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Abstract 
This paper presents a new supplemental tool for bond-

graphic modeling, called the impulse-bond graph (IBG). 
These graphs are an extension of the classic bondgraphic 
notation and provide a proper way for describing discrete 
processes in physical systems. The Impulse-bond graphs are 
especially useful for modeling collision and transition proc-
esses in mechanical systems, but they can be applied to 
other domains as well. Modeling a system with the aid of 
IBGs is intuitive, since the IBG can be derived from the 
corresponding regular bond graph (BG) by applying a small 
number of fixed conversion rules. Hence, an experienced 
modeler can use his or her knowledge about classic bond-
graphic models of continuous physical systems to create a 
corresponding IBG. 

 

1. MOTIVATION 
Although mechanical systems can be completely de-

scribed by continuous processes, it is not always convenient 
to model everything in this fashion. Certain processes can 
be simulated more efficiently and more accurately by the 
use of discrete event modeling. The most obvious applica-
tion is the modeling of elastic or semi-elastic collisions be-
tween two objects. Such collisions lead to an apparently 
sudden change of the velocity difference:  

 

Dvpost   =   K3$Dvpre  
 

 

Of course, it is possible to model hard impacts also by 
purely continuous models  [10], but this leads invariably to a 
very stiff model, and such models are difficult to numeri-
cally integrate with high precision. Such models can only be 
simulated with a high computational effort, and yet, the pre-
cision of the simulation results may nevertheless be unac-
ceptably poor. 

The need for modeling sudden velocity changes can 
also occur in seemingly soft and continuous processes. The 

transition of a sliding object from slippage to ideal adhesion 
is such an example: A constant friction force leads to the 
reduction of the slip velocity.  When the corresponding inert 
body element has finally come to rest, the constraint equa-
tion (v = 0) ensures adhesion. 

This is a purely continuous process, but such a system 
becomes unfortunately very stiff for small sliding velocities, 
and the velocity vector of the body is very unlikely to be-
come zero for numerical reasons. Hence the modeler is ad-
vised to define a range of adhesion for small sliding veloci-
ties. Whenever the body element enters this region, the con-
straint equation of the adhesion is activated. The subtle dif-
ference is now that the added constraint equation cannot be 
expected to be satisfied at the time of its introduction. The 
constraint equation has to be enforced. 

In general, one can state that sudden changes of veloc-
ity appear whenever a new constraint equation needs to be 
enforced at the level of velocity.1 Sometimes this constraint 
equation is only valid for a certain moment (as in a colli-
sion), whereas in other examples, the constraint is more 
durable and changes the dynamic structure of the model.  

Various methods have been developed to treat such dis-
continuities in a bondgraphic modeling framework. Ideal 
bondgraphic switches [12] have been developed for this 
purpose and have been successfully applied to model me-
chanical collisions [5, 8, 9]. Alternatively one can use 
modulated transformers in combination with sinks [1]. 

Lorenz [8] pointed out rightfully that also the transition 
processes between the different modes must be correctly 
modeled, since the enforcement of a new constraint has to 
be defined in a physically correct way. In the situation of 
complex mechanical systems, this can be a non-trivial task 
that requires a large system of linear equations to be solved.   

Such a transition can be modeled in an implicit fashion 
by the propagation of Dirac pulses through the continuous 
differential equations. Another method is that the pulse val-
ues are calculated from the model equations of the continu-
ous bond graph model [2]. From a physical perspective, one 
can derive the impulse equations by applying the corre-

                                                      
1 The enforcement of such a constraint is often the direct conse-
quence of the introduction of a positional constraint. 



sponding conservation laws [8]. Sadly, these methods are all 
non-graphical and are therefore only loosely connected to 
the original bond graph.  

Contrary to these approaches, we present a method that 
enables the modeler to represent also the transition proc-
esses in a bondgraphic framework. Obviously, it is not pos-
sible to use standard bonds for this purpose since they are 
limited to continuous processes. Hence we developed a new 
variant of bonds that is closely related to classic bonds and 
that supports the discrete modeling of fast transition proc-
esses: Impulse Bond Graphs.   

These graphs are based upon the observation that a 
sudden change of a bondgraphic variable in a storage ele-
ment is accompanied by an impulse (integral amount) of its 
dual counterpart: In a mechanical system, a sudden change 
of velocity goes along with an impulse of force that assures 
the conservation of momentum. In an electrical capacitor, a 
sudden change of voltage goes along with an impulse of 
current that assures the conservation of charge.  

Further on, a method will be presented that shows how 
to derive the correct impulse-bond graph out of an existing 
continuous bond graph model. This allows a modeler to 
automatically transfer the knowledge contained in the regu-
lar BG to the IBG. 
 
2. DEFINITION OF IMPULSE BOND 

Standard bond graphs are not able to model discrete 
events. A bond graph describes the continuous flow of 
power; yet, a force impulse goes along with sudden ex-
change of energy in a storage element. However, this trans-
mission of energy nevertheless underlies the rules of ther-
modynamics and describes a physical process. To handle 
such energy transmissions, a new BG variant is introduced: 
the impulse-bond graph (IBG). An impulse-bond is repre-
sented by a two-headed harpoon, as shown in figure 1. It 
carries an effort and a flow variable. Yet the product of 
these two adjugate variables represents not power any more; 
it represents an amount of work.2 This work is then trans-
ferred between the vertex elements at a single point of time.  
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Figure 1. The ordinary impulse bond and its multi-bond 
graph equivalent 
 

                                                      
2 Strictly speaking, impulse-bond graphs are pseudo-bond graphs, 
but they nevertheless provide a representation that observes the 
energy conservation laws.  

The adjugate variables of an impulse bond are closely 
related to the classic effort and flow variables. The work, W, 
is defined to be the integral of power, P. This integral is 
then stepwise transformed into a product of two variables: 

W  = lim
a / 0

 ⌠⌡0

a
P  dt  = lim

a / 0
 ⌠⌡0

a
e $ f dt  

 
where a represents the width of the impulse. The flow vari-
able f is supposed to change discretely. The impulse of ef-
fort is then: 

p = ⌠⌡0

a
e dt 

 

 
It is a necessary prerequisite for any kind of impulse 

modeling that the shape of the integral curve e is completely 
irrelevant. Hence we can assume without further loss of 
generality that e is: e= p/a.  

W  = lim
a / 0

 p
a
⌠
⌡0

a
f  dt  

 

 
The flow is supposed to be linearly changing from a 

starting value fpre to a final value fpost. This statement re-
duces the generality of IBGs to linear storage elements. 

 

W  = lim
a / 0

 p
a

 ⌠⌡0

a
fpreC

t
a
$ 0 fpost K fpre1 dt 

 

W  = lim
a / 0

 p
a
$ a $

fpreC fpost
2

 

W = p $ fm
 

 
whereby fm denotes the mean value of f: fm = (fpre+ fpost)/2. 
For example, a mechanical impulse bond carries the force 
impulse F (or M) as effort variable and the mean velocity vm 
= (vpre+vpost)/2 as flow variable. The product of the redefined 
effort-flow pair now represents work.  

This type of impulse bond is more precisely called ef-
fort impulse bond. Of course, there also exists a dual vari-
ant: The flow impulse bond. The mean effort and the im-
pulse of flow form the corresponding pair of adjugate vari-
ables. The two variants can be distinguished by noting down 
the effort-flow pair (cf. figure 2). However, most modeling 
tasks require only one kind of impulse bonds. It is therefore 
usually sufficient to determine the used variant at a single 
point in the graph. 
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Figure 2. Different kinds of impulse bonds 



3. IMPULSE-BOND GRAPHS IN ME-
CHANICAL SYSTEMS 
Impulse-bond graphs are a supplemental tool. They are 

mostly associated with their corresponding continuous mod-
els. Hence the most convenient way to create an impulse-
bond graph is to derive it from a regular bond graph.  This 
derivation process mostly consists of replacing certain ver-
tex elements in the bond graph by their impulse-bond graph 
equivalents. Certain vertex elements are thrown out alto-
gether, and the resulting impulse-bond graph assumes there-
fore a simpler structure than the original regular bond graph.  
 

 
Figure 3. Two colliding spheres, both are attached to differ-
ent devices 
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Figure 4. Bond graph model of a planar pendulum and a 
spring-damper system 

To study this issue in more detail, let us consider the 
example presented in figure 3, showing a pendulum collid-
ing with a body that is attached to a spring-damper system. 
Figure 4 presents the corresponding continuous bond graph. 
The pendulum is modeled in the upper half of the bond 
graph, whereas the spring-damper system is modeled in the 
lower half.  The positional difference is measured at the 0-
junction between the two sub-bond graphs using a Dq sen-
sor element. The collision block triggers an event whenever 
the positional difference crosses through zero. The resulting 
collision is defined to be completely elastic and is modeled 
by the impulse-bond graph shown in figure 5. 
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Figure 5: Corresponding impulse-bond graph 

 

This impulse-bond graph was derived from the con-
tinuous model. The following replacement rules3 were ap-
plied: 

• Effort sources, capacitive and resistive elements do nei-
ther cause nor transmit any effort impulse and can 
therefore be neglected if they are connected to a 1-
junction. If they are connected to a 0-junction, they 
have to be replaced by a source of zero effort. 

•  All sensor elements can be removed. 
•  Sources of flow determine the flow variable and conse-

quently also the average flow variable fm. Therefore 
these elements remain unchanged. 

                                                      
3 These rules apply for effort-impulse bond graphs. The rules for 
flow-impulse bond graphs are very similar. One simply substitutes 
in the replacement rules each bond graph element with its dual 
counterpart. 



• Linear transformers or gyrators also project the impulse 
variable and the average by the same linear factor. 
Thus, also these elements remain unchanged. 

•  All junctions remain. 
• All modulating signals must be replaced by a constant 

signal for the time of the impulse. If the value of a sig-
nal isn’t constant during the impulse, the impulse-bond 
graph is in general not valid. 

• Inductances or inductive fields are still denoted by the 
same symbol, but they represent now different equa-
tions. A linear inductance, I, is now represented by the 
algebraic equation:   

 
p = 2·I·(fm - fpre)  

  
The actual impulse has to be modeled by a special ele-

ment that is denoted here by the symbol ISw. This is a 
mnemonic for the term “impulse switch.”  Like a switch, the 
element changes its equation at the time of an event. Unlike 
a normal bond graph switch, these switch elements often 
dissipate and sometimes generate energy. The reflection law 
for an elastic impact states that the mean of the velocity 
differences before and after the impact is zero. Hence, the 
ISw element for a fully elastic impact is defined by the fol-
lowing equations: 

 

fm = 0:  at the time of collision. 
p = 0: otherwise. 
 

This switch does neither dissipate nor generate any en-
ergy since the product p·fm is always zero. The resulting 
impulse-bond graph (simplified by the removal of superflu-
ous junctions) represents a linear system of equations and 
contains no differential equations any longer. The linearity 
of the storage and transformer elements is of importance, 
because otherwise the product of effort and flow does not 
represent the correct amount of work, and the IBG might be 
invalid. The assumptions that were made in the definition of 
impulse-bondgraphic effort and flow restrict the generality 
of IBGs to linear elements.  Fortunately, the underlying im-
pulse-bond graphs of all mechanical models are linear. This 
is because the inertia is always linear (in Newtonian me-
chanics), and all potentially non-linear elements like damp-
ers, springs, capacitances and other force generating ele-
ments (gravitational force) disappear. The remaining non-
linear transformers change into linear ones, because the 
modulation by a bondgraphic position is constant during the 
time of the impact.  Hence, there exists a valid impulse-
bond graph for every mechanical system. 

A second example shows the application of an impulse-
bond graph to model the transition between rolling with 
slippage and ideal rolling. 
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Figure 6. Bond graph of a rolling marble 

 
The multi-bond graph of figure 6 presents a simplified 

model of a rolling marble that is defined to be rolling on the 
xy-plane.  Its inertia tensor is supposed to be a simple scalar.  
This assumption makes it feasible to resolve not only the 
translational but also the rotational variables with respect to 
the inertial system. It also assures that no gyroscopic effect 
will appear. The rotational motion is transformed into the 
corresponding translational motion at the virtual point of 
contact by a linear transformer TF. The difference between 
the contact point velocity and the center’s velocity is de-
rived at the 0-junction and determines the slippage.  The 
resistance, R, models the non-linear friction force by: 
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Obviously, these equations are very stiff for small val-
ues of fx, fy. Hence the flow sensor, Df,  triggers an event 
when the slippage becomes too small and reaches a prede-
fined range of adhesion. The event causes a transition to 
ideal rolling. This transition is modeled by the correspond-
ing impulse-bond graph shown in figure 7. 
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Figure 7. Impulse-bond graph of a rolling marble 
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The impulse switch, ISw, dissipates friction energy and 
models a completely non-elastic impact: 
 

fm = fpre/2:  at the time of transition. 
p = 0:  otherwise. 

 
It follows that the slippage fpost after the transition is 

zero, since fm = fpre/2 + fpost/2. After the transition, the simu-
lation can proceed with a modified variant of the continuous 
model, where the resistance has been removed. 

Let us conclude this chapter with a more complex ex-
ample concerning the model of a piston-engine (cf. figure 
8), where the powering explosions within the cylinder are 
modeled by force impulses. This is an interesting example, 
because it includes a kinematic loop. The whole system con-
sists of four joints (three revolute joints and one prismatic 
joint), but exhibits a single degree of freedom only.  

 

 
Figure 8. A simple piston-engine 

 
The model is created by the usage of planar mechanical 

multi-bonds. The composition of these multi-bonds is pre-
sented in figure 9. Since the rotational inertia J is a constant 
scalar for all possible orientations, all bond graph variables 
can be conveniently resolved with respect to the inertial 
system. The positional dependencies are modeled by a-
causal signals. This methodology was previously introduced 
and successfully implemented in Dymola [4] by means of 
the MultiBondLib  [13,  14]. 
 

 
Figure 9. Composition of a planar mechanical multi-bond 

 
Figure 13 presents the continuous model of the piston 

engine. To give the bond graph a consistent look, regular 
bonds are also represented as multi-bonds with a cardinality 
of one. The crankshaft is modeled on the left hand side, and 
the piston is modeled on the right hand side. Both elements 
define inertia. In between, the model of the connecting rod 

is placed together with its two revolute joints. The weight of 
the connecting rod is neglected. The sensor of the piston’s 
position triggers an ignition event, when the piston is on its 
way back. The capacity models the elasticity of the fuel gas.  

The corresponding impulse-bond graph of figure 14 re-
sults from applying the corresponding derivation rules to the 
continuous multi-bond graph. All non-linearities of the 
original model disappear. The ISw element models the in-
troduction of the explosion energy into the mechanical sys-
tem: 
 

p · fm = Eexplosion:  at the time of ignition. 
p = 0: otherwise. 

 
Impulses on kinematic loops usually lead to large sys-

tems of linear equations, but in this specific case, the ISw 
element introduces a non-linear (quadratic) equation4 into 
the system. Hence a non-linear solver is required.   
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Figure 10. Angular velocity of the crankshaft - the simula-
tion was performed in Dymola 

 
The equations of the two bond graph models together 

form a hybrid system. The resulting simulation leads to the 
plot shown in figure 10 that depicts the angular velocity of 
the crankshaft as a function of time. 
 
4. OTHER DOMAINS 

As bond graphs serve as a domain-independent tool for 
modeling physical systems, impulse-bond graphs do as well. 
Yet not all possible impulse bonds are meaningful. Table 1 
lists a number of meaningful variants. 

 

                                                      
4 The quadratic equation has two solutions that are both physically 
correct. A restriction on fm by the absolute function is helpful to 
determine, which of these two solutions is found by the non-linear 
equation solver. For example: p · |fm| = Eexplosion 



Table 1. Effort-flow pairs of impulse-bond graphs for vari-
ous application domains 

domain effort flow 
translational force impulse 

F or M 
m. velocity 

vm 
rotational torque  impulse 

T 
m. ang. velocity 

ωm 
electrical m. voltage  

um 
charge 

Q 
electrical magnetic flux 

Φ 
m. current  

im 
hydraulic/ 
acoustic 

pressure impulse 
P or Γ 

m. vol. flow 
qm 

hydraulic/ 
acoustic 

av. pressure  
pm 

volume 
V 

chemical m. ch. potential 
μm 

moles 
N 

thermo-
dynamic 

m. temperature 
Tm 

entropy 
S 

 
Mostly, the need for impulse modeling in other do-

mains results from an interaction with the mechanical do-
main. A jack-hammer with an integrated pressure pump (cf. 
figure 11) is such an example.  The reflection of the actual 
hammer leads to an impulse in the pneumatic domain. How-
ever the resulting bond graph model would be fairly poor, 
since the actual shockwave that is reflected to the piston of 
the pressure pump cannot be modeled accurately using bond 
graphs. This is a general problem that occurs when partial 
differential equations are discretized (compartmentalized) 
for the purpose of approximating them by a bond graph.  

 

 
Figure 11. A jack-hammer with integrated pressure pump 

Pure non-mechanical examples of impulses are hard to 
find. Such models usually describe a rapid balance or fast 
diffusion processes. Completely inelastic impacts are a me-
chanical analogon for this. The sudden charge exchange 
between two resistor-less connected ideal capacitors serves 
as an academic example and has been examined also by [1, 
8]. 
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Figure 12. Rapid exchange of charge between two capaci-
tors  
 
5. LIMITATIONS 

Impulse-bond graphs consist of storage elements, trans-
formers (or gyrators), and junctions. Whereas these IBG-
elements are always linear in mechanical systems, this is not 
necessarily true for other domains. Hence this section dis-
cusses the occurrence of non-linearities in these elements 
and how this impairs the validity of the impulse-bond graph. 
In practice, non-linear IBGs are rare, but it is important to 
be aware of the theoretical limitations. 

Transformers and gyrators have to be linear. Otherwise 
an impulse modeling is meaningless. The original continu-
ous transformer must transform any curve x(t) to y(t) in such 
a way that there is a direct transformation for ∫x(t) to ∫y(t) 
that holds for all possible shapes of x(t). Without further 
proof, this implies that the transformation must be linear at 
the moment of the impulse.5 The impulse transformation 
represents then consequently the same linear transformation. 

Modeling impulses can be meaningful also for non-
linear storage elements. For example, the capacitance, C1, in 
figure 12 might have a non-linear characteristic. The kind of 

                                                      
5 Remark: For every non-linear transformation, a pair of curves 
(x1(t), x2(t)) can be found that share the same integral value but are 
transformed into a pair (y1(t), y2(t)) that differs in its integral val-
ues. 



non-linearity is indeed restricted: The non-linear differential 
equation for the original storage element: 

 

de/dt = g(f) 
 

must be integrable into the form: 
 

e = h(q) 
 

where q = ∫ f dt, and h is a non-linear function of q that must 
be fully contained in the first and third quadrant of the (e,q)-
plane. 

Unfortunately, such non-linearities violate the assump-
tions made in the definition of the impulse-bondgraphic 
effort and flow variables.6 Hence the product of effort and 
flow does not represent the correct amount of work any 
longer. This reduces drastically the usability of IBGs in such 
cases. 

Junctions define by definition only linear equations. 
However, their semantic implications might be impaired by 
non-linearities that occur from non-linear storage elements. 
If the product of effort and flow does not represent the cor-
rect amount of work, the behavior of a junction cannot be 
expected to be neutral with respect to energy.  

The equations of the ISw elements define the discrete 
jump in the system. In principle, these equations can be cho-
sen arbitrarily. A non-linear equation for the ISw element 
was presented in the example of the piston-engine discussed 
in this paper. 

 

6. CONCLUSIONS 
Concerning the modeling of complex continuous physi-

cal systems, bond graphs offer a suitable balance between 
specificity and generality  [7]. The interdisciplinary concept 
of energy and power flows creates a semantic level that 
helps the modeler avoid many types of modeling errors and 
to find an adequate solution for his or her task. If one wishes 
to maintain this semantic layer for the modeling of discrete 
transition processes in physical systems, impulse-bond 
graphs provide an adequate extension. In combination with 
classic continuous bond graphs they form a solid foundation 
for the modeling of hybrid systems. 

The derivation rules that describe the construction of an 
IBG out of a continuous model allow an inheritance of 
knowledge. Experienced modelers should therefore be able 

                                                      
6 One might be able to modify the original definition for certain 
applications. This might offer an interesting approach to finding a 
bond graph solution to the modeling of relativistic impulses (cf. 
 [7]). 

to quickly acquaint themselves with this new modeling 
paradigm.  

Whereas IBGs represent a good method for sketching a 
transition model in a graphical way, their implementation in 
a graphical modeling environment faces a number of practi-
cal difficulties and hence has not been attempted. The prob-
lem is not the actual simulation itself, as there exist a num-
ber of simulation systems that are capable of performing 
hybrid simulations. The problem consists in the need for an 
advanced graphical modeling environment. 

IBGs go mostly along with their continuous bond-
graphic counterparts, and information is needed from the 
regular bond graph that concerns the state right before the 
discrete event. So the pair of graphs is closely interrelated, 
and often the simultaneous graphical displays of these two 
bondgraphic models obstruct each other, which makes them 
hard to read. A graphical modeling environment that in-
cludes multiple drawing layers would be helpful, but is cur-
rently not supported in any simulation system known to us. 

Nevertheless, IBGs were successfully applied during 
the development of the MultiBondLib  [13, 14]. The Multi-
BondLib is a library for the modeling and simulation of 
multi-bond graphs. It includes also mechanical sub-libraries 
that consist of an extensive set of wrapped bondgraphic sub-
models. Those continuous models were extended to hybrid 
models by means of equations that were derived and veri-
fied by the use of IBGs.  
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