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ABSTRACT

Since their official birth on April 24, 1959, bondgraphs evolved to become one of the most effective and most
elegant tools for modeling system dynamics. The unifying attitude of bondgraphs, or BG's for short, towards
systems, enables modelbuilders to connect system components from different physical domains using the same set
of bondgraphic elements. It was this unifying attitude that furnished the impetus for this work that investigates
the possibility of applying BG's to Einstein's standard theories of relativity; thus extending the BG approach of
modeling to relativistic dynamics. To this end a new formulation of the bondgraphic power postulate (that is built
using four-vector efforts and flows) is developed. Then special relativistic (SR) particle-mechanics and
electrodynamics (via a one particle system) are investigated, and the bondgraphic interpretation for both is also
provided. Finally we provide Einstein's gravitational field equations, a bondgraphic interpretation of them, and
the energetic problems facing standard general relativity (GR).
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1 INTRODUCTION

Since their official birth on April 24, 1959 (26),
bondgraphs evolved to become one of the most
powerful designing, modeling and simulation tools.
Their application to a growing diversified
constellation of fields (8) is proving time and again
their genuine contributions. From a variety of
versions (9, S, 29, & 6) that appeared after the
classical work by their inventor Henry M. Paynter
(25), this work adopts the versions introduced by
Breedveld (7), and Fahrenthold and Wargo (16).
We still diverge from the tensorial treatment of
Fahrenthold and Wargo, in the sense that we avail
ourselves of the standard component notation, and
the range and summation conventions of tensor
calculus (30), that become a necessity for treating
general tensors (21, 22, 14 & 4). (Note that the
treatment of Fahrenthold and Wargo was directed
towards Cartesian tensors only.)

In this paper we begin with the SR energy
equation for a one-particle system. Then we expose
the consequences of assuming a constant mass on
the formulation of the SR energy equation. We also
provide a BG interpretation for the Lorentz force
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bondgraphs, coenergy, contravariance, covariance, electromagnetic field-strength tensor, energy,
energy-momentum tensor, Galilean transformations, general relativity, Lorentz transformations, the principle of

equation in its covariant form. Finally we
investigate the meaning of Einstein's gravitational
field equations from a bondgraphic perspective.
(For a detailed treatment of the subjects presented
in this paper see [17]).

2 Einstein's SR Energy Equation

In its contravariant form, the four-vector velocity is
given by 23 & 2):
1
y 2
v

a a
W e &t _&a_
V= % and y= (l—-vz)_l/z. The length of

dr  dt dr
where
this vector is given by
1b Vv, =-1.

Note that the equations are written in natural units
for which ¢=1. (In equation [la], = is the so-
called proper time.) Similarly, the contravariant
four-vector momentum is given by:

2 P"=moV“=mor[j



Lol ]

where m (= m, ) is known as the relativistic mass.

For a one-particle system we can proceed to define
a four-vector force given by

a (24 o
R . L .
dr dr dt dr
i yimg| | F°
% 1
A F
=myy| d(yv) |= =
0 {—-—-dt ] rfs F?
rf3 F?
where fsd—(—%—‘g.
dt

Now differentiating (1b) with respect to 7, (and
using direct notation ) we get
4 V.-d—V-=(mo)"‘V.F=o.

dr

Thus the four-velocity and four-force are
orthogonal. Substituting for V and Fin (4) we get

Sa AveE-im)=y(vef-m)=0
5b ~vf=m

(Note that we have divided by »* .) And since, by

definition, the left hand side of (5b) is the rate of
work, we can obtain the kinetic energy, T as

T= f mdt = m+ constant .

For v=0, T =0 and we get

6 T=m-my=E-m,,,
where
7 E=ym, ,

is the Einstein energy equation for the system, and
E is the total energy associated with it (23). Please
not that this result can be modeled by bondgraphs
with velocity dependent inertance.

3 THE POWER POSTULATE IN
BONDGRAFHS

In this section we consider what is known in
bondgraphs as the power postulate (7, 11 & 20).
This postulate gives the power for any system as
follows:

8 Hzg-E—:eaf“
dr )
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10 E:Tzlmov.v=-l—mov :
. 2 2

where e, is the effort tensor ( ¢.g. the four-vector
force for a one-particle system in classical
mechanics ) and f%is the flow tensor ( e.g. the
four-vector velocity of the one-particle system. )
Note that since the right-hand side of equation (8)
is a tensor of valence zero, the lefi-hand side must
also be a tensor of valence zero. (The new symbol
I1, is reserved for tensorial power.) Applied to our
previous example, assuming non-refativistic flow
( velocity ), we can use Newton's second law to
obtain
dE

—d—t—zmov,v .

Thus the energy is given by

2

In order to extend this formalism to SRT we need
first to observe the following discrepancies between
SR mechanics and classical mechanics. In the SR
case we model the relativistic effects through a
modulation of the mass of the particle; thus defining
the relativistic mass m. In the classical case such
effects would rather be obtained by attributing the
modulation to the flow ( velocity ) and maintaining
the parameter character of the mass. That is to say
we can model the relativistic effects in the one-
particle system as shown in Fig. 1,

sEr: 2
./
e e'
;]MTFq Ear
AN,

D

Fig.1: BG Representation for a Relativistic Particile.
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where M'=myl, ,

( note that I, is a 4 x 4 identity matrix) and

r=y,

e=e,=F, = ;Pa,
e=e,=ely=y"'F,=F,
f1=f/ll :V(Z,

F=re=riy=rve.



Substituting (1a) and (3) in (8) gives the tensorial
power as
H___e&f;a =F —lVa

a

11 :}’_177aﬂFﬂVa
=—yymy+yv.f=0

( compare with equation [5b] ) which can be re-
written as

ei;fyi — };IVIFI + 7—lV2F2 + }’_1V3F3
12 dE .
=G =

(Note that the left-hand side of equation [12] is not
a tensor with respect to orthogonal [Lorentz]
transformations. Thus the energy is not a tensor
either. Fortunately, the power postulate still holds.
One can also consider equation [12] as a tensor
equation applicable only to rectangular, stationary
axes in spacetime.) and since

y=(-1/2)A-v*)??(=2v).v
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= vy
we have

dE 4 -
14 —=MyY V.V

p 0V

4 THE SRQ ENERGY EQUATION

Integrating (14) or (12), we get

15 E=(1/2)y’my + E,

(compare with [7]) where E, vis the constant of
integration. For any system with m; =0, the total

energy E must be equal to zero ( unless |v|=1).

Thus the constant of integration must be zero for
zero mass. Still, in order to align this model with
the Einsteinian one, we can use the rest energy
formula as follows. For zero velocity, equation (15)
becomes

16 Eres, = (1/2)"10 +E0 .

Now, using Einstein's formula E,,, =m,, we can
take the constant of integration to be equal to
Ey=(1/2)m, .

The total energy can now be written as

E=(1/2)my+(1/2)m,
= my +(1/ 2)moy*v?

17
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(In the more familiar un-normalized units, equation
[17] becomes

E =(1/2)ymyp*c? +(1/ 2)myc?
18 = mye? +(1/2)myy*v?
=FE u+T

resi

where the first term is the rest energy and the
second is the relativistic kinetic coenergy, which
equals the relativistic kinetic energy.) We will call
(18) the Special Relativistic Quadratic (SRQ)
energy equation to distinguish it from (7).

Note that under this formalism, the equation
for kinetic energy (and coenergy [13], since both
become numerically equal under this formalism), in
both classic and relativistic mechanics, can be
written as

19 T = (1/2)ymy( flow )

where the flow is given by (yv) in the relativistic
case and by (v) in the classical one. (When v <<c,
the factor modulating the flow can be set equal to
one.) The concept of flow can be interpreted as the
effect of spacetime on matter. Since the general
theory of relativity forsakes the fixity of spacetime
and shows that it is curved due to the existence of
matter (15), one can regard the flow as the effect of
spacetime on matter (an established fact in general
relativity is that spacetime acts on matter, telling it
how to move and matter re-acts back on spacetime
telling it how to curve). Thus the simple relation of
change of position (in spacetime) to the change of
time (i.e. velocity), is lost when matter (particles)
travels with speeds commensurate to the speed of
light.

Defining @ as T/(m,?), where m, is the
rest mass of the electron, and § as (v/c);
Einstein's energy equation then gives the following
formula:

20 F=1-(1+a)>.
On the other hand, the SRQ formula gives
21 F=1-(1+2a)"".

It is easy to show that (20) and (21) are equal to the
first order, which is actually the order used in
classical mechanics. To support (21) we need to
compare experimental results with analytical results
from both equations. Using the results obtained by
W. Bertozzi (3) shown in Table 1 ( the values for
(v/c)obs ), we can see (Fig. 1) that (20) and (21)

are quite close to the experimental results.



Other experimental data that can be shown to
give similar results are abundant. For example the
experiment by Perry and Chaffee at Harvard
University, although used as an evidence on the
contribution of the kinetic energy to the inertia —
such dependence is also supported by the new
model — can also be used to explicate the close
relation between the experimental data and the
proposed model (12). Other promising results are
those of the Guye, Ratnowsky and Lavanchy (18)
experiment. For more on the experimental work on
SRT, the reader is referred to the resource letter on
special relativity (27).
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Fig. 1 : Betavs. Alpha. The solid line corresponds to equation
(20) where the dashed one corresponds to equation (21). The
diagonal crosses correspond to the experimental data from
table 1

T a | (vie), (v /c):h (v/ c);" (v/ o
(MeV)
0.5 1 0.867 0.752 0.750 0.667
1.0 2 0.910 0.828 0.889 0.800
1.5 3 0.960 0.922 0.937 0.857
4.5 9 0.987 0.974 0.990 0.947
15 30110 1.0 0.999 | 0.984

Table 1: The experimental results of the Bertozzi experiment.
The table also provides the analytical data from equations (20)
and (21).

At this juncture we need to remind ourselves of
the objective of this investigation. According to
Karl Popper "... science is not in the business of
validating models at all, but rather should be trying
to falsify them." (10). The work by Parker (24)
seems to falsify the new model in favor of the
Einsteinian one. He still declares his data as circular
at the end of his paper. The best approach is
probably the direct measurement of the time-of-
flight of electrons within the range a <S5 and

comparing the experimental results to the analytical
ones. Such an experiment is yet to be conducted.
(Note that although the experiment by Bertozzi is
structured as proposed, it lacks focusing on the
suggested range where the difference between the
competing models is maximum.)

Finally it is worth mentioning that our effort of
building a model that competes with the Einsteinian
one for special relativity is not an unprecedented
one. Abraham (1) proposed a rigid model for the
electron that produced a competing relation
between mass and velocity. Actually most of the
early experiments where carried out to support the
validity of either the Abraham or Einstein mass-
velocity equation (or rather to falsify one of them.)
The prevailing of the Einstein equation over
Abraham's should not deter inquiring minds from
building new models (equations) that might bring
about a more unified scientific structure.

5 A BG Interpretation of The Covariant
Lorentz Force Equation

This section is designed in a very simple fashion
that introduces an interpretation of the Lorentz
force equation based on BG's. This interpretation
leads to a generalized statement concerning the
power composed of tensorial efforts and flows.

Let us define the tensor @ as follows:
0 E E K
-E, 0 B, -B

22 D% =

which is usually referred to as the (electromagnetic)
field-strength tensor (19). Using this tensor, we can
provide the invariant form of the Lorentz force
equation (giving the electromagnetic force on a
charged particle) as follows:

23 [,=e®, U

Recalling the power postulate, we can formulate the
power for a particle traveling in the electromagnetic
field as follows:
24 M=e,f*=FU"

= Nape s, @PUTU*.

(Where ¢ is the charge of the particle and 7, is the

so-called Minkowski metric tensor used here to
raise the indices of ®,, [32]) Note that the

(tensorial relativistic) power is identically equal to
zero. The reader might have already noticed the



resemblance between this result and the one for the
one-particle system treated earlier. Actuaily one can
even postulate that this is a general result for any
tensorial (relativistic) power built from four-vector
efforts and flows, since by definition the length of a
four-vector is unchanged under rotation of axes
(that is by a Lorentz transformation) (28). Of course
a rigorous study of other physical domains is first
necessary before one can claim such a
generalization.

The reader can easily see the gyrative character
(as a2 1-MP GY) of the tensor e®,, — from the

antisymmetric nature of the matrix in equation (22)
— and since gyrators are non-energic elements, the
result in (24) becomes natural (see Fig. 2). This of
course is explained by noting that the function of
the magnetic field is to influence the direction of the
particle rather than influencing its transverse motion
(this can be related to the Larmor theory which
explains the role of the magnetic field as generating
angular velocity. )
e

—— oY
S

Fig. 2: The 1-MP GY

6 Einstein's Gravitational Field
Equations

In this section we provide a BG interpretation for
Einstein's gravitational field equations (EGFE's for
short). For an (arbitrarily) strong gravitational field,
EGFE's are written as follows (32):

25 G,,=-8xGI,.

,=—
Where G,, is the so-called Einstein tensor; a

symmetric, conserved tensor (properties necessary
to salvage the equality in {25]), and G is the
Newtonian gravitational constant. The tensor on the
right hand side 7,, is the so-called energy-

momentum tensor, and is also a symmetric tensor.
Note that since the Einstein tensor is conserved, the
right hand side must also be conserved.

It can be seen that EGFE's represent a 2-MP
TF that transforms the power between two
domains; the gravitational domain (associated with
the Einstein tensor) and the material domain
(associated with the energy-momentum tensor) (see
Fig. 3). (Although both domains are not classically
defined, the coining of such domains can be
accomplished following the definition of physical
domains provided by Breedveld [7].) Note that the
effort tensors for the above mentioned domains are
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obtained by taking the divergence of the tensor
associated with the domain. This is done by taking
the so-called covariant derivative with respect to
one of the indices of the tensor. (Here it does not
matter which index we choose since the tensors are
symmetric.)

Fig. 3: The MP TF for EGFE's

Unfortunately, due to the fact that both, the
Einstein tensor and the energy-momentum tensor
are conserved, the divergence of both equals zero.
This means that the effort equation of the BG MP
TF collapses. Another problem one faces on this
front is the choice of the flow tensors for the
gravitational and material domains. From the
authors research on this subject, the divergence of
the so-called metric tensor seemed to be the natural
choice for the flow tensor for both domains. Of
course such a choice would not fit into the flow
constitutive equation of MP TF's. This problem is
related to the absence of a known way by which a
definition of the local energy density (of
gravitational fields) can be found. Wald (31)
suggests that the reason for this is related to the
absence of a natural way by which the metric tensor
can be decomposed into "background" and
"dynamical" parts.

7 CONCLUSIONS

The SRQ equation is a model for the dynamics of a
relativistic one-particle system, which unifies the
formulae for kinetic energy (and coenergy) in both,
classical and relativistic mechanics. In this work the
authors do not present an approximation to the
Einstein formula, but rather provide a model for SR
mechanics (and not a theory).

A simple bondgraphic interpretation was given
to the Lorentz force equation (in its covariant
form). This interpretation shows explicitly the
gyrative action of the electromagnetic field on the
charged particle traveling through it.

Finally we interpreted the Einstein gravitational
field equations as a transformation between two
physical domains. Unfortunately due to intrinsic
problems in the general theory of relativity, the flow
variables for the domains involved were not
identified. Another problem pertains to the
conservation of the efforts of the domains. This
conservation leads to the collapse of the effort
equation of the identified transformer. We believe
that a thorough study on other theories of
gravitation might provide a better insight via BG's.
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