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System Dynamics

Preview

In this chapter, a general strategy for inductive modeling will be
introduced, a strategy that will allow us to model systems with to-
tally unknown meta—laws. Of course, so constructed models will not
offer the same degree of validity as deductively constructed phys-
ical models, and it will be important to discuss how the validity
of these models can be assessed. While the methodology can be
used to construct models in a completely inductive manner, it will
allow us to incorporate in our model any physical insight that we
may possess about the functioning of the process under investiga-
tion. The methodology has been coined System Dynamics. This
is unfortunately somewhat of a misnomer. Didn’t we discuss the
“dynamics of systems” in this book all along? Didn’t I reference
in Chapter 4 a book entitled “System Dynamics” that talks about
simple electrical and mechanical systems? In this new context, “Sys-
tem Dynamics” denotes a specific semi—physical and semi-inductive
modeling methodology. To minimize the confusion, from now on, I
shall always capitalize the term “System Dynamics” when I refer to
this particular modeling methodology, and I shall not capitalize the
term “system dynamics” when I refer to the dynamics of systems in
general.

11.1 Introduction

If you were asked at this point to model the entire world to be able
to speculate about the destiny of this planet of ours, you would
probably be at a loss. You know how to model electrical circuits,
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but the world? When you will have reached the end of this chapter,
you will know how to “model the world”.

The first exercise in every modeling endeavor is to choose the facets
of the investigated system that we wish to capture in our model.
Obviously, it would be very unrealistic to assume that we can capture
each and every facet of the system in a model unless we decide to
duplicate the system itself. We make this selection by identifying a
set of variables which will be the key players in our model.

In physical modeling, we usually did not pay much attention to this
step of the modeling cycle, since the choice of variables came about
very naturally. For example, in an electrical circuit, we started by
deciding whether we were to capture the electrical phenomena only,
or whether we were to include thermic phenomena as well. There-
after, we applied the well-established meta-knowledge of electrical
circuitry to generate the model. Only in the end, we chose our “key
players”, which at that time we called our state variables, simply
as the outputs of every single integrator in the model. This means
that we created our model first (on the basis of available meta-
knowledge), and that we chose our state variables only later.

How are we going to choose our state variables when we “model the
world”? State variables capture significant quantities of a system,
quantities which have the property that they can accumulate over
time (which is, of course, just another way of saying that they are
outputs of integrators). Typical candidates for state variables might
be populations, money, frustration, love, tumor cells, inventory on
stock, and knowledge. In System Dynamics, state variables are called
either levels [11.6] or stocks [11.15], depending on which reference we
use.

A first type of equation used in all System Dynamics models cap-
tures the fact that the change of each level (or stock) over time can
be expressed as the difference between inflows and outflows of this
level variable, for instance:

P=BR-DR (11.1)

The derivative of a population P with respect to time in a closed
system can be expressed as the difference between the births per
unit time (the so—called birth rate, BR) and the deaths per unit
time (the so—called death rate, DR). Table 11.1 lists inflows and
outflows for the levels that were proposed above.
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Table 11.1 Inflows and outflows of typical level variables

level inflow outflow
population birth rate death rate
money income expenses
frustration stress affection
love affection frustration
tumor cells infection treatment
inventory on stock shipments sales
knowledge learning forgetting

In System Dynamics, the inflows and outflows are called either rates
[11.7] or flows [11.15], depending on which reference we use.

From Table 11.1, we can learn a number of things:

(1) The concepts of levels and rates are extremely general. Applica-
tions can be found everywhere.

(2) Rate variables could be levels at the same time (frustration).
We shall see how we deal with this problem.

(3) System Dynamics modelers are notoriously “sloppy” with their
nomenclature. Of course, treatment is not the outflow of tumor
cells, but treatment leads to the death of tumor cells, and if we
say that one unit of treatment can be equated with one unit of
killed tumor cells at all times, we may not need to distinguish
between these two variables in the model.

After we defined all the rates, we need to come up with equations that
relate the rates back to the levels. In a more familiar terminology, we
need to come up with a set of state equations. These equations can
possibly be simplified by introducing auxiliary variables. In System
Dynamics, these auxiliary variables are sometimes called converters
[11.15].

So far, nothing extraordinary has been detected about the System
Dynamics methodology. What is particular about System Dynamics
is the way in which the state equations are formulated. This will be
the next point on the agenda.

11.2 The Laundry List

In a first attempt to derive a set of state equations, we could try to
enumerate all the factors that have an influence on the rate variables,
for example:
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population
material standard of living
food ratio } — birth rate (11.2)
crowding ratio
pollution

In our world model, the birth rate is influenced by the population, the
material standard of living, the food ratio, the crowding ratio, and
the pollution. Such an enumeration is called a laundry list [11.15].
The influencing factors may be levels, rates, or converters.

Of course, we must be careful to avoid such dubious relations as:

death rate — birth rate (11.3a)
birth rate — death rate (11.3%)

which is just another way of saying that we should avoid the creation
of algebraic loops among the rate variables.

Laundry lists are the first step on the way to deriving state equa-
tions.

11.3 The Influence Diagram

Once we have designed laundry lists for all rate variables, we can
connect all these laundry lists in one flow chart. Fig.11.1 shows the
flow chart of Gilpin’s model [11.8].
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Figure 11.1. Influence diagram for Gilpin’s model
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This type of flow chart is referred to as either influence diagram
[11.3] or causal loop diagram [11.15], depending on which reference
we use.

Notice the sign which is attached to all paths in an influence di-
agram. These signs describe whether the influence is positive or
negative. For example, the birth rate influences the population in a
positive sense, whereas the death rate influences the population in a
negative sense.

Influence diagrams are somewhat similar to block diagrams and to
signal flow graphs. Yet, they are also quite different. We can draw
an influence diagram at a much earlier instance of the modeling
cycle than we can draw a block diagram or a signal flow graph.
While the influence diagram tells us which variable depends on which
other variables, it does not reveal the nature of this dependency. An
influence diagram is therefore much less formal than either a block
diagram or a signal flow graph. This is a major strength of influence
diagrams, and at the same time, it is also a major weakness.

If we are told which state variables are to describe our “world
model”, we are ready to draw an influence diagram, but we would
not know yet how to draw either a block diagram or a signal flow
graph. This is clearly a strength. However, due to their informality,
influence diagrams are somewhat unorganized. We tend to create too
many dependencies — after all, ultimately, every event in this world
is somehow related to every other event. The question is whether a
proposed dependency contributes significantly to our modeling effort.
A methodology which does not encourage us to distinguish between
significant and insignificant relations, is certainly problematic. The
lack of rigor is, therefore, a major weakness of influence diagrams,
and it is, by the way, a major weakness of the System Dynamics
methodology as a whole. Using System Dynamics, we are all too
easily seduced into creating models that are much too complicated,
far more complicated than the quantity and quality of the available
data are able to support and to validate. We shall return to this
point later in this text.

The signs that are attached to each influence path allow us to an-
alyze the stability behavior of our model in qualitative terms. If we
follow influence paths around a closed loop, we can count the nega-
tive signs that we meet along the way. If the total sum of negative
signs is even, we have identified a positive feedback loop. Positive
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feedback loops are always unstable, i.e., they are responsible for un-
bounded growth in a model. For example, if we extract the feedback
loop:

Prey.1 — (+)surplus birth rate — (+)birth — (+)Prey_1 (11.4)

from the rest of the model, we observe that the level Prey_1 will
grow exponentially beyond all bounds. If the total sum of negative
signs is odd, we have identified a negative feedback loop. Negative
feedback loops are more difficult to assess. If the number of level
variables that we pass on our way around the loop is one or two, the
negative feedback loop is certainly stable. For example, if we analyze
the feedback loop:

Predator — (+)surplus death raie — (+)death — (—)Predator (11.5)

we come across one negative sign, and therefore, this identifies a
negative feedback loop. Along the way, we meet one level variable
only (the predator), and thus the negative feedback loop is stable.
If we extract this loop from the overall model, we observe that the
predator population exhibits an exponential decay. Unfortunately,
the influence diagram does not tell us which are level variables and
which are not, which is another obvious shortcoming of influence
diagrams.

If we meet more than two level variables along a negative feed-
back loop, we cannot tell whether the loop is stable. Stability will
then depend on the total open—loop gain. This observation is re-
lated to the Nyquist stability criterion for feedback control systems.
Most references on System Dynamics state incorrectly that “negative
feedback loops are always stable”. This is because the System Dy-
namics methodology is rarely applied to high order models with very
complex feedback mechanisms, and if it is, the stability properties
of these models will not be analyzed in qualitative terms. More-
over, most researchers of System Dynamics are not versed in control
theory.

We notice further that Fig.11.1 is less concise and less easy to read
than the explicit state—space model itself:

& =2, — 0.001 z? — 0.001 z,z; — 0.01 z,z3 (11.6a)
&y = x3 — 0.0015 2,25 — 0.001 22 — 0.001 z,z5 (11.8b)
23 = —a3 + 0.005 zqx3 + 0.0005 2423 (11.6(:)



11.4 The Structure Diagram 459

which contains even more information than the influence diagram
since it explicitly states the nature of all dependencies. This is not
a shortcoming of the influence diagram, but simply signifies that we
have badly abused the System Dynamics methodology. System Dy-
namics is a modeling tool, not a model documentation tool. Once
we have a working state—space model, it makes little sense to go
back and construct a System Dynamics model after the fact. Sys-
tem Dynamics models are useful on the way to eventually producing
state—space models for systems for which we lack applicable meta—
knowledge, and not the other way around. We never create a System
Dynamiecs model for an electrical circuit. This would be pure non-
sense.

Furthermore, System Dynamics is a poor methodology to describe
strongly intermeshed systems, i.e. systems in which every state vari-
able is tightly coupled with every other state variable, as this is the
case in Gilpin’s model. The reason for this statement will become
clear in due course.

11.4 The Structure Diagram

To avoid some of the problems associated with influence diagrams,
Forrester [11.5] suggested another representation, the structure dia-
gram. Structure diagrams are similar to influence diagrams, but they
distinguish clearly between levels, rates, and converters. Fig.11.2
shows the structure diagram of Gilpin’s model.

Level variables are represented by square boxes. Most levels are
bracketed by two little clouds which represent the sources and sinks
of the level. Sources provide an infinite supply of the material which
is stocked up (accumulated) in the level variable. Sinks provide an
unexhaustible dumping place for the same material. The double
lines from the source cloud to the level and further to the sink cloud
symbolize the flow of material. Single lines symbolize the flow of
information, i.e., they denote control signals. This is similar to the
power bonds vs the signal paths in the bond graph modeling ap-
proach. However, in bond graph modeling, we concentrated on the
flow of power, i.e., the power bonds were the dominant elements in
the model. Here, we concentrate more on the flow of information,
and therefore, the single lines are dominant.



460 Chapter 11: System Dynamics

joint_comp

f2_factor

births deaths

surplus_d

Figure 11.2. Structure diagram for Gilpin’s model

Rate variables are denoted by circles with an attached valve. The
rate variables control the flow into and out of the storages (levels,
stocks) symbolically by opening/closing the valve that they are re-
sponsible for. However, the rate variables do not themselves decide
upon the amount of opening/closing of the valves. They are only the
guardians of the valves, i.e., they are the paid laborers who operate
the valves in accordance with what they are told to do.

Each rate variable has one or several masters who tell it how far
to open/close its valve. This is symbolized by one or more control
signals (single lines) ending in the rate variable. They can emanate
from anywhere in the model, even from another rate variable. How-
ever, if rate variables are themselves used as masters, we have to be
extremely careful that we avoid creating algebraic loops.
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Converter variables are denoted by circles without an attached
valve. They are messengers. They collect command information
from one or several sources, preprocess it, and deliver it to a rate
variable or another messenger. They are introduced strictly for con-
venience.

Sometimes, it is useful to maintain several state variables in the
model which are of the same type. For example, if we compartmen-
talize an ecosystem, populations of the same species appear in each
of the compartment models. In this case, migration of an animal
from one compartment to the next is symbolized by material flow
that emanates from one level variable, and proceeds directly to the
next level variable. A rate variable between the two levels controls
the migration rate between the compartments.

If we were to express the populations of Gilpin’s model in terms
of their energy content, we could model the process of feeding as an
energy (material) flow from the two prey levels to the predator level
with a branch—off at the valves denoting the feeding efficiency factors.
However, the System Dynamics methodology is poorly equipped to
model energy flows in a decent manner. If that is what we have in
mind, we are much better advised to construct a bond graph.

The structure diagram of Fig.11.2 was constructed using the mod-
ern and beautifully engineered System Dynamics modeling system,
STELLA [11.15]. During the simulation, STELLA animates the
graph by showing the amount of stock currently accumulated in each
of the levels, and by depicting with “needle gauges” those rate and
converter variables the values of which vary over time. Fig.11.2 was
captured immediately after a simulation run was completed. It con-
tains the animation information at final time.

STELLA has been nicely integrated into the MacIntosh workbench
environment. It makes optimal use of the object orientation of the
MacIntosh operating environment, and it makes creating System Dy-
namics models a joy. Contrary to the older days when the graph-
ical representation tools of System Dynamics were auxiliary tools
designed to help the System Dynamics modeler to develop his or
her models using paper and pencil, and then left it up to the user
to convert the resulting models into a state—space description, in
STELLA, all these design tools have been fully integrated into the
software. The user designs her or his System Dynamics model on
the screen using an object oriented schematic capture program. S/he
can design his or her model in a strictly top down manner, i.e., s/he
can start with what s/he knows about her or his system. Unknowns
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are denoted with a question mark. S/he can then stepwise refine
his or her model until all question marks have disappeared. At such
time, STELLA can convert the model to a state-space model, and
can simulate the resulting state—space model using traditional sim-
ulation techniques.

STELLA demonstrates drastically the distinction between model-
ing and simulation. Modeling is the art of capturing physical, and
other, phenomena in a mathematical language. The modeling soft-
ware supports the act of modeling, i.e., it helps the user to formulate
and formalize his or her conceptions about the functioning of the
real system in terms of a mathematical language. Simulation is the
art of applying mathematical descriptions of stimuli to the mathe-
matical description of the system, and of performing manipulations
on these mathematical descriptions in such a way that model behav-
tor is being extracted which resembles the system behavior that we
would experience if we were to apply the real stimuli to the real sys-
tem. The simulation software supports the act of simulation, i.e.,
it helps us to transform the mathematical description of the model
together with the mathematical description of the input stimuli into
trajectory behavior.

STELLA provides us with an excellent modeling environment.
STELLA provides us also with a (much less great) simulation en-
vironment. Why STELLA is less convincing in its simulation capa-
bilities than in its modeling capabilities will be shown in due course.
However, this problem can be fixed. The important issue is that we
realize that the two methodologies: modeling and simulation, are
fundamentally different, and that it is possible to code them in the
software separately in two distinct modules. Most modeling and sim-
ulation tools mix the modeling aspects with the simulation aspects.
STELLA (and DYMOLA) are commendable exceptions to this com-
monly found confusion. As a consequence, it will be possible to fix
what is wrong with STELLA’s simulation engine in a manner that is
entirely transparent to the user. This can furthermore be achieved
without modifying a single line of code in the modeling software.

One of the strongest arguments in favor of STELLA is its care-
fully written manual which I strongly recommend for further reading
[11.15].
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11.5 Structure Characterization

The next question is how do we go about determining the structure
of our state equations, i.e., how do we determine the precise nature
of the relations that influence the rate variables. This process is
called structure characterization.

One of the real strengths of the System Dynamics methodology is
that it allows us to blend deductive with inductive modeling tech-
niques. Whenever we possess physical insight into how a rate variable
is influenced by the system, we should use it by all means. This is the
best thing that can happen to us. However, let us discuss the case
where we lack such intuition. What shall we do about this problem?

Let us return to the world model. Our laundry list suggested
that the birth rate BR depends on a number of factors, namely the
population P, the material standard of living MSL, the food ratio
FR, the crowding ratio CR, and the pollution POL:

BR = f(P,MSL,FR,CR, POL) (11.7)

An important concept in System Dynamics is the exploitation of
small signal analysis. If we don’t know enough about a system as a
whole, maybe we can at least capture the behavior of that system
in the vicinity of its current system state. Accordingly, in each state
equation, we capture the “normal” (i.e., known) behavior, and we
model alterations from the normal state as small signals. Applied,
to eq(11.7), we write:

BR=BRN - f(P,MSL,FR,CR, POL) (11.8)

where BRN denotes the normal birth rate, i.e., the birth rate ob-
served at the time when the model was created, say 1970.

Physical intuition dictates that the birth rate must be proportional
to the population, thus:

BR=BRN-P.f(MSL,FR,CR, POL) (11.9)

Now, we are at the end of our physical insight. We want to assume
that eq(11.9) expresses a static relationship among all variables. If
such an assumption is unjustified, we have chosen our levels incor-
rectly.

The next principle observed in most System Dynamics models is
that the modeling task can be simplified if we postulate that all
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variables influence the state equation independently of each other,
ie.:

BR=BRN-P-fi(MSL)- f5(FR) - fs(CR) - fo(POL)  (11.10)

Of course, this is a gross simplification which is in no way supported
by physical evidence. Yet, it makes our lives easier, and since we
don’t have anything better to go by, this may be preferable to hav-
ing no model at all. At least, it reduces drastically the amount of
measurement data that we shall need in order to come up with mod-
els for the functions f;. If we need n measurement points to decently
identify any one of the functions f;, we need 4n measurement points
to identify all four functions as compared to n* points to identify the
combined multivariable function.

Due to the assumption of small signal analysis, each of these func-
tions must pass through the point < 1.0,1.0 >, i.e., we normalize
each of the influencing variables such that, in the year 1970, it as-
sumes a value of 1.0. For example, the global material standard of
living in the year 1970 is 1.0. The effect of the material standard of
living on the birth rate in the year 1970 must thus also be 1.0, since
BRN denotes the “normal” birth rate, i.e., the global birth rate in
the year 1970.

If we define the absolute material standard of living as the yearly
income of an individual, MSL(t) can be computed as the ahsolute
material standard of living of the average inhabitant of this planet
at time ¢ divided by the absolute material standard of living of the
average inhabitant of this planet in the year 1970.

How do we determine f; (MSL)? We compartmentalize our world
in the year 1970. We find that the material standard of living in the
year 1970 differs drastically from one country to another, and so does
the birth rate. Thus, we correlate the birth rate in different countries
with the observed material standard of living in those countries, and
voila, the desired function f; has been identified. It turns out that
the less money people have to raise children, the more they seem to
enjoy having them.

This example shows drastically the dangers of this type of model-
ing. The love story cliff is treacherously close. It is our responsibility
to ensure a proper cause/effect relation between the variables that
we correlate in this manner. Numerous reasons can be mentioned
why people in the third world produce more children:

(1) They have, on the average, a poorer education and don’t under-
stand birth control so well.
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(2) They are too poor to buy a proper retirement policy, and chil-
dren are often the only way to ensure their material well-being
when they are old.

(3) Children are often their only means of entertainment. In first
world countries, children are frequently experienced as hamper-
ing a successful career. Thus, potential parents must be truly
convinced that children is what they really want. Otherwise,
they may be better of without them.

All these pieces of “physical” insight get diluted in the global gen-
eralization of a relation between the material standard of living and
the birth rate.

Moreover, a correlation between variables does not prove the ex-
istence of a direct causal relation at all. Maybe, both variables are
caused by yet another factor which influences both variables simul-
taneously. Just for fun, I once correlated the statistics of birth rates
in Switzerland over the past 50 years with the statistics on stork
populations — and indeed, a strong positive correlation could be
observed among these two variables. I leave the conclusion to the
reader. We shall talk more about causality in the next section of this
chapter.

While we can leave static functional relationships among variables
in a tabular form, and simply interpolate from th table during the
simulation, a technique which was introduced in Chapter 5, it is
sometimes useful to determine an explicit formula that captures the
functional relationship. Fig.11.3 shows a set of “measured” data that
relates a variable y to a variable 2.
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Figure 11.3. A set of “measured” data of y as a fanction of



488 Chapter 11: System Dynamics

These “measured” data were produced in CTRL-C (MATLAB) by
adding 5% noise to both the input and the output of a sine wave
generator:

z=0:0.03: 3.5

k1 = 0.1 RAND(z) — 0.05 * ONES(z);

k2 = 0.1+« RAND(z) — 0.05 * ONES5(z);
y = SIN(z + k1) + k2;

VVVYV

Let us immediately forget where these data came from. The question
of interest is whether or not we can identify the structure of the
source from the measured data. We shall test the following three
hypotheses:

Yo = sin(x) - (11.11e)
w=a+b-z+c-z (11.11b)
ye=a+b-z+c-z?+d 2° (11.11¢)

We can identify an optimal set of parameters using regression anal-
ysis. Let me illustrate the concept by means of hypothesis #3.

Assuming that we have n measurements, we can plug all these n
measurement data into the hypothetical equation:

Ye,=a+b-zy+c -2} +d- 22 (11.12a)
Ye,=a+b-zs+c-al+d- z} (11.12b)
Yo, =@ +b-xn+c-2l+d-zd (11.12n)

which can be rewritten using a matrix notation as follows:

1 = zz :cz a Ye,
1 23 x5 a3 Y,
, bl ™ (11.13)
: : ¢ :
1 =z, 22 a3 d Ye.
or:
V(x)-coef =y (11.14)

where V(x) is a so—called Vandermonde matrix spanned over the
vector x. Assuming that n > 4, we are confronted with an overdeter-
mined linear regression problem that we can solve in a least square’s
sense:
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V(x) - coef —y = res (11.15)

where res is the vector of residua. We try to determine the coefficient
vector coef such that the Ly—norm of res:

[res||2 = Zres? (11.16)
V v

is minimized. This problem can be solved by computing the pseu-
doinverse of the rectangular matrix V(x):

(V(x)' - V(x)) - coef = V(x)' -y (11.17)

where V(x)' - V(x) is a square Hermitian matrix of size 4 X 4 which
can be inverted:

coef = (V(x)' V() V() -y (11.18)

where (V(x)' - V(x))™! - V(x) is called the pseudoinverse of V(x).
In MATLAB or CTRL-C, this problem can he conveniently coded
using the “\” operator:

[> coef=V\y (11.19)

For the given data set, the following optimal functions were found:

Yo = sin(z) (11.20a)
yp = —0.0288 + 1.2511 - = — 0.3938 - z? (11.200)
ye = —0.0833 + 1.4434 - 2 — 0.5325 - z® + 0.0266 - 2®  (11.20¢)

Fig.11.4 shows the three fitted curves plotted as solid lines over the
measured data set. Obviously, all three hypotheses can be easily
defended on the basis of Fig.11.4. I also computed the L,—norms of
the three residua vectors and found:

|[resy|l2 = 0.3967 (11.21a)
[iresaljs = 0.5395 (11.21b)
liress||z = 0.4857 (11.21¢)

The residuum of the sine wave fit is slightly better, but not suffi-
ciently so to guarantee that this is the correct hypothesis. I also
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computed the cross—correlations between 2 and y for the three hy-
potheses, and found that the largest cross—correlations are as follows:

lleorry |lo = 52.7961 (11.21a)
l|lcorra|je = 52.6210 (11.21b)
{[corrglle = 52.6761 (11.21¢)

Again, the sine wave fit turned out to be slightly better, but this
test shows even less significant differences than the last one.

Comparison of Three Curve Flits
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Figure 11.4. Curve fitting of “measured” data set

Ivakhnenko and Lapa devised a technique which often allows us to
distinguish between different hypotheses regarding functional rela-
tionships {11.11]. They suggested that we apply a transformation
to both the data and the hypothesized curves such that, after the
transformation, the hypothesized curves look sufficiently different,
so that the measured data can he easily associated with one, but not
with the others of the proposed hypotheses.
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A good transformation for our case might be the following: We
remember that sin’(z) + cos?’(z) = 1.0. We therefore apply the
following transformation to the data:

Ynew = }’2 + COSz(x) (11.22)

The three hypotheses turn into:

Ynew, = 1.0 (11.23(1)
Ynew, = (@ + b 2 +c-2?)? + cos’(z) (11.23b)
Ynew, = (@ +b-z+c-a? +d-2%)? + cos?(z) (11.23¢)

Fig.11.5 shows the transformed data.
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Figure 11.5. Curve fitting of transformed data set

Clearly, the three curves can be easily distinguished from each other.
Unfortunately, the “measured” data are spread so widely now that
we still cannot associate them with certainty with any one of the
three curves. I recomputed the residua and correlations, and found:
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||resy||2 = 0.4922 , ||corry||o, = 117.0747 (11.24q)
|[resa|lz = 0.6199 , [|corra|je = 116.8677 (11.24b)
|[ress||z = 0.5829 , ||corrs|je = 116.9146 (11.24¢)

The situation is still unchanged. We have indications that the sine
wave approximation is slightly better, but we cannot be sure that
this hypothesis is physically correct. Had we added only 1% noise
to our data instead of 5% mnoise, the applied transformation would
indeed have disqualified the second and the third hypothesis.

What this example teaches us is how little it takes before structural
information gets lost in measurement data. This makes the inductive
structure characterization a tough and often unsolvable problem.

11.8 Causality

Causality is a very natural notion in our everyday lives. An action
causes a reaction. However, in the casual context, some time usu-
ally elapses between the action and the reaction, i.e., the concept of
causality is more commonly applied to discrete—event systems than
to continuous—time systems.

In engineering, we usually call a response of a system “causal” if
it occurs simultaneously with the input stimulus, or if it lags behind
the input stimulus. We call it “non-causal” if it occurs prior to the
input stimulus. Of course, non—causal responses cannot be generated
by physical systems.

It is now interesting to discuss whether, given two different contin-
uous signals, it can be decided that one of the two signals has been
caused by the other. This is a favorite topic in the artificial intel-
ligence literature which is full of sometimes rather obscure notions
about causality [11.12].

Let us analyze an electrical resistor which is characterized by its
voltage and its current. Does it make sense to say that the voltage
across the resistor causes a current to flow, or does it make more
sense to say that the current through the resistor causes a drop of
potential? In the active form, both statements are correct. Yet, given
a measured voltage across and a measured current through a resistor,
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we cannot conclude after the fact which caused what. This is clearly
a chicken—and—egg problem.

Let us apply the following experiment. Fig.11.6 shows three dif-
ferent circuit elements, a resistor, a capacitor, and an inductor con-
nected to a noise voltage source.

Noise

= Noise
®

C =l 1k

li

= Noise
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& ]
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Figure 11.6. Three different circuit configurations

In all three cases, we shall measure the current that flows through
the element. We shall then compute the cross—correlation between
the input signal « and the output signal ¢ in all three cases. In
MATLAB or CTRL-C, this is easiest accomplished with several fast
Fourier transforms. The following CTRL-C (or MATLAB) code
produces the desired cross—correlation function between the input
signal u and the output signal 1.

u = [u, ZROW (u)};

i = [i, ZROW(3)};

sui = FFT(u). + CONJ(FFT(i));
rut = IF FT(sui);

corr = [rui(129 : 256), rus(1 : 128)];

VVVVYV

We assume that both vectors u and i contain 128 measured data
points. Zero—padding is applied to provide the required memory
cells for the fast Fourier transform. The vector rui contains the
correlation function, but not in the right sequence. The first half
of the vector contains increasing positive values of delay between
the input and the output, and the second half of the vector contains
decreasing negative values of delay between the input and the output.
The last line of code puts the correlation function into the correct
sequence.

Fig.11.7 shows the results obtained for the three circuit configu-
rations.



472 Chapter 11: System Dynamics

Comparison of Three Correlation Functions
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Figure 11.7. Cross—correlations for the three circuit configurations

As expected, the cross—correlation assumes its peak value at 6t =
0.0 for the resistor. It assumes its peak value for §t > 0.0 for the
capacitor, and it assumes its peak value for §¢ < 0.0 for the inductor.
Consequently, we can say that the current “lags behind” the voltage
in the inductor, and it “leads” the voltage in the capacitor.

We might therefore be inclined to say that, in an inductor, the
voltage causes current to flow, whereas in a capacitor, the current
causes a drop of potential. The resistor can assume either of the two
causalities. This definition is consistent with our earlier use of the
term “causality” as we came across it in the context of bond graph
modeling, and, from a computational point of view, this terminology
makes a lot of sense.

Yet notice that, in the above experiment, the voltage truly
“caused” the current to flow in all three situations. In every sin-
gle case, the voltage source was the physical origin of the observed
phenomenon. Does this mean that the capacitor configuration is a
“non-physical system”? Of course not! Obviously, we can connect a
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voltage source to a capacitor. However, the system is indeed struc-
turally singular. We are made believe that the capacitor can store
energy, but, in the given configuration, it cannot. It simply attempts
to differentiate the input.

Did we just discover that a physical system can indeed anticipate
the input, i.e., that physical systems can have precognitions or at
least premonitions of coming events? The answer is: in some way,
yes. If we assume that before time ¢ = 0.0, every single signal in
the system was zero (a common notion in many areas of engineering
design, such as in control theory), our system has no way of knowing
what is to come. If we try to apply a step voltage input to our capac-
itor, we have difficulties to do so since this would imply an infinitely
large current at time zero which would require an infinite amount of
power to be put in the system. For sure, the system will not “accom-
modate” our desire by starting the current a little earlier. In this
sense, the configuration is indeed non—physical. Yet, in a statistical
sense, i.e. under statistical steady-state conditions, we can measure
a cross—correlation function in which the current leads the voltage.
In this context, the system can indeed anticipate future inputs. In
other words, knowledge of the past behavior of a system allows us
to anticipate future behavior, and in a statistical sense, this even
includes future inputs. To ohtain the capacitor curve of Fig.11.7, I
cheated a little bit. I applied the same experiment as for the induc-
tor, and then simply swapped the input and the output. However,
I also tried the experiment with numerical differentiation. Due to
the (even theoretical) impossibility of computing the derivative of
a noise signal, the correlation is much smaller, but the current still
leads.

We just learned that the discrimination of true causality from mea-

surements alone is a hopeless undertaking. However, for practical
purposes, we shall define the terms causal and causality as follows:

(1) Two signals are coupled through a causal relation if the (either
positive or negative) cross—correlation between them is strong.

(2) In addition, two signals are coupled through a causality relation
if one signal lags behind the other.

(3) If two signals show little or no cross-correlation, we call them
causally unrelated.

(4) If two signals show a strong cross—correlation, but neither of

the two signals lags behind the other, the signals are causally
related, but their causality cannot be decided.
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(5) If two signals show a significant amount of cross—correlation,
and if signal #2 lags behind signal #1, we claim that signal #1
has caused signal #2. The stronger the cross—correlation of the
two signals, the more pronounced is the causal relation among
the two signals. The larger the lag time, the stronger is their
causality relation.

11.7 Differential vs. Difference Equations

Traditionally, System Dynamics researchers have always formulated
their state—space models as a set of difference equations. This has
two reasons:

(1) Originally, System Dynamics had been closely linked with the
DYNAMO simulation language [11.14] which solves only differ-
ence equations and no differential equations.

(2) It has been often claimed that the major application areas for
System Dynamics are found in management and in soft sciences.
The quality of the data available in these fields does not justify
the accuracy that numerical integration provides. Difference
equations are cheaper to solve, and they will serve the same
purpose.

In DYNAMO, a difference equation for the change in population

would be formulated in the following way:

P.K = P.J + (DT)(BR.JK — DR.JK) (11.25)

The index K denotes the next time step, whereas the index J indi-
cates the current time step. JK denotes the interval between the cur-
rent and the next time step. Obviously, we can reinterpret eq(11.25)
as follows:

Pyy1 = Py + At - (BR — DR) (11.26)
which is equivalent to our differential equation:
P=BR- DR (11.27)
if the fixed step forward Euler algorithm:

Py = Pk + At- Pk (11.28)
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is used for the numerical integration. DYNAMO operates on state
equations, but forces the user to explicitly formulate her or his in-
tegration algorithm. Usually, this will be a fixed-step forward Euler
algorithm. We can trick DYNAMO into the use of higher order
integration algorithms if we code them explicitly as difference equa-
tions. This is most unfortunate. Why should we have to code the
integration algorithm manually if good simulation languages, such
as ACSL, exist that will take care of the numerical integration for
us? DYNAMO is simply a very old—fashioned language, and there is
no excuse for using it any longer (as a matter of fact, there has not
been an excuse for using it for quite some time already).

What about the second argument? It is indeed correct that most
System Dynamics applications do not justify a sophisticated inte-
gration algorithm to be used from the point of view of a consistent
data representation. However, we shall see in the second volume of
this textbook that the numerical accuracy of an integration scheme
is dictated by three separate components: consistency, convergence,
and numerical stability. A numerical scheme is called consistent if
the analytical (i.e., infinitely accurate) solution of that scheme de-
cently agrees with the analytical solution of the original problem. A
scheme is called convergent if the local error of the scheme goes to
zero if the discretization interval At approaches zero. The scheme is
called numerically stable if the local errors do not accumulate over
many steps, i.e., if the local error is a good indicator of the global
error as well. From a point of view of consistency, it is perfectly
legitimate to represent typical System Dynamics problems through
a set of coarsely discretized difference equations. However, the re-
quirement of numerical stability may still suggest the use of a so-
phisticated higher order numerical integration scheme, even though
the accuracy requirements of our model are low.

As I explained earlier, System Dynamics is a modeling methodol-
ogy, which is totally unrelated to the underlying simulation method-
ology. STELLA does not use DYNAMO as its simulation engine.
The developers of STELLA recognized rightly that System Dynam-
ics models can (and should) be mapped into state-space models.
STELLA currently offers three different numerical integration rules.
The default method is forward Euler (like in DYNAMO), but in ad-
dition, STELLA offers two fixed step Runge-Kutta algorithms, one
of second order, and one of fourth order. However, this is insuffi-
cient. Variable step algorithms are mandatory for many non-linear
problems in order to obtain accurate simulation results at a decent
execution speed. Also, the manner in which the integration algo-
rithms are implemented can have drastic effects on their execution
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speed. In fact, little reason exists why a developer of a modeling
tool should have to reinvent the wheel and create his or her own
simulation engine as well. It would have been equally easy to map
the state—space model that is being created by STELLA’s excellent
modeling engine into a decent simulation language such as ACSL.
ACSL has been developed over many years, and while ACSL still
has its problems, its simulation engine is far better than what the
average software designer could possible come up with on her or his
own.

To prove my point, I ran the Gilpin model of Fig.11.2 in STELLA.
Fig.11.8 shows the results for a joint competition factor of k& = 1.0.
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Figure 11.8a. Gilpin’s model simulated in STELLA
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Figure 11.8b. Gilpin’s model simulated in STELLA (continued)

In order to obtain any meaningful results at all, I had to use the
fourth order Runge-Kutta algorithm with a step size of At = 1.0.
The results shown in Fig.11.8 are still not very accurate. We would
have to use a considerably smaller step size to e.g. accurately de-
termine the competition factor k¥ = 1.089 at which the first prey z;
dies out. Yet, I could not reduce the step size any further since one
simulation run required already an execution time of 30 min on my
MacPlus. The ACSL program employed in Chapter 10 required an
execution time of 8 sec for a fourth order Runge-Kutta algorithm
with an average step size of At,,g, = 0.125 on a VAX~8700. However,
during each of the peaks, ACSL reduced the step size to a value of
roughly Atp,., = 107%. Of course, the VAX-8700 is a substantially
faster (and more expensive) machine than my MacIntosh. However,
the observed speed difference is primarily caused by the fact that
STELLA interprets the state—space model at run time rather than
compiles it beforehand at least into threaded code (as DESIRE does).
Consequently, STELLA can be used for fairly simple models only.

However, it would be an easy task to cure this deficiency. All that
needs to be done is to turn STELLA into a program generator (sim-
ilar to DYMOLA) which automatically generates an ACSL program
or a DESIRE program from the state-space model, and uses that
for simulation. This would speed up the execution time of STELLA
simulation runs by approximately a factor of 100.
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Also, discrete interventions are common elements of System Dy-
namics models. We shall meet one such discrete intervention in a
later section of this chapter in which we shall model the spread of an
influenza epidemic. In STELLA, the user is forced to employ rather
clumsy ways to implement such interventions. This is due to the fact
that STELLA does not know the concept of discrete events. A “dis-
crete intervention” is simply a time—-event in terms of our previously
used nomenclature. Since ACSL provides for explicit mechanisms to
describe time—events, the resulting models could be made simpler,
more elegant, and more robust if ACSL were used as the target lan-
guage. The interpretive way in which STELLA’s simulation engine
currently operates is fine for model debugging purposes and for sim-
ple models, i.e., it would make sense to retain this capability as an
alternative, and add the program generation capability to the code
as a new feature.

11.8 The Larch Bud Moth Model

In Chapter 10, we discussed a population dynamics model of the
larch bud moth, Zeiraphera diniana (Guenée) as observed in the
upper Engadine valley of Switzerland. At that time, we used several
simple two (three) species predator-prey models to describe the limit
cycle behavior of the insect population.

Let us repeat this analysis now using the System Dynamics mod-
eling methodology which enables us to incorporate into the model
as much physical knowledge about the dynamics of the system as we
are able to gather.

It is known that (in the upper Engadine valley) the female insects
deposit their eggs in the larch trees during the month of August
every year, which then stay in an extended embryonic diapause that
lasts until the spring of the following year. During the fall, the
eggs are preyed upon by several species of Acarina and Dermaptera.
During the winter, the eggs are naturally parasitized by a species of
Trichogramma. The surviving eggs are ready for hatching in June.
Extensive studies have shown the winter mortality to be a constant
fraction of the deposited eggs:

Small_Larvae = (1.0 — winter_mortality) - Eggs (11.29)

The average winter mortality is 57.28%. Many of the small larvae
die from incoincidence, i.e., from a bad location, for example, if the
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branch where the egg was deposited dies during the winter. Mea-
surements have shown that the incoincidence factor depends linearly
on the raw fiber content of the needles of the larch tree:

incoincidence = 0.05112 - Raw fiber — 0.17932 (11.30)

where the coefficients were found by linear regression. The raw fiber
content is expressed in %. It varies between Raw fiber,,;, = 12% for
healthy trees, and Raw fiber, ., = 18% for heavily damaged trees.
From this, we can compute the number of larvae that survive to
become large larvae:

Large_Larvae = (1.0 — incoincidence) - Small_Larvae (11.31)

The large larvae move around and cause damage to the larch forest
by eating the needles. Some of the large larvae die from starvation,
i.e., if their food demand is not met. Others die due to physiological
weakening. If the raw fiber content is too high, they may still survive
the larvae state and cause more damage by eating, but they may die
during their chrysalis state. We can thus compute the number of
adult insects as follows:

Insects = (1.0 — weakening) - (1.0 — starvation) - Large_Larvae (11.32)
It was observed that the logarithm of the starvation factor depends
linearly on the quotient of foliage and food demand:

foliage

food.demand) (11.33)

starvation = exp(—

and that the weakening factor is again linearly dependent on the raw
fiber content of the needles:

weakening = 0.124017 - Raw fiber — 1.435284 (11.34)
The foliage is linear in the raw fiber content and in the number of

trees:

foliage = (—2.25933 - Raw fiber + 67.38939) - nbr trees  (11.35)

where the number of trees was counted to be nbr_trees = 511147,
The food demand is linear in the number of large larvae:
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food_demand = 0.005472 - Large_Larvae (11.35)

Since only female insects contribute to the next generation, we com-
pute:

Females = sex_ratio - Insects (11.36)

where the average percentage of female insects was found to he 44%,
thus sez_ratio = 0.44. The number of eggs deposited for the next
generation of insects can be computed as:

New_Eggs = fecundity - Females (11.37)

where the fecundity depends again on the raw fiber content of the
needles. If the raw fiber content was high, the weight of the chrysalis
will be low. Such insects may still survive, but they exhibhit a lower
fecundity than insects that were nourished well during their larvae
state:

fecundity = —18.475457 - Rawfiber + 356.72636 (11.38)

This concludes the life cycle of the larch bud moth.

Let us now analyze the life cycle of the trees. The damage caused
by the insects can be expressed as follows:

food_demand

ot ) (11.39)

de foliation = (1.0 — starvation) - (

The raw fiber recruitment, i.e., the change in needle quality is a
complex function of the current needle quality and the current defo-
liation:

New.Rawfiber = grecr(de foliation, Rawfiber) - Raw fiber  (11.40)

The function grecr is an experimental function which models the
change in raw fiber content as a function of defoliation. If little
defoliation takes place, the trees will slowly recover to their optimal
raw fiber content of 12%. If heavy defoliation takes place, the raw
fiber content slowly increases until it reaches its maximum value of
18%. Fischlin and Baltensweiler modeled this phenomenon in the
following manner [11.4]:
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IF defoliation < 0.4
THEN IF Rawfiber < 11.99

THEN grecr = 1.0 )
ELSE zRaw = 0.425 + abs(i22Rawliber

Rawftber—11.99

IF zRaw > (Raw fiber — 11.99)
THEN greer = EZ%"}%%T
ELSE grecr =1.0-— Eﬁ%‘—:‘bﬁ;
END IF
END IF
ELSE IF defoliation < 0.8 _
THEN grecr = 1.0 + (dejohauo:;(‘);a);(’;?l.’(::ﬂawfiber)
ELSE grecr = —ﬁa—lﬂf—f'?b—!—;
END IF
END IF

This completes the description of the model. While regression anal-
ysis was used on several occasions to determine optimal parameter
values, this is basically a physical model of the population dynamics
system. Parameter fitting was applied in a strictly local manner to
fit no more than two parameters at a time to a set of input/output
measurements. I am therefore much more inclined to believe that
I understand now what is going on in this system than I was after
identifying the (much simpler) Lotka-Volterra model of Chapter 10.

Let us go ahead and try to capture this model in STELLA. Fig.11.9
shows the structure diagram of this model:

Eggs Small_Larvae Large_Larvae

hatching

winter_mortatity
Rawfiber A

O

log_dens

v Females . Insects

egg_deposition sex_ratio metamorphosis

Figure 11.9. Structure diagt;a.m of the Larch Bud Moth model
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With the state variables, I had to cheat a little bit. STELLA is
designed to solve differential equations rather than difference equa-
tions, thus, by modeling Eggs as a level variable and egg-deposition
as a rate variable, STELLA forces us to accept the equation:

g—t—Eggs = egg.deposition (11.41)
or, by using the (standard) fixed step Euler algorithm:
New_Eggs = Eggs + At - egg_deposition (11.42)

Comparing eq(11.42) with eq(11.37), we find that:

E
egg-deposition = fecundity - Females — Zis (11.43)

In the same manner, we find that:

Rawfiber

11.44
v (11.49)

recruitment = Grecr - Raw fiber —

In our case, At was set to 1.0.

I had more problems with the function Grecr. STELLA does not
provide us with procedural sections in the way ACSL does. This is
a common disease of most graphically oriented modeling languages.
I had to code the function in the following way:

Grec = IF (defoliation < 0.4) THEN Grecl ELSE Grec2

Grecl = IF (Raw fiber < 11.99) THEN Grec3 ELSE 1.0

Grec2 = IF (defoliation < 0.8) THEN Grecd ELSE Grech

Grec3 = IF (zRaw < (Rawfiber — 11.99)) THEN Grec6 ELSE GrecT
Grecd = 1.0 + (defoliation — 0.4) * (18.0 — Raw fiber)/(0.4 x Rawfiber)
Grec5 = 18.0/ Raw fiber

Grec6 = 11.99/Raw fiber

GrecT = 1.0 — zRaw/Raw fiber

zRaw = 0.425+ ABS((18.0 — Rawfiber)/(Raw fiber — 11.99))

Since I didn’t want to clutter my nice structure diagram with all this
detail, I used STELLA’s ghost feature. I created ghosts of Rawfiber
and defoliation, and computed Grecrin a separate structure diagram
(within the same model) as shown in Fig.11.10.
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Figure 11.10. Structure diagram of the Grecr function

Finally, I made a ghost of Grecr, and copied it back into my original
structure diagram. This is a way to create STELLA submodels. Of
course, if so much detail is provided to and desired in a model such
as expressed in the Grecr function, System Dynamies may not be
the most appropriate modeling methodology any longer. It would
have been equally easy to take the equations as given, and code an
ACSL program directly.

Finally, I added yet another separate structure diagram to capture
the measurement data such that they can be plotted together with
the simulated data on one graph:

tt measurement log_meas

Figure 11.11. Structure diagram of the measurement data

The #t block contains simply the simmulation clock:

tt=TIME (11.45)



484 Chapter 11: System Dynamics

and measurement is a tabular function that contains the measure-
ment data. The measurement data is given in Table 11.2.

Table 11.2 Measurement data for the Larch Bud Moth model

time [year] larvae density [#/kg]
1949 0.018
1950 0.082
1951 0.444
1952 4.174
1953 68.797
1954 331.760
1955 126.541
1956 21.280
1957 2.246
1958 0.085
1959 0.080
1960 0.371
1961 1.638
1962 22.878
1963 248.817
1964 184.272
1965 3.116
1966 0.019
1967 0.002
1968 0.059
1969 0.197
1970 1.068
1971 10.569
1972 173.932
1973 249.612
1974 176.023
1975 4.749
1976 0.014
1977 0.008
1978 0.056

Notice that STELLA allows us to maintain several unconnected
structure diagrams in the same model.

Finally, we need to compute the output function of our model. The
measurement data were expressed in number of larvae per kilogram
dry needle biomass, i.e., we must compute the larvae density:

Large_Larvae

11.46
br_p_tree - nbr_irees ( )

density =



11.9 The Influenza Model 485

where br_p_tree = 91.3 denotes the amount of dry needle biomass
per tree expressed in kilograms.

Since STELLA does not provide for a logarithmic format of its
graphs, we need to compute, in the model, the logarithms of the lar-
vae density and of our measurement data. This concludes the overall
model description. Fig.11.12 shows the resulting graph which looks
similar to the one given in the paper by Fischlin and Baltensweiler
(11.4].
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Figure 11.12. Simulation results of the Larch Bud Moth model

The graph looks a little crooked. STELLA assumes all variables to
be continuous over time. Since our state variables stay constant for
a period of one year (our “step size”), the graph shows a staircase
function.

11.9 The Influenza Model

Let us look at another system now. We wish to study the spreading
of an influenza epidemic. This model has four state variables. We
start out with a population of 10000 non-infected individuals. At
a given time, a stem of influenza bacteria is introduced into the
system. Infection occurs spontaneously, and some of the previously
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non—infected individuals become infected. The bacteria spread in
the infected individuals, and after some time, they fall sick. The
total number of contagious people (both those who are already sick,
and those who haven’t broken down yet) spread the disease further
and recruit new infected people among the non-infected population.
The sick people eventually get cured due to the natural defenses of
their immune systems. This creates a population of immune people.
However, the body “forgets” the previous exposure after some time,
and also, the bacteria have a tendency to mutate. Thus, the immune
people turn into non-infected people again who are susceptible to
reinfection. The purpose of this example is to show how easy it is to
create intuitive models using the System Dynamics methodology.

The structure diagram of this system is shown in Fig.11.13.

Irﬁmune_PopuI
Activation Cure_Rate
e o X

Immune_Period . .
Sickness_Duration
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Infection_Rate Incubation )
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Non_infected_Popu! Infected_Popul Sick_Popul
) Ti d
Introduction Contacts_Wk  Contraction_Rate ime_to_Breakdown

Figure 11.18. Structure diagram of the influenza model

This diagram shows a new element. Outflows of one level can be
used as inflows to another. The rate between two levels controls the
flow from one level to the other, as a faucet controls the flow of water
from the storage tank to the sink.

The time to breakdown (incubation period) is 4 weeks, the actual
sickness lasts for 2 weeks, and the immune period lasts for 26 weeks.
This allows us to write down a number of equations already:
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Infected_Popul
Time_to_Breakdown

Sick _Popul
Sickness-DuratiOn) (11.47b)
Immaune_Popul ) (11.47¢)

Incubation = INT( ) (11.47q)

Cure_Rate = INT(

Activation = INT(

Immune_Period

A population of 10000 is not sufficient to ignore the “quantization
error”. The INT function ensures that every one of the four popu-
lations will always contain an integer number of people.

The contagious population is the sum of the infected and the sick:

Contagious_Popul = Infected_Population + Sick_Population (11.48)

The total population is the sum of all four populations:

Total _Popul = Non_Infected_Popul + Contagious_Popul + Immune_Popul
(11.49)
which, of course, is constant (10000) in our model. The percentage
of currently infected people is:

Contagious-Popul

PercInfected = Total_Popul

(11.50)

The infection rate can be computed as the product of the non-
infected population Py, the number of contacts that a non-infected
person has per week Cys, the percentage of contagious people
Percc, and the chance of contracting the disease in such a contact
Rateg:

Infection_Rate = INT(Pyr - Cwy - Perce - Rateg) (11.51)

where the average number of weekly contacts of one person with
another is constant: Cy = 15, and the contraction rate per contact
is also assumed to be constant: Ratec = 0.25.

The introduction of the disease occurs as a discrete event dur-
ing the eight’s simulated week. STELLA does not provide for a
mechanism to describe discrete events. Thus, we must model the
introduction with a PULSE function:
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Introduction = PULSE(1.0,8.0,1E3) (11.52)

introduces a pulse of height 1.0 at time 8.0 with a repetition fre-
quency of 1000.0. This is simply added to the infection rate:

Infection_Rate = INT(Pyi-Cwy-Percc- Ratec +Iniroduction) (11.53)

Finally, we must ensure that not more people are ever being infected
than the entire pool of non—infected persons, thus:

Infection_Rate = MIN(INT(Pny - Cwy - Percc - Ratec + Introduction), Pnr)

(11.54)
This concludes the description of the influenza model. Fig.11.14
shows the results of this model being simulated over a period of one
year.

1 Non_lInfected_Popul 2 infacted_Popui 3 Sick_Popul 4 immune_Popul

1
2} 10000.00 1
3 , [
' - 4
2t 7500.00 * 4 4 -
4 /
\ 2
2} 5000.00 - B
Ft
1
2} 250000 -
4
4 %z__—a 2 2

1 1 Sh' = 1% =
£ 0.0 234 — ! : !

o by T T L)
i 0.0 13.00 26.00 39.00 ’ 52.00

Time

3/23/63 7:12:05 AM

Figure 11.14. Simulation results for the influenza model

After the introduction, the influenza epidemic spreads rapidly.
Within six weeks, the percentage of sick people reaches its maximum
of roughly 25%. A steady-state is reached about 20 weeks after the
introduction. Obviously, the disease does not die out naturally. A
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certain percentage of the population loses immunity sufficiently fast
to get reinfected before the bacteria stem has disappeared.

It might have been more realistic to model the four variables:
Contacts. Wk, Time_to_Breakdown, Sickness_Duration, and Immune-
Period through random functions rather than through constants, but
let us save this modification for a homework problem.

11.10 Forrester’s World Model

Let us now try to apply our methodology to a more ambitious prob-
lem. One of the most famous System Dynamics models ever devel-
oped and published was Forrester’s world model [11.7]. How did this
come about? In the late sixties, a number of concerned scientists
tried to decide whether there was a way to determine the destiny of
the human race. They called themselves the “Club of Rome”, and
they started to investigate means to determine our future on this
planet. In the sequence, Jay Forrester applied his System Dynamics
methodology to this problem, and published 1971 his most famous
book World Dynamics.

Forrester decided that the “world” can be captured by five state
variables (levels): population, pollution, non-recoverable natural re-
sources, capital investment, and percentage of the capital invested in
the agricultural sector. His simulation starts in the year 1900, and
the initial conditions for the five levels are:

Population = 1.85 - 10° (11.55q)
Pollution = 2.0 - 10° (11.55b)
Natural_Resources = 9.0 - 10 (11.55¢)
Capital_Investment = 4.0 - 108 (11.55d)
CIAF =02 (11.55¢)

He came up with the following structure diagram which I redrew in
STELLA.
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o)
Natural_Resources W

Quality_of_tife aM

Figure 11.15. Structure diagram of Forrester’s world model

As usual, I captured the model at the end of the simulation. Con-
sequently, those converters that do not contain a needle gauge are
constants. Forrester used the following values for his constants:

BRN = 0.04 (normal birth rate) (11.56a)
CIAFN = 0.3 (CIAF normalization) (11.56b)
CIAFT =15.0 (CIAF time constant) (11.56¢)

CIDN = 0.025 (normal capital discard) (11.56d)
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CIGN = 0.05 (normal capital generation)  (11.56¢)

DRN = 0.028 (normal death rate) (11.56f)
ECIRN = 1.0 (capital normalization) (11.56g)
FC = 1.0 (food coef ficient) (11.56h)

FN = 1.0 (food normalization) (11.564)

Land_Area = 1.35 - 10® (area of arable land) (11.567)
NRI =9.0-10'" (initial natural resources) (11.56k)

NRUN = 1.0 (normal resource utilization)  (11.561)

POLN = 1.0 (normal pollution) (11.56m)

POLS = 3.5999 - 10° (standard pollution)  (11.56n)
Pop.dens norm = 26.5 (normal population density) (11.560)
QLS = 1.0 (standard quality of life) (11.56p)

Converters with a needle gauge but without a tilda denote algebraic
relations. These were given as follows:

CIR = C’apital.Im:elstment (11.57a)
Population

CIRA =CIR- %}V (11.57b)

Crowding Ratio = Tand _Ar}e):?g:;ioi:ns_norm (11.57¢)

ECIR=NREM -CIR. %% (11.57d)

Food_Ratio = FPCI-FCM - FPM - —g—% (11.57e)

MSL = EE%RF (11.57f)

NRFR = Natura;};;sources (11.57g)

Pollution_Ratio = !%lgggﬁ (11.57h)

QLMPF = —QQLL—AF{ (11.574)

Quality.of Life = QLS - QLC - QLF - QLM - QLP  (11.575)

where CIR denotes the capital investment ratio, FCIR stands for
the effective capital investment ratio, MSL is the material standard
of living, and NRFR is the fraction of the non-recoverable natural
resources remaining. Most of the equations are self-explanatory. A
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detailed rationale for these equations can be found in Forrester’s

book.

The converters with a needle gauge and a tilda are tabular func-
tions of their respective inputs. The following tables list the tabular

functions:

Table 11.8a Tabular function that depends on CIR

POLCM
CIR P_Generation
0.0 0.05
1.0 1.00
2.0 3.00
3.0 5.40
4.0 7.40
5.0 8.00

Table 11.8b Tabular function that depends on CIRA

FPCI
CIRA Food_Ratio
0.0 0.50
1.0 1.00
2.0 1.40
3.0 1.70
4.0 1.90
5.0 2.05
6.0 2.20

Table 11.8¢c Tabular functions that depend on Crowding_Ratio

BRCM DRCM FCM QLC
Crowd_Rat | Birth_Rate |Death_Rate | Food Ratio | Qual_Life
0.0 1.05 0.9 2.4 2.00
0.5 1.30
1.0 1.00 1.0 1.0 1.00
1.5 0.75
2.0 0.90 1.2 0.6 0.55
2.5 0.45
3.0 0.70 1.5 04 0.38
3.5 0.30
4.0 0.60 1.9 0.3 0.25
45 ‘ 0.22
5.0 0.55 3.0 0.2 0.20
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Table 11.8d Tabular functions that depend on Food_Ratio
BRFM DRFM CFIFR QLF
Food_Ratio | Birth_Rate | Death_Rate CIAFG Qual_Life
0.00 0.0 30.0 1.00 0.0
0.25 3.0
0.50 2.0 0.60
0.75 1.4
1.00 1.0 1.0 0.30 1.0
1.25 0.7
1.50 0.6 0.15
1.75 0.5
2.00 1.6 0.5 0.10 1.8
3.00 1.9 2.4
4.00 2.0 2.7
Table 11.8e Tabular functions that depend on MSL
BRMM CIM DRMM | NRMM QLM
MSL Birth_Rat | CI_Gen |Death_Rat | Depletion [Qual_ Lif
0.0 1.20 0.1 3.00 0.00 0.2
0.5 1.80
1.0 1.00 1.0 1.00 1.00 1.0
1.5 0.80
2.0 0.85 1.8 0.70 1.80 1.7
2.5 0.60
3.0 0.75 2.4 0.53 2.40 2.3
3.5 0.50
4.0 0.70 2.8 0.50 2.90 2.7
4.5 0.50
5.0 0.70 3.0 0.50 3.30 2.9
6.0 3.60
7.0 3.80
8.0 3.90
9.0 3.95
10.0 4.00

Table 11.8f Tabular function that depends on NRFR

NREM
NRFR ECIR
0.00 0.00
0.25 0.15
0.50 0.50
0.75 0.85
1.00 1.00
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Table 11.8g Tabular functions that depend on Pollution_Ratio

BRPM | DRPM FPM Polat QLP
Poll_Rat |Birth_Rat |Death_Rat | Food_Rat | P_Absorp | Qual_Lif

0.0 1.02 0.92 1.02 0.6 1.04
10.0 0.90 1.30 0.90 2.5 0.85
20.0 0.70 2.00 0.65 5.0 0.60
30.0 0.40 3.20 0.35 8.0 0.30
40.0 0.25 4.80 0.20 11.5 0.15
50.0 0.15 6.80 0.10 15.5 0.05
60.0 0.10 9.20 0.05 20.0 0.02

Table 11.8h Tabular function that depends on QLMF

CIQR

QLMF CIAFG
0.0 0.7
0.5 0.8
1.0 1.0
1.5 1.5
2.0 2.0

Some of the functions that depend on the same input variable have
values specified at different sampling points, and some (more scary!)
have values specified over inconsistent domains. However, the pro-
gram runs without error, and thus, let us not be discouraged by such
minor details.

Finally, I need to write down the equations for the rates:

Birth_Rate = Population- BRN - BRCM - BRFM-

BRMM - BRPM (11.58a)
CIAF
CIAFD = m (11.58b)
CFIFR-CIQR

CIAFG = CIAFT (11.58¢)
CI_Discard = CIDN - Capital Investment (11.58d)
CI_Generation = CIGN - CIM - Population (11.58¢)

Death_Rate = Population- DRN - DRCM - DRFM-
DRMM - DRPM (11.58f)
Depletion = Population - NRUN - NRMM (11.58g)

. Pollution

P_Absorption = POLAT (11.58h)

P_Generation = Population- POLN - POLCM (11.584)
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This completes the description of the model. Simulation results are
shown in Fig.11.16:

1 Population 2 Pollution_Ratio 3 Capital_Investment 4 Quality_of_Life

1 8.008+9

2 40.00 _

X 200e+10 [
4 2.00

1 6.0004+9
2 30.00
3 1508410 -
3 1.50 '
1~ - -\I\
1 4.0084+9
2 20. 1
§ 1odeito 7 4/"_4\l< ~——r
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Figure 11.16. Simulation results for Forrester’s world model

These results agree with those that were presented in Forrester’s
book. Notice that I silently converted the former difference equations
of Forrester’s original text into a set of differential equations. In my
simulation, I used a step size of At = 0.125 instead of At = 1.0 as
suggested by Forrester in order to make the graphs look smoother.

Forrester drew quite a bit of heat for his publication, from politi-
cians since they didn’t want to hear what he had to say, and from his
colleagues since they considered his methods not sufficiently “solid”
in scientific terms (and maybe since they were a little jealous of his
unquestionable success). World modeling remained a fashionable
topic for a number of years. Several other authors published their
newest “findings” which I read with unbroken fascination and grow-
ing frustration. In order to avoid the criticisms and mockeries of
their colleagues, all the later authors kept the details of their mod-
els for themselves, and published only their “results”. Forrester was
maybe a little naive, but he was at least honest. He played with
open cards, and for this, he has my full respect.

What were these dramatic revelations that Forrester disclosed in
his book? He discovered that a physical system with finite energy
cannot exhibit a behavior in which any variable grows to infinity.
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The population will have to stagnate, and so will the GNP. As a
control engineer, I don’t need a simulation model to determine that
this is in fact a truism. There cannot be a question about the fact
that we shall not see an annual increase of the GNP of 3% or what-
ever for an infinite period of time. However, what was really new
(and frightening) about Forrester’s model was the fact that the stag-
nation is not just an abstract concept, something that might happen
to our descendants in the year 5000 A.D., but that it will happen real
soon, probably within the next 50 to 200 years. Our children may
still see the day when recycling will no longer be an alibi exercise, but
will become a bitter necessity, and when fines for causing environ-
mental damage will no longer merely serve the purpose of ensuring
the re—election of some politicians, but where the fines will be so
stiff that it will be more economical for potential offenders to avoid
causing the damage in the first place. I am not talking here about
accidents as they can and will always happen, but about the reckless
and purposeful contamination of our scarce and irreplaceable living
space.

11.11 Model Validation

Since we have moved away quite a bit from the rigid meta-laws of
the hard physical sciences that we started out with, it is now time
to talk a little more about the process of model validation. How do
we ensure that our models reflect reality? How do we verify, even if
a given model reflects well the already observed behavior of the real
system, that model predictions of future hehavior do reflect the true
future of the real system under investigation?

It is still too early to address this problem to its full extent. I shall
do so in the second volume of this textbook when I also discuss the
verification of simulation results. But at least, I wish to point out
now some of the pitfalls of System Dynamics models in particular.

One of the real problems with Systemn Dynamics models is the
fact that the step of model validation is separated from the process
of trajectory behavior generation. It is all too easy to forget the
implicit (and explicit) assumptions behind a model once it has been
properly “debugged” (i.e., it no longer produces any error messages!),
and believe in simulation results just because they look elegant and
maybe plausible. Certainly, Forrester succumbed to this temptation
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in the conclusions of his text on World Dynamics, and we all do at
times.

One remedy that comes immediately to mind is the following:
never extrapolate any variables of a semi—physical model (such as a
System Dynamics model) far beyond the range of observed values.
It is absurd to believe that we can predict the reaction of our planet
to a pollution value which is 100 times higher than any value that
we have ever physically observed.

In practice, I suggest that the STELLA designers add a feature
to their software which allows the users to attach “demons” to their
models which can watch over the integrity of inherent model assump-
tions during the execution of simulation runs. The simplest form of
such a demon is a threshold indicator which can be attached to any
variable in the model. For example, when drawing a level variable
denoting a population, we should be able to attach a demon to this
variable which watches out that the population never decreases to
a negative value. If this should ever happen, the simulation should
immediately stop with an error message.

As can be noticed, a “demon” is nothing but an implementation
of our well known termination conditions (called termtin ACSL). I
suggest to implement demons as a new icon of the structure diagram.
Demons have one or several inputs, but no outputs. Connectors can
terminate in demons, but they can never emanate from demons.
When we double—click on a demon, a window pops up which enables
us to formulate a termination condition in which all the variables
which are connected to the demon must be utilized. If we don’t
wish to clutter up our structure diagram with the demons, we can
simply create ghosts of your “demonized” variables, and connect the
demons to the ghosts in separate structure diagrams.

The second remedy that comes to mind is sensitivity analysis.
The high “precision” (in terms of the number of displayed digits)
that simulation results usually provide may be deceiving. It is quite
obvious that parameter values are naturally associated with toler-
ance bands about a nominal value. Even in electrical circuitry, we
know the value of a resistor only with an accuracy of either 2%, 5%,
or 10%, depending on the price that we are willing to pay for the
component. Consequently, it makes a lot of sense to investigate the
sensitivity of the simulation results to parameter variations. If the
sensitivity is large, we know that we must be extremely cautious
in drawing conclusions about the system behavior. On the other
hand, if the sensitivity is small, we can trust that our model exhibits



498 Chapter 11: System Dynamics

a behavior that resembles the true behavior of the real system. If
you are interested in learning more about how this can be accom-
plished, solve homework problems hw(H11.3) and hw(H11.4). I shall
return to this technique in more detail in the second volume of this
textbook.

11.12 Summary

In this chapter, we have introduced a new modeling methodology,
called System Dynamics, which enabled us to create rather quickly
semi-formal models of “soft” systems, i.e., systems as they are found
in the biological and social sciences, as well as in economy and busi-
ness administration. A new tool, STELLA, was also introduced, a
tool that has been specifically designed to facilitate the creation of
System Dynamics models.
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Homework Problems

[H11.1] Influenza Model

Modify the influenza model given in this chapter in the following way:

Contacts Wk = U(5.0,25.0) (H1l.1e)
Time_to_Breakdown = N(4.0,1.0) (H11.1b)
Sickness_Duration = N(2.0,1.0) (H11.1¢)

Immune_Period = N(26.0,8.0) (H11.1d)
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where U(min, maz) denotes a uniform distribution with a minimum value
of min and a maximum value of maz, and N(u,o) denotes a normal dis-
tribution with a mean value of u and a standard deviation of &. Repeat
the simulation, and compare the results.

In a second simulation experiment, enhance the mean value of the im-
mune period. Find the smallest mean value of the immune period necessary
to ensure the natural extinction of the bacteria stem.

[H11.2] World Model

Jay Forrester determined that the stagnation in his world model was caused
by the exhaustion of the non-recoverable natural resources. As a rem-
edy, he recommended to reduce the normal utilization of natural resources
(NRUN) to 25% of its former value in the year 1970.

Implement this change in STELLA using the STEP function. Simulate
the modified system and check the resulis. Forrester discovered that the
removal of this energy constraint just unchained another one. Now, the
pollution explodes, and the population suffers a major breakdown due to
an environmental disaster. He suggested to reduce the normal pollution
also to 25% of its former value in the year 1970.

Implement also this change in STELLA using the STEP function. For-
rester liked the resulting curve much better. Extend the simulation period
from the year 2100 to the year 2500, and compare the new curve with the
original curve. Interpret the results.

I discovered that the energy constraint on the natural resources is very
beneficial to a smooth transition from the growth phase to the stagnation
phase. As a control engineer, I know that, if I wish to reduce oscillations in
a feedback control system, I should reduce the open-loop gain of the system,
and not enhance it. Thus, since Forrester’s model suggests that we have
already exceeded the steady-state value of the system, the conservation of
non-recoverable natural resources may be more detrimental than beneficial,
since ultimately, we shall have to learn to live without them anyway. I once
“optimized” the behavior of the world model in terms of a smooth transition
to the stagnation phase. The optimization suggested that I should pump
several thousand barrels of oil into the ground every day, i.e., that I should
not save the non-recoverable natural resources, but spend them as quickly
as I possibly can. An early shortage of these resources will ensure that our
system exhibits as little overshoot behavior as possible.

[H11.3] Sensitivity in the Large

Reimplement Forrester’s world model in ACSL. Execute the simulation
under control of either MATLAB or CTRL-C. Assume that the four pa-
rameters CIAFT, FC, NRUN, and POLN are inaccurately known. Assume
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that the given values have a tolerance band of +£25% associated with them.
Rerun the simulation 16 times for all worst case combinations of these pa-
rameters. Import into CTRL~C or MATLAB the population variable from
the ACSL model, and store all resulting populations together in a matrix.
Use MATLAB’s (CTRL-C’s) MAX and MIN functions to compute upper
and lower bounds, and plot the upper and lower envelopes of the population
together on one graph as functions of time. What do you conclude?

[H11.4] Replication and Batch

This time, assume that the four parameters CIAFT, FC, NRUN, and POLN
are uniformly distributed stochastic variables in the range nominal value
+25%. Perform 100 simulation runs with different seed values for the
random number generators. Import from ACSL the population trajectories,
and compute again upper and lower envelopes. What do you conclude?

[H11.5] Balancing Your Checkbook

A traveling sales person makes an average net income of $2000 a month,
more precisely, his or her income is N (2000, 200), i.e., the income is nor-
mally distributed with a mean value of $2000, and a standard deviation of
$200. S/he likes to spend 90% of her or his average income. S/he computes
his or her average income as a moving average of the real income over the
past six months.

Since STELLA does not provide us with a moving average function,
we need to construct this function the hard way. Make a ghost of the
sales person’s income, and delay it six times by one month in a separate
structure diagram. Then add the six incomes up, and divide by six. This
is the desired moving average. Make a ghost of the moving average, and
copy it back into the main diagram.

Of course, a cash constraint exists. The sales person will not spend the
desired amount of money unless s/he has sufficient cash in the bank. S/he
considers $4000 in the bank sufficiently safe to spend what s/he likes to
spend. His or her real consumption is the product of the desired consump-
tion and the cash constraint. The cash constraint is 1.0 if s/he has #4000
or more in the bank, otherwise, it is linear in her or his current savings.

At the beginning of the simulation, the sales person has exactly $4000 in
the bank. Four months into the first year, a competitor comes out with a
new product that reduces the mean value of the poor sales person’s income
by $500. The standard deviation remains the same. Simulate the system
over 3 years. Plot on one graph the monthly net income, the cash balance,
and the monthly consumption of our Schlehmihl.
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Research

{R11.1] The Epidemiology of AIDS

Study the October 1988 issue of Scientific American, a special issue devoted
to the HIV infection, and in particular, the two articles on the epidemiology
of AIDS by Heyward and Curran [11.9] describing the epidemiology of the
disease in the U.S., and by Mann et al. [11.13] describing the international
epidemiology of the disease. Scan the literature for further information
to obtain as solid statistical material as possible to base your modeling
efforts upon. A good source of data are the Proceedings of the Annual
International Conference on AIDS. Develop a System Dynamics model (a
modification of our simple influenza model) that describes the spreading
of the disease, and which reflects the observed data well. As usual with
these types of studies, the crux is with the data. The available data are
often speculative, and are largely inconsistent. It would be fairly easy
to determine an inductive model describing the spreading of the disease
fairly accurately, but this doesn’t help us much since we haven’t observed
a saturation period yet, and this is exactly what our model is supposed to
predict. Thus, we need a semi-physical model.

One of the most interesting facts about the epidemiology of AIDS is that
the reported AIDS population did not grow ezponentially during the early
stages of the disease as would be expected, but instead, it grew polynomially
with the third power of the time t. A very good inductive model of the
reported AIDS cases in the U.S. between 1980 and 1988 can be described
through the formula [11.10]:

A(t) = 175 - (¢ — 1981.2)° + 340 (R11.1a)

If we try to retrofit a physical model to the observed behavior, we need a
differential equation for A(t). From eq(R11.1a), we can find immediately
by differentiation:

A(t) =525 (¢ — 1981.2)* (R11.13)

which can be rewritten as:

3. (A(t) — 340)

A = (t—1981.2)

(R11.1¢)
Consequently, in order to obtain a polynomial growth, our model must
contain some sort of % factor. Such a % factor makes sense for a disease
which loses its virulence through natural mutation or diffusion, or which
leads to a growing body of immunized and therefore non—susceptible hosts.
Unfortunately, neither of these two assumptions is plausible in the case
of the AIDS disease. However, any decent semi-physical model of the
epidemiology of AIDS will have to come up with a plausible explanation of
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where this % factor comes from, a hypothesis which should preferably be
verifiable.

Come up with a consistent System Dynamics model describing the epi-
demiology of AIDS in terms of the susceptible population S(¢), the infected
population I(t}, and the sick population A(t), possibly compartmentalized
into various risk groups. It may also be necessary to divide the infected
population into three separate subgroups denoting the group of freshly in-
fected individuals (who are highly contagious, since no antibody has been
developed yet), the group of symptom-free infected individuals (not very
contagious, since the antibody constantly destroys the free retrovirus in
the blood stream), and the group with early symptoms (highly contagious
since the antibody is about to lose the battle).

Associate tolerance bands with the parameters of your model, and per-
form a “sensitivity analysis in the large” (as described by the author in
two previous articles [11.1,11.2]). From the sensitivity analysis, determine
which will be the maximum and minimum values of reported AIDS infec-
tions in the years 1992, 1995, and 2000. When will the epidemic exhibit
its peak value? What are the best and worst percentages of the infected
population at that time? Will humanity survive the viral assault? How
good is the confidence of your predictions?



