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Abstract

The purpose of this paper isto show, by example of a
two-gimbal gyroscope, a method for developing a bond-
graph representation of a system from the Lagrangian.
Often the Lagrangian of a systemisreadily available from
texts or other sources. Although the system equations can
be derived directly from the Lagrangian thereis still benefit
in viewing the system in bond-graph representation.
Viewing the power flow through the system gives insight
into the inter-relationships of the state variables. This paper
will give an example where the possibility of reducing the
order of the system is obvious when viewing the systemin
bond-graph representation yet is not readily apparent when
looking at the Lagrangian or the equations derived from the
Lagrangian.

INTRODUCTION

The two-gimbal gyroscope, shownin Figure 1, isa
system described by three generalized coordinates, which
resultsin afour-state variable system. Classical analysis has
shown that under certain conditions, the four-state variable
system can be reduced to a three-state variable system [1].
Thisanalysisisimmediately apparent from the bond-graph
model of the gyroscope.

An aternative bond-graph representation of this system
can be found in the paper Three-axis platform simulation:
Bond graph and Lagrangian Approach by Tiernego and van
Dixhoorn [2]. The two representations are distinct due to
separate methods of bond-graph derivation.

LAGRANGE METHOD

The system can be simplified by setting the distancel,
shown in Figure 1, to zero. Thiswill cause the potential
energy termin the Lagrangian to disappear.
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Figure 1. Two-Gimbal Gyroscope

The resulting Lagrangian is then equal to the kinetic energy
termonly, i.e.:

L=T-= %[(A+ A% +(A+B)p’sin’ 0 +
C(gbcos@ +L[l)2 +C'¢p? cos® 0 + C"gbz] (1)

Where 8, @, and { , the three Euler angles, are the
generalized coordinates of the system. The moment of
inertia of the rotor about the symmetry axis { is denoted as
C,and A isthe moment of inertia of the rotor about any
transverse axis through the point O. The moments of inertia
of theinner gimbal about the axes &, 1, and {, are denoted by

A", B',and C', respectively. The moment of inertial of
the outer gimbal about the inertial axis Z is denoted by C" .
The corresponding Lagrange equations are:
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Where N, Ny, and Ng are the generalized torques. The
Lagrangian equations are three-, second order-, coupled-
differential equations resulting in a sixth-order system. The

state variables of this system are 6, 0, o, gb,l[l, andy.
However, the state variables @, and { do not show up in

the above equations. Thus the system can be described
entirely by four state-equations. The four state-equations
consist of equations 3, 4, 5, and the trivial equation give by
equation 6. The resulting system is a fourth-order, non-
linear system.

6=—1(6) (6)

BOND-GRAPH DEVELOPMENT
A summary of the method used to derive the bond-
graph from the Lagrangian is as follows:

* Notethe flow termsin the Lagrangian. Theseterms
come from the kinetic energy portion of the Lagrangian
formulation. Assign a one junction for each of the
separate flow terms and an appropriate C/I element
where necessary.

e Derivate each of the terms of the Lagrangian with
respect to time. This transforms the Lagrangian energy
termsinto power terms. These power termswill bein
the form of effort * flow, or more generally, effort *
(sum of flows).

e The sum of flows can now be drawn in bond-graph form
by placing O-junctions and connecting the appropriate
1-junctions. The direction of the power arrows will be
apparent from the signs on the power terms derived
from the previous step.

e All of the terms of the bond-graph are now present but
further connections may be necessary to complete the
bond-graph. These connections will be apparent by
inspecting the terms of the Lagrange equations that are
not yet represented by the bond-graph.

An application of these stepsis shown using the two-gimbal
gyroscope as an example.

Bond-Graph Development of the Two-Gimbal
Gyroscope

Naturally, since the only energy storage devicesin this
system are inertias, the potential energy terms from the
Lagrangian in equation 1, all have the from %2 1* flow?.
After writing al five terms of the Lagrangian in this form, it
is apparent that the bond-graph will have at least five 1-
junctions defined by the following flows:

Flow, = 6. (7)
Flow, = ¢. 8
Flow, = ¢cos8 +. (9)
Flow, = @cosé. (10)
Flow, = @siné. (11)

Derivating each of the terms of the Lagrangian with respect
to time gives power. Thisresultsin the five power terms:

Power, = % % (A+A)p? L (A+A)¥6. (12

dl:ﬂ- " 2|:|

Power, ZEEC [0 0 C" pg. (23)

Power, = % %C({ocose i E:
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Dividing equations 12 through 16 by their corresponding
flowsin equations 7 through 11, respectively, produces the
five efforts that correspond to the | elements on the five 1-
junctions. The resulting efforts are:

Effort, = (A+ A)g. (17)

Effort, =C"@. (18)

Effort, = C(qbcos@ —@fsing + Lp) (19)
Effort, = C'¢pcosf —C'¢8sing. (20)
Effort, = (A+B')psing + (A+B ) cosh.  (21)

These five 1-junctions build the basic structure of the
bond-graph. Also, it is clear from equation 9 that a O-
junction is needed to sum two flow signals. The basic bond-
graph structureis shown in Figure 2. This structure includes
the necessary causality strokes to define the above
relationships.
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Figure 2. Basic Bond-Graph Structure

Although two of the 1-junctions shown in Figure 2 can
be collapsed to a single bond, they have been left so that the
flows can be called out specifically. The causalities shown
in Figure 2 are the necessary causal marks to produce the
equations described above. This system has three integral
causal elements, which resultsin the three degrees of

freedom 9, qb, and(,[/. Thetrivial equation is obtained by

integrating the flow of the ] 1-junction to produce 6 . The

signal flow of @ has an integrator in its path which
increments the order of the system by one, making the bond-
graph of Figure 2 afourth-order system.

The bond-graph of Figure 2 is still incomplete,
however. The necessary changes to the bond-graph of
Figure 2 can be found by close inspection of equation 5.
Re-writing this equation without grouping the terms

(A+ B' - C') one obtains:

N, = (A+ A) +Clpcosd + Jpsing +
C'¢p’ sinf cosh -

(A+B')p? sinf cosb. (22)
Note that the terms
C(qbcose + w)(hsi no; (23)
C'p’ sinB cosé; (24)
and,
(A+B')p’sin@cosh (25)

of equation 22 contain the angular momentums of bonds 3,
4, and 5 of the above bond-graph, respectively. Grouping

together the angular momentum terms of bonds 3, 4, and 5
in equations 23 through 25 results in equations 26 through

28.

[C(qbcose +(,[/Mq'osi no. (26)
[C'pcosB]psiné. (27)
[(A+B')psin6]pcos (28)

One can see that equations 26 through 28 all have the form
angular momentum times angular velocity, or in bond-graph
terms P*f. These equations can be realized in bond-graph



notation by using gyrators that are modulated by angular
momentum [3]. In this case the effort signal is being defined
by aflow signal which implies the gyrator causality as
shown in Figure 3.
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Figure 3. Gyrator Causality

Using the gyrator element of Figure 3 to connect the 1-
junctions as described in table 1 completes the bond-graph
of Figure 2.

Table 1. Gyrator Connections

1-Junction 1-Junction Gyrator Modulus
6 @pcoso P
0 @sing P
2] ®sin@ P,

The complete bond-graph is shown in Figure 4. For
clarity, the modulated transformer signal paths, shown in
Figure 2, have been removed in Figure 4.

An alternative bond-graph for this system is offered by
Tiernego and van Dixhoorn [2]. The Tiernego/van
Dixhoorn representation is more symmetric than the
representation shown here. However, the representation
given here is more compact. The modulated gyratorsin
both representations allow for non-unique bond-graph
construction.
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Figure 4. Complete Bond-Graph of the Two-Gimbal
Gyroscope

Theinputs SE ¢, SE,,, and SE; correspond to the
respective generalized torques Ng, Ny, and N, of the above

Lagrange equations. In strict bond-graph terminology the
equations of the bond-graph of Figure 4 are obtained as
follows:

P,=3E,-6,-€; (29)

€, = €, C0s6 (30)

€o =6 T6 +E (31)
PR

ey = f R =" (32)

I,

B =1 f, =1 f, = fsn6 = ITPZSinG (33)

2

Substituting 33 into 32 yields:

,=112ls gng (34)
1,
& =€ =6 =35 (35)
e, = I4EPZ cosf - AP sin@% (36)
%_2 41, U
e = eysing (37)
€, =6 ~€;-€ (38)

[P, . PP, O
e = sn@ + cosf (39
5%_2 1,1, O

(40)

(41)



P

P, = cos@ (42
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Substituting 42 into 41 yields:

€y = Lt L) cos@ (43)

1|2

Substituting the results of equations 30 through 43 into
equation 29 and solving for P, yields:

_1,1,(SE,, - SE, cosB)+ PPl ,sin6 .\
27 11, +1,c0820 +1.sin?6]
2P,P,sinfcosé(l, - 1)
I,[l,+1,c08’8+1,sin*8]

(44)

Equation 44 isthe first compl ete equation from the bond-
graph of Figure 4.

P, = S, (45)

Equation 45 is the second eguation from the bond-graph.

P, = SE;s +€5-€5 -8 (46)
PO

€0 = EE |, sin6 cosO 47)
L' 2 L
P, .

ew::I = 1,sin6 cosb (48)
LI"2 L
€5 :%sine (49)

Substituting equations 47 through 49 into eguation 46, and
simplifying, yields:

. PP, .
R =S~ |2 2sinf +
2
2

EI&E sinfcosf(l;-1,)  (50)

Equation 50 is the third equation from the bond-graph.

The trivial equation shown in equation 6 has been re-
written in equation 51 in pure bond-graph notation.

P _d
a-% 51
I, dt (1)

The complete bond-graph equations are given by
equations 44, 45, 50 and 51. Equation 44 corresponds to the
L agrange equation given by equation 3. Equation 45
corresponds to the Lagrange equation given by equation 4.
Equation 50 corresponds to the Lagrange equation given by
equation 5. Note that equation 44 ends up as a function of
two effort sources while none of the Lagrange equations end
up as afunction of two generalized torques. The

generalized torque Nw can be substituted into equation 3 by

observing that the term C((,bCOSQ - @osind +Ll])

appearsin both equations 3 and 4. After this substitution
equation 3 becomes

N, = (A+B')psin’6 +
2(A+B')pfsinf cosh + N,, cosf -
C((,bcose +l,[/)95in9 +C'pcos’ 6 -
2C'@p0sinO cosB +C"g. (52)

which is afunction of two generalized torques. The bond-
graph makes this substitution naturally.

SYSTEM ORDER REDUCTION
Classical analysis has shown that the system order of
the two-gimbal gyroscope can be reduced when the inputs

N,,and N, aresettozero[1]. Thisobservation comes

naturally to the bond-graph. Assuming that the initial
condition on P; is zero, and the input SE; is zero for all

time, then the efforts on bonds 3, 6, 7, 8, and 9 are all zero.
They can be removed from the bond-graph, which

completely removes the element | ;. The gyrator modulus
for the gyrator between bonds 16 and 17 is now zero since
the element | ; has been removed. Thus the power

transmitted on bonds 16 and 17 is now zero and they can be
removed aswell. The resulting simplified bond-graph is
shown in Figure 5. Note that this reduced bond-graphis a
third-order system. The three state variables from the bond-
graphare P, P,,and 8. The resulting bond-graph
equations are given by equations 53 and 54.
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Figure5. Resulting Bond Graph for SE; = 0.

For P, =0 and SE; =0 equations 53 and 54 are
identical to equations 44 and 50 respectively. For non-zero
initial conditions on P, the bond-graph needsto be left in
its complete form as show in Figure 4. Thisallowsthe
equation P, = SE, to produce P, = P, where P, isthe

initial condition on P;.

DYMOLA SSIMULATION RESULTS
DYMOLA [4] was used to simulate both the bond-
graph equations, given by equations 44, 45, 50, and 51, and

the Lagrange equations given by equations 3, 4, 5, and 6.
The mass values were arbitrarily chosenas A= 2,
A'=14,B'=12,C=4,C'=26,andC" =22
The generalized torgque inputs were modeled as shown in
Figure 6. Time plotsfor the four state variables 6,9, Q,

and (J/ are shown in Figures 7 through 9. The error
between the two systems is shown in Figures 10 through 14.
Thevariables 8, @, and ( are obtained from the bond-

graph variables through the transformation equations given
by equations 55 through 57, respectively.

The bond-graph simulation results are identical to the
Lagrange simulation results. Thisis no surprise since the

bond-graph was obtained directly from the Lagrange
equations.

g=n-_H_ (55)
. A+A

p=rr=2 (56)
2

Y =-2-—2cosb =
|3 2

= R 12;,cose. (57)
cC C

Ntheta (NM)

Figure 6. Simulation Input Profiles
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CONCLUSIONS

The conclusions are as follows;

The information contained in the Lagrangian of the two-
gimbal gyroscope can be used directly to obtain a bond-
graph formulation of the system.

The two-gimbal gyroscope bond-graph obtained in this
paper provides a more compact construction than the
bond-graph given by Tiernego and van Dixhoorn [2].
The advantage that the Tiernego/van Dixhoorn
representation hasis one of symmetry in that the
Eulerian Junction Structure (EJS) appears explicitly.

A reduction in the state space of the gyroscopeis

possible by setting the effort source SE¢, and the

initial condition of P, to zero. This reduction of order

comes by direct inspection of the bond graph, yet is not
readily apparent from the Lagrange equations.

The simulation results for the Lagrange method and for
the bond-graph are identical, baring small numerical
differences. Thisresult isfully expected since the
bond-graph was obtained directly from the Lagrange
equations.
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