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Hierarchical non-linear bond graphs:
a unified methodology for modeling
complex physical systems
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Introduction

It has been known for a long time that the mathemat-
ics behind the dynamical behavior of systems from
different disciplines of physical sciences have much in
common. In particular, it has been recognized that
mechanical systems can be treated by making use of
electro—mechanical analoga, i.e. by treating masses,
springs, and frictions as inductors, capacitors, and
resistors.

This methodology was formalized in the early sixties
through the introduction of so—called bond graphs [13].

A bond is a directed path that denotes the flow of power
from one point of the system to another.

It tumns out that, in all physical systems, power can be
written as a product of two variables, one of which is an
across variable, while the other is a through variable.
Across variables around a node assume the same value,
whereas through variables into a node add up to zero.
The bond graph name of a node is a (~junction. Inan
electrical circuit, the potentials around a node assume all
the same value, whereas the currents into a node add up
to zero. Thus, if we identify the node of the electrical
circuit with the O—junction of the bond graph, the
potentials will become across variables, while the
currents will become through variables. The electrical
power flowing through a circuit element i can be
expressed as the product of the potential drop u, and the
currenti,:

P=u,*i, M




A bond, represented by a bold harpoon, is nothing but
a connector that simultaneously connects two variables,
one across variable, in bond graph terminology usually
referred to as the “effort” e, and one through variable,
called the “flow” f. The bond is shown in Fig. 1:

sl oaB oSy
f

Figure 1. Thebond

The bond graph literature is not systematic with
respect to the bond graph conventions. The harpoon is
sometimes shown to the left and sometimes to the right
of the bond, and the effort variable is sometimes
indicated on the side of the harpoon and sometimes
away from the harpoon. This inconsistency can be
explained by the fact that most bond graphers viewed
the bond graph methodology as a pure modeling aid to
be used with paper and pencil. The fact that a model
represents always a codified form of knowledge occurred
to them at best as an afterthought.

However, if we wish to use bond graphs as a tool to
formalize a model and to formulate it as input to a
computer program (as we shall do in this paper), we
need to be more rigorous. For this purpose, we decided
that the harpoon must sit always on the left of the bond,
and the effort variable is always indicated on the side of
the harpoon, while the flow variable is indicated on the
side away from the harpoon.

The denomination of the effort and flow variables is
arbitrary. If we had identified an electrical mesh with the
(O-junction instead of the electrical node, the roles of the
potentials and currents in the bond graph would have
been interchanged, yet the power would still be the
product of one effort variable and one flow variable.

Since electrical circuits, and all other physical systems,
are described through a set of node (cutset) equations
and a set of mesh (loop) equations, the bond graph must
contain two types of junctions. The effort variables
across a (Hjunction assume the same value, whereas the
flow variables into the 0—junction add up to zero. The
flow variables across a 1-junction assume the same
value, whereas the effort variables into the 1-junction
add up to zero. The two function types are shown in
Fig.2.

The O0—junction thus represents Kirchhoff’s current
law, while the 1-junction represents Kirchhoff’s voltage
law. Ifa bond connects two junctions, one will always
be of the O—junction type, while the other is of the 1-
junction type, i.e. in a bond graph, O—junctions and 1-
junctions toggle among each other. Neighboring
junctions of the same gender can be combined into one.

We are now ready to apply these concepts to a simple
passive electrical circuit as shown in Fig. 3.

Figure 3. Circuit diagram of the passive electrical circuit

The bond graph for this circuit is shown in Fig. 4:
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Figure 4. Bond graph of the passive electrical circuit

The rules for constructing a bond graph of an electri-
cal circuit are very simple. We start by representing
each circuit node by a 0junction except for the reference
node which is drawn like in the circuit diagram. We
then represent each branch of the circuit diagram by a
pair of bonds connecting two 0—junctions with a 1-
junction between them. We let the harpoons point in
the same direction that we picked for the branch
currents. Finally, we attach the circuit elements to the 1-
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junctions with the harpoons away trom the junction for
passive circuit elements, and directed towards the
junction for sources.

Contrary to other graphical abstractions such as block
diagrams and signal flow graphs, the bond graph
obviously preserves the geometric topology of the
physical system. What destroys the topology in a block
diagram or a signal flow graph is the fact that voltages
and currents that participate in a power flow get
separated from each other. However, efforts and flows
aren’t tradable goods in a physical system. The only
two types of merchandise that exist in a physical system
are energy and mass. The bond graph preserves the
structural topology of the physical system since it
reflects physical trades.

Since the potential of the reference node v, can,
without loss of generality, be normalized to zero, we can
say that no power flows into or out of the reference
node. Thus, it makes physical sense to eliminate such
bonds from the bond graph. In our example, this leads
to a number of junctions with only two bonds attached
to them. Such junctions can be eliminated. The two
attached bonds are thereby amalgamated into one. The
resulting simplified bond graph for the above example
is shown in Fig. 5.

I:Ll R:Rl
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Figure 5. Simplified bond graph of the passive electrical
circuit

The bond graph shows the dissipation of power from
the effort source SE into the various passive circuit
elements of type resistance R, capacitance (or compli-
ance) C, and inductance (or inertance) .

Two variables are associated with each of the bonds.
Consequently, we need two equations in the resulting
simulation program to evaluate them. It turns out that,
in all bond graphs, one of these variables is always
evaluated at each of the two ends of the bond. We can
denote this fact by a little vertical stroke attached to one
of the two ends of the bond. By convention, the stroke
denotes the end where the flow variable is evaluated. In
bond graph terms, this is called assigning a (computa-
tional) causality to the bond graph [10].

Sources have mandated causalities as shown in Fig. 6.
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Figure 6. Mandated causalities for effort and flow sources

Since the effort of an effort source is determined at the
source, the flow must be determined at the other end,
thus, the little stroke is away from the source. In the
flow source, the situation is opposite. The thin arrows
denote signal paths. They symbolize the fact that these
variables are somehow determined from outside the
system. A source as drawn in the circuit example above
is actually a non—physical element. Power cannot be
generated, only transported and converted. However, a
“system” never denotes the whole of the universe. It
denotes a piece of the universe. Sources are interfaces
between the system and the universe around it.

Capacitances and inductances have desired causalities
as shown in Fig. 7.

u

Figure 7. Desired causalities for capacitances and
inductances

By declaring that we wish to compute the effortat the
capacitance, we generate an equation of the type:

duc - 1., @)
dt C

We thereby end up with a state equation in the state
variable 1 . which can be integrated. The reverse
causality would have produced an integral equation for
the variable i . which would have forced us to compute
the variable u . somewhere else in the circuit by means
of numerical differentiation. The situation for the
inductance is analogous.

The resistance can assume either of two causalities as
shown in Fig. 8.

Figure 8. Possible causalities for resistors
The causality shown to the left leads to the equation:

IR ==+ - Up (3a)

=




whereas the causality shown to the right leads to the
equation:

ug = R - ip (3b)

Capacitances and inductances store the energy that
flows into them. Resistors dissipate the energy. Since
power cannot be dissipated, also the R element is
basically a non-physical element. It denotes another
interface to the universe. The dissipated power is
converted into heat. Since our simple model reflects
only the electrical properties of reality, the generated
heat is part of the universe, and not part of the systerm.

Since we add up the flows in a 0—junction, we can
generate only one equation for the flows into a 0—
junction. Consequently, only one of the bonds attached
to a 0—junction can have its stroke at the side of the
junction. Similarly, all bonds but one attached to a 1-
junction must have their strokes at the side of the 1-

These causality rules suffice to determine a unique
causality for our simple passive electrical circuit. This is
shown in Fig. 9.
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Figure 9. Causal bond graph of the passive electrical circuit

In this example, we were able to satisfy all causality
constraints in a unique manner. This is the preferred
situation. If not all mandated causality constraints can
be satisfied, we are confronted with a non—causal system.
This case occurs for example if we try to parallel connect
two voltage sources with different voltage values. If we
cannot satisfy all desired causality constraints, i.e. if we
run into wrong causalities at either C or I elements, we
are confronted with a degenerate system in which the true
system order is lower than the number of energy
storages makes us believe, If we have a choice in
assigning causalities without offending any of the
causality constraints, we have a system with one or
several algebraic loops.

Mechanical systems can be modeled in a similar
manner. Let us demonstrate this concept by means of
the simple translational system shown in Fig. 10:

Figure 10. Simple translational mechanical system

In a translational mechanical system, the forces have
been made the effort variables, and the velocities have
been made the flow variables. The mechanical power of
translation can be expressed as the product of a force f,
and a velocity v ;:

Pmms:fi'vf “)

The rules for constructing the bond graph are as
simple as in the electrical case. We start by identifying
all free moving bodies. We place 1junctions for each of
their velocities. Where ever two bodies interact with
each other, we connect their junctions with branches
consisting of two bonds and one 0—junction in between,
and attach all interacting elements to that O—junction.
Newton’s law (or rather the d’Alembert principle) is
formulated at the 1-junctions themselves. The bond
graph for the above translational system is shown in
Fig. 11.
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Figure 11. Bond graph of the translational mechanical
problem

Rotational systems can be modeled in exactly the
same way. Here, the effort variables are the torques 1,
and the flow variables are the rotational velocities o, .
The mechanical power of a rotation can be expressed as:

P =10 (5

rof 1 1
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Beside from the two basic quantities effort e and flow
f, we often make use of two additional derived quanti-
ties, namely the generalized momentum:

p= [ e dr I 6)
o

and the generalized displacement:

q=[fdr @)
0

In electrical systems, the generalized momentum is
the flux through a coil, and the generalized displacement
is the charge in a capacitor. In translational mechanical
systems, these are the momentum and the displacement
(bond graphs were invented by mechanical engineers),
and in rotational mechanical systems, they are the
angular momentum and the angular position.

All these quantities are common to a large variety of
other physical systems as well, as are the two Kirchhoff
laws. Hydraulic, pneumatic, and acoustic systems
operate similarly to the electrical and mechanical ones.
In all these systems, the pressure is defined as the effort
variable, while the volume flow rate is defined as the flow
variable. The derived quantities are the pressure momer-
tum and the volume.

The element laws, however, may look different for
different types of systems. In particular, it may be noted
that the equivalent to Ohm’s law for other types of
systems is often non-linear. For example, the relation
between effort (pressure) p and flow g in a (turbulent)
hydraulic valve is quadratic:

Ap o g? @)

Notice the confusing nomenclature. The symbols p
and g are the most commonly used symbols in the
hydraulic and pneumatic literature to denote pressures
and flows. However, these are effort and flow variables,
and not generalized momentums and generalized displace-
ments.

Table 1 presents a summary of the four generic
variables for the most commonly used types of physical
systems.

Until now, we have discussed different types of
systems in isolation. However, one of the true strengths
of the bond graph approach is the ease with which
transitions from one form of system to another can be
made, while ensuring that the energy (or power)
conservation rules are satisfied. In an energy trans-
ducer (such as a transformer, or a DC-motor), the
energy (or power) which is fed into the transducer is
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converted from one energy form to another, but itis
never lost. Consequently, the energy that enters the
transducer at one end must come out in one or more
different form(s) at the other. A “loss-less” energy
transducer may, for example, transform electrical
energy into mechanical energy. In reality, every energy
transducer “loses” some energy, but the energy does
not really disappear — it is simply transformed into heat.

The above energy conservation law can be satisfied in
exactly two ways inan “ideal” (i.e. loss-less) energy
transducer. One such transducer is the ideal transformer.
Itis governed by the following set of relationships:

(%)
f=mf, (9b)
The ideal transformer is placed between two junc-

tions. There are two types of causalities possible as
shown in Fig. 12:

e e e e
|_.1_s TF l._fL\ 1 N TF fz 5
i m 2 fi "m 2
e =mey eg=(Um) e,
f,=mf, f = (Um)f,

Figure 12. Causality bond graph for the ideal transformer

Examples of transformers are the electrical trans-
former (shown in Fig. 13a), the mechanical gear (shown
in Fig. 13b), and the mechano-hydraulic pump (shown
in Fig. 13c).

ug=Mu
: 3 F,=Ap,y
ip=Mi,
1 Qg = Avy
b ™M m=A
(a) Electrical (b) Mechanical (c) Hydraulic
Transformer Gear Pump

Figure 13. Examples of ideal transformers

The other type of energy transducer is the ideal
gyrator. Its behavior is governed by the equations:




Table 1. Power —(e,f) and energy —(p,q) variables [17]

(100)
(100)

Also the ideal gyrator exhibits two forms of causali-
ties as shown in Fig. 14:

e e [
: 1 s cY 7 ;: 1 ‘!GY: 2 5
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Figure 14. Causality bond graph for the ideal gyrator

Examples of gyrators are most electro-mechanical
converters, such as the DC-motor shown in Fig. 15:

Tm=Wia

ui=\|!mm

Figure 15. Example of an ideal gyrator

Notice that no real difference exists between the two
transducer types [1,2]. If the effort and flow variables in
the mechanical system were toggled, the DC—motor
would in fact become a transformer.

Let us go through an example. We want to model an
armature controlled DC-motor with constant field
which drives a translational load connected to the motor
through a slip clutch and a gear. The resulting bond
graph is shown in Fig. 16.

R:Ry R:B3 R:py le

Upalia T 1 3! 019
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Figure 16. Bond graph of a DC-motor controlled mechanical
system

The electrical power generated by the effort source is
partly stored in the armature inductance L, and is
partly dissipated in the armature resistance R .. The
remaining power is available for conversion into
mechanical power. On the rotational side, the power is
partly stored in the internal motor inertia ], and partly
dissipated through friction B ;. The slip clutch reduces
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the angular velocity from @, to @,. It contains the
friction B,. The remaining energy is partly stored in the
external motor inertia |, which contains the primary cog
of the gear. There is also a spring k, which prevents the
axle from rotating too far. The gear itself is represented
by a transformer. In this example, it converts the
remaining rotational energy into translational energy.
The load consists of a mass m, another springk,,, a
friction B, and the gravity forcem - g (another source).

The bond graph shows clearly that the power avail-
able for conversion from the electrical side to the
rotational mechanical side is:

P, =t i =P =10 (11)

The electrical power available for conversion is the
product of the induced voltage #,and the armature
current i . This power is equal to the generated rota-
tional power which can be described as the product of
the motor torque T and the angular velocity of the motor
®,. This fact would not have been so easy to read out of
a block diagram or a signal flow graph.

Notice the problem with the causality assignment.
After satisfying all mandated causalities at the sources
and junctions, we are confronted with a conflict. The
translational inertance (the mass) m has the wrong
causality. Thus, while this system exhibits six different
energy storages, it is in fact a fifth order system.

Bond graph modeling in DYMOLA

The first bond graph simulation language written in
the early seventies was ENPORT [14,15]. This software
used an approach similar to SPICE. Itdid not request
causalities to be specified, and it transformed the
topological input description into a branch admittance
matrix which could then be solved employing similar
techniques to those used in SPICE. Consequently,
ENPORT is able to handle structurally singular prob-
lems. The current version of the code, ENPORT-7 [15],
offers an alphanumerical topological input language
similar to SPICE, and it offers also a menu—driven
graphical input language which, however, is not yet
very user—friendly. A full-fledged graphical window
system is currently under development. ENPORT-7
runs on various mainframe computers, but a slightly
reduced version, ENPORT /PC, exists for IBM PC’s and
compatibles. ENPORT offers also a macro capability
(somewhat comparable to the subcircuits in SPICE)
which, however, does not provide for full hierarchical
decomposition capabilities.

In the late seventies, another bond graph simulation
language was developed at Twente University in the
Netherlands, called THTSIM in Europe, and TUTSIM in
the United States [17]. TUTSIM translates bond graphs
into a state-space representation. The user is required
to specify the causalities, and structurally singular
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systems cannot be handled. TUTSIM's simulation
engine is somewhat poor in comparison with other
state-space solvers such as ACSL. The same research
group is currently prototyping a new bond graph
modeling system, CAMAS [3], which runs on SUN’s,
has nice graphics capabilities, and is able to handle
algebraic loops. CAMAS employs an object—oriented
language (SIDOPS) for the model description. Once
available, this might become a good product.

The third product on the market is CAMP [7,8], a
preprocessor to ACSL [12] which translates bond graphs
into ACSL programs. CAMP has the same limitations
as TUTSIM. It does not handle algebraic loops or
structural singularities, but it has the better simulation
engine (ACSL). The input format s topological (as for
the two other products). Itis not truly flexible with
respect to handling non-standard circuit elements.
Non-linear elements need to be edited manually into
the generated ACSL program which is inconvenient. A
graphical front end exists meanwhile also for CAMP 9]
However as in the case of ENPORT-7, the graphics
editor is menu—driven rather than window-operated.

With the exception of the unfinished CAMAS system,
none of the above products is able to handle hierarchi-
cally structured models in a general fashion which is
essential for the analysis of complex systems. For these
reasons, we shall not discuss any of these programs in
greater detail. Instead, we decided to go a different
route. DYMOLA [6] is a general purpose hierarchical
modular modeling software for continuous-time
systems. As we noticed, elements —such as resistors—
which allow different causalities to be applied lead to
different equations depending on their causality
assignment. Thus, it is not sufficient that a modeling
software can sort equations (as most CSSL-type lan-
guages will do), but in addition, it is necessary that the
software can solve equations for any variable. The
software must be able to turn an equation of the type:

u=R-i (12a)
into:
i (12b)
R

when needed. DYMOLA provides for this capability.
DYMOLA also supports the concept of across and
through variables. The DYMOLA statement:

cut A (/i)

defines an electrical wire with the potential v and the
current i. Cuts are hierarchical data structures (similar
to PASCAL records) that enable the user to group
individual wires into buses or cables, and cables into
trunks. A cutis like a plug or a socket. It defines an



interface to the outside world. The DYMOLA state-
ment:

connect x:A at y:B

plugs the cut A of model x into the socket B of model y.
Thereby, all the across variables (to the left of the slash
separator) are set equal, and all the through variables (to
the right of the slash operator) are summed up to zero.
The DYMOLA preprocessor automatically generates the
necessary coupling equations.

Nodes are a convenient means to organize connections.

They act like your power distributor. You can plug
several appliances into one such distributor. The above
statement could also have been coded as:

noden
connect x:A atn
connect y:B atn

DYMOLA's nodes can be used as O—junctions in a
bond graph model. There is no DYMOLA equivalent
for 1junctions, but, as we explained before, 1junctions
are the same as 0—junctions with the effort and flow
variables interchanged. Therefore, we created a model
type “bond” which simply exchanges the effort and

flow variables:

model type bond
cut A (x/y) B (y/x)
main cut C [A B]
main pathP<A-B>
end

The bond acts just like a null-modem for a computer.
Since neighboring junctions are always of opposite sex,
they can both be described by regular DYMOLA
“nodes” if they are connected with a “bond”.

Notice that my “bond” model type is actually a
gyrator with r = 1.0. This special gyrator has sometimes
been called symplectic gyrator in the bond graph litera-
ture [1,2].

Since we don’t want to maintain different types of R,
C, L, TF, and GY elements, we add one additional rule:
in DYMOLA, all elements (except for the bonds) can be
attached to O—junctions only. If they need to be attached
to a 1-junction, we simply must place a bond in be-
tween.

The following DYMOLA model types suffice to
describe simple bond graphs.

model type S E
main cut A(e/.)
terminal EO

end

model type SF

main cut A(/~)
terminal FO
end

model type R
main cut A(e/f)
parameter R=1.0
R*f=e

end

model type C
main cut A(g/f)
parameter C=1.0
C*der(e)=f

end

model type I
main cut A(e/f)
parameter = 1.0
I*der(f)=e

end

model type T F
cut A (el1/f1) B(e2/—f2)
main cut C [A B]
main pathP<A-B>
parameterm = 1.0
el=m*e2
f2=m*f1

end

model type G Y
cut A (el/f1) B(e2/-f2)
main cut C [A B]
main pathP<A-B>
parameterr =1.0
el=r*f2
e2=r*f1

end

With these modeling elements, we can formulate a
bond graph description of our simple passive electrical
circuit. Remember to expand the bond graph in such a
way that all elements are attached to O—junctions only.
This is shown in Fig. 17.
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Figure 17. DYMOLA expanded bond graph of the passive
circuit
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The causalities were not marked down in Fig. 17 since
DYMOLA is perfectly able to handle the causality
assignment by itself .

The expanded bond graph can be immediately coded
in DYMOLA as shown below:

@bond.bnd
@se.bnd
@r.bnd
@c.bnd
@i.bnd

model RLC

submodel (S E) U0

submodel (R) R1 (R = 100.0), R2 (R = 20.0)
submodel (1) L1 (I=15E-3)

submodel (C)C1(C=0.1E-6)
submodel (bond) B1, B2, B3

node vl, irl, vrl, v2

inputu

outputyl, y2

connect ll0at vl
connectllat vl
connectRlat orl
connect R2 at v2
connectClat 2
connect Bl from vl to irl
connect B2 from irl to v2
connect B3 from irl to vrl

UO.EO=u
y1=Cle
2=R2f

end

The interpretation of this code is straightforward.
DYMOLA'’s @ operator corresponds to the include
statement of most programming languages. Itincludes
the element definitions which were stored on separate
files.

Let us see how the DYMOLA compiler preprocesses
this code. DYMOLA is actually a program generator. At
the current time, DYMOLA can generate either DESIRE
[11] or SIMNON [5] or ACSL [12] simulation programs.
We enter DYMOLA, and specify the model to be
compiled as follows:

$ dymola
> enter model
—@ric.dym
> ouftfile ric.eq
> output equations
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The enter model statement reads in the model and
immediately expands the set of equations by the
coupling equations. The outfile statement specifies the
name of the output file, and the output equations state-
ment writes the generated equations to the output file.
The generated equations are shown in the next code

segment.

uo EO=e

R1 R*f=e

C1 C*dere=f

L1 L*derf=e

R2 R*f=¢

RLC UO.EO=u
y1=Cle
2 =R2f
Lle=Bl. x
UOe=Lle
Cle=B2y
R2e=Cle
Clf+R2f=B2x
B2x=B3x
Bly=B2x
B3.y + B2y=Blx
Rl.e=B3y
R1f=B3. x

The first eight equations were extracted from the
models. The remaining equations are automatically
generated coupling equations.

We can now execute the algorithm which assigns the
causalities, i.e. which determines what variable to
compute from each of the equations. In DYMOLA, this
is achieved with the following set of instructions:

> partition
> ouffile rlc.sor
> output sorted equations

which results in the following answer:

RLC [LU0.E0] =u

uo E0=[e]

RLC UO.e=[Ll.e]
Lle=[Blx]
Cle=[B2y]
[B3.y] + B2.y=Blx
[R1.e]=B3.y

R1 R*[f]=e

RLC R1.f=[B3.x]
[B2.x] =B3.x
[Bl.y]=B2x
[R2e]=Cle

R2 R*[fl=¢

RLC [ClAl+ R2f=B2x

1 C *[dere] =f

L1 L*[derfl=e



RLC [yl]=Cl.e
21=R2f

This time, we decided to print out the sorted equa-
tions. The variables enclosed in “[ ]” are the variables
for which each equation must be solved. This set of
equations contains many trivial equations of the typea =
b. DYMOLA is capable of throwing those out. This is
accomplished through the following set of instructions:

> partition eliminate
> outfile rlc.sr2
> output sorted equations

which results in the following answer:

R2 R*[12]=y1
RLC [B3yl+yl=u
R1 R*[B3.x]=B3.y
RLC [C1f]+12=B3x
C1 C* [dere] =f

L1 L*[derfl=u

which is a much reduced set of equivalent equations.
The next step will be to actually perform the symbolic
manipulation on the equations. In DYMOLA, this is
done in the following way:

> outfile ric.sov
> output solved equations

which results in the following answer:

R2 y2=yl1/R

RLC B3.y=u-yl
R1 B3.x=B3.y/R
RLC Clf=B3x-12
C1 dere = f/C

L1 derf=u/L

We are now ready to add the experiment description
to the model. We can for instance use the following
experiment:

cmodel
simutime 2E -5
step 2E-7
commupoints 101
input 1, u (independ, 10.0)

ctblock
scale=1
XCCC=1
label TRY
drunr
if XCCC <0 then XCCC=-XCCC |
scale =2 *scale | go to TRY else proceed

ctend

outblock

ouT

displ y1, y2
outend
end

This portion of code is specific for each of the target
languages. The here shown version is the one required
for DESIRE [11]. The ctblock set of statements instructs
DESIRE to automatically scale the run-time display.
XCCC is a DESIRE variable which is set to -1 whenever
the DESIRE program is interrupted with an “overflow”.
This happens when one of the displayed variables hits
either the top or the bottom of the displayed window.
At this time, the plot is simply rescaled, and rerun with
anew drunr statement. Since DESIRE is so fast, it is not
worth the effort to store the results of the previous -
attempt, instead, we simply rerun the entire simulation.

The set of DYMOLA instructions:

> enter experiment
~@rlc.ctl
> outfile rlc.des

> output destre prograim

tells DYMOLA to generate the following DESIRE
program:

-~ STATE y1 L1$f

——DER dC1%e dL18f

——PARAMETERS and CONSTANTS:

R1$R =100.0

C=01E-6

L=15E-3

R2$R =20.0

——INITIAL VALUES OF STATES:

yl=0

L1sf=0

u=10.0

TMAX=2E-5| DT=2E-7 | NN=101

scale =1

XCCC=1

label TRY

drunr

if XCCC <0 then XCCC =- XCCC | scale = 2*scale | go to TRY
else proceed

—— Submodel : R2
¥2=y1/ R2$R
—— Submodel : RLC
B3sy =u-yl

—— Submodel : R1
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B3%x = B3%y/R13R
—— Submodel : RLC
C1$f = B3%x —y2
—— Submodel : C1
d/dt y1 = C1%f/C
—— Submodel : L1
d/dt L1$f=u/L

ouT
dispt y1, y2

— —— — — — — — — — — — — — ——— — —

Ve !
/ PIC 'rlc.PRC’
]

which can be executed at once using the following
instructions:

> stop
$ desire

> load 'rlc.des’
> run

which will immediately (within less than a second)
produce the desired output variables u ., and i, ,on the
screen. Both DYMOLA [6] and DESIRE [11] are
currently running alternatively on VAX/VMS, PC/MS-
DOS or SUN /UNIX.

Thermodynamic bond graphs
Thermal conductive or convective flow of heat can be
described by the heat equation:
T _5.V2T @13)
ot

Heat flow in one space direction can be modeled by a
simple RC chain as shown in Fig. 18.

Using the bond graph methodology, the RC chain can
be represented as shown in Fig. 19.

This bond graph demonstrates that the approach is

—|:I—'——1:H—

TDL—LL_I—?'—'D

Figure 18. Electrical circuit analogon of a diffusion chain

notsound. When modeling electrical or mechanical
phenomena, we could afford to model the dissipation of
power through resistive elements. However, we have
seen already that this is basically a non—physical
concept. Power cannot be dissipated, only transported
and converted. When modeling thermodynamic
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Figure 19. Causal bond graph of the diffusion chain

systems, the idea becomes absurd. What does it mean
when we say that thermal power is being dissipated?
This is obviously meaningless. Heat gets “absorbed”
by the resistor, but it is immediately “generated” again
by the same resistor.

To overcome this difficulty, Thoma introduced a new
bond graph element called a resistive source [16]. The
heat which is absorbed by the resistive element is routed
through the resistive source, and is immediately re—
introduced at the next junction. The modified bond
graph is shown in Fig. 20.

The enhanced bond graph still represents the heat
equation, but while the previously suggested bond
graph models the temperature flow only, the enhanced

RS RS
ATy 51 T: 52 $aiTy 5Tn25u1 ata|Tat ATaifS,

T .rR

" ——‘11&—\ 0—111——\0

A3 “1-[1.

c Cc c

Figure 20. Corrected causal bond graph for the diffusion
chain

bond graph models also the power flow correctly which
can be written as:

Poliraipin § (1)

Thermal power is the product of the temperature T

and the entropy flow S .
In DYMOLA, the RS element can be represented as
follows:

model type RS
cut A(el/f1) B(e2/ -f2)
main cut C [A B]
main pathP<A-B>
parameter R=1.0
R*fl=e¢l
e1*fl=e2*f2

end




There is however still one problem to be considered.
Contrary to the electrical and mechanical systems, the R
and C element of thermodynamics are not constant.
The R element is proportional to the temperature:

R=86.T (15)

whereas the C element is inverse proportional to the
temperature:

C= (16)

= Hi o -

Thermodynamic R and C elements are non-linear.
To overcome this problem, earlier bond graph software
systems introduced the heat flow as the flow variable
instead of the entropy flow. This makes the Rand C
elements linear, but, at the same time, it makes it
difficult to interface the so—called thermodynamic bond
graphs with other bond graphs in a mixed energy
system, since the product of temperature and heat flow
does not represent power.

In DYMOLA, we don’t have this problem, since we
can model non-linearities easily. We simply introduce
two new bond graph elements, the modulated resistive
source: MRS, and the “modulated” capacitance: mC

model type mRS
cut A(el/f1) B (e2/ -f2)
main cut C [A B]
mainpathP<A-B>
parameter theta =1.0
R = theta * &2
R*fl=el
el*fl=e2*f2

end

model type mC
cut A(e/f)
parameter gamma = 1.0
C = gammale
C*der(e)=f

end

Notice that, in the mRS model, 8 must be multiplied
by e, and not by e, since e, denotes an absolute tempera-
ture whereas e, denotes a temperature difference.

Notice further that the “modulation” of a capacitance
is a rather dubious undertaking. How do we ensure
that the “modulated” capacitance is still an energy
storage element, and does not suddenly start to dissi-
pate energy? This problem requires some further
contemplation.

The energy stored in a capacitor (or inductor) is the
integrated power that flows into that capacitor (or
inductor), thus:

E(t) = [ P(r)dr = J e(7) - f(r)dr 17)

0

whereby the energy for t =0.0 has arbitrarily been
normalized to zero. Using the formula for the general
displacement (the charge) of the capacitor:

qlt) = J.f(r}dr (18)

we can write:

q

E(t)=[e(r)- é(r)dr{e(q)dq (19)

0

Thus, in order for an element to behave like a capacitor,
the effort e must be expressible as a (possibly non—
linear) function of g:

e.=D.(,) (20)

Similarly, we can use the formula for the generalized
momentum (the flux) of an inductor:

p(t)=[e(ﬁ)dr 1)
Q

Therefore, in order for an element to behave like an
inductor, the flow f must be expressible as a (possibly
non-linear) function of p:

f!=¢l(pl) (22)

Let us check whether our “modulated” capacitance
satisfies eqn. (20). We know that:

éc(t] g k)

=i éc(t) (23)

fel) = C

and therefore:

ge(t)= fc(tl}d'r;y[ éc(t)dt‘:yo log(ec)
B 8c(f)

0

(24)
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The capacitive charge g _is indeed a non-linear
function of the effort e ., and the capacitive nature of our
“modulated” capacitance has thus been verified.

Let me now explain how the bond graph modeling
concept can be used in a hierarchical fashion. For this
purpose, we shall study a considerably more complex
example: a solar heated house. The overall configura-
tion is shown in Fig. 21.

One or several collectors act as black bodies which

Thermo-
metar

Figure 21. A solar heated house

absorb incoming solar radiation. Consequently, the
temperature inside the collectors raises. The collectors
can be filled with any material with a large heat capac-
ity. Usually, it is simply air. Inside the collectors, there
is a water pipe which meanders back and forth between
the two ends of the collector to maximize the exposed
pipe surface. We shall call this a “water spiral”. A
(mostly conductive) heat exchange takes place between
the collector chamber and the water pipe, thereby
heating the water in the pipe. A pump circulates the
water from the collectors to the storage tank, thereby
transporting the heat convectively from the collectors to
the tank. We call this the “collector water loop”. The
water spirals in the various collectors can be either series
connected, or they can be connected in parallel. The
pump is usually driven by a solar panel. In the panel,
the solar light is converted to electricity which drives the
pump. Thereby, the pump circulates the water only
while the sun is shining which is exactly what we want.
In addition, a freeze protection device is often installed
which also switches the pump on whenever the outside
temperature falls below 5°C.

The storage tank is often realized simply as a large
and well insulated water container (a water heater).
However, we shall assume that a solid body storage
tank is used together with another water spiral which
deposits the heat in the storage tank just the same way
as it was picked up in the collectors. Consequently, the
water from the collector loop and from the heater loop
never mix.
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Inside the storage tank, there is a second water spiral
which belongs to the “heater water loop”, and which
can pick up the heat from the storage tank. There is also
an additional electrical heater installed which heats the
storage tank electrically whenever the storage tank
temperature falls below a critical value.

The heater water loop is driven by another pump
which is switched on whenever the room temperature
falls below 20°C during the day or 18°C during the
night, and which is switched off whenever the room
temperature raises beyond 22°C during the day or 20°C
during the night.

In the house, we use one or several “radiators” (more
water spirals) which, contrary to what their name
suggests, exchange heat with the room in a partly
conductive and partly convective manner.

Fig. 22 depicts the collector in more detail.

Solar \\‘
Radiation \I

Collector

Collector Water Loop

Figure 22. The solar collector

The water spiral is modeled through a series of one—
dimensional cells. We want to model each such cell as
shown in Fig. 23.

Each cell is described by a DYMOLA model type
called c1d.dym which, from now on, can be used as an
additional bond graph element. The correct causalities
have been marked on the graph. The mGS element is a
“modulated conductive source”. Itis modulated with

I—‘!mGSF—l

__.m_.g = (0—f1p—0)

mC

Figure 23. Bond graph of a one-dimensional cell




temperature (as always in thermal systems), but, in
addition, it is also modulated with the water velocity in
the pipe as shown in Fig. 24.

4 =y

JNG

A
o heat transport

conductive heat transport

o

.8 o

Figure 24. Modulated conductive source

Since the conductance changes linearly with the water
velocity v, I preferred to model this element through
its conductance rather than through its resistance. The
cld model references three submodels: a temperature
modulated capacitance mC, a temperature and water
velocity modulated conductive source mGS, and finally
the regular bond submodel.

The exchange of heat across the border of two media
is modeled by a heat exchanger as shown in Fig. 25.

Paddis
e

o| = e

Figure 25. Bond graph of a heat exchanger

The heat exchanger is used here to model the transfer
of heat from the collector chamber to the water spiral.

The water spiral is modeled through a series connec-
tion of several c1d elements with heat exchangers
attached in between, The water spiral is shown in Fig.
26.

We decided to cut the spiral into three discrete links.
Obviously, this is an approximation of a process with
distributed parameters.

Notice that the newly introduced bond graph symbol
representing the water spiral is a 3—port element.

We need to model also the loss from the collector
chamber to the environment. This loss is partly conduc-
tive and partly convective. The loss element (a 1-port
element) is shown in Fig. 27.

The effort source denotes the outside temperature.
The mG element denotes the heat dissipation to the
environment. The dissipated heat is proportional to the
difference in temperatures between the inside and the
outside. mG is a modulated conductance similar to the
mGS element found earlier, but this time, the secondary

0 1] 0 0
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Figure 26. Bond graph of a water spiral
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Figure 27. Bond graph of thermic loss

port (the environment) is not modeled, and the modula-
tion is now with respect to the wind velocity v, rather
than with respect to the water velocity v .

We are now ready to model the overall collector. Itis
shown in Fig. 28.

mC
1 = (0—Jca—Yo)
SFI— 0 —YLoss Il
(Col=20)

0—Spi—Y 0

Figure 28. Bond graph of the collector

The mC element is the (temperature modulated) heat
capacitance of the collector chamber. The SF element
denotes the heat input from solar radiation.

We used the hierarchical cut concept of Dymola to
combine the two cuts (i.e. bonds), inwater and outwater,
into one hierarchical cut, water. This can be pictorially
represented by a double bond. This aggregated bond
graph representation has, of course, the disadvantage that
causalities can no longer be depicted.

We shall now model the transport of heat from the
collector to the storage tank, i.e. the collector water loop.
We model each of the pipes by a series of one-dimen-
sional cells, and we shall assume that the pipes are
thermically well insulated, i.e., that no heat is lost to the
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environment on the way. The water loop is depicted in
Fig. 29.
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Figure 29. Bond graph of the water loop

This bond graph element is a 4-port. We shall
combine the cut inwater] with the cut outwater2 to the
hierarchical cut inwater, and the cut outwater] with the
cut inwater2 to the hierarchical cut outwater. We shall
furthermore declare a main path water which createsa
logical bridge from the hierarchical cut inwater to the
hierarchical cut outunter.

The storage tank contains two water spirals, one
which belongs to the collector water loop, and one
which belongs to the heater water loop. In addition,
there has been installed an electrical resistance heater as
a backup device. The storage tank is shown in Fig. 30.

.i):. j:_\
Spik— 0—Yspi
0 | 0
SF—mRS|—0
Q== ST = ()
\ mC J

Figure 30. Bond graph of the storage tank

The mC element denotes the heat capacity of the
storage tank. The flow source together with the mRS
element denote the electrical backup heater. The
primary side of the resistive source is electrical while the
secondary side is thermic.

This is another 4-port. This time, we shall combine
the cut inwater] with the cut outwaterl to the hierarchical
cut inwater, and the cut outwater2 with the cut inwater2 to
the hierarchical cut outwater. We shall again declare a
main path water which creates a logical bridge from the
hierarchical cut inwater to the hierarchical cut outwater.

The heater water loop is modeled in exactly the same
manner as the collector water loop.

The house itself is a little more tricky. We can model
the house through a number of three—dimensional cells
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with loss elements attached to the walls, and heat
exchangers denoting the heat input through the radia-
tors. However, space limitations will prevent me from
carrying this example all the way through to the end.
More details can be found in [4].

Finally, we can connect all the pieces together and
create a model for the overall house as shown in Fig. 31.

@,u = WL m= §T= WL=S [E— Ho@

Figure 31. Aggregated bond graph of the overall system

This concludes the description of DYMOLA’s modu-
lar hierarchical non-linear bond graph modeling

capability.

Chemical reaction kinetics and chemical thermo-
dynamics
Chemical power can be expressed as the product of

the chemical potential 1, of a chemical species  multi-
plied by its molar flow rate v,:

P =l (25)

Here, 1, is the effort variables, while v, is the flow
variable.

Traditionally, the reaction kinetics equations are
expressed in terms of the involved number of moles and
the molar flow rates only. The chemical potential does
not appear in these (highly non-linear) differential
equations. For example, the reaction system:

k1
Bry—2Br’ (26a)
k2
2Br'— Br; (26b)
ka s
Br*+H,—HBr+H (260)
ks
HBr+H"—Br'+H; (264d)
ks
Bri®H'—> HBr+Br® (26¢)
can be described by the set of differential equations:
Ly, = vy + Vi = Vis (27a)
dt
-d-nﬂr- = 2Vk1 — 2Vik2 — Viea + Vig + Vis (27D)

dt




-d—"Hz == Vi3 + Viu (27¢)
dt
i?‘IH" = Vika — Via — Vis (274)
dt
4 Mypr = Vka — Vg T Vs (27¢)

dt

where 11, denotes the number of moles of the compo-
nent gas i, and vk, is the reaction flow rate of the
reaction k

Vk1 = k1 - npry (28a)
ﬂz L
sz = kz . |=Br (28!{7)
v
Vi = k3 - M} (28¢)
14
Vig = ka - idi e S, RHI) (284)
V
T Ty M) (286)
\%

The chemical thermodynamics equations, on the other
hand, i.e. the equations which can be used to determine
the chemical potential, aren’t commonly handled by
means of differential equations at all. Chemical thermo-
dynamics is in fact a misnomer. Chemical thermostatics
would be a more appropriate term. Thermodynamics, if
atall, are only treated through small signal aberrations
from the steady—state. This is because the true thermo-
dynamics equations are still poorly understood.

Thus, the “kineticists” deal with mass flow only.

They ignore the power flow altogether. The “thermody-
namicists” deal with the energy balance under equilib-
rium conditions, and they actually ignore both the mass
flow and the power flow.

How come that this decomposition is possible? For
example, in electrical systems, we weren’t able to
decompose the dynamics into one set of equations
involving currents only, and another set involving
potentials exclusively. Why is it that both thermal and
chemical systems exhibit this decomposition property?
Remember that also the heat equation can be formulated
either in terms of temperature or in terms of entropy
alone. We discovered that this astounding property can
be derived from the fact that neither thermal nor
chemical systems have an inertia element. Due to the

fact that there exists only one type of energy storage
element, the equations become decoupled. However,
we now have to deal with two separate forms for power
flow through the system. In a chemical system, the two
forms are:

Pl WA T P 29)

and in a thermal system, they are:

Pthml =T b , ngrmzﬂ Bl (30)

As in the case of the thermal systems, this seemingly
convenient decomposition property has a considerable
disadvantage. Such models cannot easily be connected
to other subsystems of different energy type. Most
chemical reactions occur either exothermically or
endothermically, and often, either the pressure or the
volume changes as well. Thus, we should study
chemical reactions, their thermodynamics, and their
hydraulic/pneumatic flows in unison.

I wish to discuss how the concepts of bond graph
modeling can help us to gain an improved understand-
ing of what is happening in these highly complicated
systems. We start by noticing that our combined
dynamics will contain six types of variables: (i) the
temperature T, (ii) the entropy S, (iii) the hydraulic/
pneumatic pressure p, (iv) the volume V, (v) the chemi-
cal potential y, and (vi) the number of moles n. Conse-
quently, we need six types of equations to describe the
dynamics of this system in their entirety.

We have met one type of equation so far: the mass
flow equations (reaction kinetics equations). Itis also
well known that there exists a power balance equation
which can be written as:

p-l:'=T-S.+Z,uI--v; (31)
Vi
This is one way to express the combined effects of the
first two laws of thermodynamics. However, we have
discovered that chemical systems obey a second type of
power balance equation as well:

PR TS N (32)

Vi

Eqn. (32) is a generalization of the so—called Gibbs-
Duhem equation. The detailed derivation of this
formula is in [4].

Furthermore, we realize that energy is traded between
the chemical system and its thermal and hydraulic/
pneumatic environments. Thus, there must exist some
sort of transformer with bonds into the thermal and
hydraulic/pneumatic “worlds”. Since we know that,
for each bond, one variable is computed at each of the
two ends of the bond, we realize that among the

APRIL 1992 SIMULATION 245



variables T and S, one must be computed on the chemi-
cal side, while the other is computed on the thermal side
of the bond. Similarly for p and V. Thus, within the
chemical system, we actually need only four different
types of equations rather than six as previously as-
sumed. The other two are dictated from the outside.

This fact is commonly reflected in chemical engineer-
ing by the assumption of either isothermic and isobaric
or isothermic and isochoric conditions. The chemical
engineer makes his life easier by holding one of the
thermal variables and any one of the hydraulic/
pneumatic variables at a constant value. However,
these are just special cases of a more general truth.

Finally, we need one more equation. For this purpose,
we shall use the so—called equation of state. Every system
has one such equation. For example, an ideal gas
reaction exhibits the following property:

p-V=n-R-T (33)

This gives us all equations needed to describe the
dynamics of this system. Unfortunately, thereis a
problem with the last of these equations. The equation
of state is actually a steady-state equation, i.e. it is only
valid in a strict sense under equilibrium conditions. It
should be replaced by a more general equation which is
true also far from equilibrium, presumably a partial
differential equation which assumes, as its steady—state
condition, the various forms of the equation of state for
different types of gases and fluids. Unfortunately, such
an equation has not yet been found.

The current literature on chemical thermodynamics
confounds wildly equations which describe structural
(i.e. physical) properties of chemical reaction systems
with other equations which are balance equations that
are valid only under equilibrium conditions. The
assumptions made are hardly ever explicitly stated.
Even worse, the chemical thermodynamics literature is
full of myths. Examples of such myths are given in my
forthcoming book [4] in which I tried carefully to make
all assumptions explicitly known.

We are now ready to set up a chemical bond graph.
In this paper, we shall deal with the simplest of all cases
only: the isothermic and isobaric reaction. In this case,
the second power balance equation degenerates, and the
chemical potentials become constants. Below, the
isothermic and isobaric bond graph of the hydrogen/
bromine reaction system is shown. The fourth (and least
important) reaction k, has been eliminated to keep the
bond graph planar. The bond graph is shown in Fig.32.

The CS element is a newly introduced capacitive source.
It models the mass storage. One CS element is used for
each species. It computes the chemical potential of the
component species. Itis a source of chemical potential.
It also stores the molar mass. In our simple situation, it
can be modeled as follows:
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Figure 32. Bond graph of the isothermic and isobaric H , - Br,
reaction

model type CS
main cut chem(mu/nu)
terminal n, mu0
miu = mul
der(n) =nu
end

The capacitive source is attached to a 0—junction
which models the chemical mass balance, i.e. it converts
the reaction flow rates into component flow rates.

Each reaction is represented by a new bond graph
element of type chemical reactor. A chemical reactorisa
three-legged transformer. It contains the first power
balance equation, the equations for the reaction flow
rates, and the equation of state expressed in terms of
partial volume flows, not decomposed into an individual
component gas, but decomposed into an individual
reaction. My book [4] provides the details of the
calculations. The DYMOLA version of the third chemi-
cal reactor is as follows:

model type ChRK3
main cut chem(muk3/-nuk3)
cut therm(T/-Sdotk3), pneum(p/qk3)
terminal nH2, nBr, V



parameter R = 8.314

local k3, nuek3

k3 = (10 **11.43) * exp (-82400/(R *T))
nuek3 =0.0

p * gk3 =T * 5dotk3 + muk3 * nuk3
prqk3=nuek3*R*T

nuk3 = k3 * nH2* nBr/V

end

The other reactor models can be defined equivalently.
Due to the high degree of non-linearity and modula-
tion, it is necessary to define one model type for each of
the reactors. Each of the reactors is attached toa 1-
junction which models the chemical energy balance, i.e.
it converts the chemical potentials of the component
species into “reaction potentials” which are expressions
for the Gibbs free energy of the reaction. The reaction
power:

PL.=H 0, (34)

is the power that is available to be converted into
either thermal or hydraulic/pneumatic power.

I discovered that there exists an interesting symmetry
between the mass balance and the power balance
equations:

VBey -1 : 0 0 -1 Viy \

VBre 2 -2 -1 1 1 Vi,

ve, | =dr0a0 17 250 n, | (350)
\ Vg 0 0 1 -1 -1 vh)

VYE B 0 0 1 -1 1 Vg
(.uu, o e S R R BBra

Bha 1 =2 i 0 BB

ey | = 0 -1 -1 1 1]- BE, (35b)

Brg 0 1 1 -1 -1 BEe )

Bhg -1 1 0 -1 1 AEBr

The two matrices are the transpose of each other.
Moreover, they are singular (in many cases, they are not
even square). Consequently, the component flow rates
can be computed from the reaction flow rates, and the
“reaction potentials” can be computed from the compo-
nent potentials, but not vice versa. My book [4] pro-
vides an explanation for this symmetry.

I realize that space limitations forced me to reduce this
section to a mere skeleton. My book describes the
chemical reaction kinetics problem on more than 60
pages. However, | wanted to present at least the essence
of these results in this paper.
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