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Abstract 
 In this paper, a new bond-graph library is introduced, 
programmed as part of the Dymola object-oriented 
graphical modeling environment.  It is shown that the 
embedding of bond graphs into the Dymola modeling 
framework adds both expression power and flexibility to 
the bond-graph modeling methodology. 

The Dymola modeling framework is summarized, 
and the new bond-graph library is introduced.  An 
(academic) example of a simple position control system 
involving a hydraulic motor demonstrates the power of 
the modeling environment. 
 
INTRODUCTION 
 Finding just the right balance between generality and 
specificity, determining which aspects of the modeling 
enterprise ought to be hard-coded into the software 
environment, and which other portions ought to be kept 
open to modification by the end user is a difficult decision 
to make. 

In the Dymola object-oriented graphical modeling 
framework [1], this lesson had to be learnt the hard way, 
and it took many iterations to get it right.  Until version 4 
of Dymola had been released, the authors of this paper 
rejected to make use of the graphical front-end of the 
environment, because it hadn’t been flexible enough.  
With version 4 of the software, graphical modeling 
became easy and intuitive, and the creation of a powerful 
hierarchical graphical bond graph library had not only 
become feasible, but was even easy to accomplish.  The 
new bond graph library is being introduced in this paper. 
 
THE BOND-GRAPH CONNECTORS 
 In [2], Cellier advocated the use of gyro-bonds as a 
means for exploiting Dymola nodes to represent both 0- 
and 1-junctions. 

Dymola offers two types of variables: across 
variables and through variables.  In a node, the across 
variables are set equal across all connectors, whereas the 
through variables add up to zero.  This modeling 
construct can be exploited in bond graph modeling, since, 
in a 0-junction, the across variables correspond to efforts, 
whereas the through variables correspond to flows.  Yet, 
in a 1-junction, the correspondence is reversed.  
Consequently, both types of junctions can be represented 
by nodes, if each bond itself is a symplectic gyrator, and 
if additional rules are specified that ensure that (i) 
junctions always toggle, i.e., no two 0-junctions or 1-
junctions are connected by a bond, and (ii) all bond-
graphic elements are connected to 0-junctions only. 

These rules are, however, too constraining for a 
graphical modeling environment.  For example, thermal 
systems exhibit often 0-junctions with many bonds 
attached to them, representing e.g. a room at a certain 
temperature, with many bonds, representing the walls, the 
windows, the doors, the ceiling, and the floor interacting 
with that room.  It must be possible to graphically split 
that 0-junction into a series of distinct 0-junctions, each 
one with a smaller number of connections. 

For this reason, the new bond-graph library treats 
bonds as symplectic transformers rather than symplectic 
gyrators, and it treats both efforts and flows as across 
variables.  As a consequence of this decision, the 
junctions now need to be explicitly modeled. 

The bond-graphic connector is programmed as 
follows: 

 

 



There are three variables referenced in the connector, 
the usual effort and flow variables, e and f, as well as a 
directional variable, d, which indicates whether the 
direction of positive flow is into the connector (d=+1) or 
out of the connector (d=−1). 

Each Dymola modeling entity contains three 
windows: an equation window, shown above; a diagram 
window, used for graphical modeling by topologically 
interconnecting previously defined models, and an icon 
window, used to represent the model graphically at the 
next hierarchical level.  The iconic representation of the 
bond-graphic connector is a grey dot: 

 

 
 

There exist two additional definitions, used for causal 
bonds.  For example, the e-connector is defined as 
follows: 

 

 
 

In Dymola, all variables are assumed a-causal by 
default, but they can be made causal, by declaring them 
accordingly. 

The icon of an e-connector is a grey dot with the 
letter “e” embedded in it: 

 

 
 

The f-connector has the causalities of the effort and 
flow variables reversed. 

Using these connectors, it is now possible to define 
the bonds.  A-causal bonds are defined using a Dymola 
model: 

 

 
 

Two bond-graph connectors were dragged into the 
diagram window.  They were named BondCon1 and 
BondCon2, respectively.  The equation window defines 
the equations governing a bond. 

The icon associated with the bond model is shown 
below: 

 

 
 

The icon shows the two inherited bond-graph 
connectors as well as the bond connecting them. 

Each Dymola entity has a name.  By placing the text 
“%name” on the icon, Dymola knows to place the true 
name of an invoked bond underneath the bond upon 
dragging it into the diagram window. 

Causal bonds make use of e- and f-connectors.  For 
example, the f-bond invokes an f-connector at the side of 
the causality stroke, and an e-connector at the other side. 

In Dymola, e-bonds and f-bonds are modeled as 
blocks rather than as models, which forces pre-defined 
causalities upon all variables. 

There is no need to ever use causal bonds in Dymola, 
since Dymola is perfectly capable of determining the 
correct causalities on its own, but their use supports both 
readability and debugging of models, and therefore, the 



authors of this paper prefer them whenever possible, i.e., 
whenever the causality is fixed. 
 

 
 

Let us now look at a 0-junction with three bond 
attachments.  Junctions exist only in their a-causal form. 
No pre-assigned causality is needed here, because the 
correct causality will be inherited by the bonds that are 
attached to the junction. 

 

 
 

Its equation window is programmed as follows: 
 

 
 

Rather than dragging three bond-graph connectors 
into the diagram window, this model inherits (extends) 
another model that contains most of the equations that are 
needed to describe a three-bond 0-junction. 

Dymola offers a matrix manipulation language 
similar to Matlab for the description of matrix and vector 
operations. 

The ThreePortZero  model contains the following 
equations: 

 

 
 

The model packs the individual bond connector 
variables into an effort vector and a flow vector, and in 
the case of the flow variables, takes into account the 
direction of flow. 
 
THE BOND-GRAPH LIBRARY 
 Let us now look at the bond-graphic element models.  
The capacitor model may serve as an example. 
 

 
 

It inherits the PassiveOnePort model, declares the 
parameter C, assigns a default value of 1.0 to it, and 
defines the capacitive equation. 

The PassiveOnePort model defines the following 
equations: 
 



 
 

It drags the bond-graph connector into the diagram 
window, and assigns the connector variables to the 
appropriate effort and flow variables of the bond-graphic 
OnePort. 

The icon window of the capacitor looks as follows: 
 

 
 

Again, the name is added to the model.  In addition, 
the parameter value is displayed by adding the text: 
“C=%C” to the icon. 

By now, we are ready to create bond graphs, such as: 
 

 
 

This looks no different than a bond graph generated 
with any other bond graph drawing tool.  However, there 
is a big difference: Dymola doesn’t know anything about 
bond graphs.  The entire bond graph modeling 
environment was created within the Dymola modeling 
framework under full control by the modeler.  This 

provides a degree of flexibility to the modeling 
environment that, to the best knowledge of the authors of 
this paper, cannot be found els ewhere. 
 
A POSITION CONTROL SYSTEM 
 In the following section, a position control system 
involving a hydraulic motor is described.  It shall be 
shown, how component models of increasing complexity 
can be built hierarchically on the basis of simpler models, 
and how these can be connected to describe complex 
physical systems.  

We start by describing the hydraulic motor: 
 

 
 

The schematic of the hydraulic motor is at the same 
time also its iconic representation.  The hydraulic motor 
has two bond-graphic connectors, describing the in- and 
outflow of fluid, as well as a signal connector, describing 
the angular velocity of its axle. 

The diagram window is given next.  It is an ordinary 
bond graph describing the hydraulics of the motor.  The 
variable names of efforts and flows were added manually 
to the diagram window as text for documentation 
purposes. 

The only unusual element is the f-element.  It 
represents a flow sensor.  This element sets the 
corresponding effort to 0, and senses the incoming flow, 
which is then passed on as a signal.  Conventional bond 
graphs make use of activated bonds for this purpose. 

The modeler will have to remember that the model 
contains the two 0-junctions at the top, but not the 
associated bonds, i.e., the bond-graph connectors connect 
to the junctions, not to the bonds.  Consequently, the 



model that connects to the hydraulic motor will have to 
end in bonds, since it is not possible, using the Dymola 
bond graph library, to have two bonds next to each other 
without a junction in between, or to have two junctions 
next to each other without a bond connecting them.  
Otherwise, the directional d-variable wouldn’t be defined. 

 

 
 

Notice further the propagation of parameter values.  
Within the equation window, the parameters of the 
hydraulic motor are defined and assigned default values.  
These are passed on to the underlying R-, C-, I-, and TF-
elements: 

 

 
 

The hydraulic motor is controlled by a servo valve.  
The servo valve operates as follows: 

 

 
 

It is modeled by the bond graph shown below. 
 

 
 

The four turbulent flows, q1, q2, q3, and q4, are 
modeled as non-linear resistors (or rather conductors).  
These are furthermore modulated by the under-lap caused 
by the position of the tongue, x, which is imported into 
the model as a signal input. 



Notice that the bond-graphic connectors here indeed 
connect to bonds rather than junctions. 

We shall now model the control of the tongue of the 
servo valve. 

 

 
 

This model has no bond-graphic connectors.  Yet, 
internally, the device is modeled using bond graphs, as 
shown below: 

 

 
 

The voltage is converted to a bond-graphic signal by 
use of a modulated effort source.  The position of the 
tongue is proportional to the effort of the capacitor.  It is 
sensed by use of an e-element, which sets the flow to 
zero, and senses the effort. 

The control system can now be built.  It is modeled 
by use of standard block-diagram methodology. 

 

 
 

By handing full control of the modeling environment 
over to the modeler, the Dymola framework enables the 
user to employ the most adequate modeling methodology 
for each task.  For control systems, block diagrams are the 
appropriate tool of choice.  Yet, each one of the 
underlying physical systems has been modeled using 
bond graphs, which again, was the most appropriate tool 
for the task at hand. 
 
CONCLUSIONS 

The paper has introduced a new bond graph library 
programmed as an application of the Dymola modeling 
framework and software.  It was demonstrated by means 
of an example that this environment offers very powerful 
features enhancing greatly the flexibility of the bond 
graph approach to modeling. 
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