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1 Introduction

Modeling and simulation are central to the design of control systems, since, for complex
large—scale nonlinear industrial plants, there usually don’t exist, or at least are not known,
any suitable analytical design approaches. Simulation may often be the only resort short of
building the physical plant itself and experimenting with the real system.

Another article in this handbook by Otter and Cellier entitled “Software for Modeling
and Simulating Control Systems” deals with a wide palette of issues relating to the simula-
tion of control systems. This article, on the other hand, shall concentrate on issues relating
to modeling the physical plant to be controlled.

Modeling physical systems seems to be a straightforward task. Since physical systems
and experiments are often reproducible in a reliable fashion, since measurements from phy-
sical systems are frequently available in abundance and of high quality, since the meta—laws
of physics are mostly well understood, it seems to be a particularly easy task to come up
with accurate mathematical descriptions of most physical plants.

Yet, there are some typical pitfalls and frequent misconceptions about the modeling of
physical systems, especially among control engineers. These shall be illustrated, and a sound
methodological basis for modeling from physical principles shall then be created.

2 Common Misconceptions

2.1 1% Misconception: State—Space Models Form the Basis of
Physics

Control engineers are used to dealing with state—space models of the form:



Consequently, they look at the physical world as if it consisted of these types of equations,
and, when modeling, try to start out with system descriptions that come as close as possible
to the familiar state-space form.

This concept shall be explained by means of a simple lunar lander module as shown in
Fig. 1. Only the vertical movement of the space craft shall be considered. The modeler starts
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Figure 1: Lunar lander module.

out with Newton’s laws (translational motion) or the d’Alembert principle, since Newton’s
laws come very close, in description, to the desired state—space formulation. Since the mass
of the space craft is time—varying (due to fuel consumption), the resulting equation takes
the following form:
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Making the reasonable assumption that the change in mass is proportional to the magnitude
of the thrust:

d
d—T = —k - |thrust| (3)
and assuming that the thrust is always positive, Equation (2) can be rewritten as:
d 1
—v:—-((l—l—k-v)-thrust—m-g) (4)
dt  m

which is already very close to the desired state-space model.

There is only one major drawback of this model — it is unfortunately incorrect. This
can be seen easily. For simplicity, it shall be assumed that the space craft is far away from
any source of gravity. Thus, ¢ &~ 0, and Equation (4) can be simplified to:

d 1
d_j:E.QJrk.v)-thrust (5)

Making the additional assumption that the initial velocity of the spacecraft is:

1
vo =7 (6)



it follows that the acceleration is exactly equal to zero irrespective of the thrust, and the
doomed crew will not be able to either accelerate or decelerate their space craft ever again.
Luckily for them, physics doesn’t work that way.

Where is the bug in the model? Had the modeler, instead of blindly and unthinkingly
applying Newton’s laws to the space craft, formulated either the principle of energy con-
servation or alternatively that of momentum conservation (both concepts work equally well
in this simple example) to a piece of space surrounding the rocket, he or she would have
noticed that the plume of exhaust of the space craft also carries mass and momentum and
energy, and the disaster could have been prevented. More precisely:

T(t4+ At)=TI(t)+ AZ(t — ¢t + At) (7)

i.e., the total momentum 7 of a system at time t + At equals the total momentum at time ¢
plus the (positive or negative) momentum added to (subtracted from) the system between
time ¢t and time ¢t + At. Applied to the space craft:

(m—Am)-(v+ Av)+ Am-v=m-v+ thrust - At (8)

The first term on the left-hand side of Equation (8) denotes the momentum of the space
craft at time ¢t + At. The second term denotes the momentum of the cloud of exhaust at the
same time. The first term on the right-hand side denotes the momentum of the space craft
at time ¢, and the second term denotes the added momentum due to the drive of the space
craft. Notice that the exhaust must be included. Either the cloud of exhaust is considered
a part of the system by adding it to the left-hand side of Equation (8), as done above, or
the cloud must be considered as leaving the system between time ¢ and time ¢ + At, and
then the same term must be subtracted from the right—-hand side of Equation (8).

Neglecting terms in Equation (8) that are of second order small leads to:
m - Av = thrust - At 9)
or by dividing through At and letting At go to zero:

d
m - d_lt) = thrust (10)

Thus, although the mass of the space craft is undeniably changing with time, the more
familiar form of Newton’s laws must be used in this case.

This is of course a very simple example, and few control engineers would fall into this
trap. However, such errors indeed do happen, and often, it is because of the control en-
gineers’ infatuation with state—space models.

2.2 2" Misconception: Signals Capture Physics

The second misconception has to do with treating individual signals as portraying physical
principles. This idea shall be illustrated by means of a simple thermal model describing, as
a function of time, the temperature distribution along a perfectly insulated rod.



Most physics textbooks (e.g. [Holman, 1992]) can be consulted to provide the following
model: 5 v
T T
—_— = — (11)
at  c-p 0x?
where ¢ denotes time, = denotes the location along the rod, T is the temperature measured
in Kelvin, A is the specific thermal conductance of the material, ¢ represents the specific
thermal capacitance of the material, and p stands for its density.

Control engineers don’t usually like partial differential equations, so they conceptually
cut the rod into slices of length Az, approximate the spacial derivative by third—order
accurate finite differences, and, introducing the abbreviation:

A
o= — (12)
c-p
end up with the state-space model:
dT; Ty =205+ 154
—0- 13
a Az® (13)

Is there anything wrong with this model? Indeed, this model describes rather accurately
what happens to the temperature at each point along the rod and at each moment in time,
if, starting out from an initial spatial temperature distribution, the system is allowed to
settle into steady state without external influences, which is a fine physical experiment, but
doesn’t represent what most engineers might like to do with most rods most of the time.

The problem is that the state—space model of Equation (13) is autonomous. There is no
input at all to this model. If an engineer, for example, decides to let a current flow through
the rod and observe how the rod heats up as a consequence, there is no way that the above
model will be able to help him or her describe the desired effect.

The problem with the above model is that it is expressed in terms of temperature. Tem-
perature is not what drives the physical phenomenon. It is only an observational quantity.
What really goes on in the rod is a phenomenon of heat flow. Thus, it would have been
much more sensible to describe the heat flow through the rod, rather than focusing on the
temperature distribution.

In essence, the two misconceptions mentioned so far boil down to the same thing. By fo-
cusing on heat flow, the modeler is thinking in terms of energy. By focusing on temperature,
he or she is modeling in terms of a phenomenological signal.

Every first—year undergraduate student of electrical engineering knows that the relati-
onship between voltage and current in an electrical capacitor is described by the equation:

duc

o =0

(1)
and the students are told early on in their careers that the behavior of electrical circuits is
governed by two fundamental variables: voltage and current. Equation (14) doesn’t tell why
current is flowing through the capacitor. Yet students will rarely ask that question. To them,
the correct circuit behavior follows directly from a systematic application of Kirchhoff’s laws.
But what precisely do these laws express in terms of physical rather than mathematical,
knowledge?



The product of voltage and current comes into the picture only as an afterthought, if
at all. It rarely sinks in with students that what the circuit is really doing is, starting out
from an initial state, try to balance energy at all times.

Most state-space models are expressed in terms of phenomenological variables that are
related by equations representing remote consequences of the basic physical laws, not the
laws themselves. It is then the modeler’s obligation to check whether all the conditions, all
the silent assumptions, that went into these equations are indeed satisfied in the situation at
hand, and, in order to make this assertion, the modeler often needs to revert to the physical
laws that form the basis of these equations. Yet, engineers often don’t do this. In fact, they
may have forgotten the basic laws altogether and only remember the derived laws that they
use frequently in their everyday’s work. And this is where the problems start.

Might it not make more sense to provide a modeling tool that can start out from the
basic physical principles directly and derive the final state-space model on its own?

2.3 3'1 Misconception: Causality Forms the Basis of Physics

The third misconception has to do with the notion of causality in physical systems. Many
engineers believe that physics is essentially causal in nature. Someone takes a conscious
decision to affect the world in a particular way, thereby causing the world to react to his or
her actions.

Sir Isaak Newton followed the same line of reasoning when he formulated his famous
law about actio being equal to reactio. If someone or something exerts a force (the actio)
on a body that cannot move, then the system has to react by creating a counterforce (the
reactio) of equal magnitude and opposite direction, such that the two forces annihilate each
other.

Yet, the distinction between actio and reactio is a deeply human and moral concept, not
a physical one. There is no physical experiment in the world that can distinguish between
actio and reactio. It is clear that, if a drunk driver smashes his or her car into a tree, this
is the fault of the driver and not of the tree. Yet, this is a purely human concept. Physics
can’t tell the difference.

The relationship between voltage across and current through an electrical resistor can

be described by Ohm’s law:
UR — R- iR (15)

yet, whether it is the current flowing through the resistor that causes a voltage drop, or
whether it is the difference between the electrical potentials on the two wires that causes
current to flow is, from a physical perspective, a meaningless question.

Physics is essentially acausal. Even where time is involved, physics locally only obeys
conservation laws that, by nature, again are acausal. In spite of the recent efforts of science
philosophers such as Roger Penrose, physics has still not discovered the true nature of the
conscious mind. Maybe, consciousness is in fact a mere illusion, the true nature of which is,
however, impossible to determine due to Godel’s theorem?

Luckily, being engineers, we don’t have to concern ourselves with these philosophical
questions. Yet, the acausal nature of physics is indeed of much concern. State—space models



are written in assignment statement form. There is always exactly one variable to the left
of the equal sign, and the model implies that the expression to the right of the equal sign
is evaluated, and the result of this evaluation is assigned as a new value to the variable to

the left.

Consequently, the modeler needs two different models to describe an electrical resistor:
a voltage—drop—causer model and a current—flow—causer model. As mentioned earlier, from
a physical perspective, this makes no sense whatsoever.

Would it not be more meaningful to have a modeling tool available that allows the
formulation of models in a declarative (acausal) form, and let the software worry about
establishing the appropriate computational causality of each equation before generating si-
mulation run—time code?

3 Energy Modeling and Bond Graphs

For a long time, mechanical engineers have used the Lagrangian or Hamiltonian equations
to model mechanical systems, i.e., the modeling is based on the total energy contained
in a mechanical system. However, the approach has two major drawbacks: (i) If non—
conservative forces are present, the Lagrangian and Hamiltonian equations are no longer
solely based on the energy of the system but additionally on the virtual work of the non—
conservative forces. (ii) The equations are based on the total energy of the complete system,
i.e., it is not possible to use the energy of subsystems, and then connect these subsystems
together in a modular fashion. Similar problems occur in other engineering fields if modeling
is based on energy.

To overcome these two deficiencies, Henry Paynter invented in the early 60s the bond
graph [Paynter, 1961]. By computing the time derivative of the energy:

B
o dt

and using the power P instead of the energy F for modeling, both of the aforementioned
difficulties vanish. In this new approach, power continuity equations are formulated instead

P(1) (16)

of energy conservation laws. It turns out that, in any physical system, the power balance is
a local property, i.e., the modeler can express power balance equations for each subsystem
separately, and then connect all the subsystems, as long as he or she makes sure that the
power is also balanced at all the interfaces between submodels [Karnopp, et al., 1990].

This very same property also makes it possible to use power balance equations to describe
dissipative systems. Resistors simply become two—port elements where free energy “opts
out” and decides to henceforth be called heat.

As a bonus, power in any physical system can be written as the product of two adjugate
variables, called the effort and the flow in bond graph terminology. In a bond graph, energy
flow from one point of a system to another is denoted by a harpoon (a semi-arrow), as
shown in Fig. 2.

Power is the product of effort and flow:

P=c-f (17)
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Figure 2: The bond.

In an electrical system, it is customary to select the voltage (or electrical potential), u, as
the effort variable, and the current, ¢, as the flow variable. In a translational mechanical
system, the force, f, will be treated as effort, and the velocity, v, as flow. In a rotational
system, the torque, 7, assumes the role of the effort, and the angular velocity, w, that of
the flow. However, the assignment is arbitrary. Effort and flow are dual variables, and the
assignment could just as well be done the other way around.

When power splits, or is combined, in a so—called junction, the power continuity equation
dictates that the sum of incoming power streams must equal the sum of outgoing power
streams. This requirement can be satisfied in many different ways, but the two easiest ones
are certainly to keep one of the two adjugate variables constant around the junction, and
formulate the balance equation for the other. In bond graph terminology, these two junction
types are called the 0—junction and the I—junction. Their constitutive equations are shown

in Fig. 3.
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Figure 3: The two basic junction types.

Luckily for us engineers, physics seems to have a preference for simple solutions, and
therefore, these two basic junction types are very commonly found in all kinds of physical
systems. For example, one recognizes at once Kirchhoft’s current law formulated for any
node or cutset (the O—junction), and Kirchhoff’s voltage law formulated for any mesh or
loop (the 1-junction).

The concept and benefits of bond—graph modeling shall be demonstrated by means of a
model describing an armature—controlled DC-motor. A schematic diagram of the motor is
shown in Fig. 4: and the corresponding bond graph is shown in Fig. 5: The 0—junction to
the left of the bond graph depicts the electrical power port. Through it, the power:

Pelect = Ugq - ia (18)

enters the subsystem containing the DC—motor. The O0—junction is the interface to the next
subsystem to the left. Only a portion of the incoming power is available for conversion to
mechanical energy. Some of the power gets stored in the armature inductance L., and some
gets irreversibly converted to heat in the armature resistance R,. Since the armature circuit
is a mesh, the distribution of energy is described by a 1-junction. The remaining power is
available for conversion to mechanical energy, thus:

Pmot:ui'ia:Tm'wm (19)
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Figure 5: Bond graph of a DC-motor.

Again, power continuity across the converter can be satisfied in many different ways, yet,
there are only two simple solutions, as shown in Fig. 6: namely the transformer (TF) and
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Figure 6: The two basic converter types.

the gyrator (GY). In fact, these two converters are dual to each other. Had the convention
for efforts and flows been chosen dually on either the electrical or the mechanical side, the
gyrator of Fig. 5 would have become a transformer.

The right-hand part of Fig. 5 shows the mechanical side of the DC—motor. Some of
the converted power gets stored in the rotor J (another inductance), and some of it gets
dissipated in the bearings B (another resistor). Since the angular velocity is the same for all
these elements, the power distribution is described by another 1-junction. The remaining

power:

Poech =T - Wy, (20)

is available to drive a rotational load. It leaves the subsystem through the second power
port, which is represented in the bond graph as a second 0—junction.



The reader may notice that the flux constant, ¥ppy:
Tm = YFlux * ta (21)
expressed in Nm/A, and the electromotive force constant, ¥pyp:
U; = VEMF * W, (22)

expressed in Vs/rad, are physically two different aspects of one and the same phenomenon,
and the numerical values of these two constants must hence be the same:

YEMF = YFlux (23)

otherwise the gyrator will either lose or miraculously generate energy. The consequent
application of energy—flow modeling (here expressed in terms of a bond graph) makes it
possible to discover such types of modeling errors. Signal-flow modeling (e.g. expressed in
terms of a block diagram) will not reveal this limitation.

Does the bond graph approach to power modeling help resolve some of the previously
mentioned riddles? In fact, it does. To clarify this, the problem of temperature distribution
along an ideally insulated rod shall be revisited.

It has been known since the time of Gabriel Kron [Kron, 1962] that the finite difference
approximation of Equation (13) can be interpreted as the electrical circuit shown in Fig. 7.
A bond graph representation of this circuit is given in Fig. 8: In bond graph notation, it is
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Figure 7: Electrical circuit representation of a diffusion chain.
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Figure 8: Bond graph representation of a diffusion chain.

common to write heat flow as the product of temperature and entropy flow:

dQ _ , ds

=7.= 24
dt dt (24)



where the temperature, T, is used as the effort variable, and the entropy flow, dS/dt, is
interpreted as the flow variable. Thus, it seems that the bond graph model is providing more
than just an implementation of the circuit diagram, since it not only computes temperature
values, but also provides a heat flow interpretation.

Unfortunately, the bond graph of Fig. 8 is certainly incorrect. The problem with this
bond graph has to do with the dissipated heat in the resistive elements. It was okay to
ignore the generated heat in the armature resistance and bearings of the DC—motor model.
It simply means that the modeler chose not to include the thermal variables and equations
in his or her model. However, the temperature dissipation model is already in the thermal
domain. There is no way that the modeler can ignore what happens to the generated entropy
and get away with it. Since the rod is thermally insulated, the generated entropy cannot
escape and has to stay in the rod.

Jean Thoma proposed to represent resistors with entropy generation as resistive source

(RS) elements [Thoma, 1990]. The modified bond graph takes the form of Fig. 9. The bond
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Figure 9: Corrected bond graph representation of a diffusion chain.

graph of Fig. 9 represents correctly both the entropy generation and flow in the rod as well
as the temperature distribution. Now, it has become easy to model also the electrically
heated rod. Fach resistor element is represented in the bond graph through an additional
small source of entropy, as shown in Fig. 10.
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Figure 10: Bond graph representation of an electrically heated rod.
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4 Object—Oriented Modeling

It was shown that using bond graphs for representing physical systems constitutes a safe
way of modeling. However, in some cases, bond graphs may be unnecessarily constraining.
What is important is not the bond graph syntax per se, but some of the properties inherent
in bond graphs.

The most important feature of a bond graph is that it operates on energy flows rather
than on individual signals. Thereby, it is guaranteed that no component and no interface
will ever generate or lose energy in an uncontrolled fashion. Yet, other modeling formalisms
may offer this same feature.

Another important facet of bond graphs is the fact that they are inherently acausal. Loo-
king at the bond graphs presented in the previous section of this article, nothing indicates
whether the resistive elements are of the voltage—drop—causer or of the current—flow—causer
variety. The equations that are derived from a bond graph are declarative in nature. It is
correct that some researchers have introduced so—called “causality strokes” into the bond
graph methodology, turning the formerly acausal bond graphs into a causal variety. Howe-
ver, as shown in [Cellier et al., 1995], causality strokes are not necessarily helpful, and, in
the case of switching circuits, they are even harmful. Hence it was decided not to augment
the bond graphs shown in this article by causality strokes.

A third very important feature of bond graphs is that they are modular and hierarchical
[Cellier, 1992]. This makes it possible to construct bond graphs of submodels and connect
them topologically to more complex bond graph elements that can then be connected further
in a hierarchical manner. Since the interface points between bond graph submodels can be
restricted to be always O0—junctions, power continuity at the interface between submodels is
automatically guaranteed.

However, a bond graph is a fairly low—level modeling interface. It may not always
be convenient or efficient to model down to that interface. Other modeling methodologies
share some of the benefits of bond graphs but offer an either more convenient or higher—level
interface. For example, if a modeler wants to describe an electrical circuit, there is nothing
wrong with using the circuit diagram as a modeling tool. Circuit diagrams are modular
and hierarchical, and power continuity at the interface between submodels is guaranteed
by systematically applying Kirchhoff’s laws to nodes and/or meshes [Huelsman, 1984]. The
bond graph has the advantage of being domain independent, but a circuit diagram may be
a more natural and equally powerful tool as far as electrical circuits are concerned.

The case of three-dimensional mechanical devices, so—called multibody systems (MBS)
[Nikravesh, 1988], is considerably worse. An important subclass of MBS devices are tree-
structured robots. The use of bond graphs to describe the motion of such robots will, within
the constraints of today’s software technology, almost invariably lead to very inefficient
simulation code. The problem is that bond graphers always express the motion of bodies in
terms of absolute velocities [Bos, 1986]. This leads, in the generated equations, necessarily
to large algebraically—coupled higher index equation systems that are very hard to break.
The trick in generating efficient simulation code is always to express the motion of each
joint relative to the motion of the previous one [Otter et al., 1993]. It is evidently true that
the bond graph contains complete information about the system, and a smart preprocessor
could convert the model to a form that might be used to generate efficient run—time code,
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but this would necessarily call for specialized translation algorithms that only work in the
case of MBS problems. It is not useful to develop such a preprocessor, because it is perfectly
feasible to come up with a modular hierarchical description of MBS components that can
be connected in a safe fashion and which generates efficient simulation code directly.

The object—oriented modeling paradigm, introduced by Hilding Elmqvist in the late
70s [Elmqvist,1978], provides for a platform that allows the modeler to implement all of
the above modeling formalisms including electrical circuit diagrams [Cellier and Elmqvist,
1993], bond graphs [Cellier, 1992] and MBS [Otter et al., 1993]. Use of this methodology is
a little less safe than using a more restricted modeling tool, such as a circuit diagram editor
or a bond graph editor, because it provides more flexibility. It is the user’s and/or model
library developer’s responsibility to ensure that the power continuity equation is satisfied
at the interfaces between models. Modelers are thus advised, not to define the cuts (the
interface points) of their models arbitrarily, but to restrain themselves, and only use proven
connection mechanisms. The question that the modeler should always ask him- or herself
when designing these model interfaces is whether connecting such models in an arbitrary
fashion will always ensure that power, momentum, and mass are balanced at the interfaces.

It is the authors’ experience that many modeling errors are introduced while inter-
connecting models that violate balance equations at their interfaces. Hence it is important
to systematize the approach to interfacing models, and the large—scale example shown in
the sequel of this article explains one way of accomplishing this.

An object—oriented modeling environment for physical system modeling should offer at
least the following features:

o Fncapsulation of knowledge: The modeler must be able to encode all knowledge related
to a particular object in a compact fashion in one place with well-defined interface
points to the outside.

o Topological interconnection capability: The modeler should be able to interconnect
objects in a topological fashion, plugging together component models in the same
way as an experimenter would plug together real equipment in a laboratory. This
requirement entails that the equations describing the models must be declarative in
nature, i.e., they must be acausal.

o Hierarchical modeling: The modeler should be able to declare interconnected models as
new objects, making them indistinguishable from the outside from the basic equation
models. Models can then be built up in a hierarchical fashion.

o Object instantiation: The modeler should have the possibility to describe generic object
classes, and instantiate actual objects from these class definitions by a mechanism of
model invocation.

o Class inheritance: A useful feature is class inheritance, since it allows the encapsulation
of knowledge even below the level of a physical object. The so encapsulated knowledge
can then be distributed through the model by an inheritance mechanism, which ensures
that the same knowledge will not have to be encoded several times in different places
of the model separately.

12



o Gleneralized Networking Capability: A useful feature of a modeling environment is
the capability to interconnect models through nodes. Nodes are different from re-
gular models (objects) in that they offer a variable number of connections to them.
This feature mandates the availability of across and through variables, so that power
continuity across the nodes can be guaranteed.

In the sequel, one such object-oriented modeling environment, Dymola [Elmqvist, 1995]
shall be described. The language Omola with its environment Omsim [Andersson, 1994]
represents another research effort with similar aims and properties.

5 Dymola: An Object—Oriented Modeling Tool

Dymola offers all of the above features plus a few more. In Dymola, an electrical resistor (a
simple object) can be described as:

model class Reststor
cut WireA(vA/iA), WireB(vB/iB)
main cut TwoWires [ WireA |, WireB ]
main path Orientation < WireA , WireB >
local u, i
parameter R

u=vA—vB
1 =1A
1A+iB =0
u= Rx*1

end

A cut is a mechanism used for interconnection of models. It describes an interface point of
the model. The resistor has two such interface points, namely its two pins, called WireA
and WireB respectively. Each pin carries two variables, an electrical potential (an across
variable), and the current into the device (a through variable).

In Dymola, both the across variables and the through variables are lists of variables sepa-
rated by a comma; the two lists themselves are separated by a slash. The difference between
across and through variables becomes apparent in a connection only: across variables are
set equal at a connection point, whereas through variables are summed up to zero. Note
that, in the above example, the product of the two cut variables (e.g. v4 - i4) is the power
flowing into the element. In this way, it is guaranteed that the energy is balanced at the
interfaces of the resistor. In other words, across and through variables can be interpreted
as the effort and flow variables of the bond graphs, whereby connection points are always
O—junctions.

The third and main cut is a hierarchical cut. It consists of the two previously defined
basic cuts. This declaration enables the modeler to bend the legs of the resistor and plug the
resistor as a whole with a single motion into a socket attached to a circuit board. The path
declaration provides a logical orientation of the device. If resistors are connected in parallel
or in series, Dymola uses the path declaration to determine, which way they are connected
into the circuit. In the case of a resistor, this may not really matter, but in other cases, it
might. The four equations formulating the relationships between the terminal (interconnect)
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variables, the local variables, the parameters, and the constants are declarative in nature.
Dymola will solve each of them for the appropriate variable, once it has access to all the
equations.

The reader may notice that many of the equations described in the above model are
shared by all one—port devices. Thus, it makes sense to encapsulate this knowledge in a
separate model class, and then migrate the knowledge to the resistor class by means of
inheritance. In Dymola, this is done in the following way:

model class OnePort
cut WireA(vA/i), WireB(vB/ — i)
main cut TwoWires [ WireA |, WireB ]
main path Orientation < WireA , WireB >
local wu
u=vA—vB
end
model class Resistor
inherit OnePort
parameter R
u= Rx1
end

The inherit statement tells Dymola to copy all the declarations and equations from the
parent class to the inheriting class. The current equations were slightly simplified to avoid
having to carry around unnecessary aliases.

An interesting one—port is the electrical switch:

model class Switch
inherit OnePort
terminal open
0 = if open then i else u
end

If the switch is open, then ¢« = 0, else u = 0. The reader may remember that equations are
declarative in nature, and that the computational causality will only be determined later.
It turns out that Dymola can turn around if expressions as easily as algebraic expressions.
A terminalis another interface point. It is a simplified cut that contains only a single across
variable. Whereas WireA and WireB are power interfaces, open is a signal interface. The
variable open is a control input to the model. It could have been declared as input, but
there were good reasons for not doing so and using the direction—neutral terminal declaration
instead, as shall soon become clear. By using a signal interface, the modeler acknowledges
that he or she considers the energy flow needed to turn the switch negligible in comparison
with other power paths in the system. It is also acknowledged that both the time needed
to deliver the energy to the switch as well as the time needed for the switch to react can
be ignored. Models never reflect all facets of reality, and simplifications are okay, as long as
the modeler makes them consciously, and knows what he or she is doing.

An ideal diode can be described in the following way:

model class Diode
inherit Switch
open = u <= 0 and not ¢ > 0
end
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An ideal diode is a switch. A logical equation is added that determines the value of the
boolean variable open. The diode goes into its on state (switch closed), when the voltage
becomes positive, and it goes into its off state when the current becomes negative.

Evidently, Dymola’s inheritance option is hierarchical, since diodes are switches which
in turn are one—ports.

It becomes now evident, why open had not been explicitly declared as an input. In the
diode model, the computational causality of the signal port is turned around. Now, open is
no longer a control input, but merely a measurement variable that is reported to the outside
world through the interface. It is hardly ever justified to declare a variable explicitly as input
or output, except at the top level, i.e., in the main model.

Given the simple electrical circuit shown in Fig. 11:

Ri Diode
— N
L L1

uo

@ RL D —— cC

Common

Figure 11: Rectifier with load.

This circuit can be modeled in Dymola as follows:

model Rectifier
submodel (VSource) UO
submodel (Resistor) Ri(R=10), RL(R = 50)
submodel (Capacitor) C(C = 0.001)
submodel (Diode) D

submodel Common

parameter f = 50

connect Common — (U0 — Ri — D)//C//RL)
U0.u0 = sin(2 + 3.14159 * f + Time)

end

Instantiations of models from model classes are obtained using the submodel statement. The
connect statement plugs the circuit together. Since this circuit was sufficiently simple, no
nodes were explicitly introduced, and the interconnections between the models were simply
accomplished through series (—) and parallel (//) connections'. The dot-notation is used
to access individual variables of submodels directly rather than through port connections.
C.u is the variable u of the model ', which in turn is of model class Capacitor. This is a
case of back—door programming, and the feature should be used sparingly.

Object—oriented modeling can be used as an alternative to bond graph modeling, pro-
vided the model classes are designed in such a way that the power balance is satisfied at

!For larger models it may be more convenient to make the connections using Dymodraw, a graphical
object—diagram editor that generates Dymola code.
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Figure 12: Steam power plant modeled in Dymodraw.

the model interfaces. Object—oriented modeling has the additional benefit that it resembles
more closely the physical reality (e.g. electrical components are represented in their fami-
liar form rather than through more abstract domain—independent bond graph elements).
Object—oriented models are more general than bond graphs, since they can just as easily be
used to represent block diagrams or signal flow graphs when the need arises.

6 Object—Oriented Model of a Steam Power Plant

Fig. 12 shows a top—level object—diagram of a steam power plant originally modeled by
[Lindahl, 1976] consisting of a drum system, super-heaters, pre-heaters, several turbines
operating at different pressure levels, attemperators, dearators, condensors, a feedwater
pump, a combustion chamber, and a few other components.

The drum can, for example, be described in the following manner. The model given here
has been derived from first principles by [Astrém and Bell, 1988]. Total energy and mass
balances are stated as well as energy and mass balances for the risers. The variation of the
steam—water mass ratio along the risers is complex. A linear variation is assumed, which,
after integration along the risers, gives the average steam—water volume ratio, a,,, as shown
below.
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model class Drum
{ Including risers and downcomers }

parameter Adrum = 20 { Drum wet area [m?] } |
Vdrum = 40 { Drum volume [m?] } |
Vr =37 { Riser Volume [m?] } ,
Vde=19  { Downcomer volume [m?] } |
k=0.01 { Friction coefficient } |
ep = 360 { Specific heat of metal [J kg=! K=1] },

m =0 { Mass of metal [kg] },

cut InWater (p,Hfw/qfw) { Pressure, enthalpy and flow rate of feed water. }
cut InPower ( /Pow) { Power from fuel. }
cut OutSteam (p, Hs/ — q5) { Pressure, enthalpy and flow rate of steam. }
local dl { Drum level } |

am { Steam quality volume ratio } |

Vw { Drum water volume } ,

Vawt { Total water volume } |

xr { Steam quality at riser outlet } ,

Vst { Total steam volume } |

Tm { Metal temperature } |

qdc { Downcomer flow } |

qr { Riser flow } |

s { Steam density } ,

Huw { Water enthalpy } |

rw { Water density } ,

Ts { Steam temperature }

local Ed, Md, Er, Mr { Energies and masses }

{ Total energy balance. }
EFd=rsxVstx Hs+rwxVwt« Hw+ m*cp*xTm
der(Fd) = Pow+ qfw* Hfw —gs* Hs

{ Total mass balance. }
Md=rs* Vst +rwxVwt
der(Md) = qfw — gs

{ Energy balance in risers. }
Er=rsxam+«Vr+xHs+rw* (1 —am)*«Vr* Hw
der(Er) = Pow+ qde« Hw —xr«qr Hs — (1 — xr) « qr« Hw

{ Mass balance in risers. }
Mr=amxrs*xVr+ (1 —am)*rw*Vr
der(Mr) = qde — qr

{ Momentum balance for downcomers. }

am* Vo« (rw —rs) = k x gdc * x2/2

{ Average steam-water volume ratio in the risers. }

am = rw/(rw—rs) (1 —rs/(rw—rs)/zr«In(1 + (rw/rs — 1) * zr))
{ Total steam volume. }

Vst = Vdrum —Vw+amx*Vr

{ Total water volume. }

Vuwt =Vw+Vde+ (1 —am) = Vr

{ Drum water level. }

dl = (Vw+ am + Vr)/Adrum

{ Steam and water properties. }
Hs=H2P(p)
rs = 1/V2P(p)
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Hw = HI1P(p)
rw = 1/V1P(p)
Ts =TP(p)
Tm="1Ts

end

The model of the drum is in itself interesting. It is of index two because of the constraint that
the sum of the water volume and steam volume must be equal to the drum volume including
risers and downcomers. This means that water and steam volumes cannot both be chosen as
state variables. The index can be reduced by differentiating certain equations [Pantelides,
1988]. The index reduction technique also makes it possible to choose more appropriate
state variables p, V,,, and z, than the variables appearing differentiated E;, My, F,, and
M,. When solving for the corresponding derivatives, a system of 13 linear simultaneous
equations is detected. It can be reduced to a 3 x 3 system by use of tearing, which can then
be solved either symbolically or numerically [Elmqvist and Otter, 1994]. In [Astrém and Bell,
1988], the determination of which equations to differentiate, the differentiation, elimination
of variables, and the solution of the linear system of equations were done manually. Dymola
is capable of performing all these steps automatically.

7 Conclusions

This article has shown energy flow modeling to be a corner stone in safe descriptions of
physical systems. Many potential problems can be avoided by systematically applying this
approach to modeling. However, energy flow modeling puts heavy demands on the modeling
software. Only a full-fledged object—oriented modeling tool, such as Dymola, can satisfy
these demands in all circumstances.

A very important problem has not been dwelled upon in this article. Evidently, it is never
possible to consider all aspects of a system in a model. Any model must always represent an
idealization, a simplification of reality. How this is done, which facets of reality are left out
from the model, is a question that needs to be addressed by the modeler. Finding the answer
to this question is not something that can be automated in general. It requires intuition
into how the system works, and a lot of experience on the side of the hAuman modeler.

Yet, energy balances can assist the user also in this respect. It is a sound proposition
to request that even after the model simplifications have become effective, all energy flows
internal to the model are still balanced, and also that energy can enter or leave the model
only through a limited number of well-defined and carefully monitored ports. Although it
may not always be possible to decide on the basis of energy considerations alone, which
facets of reality to keep in the model and which other facets to throw out, energy modeling
will support the user in ensuring that simplifications, once decided upon, are implemented
in a consistent fashion.
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