Introduction, Scope, Definitions

Preview

This chapter attempts to motivate the student for the course. Why
should s/he study modeling and simulation? What can these tech-
niques do for him or her that other techniques might not? We shall
start out with some basic definitions of terms that will be used in this
text over and over again, such as the terms “system”, “experiment™,
“model”, and “simmlation”. We shall then discuss good and bad
reasons for wsing modeling and simulation as problem solving tools.
We shall finally list areas of sclence and engineering to which mod-
eling and simulation have been successfully applied, and we shall
explain what makes these various application areas different from
each other, and why the modeling and simmlation approaches taken
in these application areas vary so drastically from each other.

1.1 What is a System?

What is it that we focus on when we talk about a “system”? Brian
Gaines gave the following interesting (and verbose) definition of what
& “system” is [1.2]:

“*A system is what is distinguished as a system.’ At first
sight this looks to be a nonstatement. Systems are what-
ever we like to distinguish as systems. Has anything been
said? Ia there any possible foundation here for a systems sci-
ence! | want to answer both these questions affirnatively
and show that this definition is full of content and rich in
its interpretation.
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“Let me first answer one obvious objection to the defi-
nition above and turn it to my advantage. You may ask,
"What is peculiarly systemic about this definition?’ *Could
I not equally well apply it to all other objects I might wish
to define?” ie.,

“A rabbit is what is distinguished as a rabbit. ‘Ah, but,’
I shall reply, ‘my definition is adequate to define a system
but yours is not adequate to define a rabbit." In this lies the
essence of systems theory: that to distinguish some entity
as being & system is & necessary and sufficent criterion for
its being a system, and this is uniquely true for systems.
Whereas to distinguish some entity as being anything else
is & necessary criterion to its being that something but not
a sufficient one.

“More poetically, we may say that the concept of & sys-
tem stands at the supremum of the hierarchy of being. That
sounds like a very important place to be. Perhaps it is. But
when we realize that getting there Is achieved through the
ing characteristics, then it Is not so impressive a qualifica-
tion. I believe this definition of a system as being that which
uniquely is defined by making a distinction explains many
of the virtues, and the vices, of systems theory. The power
of the concept is its sheer generality; and we emphasize this
naked lack of qualification in the term general systems the-
ory, rather than attempt to obfuscate the matter by giving it
some respectable covering term such as mathematical sys-
tems theory. The weakness, and paradoxically the prime
strength of the concept is in its failure to require further
distinctions. It is a weakness when we fail to recognize the
significance of those further distinctions to the subject mat-
ter in hand. It is & strength when those further distinctions
are themselves unnecessary to the argument and only serve
to ohscure a general truth through a covering of specialist
jargon. No wonder, general systems theory is subject to
extremes of vilification and praise,”

Brian Gaines expresses here in very nice words simply the following:
The largest possible system of all is the universe. Whenever we
decide to cut out & piece of the universe such that we can clearly say
what is inside that piece (belongs to that piece), and what is oulside
that piece (does not belong to that piece), we define a new “system™.
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A system is characterized by the fact that we can say what belongs
to it and what does not, and by the fact that we can specily how it
interacts with its environment. System definitions can furthermore
be hierarchical. We can take the piece from before, cut out a yet
smaller part of it, and we have a new “system”.

Let me quote another famous definition which is due to Ross Ashby
[1.1]:

“At this point, we mmust be clear about how a ‘system’ is to
be defined. Our first impulse is to point at the pendulum and
to say “the system is that thing there’. This method, how-
ever, has a fundamental disadvantage: every material object
contains no less than an infinity of variables, and therefore,
of possible systems. The real pendulum, for instance, has
not only length and position; it has also mass, temperature,
electric conductivity, crystalline structure, chemical impuri-
ties, some radio—activity, velocity, reflecting power, tensile
strength, & surface film of moisture, bacterial contamination,
an optical absorption, elasticity, shape, specific gravity, and
s0 on and on. Any suggestion that we should study “all’ the
facts is unrealistic, and actually the attempt is never made.
What is necessary is that we should pick out and study the
facts that are relevant to some main interest that is already
given ...

“... The system now means, not a thing, but a list of
variables.”

Clearly, the two definitions are in contradiction with each other.
According to the former definition (by Brian Gaines), the pendulum
certainly qualifies for & system, and I would agree with him on that.
However, taking the pendulum, we can now “cut out™ a smaller piece
by declaring that we are only interested in certain properties of the
pendulum, say: its mass and its length, and thereby define another
“gystem”. The “cutting™ does not necessarily denote a separation in
the physical world, it can also take place at the level of a mathemat-
ical abstraction ... and in the context of modeling, this is actually

most commonly the case,

Another property of a “system” is the fact that it can be “con-
trolled™ and “observed™. Its interactions with the environment nat-
urally fall into two categories:
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(1) There are variables that are generated by the environment, and
that influence the behavior of the system. These are called the
“inputs” of the system.

{2) There are other variables that are determined by the system, and
that in turn influence the behavior of its environment. These are
called the “outputs™ of the system.

In general, we ought to be able to assign values to at least some of

the “mputs™ of the system, and observe the behavior of the system

by recording the resulting “outputs”.
This leads to yet another definition for the term "system™:

“A system is a potential source of data.”

I personally like this definition best, because it is very short and
concise. [ am not entirely sure who gave this definition first, but I
believe it was Bernard Zeigler [1.9].

1.2 What is an Experiment?

The last definition for “system™ immediately leads to a definition for
the term “experiment™:

“An experiment is the process of extracting data from a
system by exerting it through its inputs.”

Experimenting with a system thus means to make use of its property
of being “controllable” and “observable™ (please, notice that these
terms are used here in & plausible sense rather than in the more
stringent sense of linear system theory [1.3]). To perform an exper-
iment on the system means to apply a set of external conditions to
the accessible inputs, and to observe the reaction of the system to
these inputs by recording the trajectory behavior of the accessible
outputs.

One of the major disadvantages of experimenting with real sys-
tems is the fact that these systems usually are under the influence
of a large number of additional inaccessible “inputs™ (so—called “dis-
turbances”), and that a number of really useful “outputs™ are not
accessible through measurements either (they are internal “states™
of the system).
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One of the major motivations for “simulation™ is the fact, that,
in the simulation world, all “inputs™ and “outputs™ are accessible.
This allows us to execute simulation runs that lie outside the range
of experiments that are applicable to the real system.

1.3 What is a Model?

Given the above definitions for “systems™ and “experiments”™, we can
now attempt to define what we mean by the term “model™. I shall
give the definition that was first coined by Marvin Minsky [1.7]:

“A model (M) for & system (5) and an experiment (E)
is anything to which F can be applied in order to answer
questions about 5.7

Motice that this definition does not imply that a “model™ is & com-
puter program. It could as well be a piece of hardware or simply an
understanding of how a particular system works (& so—called “men-
tal model”). However, in this text, we shall concentrate on the sub-
class of models that are codable as computer programs (the so—called
“mathematical models™).

Notice that the above definition clearly qualifies any “model™ to be
called & “system”. This automatically implies that models are hierar-
chieal in nature, i.e., we can “cut™ a smaller portion out, and thereby
generate a new model which is valid for a subset of the experiments
for which the original model was valid. It is thus common to create
models of models, Jack Klefjnen calls such models “meta-models™
[1.5]. Bernard Zeigler talks about “pruning” particular features out
of a model to create a simplified version of the previous model [1.11].

Notice finally that the above definition does not deseribe “models
for systems™ per se. A model is always related to the tuple sysiem
and experiment. If someone says that “a model of & system is in-
valid" (as can be frequently read), s /he does not know what s/he is
talking about. A model of a system may be valid for one experiment,
and invalid for another, that is: the term “model validation™ always
relates to an experiment or class of experiments to be performed on
a system, rather than to the system alone. Clearly, any model is
valid for the “pull experiment” applied to eny system (i we don't
want to get any answers out of a given simulation, we can use any
model for that purpose). On the other hand, no model of a system
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is valid for all possible experiments except the system itself or an
identical copy thereof.

1.4 What is a Simulation?

Again, many definitions exist for the term “simmlation™, but I shall
gquote the one that I like best. It has been coined by Granino Korn
[1.6):

“A simulation is an experiment performed on & model.”

As before, this definition does not imply that the simulation is coded
in a computer program. However, in this text, we shall concentrate
on the subset of simulations which are codable as computer programs
(the so—called “mathematical simulations™).

A mathematical stmulation is & coded description of an experiment
with a reference (a pointer) to the model to which this experiment
is to be applied.

It was Bernard Zeigler who first pointed out the importance of
the physical separation between the model deseription on the one
hand, and the erperiment description on the other [1.9]. We want
to be able to experiment with models as easily and conveniently as
with real systems. We want to be able to use our simulation tool in
exactly the same way as we would use an oscilloscope in the lab.

However, a certain danger lies in this separation. It makes it all
too easy to apply an experiment to & model for which the model is
not valid. In the lab environment, this can never happen since the
real system is valid for all experiments, whereas the model is not.
Bernard Zeigler realized this problem, and therefore demanded that
the model description contain, as an intrinsic and unseparable part,
an ezperimental frame definition [1.9]. The “experimental frame” es-
tablishes the set of experiments for which the model is valid. When
& simulation refers to that model, the actual experiment is then com-
pared with the experimental frame of the model, and the execution
of the simulation will only be allowed if the simulation experiment
to be performed is established as belonging to the set of applicable
experiments.

Unfortunately, today’s realities don't reflect these conceptual de-
mands very well. Most commercially available simulation software
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systems are menolithic, They do not support the concept of separat-
ing the model description from the experiment description. While
the model deseription mechanisms have seen quite a bit of progress
over the years, most software systems do not allow the user to specily
models in & truly hierarchical manner. Mechanisms for deseribing
simulation experiments are meager, and mechanisms for describing
appropriate “language” to express experimental frames in general
terms. All this still belongs to the area of open research.

1.5 Why is Modeling Important?

Let me guote yet another definition of the term “modeling™ which is
also attributed to Bernard Zeigler [1.10].

“Modeling means the process of organizing knowledge about

& given system.”

By performing experiments, we gather knowledge ahout a system.
However, in the beginning, this knowledge is completely unstruc-
tured. By understanding what are causes and what are effects, by
placing ohservations both in & temporal as well as & spatial order,
we organize the knowledge that we gathered during the experiment.
According to the above (very general) definition, we are thereby
engaged In a process of modeling. No wonder that every single disci-
pline of science and engineering is interested in modeling, and utilizes
modeling as a problem solving tool.

It can thus be said that modeling is the single most central activity
that unites all scientific and engineering endeavor. While the scien-
tist is happy to simply observe and understand the world, i.e., create
a model of the world, the engineer wants to maodify it to his or her
advantage. While science is all analysis, the essence of engineering
is design. As this text will demonstrate, stmulation can be used not
only for analysis (the so—called direci problems), but also for design
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1.8 Why is Simulation Important?

Except by experimentation with the real system, simulafion is the
only technique available for the analysis of arbitrary system behavior.
Analytical technigues are great, but they usually require a set of
simplifying assumptions to be made before they become applicable;
assumptions that cannot always be justified, and even if they might
be, whose justification cannot be verified except by experimentation
or simmlation. In other words, simulation is often not used alone, but

in an interplay with other analytical or semi—analytical techniques.
The typical scenario of a scientific discovery is as follows:

(1) The scientist performs experiments on the real system to extract
data (to gather knowledge).

{2) §/he then looks at the data, and postulates a number of hy-
potheses relating to the data.

(3) S/he makes simplifying assumptions to make the data tractahle
by analytical techniques to test these hypotheses,

(4) 5/he then performs a number of simulation runs with different
experimental parameters to verify that the simplifying assump-
tions were justified.

i(5) 5/he performs the analysis of her or his system, verifies (or mod-
ifies) the hypotheses, and finally draws some conclusions.

(6) 5/he again performs a number of simulation runs to verify the
conclusions,

Most of today’s simulation software systems live in isolation. They
do not allow us to easily combine simulation studies with other tech-
niques applied to the same set of data. Even the data gathered in
the experiment must often be retyped (or at least edited) to fit into
the framework of the simmlation software system. This text, how-
ever, presents the reader with tools (CTRL-C and MATLAB) that
are much more flexible than the old-fashioned CSSL-type simmlation
languages (such as ACSL or DARE-P), and that strongly support
a mixed environment of different analysis techniques including sim-
ulation as just one of them.

Simulation is applicable where other analytical techniques are not.
Since such situations are very common, simulation is often the only
game in town. No wonder that simmlation is the single most fre-
quently used problem solving tool throughout all disciplines of sci-
ence and engineering.
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1.T The Dangers of Simulation?

The most important strengths of simulation, but also ironically its
most serious drawbacks, are the generality and ease of its applica-
bility. It does not require much of a genius to be able to utilize a
simulation program. Every stupe can do that ... but that does not
make him or her less stupid. In order to use simulation intelligently,
we must understand what we are doing.

All too often, simulation is a love story with an unhappy ending.
We create a model of a system, and then fall in love with it. Since love
is usually blind, we immediately forget all about the experimental
frame, we forget that this is not the real world, but represents the
world only under a very limited set of experimental conditions {we
become “model addicts™). We find a control strategy that “shapes”
our model “world” the way we want it to be, and then apply that
control strategy back to the real world, convinced that we now have
the handle to make the real world behave the way we want it to ...
and here comes the unhappy ending — it probably doesn't.

In this way, the Australlans introduced the rabbit to the continent
... and found that these rabbits were soon all over the place and
ate all the food that was necessary for the local species to survive
... since the rabbits did not have a natural enemy. Thereafter, the
Australians introduced the fox to the continent (foxes feed on rabbits
— the “model”) ... to see that the foxes were soon all over the
place ... but left the rabbits alone ... since they found the local
marsupialia much easier to hunt.

Simulations are rarely enlightening. In fact, running simulations
is very similar to performing experiments in the lab, We usually
need many experiments, before we can draw legitimate conclusions.
Correspondingly, we need many simulations before we understand
how our model behaves. While other analytical techniques {where
they are applicable) often provide an understanding as to how a
model behaves under arbitrory experimental conditions, one simula-
tion run tells us only how the model behaves under the one set of
experimental conditions applied during the simulation run.

Therefore, while other analytical techniques are generally more
restricted (they have a much smaller domain of applicability), they
are more powerful where they apply. So, whenever we have a valid
alternative to simulation, we should, by all means, make use of it.
Only a stupe uses simulation in place of other analytical techniques,
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1.8 Good Heasons to Use Simulation

Let me state a number of good reasons for using simulation as a
problem solving tool.

(1)

(2)

(3)

(4)

(5)

The physical system is not available. Often, simulations are
used to determine whether a projected system should ever be
built. So obviously, experimentation is out of the question. This
is common practice for engineering systems (for example: an
electrical circuit) with well established and widely applicable
meta—knowledge. It is very dangerous to rely on such & decision
in the case of systems from soft sciences (the so—called ill-defined
systems) since the meta-knowledge available for these types of
systems is usually not validated for an extension into unknown
territory.

The experiment may be dangerous. Often, simulations are per-
formed In order to find out whether the real experiment might
“blow up”, placing the experimenter and/or the equipment un-
der danger of injury/damage or death/destruction (for example:
an atomic reactor, or an aircraft flown by an inexperienced per-
The cost of experimentation is too high. Often, simulations are
used where real experiments are too expensive, The necessary
measurement tools may not be available, or are expensive to buy.
It is possible that the system is used all the time, and taking it
“off-line™ would involve unacceptable cost (for example: a power
plant, or & commercial airliner).

The time constants (eigenvalues) of the system are not compat-
ible with those of the experimenter. Often, simmlations are per-
formed becanse the real experiment executes so quickly that it
can hardly be observed (for example: an explosion), or becsuse
the real experiment executes so slowly that the experimenter is
long dead before the experiment is completed (for example: a
transgression of two galaxies). Simulations allow us to speed up
or slow down experiments at will.

Control variables [disturbances), state variables, and/or sys-
tem parameters may be inaccessible. Often, simulations are
performed because they allow us to access all inputs and all
state variables, whereas, in the real system, some inputs (distur-
bances) may not be accessible to manipulation (for example: the
time of sunrise), and some state variables may not be accessible
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to measurement. Simulation allows us to manipulate the model
outside the feasible range of the physical system. For exampls,
we can decide to change the mass of a body at will frem 50 kg
to 400 kg, and repeat the simulation at the stroke of a key. In
the physical system, such a modification is either not feasible at
all, or it involves a costly and lengthy alteration to the system.

(6) Suppression of disturbances. Often, simulations are performed
because they allow us to suppress disturbances which are un-
avoidable in the real system. This allows us to isolate partic-
ular effects, and may lead to a better insight (intuition) into
the generic system behavior than would be possible through ob-
scured measurements taken from the real process.

(T) Suppression of second order effects. Often, simulations are per-
formed because they allow us to suppress second order effects
{such as non-linearities of system components). Again, this can
help with the understanding of the primary underlying function-
ality of the system.

1.9 The Types of Mathematical Models

What types of mathematical models do exist? A first category is the
set of continuous—time models. Fig.1.1 shows how a state variable =
changes over time in & continuous-time model.

Continuoue-Time Model
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Figure 1.1. Trajectory behavior of a continuous-time model.
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We can give the following definitions for continuous-time models:

“Continuous—time models are characterized by the fact that,
within a finite time span, the state variables change their
values infinitely often.”

No other mathematical model shares this property.

tial equations. Among the continuous-time models, two separate
classes can be distinguished: the lumped porameler models which are

described by ordinary differential equations (ODE’s), in general:

% =[x u,t) (1.1)
and for the special case of linear systems:
%= Ax+ Bu (1.2)

and the distributed parameter models which are described by partial
differential equations (PDE"s) such as the diffusion equation:

1

-

Both types will be encountered in this text, and it is indeed the set

of the continuous—time models that is at the center of our interest.

The second class of mathematical models to be mentioned is the

set of discrete-time models. Fig.1.2 depicts the trajectory behavior
exhibited by discrete—time models.

Diserete-Time Model
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Figure 1.2. Trajectory behavior of a discrete-time model.
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In these type of models, the time axis is discretized. Discrete—time
models are commonly represented through sets of difference egua-
tions, at least if the discretisation is equidistantly spaced. Such
models can be represented as:

Xapr = flxp, ma, 1a) {1.4)

In the case of non—equidistantly spaced discrete—time models, a
discrete—event representation is generally preferred (cf. later).

Discrete—time models can occur naturally, For example, the pop-
ulation dynamics of an insect population is commonly represented
through a set of difference equations, since the insects breed only
during a short period of the year, i.e., & discretization interval of one
year is natural

Diserete-time models occur frequently in engineering systems,
most commonly in computer—controlled systems. If a digital com-
puter is used in a control system to compute one or several control
signals, it cannot do so on & continuous basis since the algorithm to
compute the next set of values of the control signals requires time.
It is therefore most natural to apply “time-slicing”, i.e., to cut the
time axis into short and equidistant intervals where each interval is
usually chosen to be just long enough to allow the digital computer
to compute one new set of values. If the system to be controlled is
itself a continuous-time system (as is often the case), we call this a
sampled—data conirol system.

Diserete—time models can also be discretized versions of continuous
time models. This is in fact very common. For instance, if we
discretize the time axis of the continwous—time state—space model:

& =f(x,u,i)

with a discretization interval Af, the state derivative becomes:

ksl = Kk

o a5 2y, up, 1a) (1.5)

Xps1 = X + Al - Ty, uy, te) (1.8)

which immediately leads us to a discrete—time model. In fact, when-
ever we use a digital computer to simulate a contimnous-time model,
we actually must discretize the time axis in some way in order to
avoid the problem with the infinitely many state changes In & finite
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time span. However, any garden variety simulation language (such
as ACSL or DARE-P) will do this discretization for us, and hide the
fact from us ... except when something goes wrong. Then, we must
understand how the program works in order to be able to help it get
back on track. This will be one of the major topics to be discussed
in the second volume of this text.

The third class of models is the set of gualitative models which
equidistant time—slicing). Fig.1.3 shows the trajectory behavior of a
qualitative model:

Qualitative Model
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Figure 1.3. Tmajectory behavior of a gualitative model,

In & qualitative model, the dependent variables are discretized. Qual-
itative models are usually coded using a finife slate representation,
and also this type of model will be covered in the text.

The fourth and final class of models is the set of discrete—event
models. Paradoxically, both the time axis and the state axis of
discrete—event models are usually “continuous™ (i.e., real rather than
integer), but discrete—event models differ from the continuous—time
models by the fact that, in & finite time span, only a finite number
of state changes may occur. Fig.1.4 depicts the fypical trajectory
behavior of & state variable in & discrete—event simmlation.

Discrete—event models have been the main topic of a series of pre-
vious simmlation texts [1.8,1.9,1.10), and will not be covered here.
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Discrete-Event Model
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Figure 1.4. Trajectory behavior of a discrele—event model,

When should we use what type of model? Walter Karplus generated
a “rainbow™ (the way children draw it) that answers this question in

a systematic way [1.4]. Fig.1.5 represents a slightly modified version
of that “rainbow™.
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Figure 1.5. Spectrum of modeling and simulation.

Ahove the rainbow, various application areas of modeling and sim-
ulation are shown. They range from electrical circuits to psycho-
logical systems. The application areas shown are exemplary. Areas
that are not shown include the thermal, hydraulic, and pneumatic
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systems which should be located somewhere between the mechanical
and the chemical systems. In this text, we shall proceed along the
rainbow from the right to the left, i.e., from well-defined (“white
box™) systems to ill-defined (“black box") systems.

Immediately below the rainbow, common purposes for modeling
and simmlation are specified. Remember that modeling and simula-
tion are always goal-driven, i.e., we should know the purpose of our
potential model before we sit down to create it.

Electrical circuits are so well understood that it is possible to
use a model to design an overall circuit, i.e., once the performance
of the model is satisfactory, we can build the real system, and, in
all likelihood, it will work just as predicted by the model. This is
also true for some of the mechanical systems (except where non-
linearities and friction effects become dominant factors).

This is, however, no longer true for chemical systems. Many fac-
tors influence a chemical reaction, factors which are all of approx-
imately equal importance. Therefore, models that are valid for &
large set of experiments cannot be specified. Thus, a theoretically
derived model of a chemical process may predict one thing while the
real system that is built after the model may react quite differently.
Yet, if we build the system first and match the model to the system,
the model contains sufficient internal validity to allow us to build
a model of a controller for that system which, when applied to the
real system, may still work nicely. This is due to the fact that feed-
hack controllers have a tendency to reduce the system’s sensitivity
to parameter variations.

When we proceed further to the left, we find that the internal va-
lidity of our models decays further and further. Eventually, we come
to a point where the available models no longer contain sufficient in-
ternal validity to allow us to use the model for any design purposes.
Yet, we can still use the model for analyzing the system behavior,
i.e., the internal structure of the model is still sufficiently valid to al-
low us to reason competently about canse—effect relationships among
the variables that are captured by the model.

Advancing further to the left, we come to a point where even
this statement is no longer true. Such models are constructed in a
mostly inductive manner, and a decent match between model and
system behavior no longer guaraniees that the internal structure of
the model represents the internal structure of the real system in any
meaningfol way. Yet, we may still be able to predict the future of
the real system from simulating the model beyond the current time.
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Finally, systems exist where even this is no longer true. All we can
achieve is to speculate about possible futures, maybe with probahil-
ity tags attached to the various possible outcomes. This is true in
particular for social and psychological systems since they are retroac-
tive, These systems include humans whe, due to their knowledge of
the model predictions, will adjust their behavior to modify that same
outcome. In some cases, we end up with self-fulfilling prophecy. If I
have a “good™ model of the stock market which predicts the growth
af a particular stock, and if many people have access to that model
and believe in its value, then all these people will wish to buy that
particular stock, and sure encugh, the stock will gain value (at least
for a while). The opposite can also occur. If my model predicts a
major disaster, and if a sufficiently large number of influential peo-
ple know about that prediction and believe in the accuracy of my
model, they will do their best to modify the system behavior to pre-
vent that very disaster from ever happening. Good examples are
George Orwell's book 198{ and Jay Forrester's world model which
predicted clearly undesirable futures. Consequently, legislative ac-
tions were taken that hopefully will prevent those very predictions
from ever becoming a reality. Walter Karplus wrote rightly that the
major purpose of such models is to “arouse public opinion™ [1.4].

Below the purpose spectrum, a tool spectrum is presented. Elec-
trical circuits can be accurately described by ordinary differentiol
equations (ODE"s), since the influence of geometry is usually negli-
gible. This is true except for very high frequencies (microwaves), or
for very small dimensions (integrated circuits).

When geometry becomes important, we must introduce the space
dimensions as additional independent variables, and we end up with
distributed parameter models which are described by partial differ-
ential equations (PDE"s). This is true for mechanical systems with
finite stiffness, for thermodynamies, fluid dynamies, opties, and dif-
fusion processes in chemistry.

Advancing further to the left, the available data and the lim-
ited knowledge of the meta—laws of these systems no longer warrant
the specification of distributed parameter models, and we use again
ODE's, not because that is how these systems really behave, but be-
cause we cannot validate any more complex models with our limited
understanding of the processes, and with the limited experimental
data available.

When even less information is present, the accuracy that ODE's
provide {and that we must pay for in terms of computing time) Is no
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longer warranted. It makes sense to use very high order integration
algorithms only for the best—defined systems, such as those in celes-
tial mechanics. When we simulate a celesiial mechanics problem, we
like to use an eighth order Runge-Kutta algorithm, since it allows us
to select a large integration step size, and vet integrates the model
for most engineering tasks. As a rule of thumb, we use a E'* order
algorithm if we wish to obtain results with an accuracy of k decimals.
For systems with an inherent accuracy of several percent (such as in
biology ), it does not make sense to use any integration algorithm of
higher than first order, i.e., the forward Euler algorithm shown in
eq(1.6) is appropriate. Such models are therefore often represented
in the form of difference eguations (AE"s).

Finally, in the “darkest™ of all worlds, Le., in social and psycholog-
jeal modeling, the models used are mostly static. They are described
by algebraic equations (AE’s). They are usnally entirely inductive,
and depend on “gut feeling” or the position of the stars in the sky.

1.10 Direct Versus Inverse Problems

Envisage a system as depicted in Fig.1.6.

I 0
et . S

Figure 1.8. Block-diagram of & sysiem.

The system is characterized by a set of inputs (I) (including both
control inputs and disturbances), by a set of ouipuls (0), and by a
set of internal variables (§) (including both the state variables and
any auxiliary algebraic variables).

The “normal” situation for a simulation is given, when all inputs
are known as functions over time, and when the system structure
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and the initial conditions of all state variables are specified. The
task of the simulation is to determine the trajectory behavior of all
outputs, i.e.,

IS = known ; O = unknouwn

This problem is called the direct problem.

However, two types of inverse problems exist as well. For instance,
it could be that the system under study is a “black box". While all
inputs and outputs are known, the internal structure of the system
and for the initial values of the state variables are unknown, i.e.,

LO = knouwn ; § = unknown

These problems are referred to as the structure wdentification problem
and the state estimation problem, respectively. We shall demonstrate
in the second volume of this text how simulation can be used to solve
identification problems,

A third type of problem is given if:

5,0 = known; I = unknouwn

This is referred to as the control problem, and is the major subject
of the area of automatic control. In the second volume, we shall also
demonstrate how simulation can be used to solve control problems.

1.11 Summary

In this chapter, we have given some basic definitions, we have out-
lined the scope of our undertaking, and we have tried to answer the
question, why students might be interested in this subject, and why
they might want to continue with this course.
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Homework Problems

[H1.1] Sampled Data System
Given the following linear differential equation system:

&y = @3 {.ﬂ 1.1a)
gy =m (H1.1%)
iy = —3m = deg = dmy (H1.1¢)

¥ =Tey - by (H1.1d)

Use the forward Euler integration algorithm to convert this set of dif-
ferential equations to & sel of difference eguations. Use & step size of
Ad = 0.1 sec.

[H1.2] Signal Types
For the following systems, iry to identify the inputs, the outputs, and
disturbances {where applicable):

(a) The water level in & reservoir

(b) The power supply of a city

(e} A ear being driven along 8 mountain rond
(d) A tomster

[H1.3]* Meta—Models
Given the following non-linear second-order model:

2y = =3z + LEzy=y (H1.3a)
By = 4523 — LBmmy (H1.34)

We want to analyse the behavior of this system (a so—ealled Lotkn—Yolterm
medel) in the vieinity of all of its steady-state points (hini: steady-state
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points are those points in which all derivatives are equal to sero). This

task is accomplished through the wse of linear meta—models. The problem

can be decomposed into the following subiasks:

(a) Determine all steady-state points of this system.

(b) For any steady-state point that is not the origin ([z,,2;] = [0,0])
itsell, apply a linear variable transformation which moves the steady-
state point to the origin, ie., if (21, 23),s = [0, 8], we introduce the new
set of state varinbles: £ = 2y —a and £3 = 25 = b, mnd rewrite our set
of differential equations in terms of these new vanables, In the new
coordinate system [£;,£;]. the steady-state point will be the origin.

(€) We can now linearize the models around their origins by simply throw-
ing oul all non-linear terms,

(d) The resulting linear meta models are so simple that they are amenahle
to an analytieal trestment (i.e., they have elosed—form solutions). Find
ihese solutions, and determine qualitatively the behavior of the non-
linear system in the vicinity of these steady-siate poinis, Sketch a
graph of what you expect the trajectories to look like in the [2,,2;]
plane (the so-called phase plane) in the vicinity of ihe steady-staie
points.

Projects

[P1.1] Definitions

Get & number of simulation and/or system theory textbooks from your
library, and compile & list of definitions of “What is & System?™ Write n
term paper in which these definitions are critically reviewed and classified.
(Such & compilation has actually been published once.)

HResearch

[R1.1] Experimental Frames

Study the separation of the model description from the experiment de-
mhn. Analyse under what conditions such n separaiion is meaningful
and (of feasible. Develop mechanisms Lo ensure the compatibility of & pro-
posed experiment with & given model [mechanisms to code the experimen-
tal frame), and develop & generic language to code the experimental frame
specification.



