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Inductive Reasoning

Preview

In the last chapter, we discussed a crude approach to analyzing the
behavior of a system by means of a coarse, qualitative, structural
description of the real physical system. The claim was that this
models the way humans reason about processes, and since humans
are very apt at making correct decisions on the basis of incomplete
knowledge, this approach may enable algorithms to duplicate such
aptitude. It turned out that the results were not as promising as
some researchers would like us to believe. Strong indieators can
also be found that humans mostly assess the behavior of a system
not on the basis of qualitative physical considerations, but on the
basis of analogies with similar processes, the operation of which they
have previously observed, i.e., that they use pattern recognition to
analyze system behavior. In this chapter, we shall discuss one of
several pattern recognition techniques that may be able to mimic how
humans apply pattern recognition to reason about system behavior,

13.1 Introduction

Lnﬂhlpthlﬂ,lmthnﬂth&ﬁﬂlnwin;umph:ﬂ[hﬂda;lul
with water in my hand, and if [ open my fingers, I know that the
glass will fall to the ground, break into a thousand pieces, and spill
the water over my carpet. I don’t need to solve a set of differential
equations to come up with this assessment. [ argued that it is suffi-
cient to know that a positive force exists that pulls the glass down.
The amount of that force is not important to the conclusion, except
if I wish to know when exactly the glass will hit the floor. But is
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this really how I came to the correct conclusion? Or is it maybe
hecause [ remembered that my father, when I was 10 vears old, let a
twao liter bottle of Chianti wine slip through his fingers, and our dog
came, and licked the entire contents of the boitle from the carpet,
and got himself completely drunk? But if this were true, how come
that my brain correlated the water glass event with a seemingly un-
related event that happened more than three decades ago, taking
into consideration that [ observe and store an unbelievable manifold
of different episodes every day of my life? How come a physician
whom | had visited only once four years earlier introduced himself
to me (since his office had misplaced my previous patient card), but
frowned after the third word and exclaimed: “But you have heen
here before, haven't you?" although the guy must be seeing 50 pa-
tients a day? In this chapter, and also in the next, I shall try to
bring us a little closer to unraveling these mysteries.

Let me start by explaining why [ believe that pattern recognition
is & much more frequently used and much more powerful tool in
assessing qualitatively the behavior of a system. I still own a dog
who loves to play ball. I kick the ball with the side of my foot (I
usually wear sandals, and a straight kick hurts my toes), and my
dog rans after the ball as fast as he can. I was abla to observe the
following phenomenon: If I place my foot to the left of the ball, my
dog will turn to the right to be able to run after the ball as soon as [
hit it. He somehow knows that the ball will be kicked to the righs. If
I now change my strategy, and place my foot to the right of the ball,
my dog immediately swings around to be ready to run to the left.
He obviously has some primitive understanding of the mechanics
involved in ball kicking. However, I assure you that I never let my
dog near my physies texts, and thus, he had no opportunity to study
Newton's laws — not even in their naive form.

A number of strong arguments can be mentioned in faver of the
pattern recognition approach, but a number of strong arguments can
also be brought forward that advise against it. What makes pattern
recognition attractive!

(1) In Chapter 10, I demonstrated that siructure characterization is
& very tough problem. In the patiern recognition approach, we
bypass this problem entirely by going directly for the behavior
itself. It is a much simpler task to identify a pattern than to
characterize a structure,

{2) Pattern recognition is qualitative by nature. We don’t need to
wrtificially modify our problem to make it qualitative.



13,1 Inireduction 555

(3) Pattern recognition algorithms lend themselves naturally to im-
plementation on a parallel processor architecture. Structure
characterization algorithms don’t share this property. Thus, pat-
tern recognizers can be very fast.

What makes pattern recognizers unattractive for the purpose of rea-

soning?

(1) As I mentioned earlier, the behavioral complexity of a system
is much larger than its structural complexity, Thus, we need to
store much more information about a system if we represent it
directly in a behavioral form. Consequently, pattern recognizers
will usually not be able to characterize a system in general, but
only for a limited set of input stimuli.

(2) In & reasoning system, we like to know why a system behaves
in one way and not in another. Pattern recognition does not
usually provide much insight into the why, only into the how.
Consequently, it is very difficult to use knowledge extracted from
a pattern recognizer in the process of knowledge generalization
However, this is also a weakness of us humans. Only few people
are truly capable of effectively participating in the process of
knowledge generalization.

Problem #1 above can be overcome if we are able to make the pattern

recognizer so fast that we can learn the behavior of our system on-

line. In that case, we can identify the system behavior in the vicinity
of the current operating point, make a decision, implement it, observe
the effects of that implementation, determine a new operating point,

and re-identify the process for this new operating point. Problem #2

above is tough luck, but remember that the Naive Physics approach

hasn't helped us much with this problem either. This is simply an
avwfally difficult problem to tackle.

‘The question remains: How did my physician recognize me after all
these years! Somehow, we mmst be able to store generic properties of
& system away, properties which are so generic that we can easily and
quickly access them, and compare them with the generic properties of
a new system to find similar or equal patterns. In this chapter, I shall
introduce one methodology that allows us to mimic this capability
to & certain extent.
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13.2 The Process of Recoding

In the last chapter, I discussed how continuous trajectories are dis-
cretized into episodes for the purpose of Naive Physics modeling.
Inductive reasoning, like all other qualitative modeling technigues,
also requires a discretization of continuous phenomena.

Thiltime.ﬂ:hﬂl:ﬂnrmnuﬂluulhujmt-,ﬂ,m&hmd
wa shall concentrate on the regions themselves rather than on the
landmarks that separate these regions from each other. The values
that represent such regions can be symbolic (for example, tiny, small,
average, and big, denoting four distinet regions), or they can be
integer numbers (for example, *1°, *2°, ‘3", and ‘4", denoting the same
four regions as above). In an inductive reasoning system which is
coded in LISP, symbolic names are probably preferred, whereas in
an inductive reasoner coded in a predominantly numeric software
such as MATLAB or CTRL-C, integers will be the representation
of choice. From a practical point of view, it really doesn't matter
which of the two representations is being used since one can easily
be mapped into the other. The symbolic representation will make
the eode more readable though.

In inductive reasoning, the regions are called levels. Notice the
difference with System Dynamics. In System Dynamics, a “level”
denotes a continuous state variable, whereas in inductive reasoning,
it denotes one value of a discrete state variable. The process of
discretizing continuous trajectories into discrete episodes is called
recoding. Finally, a combination of legal levels of all state variables
of & model is called a state. Thus, a model with n state variables, sach
of which is recoded into k levels has &~ legal states. An episodical
behawvior is atime history of legal states. The “episodical behavior® is
the qualitative counterpart of the quantitative “trajectory behavior™.

Inductive reasoning is a technique which was invented in the sev-
enties by George Klir [13.5]. A first software system implementing
Klir's ideas was SAPS [13.11). Unfortunately, the original SAPS FITe
tem was not sufficiently flexible to be of much practical use. We have
therefore developed a new implementation, called SAPS-II, which is
available as either a CTRL-C library or & MATLAB toolbox [13.4).
The CTRL-C version of SAPS-II can be accessed using the com-
mand:

[> DO saps: saps
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MATLAB recognizes all its toolboxes automatically.

In SAPS-TI, levels are represented through positive integers,
While QualSim is a very simple program package, SAPS-TI is quite
intricate, and [ won't be able to discuss all the details of how SAPS
has been implemented. Howewver, this chapter can serve as a some-
what simplified user's guide.

The first question that we must ask ourselves is: How do we re-
code? How many levels should we select for each of our state vari-
ables? Where do we draw the borderline (i.e., where do we select the
landmark ) that separates two neighboring regions from each other?

Inductive reasoning is a completely inductive approach to model-
ing. It operates on a set of measured data points, and identifies a
“model” from previously made observations.

From statistical considerations, we know that, in any ¢lass analy-
sis, we would like to record each possible discrete state at least five
times [13.7]. Thus, a relation exists between the possible number of
legal states, and the number of data points that we require to hase
our modeling effort upon:

Dpae ﬁ-m-.,-li-[[.h {13.1)
i

where n.,. denotes the total number of recordings, i.e., the total
number of ohserved states, n;,, denotes the total number of different
legal states, i is an index that loops over all variables, and k is an
index that loops over all levels. If we postulate that each variables
assumes the same number of levels, eq(13.1) can be simplified to:

Tigge 2 5 [y )" (13.3)

where n,,.denotes the number of variables, and n,,, denotes the
chosen number of levels for each variable. The number of variables
is usually given, and the number of recordings is frequently prede-
termined. In such a case, we can find the optimum number of levels
from eq(13.3):

Riee = ROUN D '--1." "‘—;'-EJ (13.3)

For reasons of symmetry, we often prefer an odd number of levels
over an even number of levels. For example, the five levels much too
low, too low, normal, too high, and much too high might denote states
of the heart beat of a patient undergoing surgery. By choosing an
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odd number of levels, we can group anomalous levels symmetrically
around the normal state.

If the number of recordings is not predetermined, we might con-
sider consulting with a human expert (in the above example, the
surgeon) to determine a meaningful number of levels for a given
variable.

The number of levels of our variables determines the expressiveness
and the predictiveness of our qualitative model. The erpressivenes:
of a qualitative model is & measure of the information content that
the model provides. Later in this chapter, I shall present formu-
lae deseribing the information content of a qualitative model. The
predictiveness of a qualitative model is a measure of its forecasting
power, i.e., it determines the length of time over which the model
mhtuwﬁmfnﬂmttheﬁtmb-:hﬁ:nﬂ'mmm
[13.8].

If all variables are recoded into exactly one level, the gqualitative
model exhibits only one legal state. It is called a “null model™. It
will be able to predict the future behavior of the underlying system
perfectly over an infinite time span (within the Famework of its
model resolution). Yet, the prediction does not tell us anything
useful. Thus, the null model is characterized by an infinitely high
predictiveness, and by a gero expressiveness.

On the other hand, if we recode every variable into 1000 levels,
the system exhibits myriads of legal states. The expressiveness (i.e.,
resolution) of such a model will be excellent. Each state contains
a large amount of valuable information about the real system. Yet,
the predictiveness of this model will be lousy, unless we possess an
extremely large base of observed data. In all likelihood, this model
eannot be used to predict the behavior of the real system for even a
single time-step into the future.

Consequently, we must compromise. For mest practical applica-
tions, we found that either three or five levels were about optimal
[13.3,13.12].

Once we decided upon the number of levels for each variable, we
must choose the landmarks that separate neighboring regions. Often,
this is best done by consulting with a human expert. For example, we
may ask a surgeon what s/he considers a normal heart beat during
surgery, and when s/he would believe that the heart beat is definitely
too low or too high, and when s /he would consider it to be crifically
ioo low or critically too high. If we are then able to predict the
future behavior of the patient in terms of these qualitative variables,
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we may be able to construct a heart monitor which will warn the
surgeon ahead of time about a predictable problem. This clearly
sounds like a worthwhile research topic.

However, if the amount of observed data is limited, it may be
preferable to maximize the expressiveness of the qualitative model.
This demand leads to a clearly defined optimal landmark selection
algorithm [13.8]. The expressiveness of the model will be maximized
if each level is observed equally often. Thus, one way to find an
optimal set of landmarks, is to sort the observed trajectory values
into ascending order, cut the sorted vector into ny,, segments of equal
length, and choose the landmarks anywhere between the extreme
values of neighboring segments. Let me demonstrate this process by
means of an example. Fig.11.1 shows an observed trajectory of a
continuous variable:

Continuous Traj ectory

15 -
18, .....':. ....;\....--E. ek : T .i_ !
- B TR O . , ................................................
@0
-B. H H i all ll. i H H H H H H
4 2.8 1.0 L8 2.0 2.8 1O X5 40 4.0 .0 0.8 0.0 A5
Time [sec]

Figure 13.1. Trajectory behavior of & continuons variable

We first discretize the time axis (how this is done in an optimal
manner, will be explained in due course). Let us say, that this process
leads to a trajectory vector of length 131. The observed values range
from 0.0 to 13.5. Let us assume that we wish to recode this trajectory
into the three distinet levels ‘1", *2", and *3". If we would simply cut
the domain into equal intervals of length 4.5, ie.:

1" e [0.0, 4.5]

9 s (4.5, 0.0]

3 s (9.0, 13.5]

the levels ‘1" and ‘2" would only sccar very briefly, and they would
only occur during the initial phase of the episode. Thereafter, we
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would constantly observe a level of 3. Fig.13.2 shows the recoded
episode.

Episcode Recoded with Equidistant Intervals
4. T - . . - - : . . r B |

i i
8 8.0 8.5

cllII. iI.IE I:II I.:-! i.ll'.\ -i':l :I.IE I:I- l-:ﬂ l:l l..l -]
Time [sea]

Figure 13.2. Episodical behavior of a recoded variable

In the process of recoding, we throw away a lot of information. In our
example, we lost most of the information regarding the oscillation
frequency. However, if we use the above described optimal algorithm,
we sort the trajectory values in ascending order such that the first
value is 0.0, and the last value is 13.5. We then cut the resulting
vector of length 131 into three vectors of approximately equal length.
The first vector contains the elements 1 to 43, the second vector
contains the elements 44 to 86, and the third vector contains the
elements 87 to 131. For the given example, the following values were
Tonamd:

Zoersea(d3) = 95808
Teoreed|44) = 9.8069
2 survaal B8] = 100800
2 sorsaa(8T) = 100801

data points in different segments as our landmarks LM, we find:

LM, = Zrerieald3) + 2omrneal ) o eay

Lo

LM; = "'""["J;:“""[Iﬂ = 10.0500

Using these landmarks, we obtain the following three regions:
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11— [0.0,9.8034]
T e (85034, 10.05]
*3* —e (10,05, 11.5]

Fig.13.3 shows the same continuous trajectory as Fig.13.1 with the
two new landmarks superimposed:

Continuous Trajectory with Thresholds
R S R O S L s
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Figure 13.3. Continuous trajectory behavior with landmarks superimposed

The band width of level ‘2" is very narrow indeed. Fig.13.4 shows
the recoded episodical behavior:

Episode Recoded with Optimized Intervals
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Figure 13.4. Episodical behavior of a recoded variable
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Clearly, the recoding of Fig.13.4 has preserved more information
about the real system than the recoding of Fig.13.2.

Which technique will work best depends heavily on the application
area. For the case of the heart surgeon, the “optimized™ recoding
would be meaningless. His or her goal is to receive an early warn-
ing when the heart beat is expected to become critical, and not to
ohserve each level equally often. Obviously, s/he wishes to observe
level *3° (out of five levels) only, ie., s/he wishes to keep her or his
patient constantly within the normal range.

The following example, which was taken from Hugo Uyttenhove's
Ph.D. dissertation [13.11), may serve as an illustration for the process
of recoding. A heart monitor observes six different variables about a
patient undergoing surgery. Each of these variables is being recoded
into five different levels using the gualitative states:

1" — mimch too low
2" — oo low
1" +—s normal
4" +—s too high
0" s muuch too high

Table 13.1 lists the six variables together with their five ranges.
Table 13.1 Recoding of heart varisbles

% %-ﬁ H—

g

&8

o ad 1
=) [E[=]F]

ol

Let us assume that the trajectory behavior of this six variable system
has been recorded in the form of a trajectory behavior matrix mens
with six eolumns denoting the six different variables, and 1001 rows
denoting different measurement instants (different time values). The
following SAPS-II program segment can be used to recode these
valoes:
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[ DO sapssaps

[ from=[ 0.0 750 1000 150.0 180.0
760 1000 1500 180.0  999.9);

[ tom1:8;

[ rews= RECODE[msas: 1), demain', from, to);

[ frem=[ 00 500 650 1000 1100

500 650 1000 1100 9999
[» r=RECODE(meas: 1), domain’, from, to);
[> raw = [raw,r]

[> from=[ 0.0 4.0 100
40 00 oeea)

[ to=3:4

[> r=RECODE({measi,}),domain’, from, to);

[> raw = [raw,rj;

[> from=[ 0.0 10 1.0 170
20 10 T8 899

[ to=ml:4;

[» r=RECODE(meas(s4), domain’; from, to);

[» row=[raw,r];

[> frem=[ 0.0 500 00 100.0 110.0
50.0 60.0 1000 1100 999.9);

[ te=1:85;

[ »=RECODE[{meass5), domain’, from, to];

[} 'rln=[rl...r]i

[ from=] 00 1.0 4.0 0.0
10 40 200 999.9);
[> tom]:4
[ r=RECODE(meas(:8),' domain’, from, do);
[> raw = [raw,7);

RECODE is one of the SAPS-II functions. As it is used in this
example, it maps the regions (domains) specified in columns of the
Jfrom matrix to the levels that are specified in the fo vector. Thus,
the from matrix and the o vector must have the same number of
columns. In this example, each variable (column) is being recoded
separately. The resulting episode r is then concatenated from the
right to the previously found episodes which are stored in raw. The
code should be fairly self-explanatory otherwise,

Omne problem remains to be discussed: How big is big? Obviously,
qualitative terms are somewhat subjective. In comparison with an
adult, & 10 vear old has usually quite a different opinion about what
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an “old person™ is. The concept of landmarks is a treacherous one.

Is it really true that a systolic blood pressure of 100.1 is “normal®,

whereas a systolic blood pressure of 99.9 is “toe low™? Different

physicians may have a different opinion altogether. My wife has
usually & systolic blood pressure of about 3. Yet, her physician al-
ways smiles when he takes her blood pressure and predicts that she
will have a long life. 90 is too low for what! What the surgeon prob-
ably meant when s/he declared 100 the borderline between “normal™
and “low™ was the following: If a “normal® patient, i.e. a patient
with an average “normal” systolic blood pressure of 125 experiences

a sudden drop of the blood pressure from 125 to 90 during surgery,

then something is probably wrong. Does this mean that we should

look at the time derivative of the systolic blood pressure in addition
to the blood pressure itself? We probably should, but the surgesn
conldn't tell us, because this is not the way s /he thinks. Most medi-
cal doctors aren't trained to think in terms of gradients and dynamic
systems,

We have discovered two different problems.

(1) Asking an “expert” about which variables to look at can be a
dubious undertaking. Experts in heart surgery aren't necessar-
ily experts in expert system design. The surgeon won't under-
stand the purpose of our question. Thus, we must use our own
scrutiny and intelligence to interpret the answers of the so—called
“expert” in an adequate way. The automation of the process of
variable selection may be the toughest problem of all. We shall
address this problem later in this chapter to some extent.

(2) Even if the question to the expert has been both properly formu.
lated and properly understood, the determination of landmarks
contains usually an element of subjectiveness, The crispness of
a landmark may be deceiving. While a systolic blood pressure
of 125 is clearly and undoubtedly a good and normal value, the
matter becomes more confusing as we approach one of the neigh-
boring “landmarks™,

Lotfi Zadeh tackled the latter problem [13.13,13.14,13.15]. He in-

troduced fuzzy measures as a technique to deal with the uncertainty

of landmarks. Instead of saying that the systolic blood pressure is

“normal” for values above 100, and “low" for values below 100, a

fuzzy measure allows us to specify that, as we pass the value 100 in

negative direction, the answer “normal” becomes less and less likely,
while the answer “low” becomes more and more likely.
In a graphical form, we can depict the fuzzy measure as follows:
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“Lih].il'lmd of Answer
1.0 [low normal
0.5
0.0

0.0 1000 1100 1200  Systolic Blood
Pressurg

Figure 13.5. Fuszy qualitative vanable

these membership functions are shaped is up to the user. In SAPS-
II, we have implemented only one type of membership function: a
normal distribution which is 1.0 at the arithmetic mean value u; of

any two “landmarks”, and which is 0.5 at the landmarks
thfmdm 13.8]. This membership function can be easily calculated
using the equation:

Memb; = exp(~k - (2 - p)?) (13.4]

where r is the continuous variable which needs to be recoded, say
the systolic blood pressure, and k; is determined such that the mem-
bership function Memb, degrades to a value of 0.5 at the neighboring
landmarks. Fig.13.6 shows the membership functions for the systolic

blood pressure:

H‘E 1:1_1.1: grs_hilzrl F‘_unc tions

muwoh loo jow Low jow normal too hdgh mush bso high
e

N = =

Likelihoed of Answer

= ks S0 Lo

'i.n :u -u 00, B9, 100, 139, u-'m 180, 1@, m m 4.
Syestelic Bloed Preassure

Figure 13.8. Membership functions of the systolic blood pressure
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The first and the last membership functions are treated a little dif-
ferently. Their shape (& value) is the same as for their immediate
neighbors, and they are semi-open.,

If we wish to compute the membership functions for the heart
monitor example, we need to modify the previously shown program
segment in the following way:

[= DO sapmsaps

[ frem=| 00 TS50 1000 1500 1800
T5.0 1000 13000 18000  999.9);
[ to=1:8;
[> [row, Memb, side] = RECODE{meas(:, 1), fuzsy’, from, to);

[ from={[ 0.0 SO0 450 1000 110.0
S0u0 850 100 110.0 P98.9);
[) [r,m,a] = RECODE(meanz, 2),' fuzzy', from, to);
> row=[row,r]; Memb=[Membm); side = [sde,4];

[ from=[ 0.0 4.0 200
40 200 99es);
[ tom3:d
[> [r,m, 5| = RECODE(meas:,3),' fuzzy’, from, to);
[> row=[row,r; Membs=|[Membm]; side=/[side,sf;

[ fromm[ 0.0 20 1.0 740
2.0 30 7.0 999.9);
[» tos=l:d;
[> [r.m,s] = RECODE|meas(: 4),' fuszy', from, ta);
[» row=[raw,r; Memb=[Membmj; side = [side,s;

[ from=[ 0.0 300 400 1000 110.0
500 600 1000 110D 999.9);

[ to=1:5

[ [rim.s] = RECODE(meas(:,5),' fuzsy’, from, ta);

[ row=[raw,¢f]; Membm [Memb,m); side = [side, al;

[» from=[ 0.0 1.0 40 0.0
1.0 40 00 999.6):
[ ta=1:4;
{:" [ﬂﬂ"ﬂ'] - Hﬂﬂpﬂmnﬂ:,#”fuﬂ'. I"HI‘ hh
[> row=[row.rl; Memb=[Memb m); side = side,s];

The raw matrix will be exactly the same as before (since RECODE
will always pick the most likely answer), but in addition, we oh-
tain the fuzzy memberships of all our qualitative variables which are
stored in the Memb matrix. The third matrix side contains a value of
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0 whenever the measured data point coincides with the mean value
of the neighboring landmarks, it assumes a value of —1 if the mea-
sured variable is smaller than the mean between the landmarks, and
it is 4+ 1 if the measured variable is larger than the mean between the
landmarks.

In the process of recoding, a large amount of valuable information
about our real system is discarded. The fuzzy membership retains
some of this information which will prove useful in due course. In
fact, up to this point, no information has been lost at all. The
original continuous signal can be regenerated accurately using the
SAPS function:

[> mess = REGENERATE(raw, Memb, side, from, to)

where the meaning of the from and to parameters is opposite from
that befare [13.8].

13.3 Input/Outpui Behavior and Masking

By now, we have recoded our trajectory hehavior into a discrete
episodical behavior, In SAPS-II, the episodical behavior is stored in
a raw data matriz. Each column of the raw data matrix represents
one of the observed variables, and each row of the raw data matrix
represents oneé lime point, i.e., one recording of all variables, i.e., one
recorded state. The values of the raw data matrix are in the set of
legal levels that the variables can assume, i.e., they are all positive
integers, usually in the range from ‘1" to ‘5.

How does the episodical behavior help us identify a model of our
system for <he purpose of forecasting the future behavior of the sys-
tem for any given input stream? Any model describes relationships
between variables. That is its purpose. For example, in a state-space
model, we deseribe the relationships between the state variables o,
and their time derivatives #;:

iitﬁf11.:=1...1l.] {]Ml

If the state variables z, have been recoded into the gqualitative vari-
ables v;, and their time derivatives have been recoded inte the qual-
itative variables w,, we can write:

'f‘fifﬂrﬂi“"'#‘l-] “:"ﬂ]
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While f, will be a different function than f,, the fact that {deter-
ministic) relationships exist between the =, and the £; variables, can
be partially preserved in the process of recoding. The f, functions
are (possibly deterministic) relationships between the v; and the w,
variables,

The beauty of this transformation becomes evident when we try
to jdentify these functional relationships. While the identification
(characterization) of the f; funections is a difficult task, the identi-
fication of the f; functions is straightforward. Since each of the u,
variables can assume only a finite set of values, we can characterize
the f; functions through enumeration. Let me provide an example:

y = sin{z) (13.7)

is a quantitative relationship between two quantitative variables z
and y. Let us recode the variable z into a qualitative variable v with
four states, such that:

£ w
1* guadrant °1"
o
I-_I'l)
-|'Il

3™ quadrant

4"* guadrant
If the angle z is anywhere between 0° and 90° plus or minus a mul-
tiple of 360°, the qualitative variable v assumes a value of ‘1°, etc. v
simply denotes the quadrant of z. Let us recode the variable y into
a qualitative variable w with two states, such that:

, w
negative ‘I')
1:!

posiisve
Thus, w sinfply denotes the sign of y. This allows us to characterize
the functional relationship between the two qualitative variahbles v
and w as follows:

{13.5)

{13.9)

L

ll'l-
(:‘1
I.,l
llil

Eq(13.10) is the qualitative counterpart of eq(13.7).

w
e
:11-)
g
g

{13.10)

Qualitative

functions are finite automata which relate the gualitative variables

to sach other.
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However, we have to be careful that we recode all variables in a
consistent fashion. For example, if £ had been recoded differently:

- ] ¥
—45%. 4+ 48* T
457, 135* o
+135%.. + 228* @ (1831)
+220*.. 4 315" ‘4"

with the same recoding for y, we would have obtained a non-
deterministic relationship between v and w:

v w preb

il! l]! m

I

I’ﬂ (% L] ]

> (13.12)
I.!l 1:' m

-I'F l:! m

The third column denotes the relative frequency of observation which
can be interpreted as the conditional probability of the output w to
assume a certain value, given that the input v has already assumed
an observed value.

Eq(13.12) can be rewritten in a slightly different form:

‘1“ 11' ‘I.:'

‘T f05 05

- 1

- n: E':) (13.13)
e 00 1.0

which is called a state transition matrz relating v to w. The values
stored in the state transition matrix are the transition probabilities
butrmnﬂmhﬂld'uudmdmtﬁnlmzlﬂfw,ic“thurm
the conditional probahilities of w given v:

STy = plw="'j'lv = *i'} (13.14)

The element < i, j > of the state transition matrix is the conditional
probability of the variable w to become ‘', assuming that v has a
value of ‘4",

We don’t want to fall into the same trap as in Chapter 12 where we
assumed that we already knew the state-space model of our system.
The technique which is advocated in Chapter 13 is totally inductive.
Gmnqumh,mmnmm;tnmnthunmwmﬁhing
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about our system with the exception of the observed data streams,
i.e., the measured trajectory behavior. Obviously, this says that we
cannot know a priort what it mesns to recode our variables *con-
sistently”. All we know is the following: For any system which can
be described by & deterministic (yet unknown) arbitrarily non-linear
state—space model of arbitrary order, if we are lucky enough to pick
all state variables and all state derivatives as our output variables,
i, if all these variables are included in our trajectory behavior, and
if we are fortunate enough to recode all these variables in a consistent
fashion, then deterministic and static relationships will exist between
the qualitative state variables and the qualitative state derivatives.

In the process of modeling, we wish to find finite automata rela-
tions between our recoded variables which are as deferministic as
posmble, If we find such a relationship for every output variable,
we can forecast the behavior of our system by iterating through the
state transition matrices. The more deterministic the state transi-
tion matrices are, the better the certainty that we will predict the
future behavior correctly.

Let us now look at the development of our system over time. For
the moment, | shall assume that our observed trajectory behavior
was produced by quantitatively simulating a state—space model over
time. Let us assume that the state-space model was coded in ACSL,
that we integrate it using a fixed step forward Euler algorithm, and
that we log every time step in our trajectory behavior. In this case,
We CAn Wribe:

zilk + 1) = zi(k) + At - 3,(k) {13.15)
The qualitative version of eq(13.15) is:
ik + 1) = §{(k), wi(4)) (13.16)

Eqg(13.15) is obviously a deterministic relationship between z;(k),
#,(k), and z,(k + 1). Is § a deterministic function? Let me assume
that we choose our step size Af very small in order to integrate
accurately. In this case, the state variables will change very little
from one step to the next. This means that, after the recoding,
v, (k+1) is almost always equal to v, (k). Only when z, passes through
a landmark will w(k + 1) be different from w(k). Consequently,
our qualitative model will have a tough time predicting when the
landmark crossing will take place. Thus, it is not a good idea to
include every tiny time step in our trajectory behavior. The time
distance hetween two logged entries of our trajectory behavior &t
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should be chosen such that the two terms in eq{13.15) are of the
same order of magnitude, i.e.:

[l == B2 - || ;]| (13.17)

Notice that 8t is the communication interval, whereas At denotes the
integration step size. These two variables have no direct relationship
with each other. The data stream could as well be the output of a
digital oscilloscope observing a real physical system. In such a case,
At has no meaning, but §t still exists, and must be chosen carefully.

Let us now forget about state—space models. All we know is that
we have a recorded continuous trajectory behavior available for mod-
eling. We want to assume furthermore that we know which are the
inputs into the real system, and which are the outputs that we mea-
sure. Our trajectory behavior can thus be separated into a set of
input trajectories u, concatenated from the right with a set of out-

put trajectories y,, for example:

it W s B B\ W
oo R e
&t i i R T s
-5t it Ho

1.5

(13.18)

(ees = 1) - 68

The trajectory behavior is recoded into an episodical behavior us-
ing the technigues deseribed in the last section. Our modeling effort
now consists in finding finite automata relations between the recoded
variables which make the resulting state transition matrices as de-
terministic as possible. Such a relation could look like:

wit] = flwit — 26t), wa(t = 82), mit = 61), us(1)) (13.19)
Eq(13.19) can be represented as follows:
1N TR I R
i — 358 ] i} i g =1
=& { 0 =3 =3 o i.‘r) [13.30)
] —4 0 +1 (1] i

The negative elements in the above matrix denote inputs of our qual-
itative functional relationship. The above example has four inputs.
The sequence in which they are enumerated is immaterial. I usu-
ally enumeraie them from the left to the right, and from the top to



BT2 Chapler 13: Induciive Reasoning

the bottom. The positive value is the output. Thus, eq{13.20) is a
matrix representation of eg(13.19). In inductive reasoning, such a
representation is called a mask, A mask denotes a dynamic relation-
ship between qualitative variables. In SAPS-II, masks are written
as either MATLAB or CTRL-C matrices. A mask has the same
namber of columns as the episodical behavior to which it should he
applied, and it has a certain number of rows. The number of rows
of the mask matrix is called the depth of the mask. The mask can
be used to flatten a dynamic relationship out into a static relation-
ship. We can shift the mask over the episodical behavior, pick out
the selected inputs and outputs, and write them together in one row,
Fig.13.7 illustrates this process.

R EEY

o

alz.2133] b i iy i o

:"1133%-‘ (3 2113
li‘1@%21= »|3131¢2

(@2 (@3 1| —p» @|2 1223

1213351 (12322

@11 21233 il 1211

Figure 13.7. Flattening dynamic relationships through masking

After the mask has been applied to the raw data, the formerly dy-
namic episodical behavior has become static, i.e., the relationships
are now contained within single rows. in EJLPS—]I this operation
can be performed using the [OMODEL function:

[ so=lJOMODEL raw, mask]

TOMODEL will translate the raw data matrix on the left side of
Fig.13.7 into the flattened data matrix on the right side of Fig.13.7.

We still haven't discussed how 6f is picked in practice. Experi-
ence has shown that the equality of eq(13.17) can be translated into
the following general rule: The mask should cover the largest time
constant that we wish to capture in our model. If the trajectory
behavior stems from measurement data, we should measure a Bode
diagram of the system that we wish to model. This allows us to
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determine the band width wap of the system. The largest time con-
stant (i.e., the settling time) of the system can be computed from
eq(13.21):

R (13.21)
Wi B

If our chosen mask depth is 3, the mask spans a time interval of 251,
thus:

-
it = (13.22)
The mask depth should be chosen as the ratio between the largest
and the smallest time constant that we wish to capture in our model,
but this ratic should not be larger than 3 or 4. Otherwise, the
inductive reasoner won't work very well since the computing effort

grows exponentially with the size of the mask.

13.4 Inductive Modeling and Optimal Masks

An inductive reasoning model is simply a set of masks that relate
the input variahles and previous values of the output variables to
the current values of the outputs. We shall usually forbid relations
between varions outputs at the current time, since if;

mit) = fils(t)) (13.23a)
wit) = falmit)} {13.234)

we have an-algebraic loop.

The question remains: How do we find the appropriate masks.
The answer to this question was already given. We need to find the
masks that, within the framework of the allowable masks, present
as with the most deterministic state transition matrix since this ma-
trix will optimize the predictiveness of our model. In SAPS-II, we
have introduced the concept of a mask condidale matriz. A mask
candidate matrix is an ensemble of all possible masks from which we
choose the best one by a mechanism of ezhaustive search. The mask
candidate matrix contains —1 elements where the mask has a poten-
tial mmput, it contains a +1 element, where the mask has its output,
and it contains 0 elements to denote forbidden connections. Thus,
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the mask candidate matrix for our previous five variable example
will be:

e B Ny W P W
=0l =] =l =) =3 =i
t = bt (—1 =1 =) = —1) (13.24)
t =B =) #1 0 B

The SAPS-II program segment:
[} oan = —-ﬂ.ﬁ'ﬂ.ﬂ'{h!h
[> mecan(d,3:5)=[1,0,0);

[> mazeomplm 5;
[ mask = OPTMASK({raw, mean, mazscompl)

determines the optimal mask from the set of candidate masks. raw
is the raw data matrix, and mean is the mask candidate matrix.
OPTMASK will go through all possible masks of complexity two, i.e.,
all masks with one input, and find the best. It will then proceed and
try all masks of complexity three, i.e., all masks with two inputs, and
find the best of those, etc. The third parameter mazcompl enables
us to limit the maximum complexity, i.e., the largest number of non-
gero elements that the mask may contain. This is a useful feature.
In all practical examples, the quality of the masks will first grow
with increasing complexity, then reach a maximum, and then decay
rapidly. Thus, by setting mazcompl, we can reduce the time that the
optimization takes. A goed value for mazcompl is usually five. In
order to disable this feature, marcompl can be set to zero.

How do we determine the quality of a mask? Let me explain the
process by means of a simple example. Let us assume that we have
found the following raw data matrix (episodical trajectory) of a three
variable system:

raw = [

e b e el B R R e e e B
e B B e g e e e
e L R B b b e B e

]

Mmukn‘il]ludtna.m state transition matrix. For ex-
ample, the mask:
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sk=[-1 -1 ©
B 0 +1 |

will lead to the following input foutput model:

g
n
~
i

B b b G B B B G e R

1
i
1
1
1
2
1
a
2
i

o B RS R b e b

The basic behaior of this input/output matrix is & lexical Esting of
all observed states together with their observation frequencies:

b= 1138 p=|0.2
111% 0.1
1131 0.1
134 [}
11 3 (1 B
- I | 0.1
231)] 01 ]

In SAPS-IL, the basic behavior can be computed nsing the statement:

[> [bp]= BEFAVIOR(io)

This gives rise to the following state transition matrix:

“h!.-ilhl o g1 la_‘i 4"

“1* .00 0.66T 0333 0.00D

o F 0,333 0.000 0000 0.68T
0000 0000 10000 0.000
0.500 0.500 0.000 0.000

a1
v -

which shows on the left side the combined values of the two inputs,
on the top row the values of the output, and in the table itself, the
conditional probabilities. In out example, the two inputs are binary
variables, whereas the single output has four levels. In addition, we
need the absolute probabilities (observation frequencies) of the input
states. For our example, the following values are found:
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inpul  prob

‘11" 03
i 0.3
b 4 g 0.2
- 0.2

In SAPS-II, the state transition matrix and the input probability
vector can be computed using the statement:

[> [otyip] = STMATRIX io,2)

where the second input argument denotes the number of input vari-
ables of the input /output matrix. In our example, the input/output
matrix contains two inputs and one output.

Now, we can compute the Shannon entropy [13.10] of the state
transition matrix which is a measure of the information content of
the state transition matrix. The Shannon entropy is computed with

the following formula:

HM = - Z.Hi.. ='W} 3 iplout = j'ling = ¥} - legalplout = ‘§'linp = 1))
- - {13.35)
In our example:
~HM = 0.3 - [0.687 - bogy (0.867) + 0.333 - log,(0.333)]
+ 0.3 [0.667 - bog, (0.667) + 0.333 - logy(0.333)]
+0.2:[1.0 - log,(1.0)]
+0.2:[0.5 - log,(0.5) + 0.5 - bog,(0.5)]

= =0.2376 = 0.2T6 + 0.0 = 0.2
= —0.T§

and thus:
HM =0.75

The state transition matrix is completely deterministic if it contains
one +1 element in every row, while all other elements are 0. In that

case, the Shannon entropy is:

HMuin = 0.0

The worst case occurs if all outcomes are equally probably, i.e., if
the state transition matrix contains only elements of the same mag-
nitude, in our case: 0.25 (since the output has four levels). For this
case, we find the following Shannon entropy:
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AMG s =10

The maximum entropy depends on the number of rows and columns
of the state transition matrix. We can introduce an uncertainty
reduction measure which is defined as follows:

HM
HMnas

In SAPS-II, the Shannon entropy and the uncertainty reduction
measure of a state transition matrix can be determined using the

statement:

FR=1.0-= {13.28)

(> [HM,HR]= ENTROPY|st,ip)

HR can be used as a guality measure. In the worst case, HR is equal
to 0.0, while in the best case, HR is equal to 1.0.

However, a problem remains with this approach. If we increase
the complexity of the mask, we find that the state transition matrix
becomes more and more deterministic. With growing mask com-
plexity, more and more possible input states |combinations of levels
of the various input variables) exist. Since the total number of ob-
servations n,,, remains constant, the observation frequencies of the
ohserved states will become smaller and smaller. Very soon, we shall
be confronted with the situation where every state that has ever been
observed has been observed precisely once. This leads obviously to
a completely deterministic state transition matrix. Yet, the predic-
tiveness of the model may still be very poor, since already the next
predicted state has probably never hefore been observed, and that
will be the end of our forecasting. Therefore, we must include this
consideration in our guality measure.

I had mentioned earlier that, from a statistical point of view, we
would like o make sure that every state is observed at least five
times [13.7]. Therefore, we introduce an observation ratio [13.8):

_Somex 4 mux +3-mae + 2 max Ay {13.27)
6 - Mgy

OR

where:

Mgy = number of legal inpat statea

e = namber of inpot states observed only once

3w = numnber of inpot states observed twice

ny. = number of inpuot states observed thrice

figw = number of input states observed four times

fisw = number of inpat states observed five times or more
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If every legal input state has been observed at least five times, OR
is equal to 1.0. If no input state has been observed at all (no data),

OR is equal to 0.0. Thus, also OR qualifies for a quality measure.

We define the quality of @ mask as the product of its uncertainty
reduction measure and its observation ratio:

Q@=HE-OR (13.28)

The opttmal mask is the mask with the largest ' value.

The OPTMASK function can be used to compute all these quan-
tities. The full syntax of this function is as follows:

[ [mosk, HM, HR,Q mbis] = OPTM AS K{raw, mean, mageomnpl)

mask is the optimal mask found in the optimization. HM is a row
vector that contains the Shannon entropies of the best masks for
every considered complexity. HR is a row vector that contains the
corresponding uncertainty reduction measures. (} is a row vector
which contains the corresponding quality measures, and mhis is the
mask history matrix. The mask history matrix contains, concate-
nated to each other from the right, the best masks at each of the
considered complexities. One of these masks is the optimal mask
which, for reasons of convenience, is also returned separately.

Until now, we haven't used our fuzzy membership functions vet.
Remember that the fuzzy membership associated with the value of
a qualitative variable is a measure of confidence. It specifies how
confident we are that the assigned value is correct. If we compute
the input /output matrix, we can assign a confidence to each row.
The confidence of & row of the input/output matrix is the joimi
membership of all the variahles which are associated with that row
[13.8].

Let me demonstrate the concept by means of our simple three vari-
able example. Assume that the following fuzzy membership matrix
accompanies our raw data matrix:
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Memb=| 0.61 1.00 0.8%
0.73 0.77 0.98
0.73 0.88 1.00
0.51 0.91 1.00
0.55 0.92 0.92
0.71 0.77 0.7
0.63 0.91 0.89
0.8 0.83 0.83
07T 08T 0.70
0.78 0.93 0.75
] 040 0.81 1.00 )

row = |

[ I K e e e
L
e e e B B B B b e B

The joint membership of i membership functions is defined as the
smallest individual membership:

Membyoins = [ Memb, = inf(Memb: )= min(Memb)  (13.20)
i

SAPS-II's FIOMODEL function computes the input /output matrix
together with the confidence vector:

> [io,conf] = FIOMODEL{raw, mask)

Applied to our raw data matrix and using the same mask as before:

mask = =1 —1 1]
a 0 41|

we find:

conf m [ 0.8
0.73
0.73
0.51
0.55
0.60
0.83
0.7
0.75
] 0.78 ]

i mm [

e e e e =
[ S S T
e = o b e Rl e 2

The conf vector indicates how much confidence we have in the indi-
vidual rows of our input/output matrix. We can now compute the
basic behavior of the input/output model. Rather than counting
the observation frequencies, we shall accumulate the confidences. If
a state has been observed more than once, we gain more and more
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confidence in it. Thus, we sum up the individual confidences. In
SAPS-II, this can be achieved using the statement:

[ [be¢] = FBEHAVIQR{io,conf)

Applied to our simple example, we find:

d=[ 113 cm= [ L6
3 0.73
1 0.78
4 1.561
E ] 1.24
1 0.70
2

1 0.69 |

[
Bl Bl = B B e e

Notice that the ¢ vector is no longer a probability. The ¢; elements
no longer add up to L.0.

This leads now to a modified state transition matrix. The SAPS-II
staterment:

[» [st,ie] = FSTMATRIX{is,conf,3)

produces the following results:

n\-i |]I -11- J.’l I‘F
‘1’ 000 106 0.73 0,00
13 075 000 000 1.51
e 000 000 1.2% D00
13" 070 069 0.00 0.0

which shows on the left side the combined values of the two inputs,
in the top row the values of the output, and in the table itself, the
confidence values. The fotal inpul confidence vector is:

input  comf
b b Iy .19
13 .24
" 124
' 138

The total input confidences are computed by summing up the indi-
vidual confidences of all occurrences of the same input in the basic
behavior. Notice that in all these computations, the actual qualita-
tive variables are exactly the same as before, only their assessment
has changed. The previously used probabiily measure has been re-
placed by a fursy measure.
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The optimal mask analysis can use the fozzy measure as well. The
statement:

[» [mask, HM, HR. 3, mhis] = FOPTM ASK|row, M emb, mean, mazeompl)

uses the fuzzy measure to evaluate the optimal masks. In order to
be able to still use the Shannon entropy, we normalize the row sums
of the state transition matrices to 1.0. It can happen that FOPT-
MASK picks another mask as its optimal mask than the previously
used OPTMASK routine, Since we use more information about the
real system, we shall obtain a higher mask quality in most cases.
Notice that the concept of applying the Shannon entropy to a confi-
dence measure is somewhat dubious on theoretical grounds since the
Shannon entropy was derived in the context of probabilistic mea-
sures only. For this reason, some scientists prefer to replace the
Shannon entropy by other types of performance indices [13.6,13.9)
which have been derived in the context of the particular measure
chosen. However, from a practical point of view, numerons simula-
tion experiments performed by my students and me have shown the
Shannon entropy to also work satisfactorily in this context.

13.5 Forecasting Behavior

Omnee we have determined the optimal mask, we can compute the
input/output model resulting from applying the optimal mask to the
raw data, and we can compute the corresponding state transition
matrix. Mow, we are ready to forecast the future behavior of our
system, iL.e., we are ready to perform a qualitative simulation.

Forecasting is a straightforward procedure. We simply loop over
input states in owr mput/output model, and forecast new output
states by reading out from the state transition matrix the most prob-
able output given the current input. Let me explain this procedure
by means of the previously used example. Given the raw data ma-
trix:
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I'ﬂll'-[

Wl e b el Bl e R e e e e
=l P B S e e D
O R R

]

which is assuamed to consist of two input variables and one cutput
variable. The future inputs over the next four steps are:

inpm| 11
11
113
21]

and we wish to forecast the output vector over the same four steps.
Let me assume furthermore that the optimal mask is the one used
earlier:

mask=[-1 -1 o
G 0 1]

For this case, we have already computed the input/output model
and the state transition matrix. After the input/output model has
been computed, the mask covers the final two rows of the raw data
matrix. In order to predict the next output, we simply shift the
mask one row further down. The next input set is thus: ‘2 1.
From the state transition matrix, we find that this input leads in
all cases to the output ‘3. Thus, we copy ‘3" into the data matrix
at the place-of the next ountput. We then shift the mask one row
further down. At this time, the mask reads the input set ‘l 1.
From the state transition matrix, we find that the most probable
output is “2*, but its probability is only 66.7%. We continue in the
same manner. The next input set is again ‘1 1'. Since this input
set is assumed to be statistically independent of the previous one (an
unreasonable but commonly made assumption ), the joint probability
is the product of the previous cumulative probability with the newly
found probability, thus p = 2.1 = 1 = 44.4%. The next input set is
22", For this case, we find that the outcomes ‘1" and “2" are equally
likely (50% ). Thus, we pick arbitrarily one of those. The cumulative
output probability has meanwhile decreased to 22.2%.
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This is exactly how, in SAPS-II. the FORECAST routine predicts
future states of & recoded system.

[ [fi.p] = FORECAST(fl, mask, nrec, minprob)

forecasts the future behavior of a given system f1 where f1 contains
the raw data model concatenated from below with the future inputs
filled from the right with arbitrary zero values, thus:

[ 1 =[rowing, 2 ROW | nstp, nouwt)]

where nstp denotes the number of steps to he forecast, and nout
denotes the number of output variables in the raw data model. mask
is the optimal mask to be used in the forecasting, nrec denotes the
number of recorded past data values, i.e., nree tells the forecasting
routine how many of the rows of /1 belong to the past, and how many
belong to the future, and minprob instructs SAPS to terminate the
forecasting process if the cumulative probability decreases below a
given value. This feature can be disabled by setting minprob to zero.

Upon return, f2 contains the same information as f1 but aug-
mented by the forecast outputs, i.e., some or all of the ZROW values
have heen replaced by forecasts. p is a column vector containing the
cummulative probabilities. Of course, up to row nrec, the probabilities
are all 1.0 since these rows contain past, i.e. factual, information.

I, during the forecasting process, an Input state is encountered
which has never before been recorded, the forecasting process comes
to a halt. It is then the user's responsibility to either collect more
data, reduce the number of levels, or pick an arbitrary output and
continue with the forecasting.

How can we make use of the fuzzy memberships in the forecast-
ing process? The procedure is very similar to our previous approach.
However, in this case, we don't pick the output with the highest con-
fidence. Instead, we compare the membership and side functions of
the new input with the membership and side functions of all previous
recordings of the same input, and pick as the output the one that
belongs to the previously recorded input with the most similar mem-
bership [13.8]. For this purpose, we compute & cheap approximation
of the regenerated continuous signal:

d = 1 + side = {1 — Memb) {13.30)

for every input variable of the new input set, and store the regener-
ated d; values in a vector. We then repeat this reconstruction for all
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previous recordings of the same input set. We finally compute the
L.-norms of the difference between the d vector of the new input
and the d vectors of all previous recordings of the same input, and
pick the one with the smallest Ly-norm. Its output and side val-
ues are then used as forecasts for the ouiput and side values of the
current state. We proceed a little differently with the membership
vahes. Here, we take the five previous recordings with the smallest
Ly—norms, and compute a distance weighted average as the forecast
for the fuzzy membership values of the current state.

In SAPS-II, this is accomplished by use of the function:

[ [f2, Memb2, sidel] = FFORECAST( {1, Membl, sidel, mask. nrec)

The fuzzy forecasting function will usually give us a more accurate
forecast than the probabilistic forecasting function. Also, if we use
fuzzy forecasting, we can retrieve pseudo—continnous ontput signals
with a relatively high quality nsing the REGENERATE function.

13.8 A Linear System — An Example

Let us once more analyze the same example that we discussed in

Chapter 12:
0 1 o o
=( I 1]~l+(ﬂ) 'y (13.31a)
il il 1

0 D
u) “E+ [u) 8 {13.31B)
1 0

This time, we shall use fixed values for the parameters, and we shall
use the entire state vector as output. Fig.13.8 shows the three Bode
diagrams of this multivariahle system superposed onto & single graph.
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— Bode Dtagrams of L.II:LEH.I‘ Ejrstem

Magnitude [40)]

Fhase [degrees]

1g®
Frequency [rad/sec]

Figure 13.8. Bode diagrams of linear system

In this example, [ computed the Bode diagrams directly in CTRL-
C. However, for any stable physical system, we can measure the
Bode diagram. thus, this does not compromise the generality of the
-lpph'l-ldl. We see that the band width of this system is wyys =
1 see™!. Thereifore, the settling time is {, = 6 sec. We wish to
use a mask with a depth of three, and therefore, the communication
interval should be §f == 3 see.

In order to exert all frequencies of this system in an optimal man-
ner, we shall simmlate this system (directly in CTRL-C or MATLAB)
applying a kinary random sequence as the input signal [13.1]. We
decided to recode each of the output states into three levels (the in-
put is already binary), and therefore, the number of legal states can
be computed as:

ngg=[hi=2-3.3.3=54 (13.32)
L]

and therefore, the required number of recordings is
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Bege = b- q'l'-l’ = Em {1:-33]

Let us simulate the sysiem over 300 communication intervals. This
is accomplished as follows:

[> twm0:3:900

[ == ROUNIDNRAND{t));
[> =0=ZROW(3 1)

[» SIMU('i'.=20);

[ p=SIMUia,b e dw, i)

Fig.13.9 shows the results of the continuouns—time sinmlation.

I

5

Continuous Simulation of Linear System

. 200, AE. 400, 300, ooa. TG, 1M o .
Time [sec)]

Figure 13.9. Continuous—time simulation of linear system

Notice that we use the continuous—time simulation here as we could
have used a digital oscilloscope. We shall not make any use of the
fact that we know the structure of our system.

We shall use our optimal recoding algorithm to discretize our three

output variables:
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[= DO sapesaps
[> meas=[s"3"];
[= m=mess
[» FORi=2:4,...
[indz, mi] = SORT | meas(id));...
m{:,ﬂ = 'I'H-'ii-- .
END
[ LM =mil,:)
[ EM =[LM;0.5=(m{100,:)+ m(101,:])];
[ LM =[LM;:0.5{m{200,:) + m{201, :}}];
[ LM =[LM;mi{idd,:);
[} TOEW = MEds;
[ t=1:3
[ FORi=1:4,...
Srom s [LM(Y :3,4), LM{3 4,005
r = RECOD E{measi:, i), domain’, frem, ta); ...,
rq.-'{:,i} L .
END

The above code segment sorts each trajectory (colomn) vector sepa-
rately, then subdivides the sorted vector into three segments of equal
size to determine the optimal landmark values ( LM ). Thereafter, the
measurement data are recoded separately for each trajectory. At the
end of the code segment, raw contains the recoded raw data matrix.

We are now ready to search for the optimal masks. We operate
on three separate mask candidate matrices, one for each of the three
outputs. We shall compute the quality vector and the mask history
matrix since it turns out that we shall put also the suboptimal masks
to good use. We shall keep the three best masks and sort them in
order of decreasing quality. The following code segment shows the
optimal mask analysis for the first output. The other two masks are
computed accordingly. Notice that we shall use the first 270 rows of
the raw data matrix only.

[= rrow=rowl:3IT0:);

[> moen =—ONES{E, 4);

[» mecani3, 2:4)=[1,0,0}

[z [mask, ke, be,gl, mbisl] = OPTM ASK{rrow, meon, 5);
[> inds = SORT{q1):

[> mile=mbisl(: 4 (indz(1)} =1)+1:4»inds(1));

[ milb=mhisl(: 4 (indz{2) = 1)+ 1 : 4 » ind=(2));

[:J- mlg-mﬁl“:,lililﬁ{l}—l:l-q-l 14 e enae{3});

[ mi = [mla, mibmic)
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At the end of this code segment, ml contains the three best masks
concatenated to each other from the right.

We are now ready to forecast. During the forecasting process, it
will happen from time to time that an input state is encountered
which has never hefore been recorded. In this case, the forecasting
routine will come to & halt and leave it up to the nser what to do
next. We decided to try the following strategy: since the input state
depends on the masks, we simply repeat the forecasting step with the
next best mask hoping that the problem goes away. If this doesn't
help, we try the third mask. This is the reason why [ saved the
suboptimal masks.

I coded the forecasting in a separate routine called FRC which is
ealled from the main procedure as follows:

[» DEFF jre
[> inpt=rowiT]:300,1)
[> pred = FRO(rraw, inpt, mi, ml, mi);

At this point, it should have become clear why I simulated over 300

steps although I needed only 270 recordings. The final 30 steps of
the continuous—time simulation will be used to validate the forecast.

The FRC routine operates in the following way: We loop over the
30 steps of the forecast. In each step, we call the SAP5-II routine
FORECAST three times, once with each of the three optimal masks
to forecast one value only. At the end of the step, we concalenate
the new row (forecast) to the raw data from below, and repeat. If
FORECAST isn't able to prediet a value sinee the input state has
never been-aeen before, it returns the raw data unchanged, i.e., the
mumber of rows upon output is the same as upon input. In that case,
we repeat the FORECAST with the next best mask. If none of the
three best masks is able to predict the next step, we pick a value at
random. The following code segment shows how FRC works:
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{[freat] = FRC(raw, inpt, ml, m2, m3);
mlammif:]:4); mibm mi[:,5:8) mle=ml(:0:12);
mia=mdi:;1l:4); mib=md:0;:8; mic=md:0:12);
mia =mi:;1:4); mI=mI:5:8); m¥c=md(50:12)
[row, col] = 552 E(raw);
[m,m] = SIZE{inpt);
FORim1:m,...
tn = mptil...
fe = [in, ZROW(1,3));...
fec = [r; fe;...
I = FORECAST fee, mla, row + i — 1,0;...
[rfef] = STZEB(F1);...
IFrf <> vew + tyaua
I = FORECASTY foc, malb, roaw + i — 1,0);...
[Flef]l = SIZE(ff1);...
IF 7f <3 row + by
If1= FORECAST fee, mle,row 41 = 1,0);...
[riief) = SEEB{ff1);...
IFrf <o rowti,...
Ffl = [ffL; ROUNDNRAND{L,4))];. ..
END,...
END.,...
END,...
M
...J,:::l.nrﬂﬁfw Ji2 and ff3
£ =[in, f flirow +4,2), f {2 row + 4, 3), £ f3{row + i, 4)};...
rofrif fien.
END
frest=r;
RETURN

I then compared the data from the simmlation with the forecast data:
[* simdate=rew(3T]:300,:);

[ fredat = pred(271: 300,:);
[ error = simdai = frodat;

and these are the data that I found:
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It ean be seen that the thirty data rows do not contain even a single

error. The ferecasting procedure worked beautifully.

It is very easy to replace the RECODE, OPTMASK, and FORE-
CAST functions by their fuzzy counterparts. Also in this case, the

forecasting works without a single error. However, now we can use

routine REGENERATE to obtain a forecast also of the continuous—

time signals. Fig.13.10 displays the true signals with the regenerated

ones superimposed.
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Comparison of Simulated and Feoreocast Behavier

Blo. 3. Bla. L1 L1 Bag. 0. A0, R0, @00,

e e a0,
Time [sec]

Figure 13.10. True and regenerated continuous—time signals

The solid lines represent the results from the continuous simulation.
They look discontinuous because of the large communication interval
of 3 sec used in the simulation. CTRL-C's (MATLAR"s) plot rou-
tine uses linear interpolation between communication points. The
dashed lines are the pseudo—continuous signals that were regener-
ated from the forecast using the fuzzy membership functions. If you
are interested in how Fig.13.10 was produced, solve hw{13.1).

Since this example gave us sensational results, let us check whether
we can capitalize on this idea.

13.T Gambling the Stock Market

Fig.13.11 shows the end of day prices of a stock of a particular com-
pany recorded over a period of 775 days.
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Stock Ma rl::et

Price at End of Day

Figure 13.11. End of day prices of a company

These are real data. The name of the company is unimportant,
especially since the company obviously didn't fare too well over these
two years,

We notice immediately a first problem with these data. Even if the
data would follow a straight decreasing line, SAPS would have prob-
lems predicting anything since each new value is “new” (has never
occurred hefore). Before we can apply SAPS to these data, it is im-
portant that we manipulate the data in such a way that they become
stationary, yet such that the original data can be reconstructed at
any time. This process is called defrending of the data.

Many algorithms exist for the detrending of data. In some cases,
we may decide to compute an informal dertvative:

e = Tp — Th-y (13.32)

which, in SAPS-II, can be computed using the function:
[» 9=DIFF{=1)

In the world of finances, it is more common to compute the daily
return which is defined as:

ot Sl i (13.33)
PFra=-1

The return on day k is defined as the end—of-day price at day k minus
the end-of-day price at day k — 1 divided by the end-of-day price
at day k —1. SAPS-II doesn't provide for a function to compute the
daily return directly, but it is a trivial task to define such a function:

rely =
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/] ly) = RETRN(z)
[n,m] = SIZE(z)
FORi=1:m,...
plii)= DIFF(z,1) / &1 i n = 1,4)
END
RETURN

Fig.13.12 shows the daily return for the same company:

_ Stqck Market

8.0 108, 200, 3200 420, 0. 000, 7oe. @ed.

'It'i.u:n [days]

Figure 158.12. Daily return of a company

The data is now clearly detrended. [t looks pretty much like a noise
signal. Since we have nothing better to go by, let us try to predict
future values of refurn from earlier values of return, i.e., we use a

All we are interested in is whether the value of the stock will
increase or decrease. Thus, we use our optimal recoding algorithm
to recode the daily return data into the three levels ‘up’, “stationary’,
and ‘down’, such that each of these levels is recorded equally often.
In SAPS-II, we shall represent ‘down’ as ‘1°, ‘stationary’ as ‘2", and
‘oap’ as ‘3". A natural gambling strategy would then be to sell stock
when the indicator is ‘down’, to buy stock when it is ‘up’, and to do
nothing when it is ‘stationary’.

I decided on a mask depth of 10, I performed an optimal mask
analysis using the first 500 data points (just like in the last section),
and I tried to forecast the next 200 values. Then I computed the
errar by subtracting the forecast values from the true values, and [
computed a bar chart of the errors which is shown in Fig.13.13.
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Error Bar Charts

Percentage

i 2 S L 8
SAPE-1I

Figure 13.13. Bar chart of the SAPS-II forecasting error

CTRL-C's bar chart routine doesn't place correct labels on the x-
axis. The values shown can be interpreted as:

z_value = true.value — forecasi value + 3

Thus, & value of ‘3" indicates that the forecast was correct, a value of
‘1" indicates that the true value had been ‘down’ while the predicted
valne had been ‘up’, ete. Obviously, SAPS predicts the correct value
in roughly 33% of all cases — which is not overly impressive taking
into account that we operate with three levels.

To prove my point, I performed the following experiment. Instead
of using an optimal mask analysis for forecasting, | simply picked, at
random, a number between ‘1" and ‘3", and called this my forecast.
The error bar chart for this case is shown in Fig.13.14.

E'rrur Bar Charts

!Esgggﬁ

Blind (Randam) Selection

Figure 13.14. Bar chart of the blind forecasting error
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Clearly, the forecasting power of SAPS was nil in this case. SAPS
performed about as well as the blind algorithm, i.e., we simply coded
A very expensive random numther generator. Sinee the sample size
chosen was fairly small (200 samples), a large variability remains in
the data, and the theoretical values of 33% correct answers, 22%
answers off by one in either direction, and 11% answers of by two in
either direction are not reflected accurately by our limited statistical
eXperiment.

Can anything be done at all? Let us first look at the most obvious
forecasting strategy: the retumn tomorrow will be the same as today.
Fig.13.15 shows the error bar chart for this case.

Error Bar Charts

Fercentage
-n-l-ll.n-u.-l-:-f.l

g ]

* ale.
1SNNRNS
.'!.Lnla as llI..l.ll't- :D:.]r

Figure 13.15. Bar chart of the persistent forecasting error

Again, the resulis are similar, that is, little positive correlation exists
within the data. Let us therefore try a more refined technique: linear
regression. | postulate that the return at day k can be predicted from
a weighted sum of the returns of the previous 10 days, Le.:

1
DI - (13.34)
i=1

If we apply eq(13.34) to a number of days, ¢.g. one month, and write
all the resulting equations below each other, we obtain:
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Fy-1 Th-3 Ip—a ... Th=11 oy
Fh-1 Eh—t Eh—d -+- Ti=13 az
: ] -] g 2 (13.35)
ZTp_an Thedl Th-33- 20 Th-an tn
That is
i Th-3 Thag -ox Ty ” Ty
5] Th-§ Th=d o0 Tyl Ty-1
= . f f . : : (13.38)
dyg Bhedl Th=83 ::: Th—ap Fk—30

The matrix to be “inverted” is a so—called Hankel matrix (a matrix
which is comstant along its anti-diagonals), and the inverse is, in
fact, a psendo-inverse since the matrix is rectangular, By using
the pseudo-inverse of the Hankel matrix in eq(13.36), we solve the
overdetermined linear equation system in a least square's sense. This
is called the linear regression problem. CTRL-C's (or MATLABs)
'\.'npuﬂnrmhnudhﬁurmhhth-lhurnpuﬁmpmhlm
The following CTRL-C code forecasts the return of days 501 to 700
on the basis of the available data. We recompute a new regression
vector a for every new day on the basis of the previous month of
measured data. The regression vector is then used to predict the
actual (continuous ) return for the next day only. The following code
segment implements this algorithm:

[> pdata = data
[» =FOR{=501:T00,...
roomadatafi —3:—1:4=48),..
m = [r{1:30), r{2:31), (3:32), #{4:33), r(5:34), . ..
F{6:35), r(T:38), #{B:37), r{9:28), ~( 10:39)]; ...
womdntafi —1:=114=30);...
o =mle;, .,
pdata(i) = data(i — 1 : =114 = 10) s a;,..
END

I then used my optimal recoding algorithm to recode the predicted
data into three levels, and compared the recoded prediction with the
true data. Fig.13.16 shows the resulting error bar chart for this case:
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E_rrnr Bar Charts
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Linear Regression
Figure 13.18. Bar chart of the regression forecasting error

Obviously, the regression algorithm didn’t fare much better. How-
ever, we have a number of parameters that can be varied: (i) the
length of the regression vector, in our case 10, (ii) the number of
tﬂmﬁmwmﬂ:,inmuﬂlﬂ,ud[iii}th:ﬁ'qm;
of recomputing the regression vector, in our case 1 day. The perfor-
mance of the regression algorithm depends somewhat on the selection
of these three parameters. I optimized these parameters and soon
discovered that the best results are obtained when a square Hankel

matrix is used, and when the regression vector is recomputed every
day. The resnlts for a 2 x 2 Hankel matrix are shown in Fig.13.17.

Ef:-nr Bar Charts

|

Jaf
1§ E N
L 2 2 - -]
Unesar Regression Optimized
Figure 13.17. Bar chart of optimised regression forecasting error

Perceatage

This time, we had some success. We now predict roughly 40% of
the values correctly in comparison with 33% from before. Somewhat
promising results were obtained for Hankel matrices of sizes 2 x 2 up
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to T x 7. For larger Hankel matrices, the predictive power is again
reduced to noise level. The best results were found for the 2 x 2 case.
This proves that the system exhibits at least some eigendvnamics
which can be captured and exploited, but the results are not very
impressive,

Why did SAPS perform so poorly in this case? Two major rea-
mmtnhtmﬂnnbd.mﬂntpmhluni:th:&ﬂnﬁng:E?ﬂr
system's behavior is dictated by two components: (i) its eigendy-
namics, and (ii) its inputs. This is true also for the stock market.
Unfortunately, we have not eaptured the effects of the inputs at all.
All our models were simple data filters that tried to predict future
nluuufretm&mpnﬂm:nhuufrﬁmﬂhﬁ:mlr.thﬁnﬂn—
ence of external events on the stock market is formidahle. However,
we weren't able to capture those since we have no clear indieator as
to what these inputs are. Since very little positive correlation exists
between neighboring data points, it is insufficient to estimate these
inputs indirectly by measuring their effects on the stock market. We
mhﬂj‘ﬂnﬂdu{d&mwﬂﬂlﬂimlwﬂﬁ,nt
this point in time, we even don't know how to characterize. The
second problem is the following: SAPS requires lots of data points
to come up with a decent optimal mask. Since we didn't capture the
hﬂﬂmﬂy:miudthe:ﬂmhtmhlmﬂmhdmnf
thnu.thurlt-nmm:lmpmmtuﬂr.%uuntnhrmﬁﬂn
past data points (i.e. L.5 years worth of data) to generate a model
uinut]ubuh“iurufthtiﬂtmuﬂpiﬁnudﬂum;hthldaﬂy
return data, changes so quickly. This is what really broke our neck
hlhmﬂﬁﬁ?!.ﬁ-mmwm&w
on & few days of data only, whereas SAPS needed 1.5 years worth
of data in order to come up with a model. The regression model will
nutmkﬂthuifﬂumdtha:iuurtheﬂulﬂmtﬁ:,mﬂ'n
don't recompute the regression vectar in regular intervals.

I am quite convinced that SAPS could work. The dominant time
constant of the stock market is in the order of one day, thus the
sampling rate is quite appropriate. We don't really need to rely
on interday data in order to predict the stock market, Secondly, I
am convinced that the behavior of the stock market is not as time—
varying as it appears to be. This is only the case becanse we haven't
dﬂuminudyetrhlnh:utanﬂ:hlnmun.‘iﬂlhth:pnpudmiu
of inputs and state variables, SAPS could clearly outperform the
regression model. The need to rely on so much past data shouldn't
henprublqnifﬂmlblemn;duuthzlppumtthmﬁtpmqu
of the system. This is clearly a worthwhile research topic.
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Th:uuufnndunmlmblt}pmhlmhthefuﬂnﬁn‘: We shall never
be able to predict the stock market far into the future since the
influence of external inputs is at least half of the game. In order to
retain the observed {mild) success with the regression model, we were
able to predict only one day ahead. The probabilities of correctness
of any longer predictions rapidly decay to the noise level of 33%.
Within a short time span, however, the market price of an individual
stock will not grow very mmeh. Due to the commission that we have
to pay in order to buy stock, we can't really exploit the system unless
we are able to operate on a very large scale (since the commission
to be paid depends on the trade volume). Thus, even with the
best model in the world, small savers like you and me will have
to rely on professional investors if our “gambling” should turn into
an investment and not merely be a gamble.

13.8 Structure Characterization

W:hﬁmﬁummmdwtwmkmmmm
ﬂdemﬁthﬁﬂlnmmdunihmm:fa:pum
Yﬂ,ﬂmthemﬁhdﬂwrdiumuﬂhmni"mhdpunihh
muhﬁumnmﬂ'mukmnﬁdnﬂ,lhi-uu:hwﬂlhmmpm-
hihiﬂﬂlrupeldnlfﬂmnhhhtmnfmﬂ:mﬂﬁnmtmhrﬂ.
Erpﬂimﬂhu:humthltth:mmhunfvminhlﬂlmquuch
the optimal mask is to be found should not be much larger than five,
and that the mask depth should usually be limited to three or four.
This can pose a severe limitation of the technique since we are often
confronted with systems with large numbers of candidate variables
among whith we should choose an appropriate subset for the opti-
mal mask analysis. Thmkmuhtmmthhpmﬁunﬂrj
well. What are adequate inputs, and which are appropriate state
variables? The choices are manifold.

Inthhuﬂiun,ﬂlhu]]:hdrthpmhlu:nufmuﬁn;mhhm
of variables for optimal mask analyses. We call this the structure
characterization problem. Contrary to Chapter 11 where structure
:hrunrintimhldbmdnﬂmdulhtpmmtnfﬂmﬁfﬂn;l
particular function that relates one or several inputs to one or several
outputs, we shall now define the structure characterizgation as the
process of determining which variables are related to which other
variables in a multivariable system.
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This problem is more closely related to what we called cousality
in Chapter 11, and the classical statistical technigue to decide this
question is correlation analysis. If a strong (positive or negative |
correlation exists hetween two variables, they belong to the same
subsystem, i.e., they are causally related to each other. However, a
problem remains with this concept. Let us assume that we measure
two variables a and b which are related to each other through the

equation:
a=f

Obviously, these variables have the largest positive correlation pos-
sible. Yet, we should not select both a and b for our optimal mask
analysis since once we selected one of these variables the other does
not add any additional information to our analysis. It is redundant,

In this section, we shall introduce a new technique called recon-
struction analysis which can be used as an alternative to the pre-
viously introduced correlation analysis. However, while correlation
analysis works well on continuous signals, reconstruction analysis has
been devised to operate on recoded, ie. discrete, signals.

SAPS-II distinguishes between three different types of structure
representation. A cauwsal structure lists the variables that form the
subsystems as a row vector whereby subsequent subsystems are sep-
arated by a zero. Below this row vector, masks are coded that show
the causal relation between the variables of the subsystems. For
example, the structure shown in Fig.13.18:
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Figure 13.18. A causal structure
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As indicated in the first row, one subsystem consists of the variables
1, 4, and 6, The mask written underneath this structure shows that
variable 1 is an input (negative entry in the mask), while variables
4 and § are two outputs (positive entries in the mask).

By eliminating the masks from the causal structure, we obtain
a composile structure. Obviously, the composite structure contains
is lost, and also the timing information is gone. In SAPS-II, the
compaosite structure is represented by the first row of the causzal
structure:

itr=[ 148602345605 48T7]

which can stand for the structure shown in Fig.13.19a:

Figure 13.18a. Possible representation of & composite strncture

but which can also represent the guite different structure shown in
Fig.13.19b:

%

] » oy

Figure 13.10b. Another representation of the same composite structare

It can be easily verified that both systems contain the same three
subsystems, and are thus identified by the same composite structure,
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The compaosite structure no longer contains information about which
variables are inputs and which are outputs.

The third structure representation available in SAPS-II is the bi-
nary structure, A binary structure is an ordered list of all binary
relations between variables belonging to the same subsystem. The
SAPS-II fanction:

[> isth= BINARY (istr)

generates the binary structure out of the composite structure. For
our example, the resulting binary structure is:

wib=[ 1

L - A U R T R e
= =l O P B o R e MO

]

The binary structure can be easily obtained from the composite
structure by drawing imaginary lines between any two variables of
each subsystem, writing down the variable names (numbers) at the
two ends of each such line as a pair, sorting all these pairs alphabet-
ically, and eliminating all the redundant pairs.

Again, the binary structure contains less information than the
composite structure it represents. For example, the system shown in
Fig.13.20:

i ]
ss1 ss4
% K | w | 588 f[—

] |

Figure 13.20. Another realization of the same binary siructure
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with the composite structure:

im-{liﬂ-ﬂilliﬂ!-ﬁ?ﬂiﬂi]

possesses the same hinary structure as our previous system, although
it contains an additional subsystem (554), and thus & different com-
posite structure.

In SAPS-II, the command:
[> istr = COMPOSE(isth)

produces the minimal composite structure among all possible com-
posite structures representable by the same binary structure, i.e., it
produces the composite structure with the smallest number of sub-
systems.

Similar to the optimal mask analysis, we wish to perform an opis-
mal structure analysis which we shall present with a set of candidate
structures out of which the qualitatively best structure is selected,
This means that we need to come up with a quality measure for
structures. This measure is hased on the composite structure,

Given the behawvior model of a set of raw [recoded) data:

[> [bp] = BEBAVIOR(raw)

Nutiuthtthhhﬁmmﬂdﬂbﬂﬂiﬂlphkﬂﬂ?hd;enfwhiﬁh
variahles are inputs and which are outputs. In the past, we always
applied the BEHAVIOR function to input/output models, but this
is not necessary. If we exfract a particular subsystem from the be-
hnﬁnrmndil.uﬂmﬂrlhm-thuu:dummwhid:uprumt
variables that are not included in the subsystem, we then merge
rows which have become undistinguishable, add up their probahbili-
tl&i[ﬂtmnﬁdenm},udmtthurunhin!hhﬁmmdﬂnphin
alphabetical order, In SAPS-II, this can be accomplished using the
function:

[> [b2.p2] = EXTRACT(b, pl,istr)

where isir is a primitive composite structure, i.e., a composite strue-
ture which contains one subsystem only.

Given the behavior model:
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b=[ 000 p=[ 0.2
00 ] 0.1
a132 0.1
100 0.2
111 .1
1113] 0.3 ]

We can extract the first two variables using the command:
[> [b12,p12] = EXTRACTV(b,p.[1,2])
which results in the behavior model:

2=[ 00 pli=[ 0.3
01 [N
10 0.2
11] 0.4 |

Wammmﬁvdymth:m&udthi:druhhhmhgthe
comumand:

[> [+23,p23) = EXTRACT(b,p [2.3])

which results in the behavior model:

i=[00 pl3=[ 04
1 0.1
L] 01

| 04 |

We can then combine the two substructures using the command:
[>  [bb,pp] = COMBINE(bI2, 12,523, 523, [1,2,0,3, 3])

where the fifth input parameter is again a composite structure which
describes the nature of the recombination of substructures. The
pruhnhﬂitruiaﬂmhindﬂlhimuduthupmhlhﬂit;ﬂf
the particular state of the first subsystem mulitiplied with the con-
ditional probability of the particular state of the second subsystem.
For example, the probability of the state [0,0,0] is 0.24 since the
probability of the state [0,0] of the first subsystem is 0.3, and the
conditional probability of the state [0,0] of the second subsystem is
0.8 (if the variable *2' has assumed a value of 0, variable ‘3" assumes
a value of 0 in 80% of the cases and a value of 1 in 20% of the cases).
The resulting behavior model is:
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bb = rpm| 024

1]

1 008

1 0032

2 008

0 0.18

1 0.04

1 0.08

3 | 0.33 |

When we compare the recombined system with the original system,
we find that two additional states have heen introduced, but both
of these have low probabilities of occurrence. We can compute the
differences between the probabilities of the original behavior model
and the recombined behavior model, and compute the L,-norm of
the difference vector. This is defined as the reconsiruction error of
the particular composite structurs.

In SAPS-II, the reconstruction error of a particular composite
structure can be computed directly using the function:

[» err=STRUCTURE(b,p,isir)

The optimal structure analysis is & minimaz problem. Obviously,
the totally connected structure has always a reconstruction error of
0.0 since nothing is extracted and nothing is recombined. Thus, we
cannot simply minimige the reconstruction error. Instead, we try to
maximize the namber of subsystems (i.e., enhance the complexity of
the internal strueture of the system) while keeping the reconstruc-
tion error below a user specified maximum allowed error. For any
given complexity, we choose the structure which minimizes the re-
tonstruction error.

How do we enumerate possible structures, and how do we define
the complexity of a structure? The structure search algorithm used
in the optimal structure analysis bases on the binary structure rep-
resentation of the system. The “complexity” of a structure is simply
defined as the number of rows of the binary structure. For example,
the binary structure shown earlier in this section has a complexity
of 12. Notice that this definition of complexity is not congruent with
the previously used term “complexity of the internal structure”. The
most “complex” system is the totally connected system which has
no internal structure at all.

Three different structure optimization algorithms have currently
been implemented. The structure refinement algorithm starts with
a totally interlinked composite structure in which all possible binary

0
o
L]
L]
1
1
|
1

= =R O ]
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relations are present. This structure, of course, shows no recon-
struction error at all as there is nothing to be reconstructed. Binary
relations are cancelled one at a time, and the strocture is selected
which exhibits the smallest reconstruction error. The iteration goes
on by taking the selected binary structure and again cancelling one
binary relation at a time and picking the structure with the smallest
reconsiruction error. The search proceeds from the highest com-
plexity to lower and lower complexities. At each level, the resulting
reconstruction error will be sither larger than before or will be the
same. The search continues until the reconstruction error becomes
too large.

The structure aggregation algorithm starts with a system in which
each variable forms a substructure of its own that is not linked to
any other variable. No binary relations are thus initially present,
and the reconstruction error of this structure is very large. Binary
relations are added one at a time, and at each level the structure is
selected which shows the largest reduction of the reconstruction er-
ror. The iteration goes on until the reconstruction error has become
sufficiently small

The single refinement algorithm starts similar to the structure re-
finement algorithm. However, instead of cancelling one binary rela-
tion only, all binary relations that exhibit a sufficiently small recon-
struction error are cancelled at once, and only one step of refinement
is performed.

All three algorithms are swbopiimal algorithms, since neither of
them investigates all possible structures. Therefore in a sufficiently
complex system, the three algorithms may well suggest three dif-
ferent structures, and it often pays off to try them all. The single
refinement algorithm is much cheaper than the other two algorithms,
and yet it performs amasingly well. Thus, in a real time (on-line)
structure identification, this will probably be the algorithm of choice.

In SAPS-II, an optimal structure analysis is performed using the
funetion:

[» istr = OPTSTRUC(b, p,errmaz, group, alger)

where [b,p| is the behavior relation of the system to be analyzed,
and errmaz is the largest reconstruction error tolerated. The group
parameter allows to aid the optimal structure algorithm by providing
a priori knowledge about the structure to be analyzed. For example,
the grouping information:
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proep=[ 1 2 3 10 4 ]

tells the optimization algorithm that, in a six variable system, the
first and the fourth variable appear in any subsystem either together
or not at all, whereas the fifth variable is certainly disassociated, i.e.,
it does appear only in one subsystem in which no other variable is
represented. Thus, the six variable system is effectively reduced to
a four variable system. If no a priori knowledge about the structure
exists, the grouping information should be coded as:

group=1:8

The aigor parameter finally tells the analysis which of the three al-
gorithms to use, Possible values are:

alger = 'REFINE
algor = "AGGREGATE'
algor = "SINGLEREF

15tr is the resulting composite structure of the system.

One additional feature has been built into SAPS-II. After an op-
timization has taken place, the resulting structure can be postopts-
mized by applying the single refinement algorithm once more to sach
of its substructures. This algorithm is executed using the command:

[ dnipm SIHG‘LEIEF{M:-. b, p, errmaz)

As an example, let us once more consider the open heart surgery
problem discussed earlier in this chapter. This problem consists of a
six variable model recoded as shown in Table 13.1. Expert knowledge
was used to determine the landmarks between the five different levels
for each vagjable. The recoded raw data model was stored away on
a file using the CTRL-C command:

[ ZAVErow > sapmhearidat

‘I'he following CTRL-C macro performs an optimal structure anal-
vsis on the previously saved raw data model:
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DO saps:sapa

repo = 1;

LOAD < democheart.dat

[b.p] = BEEHAVIOR{raw});

igr=1:48

ermaz = H.016

sl = OPTSTRUC(b, p,ermaz, igr, re fine')
trrl = SINGLEREF(isl, b, p,ermaz)

#42 = OPTSTRUC(b, p,ermaz, igr,' aggregate’)
tard = SINGLEREF(is1,b,p, ermaz)

ied = OFTSTRUC(b, p, ermaz, igr, singlere f')
wrd = SINGLEREF(is3,b,p, ermaz)

mmmhymm.mmmdmm
to the behavior relation of the system. No a priori knowledge about
the structure is yet available. The resulting compesite structure js:

ial = (1,2, 4}1,3,4)(2,4,6)2,4,6)
A postoptimization of this structure leads to:
ierl = (1, 2,401, 3,4)(2, 4, 8)(5)

Obviously, the fifth variable (heart rate) is only weakly related to
the other variables in the system.

Hut,thultmﬂuuwmnﬂgﬂrithmilnppﬂud. This algo-
rithm suggests the composite structure:

G2 = (1,4,801,2,3.4)i5)

WY Y G Y

and postoptimization leads to:
iord = (3, 4){1,2, 42,4, 6)(5)

Fillllr,lhidlh-lin;huﬂnmtnlmrithm. This time, the fol-
lowing composite structure is found:
a3 = (3,4)(4,6)(1,2,4)(5)

which is not modified by postoptimization.

Analyzing the different suggested structures, it becomes obvious
that the heart rate does not need to be considered at all. It also shows
that a very strong link exists among variables one and four. Thus,
thmmmilh]:umn:ﬂybegrwped together. The analysis is
now repeated applying the appropriate grouping information:
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[ der=[1231204]
This time, all three algorithms suggest the same composite structure:

dobe = 1,3, 401, 3. 40i1,4, 615}

which seems to be a good working hypothesis for a continuation of
the system analysis.

13.9 Causality

While the concept of a “causal structure” was introduced in the last
section, we haven’t made use of this concept yet. While the optimal
structure analysis was able to reveal causal relations among variables,
it has not helped us to determine cansality relations between those
variahles.
Wemuﬂm:ph;ﬂtmdﬂlmlﬂﬂqwthtmw
inﬂh:ptullhrthnpmpua.i,t,:ﬂnﬂhmdﬁunﬂmdwhinh
rmiahluﬁﬁu;hgﬂhn,nmﬂdmuﬂﬂ-muhﬁmpﬁr-
whhuﬂntlmmd:hmknhthnmufth:mdmr
such pair lags significantly behind the other. Yet, correlation anal.
ﬂilwurhhtbermmmm“ﬁlﬂu.mditnﬂgﬂhm
appropriate to tackle the recoded data directly.
Trnuplmammmhm:lﬂ;upmtnm]wthhpmhlem;
(1) We can apply an optimal mask analysis repetitively in a loop,
lm..n’muhnuptlm.dmukupmdyﬁrmmmt—
pulltﬂmﬂfnnhﬂdnnainthlpm}.udthmhmpru
some of the inputs to these optimal masks as outputs from an-
other optimal mask shifted further back in time. If an input to
an optimal mask is a true system input, no farther mask needs
to be evaluated to explain . Ifit is & true output (evaluated at
lnwlhrptimlntimu},nahudrkmhhuupnmﬂmqﬂ—
ithﬂummﬂufmﬁemltimtﬂmplylhlﬂuﬂhd
a number of steps. However, if the input to the optimal mask
illnlu.tiliar;milhluwhkhhnﬁthunumiuputmntml
nmput.,wemnhitanmtpuhudnmmmapmdmk
for it.
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(2) We realize that the optimal structure analysis is flat. The time
dependency is not preserved. Remember that the structure anal-
ysis operates on the behavior model rather than on the raw data
model. The behavior model does not retain the time flow infor-
m-tinmlnnrdurtuum:d;thi:pmhhm,ﬂunduplluuthe
raw data model, shift it by one row, and write the shifted data
to the side of the original data as additional variables. We can
repeat this process for a number of times. In SAPS-II, this can
be achieved by applying the IOMODEL function to the raw data
hith.mulinwhi:hdiuhumhm“hpm-“m:ﬂfmthe
last which we shall call an “output®, If the mask has ng,,,,
rows and n,., columns, we obtain an input/output model with
Tlyar X Maepen cOlumns. We can then apply an optimal structure
analysis to the enhanced input/output model and reinterpret
the resulting structure in terms of the original time dependent
variables,

Both techniques may be used to obtain a causal structure of our
system. However, the resulting structures are not necessarily the
mnn.uditil:ntnhﬂnuuthhpnht!huhtheptuiunluim-
ship between the resulting structures, and when which of the two
techniques might be more more appropriate to use than the other.
Moreover, many “correct” structures may exist that faithfully repre-
sent a given data set. How can we discriminate between them? How
can we gain additional evidence which will help us increase our faith
in one of the possible structures and discard others? Many ques-
tions haven't been answered yet in this context. This is therefore an
excellent area for research.

13.10 Summary

In this chapter, we have introduced a number of pattern recognition
techniques that can be used for qualitative simulation or forecasting
of system behavior. Optimal mask analysis allows us to determine
qualitative causality relations among a set of causally related wari-
ables. Optimal masks can be viewed as a sort of feature extractor.
ﬂimﬂnrputm:ﬂnluﬂtnthemnptimﬂml,mdthﬂeﬁnu.
thuupthnﬂmukmhﬂpmr&mphtdmﬂthhﬂmpumm.
ﬂmplttmmhdthntmpuﬂpﬂtm{lﬂthuﬁmlipﬂ:]
or static patterns (such as images). Optimal mask analysis is still a
far ery from antomating the capability of my physician to remember
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faces after a long time, but it may be a first step towards mimicking
this capability in a computer program. Optimal structure analysis
allows us to reveal causal relations among a set of time-related vari-
ables. This technique can be useful as a means to identify important
factors that are related to a particular event.

SAPS-IT was introduced as & tool to qualitatively analyze systems
using these techniques. SAPS-IT is available as & CTRL-C funetion
library and also as a Pro-Matlab (PC-Matlab) teolbox. In this text,
I reproduced the CTRL-C solutions to the presented algorithms,
The MATLAB solutions look very similar,

mmuwmmmmhmmw,
to one single scientist and colleague, George Klir, a great thinker.
I wish to acknowledge my gratitude for his constructive comments
and frequent encouragements.
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Homework Problems

[H13.1] Fuzey Forecasting

Implement the algorithms as presented in Section 13.6 and reproduce the

probabilistic forecasting results shown in that section.
Implement a fugsy forecasting routine:

[>  [freset, M{,af] = FFRC([raw, Mr, or), [inpt, M, 5], m1, m2, m3]

It is necessary to concatenate the membership and side matrices from the
right to the raw dats matrix and the input matrix since CTRL-C limits the
number of formal arguments of any function to no more than ten. FFRC
hmﬂuh!ﬂ.m@ﬂ:ﬂmhmﬂﬂﬁﬂTmmhﬂd
by cortesponding calls to FFORECAST.

Modify the main routine by replacing the ‘domain’ parameter by the
‘fussy’ parameter in RECODE, and by replacing the OPTMASK calls by
corresponding FOPTMASK calls.

Add at the end & call to REGENERATE to retrieve the continuous—
time signals, and plot the true signals (from the CTRL-C or MATLAB
simulation} together with the retrieved ones as shown in Fig.13.10.

[H13.2] Political Modeling

We wish to investigate the relationship between the political situation in
this eountry and the long range stock masket trends. The political situa-
tiom is captured in terms of three varinbles: Pr denotes the party affilintion
of the President, Cy denotes the House control, and s denotes the Sen-
ate control. Each of these three variables is of the enumerated type with
values R for Republican, and D for Democrat. The stock market index is
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represented through the variable Tz which is also enumerated with the
values w for up, and d for down

Table H13.2 lists the values of these four varinbles between 1897 and
1080,

Table H13.3 Political /marketing varinbles

R,
=)
E

|___period |years]
1887 - 1501
1801 — 1905
1805 — 1909
1900 - 1913
1913 - 1917
1807 — 1921
1831 - 1925
1835 - 1939
1929 = 1933
1833 — 1937
1837 - 1941
1941 — 1948
1945 — 1948
1549 — 1953
1863 = 1857
1867 = 1941
1861 - 1966
1965 — 1969
1808 - 1973
1973 - 1977
1977 = 1981
1981 = 15EE

1985 = 10&8

n:nh:nh:bt:;:n':tht:hhb:ﬂhhhhhﬁ'J

Daxbbuobuabobby numnha::l’ﬂ

lbUﬁhhhhhnbhhhbhhhbhﬂhth

el @ fAf ARl EC REBRE FE B

Iliimnndthﬂlhrputraﬂlhﬁmnfﬂ:ﬁuﬂenlhuﬂw,mu
variable, i.e., it depends only on quantities that have not been included in
the model (in pasticular, the personality of the candidate). However, the
other three variables are endogenous variables, ie., they are determined
internally to the model. In terms of our normal nomencisture, the party
affiliation of the President is an inpui variable, while the other three vari-
ables are owipul variables.

We wish to use opiimal mask analysis to make predictions abont the
future of this political system. Start by computing three optimal masks for
the three output variables. House and Senate control may depend upon
past values of all four variables one and iwo sieps back only. The stock
market index may depend on these same varinbles plus the current value
of the President's party affilistion. Forecast the fature of the system over
12 years using these optimal masks. Repeat your forecast for all eight
possible combinations of the input variable.
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[H18.8] Logic Circuit With Memory
Given the logical circuit with memory shown in Fig. H13.8.

L]
L ]

1

Fignure H13.8. Clreuit diagram of & logical cireul with memory

This circuit consists of four NAND gates. However, contrary to the previous
examples, this circuit s not memoryless,

This time, the approach used above won’t work, since noi all in-
put/output relations are single-valued. Instead, start with the signals *1°,
‘2", and °5" in their false (ie., 0) state. Compute the resulting values for
the signals ‘3", *4°, and *6",

Then apply pseudo—random binary signals to the two inputs, i.e., at sach
“elock™, each of the two inpats can either toggle or stay the same. For each
elock, compule the resulling values of the two oulputs ‘5" and 8, and of
the two auxiliary variables ‘3" and *4". Repeat for 200 steps.

Al this point, we have produced our raw data matrix. Notice that while
the overall circuit is able to memorise, each of the four subcireuits is still
memoryless. The memory s achieved by means of the feedback loops.
Apply the same techniques as in the last two homework problems to check
whether you can re—learn the sirncture of this system.

Now, we wish to try yet another approach. This time, let me assume
that we know for a fact that the cireuit to be identified was built in NAND
logie. Use the"EXTRACT function of SAPS-II to associate each of the
outputs with any two other signals, extract the three variable subsystem,
and check whether the resulting behavior model corresponds to the truth
table of & NAND gate. If one or the other of the identified gate inputs is
an suxiliary warisble, repeat the above analysis with this variable as the
new output.

Since quite & bit of testing needs to be performed, we better write a
general-purpose CTRL-C (MATLAB) function that can perform this anal-
¥sis for an arbitrary behavior model.
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we canmot tolerate any reconstruction error at all. Set the SAPS system
varisble repo (internal output) to 1, so thai you can see how the software
remsons about your data. Interpret the resulis,

Let us now try to solve the same problem using optimal mask analy-
sis. This time, we want to assume that we know that variables 1 to 5§
are true sysiem inputs, while variables 9 and 10 are true system outputs
which furthermore do not depend directly on each other. Since we know
that all input/output relations are immediate, we choose for each outpuat
a mask candidate mairix of depth one in which the five inputs and the
three auxiliary variables are possible inputs. If we find that the optimal
masks depend on any of the anxiliary variahles, we repeat the analysis by
making this auxiliary varisble cur new cutput. It can depend on the five
inputs and on all other auxiliary variables. We repeat the analysis until all
optimal mask inputs have been reduced to true sysiem inputs. Interpret
the resulis.

The second technique provides us immediately with a cowsal structure.
Manually derive the resulting composite structure. Compute the behavior
model of the overall system, and extract one after the other each of the
subsystems. Compare the behavior models of the subsystems with the
logical truth tables of the hardware components.

[H13.5] Boolean Logic
Given the memoryless logical circuit shown in Fig.H13.5.

-
__D-t

Figure H13.5. Circuii diagram of a logical circuit

Y

Repeat the analyses proposed in hw{H13.4) to this new model. This time,
the raw dats model has six columns |variables) but only four rows (legal
states), What do you conclude?
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[H13.3] Model Validation

We wish to validate the model that was derived for the political system of
hw(H13.2). For this purpose, we recompute optimal masks using only the
firat T5% of the data. “Forecast™ the behavior of the system to the eurrent
date using the optimal masks found above, and compare the outcome with
the real dats. Repeat the forecast with some of the suboptimal masks
in the mask history that have a similar quality, and check which of these
suboptimal masks produces the smallest forecasting error.

[H13.4) Boolean Logic
Given the memoryless logical cirewit shown in Fig. H13.4.

1—1™ 8 N1
L

—

5 b 0

Figure H13.4. Circuit diagram of a logical circuit

] —

Y

The circenit contains two logical AND gates, two logical inverters, and one
logical OR gate, The fact that the circuit is not completely connected is of
0O CORCEED.

Write & logical table of all possible states of this circuit. Enumerate all
possible combinations of inputs, and compute the set of resulting outpuats.
The enumeration results in a table containing 32 rows (possible states) and
10 columns |variables). Represent the logical folse state as ‘0", and the
logical frue state as ‘1", This table can be interpreted as & raw data model.

We now forget where the raw data came from. We wish to re-learn
the stractare of our circunit from the given raw data model using optimal
strocture analysis and optimal mask noalysis.

Let us start with optimal structure analysis. We know that this circuit
has no memory. Thus, every input/output relation is immediate. There-
fore, we can apply the optimal structure analysis directly to the behavior
model of the given raw data matrix. Try all three optimization algorithms.
No grouping information is to be used. Set the maximum error errmaz
to the machine resolution eps. This is reasonable since we know that the
data has been produced by n completely deterministic logical cirenit. Thas,
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[H13.7|* Logic Cirenit With Fanlts

We want to repeat hwi{H13.8). This time, we wish to study the influence
of fanlts in the raw dats matriz.

We generate the raw data matrix in exactly the same manmer as in
hw{H13.6). Then, we disturb the raw data matrix by introducing a certain
percentage of erroneous elements. For instance, 1%, 2%, 5%, or 10% of the
elements in the raw data matrix are being assigned the wrong value,

Repeat the same analyses as in hw{H13.6) using the disturbed raw data
matrix for the four degrees of fault severity suggesied above. When using
optimal structure analysis, it may now be necessary to raise the errmaz
parameter beyond the machine resolution eps in order to accommodate for
the digital noise. When using the EXTRACT fanction, you need to allow
for a somewhat inaccurate truth table. In ench step, try all combinations
of gate input varisbles, and pick the one that gives you the smallest least
square error when compared to the truth table of the NAND gate.

Critically evaluate the capability of the thres technigues to function
propetly under the influence of digital noise.

Projects

[P13.1] TicTacToe
Design a CTRL-C (MATLAB) routine that can play TicTacToe.

[> new= TICTACTOEold)

plays one step of TicTacToe. old refers to the bord before the step. old
is represented through a 3 x 3 matrix consisting of integer elements with
the values 071, and 2. A value of 0 indicates that the particular field is
unoccupied, 1 indicates that the field is occupied by the program, and 2
indicates that the field is occupied by the human player. new refers to
the bord afier the step has been executed. If the game starts with a zero
matrix, the program will make the first move, if it starts with cne field
already occupied by a 2 element, the human player begins.

Begin by designing a set of logical rales that describe both the (syntactic)
rules of the game (such as: ‘only those fields can be occupied which are
currently unoecupied’, or: ‘only one fleld can be altered within one siep’),
as well as the (semantic) strategics (such as: if the spponent has currently
occupied two fields in a line, and the third fleld in that line is carrently
unoccupied, then occupy that field immediately’). It is possible to describe
the entire TicTacToe game by & set of seven logical rules.
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Design & CTRL-C (MATLAB) routine which can interrogate the set of
rales (the so—ecalled rule bose), and therefore, can play TicTaceToe. This
program is a so—called ezpert spstem.

Design & data collection routine which can observe the game, and which
stores the daia (the bord) awny in a raw data matrix. Design another
MATLAB {CTRL-C) routine which, using SAPS-II functions, can analyze
u::nmmmh&tmmmugmmm:
you, or by observing how you play against the program. It can thereby
re—learn a sei of logical rules (a behavior model) that deseribe both the
syntactic rules and the semantic strategies of the game. In all likelihood,
this automatically generated rule base will be considerably longer than the
one that you crented manually. When [ tried it, the new rule base contained
124 rules.

Notice that you nesd to operate on an mnput/output model If the bard
before the TicTacTos program plays is stored as input, and the bord after
the TicTacToe program has played is stored as cutput, SAPS-II will learn
the strategy of the TicTacToe program. On the other hand, if the bord
after the TicTacTos program has played is stored as input, and the bord
before the TicTacTos program plays again is stored as output, SAPS-II
will learn the strategy of the human player.

Let the expert system now play using the rule base that was automati-
cally generated by SAPS-II rather than the manually generated rule base.
If all goes well, the new program should be as good at playing TicTacToe
as the original program was.

Notice the significance of this result. Instead of generating a rule base
manunally, the data eollection routine could also have been used to shserve
two human players playing one against the other. Thus, we have found a
methodology to automatically synthesise knowledge bases from ohserved
duts.

Replace TicTacToe by another game, such as the Prisoner’s Dilemma
problem [13.27]. The data collection routine must be modified to interface
coerectly with the new problem. However, the rule base synthesizer [the
SAPS-II routine) and the expert system shell (the play routine) should be
able to learn and play the new game without & single modification.

[P18.3] Intelligent Autopilot

Apply the techniques presented in Section 13.6 to the contimuous simula-
tion of a Boeing T4T jetliner in high altitude horisontal flight, i.e., to the
simulation program designed in pr{P4.1). The purpose of this study is to
check whether we ean apply the proposed techniques as reliably to & highly
non=linear system &8 to a linear system.
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Enhance the ACSL program designed in pr({P4.1) by a set of faulty op-
erational modes such as heavy ice on the wings or loss of one of the four
“NEINES,

For each of the fault modes, identify a set of optimal masks that char-
acterize the fault.

Modify the ACSL program once more, This time, one of the faulis
should be chosen arbitrarily at & randomly selected peint in time during

Use the forecasting routine to identify when the accident has happened,
and discriminate the correct fanlt by comparing the recoded continnous
data after the accident oecnrred and after the iransients resulting from the
accident have died out with forecasts obtained using all of the stored fanit
masks. The forecast with the smallest devintion identifies (most likely) the
type of fauli that has occurred.

Research

[R13.1] Rule Base Minimisation
Start with the two automatically generated rule bases of pr{P13.1). The
purpose of this research is to come up with an nutomated procedure that
can reduce the synthesized rule base back to a minimal rule base. For this
purpese, you might have to design a statistical extension to the Morgan
rllﬂuilﬂﬁn.multmﬂird;,luﬂﬂulqhﬁmhthhm;hdi
agram. If applied to the synthesized rule base of the TicTacToe problem,
the result should be a rule base that looks similar to the rule base thai had
been manually designed to start with.
Th:lﬂnﬁmuithhprnﬂmhiupunmimtheudnﬂudin!ufun
tomated knowledge generalization mechanisms.

[R13.2) Heart Monitor
In collaboration with a heart surgeon, establish o set of variables to be
monitored during open heart surgery. For a number of months, collect data
during actual surgery, and record what actions the surgeon took when and
why on the basis of the data that 5/he observed. Use the collected physical
data s inputs, and the actions of the surgeon as outputs, Use inductive
mh;mmupvhhnm&ﬂthnhehnuﬂuﬂuhmuuuﬁmn.
Design an apparatus which can thereafter observe data during actual
surgery, reason abouat this data on-line in & similar fashion as the surgeon
did before, and come up with consalting advise for the same or another sur-
geon. If asked why the particular advice was given, the apparatus should
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be able to relate the decision back to the reasoning performed by the orig-
inal surgeon. It is important that the model has some power of prediction,
i.e., that it can forecast potential problems before they actually oceur, and
provide, together with the actual advice, a verbal prediction of the physical
state on which that advice was based.

[R13.3] Anesthesiology

A major problem in anesthesiology is the assessment of the depth of the
anesthesia. If too little drug is applied, the anesthesia is not safficiently
deep, the patient feels pain, and the risk of & postoperative shock syndrome
is enhanced. However, the drug itself is highly toxic, and it is therefore
important to apply the minimum amount required for safe surgery.

In collabormtion with an anesthesiologist, decide on a namber of see-
ondary factors that s/he uses to indirectly assess the depih of anesthesia.
Similarly to the heart monitor problem, come up with a consultation sys-
tem that, on the basis of physical measurements suggests an appropriate
dosage of the drug and optimal timing for its administration.

[R13.4] Stock Market
Decide on & mumber of input parameters (such as the Dow-Jones index)
and state variables (such as daily returns of companies) to be monitored.
Choese the variables such that the time dependence of the resulting optimal
masks is minimised (ie., for any subset of data over time, the resulting
optimal masks should be the same or al least very similar).

Design & SAPS forecasting model with optimal prediction power, and
compare the results with an optimized linear regression model.

[R13.5] Causal Structure Characterization

Deesign a gedigral-purpose routine which is able to derive & causal structure
using several different technigues, which can then compare the resulting
causal structures with each other, and decide which of the resulting struc-
tures is the most likely candidaie,



