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Abstract 
 In the design of a controller, the selection of 
controller gains is the most time consuming and ad hoc of 
tasks.  The difficulty lies in the fact that optimization 
tools cannot always find global optima, thus the solution 
found is more than likely sub-optimal.  However, trying 
to find a more optimal solution quickly becomes cost 
ineffective.  The controller gain selection process lacks a 
method for measuring the balance between 'good' and 
'good enough'.  The question of whether the controller 
gains need to be optimized further, or re-optimized in the 
instance of an existing design, often goes unanswered. 
 
 This paper is a companion paper to System Efficiency 
Measurement through Bond Graph Modeling [1].  In the 
companion paper, a method was shown, through the use 
of bond graphs, to evaluate the efficiency of a control 
scheme.  This paper uses a similar method for evaluating 
the efficiency of controller gains for a given control 
system.  The efficiency is used to define the optimal 
performance of the system.  If the current set of controller 
gains is able to make use of the system’s available energy, 
and these gains satisfy classical control criteria, then this 
set of gains is as close to the optimal solution as it needs 
to be.  Further optimization would then be a waste of time 
and money, since the system performance cannot be 
improved.  On the other hand, if the current set of gains 
does not make good use of the system’s available energy, 
then the gains need to be optimized further. 
 
INTRODUCTION 
 This paper shows, by means of an example, a method 
for selecting optimal controller gains by monitoring the 
power flow in a bond-graph model of the actuator.  Here 

three sets of controller gains are compared, and an 
optimal set is selected. 
 
 This paper uses the servo-positioning system 
presented in the companion paper to control a two degree-
of-freedom missile model.  The controller discussion of 
the companion paper discussed primarily the control of 
the servo-system itself.  Here the controller discussion 
focuses on an autopilot control of a missile system.  The 
actuator control scheme, discussed in the companion 
paper, is buried inside the missile/autopilot system. 
 
THE MISSILE MODEL 
 A missile model, autopilot, and actuation system are 
shown in figure 1.  The modeling software used to create 
the models shown is Dymola [2].  Inside the block labeled 
CAA_Fin1 is the same actuation system bond graph 
discussed in the companion paper.  The bond-graph 
model of the actuation system has been dropped into this  
 

 
Figure 1.  Missile System 

 
block in an object-oriented fashion [3].  The controller 
used in the actuator for this paper is controller 2, as  



described in the companion paper. 
 
 As seen in figure 1, the system is set up to command 
a 20 G step into the autopilot.  The output of the system is 
the measured body acceleration of the missile. 
 
 The missile model shown in figure 1 is a two degree-
of-freedom model.  This model can be found in the book 
Tactical and Strategic Missile Guidance by Zarchan [4].   
 

 
Figure 2. Two Degree-of-Freedom Missile 

 
The two degrees of freedom, as described by figure 2, 
consist of a translational degree-of-freedom normal to the 
missile body, and a rotational degree-of-freedom about an 
axis coming out of the page.  The normal force is 
described by equations 1-5. 
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12 −= Machβ   (5) 
 
where Vm is the missile velocity, Splan is the planform area 
(approximated by the length of the missile * the 
diameter), Sref is the missile reference area, Sw is the wing 
reference area, ST is the tail reference area, α is the angle 
of attack, and δ is the tail deflection. 
 

 The moment equation is described by equations 6-7. 
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where Xcg is the distance from the nose to the center of 
gravity, XCPN, XCPB, and XCPW are the distances from the 
nose to the centers of pressure for the nose, body, and 
wing, respectively, and XHL is the distance from the nose 
to the hinge line of the missile.  These distances are 
described graphically by figure 3. 
 

 
Figure 3. Missile Dimensions 

 
 The relationship between θ and α is 
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 As is seen by equations 1-8, the 2 degree-of-freedom 
missile is a non-linear set of ODE’s.  It would have been 
possible of course to describe the missile dynamics 
themselves by a bond graph, but this wasn’t useful, as the 
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model provided is a standard model out of the open 
literature that is used commonly to describe missile 
dynamics. The model ensures that, for a given fin 
deflection, the missile will naturally adjust itself such that 
the moment coefficient, CM, goes to zero.  This is the trim 
condition for the given fin deflection.  For CM = 0, the 
value of α is non-zero.  At the trim condition, the normal 
force is not zero, which provides the desired normal body 
acceleration. 
 
 Figure 4 shows the Dymola parameter window that 
defines each of the parameters of the model as used in this 
paper. 
 

 
Figure 4. Missile Parameters 

 
 Figure 5 gives the meaning of the tip and root chord 
parameters shown in figure 4. 
 

 
Figure 5. Wing Dimensions 

 
 Figure 6 shows the Dymola code used to implement 
the missile motion described by equations 1-8.  The der 
function, shown in figure 6, is the Dymola notation for a 
derivative.  This function is somewhat misleading in that 
there are no numerical derivatives calculated.  The 
calculations are done through Dymola’s ability to sort the 
equations horizontally, solve for the proper variables, and 
integrate where necessary [5]. 
 

 
Figure 6. Missile 2 Degree-of-Freedom Code 

 
 The missile autopilot is shown in figure 7.  The 
autopilot consists of an acceleration feedback path and 
two body-rate feedback paths used to help decouple the 
body acceleration from the pitch-rate.   
 

 
Figure 7. Pitch Autopilot 
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 Figure 7 shows three gains in the autopilot control 
system, KAp in the integral feedback path, KBp in the 
cross-coupling feed-through path, and KThp in the cross 
coupling integral path.  In the design of an autopilot, the  
selection of these controller gains is the most time 
consuming and ad hoc of tasks.  The difficulty lies in the 
fact that optimization tools cannot always find global 
optima, thus the solution found is more than likely sub-
optimal.  Analyzing the power flow through the actuator, 
by monitoring the power flow in a bond graph, makes it 
possible to obtain an idea of the efficiency of a particular 
set of controller gains.  Using this efficiency, a 
determination may be made on whether or not to continue 
searching for a more optimal set of controller gains, or 
stop the process and use the current set. 
 
DYMOLA SIMULATION AND RESULTS 
 Simulation runs were preformed using three separate 
sets of controller gains as shown in table 1.  These values 
produce the acceleration responses of figure 8.  This 
figure is divided into two plots.  The top portion shows 
the signals for the full simulation time, where the bottom 
figure is a zoom on the last second of simulation time to 
emphasize the differences in the run scenarios.  As seen in  
 

Run # Kap KBp KTHp
1 1 0 1
2 1 0.125 0
3 1 0.125 2  

Table 1. Gain Selections 
 
figure 8, there is not much difference between the three 
scenarios.  In the bottom plot of figure 8, scenario 1 is the 
middle signal, scenario 2 is the bottom signal, and 
scenario 3 is the top signal.  Scenario 3 shows the largest 
steady state oscillation. 
 

 
Figure 8. Achieved Acceleration (G’s) 

 
 Figure 9 shows the achieved angle of attack for each 
of the three scenarios.  As seen in figures 8 and 9, an 
angle of attack of 5.25 degrees results in 20 G’s of missile 
acceleration. 
 

 
Figure 9. Achieved Angle of Attack 

 
 As in the companion paper, the input energy, which 
is the energy input from the bond-graph source, is 
compared to the output energy, which is the energy 
delivered to the fin.  However, a slight variation of this 
calculation was used in this analysis.  Here, the energy 
output to each of the bond-graph resistors was subtracted 
from the input energy.  The reason this is done is to obtain 
an idea of efficiency that is similar to a thermodynamic 
idea of availability [6].  The energy lost to the resistors is 
not recoverable and is therefore not counted as usable 
energy.  The efficiency calculated in this paper then 
compares the output energy to the energy available to the 
system, thus the irreversible energy does not influence the 
efficiency calculation.   
 

 
Figure 10. Output Energy/Available Energy 
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 Figure 10 shows a plot of the energy output to the fin 
divided by the available energy.  Similar to figure 8, 
figure 10 has been divided into two subplots, where the 
top portion shows an overall view of the time history, and 
the bottom portion shows a zoom on an area of interest.  
As seen in figure 10, even the zoomed in area, which 
includes the peak value of the response at 0.275 seconds, 
shows little difference in the responses.   
 

 
Figure 11. Integ (Output Energy/Available Energy) 

 
 Figure 11 is the integral of the signal shown in figure 
10.  This integration magnifies the differences between 
the three scenarios by continually summing up the signals 
of figure 10 over time.  Run 1 is the middle signal, run2 is 
the top signal and run 3 is the bottom signal.  Although 
the overall signals look similar, the zoom on the last 
second of the analysis shows that scenario 3 is not as 
efficient as scenarios 1 and 2 since, in scenario 3, less of 
the actuator’s available energy is being used to control the 
missile.  Scenarios 1 and 2 are similar enough to conclude 
that there is no reason to search further for a more optimal 
set of controller gains, among the three, since these two 
sets deliver nearly the same amount of energy to the fin.  
The gain sets of scenarios 1 and 2 are then judged as 
‘good enough’.   
 
 This paper compared three sets of controller gains to 
determine a suitable set.  It was found that one set, 
scenario 3, was determined inefficient, where the other 
two sets are similar enough that they can be considered 
equivalent to each other.  Of course, this doesn’t tell us, 
whether there might exist other combinations of gain 
values that would be yet more efficient.  Optimization 
techniques can be used to answer that question. 
 

CONCLUSIONS 
 This paper shows, by means of an example of a two-
degree of freedom missile simulation, a method, in which 
a bond-graph actuator model can be used to determine the 
efficiency of a set of controller gains.  The bond-graph 
model maps the power flow through the actuator.  The 
modeling software monitors the power flow through 
specific bonds of the actuator model.  The energy 
delivered to the control surface is then normalized by the 
reversible energy in the system.  This normalization 
provides a calculation of system efficiency.  Based on the 
value of the efficiency signal, a set of controller gains is 
judged as inefficient or efficient enough to achieve the 
desired controller response. 
 
 This analysis provides a method for comparing the 
efficiency of controller gains that can be realized in a 
quick and affordable manner.  Often parts procurement 
becomes an issue for aging systems.  The introduction of 
new parts over time may eventually lead to the question 
of whether or not the current design is close to its 
optimum.  If the gains of an existing control scheme are in 
doubt, as to whether or not more performance might be 
obtained in their re-optimization, then this analysis 
provides a method in determining the cost benefit of a 
controller re-design.  
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