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ABSTRACT

The problem of describing variable structure models in a
compact, object—oriented fashion is revisited and analyzed
from the perspective of bond graph modeling. Traditionally,
bond graphs have always been used to describe continuous—
time physical processes with a fixed structure. Yet, this pa-
per shall demonstrate that bond graphs are equally suitable
to describe variable structure models as fixed structure mod-
els. Moreover, a bond graph description of variable structure
models can teach us a lot about the essential properties of
variable structure models, properties that are not easily vis-
ible when other modeling approaches are taken. The paper
discusses issues related to causality reassignment and con-
ditional index changes as a consequence of switching in a
physical system.

Keywords: Bond graphs, variable structure system, com-
putational causality, conditional index change, switching,
object—oriented modeling, Dymola.

INTRODUCTION

When the causality strokes were added to the formerly
acausal bond graphs, the bond graph community cheered.
Something fundamental had been accomplished. Finally,
bond graphers were able to determine once and for all,
whether currents flowing through a circuit element were
causing a voltage drop, or whether a potential difference be-
tween the two ends of the circuit element made a current
flow through it. Quickly, it was discovered that, whereas ca-
pacitors and inductors had a preferred causality, two types
of resistors were needed: voltage—drop—causers and current—
flow—causers.

When reading some early papers about TUTSIM, one of
the first software tools available for simulating bond graph
models, one may discover that the designers of the tool
praised as an important strength of the software that the
user had to assign the causality strokes by hand, since this
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forced him or her to think carefully about the correct physical
behavior of each bond graph element, which in turn would
enhance the probability that a physically correct model was
derived. ENPORT, on the other hand, did not share this
virtue, which made it more likely that a gullible user would
formulate a model that was physically meaningless, which
would yet be accepted and processed by the simulation soft-
ware without proper error messages being generated (van
Dixhoorn 1982).

As recently as 1993, about half a dozen bond graphers
struggled with the fact that ideal switch elements aren’t co-
operative since they don’t allow to determine fixed causali-
ties in the model once and for all (Granda & Cellier 1993).
Switch elements play havoc with the causality strokes in the
model. Some researchers introduced some tricks to freeze the
causalities in one way or other, usually by making the switch
non-ideal (Asher 1993, Ducreux et al. 1993); others came up
with split circuits that showed different causalities depend-
ing on the switch position (Strémberg et al. 1993, Broenink
& Wijbrans 1993, Lorenz 1993); other, more philosophical,
treatises simply declared ideal switches to be “non—physical”
(in the sense of representing an abstraction of un-modeled
fast time constants), since evidently, every physical element
must allow the determination of its causality.

What would physics be without causality? Isn’t causality
responsible for keeping up the order in the world and for en-
suring that chaos would not reign over this universe of ours?

THE MYTH OF PHYSICAL CAUSALITY

When the Romans presented us with the codez iuris ro-
manum, they codified, for the first time in human history,
in strong and clear terms their beliefs about law and order,
about cause and effect, to protect victims from perpetrators,
to separate unambiguously between the guilty and the in-
nocent. This Roman heritage has influenced our daily lives
to this day more deeply and more profoundly than we may
commonly think. It gives us immense personal satisfaction to
be able to separate cause from effect, to distinguish between



the perpetrator and the victim, to ensure that the guilty is
punished and the innocent is redeemed.

It is this deep-routed moral conviction that made us de-
clare victory when causality strokes were introduced into the
bond graph methodology. Finally, the bond graphers had
learned to put everything in perspective, to cope with the
realities of physics that distinguish clearly between actio and
reactio.

Unfortunately, our ancestors were better at law than at
physics. It is correct that, when two bodies are in contact
with each other, each one experiences the same force from
the other with opposite direction, such that the overall effect
towards the outside is nil. Yet, the naming of this principle is
most unfortunate, since it insinuates the distinction between
a perpetrator and a victim. This however is a very human
moral concept, and not a physical one. There is no physical
experiment in the world that would allow us to distinguish
between these two forces, i.e., to determine which is the actio
and which is the reactio.

There could be such a thing as causality in physics. If I
drive my car around and a tube breaks, it is a consequence
that my car will lose its cooling water. Without enough
coolant, it is a consequence that the engine will overheat.
With an overheated engine, it is a consequence that a warn-
ing light will come on to alert the driver. If this warning
light is ignored sufficiently long, it is a consequence that the
engine will catch fire, and the car will burn.

Yet, this is quite different from the above. None of these
statements is reciprocal. It is incorrect to write that the tube
breaks because the car loses its cooling water. In all these
cases, a discrete event takes place that somehow changes the
structure of the model, as a consequence of which the system
behavior changes. Usually, there is some time lapse between
cause and effect, and “physical causality” could be defined
to mean this type of relationship between causes and their
effects.

If such a situation is modeled in a bond graph, some sort of
ideal switching element will have to be introduced to denote
the discrete event, as proposed e.g. in (Broenink and Wi-
jbrans 1993, Lorenz 1993), and this is, as we already know,
precisely the situation where the location of the causality
strokes depends on the switch position, i.e., where the notion
of a fixed causality breaks down. Hence, the term “causal-
ity,” as it is being used by bond graphers around the globe,
means something different. It means something much more
closely related to the action/reaction principle. There is no
physical experiment in the world that can be applied to a
resistor to determine whether it is a “voltage-drop—causer”
or a “current—flow—causer.”

Bond graph causality was defined to mean the compu-
tational causality that is needed when a model of a phys-
ical system is to be expressed in state-space form, but
physics doesn’t know anything about state-space models
and/or Runge-Kutta algorithms, physics only cares about

such things as energy conservation and mass conservation.
Hence, bond graph causality is not a physical principle at
all. It is only an artifact of our traditional way of numeri-
cally simulating differential equation models, and if we were
to employ a DAE solver instead of an ODE solver, the con-
cept would become totally meaningless.

Thus, it is claimed that the introduction of causality
strokes was not a victory at all. It was a big setback
that hampered the further development of the bond graph
methodology to this day.

THE IDEAL SWITCH ELEMENT

Using the notation of Dymola, an object—oriented modeling
language for dynamic systems (Elmqvist 1978, Cellier 1991,
Dynasim 1994), it is possible to describe the ideal switch
element as follows:

model class Sw
main cut A(e/f)
terminal OpenSwitch
0 = if OpenSwitch then [ else e
end

A graphical representation of the switch element is shown in
Fig.1. The Sw—element is a one—port element. The port (in
Dymola called cut) is called A, and it contains two variables,
the effort e (an across variable), and the flow f (a through
variable). The Sw—element also references an information
path (sometimes referred to as “activated bond” in the bond
graph literature), called OpenSwitch. In Dymola, a cut that
contains a single variable is called a terminal.
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Figure 1: Bond graph representation of Sw—element.

The switch equation states that, at all times, either f
or e are zero, depending on whether the switch is open
(OpenSwitch=true) or closed (OpenSwitch=false), respec-
tively. Dymola is able to cope with such a variable structure
equation as shown in (Elmqvist et al. 1993).

If the switch is open (f = 0), the Sw—model computes the
flow, and the causality stroke should be at the Sw—element.
If the switch is closed (e = 0), the Sw—model computes the
effort, and the causality stroke should be away from the Sw—
element. Thus, the causality stroke indeed changes its posi-
tion depending on the current value of the OpenSwitch vari-
able. Thus, we are confronted with a conditional causality
reassignment problem.

To understand a little better how the switch works, let us
analyze a slightly modified switch model:



model class Sw?2
main cut A(e/f)
terminal OpenSw
0 = OpenSw = f + (1 — OpenSw) x e
end

Here, OpenSw is a real-valued variable that assumes the val-
ues 1.0 (switch is open) and 0.0 (switch is closed). If the
switch equation is solved for f (flow—causality):

_ OpenSw —1
~ OpenSw

(1)

a division by zero will result as soon as the switch closes.
Thus, the model of Eq.(1) is only valid as long as the switch
is open. On the other hand, if the switch equation is solved
for e (effort—causality):

OpenSw

€= OpenSw — 1 f )

a division by zero will result as soon as the switch opens.
Evidently, the model of Eq.(2) is only valid as long as the
switch is closed. Thus, neither of the two models will work
in both switch positions.

Until recently, it was thought that this problem is unsolv-
able, i.e., that two separate models would be needed at run
time, each valid for one of the two switch positions only, be-
tween which the simulation program would have to toggle
whenever switching takes place in the circuit. This is, how-
ever, an unfortunate proposition since a circuit containing 10
switch elements would call for 2'° = 1024 different models.

A solution to this dilemma was finally proposed in
(Elmgqvist et al. 1993). A single model that works in both
switch positions can easily be derived if and onmly if both
causalities are compatible with the remainder of the bond
graph, i.e., if changing the causality at the Sw—element does
not force any incorrect causality on sources or undesired
causality on storage elements. This evidently means that
the switch equation must end up in an algebraic loop, since
only such a model structure will allow a variable causality
of the switch equation. The variable causality leads to dif-
ferent zero/non-zero patterns of the systems of equations of
the algebraic loop for the different switch positions.

This concept will be demonstrated now by means of a
simple example. An ideal electrical diode is a switch with
internal modulation, i.e., the information variable is driven
by a signal inside the switch itself:

model class (Sw) D
new(OpenSwitch) = not ¢ >0 and not f >0
end

or using the algebraic variant of the switch:

model class (Sw2) D2
new(OpenSw) = if not € >0 and not f >0 then 1.0
else 0.0
end

The diode model inherits all the variables and equations from
the corresponding switch model, adding one additional equa-
tion to the set.

Figure 2 shows a half-wave rectifier circuit, and Fig.3
shows a bond graph representation of the same circuit. Ev-
idently, both switch causalities are compatible with the re-
mainder of the circuit.
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Figure 2: Half-wave rectifier circuit.
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Figure 3: Rectifier bond graph with switch: (a) open,

(b) closed.

Since Dymola doesn’t currently understand the concept
of a 1-junction yet (Dymola is a general-purpose object-
oriented modeling language that had not originally been de-
signed to deal with bond graph models), bonds are modeled
in Dymola as symplectic gyrators:

model class bond
cut A(e/f), B(f/-€)
main cut C[A4, B]
main path P< A—- B >
end



and all circuit elements must be attached to O—junctions. A
detailed description of how Dymola can be used to model
bond graphs can be found in (Cellier 1991, Cellier 1992).

With these additional rules, it is now possible to describe
the bond graph model of the half-wave rectifier circuit:

model Rectifier

submodel (SE) U0

submodel (R) Ri(R = 10), RL(R = 50)
submodel (C) C(C = 0.001)
submodel (D) Diode

submodel (bond) B1l, B2, B3, B4
node nSE, nRi, nD, nl, n0

output y

local w

constant p: = 3.14159

parameter f = 50

connect U0 at nSE,

B1 from nSE to nl,
B2 from nl to nRz,
Rz at nRz,
B3 from nl to nD,
Diode at nD,
B4 from nl to no,
RL at no,
C at n0

UO0.EO = sin(2 = 3.14159 x f x T'ime)
y =C.e
end

Once this model is entered into Dymola, Dymola adds addi-
tional equations that result from the topological connections
(Kirchhoff’s laws). The set of sorted equations for this prob-
lem looks as follows:

[Rect Bond.w] = 2 « Rect Bond.pi « RectBond. f
[B1.€] = sin(RectBond.w x Rect Bond.T'ime)

| C.e + [Diode.€] + Ri.e = Bl.e
| 0=1if Diode.OpenSwiich then [B4.e] else Diode.c
| [Ri.c] = Ri.R* Bd.c

C.c = RL.R  [RL.f]

RL.f +[C.f] = Bd.c

C.f = C.C x[C.dere]

[Diode.newOpenSwiich] = not (Diode.e > 0)
and not (B4.e > 0)

In order to arrive at assignment statements that can be evalu-
ated in sequence, the sorted equations must be solved for the
variables enclosed in brackets, and algebraic loops, marked
by “|” in the code, must be solved for the unknown loop
variables. In the above example, the first two equations can
be evaluated directly. Subsequently, an algebraic loop with
three equations in three loop variables is present, indeed con-
taining the switch equation. Finally, the last four equations
can again be evaluated sequentially, once the algebraic loop
has been solved.

The solved equations for this problem are:

SORTED AND SOLVED EQUATIONS
RectBond.w = 2 x Rect Bond.pt x Rect Bond. f
Bl.e = sin(Rect Bond.w * Rect Bond.T'ime)

SYSTEM OF 3 SIMULTANEOUS EQUATIONS
Q101 = if Diode.OpenSwitch then 1 else 0
Q102 = if Diode.OpenSwitch then 0 else 1
Q103 = Q101 % (Bl.c — C.¢)

Q104 = Q102 = Ri.R — Q101
Diode.e = Q103/Q104
Q105 = Q102 (Bl.c — C.¢)
Bd.e = Q105/Q104
Q106 = Q102+ Ri.R+ (Bl.e — C.e)
Ri.e = Q106/Q104
END OF SYSTEM OF SIMULTANEOUS EQUATIONS

RL.f = C.e/RL.R
C.f = Bd.e — RL.f
C.dere = C.f/C.C
Diode.newOpenSwitch = not (Diode.e > 0)
and not (B4.e > 0)
END OF SORTED AND SOLVED EQUATIONS

ELIMINATED STATE DERIVATIVES AND OUTPUTS
RectBond.y = C.e

It can be easily verified that the determinant (2104 is not
equal to zero in either of the two switch positions. Thus,
this is a single model valid for both switch positions. The
price paid for this single model is that the equations de-
scribing the switch and the environment contaminated by it
(i-e., those portions of the bond graph to which the changing
causality propagates) are no longer those that can be read
out from the bond graph directly. Instead in the process
of compiling the model, an appropriate set of equations has
been obtained through formula manipulation, more precisely
by applying Cramer’s rule to the set of algebraically coupled
linear equations.

This ought to be reflected in the bond graph by eliminat-
ing the causal strokes altogether from those bonds that are
associated with equations that appear in an algebraic loop.

Notice that the algebraic loop here is not an artifact. It
is essential to the proper functioning of the ideal switch. An
ideal switch equation that does not appear in an algebraic
loop causes additional difficulties to the compiler, as will
be shown in due course, and such a modeling element may
indeed represent an abstraction of reality that is not com-
patible any longer with the laws of physics.

If an algebraic loop is large enough, it may be better to
solve it numerically by generating assignment statements to
the system matrix A and the right hand side vector b, and by
solving the resulting linear system of equations “A -x = b”
by calls to, e.g., a LAPACK routine (Anderson et al. 1992).
The presence of one or more ideal switch equations leads to
rows in A that have exactly one non-zero element in every
switch position. It is therefore possible to rearrange the rows
and columns of A at run time during every structural change
of a switch, such that



where I is an identity matrix of dimension 7., correspond-
ing to ng, ideal switching equations. Consequently, the num-
ber of equations to be solved numerically is reduced. The
described scheme has the practical advantage that a corre-
sponding sorting procedure is already available in LAPACK
(SGEBAL). SGEBAL is used in LAPACK for an optional first
step before a matrix is being balanced and transformed to
Schur—form for the purpose of determining its eigenvalues.

CONDITIONAL INDEX CHANGE DUE TO
SWITCHING

Let us now look at another model. Figure 4 shows another
simple circuit involving a diode, and Fig.5 shows a bond
graph representation of the same circuit. Evidently, this
time around, a causality change at the diode element causes
the inductor to lose its preferred causality, i.e., the switch
equation does not end up in an algebraic loop. The current
through the inductor is a natural state variable, thus the
current through the diode is computed in the inductor, and
the switch equation must be solved for the voltage always.
Evidently, this won’t work.
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Figure 4: Inductive load circuit.
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Figure 5: Inductive load bond graph.

What happens in this circuit is that, when the switch
opens, the inductor is effectively taken out of the circuit.
The model order changes from first order to zeroth order.
Since the model still contains the inductor, the switching is

experienced by the model as a conditional index change. The
index of the DAE system describing this model jumps from
zero to two (Brenan et al. 1989).

A possible solution to this problem can be found by mod-
ifying the switch equation in the following way:

model class CSw
main cut A(e/f)
terminal OpenSwitch
0 = if OpenSwitch then der(f) else e
when OpenSwitch then
init(f) =0
endwhen
end

Evidently, if the switch is open, f = 0.0, but this also implies
that f = 0.0. However, f is not a state variable, thus its
causality will not be fixed, and thus, the switch equation
will again appear inside an algebraic loop as it should. To
avoid drift, f is initialized to 0.0 at the moment when the
switch opens.

Using this modified switch model and a diode model in-
heriting these switch equations, the bond graph model can
be encoded in Dymola using the same approach as in the
previous example. The resulting DAE model is now of index
two, since Diode.f = L.f are two state variables. However,
the model no longer exhibits a conditional index change.
Thus, the Pantelides algorithm (Pantelides 1988, Cellier and
Elmgqvist 1993) can now be applied to reduce the index down
to index one.

The resulting set of sorted equations is:

[Ri.c] = Ri.R % Diode.f
[Rect Bond.w] = 2 « Rect Bond.pi « RectBond. f
[B1.€] = sin(RectBond.w x Rect Bond.T'ime)

| L.e+ [Diode.e] + Ri.e = Bl.e
| 0=if Diode.OpenSwiich then [Diode.derf]

else Diode.e
| [L.€] = L.I* Diode.derf

when Diode.OpenSwitch then
[Diode.iniif] =0
endwhen
[Diode.newOpenSwiich] = not (Diode.e > 0)
and not (Diode.f > 0)

leading to the following set of solved equations:

LTt is essential that the electrical switch opens when the current
is zero, as this will automatically happen when a diode is used as
the switch element. If this were not the case, an infinitely large
voltage would temporarily have to appear across the inductor to
pull the rest energy 0.5 - L - 42 out of the inductor within zero
time. In practice, an arc would be drawn. Although it would be
possible to handle such a situation in the model (replacing the
Dirac impulse by modified initial conditions for the restart of the
integration), this would complicate the matters considerably, and
is therefore not considered here.



SORTED AND SOLVED EQUATIONS
Ri.e = Ri.R * Diode. f
RectBond.w = 2 x Rect Bond.pt x Rect Bond. f
Bl.e = sin(RectBond.w * Rect Bond.T'ime)

SYSTEM OF 3 SIMULTANEOUS EQUATIONS
Q101 = if Diode.OpenSwitch then 1 else 0
Q102 = if Diode.OpenSwitch then 0 else 1
Q103 = Q101  (Bl.c — Ri.c)

Q104 = Q102 % L.T — Q101
Diode.e = —Q103/Q104
Q105 = Q102 « (Bl.c — Ri.c)
Diode.derf = Q105/Q104
Q106 = Q102 % L.I = (Bl.e — Ri.e)
L.e = Q106/Q104
END OF SYSTEM OF SIMULTANEOUS EQUATIONS

when Diode.OpenSwitch then
Diode.anitf =0
endwhen
Diode.newOpenSwitch = not (Diode.e > 0)
and not (Diode.f > 0)
END OF SORTED AND SOLVED EQUATIONS

ELIMINATED STATE DERIVATIVES AND OUTPUTS
RectBond.y = Diode. f

Asin the previous example, the determinant 2104 is different
from zero in both switch positions, and consequently, the
simulation will execute correctly.

Looking once more at the bond graph, it is essential that
the causality of the diode changes at switching time. This
is more important than the causality of the inductor. How-
ever, if the causality of the diode changes, then evidently, the
causality of the inductor has to follow. Thus, both causality
strokes should be eliminated. Looking at the sorted equa-
tions, it can be noted that indeed the inductor equation ends
up inside the algebraic loop, as was to be expected from the
previous discussion.

NON-IDEAL SWITCH ELEMENTS AND ARTI-
FICIAL STIFFNESS

Due to the difficulties associated with ideal switch elements
(Elmgqvist et al. 1994), many researchers prefer to replace the
ideal switch element by a non—ideal switch element, in which
the switch in its closed position is represented by a very small
but not vanishingly small resistance, and in its open position
by a very small but not vanishingly small conductance. In
Dymola, such a model can be formulated as follows:

model class GSw
main cut A(e/f)
terminal OpenSwitch
parameter GOpen = 0.0, RClosed = 0.0
0 = if OpenSwitch then f— GOpen xe
else e — RClosed * f
end

which degenerates to the ideal switch when the default values

of both RClosed and GOpen are in effect.

If the ideal switch has free causality, then so will the non—
ideal switch.
models using ideal or non—ideal switches will be almost iden-
tical, except that the equations using non-ideal switches are
a little more complicated. However, the systems of equa-
tions to be solved remain exactly the same with the only
difference, that, for non-ideal switches, the zero/non-zero
patterns of the system matrices do not change with switch-
ing. As a consequence, the number of operations to solve
these systems of equations is the same for the ideal and for
the non-ideal switch (assuming that no run-time sorting of
the equations is provided), i.e., there will be no significant
difference in execution speed.

In this case, the behavior of the simulation

On the other hand, if the ideal switch has fixed causality,
then so will the non—ideal switch. Looking once more at the
algebraic version of the (non—ideal) switch equation:

0 = OpenSw-(f—GOpen-e)+(1—OpenSw)-(e— RClosed- f)
(3)

this equation can be solved for either f or e, leading to:

OpenSw-(14+ GOpen)—1

f = OpenSw-(1+RClosed)—RClosed e (4)
_ OpenSw-(1+RClosed)—RClosed | f (5)
e = OpenSw-(14+ GOpen)—1

Whenever the ideal switch equation would have a zero de-
nominator, the real switch equation will have a very small
denominator, leading to artificially stiff system behavior.

From a physical perspective, when the switch is placed
in series with an inductor, the inductor stores the energy
Er = 05.L-i>. When the switch opens, the remaining
energy must be carried away rapidly by means of a large
energy flow P = dE/dt = u - 4. Since the current through
the inductor cannot jump, a large voltage has to appear to
support the required large energy flow. Similarly for switches
placed in parallel with capacitors. When the switch closes,
the remaining energy stored in the capacitor Ec = 0.5-C -
u? must be removed quickly. This will require a very large
current to flow temporarily.

From a mathematical point of view, it is not important
whether a large energy flow actually takes place or not. In
order to potentially support such a large energy flow, the Ja-
cobian matrix of the ODE model must have an eigenvalue far
out in the left-half complex plane, which makes the circuit
invariably stiff.

Consequently, replacing an ideal switch by a non-ideal
switch is relatively harmless precisely then when the ideal
switch itself doesn’t pose any problems, and leads to an ar-
tificially stiff system whenever the ideal switch would lead
to a conditional index change in the system. This is quite
unfortunate.

Although the trick with replacing f by f did work in the
small example shown in this paper, it is unfortunate that the
user needs to think about how to modify the switch equation,
rather than being able to leave the necessary modifications
to the system. This is cumbersome and in direct violation



of the request for object—orientation. After all, the physical
system knows only one type of switch element, and it feels
wrong that there should be a need to represent this element
through different models depending on the environment in
which it is being used. Until this problem is solved in a more
satisfactory fashion, there is a need for non-ideal switching
elements, and the user will grudgingly have to pay the price
of potentially creating artificially stiff models.

CONCLUSIONS

It has been shown that the concept of causality, as propa-
gated throughout the bond graph literature, is an oversold
concept that had its justification at a time when bond graphs
were drawn by hand onto sheets of paper to be translated
manually into state-space models before feeding them to an
ODE solver. However, bond graph causality does not repre-
sent a physical property, and its questionable use is limited to
analyzing fixed structure models. The concept breaks down
entirely when faced with variable structure models.

It was shown that powerful symbolic formula manipula-
tion tools can be designed that allow the translation of vari-
able structure models described by acausal bond graphs into
properly executing state—space models in a fully automated
fashion. In fact, such a tool already exists and has been
used extensively in this paper to illustrate the new ideas and
concepts.

A new class of interesting problems was discussed that
exhibit conditional index changes in their DAE structures, a
problem so far ignored by applied mathematicians working
in the area of numerical DAE solvers. It is suggested that
this class of problems be studied in the context of numerical
DAE solvers, a research area that should lead to a further
fruitful intensification of cooperations between the applied
mathematics and engineering communities.
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