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Population Dynamics Modeling

Preview

Until now, we have dealt with deductive modeling exclusively, i.e.,
all our models were created on the basis of a physical understand-
ing of the processes that we wished to capture. Therefore, this type
of modeling is also frequently referred to as physical modeling. As
we proceed to more and more complex systems, less and less meta—
knowledge is available that would support physical modeling. Fur-
thermore, the larger uncertainties inherent in most physical param-
eters of such systems make physical models less and less accurate.
Consequently, researchers in fields such as biology or economy often
prefer an entirely different approach to modeling. They make obser-
vations about the system under study, and then try to fit a model
to the observed data. This modeling approach is called inductive
modeling. The structural and parametric assumptions behind in-
ductive models are not based on physical intuition, but on factual
observation. This chapter illustrates some of the virtues and vices
associated with inductive modeling, and it addresses the question
under what conditions which of the two approaches to modeling is
more adequate, and why this is so. This chapter documents how
population dynamics models are created, it discusses the difference
between structural and behavior complexity of models in general, it
introduces the concept of chaotic motion, and it finally addresses a
rather difficult issue, namely the question of self-organization within
systems.

10.1 Growth and Decay

In any population dynamics study, the change of the population per
unit time can be described through the difference between the birth
rate and the death rate:
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P=BR-DR (10.1)

where BR denotes the “birth rate” which includes both physical birth
and migration into the system, and DR stands for the “death rate”
which again includes both physical death and migration out of the
system.

It is natural to assume that both the birth rate and the death rate
are proportional to the current population:

BR=kgr-P , DR=kpgr-P (10.2)
and therefore:
P = (kpr—kpr)- P (10.3)

If we assume that kpp and kpp are two constants, the model exhibits
either an ezponential growth of the population (if kgr > kpr), or it
shows an ezponential decay of the system (if kgr < kpr).

However, is the assumption of constant birth and death factors
ksr and kpg indeed justified? In order for a population to grow, it
must consume some form of energy. Since, in any closed system, the
energy is limited, a population cannot grow exponentially forever.
If we assume that the available energy is equally distributed among
all members of the population, then we can conclude that the per
capita energy E, . is inverse proportional to the population count:

Ep. = % (10.4)
Both the birth factor and the death factor will somehow depend
on the available energy. If the per capita energy becomes small,
the birth factor declines (since malnutrition leads to impotence and
increased infant mortality), and the death factor increases (due to
famine and due to an increased vulnerability to epidemic diseases).
Eventually, an equilibrium will be reached in which the death factor
balances the birth factor out, thus the population reaches a steady—
state, therefore, the per capita energy does not decrease any further,
and therefore, the birth factor and the death factor remain constant
as well. The population dependence of the birth and death factors
is usually referred to as the crowding effect.

Unfortunately, a physical law that would allow us to specify an
explicit and accurate relationship between the per capita energy and
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the birth and death factors is unknown, and we must therefore base
our model on inductive evidence rather than on deductive evidence.

The most commonly made assumption is the following: A one
species ecosystem can support a fixed number of animals (plants)
over an extended period of time. Let us call this number P,,,,. We
can model the smooth growth and saturation of the population in
the following way:

. P
=k-(1.0—
P=k-(1 P

mazx

)-P (10.5)

where k denotes the difference between kpr and kpgr. If the popula-
tion P approaches its maximum allowed value P,,,., the factor in the
paranthesis becomes smaller and smaller, and it finally reaches zero
for P = P,,,,. Thus, the population stops growing. Fig.10.1 shows
the behavior of this model for the same initial population F,, for the
same maximum population P,,,,, but for three different values of k.
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Figure 10.1. Trajectory behavior of the continnous-time logistic model

Eq(10.5) is called the continuous—time logistic equation. Notice that
the crowding effect is modeled through a quadratic term in the pop-
ulation. For instance, the two—species model of hw(H10.1) uses the
logistic approach to modeling the crowding effects within each of the
two species.

Notice that absolutely no physical evidence is available which sup-
ports the correctness of the logistic model. However, it is true
that many biological species exhibit a population dynamics behavior
which can be fitted rather accurately with a logistic model.

The logistic model has several obvious disadvantages though.
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(1) In order to identify the Pp,, value of a logistic model with rea-
sonable accuracy, we must wait until a steady—state has actually
occurred in the real system. However, this may be undesirable
if the purpose of the model was to predict where the real system
might settle to its steady-state value, and possibly, to find a
means to influence the steady—state value of the real system be-
fore it ever occurs. For example, in world modeling, it is clearly
undesirable if we have to wait until the human population has
reached its steady—state value before we can construct a decent
model for this fact.

(2) If an ecosystem contains several species, many different stable
steady—state points may exist. It is the total energy of the sys-
tem which is limited, but we have ample reason to assume that
the ecosystem can support either more animals of one species
and less of another or vice versa if both populations forage on
the same food. Thus, it becomes difficult to come up with a
meaningfully founded value for P,,, under any circumstance,
even if a steady—state has been observed in the real system.

Since inductive models are based on observation, such models are
difficult to validate beyond the observed facts. Consequently, we
may be forced to observe a disaster before we can devise a strategy
that might have prevented it in the first place, had the strategy been
known earlier. This is a clear disadvantage of inductive modeling.

Let me illustrate this problem a little further. Fig.10.2 shows the
answer to hw(H10.4).
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Figure 10.2. Antelope populatién dynamics with exponential fitting
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Without giving the model away, we can analyze these results a little
further. Hw(H10.3) presents a fairly accurate non-linear physical
discrete-time model of an antelope population. Two simulations
were performed which differ in the assumption made about the in-
fant mortality rate. Other than that, the two models were iden-
tical. Hw(H10.4) then fitted exponential models to the results of
hw(H10.3). Fig.10.2 shows the dramatic effect of the minor variation
between the two models on the trajectory behavior. The continuous
lines are the simulation results from the physical models, and the
dashed lines represent the simulation results from the curvefitted
inductive meta-models. Fig.10.2 shows clearly that the exponential
approximation is well justified. The available measurement data on
which the models were based are certainly not accurate to such an
extent that we could claim with confidence that the deductive phys-
ical model is more accurate than the inductive exponential model.

Yet, a very important difference exists between the two models.
While the physical model requires more data items to be measured,
we can obtain all the required data within a relatively short time
span, say, two or three years. Once we measured the required data,
we can predict the future behavior of the antelope population, and,
if the model predicts the extinction of the entire population, we may
be able to propose a countermeasure which could prevent the disas-
ter from happening. As Fig.10.2 shows clearly, a minor modification
in only a few physical parameters such as a minor change in rain-
fall statistics, an overgrazing by farm animals who compete for the
same food, a new viral infection which increases the infant mortal-
ity by a few percent, or other seemingly insignificant changes in the
environmental conditions can have drastic long term effects on the
antelope population which may easily go undetected for quite some
time. The fitting parameter of the exponential model is highly sen-
sitive to changes in the physical parameters of the model. Without
performing a simulation of the physical model over an extended time
span, we have no decent way to estimate an accurate value of the
fitting parameter. Consequently, if we rely on the inductive model
alone, we may have to wait for a long time before we discover from
measurements that a modification of the system parameters has oc-
curred which endangers the population. By that time, it may be too
late for any countermeasure to become effective.

We just learned that, while the simpler inductive model explains
the data as well as does the more complex deductive model, and while
it is normally advisable to operate on the simplest model that ex-
plains the available data adequately, other considerations may exist
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as well. In the above example, the fact that the deductive model can
be identified accurately within a much shorter time span, is clearly
a strong argument in favor of the deductive physical model.

Something else is interesting in the above example. While the
physical system is clearly of high order, it behaves very similar to a
low order system, i.e., inherent structural complezity of a system does
not necessarily imply that the system must exhibit also behavioral
complezity. This observation is much deeper than what could be
expected on a first glance. We shall return to this discussion at a
later time.

10.2 Predator—Prey Models

What happens if our ecosystem contains more than one species? It
is clear that a model of a multi—species ecosystem must contain sub-
models that describe the behavior of the individual species, following
the same arguments as before. However, we need additional terms
that describe the interactions among the different species.

Obviously, the interaction terms must be such that no interaction
takes place between two species if either of the two populations is
extinct. The simplest expression that exhibits this property is the
product of the two populations. If either of the two populations is
zero, the product is zero as well.

The simplest model of this type is the Lotka—Volterra model [10.8].
It assumes that a population of predators z,,.4 forays on a population
of preys z,,.,. When a predator meets a prey, it gets fed, and a
certain number of calories are exchanged. The predator population
now has more calories, and the prey population has less. Usually, the
Lotka-Volterra model introduces an efficiency factor, i.e., the prey
population loses more calories than the predator population gains.
It is also assumed that the predator population would die out when
left without prey, while the prey population feeds on another species
which is available in abundance and which is not itself contained in
the model. Thus:

ipred = —G- Tpred + k-b- Tpred * Tprey (10.6(1)

iP"‘!l =€ Tprey b- Tpred * Tprey (10.66)
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where @ > 0.0 is the excess death rate of the predator population,
¢ > 0.0 is the excess birth rate of the prey population, b > 0.0 is the
foray (grazing) factor, and 0.0 < k < 1.0 is the efficiency factor.

The Lotka—Volterra model exhibits a number of remarkable prop-
erties. In particular, this model does not approach a continuous
steady-state value. Instead, it approaches a periodic steady-state
value, i.e., the solution oscillates. The shape of the oscillation is
very characteristic.

Fig.10.3 compares the measured data (dashed line) of a population
of insects, the larch bud moth, Zeiraphera diniana (Guenée), which is
endemic in the upper Engadine valley of south—eastern Switzerland,
to simulation results (continuous line) stemming from an optimized
inductive two species Lotka—Volterra model. The populations are
expressed in larvae per kilogram of branches. Approximately once
every nine years, we observe a large increase in the insect population.
While the adult insects are quite harmless, their larvae feed on the
needles of the larch trees, causing a lot of damage to the larch forest.
Over several square kilometers, the green trees turn brown [10.6].
Therefore, it can be assumed that the insects are the predators in a
predator-prey relationship with the larches being the prey. This as-
sumption provided the rationale for the construction of the inductive
model. Only the predator population is shown on the graph.
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Figure 10.3. Lotka—Volterra model compared to measured insect data

The attractiveness of the Lotka—Volterra model becomes immedi-
ately evident from a comparison of the two curves. Clearly, our
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mathematical model reflects very well the data that have been ob-
served. However, please remember that we have absolutely no phys-
ical evidence which would give credibility to the internal structure
of our equations. All we can say is that this model fits well the
measured data, and since we operate under periodic steady-state
conditions, i.e., no trend exists in either the measured or the sim-
ulated data, this model can be used very well to predict the insect
population over a long time span, given that no significant change
occurs in climatic or other environmental conditions.

Notice that a good curve fit does not prove our equations to be
correct. It does not even prove that our initial assumption of the
larch bud moth being the predator in a two species predator-prey
relationship is correct.

It was also observed that the adult insects suffer a lot from par-
asites. Obviously, the danger of epidemic deseases grows with the
density of the insect population. Thus, it is equally reasonable to
assume that the larch bud moth is in fact the prey in a two species
predator—prey relationship with the parasites being the predator.
Fig.10.4 shows another two species Lotka—Volterra model which was
optimized under this new assumption. Again, the dashed line de-
picts the measured data, while the continuous line represents the
simulated data. This time, only the prey population is shown on the
graph.
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Figure 10.4. Lotka—Volterra model compared to measured insect data

Just from looking at these two simulations, we cannot say with cer-
tainty that either of the two assumptions leads to a significantly
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better curve fit, and is therefore more likely to be accurate. Con-
sequently, we must be super cautious about concluding causal rela-
tionships among variables in a real system on the basis of a good
curve fit by an inductively constructed model.

Fig.10.5 shows the simulation results (continuous lines) of the same
two models once more, superposed with the measured data (dashed
lines), but this time plotted on a semi-logarithmic scale.

s _Larch Bud Moth Population

- s : -

10

10

Predator Fit

-3 ; ; i it ; F i
101054, 1957, 1960. 1963. 1088. 1080.  1072.  1975.  1978.
Time [calendar years]

Prey Fit

-3 ; H ; ; ; i

101954, 1857. 1960. 1063, 1@86. 1@eG.  1972.  1875.  1878.
Time [calendar years]

Figure 10.5. Lotka-Volterra models compared to measured insect data

This presentation shows that the predator fit exhibits a slow decay
and a fast rise, whereas the prey fit exhibits a fast decay and a slow
rise. The second model gives a slightly better fit, but the difference
is certainly not significant.

Maybe, some truth lies in both assumptions, and we should use a
three species Lotka—Volterra model with the insect being the “sand-
wich” population between the predator and the prey. Fig.10.6 com-
pares a somewhat optimized three species Lotka—Volterra model to
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the measured data, but I didn’t try real hard to get the best possi-
ble fit. The insect population is shown once using a linear scale, and
once using a semi-logarithmic scale.
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Figure 10.8. Three species model compared to measured insect data

This time, we observe a more symmetric rise/decay behavior. I am
sure that, by trying a little harder, I could obtain an even better
fit than shown on Fig.10.6. Yet, this is not the important message.
Clearly, the measured data are insufficient to validate and therefore
justify the more complex three species model.

Notice the difference in argument here. Previously, I argued in
favor of a complex physical model over a simple inductive model.
That is different. We need much less measurement data to justify a
complex physical model than we need to justify a complex inductive
model.

Notice that, just by adding sufficiently many parameters to our
model, we can fit virtually any model structure to virtually any
data. This is one of the most severe problems with many inductive
modeling techniques. Inductive models lure us into love affairs with
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unhappy ending. In Chapter 13 of this text, I shall present another
inductive modeling technique which does not suffer from this disease.
It will simply refuse to let us identify models that exhibit a larger
complexity than what is justifiable from the amount of available
measured data.

Analyzing the above example a little further, we notice one of
the major problems with modeling biological systems. Since we, the
modelers, are a biological system ourselves, it is not surprising that
the time constants of the biological systems to be modeled are gener-
ally of the same order of magnitude as our own time constants, i.e.,
in population dynamics, it usually takes years to obtain data that
can support modeling. In the case of the larch bud moth ecosystem,
the researchers had to spend three weeks every fall in the (undeni-
ably very beautiful) upper Engadine valley during 30 years, climb
trees, and count needles and larvae, to obtain the (still meager) data
points used to validate their models. What a difference with electri-
cal circuitry!

Fischlin and Baltensweiler [10.6] carried their model identification
even further. They argued that the insects breed only during a rela-
tively short time period every year. Therefore, a discrete-time model
with a sampling period of one year may be a more reasonable assump-
tion that the continuous-time Lotka—Volterra models shown in this
chapter. Then, they argued that the Engadine valley is not a ho-
mogeneous ecosystem. Different parts of the valley exhibit different
insect populations at different times. This claim was supported by
data. Data had indeed been collected for different spots in the valley
separately. Therefore, they compartmentalized the valley into 20 dif-
ferent segments. They used a semi—physical modeling technique, one
that I shall introduce in Chapter 11, to model the dynamics within
each segment, and they included the migration of insects between
these segments in their model. Their modeling technique allowed
them to create a model of this ecosystem which is strictly based on
causal relationships among variables. The parameters of the model
were identified individually on the basis of measurement statistics.
Their model was able to predict the insect population fairly well
without need to apply a global postoptimization to trim the model
parameters. In Chapter 11, I shall present a simplified version of
their model.

Postoptimization is, of course, a questionable enterprise. This
model contains so many parameters that chances are that a good
fit with the measured data could be found even if the model struc-
ture were incorrect. This problem can be overcome by assigning
tolerance bands to all parameters of the model which describe the
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inaccuracy of the deductive model, i.e., parameters that have been
well established are assigned narrow tolerance bands, while parame-
ters for which few measurement data are available are assigned wide
tolerance bands. We then could restrict the postoptimization in such
a way that every single one of the parameters must remain within
its assigned tolerance band.

The optimizations shown in this section are quite tricky. In the
second volume of this text, I shall explain how they were accom-
plished. In fact, the optimization problems demonstrated in this
section will turn into excellent homework problems then. But let’s
try to swallow one bite at a time.

10.3 Competition and Cooperation

In addition to the previously discussed predator—prey relationships
among different species, two other relationships deserve to be men-
tioned: competition and cooperation.

A competitive situation occurs typically when several species com-
pete for the same food source. In a way, this is similar to crowding,
i.e., the more densely populated an area is, the more severe the
competition will become. Similar to crowding, competition should
thus be modeled as a quadratic effect. As in the predator—prey sit-
uation, if one of the populations is extinct, the competition stops.
Consequently, we model competition again as a crossproduct of the
competing populations, but this time, it appears with a negative sign
in both equations, i.e.:

:i:1=a-::1—b-z1-zg (10.70)
igzc-zg—d-zl-zz (10.76)

Here, both populations are expected to grow exponentially if they
are not inhibited by competition, but due to competition, neither of
the two populations will be able to grow forever.

The opposite situation is called cooperation. Cooperation occurs
naturally in a variety of situations. A typical scenario is the sym-
biosis among two species. Neither of the two species can survive
without the other. :

Eq(10.8) describes the typical cooperation model:
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B1=—a-21+b-2y 2, ' (10.8a)
Za=—cC-Za+d-z1-2g (10.8b)

Both populations have a tendency to decay, but in cooperation, a
stable equilibrium can be reached which saves both populations from
a destiny of extinction.

A similar effect is grouping. Grouping is the inverse mechanism
of crowding. Many animals travel in herds, because in a herd, they
are less vulnerable to being attacked by another species. A typical
grouping model is shown below:

z=-a-z2+b-2? (10.9)

Of course, all these effects can occur together, i.e., the typical pop-
ulation dynamics model involving n species can be written as:

L
g = (4 + ) _byzj)z , Vie[1,n] (10.10)
i=1

or using a matrix notation:
% = (diag(a) + diag(x) - B) - x (10.11)

where the a vector captures the balance between birth rate factors
and death rate factors, the diagonal elements of the B matrix de-
scribe the balance between grouping and crowding factors, and the
off-diagonal elements of the B matrix cover the balance between co-
operation and competition factors. They also include the predator—
prey situation in which the predator considers the prey to be “coop-
erative”, while the prey considers the predator to be “competitive”.
The diag function turns its argument vector into a diagonal matrix.

This model assumes that all relationships between species are bi-
nary, i.e., no crossproducts exist between more than two species.
This is meaningful. If three species compete for the same food source,
the competition terms should be modeled as:

—big @y c2g—big-x1-23 —baz- 2323 (10.12a)
and not as:

—b-2y-23- 23 (10.12b)
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since, if one of the three populations is extinct, the other two still
compete for the same food. Eq(10.12b) would suggest that compe-
tition stops as soon as one of the three populations dies out.

The situation would be quite different if we were to assume a sym-
biosis among three different species in which neither of the species
can survive without the other two, but to my knowledge, such a
phenomenon has never been observed on this planet.

What are the lessons learned? In short, we can postulate the
following three rules:

(1) If we have a choice between a decent physical model and an
inductive model, we always choose the physical model, even if it
is more complex than the equivalent inductive model.

(2) If we have to content ourselves with an inductive model, we
choose the simplest model that explains the data reasonably
well. We start with a linear exponential growth/decay model,
and add more terms until we obtain a reasonable fit. Among
equally reasonable terms, we choose the one with the highest
sensitivity, since it is probably the most important among the
terms.

(3) We should avoid the love story cliff. We must be extremely self-
critical when we try to deduct causal relationships among real
system variables from an inductive model. Had this third rule
been properly observed, Australia would not be plagued with
rabbits and foxes today.

A more detailed discussion of the basic mechanisms of population
dynamics can be found in a recent book by Edward Beltrami [10.1].

10.4 Chaos

Until now, every single autonomous system that we studied exhib-
ited, in the steady-state, one of three types of behavior:

(1) continuous steady-state, i.e., after a long time, every variable in
the system assumes a constant value,

(2) periodic steady-state, i.e., after all transients have died out, some
variables oscillate with a fixed frequency, while others may as-
sume constant values, or

(3) no steady-state, i.e., the transients never die out, on the contrary,
they grow beyond all bounds, that is, the system is unstable.
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An interesting question is whether these are indeed all possible types
of behavior that autonomous systems can exhibit. Would it not be
feasible that the transients in an autonomous system do not die out,
and yet stay bounded? Let us discuss this question further by means
of a three species population dynamics model.

The following set of equations describes one predator z3 foraying
on two different preys z; and z;. The preys suffer furthermore from
crowding and from competition:

#, = 2y — 0.001 zJ — 0.001 z,2; — 0.01 2,23 (10.13a)
&3 = 23 — 0.0015 2,23 — 0.001 =3 — 0.001 2,2 (10.13b)
#3 = —z3 + 0.005 2,23 + 0.0005 2,23 (10.13¢)

This set of equations has been analyzed by Michael Gilpin [10.7].
Fig.10.7 shows the trajectory behavior of this system simulated over
5000 time units. The initial populations of all three species were
arbitrarily set to 100 each.

Three Species Population Dynamics Model
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Figure 10.7. Chaotic three species Lotka—Volterra model
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During most of the time, plenty of preys of the z, type are around,
but from time to time, the predator population seems to explode.
Then it reduces the 2, population drastically. Since no more food is
around, the predator population decreases again. Now, the z;, pop-
ulation can grow which before was hampered by heavy competition
from z;. However, the 2, population recovers quickly and resumes
its dominant position in the ecosystem. And yet, each cycle seems
to be a little different, and no periodic pattern seems to evolve. This
type of behavior is called chaotic motion. Chaotic motion is char-
acterized by a transient response which does not die out, yet which
remains stable.

Let us look at the same problem in the phase plane. Fig.10.8
shows two of the three phase portrays:

Phase Portrays of 3g},ilpin's Model
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Figure 10.8. Chaotic Lotka—Volterra model in the phase plane

Most of the time, the trajectory lingers around the left upper corner
of the < z,,z; > plane, and around the left lower corner of the
< z,,z3 > plane. The transitions away from these corners take place
very rapidly, and they last only a very short time. The non-smooth
characteristic of the < @,,z3 > graph shows the influence of the
numerical integration. In reality, this curve should be smooth. We
must therefore be suspicious. Is this behavior for real, or is it simply
an artifact of the numerical integration, i.e., if we were to integrate
with higher precision on a machine with a large mantissa, would the
behavior then turn out to be periodic, or is what we observe a real
property of a real system?

In a rigorous sense, this question is still unanswered. Let me try to
provide a better answer than has been given previously, but before
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I do so, we want to analyze a much simpler example, an example
which is so simple that we can tackle it analytically.

The discrete-time version of the logistic equation can be written
as:

Zre1 = a - 2x(1.0 — z3) (10.14)

Let us analyze the steady-state behavior of this equation as a func-
tion of the single parameter a. Fig.10.9 shows the trajectory behavior
of this system for a random initial condition between 0.25 and 0.75,
and for four different values of a chosen between 0.0 and 1.0. I plot-
ted the left hand side of eq(10.14) as one curve, and the right hand
side as another. In this way, we can solve the recursion equation
graphically, which will be useful for a full understanding of what is
going on.

Discrete—Time Logisotic Equation
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Figure 10.9. Discrete-time logistic equation

In the given range of the parameter a, the two curves intersect only
in a single point, namely for ¢ = 0.0. This turns out to be a stable
continuous steady—state point of the discrete—time logistic equation.
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As we approach a = 1.0, the area between the two curves becomes
more and more narrow, and consequently, it will take more and more
iterations to reach the steady-state point. At a = 1.0, this steady—-
state point becomes unstable. If you are curious about how Fig.10.9
was produced, solve hw(H10.6).

Fig.10.10 shows what happens in the range a € [1.0, 3.0].

Discrete—Time Logistic Equation
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Figure 10.10. Discrete—time logistic equation

Now, the two curves intersect in two points. The second intersection
is now a stable continuous steady—state solution of the discrete-time
logistic equation. At a = 1.0, this solution is identical with the
previous one, and is thus marginally stable. As we leave the vicinity
of a = 1.0, the steady—state point becomes more and more stable.
For example, at a = 2.0, it takes only very few iterations to reach
the steady-state point. As we approach a = 3.0, this steady—state
point becomes again less and less stable. At a = 3.0, we lose stability
again. At a = 3.0 — ¢, it takes infinitely many iterations to reach the
steady—state point.

Fig.10.11 shows what happens in the range a € [3.0, 3.5].
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Discrete—Time Log%sotic Equation
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Fiéure 10.11. Discrete-time logistic equation

This time, the first 100 iterations were skipped in order to show the
steady-state solution directly. At a = 3.1, a periodic steady—state
exists with a period of 2 around the intersection of the two curves. As
we approach a = 3.0 from the upper side, the steady-state rectangle
shrinks more and more. At a = 3.0 + ¢, the rectangle is infinitely
small, and it takes infinitely many iterations to reach it. As we leave
the area of a = 3.0 in the positive direction, the periodic steady—
state becomes more and more stable, i.e., it takes fewer and fewer
iterations to reach the limit cycle. In the vicinity of a = 3.45, the
next accident happens. Again, the solution has become marginally
stable. Now, the limit cycle splits, and we obtain a new limit cycle
with a period of 4.

Fig.10.12 shows what happens in the range a € [3.5,4.0].
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Discrete—Time Log%sotic Equation
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Figure 10.12. Discrete-time logistic equation

The stable intervals between two new bifurcations become smaller
and smaller. Each time, the period of the periodic steady-state
doubles. At a = 3.56, we observe a period of 8. Then, the period
becomes :nfinite. At a = 3.6, the signal has become non—periodic,
yet stable. We call this a chaotic steady-state.

However, even this is not the full truth. At a = 3.84, we observe
another stable limit cycle, this time with a period of 3. At a = 3.99,
we obtain a totally aperiodic behavior with “random” values of z
anywhere between 0.0 and 1.0. Finally, at a = 4.0, the equation
becomes unstable. In the second volume of this text, we shall return
to this discussion, and analyze the properties of the logistic equation
for a = 3.99 as a random number generator.

Fig.10.13 shows the behavior of the discrete—time logistic equation
in a so—called bifurcation map for a € [2.9,4.0].
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Bifurcation Map of Discrete Logistic Model
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Figure 10.13. Bifurcation map of the discrete-time logistic equation

On the independent axis, the parameter a is varied. On the depen-
dent axis, possible steady—state values of z are shown. For a < 3.0,
only one such value exists, but for a > 3.0, several such values exist.
The two branches of the map show the upper and the lower value of
z in the periodic steady—state. The dark areas are chaotic. As can
be seen, even for larger values of a, chaotic areas are interspersed
with non—chaotic areas. If you are curious about how Fig.10.13 was
created, solve hw(H10.7).

This time, we know for a fact that we have not observed merely an
artifact. It is a straightforward (though tedious) exercise to compute
the bifurcation points, i.e., the points on the bifurcation map where
the number of branches doubles. Let me sketch an algorithm how
this can be achieved. We start with the assumption of a continuous
steady—state, i.e.:

Zrr=a-2x(l0—azx)=2r , k— o0 (10.15)
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which has the two solutions z; = 0.0, and 2, = “':‘0. We move
the second solution into the origin with the transformation: & =

z), — =12, This generates the difference equation:

Eupr1=—a-£F + (2.0 —a) ' (10.16)

We linearize this difference equation around the origin, and find:

b1 = (20— a)és (10.17)

which is marginally stable for a = 1.0 and a = 3.0. Now, we repeat
this analysis with the assumption of a periodic steady—state with
period 2, thus:

Ty =G zk+1(l.0 —Zpp1) =2 , ko oo (10.18)

We evaluate eq(10.18) recursively, until 2,5 has become a function
of ;. This leaves us with a fourth order polynomial in z,. Obviously,
the previously found two solutions must also be solutions of this
new equation. Thus, we can divide through, and obtain again a
second order polynomial with two additional solutions. We move
those into the origin, linearize, and obtain two new values for a, one
of which will again be a = 3.0, the other will be the next bifurcation
point. We continue in the same manner. Each time, the previous
solutions will be solutions of the new equation as well. Of course, it
is more meaningful, to perform this analysis on a computer rather
than manually, and software systems exist meanwhile that allow us
to solve such problems elegantly.

Notice that simulation is a very poor tool for determining the
logistic bifurcation points accurately, since unfortunately, the logis-
tic equation is marginally stable at every single one of the bifurca-
tion points. A better numerical technique might be to exploit the
marginal stability explicitly, i.e., compute root loci of the difference
equations as a function of a, and solve for the points where the root
loci intersect with the unit circle. However, this is of little concern to
our cause. All we wanted to achieve was to convince ourselves that
the bifurcations are for real, and are not merely artifacts. A more
detailed discussion of analytical and semi-analytical techniques for
the explicit evaluation of bifurcation points can be found in a paper
by Mitchell Feigenbaum [10.5].

Let us now return to the Gilpin equations. These equations are far
too complicated to perform a closed analysis as in the case of the lo-
gistic equation. The problem is the following. Even if we assume that
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we operate on a computer with a mantissa of infinite length, the nu-
merical integration algorithm still converts our differential equations
into difference equations, and we don’t know for sure whether the
observed chaotic behavior is due to the differential equations them-
selves, or whether it was introduced in the process of discretizing
the differential equations into difference equations. Consequently,
the observed chaotic behavior could, in fact, be a numerical artifact.

Several researchers have argued that an easy way to decide this
question is to simply switch the integration algorithm. If the chaotic
behavior occurs for the same parameter values, then it can be con-
cluded that the numerical integration is not the culprit. Unfortu-
nately, this argument does not hold. As we see clearly from Fig.10.7,
the trajectory behavior of the Gilpin model is highly irregular, al-
most discontinuous at times. Consequently, a fixed step integration
algorithm will compute garbage, while a variable step algorithm will
reduce the step size to very small values in the vicinity of the spikes.
As we shall see in the second volume, all currently advocated numer-
ical integration algorithms are based on polynomial extrapolation.
When the step size is reduced, the higher order terms in the approx-
imation become less and less important. Ultimately, for a sufficiently
small step size, every integration algorithm will behave numerically
exactly like a forward Euler algorithm. Therefore, by switching the
integration algorithm, we haven’t really achieved anything. We have
just replaced one Euler algorithm by another.

Let me propose another approach. We apply a logarithmic trans-
formation to our populations:

¥ = log(z;) (10.19)

Thereby, the Gilpin equations are transformed into:

th = 1.0 — 0.001 exp(y) — 0.001 exp(y;) — 0.01 exp(ys) (10.20a)
%2 = 1.0 — 0.0015 exp(z;) — 0.001 exp(y;) — 0.001 exp(ys) (10.20b)
s = —1.0 4 0.005 exp(y;) + 0.0005 exp(ya) (10.20¢)

If we simulate eq(10.20) instead of eq(10.13), we are confronted with
a numerically different problem. Yet, the analytical solution must
be exactly the same. Thus, if eq(10.13) and eq(10.20) give rise to
the same bifurcation map, we can indeed believe that the map was
caused by the differential equations themselves, and had not been
introduced in the process of discretization.
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Let us apply the following experiment. The parameter that we are
going to vary is the competition factor. For this purpose, we rewrite
the Gilpin equations in the following way:

5}1 =21 — 0.001 3: —k-0.001 T1T3 — 0.01 T123 (10.210)
&3 = 23 — k - 0.0015 2,25 — 0.001 z2 — 0.001 2523  (10.21b)
&3 = —z3 + 0.005 z,23 + 0.0005 z,23 (10.21¢)

For k = 1.0, we obtain the same solution as before. k < 1.0 reduces
competition, while £ > 1.0 increases competition. Fig.10.14 shows
the behavior of the Gilpin model for a slightly reduced competition.
Only the first prey z, is shown.

Chaos in Gilplioort}’s Model
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Figure 10.14. The influence of competition in Gilpin’s model

With 98% competition, we observe a stable periodic steady—state
with a “discrete period” of 1, meaning that each peak reaches the
same height. For 99% competition, the discrete period has doubled.
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For 99.5% competition, the period has tripled. Somewhere just be-
low £ = 1.0, the model turns chaotic. For lower values of compe-
tition, the Gilpin model exhibits a continuous steady—state, i.e., no
oscillation occurs at all. Let us see what happens if we increase the
competition.
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Figure 10.15. The influence of competition in Gilpin’s model

The behavior of the Gilpin model stays chaotic only up to k = 1.0089.
For higher competition values, the z; population dies out altogether.
We notice an incredible manifold of different possible behavioral pat-
terns of this structurally simple model.

I repeated the same experiment for the modified Gilpin model, i.e.,
the model after application of the logarithmic transformation. The
results were the same, except that in the chaotic cases, the curves
looked different which is easily explained by the high sensitivity of
the model to roundoff errors. We would need a computer with a
mantissa of infinite length in order to obtain the same trajectories.

Fig.10.16 shows the two “bifurcation maps” of Gilpin’s model with
and without the logarithmic transformation. For this purpose, 1
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recorded all extrema of the z; population, i.e., the values for which
él = 0-0.

Bifurcation Maps of Gilpin's Model
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Figure 10.16. Bifurcation map of Gilpin’s model

The bifurcation maps are somewhat inaccurate due to the large gra-
dients in the immediate vicinity of the peaks. Yet, Fig.10.16 shows
clearly that the two bifurcation maps are qualitatively the same.
Thus, we conclude that the observed chaotic behavior is indeed a
property of the physical system, and not merely an artifact of the
numerical solution technique.

The Gilpin model is of course rather artificial. I don’t think that
a real system with such a high vulnerability to competition would
be able to survive, and to thrive in a chaotic mode. Yet, this is a
particularity of the Gilpin model, and not a property of chaos per
se. Chaotic motion has been observed on numerous occasions. A
good account of chaotic observations in biological systems can be
found in Degn et al [10.3]. Chaotic motion is by no means limited to
biological systems alone. I simply found this to be a good place to
introduce the concept. A well written survey of the mechanisms of
chaotic motion can be looked up in a recent book by Robert Devaney
[10.4].

In the first section of this chapter, we analyzed the antelope pop-
ulation dynamics problem, which exhibited a fairly large structural
complexity, and yet, the behavioral complexity of that model was
very low. In the last section, we saw several examples of systems with
very limited structural complexity which exhibited a stunning wealth
of behavioral complexity. Obviously, structural and behavioral com-
plexity do not have to go hand in hand. This comes as a surprise.
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In earlier days, observed erratic behavior of physical processes had
always been attributed to their structural complexity. Chaos theory
has taught us that even structurally simple systems can exhibit an
astounding variation of behavioral patterns. However, the reverse is
also true. Structural complexity does not necessarily lead to behav-
ioral complexity, and in fact, it commonly won’t. This statement
deserves additional consideration. The next section will provide just
that.

10.5 The Forces of Creation

The behavioral complexity of a system is usually larger than its
structural complexity. We see this already by means of the simplest
differential equation system:

g=-a-z , =z(t=0.0)==z (10.22)
has the solution:
z(t) = exp(—at) - 2o (10.23)

While the differential equation itself is linear, its solution is already
exponential. The differential equation describes the structure of the
system, while the solution describes its behavior.

What chaos theory taught us is the fact that the behavioral com-
plexity of a system can even be much greater than its structural
complexity, more so than we had thought possible before chaos had
been discovered.

This is the answer to the question which I posed at the end of
Chapter 9. In the past, researchers looked at thermodynamics only
in the steady—state. To do so, they analyzed a limited subset of the
behavioral patterns of thermic systems, namely those observed under
steady—state conditions. Yet, even those patterns were already quite
complex, and it was necessary to distinguish between different types
of behavioral patterns, such as those observed under reversible con-
ditions vs those observed under irreversible conditions. By working
with the differential equations directly, we concentrate on the struc-
tural patterns of thermic systems, and this turns out to be simpler.

The next question is: Which mechanisms exist that limit the be-
havioral complexity of a system? If we add more and more structural
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components to a system, why is it that its behavioral complexity does
not grow beyond all bounds? I would like to identify three different
mechanisms which limit system complexity.

(1) Physical constraints: In connecting two subsystems, their com-
bined degrees of freedom are usually lower than the sum of the
degrees of freedom of the subsystems.

(2) Control mechanisms: Controllers in a system tend to restrict
the possible modes of behavior of a system.

(3) Energy: The laws of thermodynamics state that each system
sheds as much energy as it can, i.e., it maintains the lowest
amount of energy feasible. This mechanisin also limits the com-
plexity.

Let us discuss these three mechanisms in more detail. If we take
a lever, and describe all possible motions of that lever, we need
six differential equations to do so, i.e., we formulate Newton’s law
three times for the three translational motions, and three times for
the three rotational motions. When we now take two levers, and
we connect them in one point, we notice that the total number of
differential equations needed to describe all possible motions of the
combined system is nine rather than twelve. The connection between
the two levers has introduced three structural singularities. We no-
ticed this fact before when we analyzed the behavior of a DC-motor
with a mechanical gear. The gear was responsible for a structural
singularity. Consequently, physical constraints restrict the structural
complexity of a system.

If we introduce a controller to a system, we reduce the sensitivity
of that system to parameter variations. We could also say: a con-
troller reduces the sensitivity of the behavior of a system to struc-
tural changes, i.e., the controller restricts the behavioral complexity
of the system. A system with a controller will exhibit less modes
of operation than the same system would if the controller were re-
moved. This is why the device is called a “controller”. It controls
the behavior of a system. This is equally true for human made con-
trollers as for controllers in nature. Why is it that all trees grow new
leaves in spring, and shed their leaves in the fall? The control mech-
anisms built into the system regulate this hehavior. Due to these
controls, the trees react uniformly, and the overall behavioral com-
plexity is much reduced. Without such control mechanisms, trees
could grow leaves arbitrarily, and they would have more “freedom”
in determining their behavior.
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The third mechanism is energy. To return to our previous example,
why is it that the motion of a lever can be described by six differential
equations, although this metal bar contains billions of atoms? The
true structural complexity of this system is phenomenal, and yet, its
apparent structural complexity is very limited. The reason is simple:
it is cheaper that way, i.e., the total energy content of the system
can be reduced by forcing the atoms into a crystalline structure.

Obviously, these three mechanisms are not independent of each
other. In our population dynamics models, crowding certainly exerts
control over a population. Yet, the crowding effect is caused by
energy considerations. The limited energy content of a closed system
is a great regulator in population dynamics. Returning once more
to our metal bar: The laws of thermodynamics manifest themselves
in an apparent control mechanism which restricts the motion of the
individual atoms. From a more macroscopic point of view, if we
ignore the dynamics of this control mechanism, we can view the
global effects of this control as a constraint. All atoms seem to move
in unison, and therefore, we experience our metal bar as a rigid body.

So, why then is there any complexity at all in this universe? Why
does our planet exhibit such a wealth of different systems and differ-
ent behaviors? We don’t know the answer to this question. However,
we can cobserve that a second force is at work besides energy, which
is the entropy. Every system tries to maximize its own entropy, i.e.,
it strives to reach a state of highest disorder. We don’t know where
this force comes from. We don’t know whether the laws of ther-
modynamics are globally true, or whether they are local dynamic
aberrations. Is entropy a global force, or is it simply a reminiscent
of the dynamics of energy transfer in the big bang? We are cur-
rently unable to answer these questions, and my guess is, we never
will. The laws of thermodynamics are empirical laws, i.e., they are
based on observation and not on deduction. I believe that these laws
are so fundamental to the functioning of this universe of ours, that
we shall never be able to unravel their origin. Yet, within the frame-
work of our understanding of physics, these laws have certainly been
confirmed over and over again.

We notice that two separate forces are at work. Entropy (or rather
the law of entropy maximization) is the great innovator. Entropy
tries hard to “create a mess”. Energy (or rather the law of energy
minimization) is the great organizer. Energy tries hard to “clean
up” behind the mess that entropy created. Together they manage
the evolution.
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I know that this a very simplistic view of an impossibly complex
problem. I know all too well the dangers behind oversimplification.
Didn’t I warn constantly about the love story cliff? Yet, this view
raises some interesting questions in the context of modeling. Is it
possible to create a computer algorithm which somehow exhibits
elements of evolution? First attempts in this direction have been re-
ported. Brown and Vincent [10.2] obtained interesting results in the
study of evolutionary games. This topic is also closely related to the
area of machine learning. Several recent advances in machine learn-
ing can be viewed in the light of modeling evolution, in particular,
some of the reported research efforts in neural network learning, and
in genetic algorithms. We shall return to this discussion in Chapter
14 of this text. Yet, this research area is still in its infancy, and more
research is highly encouraged.

From the above discussion, I conclude that any algorithm which
attempts to replicate elements of evolution needs two separate mech-
anisms:

(1) An Innovator, i.e., a mechanism to generate new behavioral el-
ements. In a computer model, this will probably have to be
triggered by some sort of random number generator, and

(2) An Organizer,, i.e. a mechanism to restrict behavioral complex-
ity and to guarantee overall system stability. In a computer
model, this will probably have to be some sort of optimization
algorithm.

Don’t get me wrong. I do not suggest that energy and entropy should
be made responsible for every single move in our daily lives. I am
aware of the fact that modeling (by definition) must be reduction-
istic. The more highly organized a system is, the more will appear
other influencing factors which will eventually dominate the behav-
ior of the system. The shortcomings of “social Darwinism” have
long been discovered, and the methodology has been discredited as
a mechanism to describe e.g. the social behavior of human organi-
zations. Yet, at the bottom of every system, underneath all other
competing factors, the two primeval forces are always at work, the
tidal forces of our universe, the laws of thermodynamics.
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10.6 Summary

In this chapter, we analyzed basic models that describe the behav-
ioral patterns of population dynamics. For this purpose, it was nec-
essary to leave the road of physical modeling, and introduce a new
concept, the technique of inductive modeling. We then proceeded to
more advanced topics, we introduced the concept of chaotic motion,
and we dealt with the relationship between structural complexity
and behavioral complexity in a model.

Notice that the inductive modeling methodology proposed in this
chapter is clearly limited to the discussion of population dynamics.
In the next chapter, we shall generalize this idea, and introduce a
methodology which will allow us to model a much wider variety of
systems in a semi-physical and semi-inductive manner.
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Homework Problems

[H10.1] Predator-Prey Model

A simple ecosystem consists of a population of seasnails p, that forages
on a population of algae p,. The populations are measured in number of
species per unit surface. The dynamics of this ecosystem can be described
by two differential equations:

ﬁa=b‘cl'?n’pa—cz'l’a"cl‘l’f (H10.1e)
}5¢=C4'Pa‘CS'Pi“cl'Pl‘pa (HlO.lb)

where ¢; = 1072 is the grazing factor, c; = 0.9 is the excess mortality rate
factor of the snails, ¢ = 10~% is the crowding ratio of the snails, ¢4 = 1.11s
the excess reproduction rate of the plants, cs = 10~ is the crowding ratio
of the plants, and b = 0.02 is the grazing efliciency factor. All constants
have been converted to a per day basis.

An accident in a nearby chemical plant diminishes the two populations
to values of p, = 10.0 and p, = 100.0. Simulate the ecosystem for a period
of 30 days to check whether the two populations can recover.

Use simulation to determine the range of initial conditions from which
the two populations can recover.

[H10.2] Linear Regression Model

Williams [10.9] developed a linear regression model for the ecosystem of
Cedar Bog Lake, MN. The model includes three biological species: a pop-
ulation of carnivores z. that feeds on a population of herbivores zp which,
in turn, feeds on a population of seaweed x,. All populations are expressed
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in terms of their energy content measured in cal cm~2. In addition, the
model considers the biological sediment that forms on the bottom of the
lake, and the loss of biomass to the environment (carried out of the lake
with the water).  The model is driven by solar energy z, which enables the
growth of the plants.

The model can be described by the following set of differential equations:

2, = 95.9 - (1.0 + 0.635 - sin(2xt)) (H10.20)
ip =2z, —4.03 2, (H10.2b)
#h =048z, — 17.87 -z, - (H10.2¢)
2. =4.85 -2, —4.65 -z, (H10.2d)
£o =255z, +6.12 -2, + 1.95 -z, (H10.2¢)
$e=10-2,+6.9 25 +2.7 2, (H10.2f)

All constants have been converted to a per year basis. The equation for z,
models the solar radiation as it changes over the year due to the varying
position of the sun in the sky.

Assume the following initial conditions: z, = 0.83, z = 0.003, z. =
0.0001, z9 = z, = 0.0, and simulate this ecosystem over a period of 2 years.

Except for the variables o and z., a periodic steady—state will occur, i.e.,
the three variables z,, x5, and z. will become periodic with a period of
1 year. Think of a way how the periodic steady—state could be computed
faster than by simply simulating the system over a long time.

[H10.3] Antelope Population Model

We wish to create a detailed model of the population dynamics of a breed
of antelopes in Serengeti National Park at the border between Kenya and
Tanzania (Eastern Africa). The antelopes are monogamous. They choose
their partner at age three, and they stay together for the rest of their lives.
When one partner dies, the other stays single except at age three before
they had offspring when s/he would look for a new partner. All antelopes
select partners of their own age. If a three year old cannot find a partner,
s/he migrates out of the park.

All available adults mate and produce offspring every year between ages
four and eight. Each year, every couple produces one calf. The probability
of male/female offspring is 55% for male and 45% for female.

The mortality rates are given in Table H10.3a.



Table H10.3a Mortality rates
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age [years] male [%] female [%]
1 60 40
2 10 10
3 5 5
4 5 8
5 5 8
6 5 8
T 6 9
8 T 1
9 10 10
10 25 25
11 70 70
12 100 100

Young females are a little stronger than young males. However, during
the reproduction period, the females have a slightly higher mortality rate
than their male partners. The numbers are given as percentages of the
population of the same sex one year younger. The chances of dying are
assumed to be statistically independent of the animal’s societal status, i.e.,
single animals die equally often as mated animals, and the death of a mated
animal does not influence the life expectancy of its partner.

We want to model this system through a set of difference equations
(i-., as a discrete-time system). M;(k) denotes the number of single male
animals of age ¢ in year k, F;(k) denotes the number of single females, and
C;(k) denotes the number of couples.

Simulate this discrete-time system over 100 years. Assume the initial
conditions as given in Table H10.3b:

Table H10.8b Initial conditions

age [years] male [#] female [#] couples [#]
1 100 100 0
2 100 100 0
3 100 100 0
4 0 0 100
5 3 3 95
6 T 7 90
7 12 12 85
8 15 15 80
9 30 30 70
10 30 30 50
11 20 20 25
12 5 5 0
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Use ACSL to model this system. This application won’t require a DERIVA-
TIVE block. The model is coded in a single DISCRETE block which is
executed once every year (use the INTERVAL statement). Declare all pop-
ulation variables as INTEGER except for the total animal population P,
which is to be exported to CTRL-C or MATLAB. (CTRL-C does not im-
port INTEGER variables properly from ACSL. I haven’t checked whether
MATLAB handles this problem any better).

Repeat the above simulation with the modified assumption that the first
year mortality rates are half as large as assumed above. Plot the total
animal population over time on separate plots for the two cases.

Save the results from this simulation on a data file for later reuse (use
the SAVE statement of CTRL-C or MATLAB).

[H10.4] Meta—Modeling

We wish to model the behavior of the above antelope population dynamics
system through a meta—model. The assumed meta—-model is of the type:

P=a.-P (H10.4a)

with the solution:
P(t) = exp(at)- Py (H10.4b)
where Pp is known while a is unknown. We want to find the best possible

values of a for the two cases of hw(H10.3).

For this purpose, we want to apply linear regression analysis. We com-
pute the logarithm of eq(H10.4b):

log(P) —log(Po) =t-a (H10.4c)

We can read in the results from the hw(H10.3) using CTRL-C’s (or MAT-
LAB’s) LOAD command. For each of the two cases, we have a vector of
P values and a vector of ¢t values. We can thus interpret eq(H10.4c) as
an overdetermined set of linear equations with one unknown parameter, a,
that can be solved in a least square’s sense, i.e.

log(P) —log(Po) — t+a = residue (H10.4d)

where a should be chosen such that the L; norm of the residue vector is
minimized. This can be easily achieved in CTRL-C (MATLAB) using the
notation:

[> v =log(P)—log(Ps)* ONES(P)
[> a=t\y
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Find the best a values for the two cases, compute the meta—model P tra-
Jjectories by plugging these a values into eq(H10.4b), and plot together the
“true” populations and the meta-model populations on separate plots for
the two cases.

In one of the two cases, the population decreases to sero. Make sure to
cut the trajectory for the regression analysis before this happens since your
computer won’t like the request to compute the logarithm of zero.

[H10.5] Lotka—Volterra Models

Whenever you can fit the predator of a two species Lotka—Volterra model
to measurement data exhibiting a periodic steady—state, you can invariably
also fit the prey of such a model. Prove this statement by applying the time
reversal algorithm of Chapter 8 to the Lotka—Volterra model.

[H10.8] Logistic Equation

Wirite a program either in CTRL~-C or in MATLAB which will reproduce
Fig.10.9 to Fig.i0.12. The concept is actually quite simple. First, you
need to create your own scaling. Both languages provide you with such a
feature. Next, you plot the two curves onto the same plot. Thereafter, you
plot the zigzag path onto the plot. All you need to do is to store the
and y values of the path corners into two arrays in the correct sequence.
Thereafter, PLOT will produce the path for you.

[H10.7] Logistie Bifurcation Map

Reproduce Fig.10.13. To create Fig.10.13, I wrote an ACSL program. In
the initial segment, I set a = 2.9, I chose an initial value for = (x = 0.5),
and I iterated the logistic equation 1000 times in a DO loop. I used an
integer counter which I set to zero.

The DYNAMIC segment consisted of a single DISCRETE block. In this
block, I iterated the logistic equation once, and I incremented the counter.
I then tested whether the counter had reached a value of 50. If this was the
case, I reset the counter to zero, and incremented a by 0.004. Thereafter,
I iterated the logistic equation again 1000 times in a DO loop to obtain
the new steady-state. The simulation terminated on a > 4.0. I avoided
iterating the logistic equation when a = 4.0, since at this point, the logistic
equation becomes unstable.

Finally, I exported the resulting trajectories of a and x into CTRL-C,
and I plotted z(a) using a point type plot.
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[H10.8]* Gilpin’s Bifurcation Map

Reproduce Fig.10.16. To create Fig.10.16, I wrote an ACSL program. In
the initial segment, I set ¥ = 0.95. I used an integer counter which I
initialized to zero. I limited the step size to 1.0 (using MAXTERVAL),
and I disabled the communication by setting arbitrarily cint = 1012,

The DYNAMIC segment consisted of a DERIVATIVE block and a DIS-
CRETE block. In the DERIVATIVE block, I solved the differential equa-
tions, and I scheduled a state—event to occur whenever the derivative of
prey x, crosses through zero. The state—event triggers execution of the DIS-
CRETE block. The DISCRETE block is similar to the one of hw(H10.7),
except that I incremented the competition factor k£ by 0.001, and I did not
iterate to determine the new steady-state. Also, I used the DISCRETE
block to manually record the values of all variables using the CALL LOGD
statement. It was necessary to place the TERMT statement inside the
discrete block. Since we disabled communication, it won’t be tested at the
usual place.

Finally, I exported the resulting trajectories of k and z; into CTRL-C,
and I plotted «,(k) using a point type plot.

t

Projects

[P10.1] Chaos in Gilpin’s Model

We have seen that the chaotic range as a function of competition is very
limited in Gilpin’s model. Analyze the chaotic range as a function of other
parameters. Design a method which will allow you to determine the bifur-
cation points in Gilpin’s model accurately, and see whether you can find a
relation between the bifurcation patterns of Gilpin’s model as a function
of the various model parameters.

Research

[R10.1] Evolutionary Games

Study the literature on evolutionary games, and try to identify common
patterns among the strategies. What are the innovators in these models,
and how do the organizers work? Try to design a differential equation model
which periodically generates new differential equations of a modified type,
and which periodically eliminates older differential equations that are not
“fit” according to some chosen criterion. Analyze what are the conditions
for self-organization to occur.



452 Chapter 10: Population Dynamics Modeling

[R10.2] Chaotic Domains

Chaos is not per se a bad phenomenon. Without chaos, none of us would be
alive. Our global ecology operates under chaotic steady—state conditions.
Chaos ensures that all necessary minerals are constantly being recycled. A
“continuous steady-state” of a variable (such as a mineral) would indicate
that this variable has come to rest somewhere, and no longer participates
in the recycling process.

In world ecology, these chaotic conditions are seemingly quite robust,
1.e., chaos occurs for a wide range of parameter values. Contrary to this,
we found that in the Gilpin equations, chaos existed only for a small set of
parameter values. It is of considerable interest to understand how chaotic
regions in the parameter space are related to the system structure. We
know that, in a continuous—time model, no chaotic behavior can result for
systems of orders one or two. The smallest system order that can lead to
chaos is three. However, at order three, the chaotic regions are small and
vulnerable. I suspect that with increasing system order, the chaotic regions
in the parameter space will become more and more dominant, i.e., more
and more robust.

Analyze arbitrary Lotka—Volterra type models, i.c., models of the type:
x = (diag(a) + diag(x) - B) - x (R10.2a)

Try to determine a general expression for the size of the chaotic regions in
the parameter space as a function of the system order.



