International Conference on
| Simulation in
Engineering Education

Proceedings of the 1992 SCS Western Simulation Multiconference

on Simulation in Engineering Education
20-22 January 1992
Newport Beach, California

Edited by
Hamid Vakilzadian
Department of Electrical Engineering
University of Nebraska—Lincoln

Simulation Series
Volume 24
Number 2

Sponsored by:
The Society for Computer Simulation

rscs]
L3CS,

in participation with

American Society for Engineering Education
|EEE Education Society

EE %’ _ IEEE EDUCATION SOCIEI’Y
N 7 .

6‘
5;;N



‘Bond Graphs — The Right Choice for Educating Students in
Modeling Continuous—Time Physical Systems

Frangois E. Cellier

Department of Electrical & Computer Engineering
University of Arizona
Tucson, Arizona 85721

EMail: CellierQECE.Arizona.Edu

Abstract

This paper describes a modeling technique that, bet-
ter than alternative approaches, teaches the student
to develop from the start valid models of physical
continuous—time processes. Several examples of state—
space models are presented that look very plausible,
give seemingly plausible results, and yet are physically
wrong. These examples may serve to illustrate the po-
tential dangers behind state-space descriptions used as
a modeling tool. It is our comviction that model val-
idation should be integrated with model building, and
should not be an afterthought. The bond graph mod-
eling technique enables us to describe physical systems
in terms that are much closer to physical reality than
state-space modeling. Thereby many of the standard
pitfalls in making models are avoided right from the
beginning. Bad (i.e., non—physical) models have no
chance of being created in the first place.

1 Introduction

Modeling has become extremely easy. Modern CSSL—-
type languages allow the user to specify complex dy-
namic processes in a state—space format very close to
a pure mathematical description, a format that is very
convenient to use. It is possible to master the basics
of 2 modern CSSL-type language within less than 30
minutes.

The use of CSSL—type languages is so simple that it is
almost impossible to make syntactic mistakes. The ap-
plication programs will run at once and, within a matter
of minutes, elegant—looking multi—colored graphs will
appear on the user’s screen. Unfortunately, the sim-
Plicity of their utilization is at the same time the great-
est vice of all CSSL-type languages. It is very tough

to convince a student (and most practicing engineers
for that matter) that a program that doesn’t display
any error messages, that produces results with 14 dig-
its accuracy out of which not a single one is zero, and
that generates elegant-looking and somewhat plausible
curves can still be wrong.

Model validation should not be done after the fact,
i.e., for the purpose of verifying that a once constructed
model is indeed meaningful. It is our experience that
students (and most practicing engineers) won’t take the
time to verify even the simplest facts about their models
once they were able to generate nice-looking graphs.
They immediately fall in love with their graphs ...and
true love, as we all know, is blind.

Here is the most common mistake that I find in my
students’ programs. For a simple mechanical system
containing a mass, some friction, and a spring, we start
out by formulating Newton’s law:

m-a=f—k-z-—-b-v (1)
which can be quickly rewritten as:
m-2=f—k-z—b-2 2)

and by choosing the outputs of the integrators as state—
variables:

531 = &2 (3)

k b
——-z —~—-z2+f (4)
m m

T2 =
which can be coded without problem using any CSSL-
type language and will lead to the aforementioned
elegant-looking graphs. Unfortunately, the model is
incorrect since the student forgot to divide the input f
by the mass m. This error would be easy enough to de-
tect — all the student would need to do is to check for
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dimensional consistency across each equation. On the
left-hand side of Eq.(4), we have an acceleration mea-
sured in m/s?, but the last term on the right-hind side
is a force measured in N or kg-m/s?. Obviously, those
two terms are not compatible with each other. How-
ever, it is my experience that my students won’t check
for this. They already got their sugar cube. Looking at
the graphs is so gratifying, and there are other pressing
homework assignments waiting to be completed, thus,
why bother.

Yet, dimensional consistency checking won’t do the
trick in all cases. Sometimes the problems are much
more subtle, as the next example shall demonstrate.

2 Crash Rockets or the
Modern—day Flying
Dutchman

Figure 1 shows a force diagram for a lunar Jander mod-
ule.

thrust

Figure 1. Lunar landing module.

Since the mass of the rocket changes with time, we are
inclined to believe that, for this system, Newton’s law
can be written as:

dim-v) dm dv
—_—f e ——, o — =1 —_— .
% 7 vtm g hrust—m-g  (5)
which can be rewritten as:
m-a:thrust—m-g—-dzt"i-v (6)

Let us try to validate this model. A good valida-
tion technique is the following: We make simplifying
assumptions until the problem is reduced to a much
simpler problem for which we can check the plausibil-
ity of the results obtained. Applied to our rocket: We

shall assume that our space craft is far away from any
planetary mass. Consequently, we may ignore the grav-
ity term. Moreover, we shall assume that the thrust is
always nonnegative, i.e.:

thrust > 0.0 (7
Thus, we obtain the following set of equations:

1 .
- (thrust — m - v) (8)
—c -thrust (9)

a =
m =

where Eq.(8) is the simplified Newton equation and
Eq.(9) is the simplified fuel consumption equation. If
we now plug Eq.(9) into Eq.(8), we find:

1
@=— -thrust- (1.0 +c- v) (10)

If we assume that we travel initially with a constant

velocity of

v=-2 (11)

backward through space, the last factor of Eq.(10) can-
cels out and we shall never again be able to accelerate
or decelerate our space craft. What a fate!

Quite obviously, something has gone awry. The prob-
lem is the following: Newton’s law is not truly a “law
of physics.” It is a derived law, i.e., a “law of mathe-
matics.” The real “law of physics” states that the total
momentum of a closed system must be conserved; or
more generally:

I(t+ At)=TI(t)+ AZ(t —t+ At) (12)

The total momentum I of a system at time t + At
equals the total momentum at time ? plus the (positive
or negative) momentum added to (subtracted from) the
system between time t and time t 4+ At. Let us apply
this law to our space craft:

(m—Am)-(v+Av)+Am-v = m-v+thrust-At (13)

The first term on the left—hand side of Eq.(13) denotes
the momentum of the space craft at time t + At. The
second term denotes the momentum of the cloud of ex-
haust at the same time. The fizst term on the right-
hand side.of Eq.(13) denotes the momentum of the
space craft at time ¢, and the second term denotes the
added momentum due to the drive of the space craft.
Notice that we must somehow include the exhaust. Ei-
ther we consider the cloud of exhaust a part of our
system by adding it to the left-hand side of Eq.(13) or
we must consider that the exhaust leaves the system
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between time ¢ and time ¢ + At and subtract this term
from the right-hand side of Eq.(13).

Neglecting terms in Eq.(13) that are of second order
small, we find:

m - Av = thrust - At

(14)

or by dividing through At and by letting At go to zero:

m- % = thrust (15)
Thus, we must use the more familiar form of Newton’s
law, although the mass of the space craft is undeniably
changing with time. Initially, we had simply forgotten
to take the cloud of exhaust into account. We could
have arrived at the same conclusion by considering the
total kinetic energy of the system instead of its momen-
tum, since the energy must also be conserved, but the
momentum was easier to use in this example.

What has gone wrong in the above problem? Con-
trary to the previous example in which we introduced a
flagrant (though quite common) mathematical manip-
ulation mistake, the last example was mathematically
sound throughout. Dimensional consistency checking
would not have revealed at any time during the mod-
eling process that there were problems with the model.
State—space models describe the change over time of
state variables. Unfortunately, physics doesn’t know
anything about change over time of state variables. All
that physics knows about is that this universe of ours is
a harsh universe of bartering ...and the only types of
merchandise that are up for sale are energy and mass.
Mass can be transported from point A to point B, and
energy can be either transported from point A to point
B or converted from form X to form Y. Beside from
the above transactions, nothing goes in this universe of
ours. The change over time of a state variable is only a
side effect of such a bartering deal taking place.

State-space models don’t obey any physical code of
honor. They don’t understand physics at all. They are
happy to accept any garbage deal that Johnny Would-
Be Modeler chooses to formulate, and they are willing
to trade it for slick aesthetically-looking multi-colored
graphs.

3 Bond Graphs — Representirig
the Power Flow Through a
System

Figure 2 shows a very simple electrical circuit.

10V,

Figure 2. Simple electrical circuit.

A bond graph representation for this circuit is shown
in Fig.3. :

I-’Ll R Ry
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Figure 3. Bond graph of the electrical circuit.

A bond, represented by a bold harpoon, is nothing but
a connector that simultaneously connects two variables,
one across variable, in bond graph terminology usually
referred to as the “effort” e, and one through variable,
called the “flow” f. The bond is shown in Fig.4.

— € N\
£

Figure 4. The bond.

Bonds connect either to system elements, such as a re-
sistor R, which in bond graph terminology is a single
port element (since both variables ug and ip are con-
nected simultaneously), or to other bonds in a junction..
Two different types of junctions exist, the so—called 0-
junction, and the so—called 1-junction. In a O—junction,
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all effort variables are equal while all flow variables add
up to zero. A O-junction is thus equivalent to a node
in an electric circuit diagram. In a 1-junction, all flow
variables are equal while all effort variables add up to
zero. The two junction types are shown in Fig.5.

ef2 eslf
e & [N €1 & 3 N
07y 17T
fl- f2- f3=0 e;-e,- e,=0

Figure 5. The two junction types.

The 0-junction thus represents Kirchhoff’s current law,
while the 1-junction represents Kirchhoff’s voltage law.
If a bond connects two junctions, one will always be of
the 0—junction type, while the other is of the 1-junction
type, i.e., in a bond graph, O—junctions and 1-junctions
toggle among each other. Neighboring junctions of the
same gender can be combined into one.

The directions of the harpoons in Fig.3 were pur-
posefully chosen such that they indicate the direction
of power flow. In any physical system, power can be
represented as the product of two variables, one of the
across—type and the other of the through—type, thus:

P=ec.f (16)
The bond graph shows clearly how the power is gener-
ated in the voltage source and then spreads through the
circuit and gets absorbed by the passive components.
Capacitors and inductors siore the electrical power, i.e.,
as long as the signs of both voltage across and current
through the element is the same, power flows into the
element and is stored there. When the signs of voltage
across and current through the element are opposite,
the previously stored energy flows out of the element
back into the circuit. Resistors dissipate the electri-
cal power. Since the voltage across and the current
through a resistor have always the same signs, power
always flows into the resistor, never back out. The re-
sistor is in fact not a one—port element at all. It is a
transformer of electrical (or other) energy into thermal
energy (i.e., heat). Consequently, the resistor should be
represented by a two—port as shown in Fig.6,

B ags—T
]R ((ii_:

Figure 6. Enhanced bond graph of a resistor.

where the primary side can be either electrical, mechan-
ical, hydraulic, pneumatic, or even thermal, whereas
the secondary side is always thermal. The (electrical)
power ug-ig flowing into the resistor equals the thermal
power T - S flowing out of the resistor. The represen-
tation of Fig.3 is a simplification, in that we chose not
to model the thermal properties of the circuit, only its
electrical properties. -

Similarly, the effort source SE is a non—physical ele-
ment since electrical power (or any other form of power
for that matter) cannot be generated. The power has to
come from somewhere (in our case out of a battery or
out of a wall socket); however, we chose not to represent
that portion of reality in our model.

4 Magic Heat Flow or How to
Do Away With the
Greenhouse Effect

Let us discuss the flow of heat through an ideally insu-
lated rod. The temperature distribution along the rod
can be modeled by the heat equation:

aT 8*T

5 = “oa (a7)
which is a partial differential equation (PDE) in the
two independent variables ¢ (time) and z (space). One
way to approximately solve this PDE is by discretizing
the space axis ¢ while leaving the time axis ¢ continu-
ous. We can approximate the second derivative in space
through: ’ '

azT(i, zk) - T(t, 2:;‘.}.1) - 2T(i, :l:k) + T(i, zk_l)
8z? = Az?
(18)

where z; denotes any particular value = and zp4; are
abbreviations for z = Az. By applying this transforma-
tion, the PDE is reduced to a set of ordinary differential
equations (ODEs) of the type:

dT; (t) _ e
dt = Aax?

Tesr(t) — 20 () + Teca(8)] (29
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where T () denotes the temperature T at ¢ = zj as
a function of time. Equation (19) represents a state—
space model of the heat equation. The advocated tech-
nique is referred to as the method of lines.

It is well known that the state—space model of Eq.(19)
can be accurately described by the electrical analogon
shown in Fig.7.

T=T, :JR T :jR , T3 IZDR — s Eﬂ ,TME:R T=Tr
=C T:C = :Lc
o— } res -0

Figure 7. Electrical analogon of a diffusion chain.

A bond gfaph fepresentation of this RC-chain is shown
in Fig.8.
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Figure 8. Bond graph of the diffusion chain.

However, the bond graph shown in Fig.8 still exhibits
a problem. As in the electrical case, we seem to have
resistances that dissipate heat and thereby lose energy.
This is a rather dubious concept. Since we are dealing
with thermic variables throughout, we have a problem.
Where is the dissipated heat flowing to? In the case
of the electrical circuit, it made somehow sense to ig-
nore the thermal subsystem. However, in the case of
the heat flow problem, we can’t possibly do this. We
must represent the secondary sides of the resistors in
the model. Since the dissipated power cannot vanish,
we simply reintroduce it right away at the next node,
as shown in Fig.9.

ATIZI: S:Il:"z ATml':z 5:1}': ATnzF:x ::LM ATnl{—: ’-_L
='rL
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Figure 8. Corrected bond graph of the chain.

Notice that our modified bond graph is no longer
exactly equivalent to the electrical circuit analogon.
While the electrical circuit was able to represent the
temperature distribution correctly, it failed to represent
the power flow adequately. The bond graph represen-
tation helped to discover and eliminate the flaw in the
model.

5 Experiences and Conclusions

Although bond graphs have been around for almost 30
years, I did not teach bond graphs in my modeling class
until two years ago. I always liked bond graphs, but
didn’t find the technique very useful until I had decent
software available that allowed me to code bond graphs
elegantly and efficiently for use in a simulation program.
While bond graph software has been around for some
time also, I didn’t like the available tools. They all
lacked flexibility. DYMOLA [1,2,3] is clearly the soft-
ware of choice.

I found that my students appreciate the bond graph
methodology a lot. They grasp the concepts easily and
quickly, they are highly motivated, and they work ener-
getically on their homework assignments. I also found
that the average student’s understanding of physics has
increased dramatically since the introduction of bond
graphs to my class and since the introduction of the
new text book [1]. My students are much less gullible
than they used to be. They truly make efforts to come
up with physically correct models. They understand
much better than before the difference between a run-
ning simulation program and a valid model. The ques-
tions they raise in class prove that they have a much
deeper understanding of what is going on.

References

{1} F. E. Cellier (1991). Continuous System Modeling,
Springer—Verlag, New York, 755 p.

[2] F. E. Cellier (1992). “Hierarchical Non-linear Bond
Graphs: A Unified Methodology for Modeling Com-
plex Physical Systems,” Simulation, February issue,
in press.

{3] H. Elmqvist (1978). 4 Structured Model Language
Jor Large Continuous Sysiems, Ph.D. Dissertation,
Report CODEN: LUTFD2/(TRFT-1015), Dept. of
Automatic Control, Lund Institute of Technology,
Lund, Sweden, 226 p.

127



