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Abstract

This article, together with two companion papers, of-

fers a general methodology for modeling thermodynam-

ical phenomena using true, rather than pseudo-, bond

graphs. This paper deals in particular with the diÆ-

cult problem of modeling mass 
ows in a thermody-

namic sense, i.e. with the formulation of mathemat-

ical models of convective 
ows. No quasi-stationary

or 
ow-equilibrium assumptions were made, such that

the models generated using the proposed methodology

would be kept as general as possible.

Keywords: Thermodynamics; Convection; Bond

graphs.

1 INTRODUCTION

Bond graphs enable the modeler to describe the dy-

namics of a physical system in a modular fashion using

energy storage, dissipative power 
ow, energy source,

and transformation elements. The basic bondgraphic

icon library enables the user to model, in a systemat-

ic fashion, physical systems, the dynamic behavior of

which is governed by power 
ows alone.

Systems with macroscopic mass 
ows add addition-

al complexity to the modeling task, since the mass that


ows through the system carries with it its stored in-

ternal free energy, which is thus transported from one

location to another in a non-dissipative fashion.

In the most general sense, convection ought to be

described by distributed parameter models. Since

bond graphs are geared to be used for the descrip-

tion of lumped parameter models only, a simplify-

ing assumption will be made, in that the system to

be modeled is compartmentalized, whereby each com-

partment is considered to be homogeneous.

New bondgraphic macro-elements are introduced to

describe the energy storage within a compartment as

well as the mass (and energy) 
ow between neighbor-

ing compartments.

2 THE C-FIELD (CF)

2.1 Choice of variables
Analysing the energy balance of a compartment, three

di�erent components can be distinguished: mass 
ow

into and out of the compartment, heat exchange

between neighboring compartments, and mechanical

work. Three independent (state) variables are need-

ed to describe a thermodynamical system { one more

than for mechanical or electrical systems. Tradition-

ally, temperature T , pressure p, and mass M are used

as basic state variables, from which the speci�c terms

of e.g. entropy s and enthalpy h are being calculated.

For each of the three state variables, T , p, and M ,

a corresponding adjugate variable can be found, such

that the product of the two adjugate variables repre-

sents a facet of (co-)energy stored in the compartmen-

t. These are the entropy S for the temperature, the

volume V for the pressure, and the free (or Gibbs')

enthalpy g = h� T � s for the mass.
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Figure 1: pneumatic-hydraulic power track

Since the pneumatic (hydraulic) bond is already de-

�ned in mechanics, as shown in Fig. 1, as tempera-

ture clearly de�nes a potential and not a �eld variable,

whereas the mass intuitively has 
ow characteristics,

it makes sense to use _S, _M , and q as 
ow variables,

with T , g, and p being identi�ed as the corresponding

(adjugate) e�ort variables (it makes sense, to use g

and not the enthalpy h = g + T � s as the e�ort vari-

able, as a separate T,s-bond has already been de�ned

[1]).

2.2 Computation of variables
Breedveld showed [2] that no inductance can exist in

a thermal system, i.e. only 
ows can be accumulated.

Therefore from a bondgraphic perspective, it makes

sense to de�ne the 
ow variables as the (independent)



state variables, whereas the e�ort variables are indi-

rect variables, i.e. they are dependent on the state

variables.

dM

dt
= _M (2.1)

dS

dt
= _S (2.2)

dV

dt
= _V = q (2.3)

According to physics, none of the six variables T ,

S, p, V , g, and M can ever become negative. A com-

partment can only be emptied. Once empty, nothing

further can be removed from the compartment. How-

ever, this can happen in a simulation due to numerical

inaccuracies. It may therefore be better to de�ne e.g.

the mass of a system (analogous for volume and en-

tropy) as

M = maxf�;

tZ
t0

_M dtg

where � is a large enough number, such that divisions

by M will still result in stable solutions.

The three di�erent aspects of stored (co-)energy

must not be treated as independent storage elements.

If this were true, i.e., if the the three aspects could

be modeled by three separate conventional capacitors,

it would follow that: T = T (S), p = p(V ), and

g = g(M). Evidently, at least the third of these e-

quations is clearly in error, as a intensive variable (g)

must not depend on the mass. Assuming incompress-

ible 
uids, the temperature equation would be correct,

as ds = cpdT . However, this would limit the gener-

ality of the envisaged approach to modeling. For the

pressure, the situation is similar.

The reader may recall that any thermodynamical

system can be completely described by two intensive

and one extensive variables. That is exactly what the

proposed three state variables are.

T = T (
S

M
= s;

V

M
= v) (2.4)

This equation can be derived using the total di�eren-

tial:

dT =

�
@T

@s

�
v

ds+

�
@T

@v

�
s

dv (2.5)

Using one of Maxwell's equations:�
@T

@v

�
s

= �

�
@p

@s

�
v

(2.6)

and converting it as follows, whereby cv is the 'con-

stant volume heat capacity,'�
@T

@v

�
s

= �

�
@p

@T

�
v

�
@T

@s

�
v

(2.7)

�
@T

@s

�
v

=

�
@T

@u

�
v| {z }

= 1

cv

�

�
@u

@s

�
v| {z }

=T

; (2.8)

the equation for the temperature can be determined

as follows:

dT =
T

cv
�

�
ds�

�
@p

@T

�
v

dv

�
(2.9)

For an ideal gas, the above equation can be con-

verted to the well-known caloric state equation:

ds =
cv

T
dT +R �

dv

v
(2.10)

Unfortunately, a (thermal) equation of state is al-

so needed. If available, the pressure can be directly

computed (p = p(M;V; T )). Lacking an equation of s-

tate, interpolation tables will have to be used instead.

In this case, the total di�erential is not needed, as

fT; pg = fT; pg(v; s) can be directly obtained by in-

terpolation1.

Last not least, the equation for the free enthalpy must

be determined. If a corresponding interpolation ta-

ble is available, it may be easiest to use that table.

Otherwise, another total di�erential may be used. Ul-

timately, an equation g(v; s) is needed; however, since

T and p have already been computed, it may be more

convenient to determine h(T; p), and then compute

g = h� T � s.

h(p1; T1) = h(p0; T 0)| {z }
energy of formation

+

Z T1

T 0

�
@h

@T

�
p0| {z }

=cp

dT +

+

Z p1

p0

�
@h

@p

�
T1

dp

(2.11)

Commonly a polynomial approach is used to deter-

mine the speci�c heat cp. The variables �; �; 
; Æ are

mostly constant and tabulated for p = 1 bar.

cp(T; p
�) = �(p�) + �(p�) � T + 
(p�) � T 2 + Æ(p�) � T 3

(2.12)

1As most tables are provided in the form v,s(T,p), it may be

necessary to �rst built T (p; v) and T (p; s) and �nd the value of

p, for which T (p; v) = T (p; s). This problem has an unique solu-

tion. To save time, this conversion should be done o�-line once

and for all, and not be implemented as part of the simulation

algorithm.



For p� 6= p, Eq. 2.11 should be replaced by

h(p1; T1) = h(p0; T 0) +

Z T1

T 0

�
@h

@T

�
dT +

+

Z p
�

p0

�
@h

@p

�
T0

dp+

Z p1

p�

�
@h

@p

�
T1

dp

(2.13)

2.3 Overall model
To represent the relationships between the storage

(
ow) and potential (e�ort) variables, a new bond

graph element (Fig. 2) is introduced. It is called ca-

pacitive �eld, or C-�eld, and is introduced in the bond

graph as the CF-element2.

It is important to mention that speci�c material prop-

p
q

TS

g

M

.

.

0

0 0

CF

C C

C

Figure 2: bond graph representation of the C-�eld

erties shall be modeled within the C-�eld only. All

other elements will be totally generic.

Analysing the fp=qg-bond properties, it may be no-

ticed that a system loses energy for a positive volume


ow and gains energy for a negative one. In order to

avoid this asymmetry, the authors of this paper de-

cided to de�ne the pressure as negative. For example,

the equation of state of the ideal gas is written as

R � T = �p � V . In this way, the balance of the C-�eld

becomes:

dU

dt
= T � _S + p � _V + g � _M; (2.14)

This equation can be graphically interpreted as the

sum over all bonds connecting to the C-�eld.

The kinetic energy of the CF-element has not been

modeled, as the element is supposed to be stationary

in space. The potential energy can easily be taken into

account by adding Epot to g; however in this case, the

C-�eld must `know' its own vertical position in space.

Radiation can be included by modeling the entropy-

cut of the C-�eld accordingly.

The equations of a C-�eld for air, using the assumption

2CF-�elds have been previously used in the bondgraphic lit-

erature, but their purpose was simply to describe a network of

conventional, i.e., independent, capacitors.

of an ideal gas, are as follows:

dM

dt
= _M

dS

dt
= _S

dV

dt
= q (2.1�2.3)

dT =
T

cv
�

�
ds�R �

dv

v

�
(2.15)

p = �

R � T

V
(2.16)

dh = cpdT (2.17)

g = h� T � s (2.18)

cv = cp �R (2.19)

R = 0:2872 kJ
kg�K

and cp = 1:004 kJ
kg�K

.

3 CONDUCTION (CD)

Conductive heat 
ow _Q can be represented in a bond

graph as a purely thermal phenomenon using bonds

with T as e�ort and _S as 
ow variables. If the C-�eld

is exposed to such a heat 
ow only, then _M = q = 0

and dS
dt

= _S =
_Q

T
. This is consistent with the second

fundamental equation of thermodynamics (balance of

entropy without mass 
ow).

Heat 
ow only occurs between two connected C-

�elds at di�erent levels of temperature. The heat 
ow

from the C-�eld located at the higher temperature to

the C-�eld located at the lower temperature is pro-

portional to the di�erence of temperatures and to the

heat transfer coeÆcient �:

_Q = � � (T1 � T2) (3.1)

The entropy 
ows can be graphically depicted as

shown in Fig. 3.
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Figure 3: modelling heat 
ows

The mGS-element is a conductive source element

[3] with a thermal primary side. The m denotes the



fact that the element is modulated, as the conduction

G depends on the temperature:

GCD =
�

T1 + T2
=

�

2 � T1 ��T
=

�

2 � T2 +�T
(3.2)

The notation is adopted from [1]. The authors

prefer to use an mGS-element rather than an mRS-

element because of the �xed causality of the autgoing

bond. The secondary side of the mGS-element always

represents an entropy (i.e., 
ow) source, and never a

temperature (i.e., e�ort) source. The primary side of

each mGS-element computes Ohm's law as follows:

_S1

2
= GCD ��T (3.3)

whereas the secondary sides compute the power 
ow

continuity across the mGS-elements:

� _S1x =
_S1

2
�

�T

T1
(3.4)

� _S2x =
_S1

2
�

�T

T2
(3.5)

Heat 
ow is a dissipative phenomenon. In the pro-

cess, additional entropy (but not heat) is being gener-

ated in the amount of � _S1x +� _S2x.

The reader may notice that the heat 
ow from the

�rst to the second C-�eld is indeed:

_Q = T1 � ( _S1 �� _S1x) = T2 � ( _S1 +� _S2x) = � ��T

(3.6)

as expected.

The conductive heat 
ow of Fig. 3 can be represented

by a new macro bond element, the CD-element, as

shown in Fig. 4.
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Figure 4: Iconized conduction element

If one of the two C-�elds is located outside the sys-

tem, that C-�eld can be replaced by a one-port SE-

element. Alternatively, the external C-�eld can be ne-

glected, replacing the CD-element by a one-port SF-

element.

4 VOLUME WORK AND EQUILI-
BRATION OF PRESSURE (DVA)

Ideal volume exchange does not pose any problem, as

it is reversible and therefore does not generate entropy.

In addition to this forced volume 
ow, there also exists

a volume 
ow that is driven by di�erences between

the pressure of two connected C-�elds. An example

for this phenomenon would be two systems, separated

by a movable wall or membrane. It can be concluded

that there will take place only a single volume 
ow,

i.e., that the volume leaving the �rst system must be

added to the second one.

Such a volume-exchange 
ow is proportional to the

pressure di�erence and is of a dissipative nature (the

power �p � q � 0 will be converted to heat).
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Figure 5: bond graph representation of the DVA-

element

As in the case of conductive heat 
ow, the gener-

ated entropy will be distributed equally to both sides

(Fig. 5).

The overall e�ects of pressure equilibration can be rep-

resented by a new bondgraphic macro element, the

DVA-element.

DVA
3 3

Figure 6: Icon-representation of �g. 5

The attentive reader may have discovered that a

triple bond, a so-called bus-bond3, (Fig. 7) was used in

the iconized representation (Fig. 6). As no mass 
ow

takes place during pressure equilibration, the mass


ow is set equal to zero.

The equations of the DVA-element can be summa-

rized as follows:

_M = 0 (4.1)

q = GDV A � (p2 � p1) (4.2)

3The literature mentions vector-bonds and multibonds as

means to describe sets of bonds. However, these are used for

the compact treatment of threedimensional mechanics, where-

by each strand denotes one space dimension. In order not to

confuse these di�erent concepts, the authors of this paper de-

cided on a di�erent notation, borrowed from digital electronics,

where multiple signal paths are connected into a signal bus. The

bus-bond connects multiple power paths of di�erent type into a

single power bus.
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S1 =
q � (p2 � p1)

2 � T1
(4.3)

S2 =
q � (p2 � p1)

2 � T2
(4.4)

5 CONVECTION: THE R-FIELD

5.1 Introduction
So far, the paper only discussed entropy and volume


ows, but did not use the third cut of the C-�eld: the

mass 
ow. Unfortunately, mass 
ows are not indepen-

dent (as entropy and volume 
ows could be), because

mass has a volume and is carrying enthalpy. Obvious-

ly, it would have been possible, to model this by using

a single bond (e�ort: (internal energy) u = g+T �s+ p

�
;


ow: _M), but in that case, a vector of information

consisting of
�
T p � s

�
would have to accom-

pany the power 
ow, such that the internal energy

bond could be decomposed into its components again

further down the road.

Another possibility would have been to adopt the

notation of Brown [4], who introduced a convection

bond, whereby the power bond is given by fh, _Mg with

Figure 8: The convection bond introduced by von

Brown [4]

the pressure superposed as information path. In our

view, this approach carries three disadvantages:

� By superposing the pressure as an information

path, the concept of pure power bonds is com-

promised.

� The decomposition of the enthalpy bond into a

thermal bond and a mass 
ow bond at the en-

trance of the next compartment while recalcu-

lating the corresponding volume 
ow necessitates

additional connection models. This complicates

the modeling e�ort.

� Keeping track of mass 
ows from the entrance to

the exit point of a compartment without an ap-

propriate bondgraphic mass 
ow notation neces-

sitates the introduction of additional information

paths within the compartment models.

For these reasons, the authors decided to model

mass 
ow phenomena as pure mass 
ows, i.e., with

g as e�ort, and introduce the bus-bond as a conve-

nient means to keep the accompanying volume and

entropy 
ows together with the mass 
ow component

in a compact power bus.

Will this make the use of activated bonds to de-

scribe information 
ows unnecessary? Unfortunately,

this is not the case. Mass carries additional properties

that may be needed in the computation of the mass


ow characteristics, such as the density, �, and the

total entropy contained in a C-�eld, S. These infor-

mation paths will emanate from a C-�eld and end at

the neighboring R-�eld downstream, i.e., they will stay

fairly local. This is consistent with the fundamental

principle of network theory [5], and could provide a

hint for a future merger of these two ways of modeling

physical systems.

Before the concept or the R-�eld is derived in detail,

two additional notations need to be explained:

;

describes a bus-zero-junction. Di�erent busses can

connect to a bus-zero-junction, whereby the nor-

mal rules of zero-junctions shall apply to each s-

trang separately. If a regular bond (either thermic

of hydraulic/pneumatic) is connected to a bus-zero-

junction, it will be treated like a bus-bond with the

other two bus-
ow variables set to zero.

0Ti

This nomenclature is helpful for detail graphics. It

represents the temperature-zero-junction of the CF-

element named 0CF 0

i (p, g will work analogously).

Using these abbreviations, an RF-schematic is pro-

vided in Fig. 9.
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Figure 9: The resistive �eld

5.2 The basic RF model

For the time being, let us model the situation, where

a �xed mass is being transported through a pipe at

constant speed and without friction. The pipe is com-

partmentalized, such that each CF-element represents

one section of the pipe. In this case, the following

equations can be derived:



q = A � v (5.1)

_M = q � � (5.2)

Still missing is an equation for _S. Let us consider

an amount � of a given homogeneous element with

the mass M , the volume V , and the Entropy S (�g.

10). If a portion ~M of this homogeneous mass is being

cut o�, that portion will obviously have the volume
~V =

~M

M
� V and the entropy ~S =

~M

M
� S.

Generalizing to continuous in�nitesimal 
ows, one

Θ

Μ~

Figure 10: Cutting a portion ~M o� a given amount �

can conclude:

� =
_M

M
(5.3)

_S = � � S (5.4)

where � is the mass fraction.

To determine the 
ows leaving the R-�eld, it is known

that

_Mout �
_Min (5.5)

because no mass is stored in the R-�eld. More d-

iÆcult is the case of the volume 
ow, as volume does

not need to be preserved. Yet, it may make sense

to assume volume preservation across the R-�eld, and

renegotiate the valume of an arriving 
ow at the next

C-�eld downstream. Consequently, the volume 
ow is

de�ned analogously to the mass 
ow:

_Vout = _Vin (5.6)

In this way:

� Mass, being transported from A to B, will arrive

at B with the same volume that it had when leav-

ing A, leaving it up to the C-�eld representing B

to renegotiate its volume.

� The RF-element does not need to know, what vol-

ume 
ow _V the mass 
ow _M will have, after it

got mixed with the mass at B.

� Modeling the case VCF = const: (as it holds e.g.

for pipes) inside the RF-element would not make

much sense, as this would mean that there would

be no volume 
ow at all. Furthermore, this would

cause problems in section 5.3.

� Modeling volume changes within C-�elds is more

practical, as in this way, material properties can

be mostly limited to individual C-�elds, thereby

minimizing the need for information 
ows (acti-

vated bonds) between neighboring bond-graph el-

ements.

Last not least, the case of entropy 
ows across an

R-�eld needs to be discussed. These 
ows constitute

the most diÆcult case. Entropy certainly is not con-

served. The R-�eld, in general, describes dissipation,

and therefore, entropy is generated inside the R-�eld

(�g. 11).
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If the two entropy 
ows _Sout and � _S are combined,

and if one takes into consideration that the R-�eld

should be designed such that it can be used in both

directions, a model as shown in �gure 13 is obtained.

5.3 The general model
Up to this point, 
ows were supposed to have constant

speed. As there is always friction, this was evidently

a simpli�cation. Based on the balance of impulses

�p � A = �v � _M (5.7)

a feedback loop of the pressure to the speed results,

which is a function of the geometry of the pipe, the

viscosity of the 
uid, and the 
ow characteristics.

This leads to another simple generalization which ac-

counts for varying cross-sections and the e�ects of
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gravity.

p1 �A1 � p2 �A2 = �v � _M + cos� �G (5.8)

where � is the vertical inclination of the 
ow.
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R-�eld.

5.4 Generalized Exchange Element
Merging the e�ects of the three previously introduced

elements (CD { conduction, DVA { pressure and vol-

ume exchange, RF { convection), the following set of

equations can be extracted from the combined bond

graph:

qRF = A � v (5.1)

qDVA = RDV A � (p2 � p1) (4.2)

q = qRF + qDV A (5.9)

_M = qRF � � (5.2)

_S�

i =
1

Ti
�

�
T1 � T2 + q �

p1 � p2

2

�
(5.10)

� _ST = qR � (p1 � p2) + _M � (g1 � g2) + v � (F1 � F2)

(5.11)

_S1 =

(
� � S1 + _S�

1 for _M > 0;
� _ST+ _S2�T2

T1
+ _S�

1 else
(5.12)

_S2 =

(
� � S2 + _S�

2 for _M < 0;
� _ST+ _S1�T1

T2
+ _S�

2 else
(5.13)



5.5 Special case: C-�eld with constant
volume

Let us consider once more the example of the set �

(�g. 10) where a part of the system ( ~M; ~V ; ~S) has

been cut o�. The remaining system will be character-

ized by fT, p, V � = V � ~V ,M� =M� ~M , S� = S� ~Sg.

Thinking of a leaking pipe or gas cylinder, the volume

of which remains constant, a second setp is needed, in

which the volume V � of the remaining gas is expanded

until it equals the volume V that the gas had occupied

initially. The energy needed for this expansion must

come from the inside of the C-�eld. This can be ac-

complished by making use of a controlled 
ow source

that creates exactly the amount of volume that has

left �. Considering the remaining energy balance (no

mass 
ow)

0 = P + _Q (5.14)

it is found that the 
ow source must be connected

as a two port element to the temperature-entropy-cut

of the C-�eld. The energy needed will thus be gener-

ated by a (reversible) entropy 
ow within the C-�eld,

leading to a reduction of temperature in the pipe or

gas cylinder, which is consistent with physical knowl-

edge.
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Figure 16: bond graph model for a constant CF-

volume.

6 CONCLUSION

The elements introduced in this paper enable the mod-

eler, to describe simple thermodynamical systems de-

scribed by conduction and convection. The methodol-

ogy introduced so far only deals with mono-elements

and mono-phase systems. The description of multi-

phase and/or multi-element systems is left to two com-

panion papers [6] and [7].
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