalized in the early sixties through
the introduction of so—called bond graphs (Paynter 1961). A bond
is a directed path that denotes the flow of power from one point
of the system to another.

It turned out that, in all physical systems, power can be

written as a product of two-variables, one of which is an across
variable, while the other is a through variable. Across variables
around a node assume the same value, whereas through variables
into a “node” add up to zero. The bond graph name of a node is
a 0—junction. In an electrical circuit, the potentials around a node
assume all the same value, whereas the currents into a node add
up to zero. Thus, if we identify the node of the electrical circuit
with the O~junction of the bond graph, the potentials will become
across variables, while the currents will become through variables.
The electrical power flowing through a circuit element { can be
expressed as the product of the potential drop u; and the current
i

Po=u;-4;

In bond graph terminology, across variables are called effort vari-
ables, while through variables are called flow variables. The symbol
€ is used to denote an effort, and the symbol f is used to denote a
flow. A bond is symbolized by a harpoon with the hook pointing
to the left. The effort is placed at the side of the hook, while the
flow is shown on the opposite side.

———
f

The denomination of the across and through variables is arbitrary.
If we had identified an electrical mesh with the O0—junction instead
of the electrical node, the roles of the potentials and currents in the
bond graph would have been interchanged, yet the power would
still be the product of one across variable and one through variable.

Since electrical circuits, and all other physical systems, are
described through a set of node (cutset) equations and a set of
mesh (loop) equations, the bond graph must contain two types
of junctions. The effort variables across a O~junction assume the
same value, whereas the flow variables into the O—-junction add up
to zero. The flow variables across a 1-junction assume the same
value, whereas the effort variables into the 1-junction add up to
zero,
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The bond graph for this circuit is shown below:
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The rules for constructing a bond graph of an electrical circuit
are very simple. We start by representing each circuit node by
a O—junction except for the reference node which is drawn like in
the circuit diagram. We then represent each branch of the circuit
diagram by a pair of bonds connecting two O—junctions with a 1-
Jjunction between them. We let the harpoons point in the same
direction that we picked for the branch currents. Finally, we at-
tach the network elements to the 1-junctions with the harpoons
away from the junction for passive network elements, and directed
towards the junction for sources.

Contrary to other graphical abstractions such as block dia-
grams and signal flow graphs, the bond graph obviously preserves
the geometric topology of the physical system. What destroys the
" topology in a block diagram or a signal flow graph is the fact that
voltages and currents that participate in a power flow get sepa-
rated from each other. However, efforts and flows aren’t tradable
goods in a physical system. The only two types of merchandise that
exist in a physical system are power and mass. The bond graph
preserves the structural topology of the physical system since it
reflects physical trades.

Since the potential of the reference node vg is normalized to
zero, the power into and out of the reference node is zero, and
consequently, we can eliminate the power bonds that connect the
circuit to the reference node. In our example, this leads to a num-
ber of junctions with only two bonds attached to them. Such
Junctions can be eliminated. The two attached bonds are thereby
amalgamated into one. The resulting simplified bond graph for the
above example is shown below:
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The bond graph shows the dissipation of power from the effort
source SE into the various passive circuit elements of type resis-
tance R, capacitance (or compliance) C, and inductance (or iner-
tance) I.

If it should happen that ever there are two junctions of the
same sex adjacent to each other and connected by a simple bond,
the two junctions can be merged into one. Thus, O-junctions and
l-junctions always toggle in any bond graph model.

Two variables are associated with each of the bonds. Conse-
quently, we need two equations in the resulting simulation program
to evaluate them. It turns out that, in allbond graphs, one of these
variables is always evaluated at each of the two ends of the bond.
We can denote this fact by a little vertical stroke attached to one
of the two ends of the bond. By convention, the stroke denotes the
end where the flow variable is evaluated. In bond graph terms, this
is called assigning a (computational) cousality to the bond graph.

Sources have mandated causalities as shown below:
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Since the effort of an effort source is determined at the source, the
flow must be determined at the other end, thus, the little stroke is
away from the source. In the flow source, the situation is opposite.

The thin arrows denote signal paths. They symbolize the fact thay
these variables are somehow determined from outside the system.
A source as drawn in the circuit example above is actually a non-
physical element. Power cannot be generated, only transported
and converted. However, a “system” never denotes the whole of the
universe. It denotes a piece of the universe. Sources are interfaces
between the system and the universe around i.

Capacitances and inductances have recommended causalities
as shown below:

u
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By declaring that we wish to compute the effort at the capacitance,
we generate an equation of the type:

i.e., we end up with a state equation in the state variable uc which
can be integrated. The reverse causality would have produced an
integral equation for the variable ¢ which would have forced us to
compute the variable uc somewhere else in the circuit by means
of numerical differentiation.

The resistance has an arbitrary causality:

u
—=—p —=2—apg

ip ig
The causality shown to the left leads to the equation:

i ——1~-u
R= g uR

whereas the causality shown to the right leads to the equation:

ur = R:ig

Capacitances and inductances store the energy that flows into
them. Resistors dissipate the energy. Since power cannot be dissi-
pated, also the R element is basically a non-physical element. It
denotes another interface to the universe. The dissipated power
is converted into heat. Since our simple model reflects only the
electrical properties of reality, the generated heat is part of the
universe, and not part of the system.

Since we add up the flows in a O-junction, we can generate
only one equation for the flows into a 0-junction. Consequently,
only one of the bonds attached to a O—junction can have its stroke
at the side of the junction. Similarly, all bonds but one attached to
a 1~junction must have their strokes at the side of the 1-junction.

These causality rules suffice to determine a unique causality
for our simple RLC-cricuit:

I: L1 R:r;
=15mH =100 0
“11, “lezm
SE:u, _Y 4 1 812 N “R2 & R:ny
20 e 0 — 1 0 i 1
=V iy ! igy | iRy ipp =20Q
iclug
C :Cl
=0.1pF

In this example, we were able to satisfy all causality constraints
in a unique manner. This is the preferred situation. If not all
mandated causality constraints can be satisfied, we are confronted
with a non-causal system. This case occurs for example if we try to



parallel connect two voltage sources with different voltage values.
If we cannot satisfy all recommended causality constraints, i.e., if
we run into wrong causalities at either C or I elements, we are
confronted with a degenerate system, ie., the true system order
is Tower than the number of energy storages makes us believe. If
we have a choice in assigning causalities without offending any of
the causality constraints, we have a system with one or several
algebraic loops.

Mechanical systems can be modeled in a similar manner. Let
us look at a simple translational system:
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In a translational system, the forces have been made the effort vari-

ables, and the velocities have been made the flow variables. The

mechanical power of translation can be expressed as the product
of a force f; and a velocity v;:

Pirans = fi - v

The rules for constructing the bond graph are as simple as in the
electrical case. We start by identifying all free moving bodies.
We place 1-junctions for each of their velocities. Where ever two
bodies interact with each other, we connect their junctions with
branches consisting of two bonds and one O-junction inbetween,
and attach all interacting elements to that O—junction. Newton’s
law (or rather the d’Alembert principle) is formulated at the 1-
junctions themselves. The bond graph for the above translational
system is shown below:

I: mg

%, 4
0w
2/ \

C: fya C:
1/k1 fk1 :\ 0« ’ Vo 1/k%2
fm2
\2m/1 e vaffe Ve fmky
I: mz
R:Bl R1132 R:Bs

Rotational systems can be modeled in exactly the same way. Here,
the effort variables are the torques r;, and the flow variables are
the rotational velocities w;. The mechanical power of a rotation
can be expressed as:

Prot =15 w,
Beside from the two basic quantities effort ¢ and flow f, we often
make use of two additional derived quantities, namely the gener-

alized momentum:

t

p=/edr

o

and the generalized displacement:

t
q=/fdr
o

In electrical systems, the generalized momentum is the fluz through
a coil, and the generalized displacement is the charge in a capacitor.
In translational mechanical systems, these are the momentum and
the displacement {bond graphs were invented by mechanical engi-
neers), and in rotational mechanical systems, they are the angular
momenium and the angular position.

All these quantities are common to a large variety of other
physical systems as well, as are the two Kirchhoff laws. Hydraulic,
preumatic, and acoustic systems operate similarly to the electrical
and mechanical ones. In all these systems, the pressure is defined
as the effort variable, while the volume flow rate is defined as the
flow variable. The derived quantities are the pressure momentum
and the volume.

The element laws, however, may look different for different
types of systems. In particular, it may be noted that the equiva-
lent to Ohm’s law for these types of systems is often non-linear.
E.g., the relation between effort p and flow ¢ in a pipe or valve is
quadratic:

Apo<q2

Table 1 presents a summary of the four generic variables for the
most commonly used types of physical systems.

Table 1. Power—(e,f) and energy—(p,q) variables

Effort Flow Generalized Generalized
Momentum Displacement
e f P q
Electrical voltage current flux charge
u V] i 4] evsl  qlas
Translational force velocity momentum  displacement
F [N] v [ms™1] I [Ns] z [m]
Rotational  torque angular twist angle
velocity
T [Nm] w [rad-s”'] T [Nms] ¢ [rad]
Hydraulic pressure volume flow pressure volume
momentum
? [Nm™?] g [m3s™!] T [Nm™3%s] V [mf]
Chemical chemical molar flow  — number of
potential moles
a [T -mol™] v [mel - s71] n [mol]
Thermo— temperature entropy — entropy
dynamical flow
T [°K] 2w .°K] S [J-°K™Y

Until now, we have looked at different types of systems in
isolation. However, one of the true strengths of the bond graph
approach is the ease with which transitions from one form of system
to another can be made, while ensuring that the energy (or power)
conservation rules are satisfied. In an energy transducer (such as
a transformer, or a DC-motor), the energy (or power) which is fed
into the transducer is converted from one energy form to another,
but it is never lost. IL.e., the energy that enters the transducer



at one end must come out in one or more different form(s) at
the other. A “loss-less” energy transducer may e.g. transform
electrical energy into mechanical energy. In reality, every energy
transducer “loses” some energy, but the energy does not really
disappear — it is simply transformed into heat.

There are exactly two ways how the above energy conser-
vation law can be satisfied in an ideal energy transducer (i.e., an
energy transducer in which only two forms of energy are involved).
One is the tdeal transformer. It is governed by the following set of
relationships:

€1 =m - ez

fa=m-f

The ideal transformer is placed between two junctions. There are
two types of causalities possible as shown below:
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Examples of transformers are the electrical transformer, the me-
chanical gear, and the mechano~hydraulic pump:
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The other type of energy transducer is the ideal gyrator. Its be-
havior is governed by the equations:

€y =71 f2

€ =71 f1

Also the ideal gyrator exhibits two forms of causalities as shown
below:
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Examples of gyrators are most electro—mechanical converters, e.g.
the DC~motor:

Tm=V ia
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Notice that there is no real difference between the two transducer
types. If the effort and fow variables in the mechanical system
were toggled, the DC-motor would in fact become a transformer.

Let us go through an example. We want to model an ar-
mature controlled DC-motor with constant field which drives a
translational load connected to the motor through a slip clutch
and a gear. The resulting bond graph is shown below:
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The electrical power generated by the effort source is partly stored
in the armatiire inductance L,, and is partly dissipated in the
armature resistance K,. The remaining power is available for con-
version into mechanical power. On the rotational side, the power is
partly stored in the internal motor inertia Jy, and partly dissipated
through friction Bs. The slip clutch reduces the angular velocity
from wj to wy. It contains the friction By. The remaining energy
is partly stored in the external motor inertia J, which contains the
primary cog of the gear. There is also a spring k1 which prevents
the axle from rotating too far. The gear itself is represented by a
transformer. In this example, it converts the remaining rotational
energy into translational energy. The load consists of a mass m,
another spring kg, a friction By, and the gravity force m-g (another
source).

The bond graph shows clearly that the power available for
conversion from the electrical side to the rotational mechanical
side is:

Pas i ta EPo =7y

The electrical power available for conversion is the product of the
induced voltage u; and the armature current #,. This power is
equal to the generated rotational power which can be described as
the product of the motor torque 7 and the angular velocity of the
motor wy. This fact would not have been so easy to read out of a
block diagram or a signal flow graph.

Notice the problem with the causality assignment. After sat-
isfying all mandated causalities at the sources and junctions, we
are confronted with a conflict. The translational inertance (the
mass) m has the wrong causality. Thus, while this system exhibits
six different energy storages, it is in fact a fifth order system.

BOND GRAPH MODELING IN DYMOLA

The first bond graph simulation language developed in the early
seventies was ENPORT-4 (Rosenberg 1974). This software used
an approach similar to SPICE, i.e., it did not request causali-
ties to be specified, and it transformed the topological input de-
scription into a branch admittance matrix which could then be
solved employing similar techniques to those used in SPICE. Con-
sequently, ENPORT-4 was able to handle structurally singular
problems. Unfortunately, ENPORT’s input language was not very
user-friendly, and the code did not operate too well when we used
it about ten years ago. To our knowledge, ENPORT-4 is no longer

In the late seventies, another bond graph simulation language
was developed at Twente University in the Netherlands, called
THTSIM in Europe, and TUTSIM in the United States (van Dix-
hoorn 1982). TUTSIM translated bond graphs into a state-space
representation. The user is requested to specify the causalities, and
structurally singular systems cannot be handled. TUTSIM’s sim-
ulation engine is somewhat poor in comparison with other state—



space solvers such as ACSL. Its input language is better than that
of ENPORT—4. TUTSIM is currently still in use.

The third product on the market is CAMP (Granda 1982,
1985), a preprocessor to ACSL (Mitchell and Gauthier 1986) which
translates bond graphs into ACSL programs. CAMP has the same
limitations as TUTSIM, i.., it does not handle algebraic Ioops
or structural singularities, but it has the better simulation engine
(ACSL). The input format is topological (as for the two other pr?d-
ucts), and therefore, it is not truly flexible with respect to handhn.g
non—standard network elements. None of the three products is
able to handle hierarchically structured systems, or arbitrary non—
linearities.

For these reasons, we decided to go a different route. DY-
MOLA (Elmgyist 1978) is a general purpose hierarchical modular
modeling software for continuous—time systems. As we noticed,
elements —such as resistors— which allow different causalities to be
applied lead to different equations depending on their causality as-
signment. Thus, it is not sufficient that a modeling software can
sort equations {as most CSSL-type languages will do), but in ad-
dition, it is necessary that the software can solve equations for any

variable. E.g., the software must be able to turn an equation of

the type:

into:

when needed. DYMOLA provides for this capability.

DYMOLA also supports the concept of across and through
variables. The DYMOLA statement:

cut A{v/7)

defines an electrical wire with the potential v and the current 7.
Cuts are hierarchical data structures (similar to PASCAL records)
that enable the user to group individual wires into buses or cables,
and cables into trunks. A cut is like a plug or a socket. It defines
an interface to the outside world. The DYMOLA statement:

connect z: A4 at y: B

plugs the cut A of model « into the socket B of model y. Thereby,
all the across variables {to the left of the slash separator) are set
equal, and all the through variables (to the right of the slash op-
erator) are summed up to zero. The DYMOLA preprocessor au-
tomatically generates the necessary coupling equations.

Nodes are a convenient means to organize connections. They
act like your power distributor. You can plug several appliances
into one such distributor. The above statement could also have
been coded as:

node n
connect z: 4 at n
connect y: B at n

DYMOLA’s nodes can be used as O—junctions in a bond graph
model. There is no DYMOLA equivalent for 1-junctions, but, as
we explained before, 1-junctions are the same as O-junctions with
the effort and flow variables interchanged. Therefore, we created

a model type “bond” which simply exchanges the effort and flow
variables:

model type bond
cut A{z/y) B(y/ — =)
main cut C{A B]
main path P< A— B >
end

The bond acts just like a null-modem for a computer. Since neigh-
boring junctions are always of opposite sex, they can both be de-
scribed by regular DYMOLA “nodes” if they are connected with
a “bond”.

Notice that my “bond” model type is actually a gyrator with
r = 1.0. This special gyrator has sometimes been called symplectic
gyrator in the bond graph literature (Breedveld 1982, 1984).

Since we don’t want to maintain different types of R, C, L,
TF, and GY elements, we add one additional rule: in DYMOLA,
all elements (except for the bonds) can be attached to O-junctions
only. If they need to be attached to a 1-junction, we simply must
place a bond inbetween.

The following DYMOLA model types suffice to describe sim-
ple bond graphs.

model type SE
cut Afe/.)
terminal EO
EQ=¢

end

model type SF

cut A(./ - f)
terminal FO
Fo=f

end

model type R
cut Afe/f)
parameter R = 1.0
R * f =g

end

model type C
cut Ale/f)
parameter C = 1.0
Cxder(e) = f

end

model type I
cut Afe/f)
parameter I = 1.0
Ixder(f)=e

end

model type TF
cut A(el/f1) B(e2/ — f2)
main cut C[4 B
main path P< A—-B >
parameter m = 1.0
el =m=*¢2
f=m=xf1

end

model type GY
ccut Alel/f1) B(e2/ — f2)
main cut C{4 B]
main path P< A—~ B >
pParameter r = 1.0
el =r=* f2
e2=rxf1

end

With these modeling elements, we can e.g. formulate a bond
graph description of our simple RLC network. Remember to ex-
pand the bond graph in such a way that all elements are attached
to O~junctions only. This is shown below.
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1 did not mark down the causalities here since DYMOLA is per-
fectly able to handle the causality assignment by itself (although
no structural singularities yet).

The expanded bond graph can be immediately coded in DY-
MOLA as shown below:

@bond.bnd
Qse.bnd
Q@r.bnd
@Qe.bnd
@i.bnd

model RLC

submodel (SE) U0

submodel (R) R1(R = 100.0), R2(R = 20.0)
submodel (I) L1{I = 1,5F ~ 3)

submodel (@) €1(€ = 0,18 - 6)

submodel (bond) B1, B2, B3

node vl, irl, wrl, v2

input u

output y1, y2

connect UQ at vl
connect L1 at vl
connect R1 at vrl
connect R2 at v2
connect C1 at v2

connect Bl from vl to irl
connect B2 from irl1 to v2
connect B3 from irl to vrl

UOLEO=u
yl=Cl.e
y2 = R2.f

end

" The interpretation of this code is straightforward. DYMOLA’s @
operator corresponds to the include statement of most program-
ming languages. It includes the element definitions which were
stored on separate files.

Let us see how the DYMOLA compiler preprocesses this code.
DYMOLA is actually a program generator. At the current time,
DYMOLA can generate either DESIRE (Korn 1989) or SIMNON
(Elmqvist 1975) simulation programs. We enter DYMOLA, and
specify the model to be compiled as follows:

$ dymola
> enter model
— @rlc.dym
> outfile rlc.eq
> output equations

The enter model statement reads in the model and immediately
expands the set of equations by the coupling equations. The outfile
statement specifies the name of the output file, and the output
equations statement writes the generated equations to the output
file. The generated equations are shown in the next code segment.

Uo EQ0=c¢e

R1 R*f=c¢

C1 Cxdere=f

L1 Lederf=e

R2 Rxf=c¢e

RLC UOEO=u
yl=Cl.e
y2 = R2.f
Ll.e= Bixz
UO.e = Ll.e
Cle= B2y
R2e=Cle
Cl.f + R2.f = B2z
B2.z = B3.z
Bl.y = B2.x
B3.y + B2.y = Bl.x
Rl.e= B3.y
Rl.f = B3.x

The first six equations were extracted from the models. The re-
maining equations are automatically generated coupling equations.

We can now execute the algorithm which assigns the causal-
ities, i.e., which determines what variable to compute from each
of the equations. In DYMOLA, this is achieved with the following
set of instructions:

> partition
> eutfile rlc.sor
> output sorted cquations

which results in the following answer:

RLC [U0.E0] = u
Uo E0 = {e]
RIC U0.e = [Ll.e]
Ll.e=[Bl.x]
Cl.e = [B2.y|
[B3.y] + B2.y = BLz
{Rl.e] = B3.y
R1 Rx[fl=c¢
RLC R1.f = [B3.3]
' [B2.z] = B3.z
[{Bly] = B2.z
[R2.e] = Cl.e
R2 Rxlfl=c¢e
RLC [CL.f] + R2.f = B2.z
C1 C # [dere] = f
L1 Lx{derfl=¢e
RLC [y1}=C1l.e
[v2] = R2.

This time, we decided to print out the sorted equations. The vari-
ables enclosed in “{ ]’ are the variables for which each equation
must be solved. This set of equations contains many trivial equa-
tions of the type a = b. DYMOLA is capable of throwing those
out. This is accomplished through the following set of instructions:

> partition eliminate
> outfile rlc.sr2

> output sorted equations

which results in the following answer:



R2 Rxjy2l =yl

RLC B3y +yl=1n
R1 R+ [B3.z] = B3.y
RLC [C1.f] + y2 = B3.z
C1 C x[dere] = f

L1 Ls{derfl=1u

which is a much reduced set of equivalent equations. The next
step will be to actually perform the symbolic manipulation on the
equations. In DYMOLA, this is done in the following way:

> outfile ric.sov
> output solved equations

which results in the following answer:

R2 y2=yl/R

RLC B3y=uv—yl

R1 B3.z = B3.y/R
RLC Cl.f =B3.z~y2
Cc1 dere = f/C

L1 derf =u/L

We are now ready to add the experiment description to the model.
We can for instance use the following experiment:

cmodel
simutime 2F ~ 5
step 2E — 7

commupoints 101
input 1, u(independ, 10.0)

ctblock
scale =1
Xcee =1
label TRY
drunr | if XCCC < 0 then XCCC = —-XCCC
scale = 2 % scale
go to TRY

else proceed
ctend

outblock

ouUT

dispt y1, y2
outend
end

This portion of code is specific for each of the target languages. The
here shown version is the one required for DESIRE (Korn 1989).
The ctblock set of statements instructs DESIRE to automatically
scale the run-time display. XCCC is a DESIRE variable which
is set to —1 whenever the DESIRE program is interrupted with
an “overflow”. This happens when one of the displayed variables
hits either the top or the bottom of the displayed window. At
this time, the plot is simply rescaled, and rerun with a new drunr
statement. Since DESIRE is so fast, it is not worth the effort to
store the results of the previous attempt, instead, we simply rerun
the entire simulation.

The set of DYMOLA instructions:

> enter experiment
— @rlc.ctl
> outfile rlc.des
> output desire program

tells DYMOLA to generate the following DESIRE program:

—~~ STATE yl L1
—~— DER dC18e dL1$f
—— PARAMETERS and CONSTANTS:

R1$R = 100.0
C=01E-6
L=13E-3
R2SR =209
—~— INITIAL VALUES OF STATES:
yl=20
-L1sf =0
u = 10.0

TMAX =2E~5|DT=2E~T| NN =101
scale =1
Xcee =1
label TRY
drunr | if XCCC < 0 then XCCC = ~-XCCC
scale = 2 % scale
go to TRY
else proceed

DYNAMIC

~— — Submodel : R2
y2=yl/R23R

— — Submodel : RLC
B3fy=u—yl

— — Submodel : R1
B3%z = B3%Sy/RISR
— — Submodel . RLC
C18f = B3%z ~ y2

~ — Submodel : C1
d/dt y1 = C18f/C

— — Submodel : L1
d/dt L1$f = u/L
ouT

dispt y1, y2

JPIC 'ric.PRC’
/ ——

which can be executed at once using the following instructions:

> stop

$ desire
> load 'rlc.des’
> run

which will immediately (within less than a second) produce the de-
sired output variables uc, and 1gg on the screen. Both DYMOLA
(Elmqvist 1978) and DESIRE (Korn 1989) are currently running
alternatively on VAX/VMS or PC/MS-DOS. UNIX versions are
in the planning for both of these languages. It is alsc planned to
add an ACSL interface to DYMOLA.

THERMODYNAMIC BOND GRAPHS

Thermal conductive or convective flow of heat can be de-
scribed by the heat equation:

oT _

.31
at C

" Heat flow in one space direction can be modeled by a simple RC

chain as shown below:
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Using the bond graph methodology, the RC chain can be repre-

sented as follows:
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This bond graph shows that the approach does not work. When
modeling electrical or mechanical phenomena, we could afford to
model the dissipation of power through resistive elements. How-
ever, we have seen already that this is basically a non—physical
concept. Power cannot be dissipated, only transported and con-
verted. When modeling thermodynamic systems, the idea becomes
absurd. What does it mean when we say that thermal power is
being dissipated? This is obviously meaningless. Heat gets “ab-
sorbed” by the resistor, but it is immediately “generated” again
by the same resistor.

To overcome this difficulty, Thoma introduced a new bond
graph element called a resistive source (Thoma 1975). The heat
which is absorbed by the resistive element is routed through the
resistive source, and is immediately re~introduced at the next junc-
tion. The modified bond graph is shown below:

Aszr tlj'z ATz;Fz ‘-Ija ATnz‘_n‘ ::L Tha AT, 1|-::

oZhy b 02y 1 g - -"—211;——\0%1 1
1 l
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Ss S,
AS 1;[T2 ASggy Ty AS n:!;rn.,

C C C

The enhanced bond graph still represents the heat equation, but
while the previously suggested bond graph models the temperature
flow only, the enhanced bond graph models also the power flow
correctly which can be written as: -

Puperm =T -8

Thermal power is the product of the temperature T and the en-
tropy flow S.
In DYMOLA, the RS element can be represented as follows:

model type RS
cut A{el/f1) B(e2/ — f2)
main cut C[A B] :
main path P< A - B >
parameter R = 1.0
R*fl=c¢l
el* fl=e2* f2

end

There is however still one problem to be considered. Contrary to
the electrical and méchanical systems, the R and C element of
thermodynamics are not constant. The R element is proportional
to the temperature:

R=0.T

whereas the C element is inverse proportional to the temperature:

©=7

e., thermodynamic R and C elements are non-linear. To over-
come this problem, earlier bond graph software systems introduced
the heat flow as the flow variable instead of the entropy flow. This
makes the R and C elements linear, but, at the same time, it
makes it difficult to interface the so-called thermodynamic bond
graphs with other bond graphs in a mixed energy system, since the
product of temperature and heat flow does not represent power.

In DYMOLA, we don’t have this problem, since we can model
non-linearities easily. We simply introduce two new bond graph
elements, the modulated resistive source: mRS, and the modulated
capacitance: mC

model type mRS
cut A(el/f1) B(e2/ - f2)
main cut C{4 B
main path P < A - B >
parameter theta = 1.0

R = theta * €2
Rx*fl=el
elx fl=1e2% f2

end

model type mC
cut Afe/f)
parameter gamma = 1.0
C =gamma/e
Cxder(e) =
end

Notice that, in the m RS model, § must be multiplied by ¢; and not
by e; since e; denotes an absolute temperature whereag ¢; denotes
a temperature difference.

Let me now explain how the bond graph modeling concept

‘can be used in a hierarchical fashion. For this purpose, we shall

study a considerably more complex example: a solar heated house.
The overall configuration is shown below:

Collector

Electricity
U

T Pump:
il cC—
E 5 } ,i‘Ie,ater Radiatorr

Thermo-
meter

I
o

One or several collectors act as black bodies which absorb incoming
solar radiation. Consequently, the temperature inside the collec-
tors raises. The collectors can be filled with any material with a
large heat capacity. Usually, it is simply air. Inside the collectors,



there is 2 water pipe which meanders back and forth between the
two ends of the collector to maximize the exposed pipe surface.
We shall call this a “water spiral”. A (mostly conductive) heat
exchange takes place between the collector chamber and the water
pipe, thereby heating the water in the pipe. A pump circulates the
water from the collectors to the storage tank, thereby transport-
ing the heat convectively from the collectors to the tank. We call
this the “collector water loop”. The water spirals in the various
collectors can be either series connected, or they can be connected
in parallel. The pump is usually driven by a solar panel. In the
panel, the solar light is converted to electricity which drives the
pump. Thereby, the pump circulates the water only while the sun
is shining which is exactly what we want. In addition, a freeze
protection device is often installed which also switches the pump
on whenever the outside temperature falls below 5°C.

The storage tank is often realized simply as a large and well
insulated water container (a water heater). However, we shall as-
sume that a solid body storage tank is used together with another
water spiral which deposits the heat in the storage tank just the
same way as it was picked up in the collectors. Consequently, the
water from the collector loop and from the heater loop never mix.

Inside the storage tank, there is a second water spiral which
belongs to the “heater water loop”, and which can pick up the
heat from the storage tank. There is also an additional electrical
heater installed which heats the storage tank electrically whenever
the storage tank temperature falls below a critical value.

The heater water loop is driven by another pump which is
switched on whenever the room temperature falls below 20°C dur-
ing the day or 18°C during the night, and which is switched off
whenever the room temperature raises beyond 22°C during the
day or 20°C during the night.

In the house, we use one or several “radiators” (more water
spirals) which, contrary to what their name suggests, exchange
heat with the room in a partly conductive and partly convective
manner.

Below, the collector is shown in more detail.

Solar \'\'
Radiation \

N

Collector;

Collector Water Loop

The water spiral is modeled through a series of one-dimensional
cells. We want to model each such cell as shown below:

.
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Each cell is described by a DYMOLA model type called c1d.dym
which, {rom now on, can be used as an additional bond graph ele-
ment. The correct causalities have been marked on the graph. The
mGS element is a “modulated conductive source”. It is modulated
with temperature (as always in thermal systems), but, in addition,
it is also modulated with the water velocity in the pipe as shown
below:

T —
/\G

convective
heat transport

o’

conductive heat transport

N ' W,

Since the conductance changes linearly with the water velocity v,
1 preferred to model this element through its conductance rather
than through its resistance. The cld model references three sub-
models: a temperature modulated capacitance mC, a temperature
and water velocity modulated conductive source mGS, and finally
the regular dond submodel.

The exchange of heat across the border of two media is mod-
eled by a heat exchanger as shown below:

O/JlmRSI——\
\—lmRSk—/

The heat exchanger is used here to model the transfer of heat from
the collector chamber to the water spiral.

0| = @——4}1}3}———\@

The water spiral is modeled through a series connection of
several c1d elements with heat exchangers attached inbetween. Be-
low, the water spiral is shown:
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We decided to cut the spiral into three discrete links. Obviously,
this is an approximation of a process with distributed parameters.

Notice that the newly introduced bond graph symbol repre-
senting the water spiral is a §—port element.



We need to model also the loss from the collector chamber
to the environment. This loss is partly conductive and partly con-
vective. Below, the loss element (a 1-port element) is shown:

mG

0

0—Y 1 k—SE

0— Loss

The effort source denotes the outside temperature. The mG ele~
ment denotes the heat dissipation to the environment. The dis-
sipated heat is proportional to the difference in temperatures be-
tween the inside and the outside. mG is a modulated conductance
similar to the mGS element found earlier, but this time, the sec-
ondary port (the environment) is not modeled, and the modulation
is now with respect to the wind velocity vyinag rather than with
respect to the water velocity v,,.

We are now ready to model the overall collector. It is shown
below:

mC

1

SFI— 0 —YLoss

= (o—Ycol—Y0)
I

0—YSpi—Y 0
e

The mC element is the (temperature madulated) heat capacitance
of the collector chamber, The S F element denotes the heat input
from solar radiation.

We used the hierarchical cut concept of Dymola to combine
-the two cuts (i.e., bonds), inwater and outwater, into one hierar-
chical cut, water. This can be pictorially represented by a double
bond. This aggregated bond graph representation has, of course,
the disadvantage that causalities can no longer be depicted.

We shall now model the transport of heat from the collector
to the storage tank, i.e., the collector water loop. We model each of
the pipes by a series of one—~dimensional cells, and we shall assume
that the pipes are thermically well insolated, i.e., that no heat is
lost to the environment on the way. The water loop is depicted
below:

N N
{ 1D !

41D —Yo 0—Y1D —

Ok— Dk—ok— Dk—o0

This bond graph element is a 4-port. We shall combine the cut
inwater! with the cut outwater? to the hierarchical cut inwater,
and the cut outwater! with the cut snwater? to the hierarchical
cut outwater. We shall furthermore declare a main path water
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which creates a logical bridge from the hierarchical cut srnwater tg
the hierarchical cut outwater.

The storage tank contains two water spirals, one which be-
longs to the collector water loop, and one which belongs to the
heater water loop. In addition, there has been installed an electri-
cal resistance heater as a backup device. Below, the storage tank
is shown:

-
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The mC element denotes the heat capacity of the storage tank.
The flow source together with the mRS element denote the elec-
trical backup heater. The primary side of the resistive source is
electrical while the secondary side is thermic.

mC

This is another 4-port. This time, we shall combine the cut
inwater] with the cut outwater! to the hierarchical cut inwater,
and the cut outwaier? with the cut tnwater? to the hierarchical
cut outwater. We shall again declare a main path water which
creates a logical bridge from the hierarchical cut inwater to the
hierarchical cut outwater.

The heater water loop is modeled in exactly the same manner
as the gollector water loop.

The house itself is a little more tricky. We can model the
house through a number of three~dimensional cells with loss el-
ements attached to the walls, and heat exchangers denoting the
heat input through the radiators. However, space limitations will
prevent me from carrying this example all the way through to the

end. More details can be found in a forthcoming book of mine
(Cellier 1990).

Finally, we can connect all the pleces together and create a
model for the overall house:

‘ [ccn o= W= ST == WL=D HE — Hou@

This concludes the description of DYMOLA’ modular hier-
archical non-linear bond graph modeling capability.

CHEMICAL REACTION KINETICS

AND CHEMICAL THERMODYNAMICS

Chemical power can be expressed as the product of the chemical
potential u; of a chemical species 7 multiplied by its molar flow
rate v;:

Pipem = Ki Vi

Here, u; is the effort variables, while v; is the flow variable.

Traditionally, the reaction kinetics equations are expressed
in terms of the involved number of moles and the molar flow rates
only. The chemical potential does not appear in these (highly non—
linear) differential equations. E.g. the reaction system:



ki

= 2Br'
EBTQ
HBr+ H®

* Br* + H,

Br'+ Ha 5
HBr+H*®

Bro+ H* 5 HBr + Be*

can be described by the set of differential equations:

—NpBr, = —Vik1 + Vk2 — Vks

dt

Fri i == 20p1 — 2Vk2 — Vi3 + Vika + Vis
—NH, = —Vk3 + via

a0

TTRH® = Vi3 — Yre — Vs

dt

rEBr = Vi3 — V4 + Vis

where n; denotes the number of moles of the component gas ¢, and
vy, is the reaction flow rate of the reaction k;:

Vi1 = k1 npy,

i = ka - (%’L)

vis = ka - (—"—“‘an ;/nB‘r. )
Vis = ky - (—————nHBrV. nae )
vxs = ks - ("_H_"?"E_'z)

The chemical thermodynamics equations, on the other hand, i.e.,
the equations which can be used to determine the chemical poten-
tial, aren’t commonly handled by means of differential equations
at all. Chemical thermodynamics is in fact a misnomer. Chemical
thermostatics would be a more appropriate term. Thermodynam-
ics, if at all, are only treated through small signal aberrations from
the steady-state. This is because the irue thermodynamics equa-
tions are still poorly understocd.

Thus, the “kineticists” deal with mass flow only. They ignore
the power flow altogether. The “thermodynamicists” deal with the
energy balance under equilibrium conditions, and they actually
ignore both the mass flow and the power flow. C

How come that this decomposition is possible? E.g., in elec-
trical systems, we weren’t able to decompose the dynamics into
one set of equations involving currents only, and another set in-
volving potentials exclusively. Why is it that both thermal and
chemical systems exhibit this decomposition property? Remember
that also the heat equation can be formulated either in terms of
temperature or in terms of entropy alone. I discovered that this
astounding property can be derived from the fact that neither ther-
mal nor chemical systems have an inertia element. Due to the fact
that there exists only one type of energy storage element, the equa-
tions become decoupled. However, we now have to deal with two
separate forms for power flow through the system. In a chemical
system, the two forms are:

Pcliem,'_—‘ll'ﬁ' 3 Pchzmg'——'i"'"'

and'in a thermal system, they are:

Pierm, =TS , Puoermpg=T-8

As in the case of the thermal systems, this seemingly convenient de-
composition property has a considerable disadvantage. Such mod-
€ls cannot easily be connected to other subsystems of different
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energy type. Most chemical reactions occur either exothermically
or endothermically, and often, either the pressure or the volume
changes as well. Thus, we should study chemical reactions, their
thermodynarmics, and their hydraulic/pneumatic flows in unison.

1 wish to discuss how the concepts of bond graph modeling
can help us to gain an improved understanding of what is happen-
ing in these highly complicated systems. We start by noticing that
our combined dynamics will contain six types of variables: (i) the
temperature T, (i) the entropy S, (iii) the hydraulic/pneumatic
pressure p; (iv) the volume V', (v) the chemical potential p, and
(vi) the number of moles n. Consequently, we need six types of
equations to describe the dynamics of this system in their entirety.

We have met one type of equation so far: the mass flow
equations (reaction kinetics equations). It is also well known that
there exists a power balance equation which can e.g. be written
as: -

p-V:T-$+vau;

Vi

This is one way to express the combined effects of the first two
laws of thermodynamics. However, ] have discovered that chemical
systems obey a second type of power balance equation as well:

PV=TS+> piom

i

The detailed derivation of this formulae is in my forthcoming book
(Cellier 1990).

Furthermore, we realize that energy is traded between the
chemical system and its thermal and hydraulic/pneumatic envi-
ronments. Thus, there must exist some sort of transformer with
bonds into the thermal and hydraulic/pneumatic “worlds”. Since
we know that, for each bond, one variable is computed at each of
the two ends of the bond, we realize that among the variables T
and S, one must be computed on the chemical side, while the other
is computed on the thermal side of the bond. Similarly for p and
V. Thus, within the chemical system, we actually need only four
different types of equations rather than six as previously assumed.
The other two are dictated from the outside.

This fact is commonly reflected in chemical engineering by an
assumption of e.g. isothermic and isobaric or isothermic and iso-
choric conditions. ILe., the chemical engineer makes his life easier
by holding one of the thermal variables and any one of the hy-
draulic/pneumatic variables at a constant value. However, these
are just special cases of a more general truth.

Finally, we need one more equation. For this purpose, we
shall use the so—called egquation of state. Every system has one
such equation. E.g. an ideal gas reaction exhibits the following
property:

pV=n-R.T

This gives us all equations needed to describe the dynamics of
this system. Unfortunately, there is a problem with the last of
these equations. The equation of state is actually a steady—state
equation, i.e., it is only valid in a strict sense under equilibrinm
conditions. It should be replaced by a more general equation which
is true also far from equilibrium. Unfortunately, T haven’t been able
to find such an equation yet.

The current literature on chemical thermodynamics con-
founds wildly equations which describe structural (i.e., physical)
properties of chemical reaction systems with other equations which
are balance equations that are valid only under equilibrium condi-
tions. The assumptions made are hardly ever explicitly stated.



Even worse, the chemical thermodynamics literature is full of
myths. Examples of such myths are given in my forthcoming book
(Cellier 1990) in which I tried carefully to make all assumptions
explicitly known.

We are now ready to set up a chemical bond graph. In this
paper, I shall deal with the simplest of all cases only: the isother-
mic and isobaric reaction. In this case, the second power balance
equations degenerates, and the chemical potentials become con-
stants. Below, the isothermic and isobaric bond graph of the hy-
drogen/bromine reaction system is shown. The fourth (and least

important) reaction k4 has been eliminated to keep the bond graph
planar.
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The CS element is a newly introduced capacitive source. It models
the mass storage. One CS element is used for each species. It
computes the chemical potential of the component species, i.e., it
is a source of chemical potential. It also stores the molar mass. In
our simple situation, it can be modeled as follows:

model type CS
cut chem(mu/nu)
terminal n, mu0
mu = mu0
der(n) = nu

end

The capacitive source is attached to a O—junction which models the
chemical mass balance, i.e., it converts the reaction flow rates into
component flow rates. ’

Each reaction is represented by a new bond graph element of
type chemical reactor. A chemical reactor is a three-legged trans-
former. It contains the first power balance equation, the equations
for the reaction flow rates, and the equation of state expressed in
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terms of partial volume flows, not decomposed into an individual
component gas, but decomposed into an individual reaction. My
book (Cellier 1990) provides the details of the calculations. The
DYMOLA. version of e.g. the third chemical reactor is as follows:

model type ChR. k3
cut chem(mu.k3/ — nu_k3)
cut therm(T/ — Sdot_k3), pneum(p/q_k3)
terminal n_H2, n_.Br, V
parameter R = 8.314
local k3, nue_k3
k3 = (10 * %11.43) * exp(—82400/(R * T))
nue.k3 = 0.0
p*qgk3=7TxSdot_k3+ mu_k3 * nu_k3
prq k3 =nuek3*R*T
nu k3 =k3xn_.H2%n_Br/V
end

Due to the high degree of non-linearity and modulation, it is nec-
essary to define one model type for each of the reactors. Each of
the reactors is attached to a 1-junction which models the chemical
energy balance, i.e., it converts the chemical potentials of the com-
ponent species into “reaction potentials” which are expressions for
the Gibbs free energy of the reaction. The reaction powex::

Preget = Hr; - Vi,
is the power that is available to be converted into either thermal
or hydraulic/pneumatic power.

I discovered that there exists an interesting symmetry be-
tween the mass balance and the power balance equations:

VBr, -1 1 0 o -1 Vi
VBye 2 -2 -1 1 1 Vi
VH, = 0 o -1 1 Qf -1 vk,
vy 9 0 1 =} =1 My
VHBr 0 0 1 -1 1 N Uy
Hi,y -1 2 0 0 0 HBrg
Pk (712 0 o o pare
Py | = 0o -1 -1 1 11- BH,
Porg k 0 1 1 -1 -1 BHS
Pk -1 1 0 -1 1 LHEBr

The two matrices are the transpose of each other. Moreover, they
are singular (in most cases, they are not even square). Conse-
quently, the component flow rates can be computed from the re-
action flow rates, and the “reaction potentials” can be computed
from the component potentials, but not vice versa. My book (Cel-
lier 1990) provides an explanation for this symmetry.

I realize that space limitations forced me to reduce this sec-
tion to a mere skeleton. My book describes the chemical reaction
kinetics problem on more than 60 pages. However, 1 wanted to
present at least the essence of these still unpublished results in
this paper.
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