
Analysis and Simulation of Variable Structure Systems
Using Bond Graphs and Inline Integration

François E. Cellier
Institute of Computational Science

ETH Zürich
CH-8092 Zürich, Switzerland

FCellier@Inf.ETHZ.CH

Matthias Krebs
DaimlerChrysler AG

HPC G202, Mercedesstr. 143/5
D-70327 Untertürkheim, Germany

Matthias.Krebs@DaimlerChrysler.Com

Keywords: computational causality, hybrid modeling,
numerical simulation of discontinuous systems, object-
oriented modeling, switching events.

Abstract
 In this paper, a new methodology is being discussed
that aids the numerical simulation of discontinuous systems
involving switching events.

Many object-oriented models containing switches
require a change in the selection of state variables as a
function of the switch position. Such systems are classified
as variable-structure systems. Their simulation leads to a
division by zero at switching time.

Until now, such systems were usually simulated using
non-ideal switches. However, this approach invariably
leads to stiff models. Also, the simulation results obtained
in this fashion may be too inaccurate.

This paper proposes a different approach, involving
inline integration, that tackles the problem without requiring
the introduction of spurious components.

1. INTRODUCTION
 Physical systems that involve switching events
frequently cause problems in their simulation. To
demonstrate these problems, let us consider a simple
electrical circuit containing an electrical switch. The circuit
diagram is shown in figure 1.

Figure 1. Circuit diagram of switching circuit

A sinusoidal input voltage of 10V and 50Hz was
chosen. The diode causes the switching events. The circuit
was modeled in Dymola [3] using the standard electrical
library, and could be simulated without any problems. The
simulation results are depicted in figure 2.

Figure 2. Simulation results of circuit simulation

To demonstrate that switching circuits can lead to

numerical difficulties during simulation, we modified the
circuit slightly. To this end, we replaced the source resistor
by an inductor. The modified circuit is shown in figure 3.

Figure 3. Circuit diagram of modified switching circuit

This circuit could not be simulated using an ideal diode.
The simulation died with a division by zero. The reasons
for this division by zero shall become clear in due course.

These problems occur frequently in the simulation of
switching models, and therefore, Dymola replaces by

default the ideal switch by a non-ideal switch, in which the
resistance of the closed switch is being increased to 1.0e-5
Ω, whereas the conductance of the closed switch is being
increased to 1.0e-5 mho. Using the modified switch model,
the circuit can be simulated without any problems, but the
resulting circuit is very stiff, requiring a stiff system solver,
and the simulation results may be inaccurate, as shall be
demonstrated in due course.

2. BOND GRAPH MODELING OF

SWITCHING CIRCUITS
 In order to understand what went wrong in the modified
circuit, it may be advantageous to look at the bond graph
models of the two circuits. Figure 4 shows the bond graph
model of the original circuit. The circuit was modeled in
Dymola using its BondLib library [2].

Figure 4. Bond graph of switching circuit

The D-element represents an ideal diode. For enhanced
convenience and compactness of the graphical
representation, BondLib offers a number of basic bond
graph elements that are not contained in the standard set.
The ideal diode represents an internally modulated ideal
switch element.

It can be recognized that the computational causality of
the diode and of the source resistor are not completed by the
normal causality assignment, i.e., these two elements form
an algebraic loop. In BondLib, the modeler can choose
between causal and a-causal bonds. Dymola is perfectly
capable of determining the computational causality of all
equations on its own, i.e., a-causal bonds can be used
always, but the authors of this paper recommend to use
causal bonds whenever possible for increased readability
and interpretability of the bond graph.

In contrast, when the source resistor is replaced by an
inductor, as shown in figure 5, the preferred (integral)
causality of the inductor determines the causality also on the
diode.

Figure 5. Bond graph of modified switching circuit

It turns out that this was precisely the problem, as
shown below. Whenever the computational causality on a
switching element is fixed, a division by zero will occur
during the simulation. In contrast, when all switching
elements are contained within algebraic loops, the
simulation will not exhibit any such difficulties.

3. THE COMPUTATIONAL CAUSALITY

OF SWITCHING ELEMENTS
An ideal switch can be modeled as follows:

0 = sw $ f C (1 K sw)$e

where sw is a binary variable that assumes a value of 1.0,
when the switch is open, and a value of 0.0, when the switch
is closed. Notice that, in Dymola, equations are a-causal by
default. They are only causalized in the process of
compilation.

If the causality stroke of the bond to which the diode is
attached is fixed as in figure 5, the switch needs to compute
the effort, i.e.:

e = sw
sw K 1

$f

This equation can be simulated without any problems as
long as the switch is closed. Yet, a division by zero is
obtained as soon as the switch opens.

If the causality stroke of the bond to which the diode is
attached is fixed in the opposite position, the switch needs
to compute the flow, i.e.:

f = sw K 1
sw

$e

This equation can be simulated without any problems as
long as the switch is open. Yet, a division by zero is
obtained as soon as the switch closes. Hence a diode that is

attached to a causal bond will invariably lead to a division
by zero in one of the two switch positions.

If the ideal switch is replaced by a non-ideal switch
including small but non-vanishing leakage resistors, the
division by zero is replaced by a division by a small
number. Hence some variables will temporarily assume
large values. Since the analytical solution of the ideal
model does not contain any variables assuming large values,
these artificial transients will die out quickly, i.e., the
resulting model is stiff and becomes increasingly stiff, as the
leakage resistors are made smaller.

Let us now look at the equations generated from the
circuit containing a resistor instead of an inductor. We can
compute two variables at once:

U0 = 10 $ sin(100π $ t)

iR2 =

uC
R2

since uC is a state variable. Then we have an algebraic loop
in three equations and three unknowns:

0 = uR1 K R1$iD

0 = sw $ iD C (1 K sw)$uD

0 = U0 K uD K uR1 K uC

and finally, we have two more equations that can be
computed once the algebraic loop has been solved:

iC = iD K iR2

duC
dt

 =
iC
C

Using the tearing method [4], we choose iD as the tearing
variable and the switch equation as the residual equation,
and we substitute the other variables from the other two
equations. In this way, we obtain a set of causalized
equations:

iD =
(sw K 1) $ 0U0 K uC1

sw C (sw K 1)$R1

uR1 = R1$iD

uD = U0 K uR1 K uC

It can be easily verified that this set of equations can be
computed correctly in both switch positions, i.e., does not
lead to a division by zero ever. Dymola performs the
required symbolic formula transformation automatically at
compile time.

It was shown by Krebs [7] that:
• A necessary condition for simulatability of the switch

equations is that all switch elements are included in
algebraic loops.

• If the causality strokes of all bonds attached to switch
elements can be moved independently of each other,
the condition is also sufficient.

• Sometimes it is not necessary that all switches can
change their causality independently, because it
happens frequently in switching models that not all
combinations of switch positions are physically
meaningful.

4. INLINE INTEGRATION AND

COMPUTATIONAL CAUSALITY
 The preferred (integral) causality associated with
capacitors and inductors is a relic from the times, when
most continuous system models were integrated using
explicit integration algorithms. When an implicit
integration algorithm is being used, there is numerically no
difference any longer between numerical integration and
numerical differentiation [6].

There may still be a computational advantage in using
an explicit state-space form, although even that advantage
gets blurred by the use of the tearing method [4]. In the
end, the number of state variables doesn’t truly matter.
What matters is the number of tearing variables that need to
be selected to break all algebraic loops, as these will be the
iteration variables in the Newton iteration that must be
carried out at each implicit integration step.

One way to preserve the explicit equation structure as
much as possible is by the use of inline integration [5].
Inline integration inserts the implicit equation describing the
integration algorithm symbolically into the set of model
equations, thereby eliminating the strict separation between
model equations and solver equations, which again is a relic
from old times, when the symbolic formulae manipulation
capabilities built into model compilers were poor.

Let us demonstrate the approach by means of the
modified circuit while inlining the integrator used by the
inductor. Partial inlining leads to a mixed-mode integration
scheme [1].

For simplicity, we shall use the implicit backward Euler
algorithm [1] for inlining the inductor. Thus, we now have
two separate equations for the inductor:

uL = L$diD

where the first equation represents the model equation, and
the second equation is the inlined solver equation. iL and diL
are now two separate independent algebraic variables, and h

iD = pre0 iD 1 C h $ di D

is the integration step size. We added one more equation
(the solver equation) and one more unknown (iD) to the set
of equations.

Hence we now have an algebraic loop in four equations
and four unknowns:

0 = sw $ iD C (1 K sw)$uD

This time, we choose again the switch equation as the

residual equation, but now, we select uD as the tearing
variable, since we prefer to compute iD from the solver
equation to avoid an unnecessary division by h.

Solving the residual equation for the tearing variable,
we obtain the following replacement equation:

which is again valid in both switch positions. Once we have
computed uD, we can compute the other three variables from
the original equations:

uL = U0 K uD K uC

diD =

uL
L

The bond graph helps us identify, which storage
elements fix the causality at any of the switch elements.
The corresponding integrators will need to be inlined in
order to remove the constraint on the causality at the switch.
Hence the bond graph tells us immediately, which of the
integrators need to be inlined.

If the causality constraint of a switch cannot be
removed, because the causality is fixed by a source element
rather than by a storage element, this means that the model
is non-physical. In that case, we either short-circuit a
voltage source or disconnect a current source by throwing
the switch. Clearly, this makes no physical sense.

5. IMPLEMENTATION IN DYMOLA

Dymola offers inline integration as one of its features.
Unfortunately, the implementation, as it is currently being
offered, does not solve the problem for several reasons.

1. An earlier version of Dymola offered mixed-mode

simulation as an option. The modeler could choose
which integrators should be inlined. This feature was
removed again by Dynasim, as the company decided
that the feature was too difficult to use. Hence in the
current version, either all integrators are being inlined
or none.

2. Even if both integrators are being inlined using

Dymola´s “inline” compiler switch, the division by
zero remains. This is due to the way, how the inline
algorithm has been implemented in Dymola. Whereas
Dymola knows that switch equations that appear
inside an algebraic loop must be chosen as residual
equations, it does not do so in the context of inline
integration. It still chooses the solver equation as the
residual equation, and thereby, the division of zero in
the switch equation remains, because all loop
equations, except for residual equations, retain fixed
causality.

3. Not all integration algorithms offered by Dymola were

implemented to deal with discrete events correctly.
The ones that do are DASSL and LSODAR. Yet,
neither of those two algorithms is currently available
as an inlined algorithm. Therefore, inline integration,
as currently implemented in Dymola, cannot be used
for simulating switching circuits.

For these reasons, the inlining algorithm had to be
implemented manually, which was problematic also, as
shall be shown in due course.

Figure 6 depicts the circuit with the inductor once
more, this time using a special model, I2, implementing the
inlined inductance element. In this model, the inlining
algorithm is programmed manually, rather than relying on
the inlining algorithm offered by Dymola through a
compiler switch.

Figure 6. Bond graph of inlined switching circuit

0 = U 0 K u D K u L K u C

0 = u L K L $ diD

0 = i D K pre 0 i D 1 K h $ di D

u D =
sw

(sw K 1) $ L K sw $ h
$ [L $ pre (i D) C h $ (uC K U0)]

i D = pre 0 i D 1 C h $ di D

The model of the inlined inductance element is shown
in figure 7.

Figure 7. Model of inlined inductance element

In this model, Dymola´s built-in pre() operator could

not be used, because the solver equation forms part of the
algebraic loop, and Dymola doesn’t currently support the
inclusion of discrete variables in algebraic loops. Hence all
loop variables had to be made continuous variables.

Furthermore, the only one of its internal variables that
Dymola propagates out to the modeler is the variable Time.
The modeler cannot make use of the internal step size that
Dymola employs. Thus, the inlined inductor was
implemented using a fixed-step algorithm, because
otherwise, its step-size control algorithm would also have to
be user implemented.

Finally, the algorithm is not aware when an event is
taking place. Hence the algorithm will integrate blissfully
across events, which is numerically problematic.

6. SWITCHING EVENTS AND

SIMULATION ACCURACY
To check the accuracy of the simulation results, we also

modeled the circuit using a regular inductor and a leaking
diode, using the method that is advertised in Dymola. The
circuit is shown in Figure 8.

The leaking diode uses a default value of R0 = 1e-5 Ω
for the resistance value of the closed switch, and one of G0
= 1e-5 mho for the conductance of the open switch.

Figure 9 compares the voltage across the capacitor as a
function of time using the inlined switching circuit of Figure
6 with the leaking switching circuit of Figure 8.

Figure 8. Bond graph of circuit with leaking diode

Figure 9. Comparison of simulation results

There is a large difference between the two curves. The

curve with the larger oscillation was produced by the
leaking diode circuit, whereas the curve with the smaller
oscillation was produced by the inlined circuit.

In order to judge the quality of the results obtained, the
leakage resistance, R0, and the leakage conductance, G0,
were reduced to 1e-10 Ω and 1e-10 mho, respectively.
Now, the simulation results of the leaking circuit are no
longer visibly distinguishable from those of the inlined
circuit. Hence the inlined solution represents more correctly
the behavior of the ideal switching circuit.

Although the default leakage resistors of the diode
model offered in Dymola´s standard electrical library of 1e-
5 Ω and 1e-5 mho, respectively, seem to be very small, the
resulting simulation results are very different from those of
the ideal switching circuit. Using fudge parameters is
clearly a dubious undertaking, as they burden the modeler
with selecting appropriate values of parameters, for which
no physical interpretation can be offered. Since most
modelers do not understand the significance of these
parameters, they will almost invariably rely of the default
values provided in the standard library, and thereby may
receive vastly incorrect simulation results.

7. CONCLUSIONS
In this paper, we have introduced a new method for

dealing symbolically and numerically with variable
structure systems, i.e., with systems that change their state
variables at event times.

Such systems are encountered frequently in practice,
especially in the mechanical domain. A typical example
might be the shift-gear box of a car or the ejection seat in a
military aircraft [8].

The variable structure system was analyzed using the
bond graph approach, and the causality constraint of storage
elements that determine the causality of neighboring
switches was removed using the inlining technique [5].

The new algorithm was implemented in Dymola, and it
was shown that avoiding the fudge parameter approach of
leaking diodes helps in avoiding numerical simulation
errors.

ACKNOWLEGMENTS

The algorithm presented in this paper was developed by
Matthias Krebs during his exchange student visit with the
University of Arizona. The exchange visit was financially
supported in part by the DAAD (Deutscher Akademischer
Austauschdienst) under the program IAS (Integriertes
Auslandstudium), in part by Moving Pictures, Inc. on a
research grant, and in its final part by a teching assistantship
with Dr. Larry C. Schooley for the “ECE220 Basic Circuits”
course. These financial contributions are gratefully
acknowledged.

The authors also wish to express their gratitude to Dirk
Zimmer, who helped with the implementation and
debugging of the inlined inductance model in Dymola.

REFERENCES
[1] Cellier, F.E. and E. Kofman (2006), Continuous System
Simulation, Springer-Verlag, New York.

[2] Cellier, F.E. and R. McBride (2003), “Object-oriented
Modeling of Complex Physical Systems Using the Dymola Bond-
graph Library,” Proc. ICBGM’03, 6th SCS Intl. Conf. on Bond
Graph Modeling and Simulation, Orlando, Florida, pp. 157-162.

[3] Dynasim AB (2006), Dymola Users’ Manual, VersiTon 6.0,
Lund, Sweden.

[4] Elmqvist H. and M. Otter (1994), “Methods for Tearing
Systems of Equations in Object-oriented Modeling,” Proc.
ESM’94, SCS European Simulation MultiConference, Barcelona,
Spain, pp. 326-332.

[5] Elmqvist, H., M. Otter, and F.E. Cellier (1995), “Inline
Integration: A New Mixed Symbolic/Numeric Approach for
Solving Differential-Algebraic Equation Systems,” Proc. ESM’95,
SCS European Simulation MultiConference, Prague, Czech
Republic, pp.xxiii-xxxiv.

[6] Hu, L.A. (1991), DBDF: An Implicit Numerical
Differentiation Algorithm for Integrated Circuit Simulation, MS
Thesis, Dept. of Electr. & Comp. Engr., University of Arizona,
Tucson, AZ.

[7] Krebs, M. (1997), Modeling of Conditional Index Changes,
MS Thesis, Dept. of Electr. & Comp. Engr., University of Arizona,
Tucson, AZ.

[8] Shiva, A. (2004), Modeling Switching Networks Using Bond
Graph Technique, MS Thesis, Dept. of Aerospace & Mechanical
Engr., University of Arizona, Tucson, AZ.

BIOGRAPHIES

François E. Cellier received his BS
degree in electrical engineering in
1972, his MS degree in automatic
control in 1973, and his PhD degree
in technical sciences in 1979, all from
the Swiss Federal Institute of
Technology (ETH) Zurich. Dr. Cellier
worked at the University of Arizona
as professor of Electrical and
Computer Engineering from 1984
until 2005. He recently returned to his

home country of Switzerland. Dr. Cellier's main scientific
interests concern modeling and simulation methodologies,
and the design of advanced software systems for simulation,
computer-aided modeling, and computer-aided design. Dr.
Cellier has authored or co-authored more than 200 technical
publications, and he has edited several books. He published
a textbook on Continuous System Modeling in 1991 and a
second textbook on Continuous System Simulation in 2006,
both with Springer-Verlag, New York. He served as general
chair or program chair of many international conferences,
and served 2004-2006 as president of the Society for
Modeling and Simulation International.

Matthias Krebs received his MS
degree in Electrical and Computer
Engineering in 1997 from the
University of Arizona and his
“Diplomingenieur” degree in
“Technische Kybernetik” in 1998
from the University of Stuttgart. Since
1998 he works in the research and
development departments of
DaimlerChrysler AG. Mr.Krebs’s

research interests are focused on control, modeling,
simulation, and identification applied to automobiles. His
projects include Fuel Assistant for commercial vehicles,
Predictive Cruise Control (PCC), series development of the
Adaptive Cruise Control (ACC) system “Distronic,” and
identification of driver properties, such as driver workload,
drowsiness or driver awareness.

