14

Artificial Neural Networks and
Genetic Algorithms

Preview

In Chapters 12 and 13, we have looked at mechanisms that might
lead to an emmlation of human reasoning capabilities. We ap-
proached this problem from a macroscopic point of view. In this
chapter, we shall approach the same problem from a microscopic
point of view, i.e., we shall try to emulate learning mechanisms as
they are believed to take place at the level of neurons of the human
brain, and evolutionary adaptation mechanisms as they are hypoth-
esized to have shaped our genetic code.

14.1 Introduction

In this chapter, we shall discuss how artificial neural networks can
indeed emulate the human capability of association (remembering
of similar events), and of learning (the autonomous organization of
knowledge based on stochastic input stimuli). We shall then pro-
ceed to discuss yet another “learning” mechanism: the encoding of
hereditary knowledge in our genetic code.

Artificial neural networks were invented several decades ago. Much
of the early research on neural networks was accomplished by Mec-
Culloch and Pitts [14.21], and by Hebb [14.11]. This research was
consolidated in the late fifties with the conceptualization of the so—
called perceptron [14.30].

Unfortunately, a single devastating report by Minsky and Pa-

pert discredited artificial neural network research in the late sixties
[14.23]. In this report, the authors demonstrated that a perceptron

624 Chapter 14: Artificial Neural Networks and Genetic Algorithms

cannot even learn the “behavior” of a simple exclusive—or gate. As a
consequence of this publication, research in this area came to a grind-
ing halt. Remarkably, an entire branch of research can be aborted
because of a single influential individual, especially in the United
States where research funds are not provided automatically, but must
be requested through research proposals. For almost 20 years, fund-
ing for artificial neural network research was virtually non—existent.
Only the last couple of years have seen a renaissance of this method-
ology due to the relentless efforts and pioneering research of a few
individuals such as Grossberg [14.8,14.9,14.10], Hopfield [14.14], and
Kohonen [14.17]. Meanwhile, artificial neural network research has
been fully rehabilitated, and virtually thousands of research results
are published every year in dozens of different journals and books.
Impressive results have been obtained in many application areas,
such as image processing and robot grasping systems [14.29].

Artificial neural networks still suffer somewhat from their pattern
recognition heritage. Classical pattern recognition techniques were
always concerned primarily with the recognition of static tmages. For
this reason, most research efforts in neural networks were also con-
centrated around the analysis of static information. For quite some
time, it was not recognized that humans more often than not base
their decisions on temporal patterns or cartoons, i.e., series of sketchy
static images which comprise an entire episode. Notice that graphi-
cal trajectory behavior is called a film, whereas graphical episodical
behavior is called a cartoon. If I drive my car through the City of
Tucson, and I suddenly see a ball rolling onto the street from behind
a parked vehicle, I immediately engage the brake because I expect a
child to run after the ball. I would be much less alarmed if the ball
were simply lying on the street. Thus, my decision is based on an
entire cartoon rather than on a single static image. The cartoon of
the rolling ball is a temporal pattern which is matched with stored
temporal patterns of my past. The prediction of the future event
is based on the association and replay of another temporal pattern
that once followed the rolling ball pattern in time, namely that of a
running child.

Artificial neural networks are well suited to identify temporal pat-
terns. All that needs to be done is to store the individual images of
the cartoon below each other in a large array, and treat the entire
cartoon as one pattern. Due to the inherent parallelism in artificial
neural network algorithms, the size of a network layer (the length of
the pattern array) does not have to increase the time needed for its
processing.

14.2 Artificial Neurons 625

Recently, artificial neural network researchers have begun to inves-
tigate temporal patterns. Promising results have been reported in
the context of speech recognition systems [14.36]. Other important
applications are related to dynamical systems. They include the de-
sign of adaptive controllers for non-linear systems [14.25], and the
development of fault diagnosers for manufacturing systems [14.32].
However, much remains to be done in these areas.

Finally, it is important to distinguish between research in engi-
neering design of artificial neural networks [14.28,14.34], and scien-
tific analysis (modeling) of the mechanisms of signal processing in
the human cerebellum [14.3,14.16] and information processing in the
human cerebrum [14.7,14.33]. Engineering design concentrates on
very simple mathematical models which provide for some learning
capabilities. All artificial neurons are identical models of simple mo-
tor neurons, and the interconnections between artificial neurons are
structured in the form of a well organized, totally connected, layered
network. The biological analogy is of minor significance. The goal
of engineering design research is to create algorithms which can be
implemented in robots, and which provide these robots with some,
however modest, reasoning capabilities. Scientific analysis focuses
on modeling the activities of the human brain. These models are
usually considerably more sophisticated. They distinguish between
different types of neurons, and attempt to represent correctly the
interconnections between these different neurons as they have been
observed in various zones of the human brain. However, the appli-
cability of the research results for engineering purposes is of much
less importance than the scientific understanding itself.

In this chapter, we want to pursue both research directions to
some extent. However, the primary accent is clearly on engineering
design, and not on neurobiological modeling.

14.2 Artificial Neurons

Fig.14.1 shows a typical motor neuron of the human cerebellum. The
motor neuron is the most studied and best understood neuron of the
human brain. Altogether, the human brain contains on the order of
10! neurons.

626 Chapter 14: Artificial Neural Networks and Genetic Algorithms

synapse

dendrite

dendrites

axon
axon branches

nucleus

Figure 14.1. Motor neuron of the human cerebellum

When a neuron “fires”, it sends out an electrical pulse from its soma
through its single efferent axon. The axon branches out into several
sub—axons, and passes the electrical pulse along all of its branches.
Each neuron has on the order of 1000 axon branches. These branches
terminate in the vicinity of dendrites of neighboring neurons. The
pulse which is sent through the axon is of a fixed amplitude known
as the action potential, and it travels along the axon at a high speed
of approximately 20 m sec™! [14.3]. The pulse has a duration of
approximately 1 msec. Once a neuron has fired, it needs to rest for
at least 10 msec before it can fire again. This period is called the
refractory period of the neuron [14.3].

When a pulse arrives at the end of an axon branch, it is transmit-
ted to a dendrite of a neighboring neuron in a synaptic contact by
molecules known as neurotransmitters. The synapses can be of the
excitatory (positive) or inhibitory (negative) type. In the synapse,
the signal is converted from a digital to an analog signal. The am-
plitude of the signal transmitted by the synapse depends on the
strength of the synapse. In the afferent dendrites, the transmitted
signal travels at a much lower speed towards the soma of its neuron.
The typical dendrite attenuation time is on the order of 10 msec
[14.3]. However, the attenuation time varies greatly from one neu-
ron to another, because some synaptic connections are located far
out on an afferent dendrite, while others are located directly at the
base of the primary dendrite, or at the soma itself, or even at the
axon hillock (the base of the efferent axon).

If the sum of the analog signals arriving at a soma from its various

dendrites is sufficiently high, the neuron fires, and sends out a digital
pulse along its axon. Consequently, the soma converts the arriving

14.2 Artificial Neurons 627

analog signals back to digital signals using frequency modulation. In
this way, signals are propagated through the brain by means of con-
secutive firings of neurons. During their voyage through the brain,
the signals are constantly converted back and forth between a digital
and an analog form.

Fig.14.2 shows a typical artificial neuron as used in today’s ar-

tificial neural networks. Typical artificial neural networks contain
several dozens to several thousands of individual artificial neurons.

ug > W
- D
Upn1> W1 + activation '
function
Und>—i W, |

Figure 14.2. Neuron of an artificial neural network

The input signal u; symbolizes the digital pulses arriving from the
i** neuron. The gains w;; are the synaptic weights associated with
the digital to analog (D/A) conversion of the neurotransmission from
the #** neuron to the j** neuron across the synaptic cleft. The state
of the j** neuron z; is computed as the weighted sum of its inputs:

z; = Z Wy Uy = Wj' ‘u (14.1)
Vi

The output of the j** neuron y; is computed as a nonlinear function
of its state:

i = f(z;) (14.2)

Fig.14.3 shows some typical activation functions.

628 Chapter 14: Artificial Neural Networks and Genetic Algorithms

y y y

""" — T " 1"‘7‘
— — X >X

> X

(a) ®) {e)

Figure 14.3. Typical activation functions of artificial neurons

Most artificial neural networks ignore the frequency modulation of
real neural systems, i.e., the output corresponding to a constant
input is constant rather than pulsed. They also ignore the low-
pass characteristics of real neurons, i.e., the time delay of the signal
transmission across the true neuron is neglected. While the former
omission may be harmless, the latter causes formidable problems
when feedback loops are present in the artificial neural network.

Engineering-oriented artificial neural networks use the artificial
neuron as the basic building block for constructing networks. All
artificial neurons are functionally identical, and all synapses are ex-
citatory. Inhibitory synapses are simulated by allowing weighting
factors to become negative. These artificial neural networks are sym-
metrically structured, totally connected, layered networks. Many
engineering—oriented artificial neural networks are feedforward net-
works or cascade networks. Their response is immediate, since the
time constants of the neurons are not modeled. Feedforward net-
works can be considered elaborate non-linear function generators.
Due to the lack of feedback loops, these networks have no “mem-
ory”, i.e., they don’t store any signals. Information is “stored” only
by means of weight adjustments. Recurrent networks or reentrant
networks contain feedback loops. Feedback loops are mandatory if
the network is supposed to learn cartoons directly, i.e., if the individ-
ual images of temporal patterns are not compressed in time to one
instant and stored underneath each other in a long pattern array (as
proposed earlier), but are to be fed sequentially into the network as
they arrive. A serious problem with most recurrent networks is their
tendency to become unstable as the weights are adjusted. Global
stability analysis of a recurrent network is a very difficult problem
due to the inherent non-linear activation functions at each node.

Neurobiologically—oriented neural network models take into con-
sideration the fact that the human brain contains various different
types of neurons which are interconnected in a few standard patterns,

14.3 Artificial Neural Engineering Networks 629

and which form local neuronic “unit circuits”. For example, Green’s
and Triffet’s cerebellar unit circust distinguishes between granule,
Golgi, basket, stellate, and Purkinje neurons which are intercon-
nected as shown in Fig.14.4 [14.7,14.33].

ICN to Intercerebellar Nuclei N

b
(:11:‘rinl>elrng :’ Granul ' Bask ™
ranule asket
& I—C
Golgi Purkinje Sr!(
k
Mossy G 1
Fiber — ranule - Stellate T

Figure 14.4. Unit circuit of the cerebellum

Arrowheads indicate excitatory synaptic connections, whereas small
circles indicate inhibitory synaptic connections. Notice the local
feedback loops within the unit circuit. The unit circuits cannot work
properly unless the dynamics of the individual neurons are modeled.
Triffet and Green do indeed model the time and frequency response
characteristics of signals traveling through the cerebellum. In fact,
they even take into consideration the frequency modulation of neu-
ronic signals, i.e., they model the action potential, the refractory
period, and the resting period of the neuron.

14.3 Artificial Neural Engineering Networks

While the model of an individual neuron bears a certain similarity
with the real world, today’s artificial neural networks as they are used
in engineering are totally artificial. This is due to the fact that we
must enforce a very unnatural order among interconnections between
artificial neurons to guarantee decent execution times of our artificial
neural network programs. Most artificial neural network programs
rely on matrix manipulations for communications between neurons.

630 Chapter 1}: Artificial Neural Networks and Genetic Algorithms

To this end, it is necessary to enforce a strict topology among the
neuronic connections.

The most common artificial neural networks operate on layers of n
artificial neurons. Within a given layer, none of the artificial neurons
are connected to each other, but each artificial neuron is connected
to every neuron of the next layer of m neurons. Fig.14.5 shows a
typical network configuration.

Uy 1
ug < Y2
: w :
Upa Im-1
Up Y¥m
input output

Figure 14.5. Simple artificial neural network

The computational advantage of this structure becomes evident
when we apply eq(14.1) and eq(14.2) to this network. In matrix
form, we can write:

x=W-u (14.3a)
y = f(x) (14.3b)

I

where x and y are vectors of length m, and u is a vector of length
n. W is the interconnection matrix between the first and the second
layer. It has m rows and n columns. One single matrix multiplication
and one vector function suffice to simulate the entire network with
all its n X m connections.

What is this infamous problem discovered by Marvin Minsky
which disgraced neural networks for more than a decade? A per-
ceptron is an artificial neuron with a threshold output function as
shown in Fig.14.3a. Let us look at a single perceptron with two in-
puts %, and u, and one output y. We wish to make this perceptron

14.3 Artificial Neural Engineering Networks 631

learn an exclusive—or function, i.e., the function whose truth table is
presented in Table 14.1.

Table 14.1 Truth table of exclusive—or gate

Uy U2 Yy
0 0 0
0 1 1
1 0 1
1 1 0

In our convention, ‘0’ represents the logical state false, while ‘1’
represents the logical state true. The output of the exclusive-or gate
is true if the two inputs are in the opposite state, and it is false, if
both inputs are in the same state. “Learning” in an artificial neural
network sense simply means to adjust the values of the synaptic
weights. Fig.14.6 depicts our perceptron.

4 B
;> W . -
= -y
U >— Wy ¥ d
- Y,
li
Lo
y
ug

Figure 14.6. Single perceptron for exclusive-or gate

The state of this perceptron can be written as:

= wl-ul + wa U2 (144)

632 Chapter 1: Artificial Neural Networks and Genetic Algorithms

The output is ‘1’ if the state is larger than a given threshold, d, and
it is ‘0’ otherwise. Thus, we can represent the perceptron in the
following way:

Figure 14.7. Perceptron solution of exclusive—or problem

Fig.14.7 shows the output of the perceptron in the < u;,u, > plane.
The empty circles represent the desired ‘0’ outputs, whereas the filled
circles represent the desired ‘1’ outputs. The slanted line separates
the < u;,u; > plane into a half-plane for which the perceptron
computes a value of ‘0’ (below the line), and a half-plane for which
it computes a value of ‘1’ (above the line). By adjusting the two
weight factors w, and w; and the threshold d, we can arbitrarily
place the slanted line in the < u;,u, > plane. Obviously, no values
of w,, w,, and d can be found which will place the two filled circles
on one side of the line, and the two empty circles on the other. This
simple truth sufficed to bring most artificial neural network research
to a grinding halt.

Fig.14.8 shows a slightly more complex artificial neural network
which can solve the exclusive—or problem.

ups

U2>

Figure 14.8. Two layer solution of exclusive-or problem

14.8 Artificial Neural Engineering Networks 633

The enhanced network contains three perceptrons. Fig.14.9 shows
how this network solves the exclusive—or problem.

Figure 14.9. Two layer solution of exclusive-or problem

The darker shaded area of the < u,,u, > plane is the area for which
the network computes a ‘1’. Thus, while the single layer network
failed to solve the exclusive—or problem, a simple two layer network
will do the trick. Multi-layer networks can mask arbitrary subspaces
in the input space. These subspaces can be concave as well as convex.

Complex architectures of arbitrarily connected networks are still
fairly seldom used. This is because, until recently, we didn’t un-
derstand how to adjust the weighting coefficients of an arbitrarily
connected network to learn a particular pattern (such algorithms
will be introduced towards the end of this chapter). Backpropaga-
tion and counterpropagation are two training algorithms which have
become popular since they provide systematic ways to train particu-
lar types of multi-layered feedforward networks. However, before we
discuss artificial neural network learning in more detail, let me ex-
plain why artificial neural networks are attractive as tools for pattern
recognition.

834 Chapter 14: Artificial Neural Networks and Genetic Algorithms

14.4 The Pattern Memorizing Power of Highly
Rank—Deficient Matrices

We have seen that a one layer perceptron network multiplies the
input vector u from the left with a weighting matrix W to determine
the state x of the network. Let us assume that the input of our
network is the ASCII code for a character, say Z:

u=ASCII(Z)=(0 1 0 1 1 0 1 0) (14.5)

We choose our weighting matrix as the outer product of the input
with itself except for the diagonal elements which are set equal to

‘0 [14.28]:

{0 0 0 0 6 0 0 O
0 0 0 1 1 010
0 0 0 0 0 0 00O
, , 01001010

W =u-u’'-DIAG(DIAG(u-u')) = 01010010 (14.8)
0O 00 0 0 0 0 O
01 0 11 0 00
0o 0 0 0 0 0 0 O

W is a dilute (sparsely populated) symmetric matrix of rank 4. If
we feed this network with the correct input, the output is obviously
the same as the input, since:

x=W-.ux(u-u)-u=u-(u -uy=k-u (14.7)

The output threshold eliminates the k factor. The elimination of
the diagonal elements is unimportant except for input vectors which
contain one single ‘1’ element only.

Now, let us perform a different experiment. We feed into the
network a somewhat different input, say:

a=(0 1 0 0 1 0 0 1) (14.8)

A comparison with the previous input shows that three bits are dif-
ferent. Amazingly, the network will still produce the same output as
before. This network is able to recognize “similar” inputs, or equiv-
alently, is able to filter out digital errors in a digital input signal.
Hopfield has shown that this is a general property of such highly

14.4 The Memorizing Power of Highly Rank-Deficient Matrices 635

rank—deficient sparsely populated matrices [14.14]). He showed that
the technique works for input signals which have a smaller or equal
number of ‘1’ elements than ‘0’ elements. Otherwise, we simply in-
vert every bit of the input.

One and the same network can be used to recognize several dif-
ferent inputs u; with and without distortions. For this purpose, we
simply add the W; matrices. Hopfield [14.14] showed that a ma-
trix of size n X n can store up to 0.15 - n different symbols. Thus,
in order to store and recognize the entire upper—case alphabet, each
letter should be represented by a vector of at least 174 bits in length.
The ASCII code is completely inadequate for this purpose. It does
not contain enough redundancy. Notice that the code sequence of
eq(14.8) was recognized as the character Z, while in fact, it is the
ASCII representation of another character, namely the character I.

A good choice may be a pixel representation of a 14 x 14 pixel field
as shown in Fig.14.10.

Figure 14.10. Pixel representation of a written character

We simply number the pixels from left to right, top to bottom. White
pixels are represented as ‘0’, while grey pixels are represented as ‘1°.
We then write all the pixels into a vector of length 196. Minor
variations in the writing of characters can be filtered out by the
artificial neural network. This technique can be used to recognize
hand-written characters. Some preprocessing will be necessary to

636 Chapter 14: Artificial Neural Networks and Genetic Algorithms

center the character in the pixel field, to normalize its size, and to
correct for slanting.

The same method also works if the desired output is symbolically
different from the given input. For example, it may be desirable to
map the pixel representation of a hand—written, upper—case charac-
ter into its ASCII code. In this case, we use the following weighting
matrix:

W= (y-u) (14.9)
Vi

where u is the 196 bit long pixel vector, and y is the corresponding
eight bit long ASCII code vector. Thus, W is now a rectangular
matrix of the size 8 x 196. This is how we believe the brain to
map visual pixel information into symbols (not necessarily in ASCII
format, of course).

Auditory information can be treated similarly. Here, we could
sample and digitize the audio signal, and store an entire series of
values sampled at successive sampling intervals as an input vector.
Each time value is represented by a number of bits, perhaps eight.
If we assume that the minimum required band width of the ear is
10 kH z, and if we assume that one spoken word lasts 1 sec, we need
to store 8 x 10,000 bits in the input vector. According to Hopfield
[14.14], 80,000 bits allow us to recognize 12,000 different words which
should be sufficient for most purposes. We can then map the input
vector of length 80,000 into an output vector of length 14, since 14
bits suffice to store 12,000 words. In this way, we should be able
to comfortably recognize the spoken language. Of course, we need
some additional preprocessing to “center” the spoken word in the
time window, i.e., we need to determine when one word ends and
when the next begins. We should also normalize the spoken word in
length and altitude, i.e., compensate for fast vs slow speakers as well
as for female vs male voices. Also, it may be better to operate on
frequency signals instead of time signals. Between different speakers,
the FFT of the spoken word varies less than the corresponding time
signal.

Much more has been written about this topic. Several authors
have discussed these types of weight matrices from a statistical point
of view. They showed that optimal separation between different
patterns is achieved if the input patterns are orthogonal to each
other. The optimal W matrix turns out to be the input correlation
matrix. A good overview is given in [14.12].

14.5 Supervised and Unsupervised Learning 637

14.5 Supervised and Unsupervised Learning

We are now ready to discuss mechanisms of artificial neural net-
work learning. In the last section, we knew how to set the synaptic
weights. In a more general situation, this will not be the case. The
question thus is: How do we modify the weights of our intercon-
nection matrices such that the artificial neural network learns to
recognize particular patterns?

Traditionally, two modes of neural network learning have been
distinguished: supervised learning and unsupervised learning. In
supervised learning, the artificial neural network “attends school”. A
“teacher” provides the network with an input, and asks the network
for the appropriate output. The teacher then provides the network
with the correct output, and uses either “positive reinforcement” or
“punishment” to enhance the chance of a correct answer next time
around.

Supervised (interactional) learning has been observed within hu-
mans and other living organisms at various levels. At the lowest level
of learning, we notice behavior modification schemes (Skinnerism).
These schemes do not assume that the person or animal has any in-
sight regarding what s/he is taught. Behavior modification programs
are prevalent in animal training, and also in the rehabilitation of the
severely mentally retarded. In normal human education, behavior
modification plays a minor role, yet this is the only form of learning
that is being imitated by today’s artificial neural networks.

At the next higher level, we should mention the mechanisms of
social learning [14.1]. Social learning operates on concepts such as
social modeling and shaping. The child learns through mechanisms of
vicarious learning and imitation. Learning occurs in a feedback loop.
The child reacts to external stimuli, but the teacher also modifies his
or her own behavior on the basis of the reactions s/he observes in
the child, and the child, in return, will notice the effects that his or
her behavior has on the teacher’s behavior, and so on. The prob-
lems and patterns which are presented to the child are initially very
simple, and become more and more intricate as the child develops.
This is a fruitful concept which could (and should) be adapted for
use in artificial neural networks. Today’s artificial neural network
research focuses on network training, and ignores the importance of
the training pairs. Optimization of training pairs for accelerated net-
work learning would be a worthwhile research topic. Maybe, we can

68388 Chapter 14: Artificial Neural Networks and Genetic Algorithms

create a “teacher network” which accepts arbitrary training pairs and
preprocesses them for learning by a “student network”. Perhaps, one
type of “student network” could be trained to become a next gen-
eration “teacher network”. Notice that social learning (like the pre-
viously discussed Skinnerism) focuses on a purely phenomenological
view of learning. Social learning analyzes the interaction between
the teacher and the student, but ignores what happens inside the
student and/or the teacher.

At an even higher level, psychologists focus on the mechanisms
of cognition. They discuss the role of cognitive functions (lan-
guage, attention span, learning abilities, reasoning, and memoriza-
tion) [14.26]. At this level, we no longer focus on what is learned,
but rather on how learning occurs, and how we “learn to learn”.
In analogy to artificial neural network terminology, this corresponds
to using a second artificial neural network in conjunction with the
original network. The output of the second network is the algorithm
that the first network uses to adapt its weights. We then use a third
network on top of the second one, and so forth, until we come to a
point where the highest level network has become so abstract and
general that it doesn’t require any training at all, but can be used
to bootstrap itself. Presently, our state—of-the—art neural networks
are far from such degrees of complexity. All that we have achieved
with our artificial neural networks is the capability to emulate only
the lowest level of behavioral modification schemes.

Supervised training of artificial neural networks is attractive be-
cause it is fairly easy to implement. It is unattractive because the
network is kept in an unproductive learning phase for a long time
before the learned knowledge can be applied to solve real problems.
In a very simple analogy, our children have to grow up and attend
school for many years before they can be integrated into the work
force and “make money” on their own. However, the analogy is not
truly appropriate since the child is eztremely productive during his
or her training period except for one particular aspect: the economic
one.

In unsupervised learning, the network can be used immediately,
but it will produce increasingly hetter results as time passes. Learn-
ing is accomplished by comparing the current input/target pair with
previous similar input/target pairs. The network is trained to pro-
duce consistent results [14.34]. Many biologists insist that at least
low level learning occurs in a basically unsupervised mode [14.34].
I am not so sure that this is correct. Even motoric functions are

14.5 Supervised and Unsupervised Learning 639

learned through mechanisms of reinforcement and punishment (be-
havior modification) and through mechanisms of imitation (social
learning). Walking is learned by falling many times, and by try-
ing to imitate walking adults. Yet, the child indeed does not learn
to walk in a “dry run” mode, and walks only after mastering the
problem in theory. The dichotomy between supervised and unsuper-
vised learning is an artifact. Usually, artificial neural networks are
studied in isolation. Humans do not learn in isolation. They live
in an environment to which they react, and which reacts to them
in return. Real learning is similar to adaptive control. The net-
work is constantly provided with real inputs from which it computes
real outputs, and it is also provided with desired outputs to compare
them with. It then tries to modify its behavior until the real outputs
resemble the desired outputs. However, while the network learns, it
is constantly “in use”. Thus, it would make sense to replace the term
unsupervised learning by the term adaptive learning.

The real problem with artificial neural network learning lies some-
where else. Artificial neural networks can observe only the inputs
and outputs of the real system, but not its internal states. The
question thus is: How does the network modify the weights of inter-
nal hidden layers? This dilemma is at the origin of the (artificial)
distinction between supervised and unsupervised learning.

The answer to this question is quite simple: Artificial neural net-
work training is an extremely slow and tedious process. Modifying
the weights of the internal network layers is accomplished either by
trial and error, or by gradient propagation. The real question thus
is: How do we guarantee the convergence of the weight adaptation
algorithm in use?

We shall address this question in greater generality towards the
end of this chapter. For now, we shall restrict ourselves to the anal-
ysis of a few simple feedforward network topologies, and develop
learning algorithms for those networks only.

Single Layer Networks

Let us compute the difference between the j** desired output §; and
the j** real output y;:

6 =19 -y (14.10)

In the case of a perceptron network, §; will be either —1, 0, or +1.
In the case of other networks, §; can be a continuous variable. We

640 Chapter 14: Artificial Neural Networks and Genetic Algorithms

then compute the change in the weight from the i** input to the j**
output as follows:

Aji =g- 6j - Ug (14.11)

The rationale for this rule is simple. If the j** real output is too
small, §; is positive. In this case, we need to reinforce those inputs
which are strong by making them even stronger. This will raise
the output level. However, if the j** real output is too large, §; is
negative. In this case, we need to weaken those inputs which are
strong. This will reduce the output level.

The constant multiplier g is the gain value of the algorithm. For
larger values of g, the algorithm converges faster if it does indeed
converge, but it is less likely to converge. For smaller values of g, the
chance of convergence is greater, but convergence will take longer.

Finally, we update the weight w;; in the following manner:
Wiinew = Wiigra + Bjiora (14'12)
In a matrix form, we can summarize eq(14.10) to eq(14.12) as follows:

Wy =Wi+g-(F —yx) -ux' (14.13)

Eq(14.13) is commonly referred to as the delta rule [14.35].

Notice the following special case. If we choose the initial weighting
matrix as zero, Wo = 0, then the initial output will also be zero,
Yo = 0. If we furthermore choose a gain factor of ¢ = 1.0, we can
compute the weighting matrix after one single iteration as follows:

Wi =§-uo (14.14)

which is identical with the explicit weight assignment formula,
eq(14.9), that we used in the last section.

For most applications, we shall choose a considerably smaller gain
value such as: g = 0.01, and we shall start with a small random
weighting matrix:

W = 0.01 * RAND(m, n) (14.15)

14.5 Supervised and Unsupervised Learning 641

Backpropagation Networks

Backpropagation networks are multi-layer networks in which the
various layers are cascaded. Fig.14.11 shows a typical three-layer
backpropagation network.

Figure 14.11. Three-layer backpropagation network

In order for the backpropagation learning algorithm to work, we
must assume that the activation function of each artificial neuron is
differentiable over its entire input range. Thus, perceptrons cannot
be used in backpropagation networks.

The most commonly used activation function in a backpropagation
network is the sigmoid function:

1.0

10 T exp(=2) (14.16)

y = sigmoid(z) =

The shape of the sigmoid function is graphically shown in Fig.14.12.

642 Chapter 1}: Artificial Neural Networks and Genetic Algorithms

Sién;oia Function

Figure 14.12. Sigmoid function

The sigmoid function is particularly convenient because of its simple
partial derivative:

8y .

3, =Y (1.0 — y) = logistic(y) (14.17)
The partial derivative of the output y with respect to state = does
not depend on z explicitly. It can be written as a logistic function
of the output y.

We shall train the output layer in basically the same manner as in
the case of the single layer network, but we shall modify the formula
for §;. Instead of simply using the difference between the desired
output §; and the true output y;, we multiply this difference by the
activation gradient:

9y . R
8 =5 (@~ w) =y (10-y) (g —v) (14.10°)
Therefore, the matrix version of the learning algorithm for the output
layer can now be written as:

W2, = W2+g * (YF .* (ONES(yR)—yR) . (F—¥)) * u’ (14.13%%)

The subscript k denotes the k** iteration, whereas the superscript n
denotes the n'* stage (layer) of the multi-layer network. I assume
that the network has exactly n stages. Eq(14.13%) is written in
a pseudo CTRL-C (MATLAB) style. The ‘+’ operator denotes a
regular matrix multiplication, whereas the ‘.x’ operator denotes an

14.5 Supervised and Unsupervised Learning 643

elementwise multiplication. The vector uf is obviously identical with
n—-1
. Let:
Kk

f¢ = y& .+ (ONES(y}) —yp) .* (¥ —¥P) (14.18)

denote the k** iteration of the § vector for the n** (output) stage of
the multi-layer network. Using eq(14.18), we can rewrite eq(14.13%¢)
as follows:

W2, =WPl4g * & % ul’ (14.19)

Unfortunately, this algorithm will work for the output stage of the
multi-layer network only. We cannot train the hidden layers in the
same fashion since we don’t have a “desired output” for these stages.
Therefore, we replace the gradient by another (unsupervised) updat-
ing function. The § vector of the £** hidden layer is computed as
follows:

o ;.
6 =yi .+ (ONES(yt) - YE) .+ (WEFL & 511 (14.20)

Instead of weighing the & vector with the (unavailable) difference
between the desired and the true output of that stage, we propagate
the weighted & vector of the subsequent stage back through the net-
work. We then compute the next iteration of the weighting matrix
of this hidden layer using eq(14.19) applied to the £** stage, i.e.:

Wi, =Wi+g * 6 * ut (14.21)

In this fashion, we proceed backwards through the entire network.

The algorithm starts by setting all weighting matrices to small ran-
dom matrices. We apply the true input to the network. we propagate
the true input forward to the true output, generating the first itera-
tion on all signals in the network. We then propagate the gradients
backward through the network to obtain the first iteration on all the
weighting matrices. We then use these weighting matrices to propa-
gate the same true input once more forward through the network to
obtain the second iteration on the signals, and then propagate the
modified gradients backward through the entire network to obtain
the second iteration on the weighting matrices. Consequently, the
u‘ and y* _vectors of the £** stage are updated on the forward path,
while the ¢ vector and the W matrix are updated on the backward
path. Each iteration consists of one forward path followed by one
backward path.

844 Chapter 14: Artificial Neural Networks and Genetic Algorithms

The backpropagation algorithm was made popular by Rumelhart
et al. [14.31]. It presented the artificial neural network research com-
munity with the first systematic (although still heuristic) algorithm
for training multi-layer networks. The backpropagation algorithm
has a fairly benign stability behavior. It will converge on many prob-
lems provided the gain g has been properly selected. Unfortunately,
its convergence speed is usually very slow. Typically, a backpropaga-
tion training session may require several hundred thousand iterations
for convergence.

Several enhancements of the algorithm have been proposed. Fre-
quently, a bias vector is added, i.e. the state of an artificial neuron
is no longer the weighted sum of its inputs alone, but is computed
using the formula:

x=W-.u+b (14.22)

Conceptually, this is not a true enhancement. It simply means that
the neuron has an additional input which is always ‘1’. Consequently,
the bias term is updated as follows:

brs1 = by +g- 8k (14.23)

Also, a small “momentum” term is frequently added to the weights
in order to improve the convergence speed [14.18]:

W1 =(L0+m) Wi +g-8 -u (14.24a)
The momentum should obviously be added to the bias term as well:
brt1 = (L0+m)-bx+g-5 (14.24b)

The momentum m is usually very small, m =~ 0.01.

Other references add a small percentage of the last change in the
matrix to the weight update equation [14.12]:

AWy =g-6; - uy' (14.25a)
Wk+1 =W+ AWr+m- AWy_, (14.25b)

Finally, it is quite common to limit the amount by which the §
vectors, the b vectors, and the W matrices can change in a single
step. This often improves the stability behavior of the algorithm.

14.5 Supervised and Unsupervised Learning 645

Counterpropagation Networks

Robert Hecht-Nielsen [14.12] introduced a two-layer network which
can be trained much more quickly than the backpropagation net-
work. In fact, counterpropagation networks can be trained instan-
taneously. We can provide an ezplicit algorithm for generating the
weighting matrices of counterpropagation networks. The idea be-
hind counterpropagation is fairly simple. The problem of teaching
a two-layer network to map an arbitrary set of input vectors into
another arbitrary set of output vectors can be decomposed into two
simpler problems:

(1) We map the arbitrary set of inputs into an intermediate (hidden)
digital layer in which the k** input/target pair is represented by
the k** unit vector, ey:

ex=[0,0,...,0,1,0,...,0] (14.26)

The k** unit vector, ey is a vector of length k& which contains
only ‘0’ elements except in its k** position where it contains a
‘1’ element.

(2) We map the intermediate (hidden) digital layer into the desired
arbitrary output layer.

Obviously, the length of the hidden layer must be as large as the
number of different input/target pairs that we wish to train the
network with.

The map from the intermediate layer to the output layer is trivial.
Since each output is driven by exactly one ‘1’ source, and since this
source doesn’t drive any other output, the output layer weighting
matrix consists simply of a horizontal concatenation of the desired
outputs:

Wi =[y},vi,....¥3] (14.27)

where y? denotes the i** output vector of the second stage which
is driven by the ** unit input vector of the second stage which is
identical with the i** output vector of the first stage, y}.

Thus, the interesting question is: Can we train a single layer per-
ceptron network (the first stage of the counterpropagation network)
to map each input into an output such that exactly one of the out-
put elements is ‘1’ while all other output elements are ‘0’, and such
that no two output vectors are identical if their input vectors are
different?

646 Chapter 14: Artificial Neural Networks and Genetic Algorithms

Teuvo Kohonen [14.17] addressed this question. In a way, the two
layers of the counterpropagation network are inverse to each other.
The optimal weighting matrix can be written as follows:

Wl=[ul,u}, ..., ul) (14.28)

The weighting matrix of the first stage is the transpose of the matrix
which consists of a horizontal concatenation of the input vectors.

The threshold of the perceptrons d is automatically adjusted such
that only one of the states of the first stage is larger than the thresh-
old.

Let us apply this technique to the problem of reading hand-written
characters. The purpose is to map the pixel representation of hand-
written upper—case characters to their ASCII code. Counterprop-
agation enables us to solve the character reading problem in one
single step without need for any training at all. Let us assume that
each input character is resolved in a 14 X 14 pixel matrix. Thus,
each character is represented by a pixel vector of length 196. Since
the alphabet contains 26 different upper—case characters, the hid-
den Kohonen layer must be of length 26. Each of the outputs is of
length eight. Thus, the total network contains 34 artificial neurons:
26 perceptrons and eight linear output neurons. The dimension of
the weighting matrix of the first stage is 26 x 196. We store the
pixel representation of the ideally written character A as the first
row vector of W1, We then concatenate from below the pixel repre-
sentation of the ideally written character B, etc. This will map the
pixel representation of the k** character of the alphabet into the k**
unit vector ex. The dimension of the weighting matrix of the second
stage is 8 X 26. We store the ASCII representation of the character
A as the first column vector of W2, and concatenate from the right
the ASCII representation of the character B, etc. This will map the
unit vector representation of the k** character of the alphabet into
its ASCII representation.

Several unsupervised training algorithms have been devised which
make the network adaptive to variations in the input vectors. A
typically used updating rule is the following:

wwllﬂ_l' =wwl +g-(ul - wwl' (14.29)

where ww!' denotes the “winning” row vector of the W' matrix.
According to eq(14.29), we don’t update the entire W' matrix at
once. Instead, we update only one row at a time, namely the row

14.6 Neural Network Software 647

that corresponds to the “winning” output of the Kohonen layer, i.e.,
the one output which is ‘1’ while all others are ‘0’. Eq(14.29) is
frequently referred to as the Kohonen learning rule. Notice that Ko-
honen learning does not always work. Improved learning techniques
have been proposed. However, we shall refrain from discussing these
updating algorithms here in more detail. Additional information is
provided in Wasserman [14.34].

In general, counterpropagation networks work fairly well for digital
systems, i.e., mappings of binary input vectors into binary output
vectors. They don’t work very well for continuous systems since the
hidden layer must be digital and must enumerate all possible system
states. Backpropagation networks work fairly well for continuous sys-
tems. They don’t work well for systems with digital output, because
their activation functions must be continuously differentiable.

Notice that the counterpropagation networks introduced in this
section are somewhat different from those traditionally found in the
artificial neural network literature. While the general idea behind the
counterpropagation architecture is the same, the explicit algorithm
for generating the weighting matrices is more appealing. Classical
counterpropagation networks randomize the first (Kohonen) layer,
and then use eq(14.29) to train the Kohonen layer. They use a so-
called Grossberg outstar as the second layer. However, my algorithm
is more attractive since it doesn’t require any iterative learning,
and since it works reliably for all types of digital systems, whereas
eq(14.29) often leads to convergence problems.

14.86 Neural Network Software

Until now, we have written down all our formulae in this chapter in
a pseudo MATLAB (CTRL-C) format. This was convenient since
the reader should be familiar with this nomenclature by now.

Let us use this approach to solve an example problem. We
wish to design a counterpropagation network to solve the infamous
exclusive~or problem. Since this is a digital system, we expect the
counterpropagation network to work well. Fig.14.13 depicts the
counterpropagation network for this problem.

648 Chapter 14: Artificial Neural Networks and Genetic Algorithms

1
+
e
ul + 'f:
1 3
]
\" &
uy + §
8
S
+
Kohonen

layer

Figure 14.13. Counterpropagation network for XOR

This system has two inputs and one output. Since the truth table
contains four different states, the hidden layer must be of length
four. Until now, we have always used the state ‘0’ to denote false,
and the state ‘1’ to denote true. This is not really practical for most
artificial neural networks. Therefore, we shall use the real value —1.0
to denote the logical state false, and the real value 1.0 to denote
the logical state true in both the input vector and the output. The
hidden layer will still use ‘0’ and ‘1°.

With this exception, the counterpropagation network functions as
described in the previous section. The code for this network is shown
below.

/] This procedure designs a counterpropagation network for XOR

DEFF winner -¢
/1l

// Define the input and target vectors
/1
mpt=[-1 -1 1 1

-1 1 -1 1}
target={-1 1 1 —1];

/1

// Set the weighting matrices
//

W1 = inpt';

W2 = target;

14.6 Neural Network Software 649

// Apply the network to evaluate the truth table

/!
y = ZROW(target);
FOR nbr = 14, ...
ul = inpt(z, nbr); ...
zl =W1lxul; ...
y1l = WINNER(z1); ...
u2 =yl; ...
22 =W2x*xu2; ...
y2 =z2; ...
y(nbr) = y2; ...
END
/1
// Display the results
/1
K)
//
RETURN

This procedure is fairly self-explanatory. The function WINNER
determines the largest of the perceptron states, and assigns a value
of +1.0 to that particular output in a “winner—takes—it-all” fashion.
The function WINNER is shown below.

// lv] = WINNER(z)
// This procedure computes the winner function

//

[n,m] = SIZE(z);
ind = SORT(z);
y = ZROW(n,m);
y(ind(n)) = 1;

//

RETURN

The function WINNER sorts the input vector « in increasing order.
The vector ind is not the sorted array, but an index vector that shows
the position of the various elements in the original vector. Thus,
2(ind(1)) is the smallest element of the z vector, and z(ind(n)) is
the largest element of the # vector. We then set the output vector y
to 0.0, except for the winning element which is set equal to +1.0.

The performance of the counterpropagation network is flawless.
However, the network is not error tolerant, since the input is digital
and does not contain any redundancy. Consequently, a single bit
error converts the desired input vector into another undesired, yet
equally legal, input vector. The Hamming distance between two
neighboring legal input states is exactly one bit.

650 Chapter 14: Artificial Neural Networks and Genetic Algorithms

Let us now try to solve the same problem using a hackpropagation
network. We expect problems since the system is digital. Fig.14.14
shows the resulting backpropagation network.

Figure 14.14. Backpropagation network for XOR

The length of the hidden layer is arbitrary. In our program, we made
this a parameter, lhid, which can be chosen at will. The program is
shown below.

/] This procedure designs a backpropagation network for XOR
// Select the length of the hidden layer (LHID) first

/]

DEFF limit -c

DEFF tri ¢

/1

/] Define the input and target vectors
/1
inpt=[-1 -1 1 1

-1 1-1 1}
target=[—-1 1 1 —1};

14.6 Neural Network Software

// Set the weighting matrices and biases

/1

W1 = 0.1 (2.04RAND(lhid, 2)— ONES(lhid, 2));
W2 = 0.1+ (2.0¢RAND(1, lhid)— ONES(1, lhid));
b1 = ZROW(lhid,1); b2 = ZROW(1);
WW1=ZROW(lhid,2); WW2=ZROW(1,lhid);
bbl = ZROW(lhid,1); bb2 = ZROW(1);

//

// Set the gains and momentums

//

g1 =0.6; g2=03;

ml=0.06; m2=0.03;

/1

// Set the termination condition

/1

crit = 0.025; error =1.0; count = 0;
/1

/] Learn the weights and biases

//
WHILE error > crit, ...
count = count +1; ...

... // Loop over all input/target pairs
error =0; ...
FOR nbr = 14, ...

ul = tnpt(:, nbr); ...
y2h = target(nbr); ...

... /| Forward pass

21 =WW1x*ul +0bb1; ...
y1 = LIMIT(z1); ...

u2 =yl; ...

22 =WW2xu2+bb2; ...
y2 = LIMIT(22); ...

... /] Backward pass
e I
e =1y2h —y2; ...
delta2 = TRI(y2) . ¢; ...
W2 =W2+ g2 x*delta2 x (u2')+ m2+ WW?2; ...
b2 = b2 + g2 * delta2 + m2 % bb2; ...
deltal = TRI(y1) .+ ((WW2')xdelta2); ...
W1=W1+glxdeltal x (ul')+mlx WW1; ...
b1 = b1 + g1 * deltal + m1 % bbl; ...
error = error+ NORM(e); ...
END, ...

651

852 Chapter 14: Artificial Neural Networks and Genetic Algorithms

... [/ Update the momentum matrices and vectors
WWi=W1; WW2=Wz2;...
bbl = b1; bb2 =b2; ...

END

1/

// Apply the learned network to evaluate the truth table
/1

y = ZROW (target);

FOR nbr =14, ...

ul = inpt(:,nbr); ...
21 =WW1=xul+bbl; ...
y1 = LIMIT(z1); ...
u2 =91; ...
22 =WW2=*xu2+bb2; ...
92 = LIMIT(=z2); ...
y(nbr) =y2; ...

END

/1

// Display the results

//

Yy

//

RETURN
It took some persuasion to get this program to work. The first
difficulty was with the activation functions. The sigmoid function is
no longer adequate since the output varies between —1.0 and +1.0,

and not between 0.0 and 1.0. In this case, the sigmoid function is
frequently replaced by:

y= % - tan~1(z) (14.30)

which has also a very convenient partial derivative:

dy 2 1.0

9z — 7 10437 (14.31)

However, also this function won’t converge for our application. Since
we wish to obtain outputs of exactly +1.0 and —1.0, we would need
infinitely large states, and therefore infinitely large weights.

Without the 2 term, the network does learn, but converges very
slowly. Therefore, we decided to eliminate the requirement of a con-
tinuous derivative, and used a limit function as the activation func-
tion:

14.6 Neural Network Software 653

// [y] = LIMIT(=)
/1

/] This procedure computes the limit function

/1
[n,m] = SIZE(z);

FOR :i=1:n, ...
y(i) = MIN([MAX([z(3), ~1.0]), 1.0]); ...
END
//
RETURN

In this case, we cannot backpropagate the gradient. Instead, we
make use of the fact that we know that all outputs must converge
to either +1.0 or —1.0. We therefore punish the distance of the true
output from either of these two points using the ¢ri function [14.18]:

// ls] = TRI(=)
/1

// This procedure computes the tri function

/!
[n,m] = SIZE(z);
y = ONES(n,m)— ABS(z);

/!
RETURN

We call this type of network a pseudo-backpropagation network.

In addition to the weighting matrices, we needed biases and mo-
mentums. The optimization starts with a zero weight matrix, but
adds small random momentums to the weights and to the biases.
After each iteration, the momentums are updated to point more to-
wards the optimum solution.

The program converges fairly quickly. It usually takes less than 20
iterations to converge to the correct solution. The program is also
fairly insensitive to the length of the hidden layer. The convergence
is equally fast with [hid = 8, lhid = 16, and (hid = 32.

This discussion teaches us another lesson. The design of neu-
ral networks is still more an art than a science. We usually start
with one of the classical textbook algorithm ... and discover that it
doesn’t work. We then modify the algorithm until it converges in a
satisfactory manner for our application. However, there is little gen-
erality in this procedure. A technique that works in one case, may
fail when applied to a slightly different problem. The backpropaga-
tion algorithm, as presented in this section, was taken from [14.18].
Korn’s new book contains a wealth of little tricks and ideas how the
convergence speed of neural network algorithms can be improved.

654 Chapter 14: Artificial Neural Networks and Genetic Algorithms

Notice the gross difference between backpropagation and the func-
tioning of our brain. Backpropagation learning is a gradient tech-
nique. Such optimization techniques have a tendency to either di-
verge or converge on a local minimum. In comparison, our brain
learns slowly but reliably, and doesn’t exhibit any such convergence
problems. Thus, gradient techniques, beside from the fact that they
are not hiologically plausible, may not be the best of all learning
techniques. In an artificial neural network, the robustness of the op-
timization technique is much more important than the convergence
speed. Unfortunately, these two performance parameters are always
in competition with each other, as I shall demonstrate in the second
volume of this text.

I have explained earlier that most artificial neural network pro-
grams (such as backpropagation networks) will need many iterations
for convergence. However, one thing that we certainly don’t want to
do is to rerun a MATLAB or CTRL-C procedure several hundred
thousand times. The efficiency of such a program would by incredi-
bly poor. Thus, MATLAB and CTRL-C are useful for documenting
neural network algorithms, but not for using them in an actual im-
plementation. (Because the previously demonstrated exclusive—or
problem is trivial from a computational point of view, CTRL-C was
able to solve this problem acceptably fast.)

Special artificial neural network hardware is currently under de-
velopment. Neural network algorithms lend themselves to massive
parallel processing, thus, a hardware solution is clearly indicated.
However, today’s neural network chips are still exorbitantly expen-
sive and not sufficiently flexible. For the time being, we must there-
fore rely on software simulation tools.

Granino Korn recently developed a new DESIRE dialect, called
DESIRE/NEUNET ({14.18]. This code has been specially designed
for the simulation of artificial neural networks. It has been optimized
for fast compilation and fast execution. The DESIRE/NEUNET
solution of the exclusive—or backpropagation network is given below.

14.6 Neural Network Software 655

—— ARTIFICIAL NEURAL NETWORK
—— Exclusive-Or Backpropagation
—~— Constants
lhzd:8 l gl:O.ﬁ ! g2=0.3
ml=0.06 | m2=0.03 | crit=0.025
—— Declarations
ARRAY «1[2], y1[lhid], y2[1]
ARRAY W1[lhid, 2], W2[1,1hid], b1[lhid], b2[1]
ARRAY WW1[lhid, 2], WW?2[1,lhid], bb1[lhid], bb2[1]
ARRAY deltal[lhid], delta2(1], e[1]
ARRAY inpt[4,2], target[4,1]
—— Read Constant Arrays
data —1,-1;-1,1;1,-1;1,1 | read inpt
data —1;1;1;—-1 | read target
—— Initial conditions
for ¢ =1 to lhid
W1[i, 1] = 0.1xran(0) | W1[z,2] = 0.1xran(0)
W2[1,4] = 0.1xran(0)
WW1fi,1]=00 | WW1[i,2] =00

WW2[1,4] = 0.0

b1[i] =0.0 | bb1[i)=0.0
next
b2=00 | b2=0.0 | error=20.0
min=—1.0 | maz=10 | sr=4

—— gealing
scale = 5

drun TEACH
drun RECALL

label TEACH

iRow =t | VECTOR ul = inpt#
VECTOR y1 = WW1*ul + bbl; min, maz
VECTOR y2 = WW2 x y1 + bb2; min, maz
VECTOR e = target# — y2

VECTOR delta2 = e * tri(y2)

VECTOR deltal = WW2% delta2+tri(y1)
LEARN W1 =glx*deltal xul+ml+« WW1
LEARN W2 =g2xdelta2 x y1 + m2x WW2
UPDATE b1 = g1 xdeltal + m1 x bbl
UPDATE b2 = g2 * delta2 + m2 * bb2

DOT e2=exe | error=error+e2

6856 Chapter 14: Artificial Neural Networks and Genetic Algorithms

SAMPLE sr

term crit — error

error = 0.0

MATRIX WW1=W1 | MATRIX WW2 = W2
VECTOR bb1 =51 | VECTOR bb2 = b2

dispt error

label RECALL

iRow =t | VECTOR ul = inpt#
VECTOR y1 = WW1=ul + bbl; min, maz
VECTOR y2 = WW2x*yl+ bb2; min, maz
inl =ul[l] | in2=ul2] | outl =y2[1]
type inl, in2, outl

/PIC 'zor.prc’
/ —_—

This DESIRE program exhibits a number of new features that we
never before met. DESIRE is able to handle vectors and matrices in
a somewhat unflexible but extremely efficient manner. Contrary to
CTRL-C (or MATLAB), DESIRE does not allow us to easily manip-
ulate individual elements within matrices or vectors. DESIRE’s ma-
trix and vector operators deal with the whole data structure at once.
Thus, some algorithms, such as the genetic algorithms described later
in this chapter, can be elegantly programmed in CTRL-C, while
they are almost impossible to implement in DESIRE. Yet, DESIRE
works very well for many classical neural network algorithms such
as backpropagation, and counterpropagation.

In DESIRE, all vectors and matrices must be declared using an
ARRAY statement. ARRAY declarations can make use of previously
defined constants.

Within the DYNAMIC block, vector assignments can be made us-
ing the VECTOR statement. The ‘x’ operator in a vector assignment
denotes either the multiplication of a matrix with a vector, or the
multiplication of a scalar with a vector, or the elementwise multipli-
cation of two vectors. Notice that the VECTOR statement has been
explicitly designed for the simulation of artificial neural networks.
The statement:

VECTOR. yl1 = WW1 % ul + bbl; min, maz (14.32)

14.6 Neural Network Software 657

computes the state vector of a neural network, and simultaneously
its output using a hard limiter as the activation function. DE-
SIRE/NEUNET also offers most other commonly used activation
functions and their derivatives as system defined functions, such as
the tri function used in the above program. Remember that DESIRE
is case sensitive. The VECTOR assignment:

VECTOR y=y + = (14.33)
can be abbreviated as:
UPDATE y == (14.34)

Matrix assignments can be made using the MATRIX statement. The
‘#’ operator in a MATRIX statement denotes the outer (Hadamard)
product of two vectors, or the multiplication of a scalar with a ma-
trix. The MATRIX assignment:

MATRIX A=A+B (14.35)
can be abbreviated as:
LEARN A=B (14.36)

The DOT statement computes the inner product of two vectors. The
result is a scalar.

The ‘%’ operator denotes a matrix transpose. WW2% is the trans-
pose of matrix WW2. The ‘4’ operator is a special row vector ex-
traction operator. In the above program, inpt is a matrix. inpt#
extracts one particular row from that matrix, namely the row in-
dicated by the system variable :Row. ‘#’ is a modulo operator. If
1Row is larger than the number of rows of inpt, ‘4’ starts counting
the rows anew. During the first step, ¢ = 1, and therefore :Row = 1.
Thus, inpt# extracts the first row vector from the tnpt matrix. Dur-
ing the second step, iRow = 2, and therefore, the second row vector
is used. In this way, the network gets to use all four input/target
pairs. During the fifth step, ¢Row = 5, and since inpt has only four
rows, the first row is extracted again. This language construct is
much less elegant than CTRL-C’s (and MATLAB’s) wild card fea-
ture. It is the price that we pay for DESIRE’s ultrafast compilation
and execution. Remember that DESIRE was designed for optimal
efficiency, and not for optimal flexibility.

The SAMPLE block is similar to a DISCRETE block in ACSL
which contains an INTERVAL statement. It is normally used to

658 Chapter 14: Artificial Neural Networks and Genetic Algorithms

model difference equations. The argument of the SAMPLE state-
ment denotes the frequency of execution of the SAMPLE block. In
our example, the SAMPLE block will be executed once every four
communication intervals. This construct is somewhat awkward, be-
cause it isn’t necessarily meaningful to link the sampling rate with
the communication interval. It may be desirable to sample a sig-
nal much more frequently than we wish to store results for output.
The argument of the SAMPLE block should therefore refer to an
arbitrary time interval rather than a multiple of the communication
interval. Moreover, we may wish to simulate several discrete blocks
sampled at different frequencies. Unfortunately, DESIRE allows only
one SAMPLE block to be specified in every program.

Finally, we notice that several different DYNAMIC blocks can be
coded in a single DESIRE program. Labels can precede sections
of DYNAMIC code. These labels can be referenced in the drun
statement.

Although I am quite critical of some of the details of the DESIRE
language specification, DESIRE/NEUNET is clearly the best tool
currently available for neural network simulations. On a 386—class
machine, the exclusive-or backpropagation program compiles and
executes in considerably less than 1 sec.

ACSL also offers matrix manipulation capabilities, but they are
not useful for neural network simulation. As DESIRE, also ACSL
does not provide easy access to individual matrix or vector elements.
Yet, the reason is different. In ACSL, matrices were only an after-
thought. They were implemented as generic macros (ACSL’s “macro
macro”). Consequently, matrix operations must be coded in inverse

polish notation. For example, the statement:
x=W.u+b (14.37)
would have to be coded in ACSL as:
MADD(z = MMUL(W, x) , b) (14.38)

and their compilation is fairly slow. ACSL does not offer any non—
linear vector functions as they are needed to describe the non-linear
activation function of artificial neurons.

14.7 Neural Networks for Dynamical Systems 659

14.7 Neural Networks for Dynamical Systems

Artificial neural feedforward networks are basically non-linear mul-
tivariable function generators. They statically map a set of inputs
into a set of outputs.

For the state—space representation:
x = f(x,u,1) (14.39)

at any given time ¢, eq(14.39) maps the state vector x and the input
vector u statically into the state derivative vector x. Thus, an ar-
tificial neural feedforward network should be able to “identify” the
state—space model, i.e., to learn the system behavior. Unlike classi-
cal identification techniques, we need not provide the neural network
with the explicit structure of the state—space model. In this respect,
the neural network operates like the inductive reasoners discussed in
Chapter 13.

Fig.14.15 shows a typical configuration of an adaptive (self-tuning)
controller of a plant. The fast inner loop controls the inputs of a plant
using a controller. The optimal controller parameters p. depend on
the current model parameters p,,. In the slow outer loop, the model
parameters pp, are identified from measurements of the plant input
u and the plant output y. The optimal controller parameters p. are
then computed as a non-linear function of the model parameters pp,.

controller plant >y

L |

P=f(pp) /‘\,—p—— identifier
m

Figure 14.15. Plant with self-tuning regulator

Classical adaptive controllers work only if the model can be param-
eterized, i.e., if the uncertainties of the model can be represented
through a model parameter vector p,,. Moreover, most of the known

660 Chapter 14: Artificial Neural Networks and Genetic Algorithms

parameter identification techniques require the plant itself to be lin-
ear. This is true for both self-tuning regulators and model-reference
adaptive controllers.

It is feasible to replace both the identification stage and the map
from the model parameters to the controller parameters by neural
networks. An excellent current review of research in this area was re-
cently published by Narendra and Parthasarathy [14.25]. They show
how the linear plant requirement can be eliminated. In this chap-
ter, we shall not pursue the identification of adaptive controllers any
further. Instead, we shall restrict our discussion to a very simple ex-
ample of the identification of a dynamical system. Given the system:

x=A:-x+b-u '
0 1 0 0
: = 0 0 1)]-x+|[0]-u (14.404q)
-2 -3 -4 1
y=C-:-x+d-u
1 0 0 0
=0 1 0] -x+[|0]: u (14.40b)
(34) ()

We wish to train an artificial neural network to behave like the state—
space model of this system. We shall use a backpropagation net-
work similar to the one used before to replace the state equations,
eq(14.40a). For this problem, we simulated the linear system in
CTRL-C, and stored the resulting inpt and target matrices for off—
line (supervised) learning. The CTRL-C code for the simulation is

given below.

// Define the system

/1

a=[0 1 0
0o o 1
-2 -3 —4];

b=[0;0;1];

¢ = EYE(a);

d = ZROW(b);

14.7 Neural Networks for Dynamical Systems 661

// Simulate the system in CTRL — C
/1

t = 0:3:900;

» = ROUND(RAND(?));

20 = ZROW(3,1);

SIMU('ic’, z0)

[v,2z] = SIMU(a, b, ¢,d, u, t);

//
]/ Postprocess the results
//
zdot = ZROW(z);
FOR i = 1:301, ...
zdot(z,1) = a * z(z,1) + bx u(d); ...
END
//

inpt=[v', 2'];
target = zdot';

/!

// Save the results
//

SAVE inpt target > linear.dat

/1
RETURN

The system to be learned contains four inputs (u and x) and three
targets (x). 301 different input/target pairs are available for training.
The CTRL-C version of the backpropagation network is given below.

/] This procedure designs a backpropagation network for
// learning the behavior of a linear system
// Select the length of the hidden layer (LHID) first

//
DEFF fatan -c

/]

// Load the input and target vectors
/]

LOAD inpt target < linear.dat
[npair, ninpt] = SIZE(inpt);
[npair,ntarg] = SIZE(target);

662 Chapter 14: Artificial Neural Networks and Genetic Algorithms

// Initialize the weighting matrices and biases

//

W1 =0.01 = (2.0«4RAND(1hid, ninpt)— ONES(Ikid, ninpt));
W2 = 0.01 # (2.0+RAND(ntarg, lhid)— ONES(ntarg, lhid));
b1 = ZROW(lhid,1); b2 = ZROW(ntarg,1);

WW1 = ZROW(lhid, ninpt); WW2 = ZROW(ntarg, lhid);
bbl = ZROW (lhid,1); bb2 = ZROW(ntarg,1);

/1

/[Set the gains

//

¢g1=0.1; g2 =0.005;

//

// Set the termination condition
/f

crit =3.0; error = 10.0; count=0;
//

// Learn the weights and biases
//

WHILE error > crit, ...
count = count +1; ...

<+ /] Loop aver all input/target pairs

error =0; ...

FOR nbr = linpair, .
ul = inpt(nbr,:)’; ...
y2h = target(nbr,:)’; ...

«+. // Forward pass
z1=WW1+ul +bbl; ...
y1 = (2.0/pi)*ATAN(z1); ...
u2 =yl; ...

22 =WW2*u2+bb2; ...
y2 = (2.0/pi)*ATAN(z2); ...

.+ /| Backward pass
e=y2h —y2; ...
delta2 = (2.0/pi)*FATAN(y2) . * e; .
W2 =W2+ g2 +delta2 * (u2'); ...
b2 = b2 + g2 x delta2; ...
deltal = (2.0/pi)*FATAN(y1) .« ((WW?2') » delta2); ...
W1=W1+ g1=xdeltal x(ul'); ...
b1 = b1 + g1 # deltal; ...
error = error+ NORM(e); ...
END, ...

14.7 Neural Networks for Dynamical Systems 663

... // Update the momenium matrices and vectors

Wwi=W1 WWw2=W2; ...
bb1 = bl1; bb2 =102; ...
err(count,1) = error; ...

END

/1l

// Save the learned network weights and biases for later

//
SAVE WW1 WW?2 bbl bb2 err > linear_2.dat

//
RETURN

Since the system is continuous, we replaced the LIMIT/TRIfunction
pair by an ATAN/FATAN function pair, where FATAN is the partial
derivative of ATAN. To obtain convergence, the gains had to be con-
siderably smaller than those used for the exclusive—or problem. The
momentum terms had to be eliminated for this network. We looped
over all available input/target pairs before we updated the weighting
matrices and bias vectors. Thus, each iteration of the weight learn-
ing algorithm contained npair = 301 forward and backward passes
through the network.

All desired target variables are approximately 0.1 units in ampli-
tude. Thus, if our backpropagation network computes a real target
of similar amplitude, but with arbitrary direction, the error is also
approximately 0.1. Since we accumulate the errors of all input/target
pairs, we expect an initial total error of about 30. This error should
be reduced by one order of magnitude, before we can claim that our
network has “learned” the system. Thus, we set crit = 3.0.

The learning required 774 iterations, and consumed more than
7 hours of CPU time on a VAX-11/8700. Obviously, this is not
practical. If you wish to know how much time DESIRE/NEUNET
requires to train the same network, solve hw(H14.2). It turns out
that DESIRE/NEUNET solves this problem within a few minutes
on a 386—class machine. Moreover, notice that I gave you good gain
values to start with. In most cases, we shall need to rerun the same
optimization many times in order to determine decent gain values.
CTRL-C (or MATLAB) are obviously not useful for practical neural
network computations. However, these languages are excellent tools
for documenting neural network algorithms.

Fig.14.16 displays the total error as a function of the iteration
count.

6684 Chapter 14: Artificial Neural Networks and Genetic Algom’thms

Bacl&:r?paigiaﬁoﬁ Network of Liineérrgystein

40, I T . T T v

—_ 30.
L
=

E 20.

3‘; 10.
[20

0.

0.0 100. 200. 300. 400. 500. 600. 700. 800.

Iteration Count [#]

Figure 14.16. Learning a backpropagation network for a linear system

The results are rather interesting. The weight learning problem can
be interpreted as a discrete-time dynamical system, i.e., the updat-
ing of the weights is like solving a highly non-linear high—dimensional
set of difference equations. This “dynamical system” exhibits an
oscillatory behavior. About once every 95 iterations, the network
goes through a short phase in which the error temporarily grows.
However, the network settles on a lower error level after each succes-
sive temporary instability. Notice that this “dynamical system” is
chaotic. Each peak is slightly different from every other. The system
behaves similarly to the Gilpin model for a competition factor of 1.0.

Let us analyze the behavior of our linear system at a particular
point in time, £ = 813 sec. The input and the state vector at that
time have values of:

—0.0464
w=0.0; x= [—0.0646
0.0756

and the true state derivative vector is:

—0.0646
Xirue = | 0.0756
—0.0157

The approximated state derivative vector computed by the back-
propagation network is:

—0.0606
XAN.N. = 0.0728
—0.0170

14.7 Neural Networks for Dynamical Systems 665

Thus, the backpropagation network has indeed successfully learned
the multivariable function. The approximated state derivative values
are only slightly smaller than the true values.

Notice that the true system itself may be interpreted as an artificial
neural network (A.N.N.):

x=A-x+b-u=(A b)-(i):W-ul (14.41)

Thus, we could have identified a single layer network with four in-
puts and three outputs using a linear activation function. We could
have “trained” this network much more easily, and the results would
have been even better ... but this would have been no fun. The
purpose of the exercise was to show that we can train an arbitrary
artificial neural network to blindly learn the behavior of an arbitrary
multivariable function.

We chose to learn the network off-line in a supervised learning
mode. However, we could have easily learned the network on-line in
an adaptive learning mode. We would simply have used input/target
pairs as they arrive to train our W matrices and b! vectors, and
occasionally update the WW? matrices and bb! vectors.

Encouraged by these nice results, let us now close the loop.
Fig.14.17a shows the true system, which we shall now replace by
the approximated system of Fig.14.17b.

B e Axabu = W ANN, =
X X
[K [&
(a) (b)

Figure 14.17. Approximation of a linear system by an A.N.N.

We close the loop around the backpropagation network using vec-
tor integration. As in Chapter 13, we shall assume that forecasting
begins at time ¢ = 813 sec. We shall predict the future state trajec-
tories of the system using the A.N.N. Fig.14.18 shows the results.

68868 Chapter 14: Artificial Neural Networks and Genetic Algorithms

Comparison of Simulated and Forecast Behavior

1¢. T T T T f ! ! T
0.0 s ' -
Py ~to. b enn R R EERERRPR "~‘—:§‘~‘~‘-'i'—
-20. i H ; H i H i i
810. 820. 830. 840. 850. 860. 870. 880. 880. 800.
Time [sec]
2 IV T T T T v LS T
0. - et f .
: T T~ L
b‘,“ L3 T R E"““‘\“"““‘-'s -
-4. 1 i 1 1 1 i 1 1
610. 820. 830. 840. 850. 850. ©70. 880. 8§0. ©00.
Time [sec]
10- ‘ T T T T L] T T
7% RSP :__'__..-‘—"—_
2 ool e
_5. i v 1 1 'l ' L i
810. 820. 830. 840. 850. 860. B70. €80. ©90. 90O.

Time [sec]

Figure 14.18. Comparison of true and approximated trajectories

The solid lines represent the true trajectory behavior, while the
dashed lines represent the approximated trajectory behavior. This
was obviously not such a brilliant idea after all. The A.N.N. approx-
imation and the true trajectory behavior vary greatly. The A.N.N.
systematically underestimates the first and second state derivatives,
whereas it systematically overestimates the third state derivative.
The errors in each individual step are fairly small, but these errors
accumulate, and the approximated solution quickly drifts away from
the true solution. Unlike the results obtained in Chapter 13, errors
accumulate if we close an integration loop around a neural feedfor-
ward network trained to approximate the behavior of an open-loop
system. .

Let us now try another approach. Remember that, in Chapter 13,
we chose a mask depth of three, i.e.:

Xk+1 = f(uk—h Xk-1) Uk, Xk, uk+1) (1442)

14.7 Neural Networks for Dynamical Systems 667

Thus, we could try to train an A.N.N. to approximate the closed—loop
behavior of our dynamical system using eq(14.42). This time, we
have nine inputs and three outputs. Since I have become impatient,
and don’t want to spend several more hours training yet another
backpropagation network, I shall use a counterpropagation network
instead. Since counterpropagation networks work much better for
digital systems, let us try the idea shown in Fig.14.19.

counter-

propagation D/A]
network

! Z'l k:

1 Z-l k:

Figure 14.19. Counterpropagation network for linear system

We generate the weighting matrices of the feedforward counterprop-
agation network by converting the nine analog inputs to 90 digital
inputs, and the three analog targets to 30 digital targets using 10 bit
analog to digital (A/D) converters. We set up the counterpropa-
gation network using the first 269 input/target pairs. Thus, the
counterpropagation network has 90 inputs, a hidden layer of length
269, and an output layer of length 30. The off or false state of the
digital inputs and targets is represented by —1.0, whereas it is rep-
resented by ‘0’ in the hidden layer. The on or true state of all digital
signals is represented by +1.0.

During recall, we convert the analog input vectors of length nine
to digital input vectors of length 90 using the same 10 bit A/D
converters. For each digital input vector, the counterpropagation
network predicts a digital target vector of length 30. We then convert
the resulting 30 digital targets back to three analog targets using
10 st digital to analog (D/A) converters.

668 Chapter 14: Artificial Neural Networks and Genetic Algorithms

In our example, we use this configuration to predict the trajectory
behavior of the linear dynamical system over the last 87.0 time units
or 30 input/target pairs. Fig.14.20 shows the results of this effort.

Comparison of Simulated and Forecast Behavior

‘810. 820. 830. 840. 850. 860. 870. 880. 890. 800.
Time [sec]

N
<

| C
<
g
<
<
o
<

B10. 820. 830. 840. 850. BE0. 670. B80. ©90. 900.
Time [sec]

°-2 l I

NN ;/\ /\v/\/\u/\v/\\//\u/\\//\v _/

"2
810, 820, 830, 810 850, 850, 870, 680, 890, 800.
Time [sec]

Ys

Figure 14.20. Comparison of true and approximated trajectories

This time, we were right on target. Within the forecasting sequence,

only a few predictions were incorrect. There are two possible sources

of errors:

(1) Since the input/target map is no longer strictly deterministic,
the same input may produce several different targets. In that
case, we may subsequently recall the wrong target.

(2) A particular input may never have been observed during the
setup period. In this case, the prediction will be arbitrary, and
probably incorrect.

As in the solution presented in Chapter 13, errors don’t accumu-
late. An error which occurs once is not propagated through the
network. Compared to the SAPS method, the counterpropagation
network allows us to operate with much better resolution. In SAPS,
we had to discretize our continuous signals into no more than five

14.7 Neural Networks for Dynamical Systems 669

different levels. In the counterpropagation network, we discretized
our continuous signals into 1024 different levels. The price that we
pay for this luxury is an increased memory requirement. The SAPS
masks store their knowledge about the system in a much more com-
pact fashion. The weighting matrices of the counterpropagation net-
work have dimensions 269 x 90, and 30 x 269, and thus, they are
fairly large. If you wish to learn how Fig.14.20 was produced, solve
hw(H14.4).

Notice that also this algorithm can be implemented in an adaptive
learning mode. To do this, we begin with a hidden layer of length
one, and store the first input/target pair as the two weighting ma-
trices W' and W2, We then process the second input. The second
input will probably differ from the first. In this case, the counter-
propagation network will forecast the wrong target. If this happens,
we concatenate the new input as an additional row to the W?! ma-
trix from below, and we concatenate the true target as an additional
column to the W? matrix from the right, thereby incrementing the
length of the hidden layer. If the target is predicted correctly, we
leave the A.N.N. as is. After many iterations, most of the inputs will
have been seen earlier, and eventually, the network will stabilize. If
you wish to study this algorithm in more detail, solve hw(H14.5).

Yet another technique to emulate dynamical systems is direct iden-
tification of a recurrent network, i.e., identification of an A.N.N. with
built in feedback loops. This approach was first proposed by Hop-
field [14.14]. The most popular and widely studied recurrent net-
work is therefore referred to as a Hopfield net. Hopfield nets have
only one layer, and require a much smaller number of neurons than
the previously proposed counterpropagation networks. For our (triv-
ial) example, three artificial neurons would suffice. The Hopfield net
would simply be the sampled—data version of our continuous system.
Other commonly used variations of recurrent networks are the multi—
layered bidirectional associative memories, and Grossberg’s adaptive
resonance circuits (ART’s). Recurrent networks can be problematic
with respect to their stability behavior. We won’t pursue this avenue
any further in this text. However, notice that the explicitly dimen-
sioned “counterpropagation network” of Fig.14.19 is in fact also a
recurrent network. It does not exhibit stability problems.

870 Chapter 1{: Artificial Neural Networks and Genetic Algorithms

14.8 Global Feedback through Inverse Networks

As I mentioned earlier, today’s A.N.N.’s bear little resemblance to
actual neural networks found in mammals. Let us now return to
the question of how our brain works, how it processes information,
and how it “learns”. Obviously, my remarks must become a little
more philosophical at this point, and I won’t be able to support my
hypotheses with short CTRL-C or DESIRE/NEUNET programs.

We wish to discuss how our brain is believed to processes various
types of sensory input signals. Let us pursue the processing of infor-
mation related to the animal DOG. Its symbol in my brain will be
denoted as DOG. The sound “dog” will be written as ~ dog ~, and

a picture of a dog will be coded as /\9\< .

My brain has a visual neural network which maps /\9* into DOG,
and an auditory neural network which maps =~ dog ~ into DOG.
Thus, the brain can map different sensory input signals into the
same symbol.

If somebody says ~ dog ~ to me, an image of my dog, my-

/\9\‘< , appears before my inner eye. How is this possible, and what
is an “inner eye”? It seems that the brain is not only capable of
mapping pictures into symbols, but it can also map symbols back
into pictures. Somehow, these pictures can superpose real images
captured by the eye. We call this internal seeing the “inner eye”. 1
shall denominate the neural network which maps symbols back into
pictures the inverse visual neural network.

Similarly, my brain also has an inverse auditory neural network. In
fact, my brain has an inverse neural network for each of my senses.
If T watch old slides from one of my trips to the Middle East, I
suddenly “smell” the characteristic spices in the bazaars (such as
sumak), and I “hear” the muezzin call the believers to prayer. These
sensations are produced by the inverse neural networks, i.e., by global
feedback loops which connect the symbols right back to to the senses
from which they originated. Usually, these feedback loops are fairly
rigorously suppressed. We have been taught to ignore these feedback
signals most of the time. They are constantly present, however, and
play an important role in our lives.

Fig.14.21 depicts these feedback loops for the visual and auditory
networks.

14.9 Chaos and Dreams 671

inverse
auditory
network

auditory
+ network

@;)_H_, Dog

< +* visual
network

0

>
>

inverse
visual
network

Figure 14.21. Global feedback through inverse neural networks

I am convinced that this global feedback mechanism is essential to
our brain’s ability to learn. Without such feedback, the brain could
mindlessly react to stimuli, but it could never achieve higher levels of
cognition. We would not be able to truly “think”. Let me elaborate
on this idea a little further in the next section.

14.9 Chaos and Dreams

It turns out that, while the neural networks themselves are massive
parallel processors, at the symbolic or conscious level, we can “think”
only one thought at a time. This means that, at the output summer
of Fig.14.21, where the symbols are formed and ultimately rise to the
level of consciousness, we have a “winner-takes—it—all” situation. We
are faced with competition.

Remember our lessons from Chapter 10:

872 Chapter 14: Artificial Neural Networks and Genetic Algorithms

high-dimensional system
+ feedback loops
+ competition
= chaos

If we take a high—dimensional system like our brain, introduce some
feedback loops (hopefully without making the system unstable), and
introduce competition, the result is almost invariably chaos. I there-
fore argue that, due to the existence of global feedback loops, our
brain operates permanently under conditions of a chaotic steady-
state.

Normally, the external inputs are much more powerful than the
feedback loops. Thus, they will usually win the competitive battle at
the output summer. However, during the night, when the external
inputs are reduced to a minimum, the feedback loops take over. The
behavior of our brain is then dictated by its own chaotic steady-—
state behavior. We call this mental state: dreaming. In our dreams,
colorful sceneries appear before our “inner eyes”. Since the visual
input is usually dominant, this is what we most likely will remember
in the morning. However, with our “inner ears”, we also hear people
speak to us, and I am convinced that we also smell with our “inner
nose”, taste with our “inner taste buds”, and touch with our “inner
skin”.

Recall another lesson from Chapter 10. For self-organization to
occur in a system, we need an innovator and an organizer. In our
brain, the innovator is the chaotic feedback. Without this feed-
back, we would never create new and original ideas. Instead, we
would react to our environment like mindless machines [14.22]. The
organizer is the reward mechanism which is responsible for the sur-
vival of the “good ideas”. Thus, without chaos, no learning and no
self-organization could occur. No wonder that today’s robots are
“mindless”. We haven’t figured out yet how to introduce chaos into
their “brains”. This certainly is a worthwhile research topic.

14.10 Internalization Processes and
Control Mechanisms

In our brains, the relative weights of the external vs internal inputs
are controlled by various mechanisms. The control is exerted by

14.10 Internalization Processes and Control Mechanisms 673

two higher level functions which have been coined our ego and our
superego. The intensity of the feedback loops is controlled by mech-
anisms usually referred to as our will (attributed to the ego), and
by societal taboos (attributed to the superego). The latter mecha-
nism prevents us from pursuing particular thoughts beyond a “dan-
ger level” which is a threshold coded into our superego. When a
“dangerous” idea pops up, the superego will automatically reduce
the weights of the feedback loops, and we divert our attention to
another topic [14.22]. Moreover, we all want to be “liked”. Since
strangely behaving people are “not liked”, our ego reduces the im-
pact of the internal feedback loops to an extent where we react to
external stimuli reliably and coherently.

In order to understand these mechanisms better, we need to ex-
pand the block diagram of Fig.14.21 to that in Fig.14.22.

-
Unconscious
—_— State
Force Motoric N Pr ious
Input Network State
ﬁl:fo':; ==X Conscious
Network State
S |
Cenetic | | 0 l_______ 5 Social
d p---------- b Ego Superego
toput ; g™
| H
Inverse
Sensory Self
- Network —)
Sensory Senso
Input Netwo?l'; D Preconscious
Unconscious

Figure 14.22. Block diagram of human mental functions

874 Chapter 14: Artificial Neural Networks and Genetic Algorithms

From a psychodynamical point of view, we can distinguish between
three major subjective functions (we could call them programs), the
td, the ego, and the superego. They operate on three major objec-
tive functions (we could call them data bases), the unconscious, the
preconscious, and the conscious self. The id is the earliest of our
“programs”. It is purely hereditary, i.e., we are born with it. Ini-
tially, the id performs all of the control functions. During the first
three years of our lives, the ego develops and subsequently assumes
most of the control functions. However, since the ego is flexible and
comparatively easy to re-program (since it is predominantly con-
scious), we need yet another mechanism which ensures the overall
stability of the “system”. This is called the superego. It sets the
limits for the ego. The superego develops last among the three “pro-
grams”, around age four or five. The superego is much more difficult
to re-program than the ego since it is mostly unconscious. The su-
perego holds our unconscious beliefs and commands. It knows what
is inherently “right” and “wrong”. It is the basis of our conscience,
of our superstitions, and all sorts of societal and familial taboos.

From the perspective of a control engineer, our brain contains two
major model-reference adaptive control (MRAC) loops. On the sen-
sory side, the innermost automatic feedback control loop contains
the sensory network (forward path) which feeds the conscious self,
the preconscious, and the unconscious. It also contains the inverse
sensory network (feedback path). The innermost control loop is su-
pervised by the ego, our major adaptive controller. It receives infor-
mation mostly from the conscious self, but also from the preconscious
and unconscious. The ego decides whether the system performs ad-
equately. If the system reacts too slowly, the feedback gains of the
innermost control loop are increased. If it starts to become unsta-
ble, the feedback gains are decreased. The id can perform similar
functions. It receives information mostly from the unconscious, but
also from the preconscious and from the conscious self. However,
it is mostly content to let the ego do its job. It has more direct
means to intervene. It can provide strong input signals directly to
our sensory system. If the id decides that I should eat, it provides
my stomach sensors with the strong sensation of hunger. Notice
that the id does not directly tamper with my data bases. It does not
make me fall upon the idea that I might wish to eat. It stimulates
my sensory input, and lets the sensory network process the sensa-
tion of hunger which will ultimately arrive at my self, will then be
forwarded as useful information to my ego, which then instructs the
second (motoric) control loop to do something about. The superego

14.10 Internalization Processes and Control Mechanisms 675

is the external model of the MRAC. It provides the ego with the
needed set values, and ensures the overall stability of the system.
The ego can be re—programmed, but only to the extent that the su-
perego permits. The motoric MRAC is a mirror image of the sensory
MRAC. The innermost loop contains the motoric network (forward
path) which feeds the three objective functions or data bases which
maintain positional and velocity information. The inverse motoric
network feeds back the perception of my current position, velocity,
and force vectors. The ego is again the adaptive controller which
puts purpose into my motions. The id can perform similar functions,
but it usually doesn’t. It has more direct means to influence my
motoric behavior, through reflexes. The superego knows “my place
in the world”. It prevents the ego from requesting motoric actions
which are considered undecent.

From the perspective of a software engineer, we usually distinguish
between datae, and programs that act on data. We may classify the
conscious self, the preconscious, the unconscious, and their motoric
counterparts as data, and the id, the ego, and the superego as pro-
grams that act upon these data. The four “network” boxes have
not been named in the psychological literature. They are also “pro-
grams”, but hardwired ones. They are basically data filters. How-
ever, as software engineers, we know that the distinction between
programs and data is not very crisp. An ACSL “program” is a data
filter which maps input trajectories (input “data”) into output tra-
jectories (output “data”). However, the ACSL preprocessor is yet
another data filter which maps the ACSL program (input “data”)
into a FORTRAN program (output “data”). Thus, what constitutes
“data” and what constitutes “programs” depends on our perspective.
In LISP, we notice this fusion even more clearly. There is really no
difference at all between a data item and an instruction operating
on a data item. In an expert system, we usually distinguish between
the knowledge base which contains the facts, and the rule base which
contains instructions for how to process the facts. Yet, both are data
bases which are syntactically identical. This similarity applies to our
brain as well. We possess only one brain which stores both the facts
(objective functions) and the rules (subjective functions). When we
look at our brain under a microscope, we cannot distinguish between
them, because the microscope shows us only the syntaz, and not the
semantics of our brain.

In Fig.14.22, data flow is shown as double lines. Control signals
are shown as single lines. The basic “programs” of our brain are the
four network boxes. The ego acts as an incremental compiler which

876 Chapter 14: Artificial Neural Networks and Genetic Algorithms

constantly modifies the four basic programs, but it tampers more
with the feedback networks than with the feedforward networks. The
ego constantly modifies parameters in our feedback networks. The
dashed lines in Fig.14.22 represent control signals of a deeper type.
Initially, there is no ego. The ¢d represents the “desire” for an ego
to develop. Thus, the id controls the creation of the ego “program”.
After the ego is fully developed, the id even delegates this function
to the ego, i.e., the ego starts re-programming itself.

Even this capability is not unheard of in software engineering.
ELLPACK [14.27] is a simulation language for solving elliptic par-
tial differential equations. Like in ACSL, a preprocessor translates
ELLPACK programs into FORTRAN. However, the ELLPACK lan-
guage is not static. It is meant to be user modifiable. Therefore,
the preprocessor is not hand—coded. Instead, the system comes with
a compiler generator which can automatically generate a new ver-
sion of the preprocessor from a data template file which contains an
abstract description of the ELLPACK syntaz (the grammar) and of
the ELLPACK semantics (the code to be generated). Then, the
software designers decided that this data template file was too dif-
ficult to create manually. Consequently, they designed a template
processor which generates the required data template file from a yet
more abstract description. Naturally, they didn’t want to manu-
ally code the template processor either. Instead, they described the
syntax and semantics of the template processor, and generated the
template processor using the same compiler generator that they had
used before to generate the ELLPACK preprocessor. Finally, they
described the syntax and the semantics of the compiler generator
itself in terms of the syntax and semantics of the compiler genera-
tor, and they now can feed this description into one version of the
compiler generator, and use it to generate the next version of itself.
They actually started out with a very simple compiler generator, and
bootstrapped it by iteratively processing it through itself.

The ego and the superego together perform the function of a highly
effective MRAC. If the feedback gains are set too low, we lose our
creativity and inspiration. If they are set too high, the “system”
becomes unstable, and we end up in a mental institution. Yet, the
“set values” of the adaptive controller are highly individual.

People who effectively suppress their feedback loops are perceived
as reliable and predictable, but not very imaginative, possibly as
compulsive, and in extreme cases as neurotic. These people are the
“bureaucrats” of our society. They desire predictable, routine lives.

14.10 Internalization Processes and Control Mechanisms 677

They feel uncomfortable changing jobs. They usually prefer the ap-
parent “safety” of an existing situation, even if it is unbearable, to
the uncertainty of change. Neurotic people have a small ego and
an overpowering superego which leaves the ego little latitute for im-
provement. The feedback loops are heavily suppressed. Much of the
conscious self is intentionally repressed into the preconscious and un-
conscious. Threatening thoughts are swept under the carpet rather
than confronted.

People who allow their feedback gains to be at a higher level, are
considered inspirational and imaginative, but also somewhat impul-
sive and incalculable. These people are the artists and Bohemians of
our society. They are considered somewhat egotistic (which simply
means that they have a strong ego). They will change a bad situ-
ation rather than suffer. Since their ego is strong, they don’t need
an overpowering superego to keep the system stable. Artists allow
themselves to be influenced by their unconscious. They allow infor-
mation to flow from their unconscious into their conscious self. They
consider their unconscious their best friend rather than a threaten-
ing enemy. In psychodynamic terms, this is called the ability to
experience a “controlled regression”.

Psychotic people, finally, can be described as people whose ego is
disintegrating. The ego is not stable, the ego boundaries dissolve,
and the feedback loops are out of control. Whatever exists of the
superego contributes to the disintegration of the ego. The weakened
ego perceives the flow from the unconscious as extremely threaten-
ing, but cannot stop it. The feedback loops take over. The psy-
chotic person reacts incoherently. S/he cannot concentrate on any
one topic, but changes the subject frequently during the course of
a conversation. S/he suddenly “hears voices” (through the inverse
auditory network). S/he is in a constant state of panic because s/he
is overwhelmed by the flow of incomprehensible undigested informa-
tion from the unconscious into the conscious self, and back to the
sensory level through the inverse networks.

Some psychedelic drugs, such as LSD, have the tendency to in-
crease both the external and the internal input gains. LSD users
have described that they “see the colors much more intensively”.
Since the feedback gains are increased simultaneously, the “system”
becomes less stable. Consequently, some drug users have been de-
scribed as exhibiting “psychotic behavior”. Since drug use disables
the control mechanisms of the ego, this is a very dangerous proposi-
tion, even independently of the chemical side effects.

678 Chapter 14: Artificial Neural Networks and Genetic Algorithms

Until now, we have only discussed the “end product”, the fully
developed adult person. We have described the control mechanisms
of the strong and healthy. We have pointed out how some mental
disabilities, neurosis and psychosis, reflect upon functional deficien-
cies of some of the control mechanisms of our personality. We have
not analyzed yet how and why these deficiencies have occurred in
the first place.

From a phenomenological perspective, it may be observed that
some of us grow up under adverse conditions. The adults around
us don’t provide us with sufficient affection (psychologists call this
phenomenon neglect), or they suffocate us with too much of it (psy-
chologists call this phenomenon overprotection). Input signals may
be “scrambled” [14.19], i.e., words imply something, but mean some-
thing else (psychologists call this the double bind).

Children who grow up under such adverse conditions may eventu-
ally lose their “interest” in the external input, because it is either too
painful (neglect or overprotection), or too unreliable (double bind).
They turn into day dreamers ... because they consider their inter-
nal input less threatening than input from the environment [14.4].
Notice that day dreaming is not a negative phenomenon per se. It
is the sole source of our creativity and inspiration. It is the wood
from which our geniuses are carved. Yet, under more severe circum-
stances, such children may become psychotic. They “hear voices”,
they react incoherently to their environment, and external objects,
such as their parents or partners, may no longer be cathected [14.5].
They are caught in a world in which they are the “only actors on a
stage which encompasses the entire world”. All other people can only
be perceived as either threats or properties. Finally, if the trauma
is experienced sufficiently early in life (within the first few months
after birth), and if it is sufficiently strong, they simply “switch off”
the external input altogether and become autistic.

However, a much more comprehensive picture has been painted
by Otto Kernberg [14.15]. He identifies several pre—oedipal develop-
ment phases. The first phase is called the primary undifferentiated
autistic phase which lasts for a few months after birth. During this
phase, the child slowly develops a symbiotic relationship with his or
her mother. The child cannot yet distinguish between itself and the
mother. If this symbiotic relationship is traumatized, the child re-
mains autistic. When a strong and stable symbiotic relationship has
been established, the child enters the second phase which is called
the phase of primary undifferentiated self-object images. An all-good
mother-self image enables the child to slowly learn to differentiate

14.10 Internalization Processes and Control Mechanisms 679

between the self-images and the object~images. This is the time
when every child plays the “peekaboo” game. The child covers its
head with a blanket and is “gone” ... but of course, the mother is
gone as well. Within a short time span, the tension becomes un-
bearable, and the blanket is removed. The child is “back”, ... and
of course, so is the mother. If the mother is not able to maintain an
embracing, allowing, and loving relationship with her child during
this critical developmental phase, the child experiences an extreme
aggression against the loved object, which can only be overcome by
re-fusing the self-images with the object—images. The child cannot
properly define its ego boundaries, and this is the seed which will
eventually lead to a psychosis, because a strong ego is needed for the
development of a healthy superego. In the last pre—oedipal phase,
the child learns to integrate libidinally determined and aggressively
determined self-images and object—images. It learns to integrate
love and hate, and it learns to acknowledge the co—existence of both
in the self and in the others. The child learns that nobody is all-
good or all-evil, and yet, it is integrated enough to accept this fact
without being threatened.

Notice that Kernberg’s description does not contradict the phe-
nomenological description given earlier. It only provides us with a
more profound analysis of the internal mechanisms of the higher level
mental functions of the human personality.

Most neurophysiologists tend to attribute psychoses to chemical
problems with neurotransmitters. Several hypotheses have been for-
mulated relating various types of chemical substances to the occur-
rence of psychoses, none of which has yet been proven. Although this
approach seems quite different from the psychodynamic explanations
given above, these hypotheses do not contradict each other. Just as
muscles in our body shrink when they are not in use, so are the
synaptic strengths between neighboring neurons believed to weaken
when the involved axon is not frequently fired. This is precisely the
biological hypothesis behind our weight adjustment algorithms as
expressed in today’s artificial neural networks. Thus, the “discon-
nection of inputs” will ultimately be electrochemically implemented
in our brain in the form of weakened synaptic strengths. This may
be what neurophysiologists attempt to confirm with their measure-
ments. The only remaining question is: What came first, the chicken
or the egg?

680 Chapter 14: Artificial Neural Networks and Genetic Algorithms

14.11 Genetic Learning

Let us now return to the mechanisms of learning. I had mentioned
earlier that gradient techniques are dangerous because of potential
stability problems, beside from the fact that they are not biologically
plausible.

In this section, I shall introduce another optimization technique
which does not exhibit the stability problems characteristic of gra-
dient techniques, and while also this approach is not biologically
plausible in the context of neural learning, it has at least been in-
spired by biology. Genetic algorithms were first developed by John
Holland in the late sixties [14.13]. As with the neural networks, the
basic idea behind genetic algorithms encompasses an entire method-
ology. Thus, many different algorithms can be devised which are all
variations of the same basic scheme.

The idea behind genetic algorithms is fairly simple. Let me de-
scribe the methodology by means of a particular dialect of the ge-
netic algorithms applied to the previously introduced linear system
backpropagation network. In that problem, we started out with ini-
tializing the weighting matrices and bias vectors to small random
numbers. The randomization was necessary in order to avoid stag-
nation effects during startup. Yet, we have no reason to believe that
the initial choice is close to optimal, or even, that the weights remain
small during optimization. Thus, the initial weights (parameters)
may differ greatly from the optimal weights, causing the optimiza-
tion to require many iterations. Also, since backpropagation learning
is basically a gradient technique, the solution may converge on a lo-
cal rather than a global minimum, although this didn’t happen in
this particular example.

Genetic algorithms provide us with a means to determine optimal
parameter values more reliably even in a “rough terrain”, i.e., when
applied to systems with a cost function that has many “hills” and
“valleys” in the parameter space.

Let us assume that we already know approximate ranges for the
optimal weights. In our case, the optimal weights belonging to the
W1 matrix assume values between —2.0 and +2.0, those belonging
to the W2 matrix assume values in the range —0.5 to 0.5, those from
the b! vector are between —0.05 and 0.05, and those from b? are
bounded by —0.005 and 0.005. I am cheating a little bit. Since I
solved the backpropagation problem already, I know the expected

14.11 Genetic Learning 681
outcome. The more we can restrict the parameter ranges, the faster
the genetic algorithm will converge.

We can categorize the parameter values by classifying them as
very small, small, large, and very large, respectively. In terms of the
terminology used in Chapter 13, we transform the formerly quan-
titative parameter vector into a qualifafive parameter vector. A
semi—quantitative meaning can be associated with the qualitative
parameters using fuzzy membership functions as shown in Fig.14.23
for the parameters stored in W1,

1.

5

"~ Memb ership Functions

E2)
13
very small small large very large
1. Pra
Y
‘S N\
o N
8 0. Y
g SN
hY
=) N
i | ~ ~
0. =t 4 == AR S : o
-2.0 1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Parameter Values (W1)

Figure 14.23. Fuzzy membership functions for parameter values

The number of levels can, of course, be chosen freely. In our example,
we decided to use four levels, nlev = 4. Let us now denote each class

by a single upper—case character:
A & very small
B & small
C © large
D & very large

Thus, each qualitative parameter can be represented through a single
character. We may now write all qualitative parameter values into

a long character string such as:
ABACCBDADBCBBADCA

where the position in the string denotes the particular parameter,
and the character denotes its class. The length of the string is iden-
tical with the number of parameters of the problem. This is our
qualitative parameter vector.

682 Chapter 14: Artificial Neural Networks and Genetic Algorithms

Somehow, this string bears a mild resemblance with our genetic
code. The individual parameters mimic the amino acids as they
alternate within the DNA helix. Of course, this is an extremely
simplified version of a “genetic code”.

In our example, let us choose a hidden layer of length lhid = 8.
Consequently, the size of W1 is 8 x 4, since our system has four
inputs, and the size of b! is 8. The size of WZ2 is 3 x 8, since the
system has three targets, and the size of b? is 3. Therefore, the
total number of parameters of our problem npar is 67. Thus, the
parameter string must be of length 67 as well.

The algorithm starts out with a “genetic pool”. We arbitrarily
generate nGenSt = 100 different “genetic strings”, and write them
into a matrix of size 100 X 67. In CTRL-C (or MATLAB), it may be
more convenient to represent the “genes” by integer numbers than
by characters. The genetic pool can be created as follows:

GenPool = ROUND(nlev « RAND(nGenSt, npar) + 0.5 » ONES(nGenSt, npar))

Initially, we pick 10 arbitrary genetic strings (row vectors) from our
genetic pool. We assign quantitative parameter values to them us-
ing their respective fuzzy membership functions by drawing ran-
dom numbers using the fuzzy membership functions as our distri-
bution functions. Next, we generate weighting matrices and bias
vectors from them, by storing the quantitative parameters back into
the weighting matrices in their appropriate positions. Finally, we
evaluate our feedforward network 301 times using the available in-
put/target pairs for each of these 10 parameter sets. The result will
be 10 different figures of merit which are the total errors, the sums
of the individual errors for each training pair, found for the given
weighting matrices. We sort the 10 performance indices and store
them in an array. This gives us a vague first estimate of network
performance.

We then arbitrarily pick two genetic strings (the parents) from our
pool, draw an integer random number k from a uniform distribution
between 1 and 67, and simulate a crossover. We pick the first k
characters of one parent string (the head), and combine them with
the remainder (the tail) of the other parent string. In this way, we
obtain a new qualitative genetic string called the child. We then
generate quantitative parameter values for the child using the fuzzy
membership functions, and simulate again. If the resulting perfor-
mance of the child is worse than the fifth of the 10 currently stored

14.11 Genetic Learning 6883

performance indices, we simply throw the child away. If it is bet-
ter than the fifth string in the performance array, but worse than
the fourth, we arbitrarily replace one genetic string in the pool by
the child, and place the newly found performance index in the per-
formance array. The worst performance index is dropped from the
performance array. If it is better than the fourth, but worse than the
third stored performance, we duplicate the child once, and replace
two genetic strings in the pool by the two copies of the child. Now,
two of the 100 strings in the pool are (qualitatively) identical twins.
If it is better than the third but worse than the second performance,
we replace four genetic strings in the pool by the child. If it is bet-
ter than the second but worse than the first, we replace siz genetic
strings in the pool by the child. Finally, if the child is the all time
champion, we replace 10 arbitrary genetic strings in the genetic pool
by copies of our genius.

We repeat this algorithm many times, deleting poor genetic ma-
terial while duplicating good material. As time passes, the quality
of our genetic pool hopefully improves.

It could happen that the very best combination cannot be gen-
erated in this way. For example, the very best genetic string may
require an A in position 15. If (by chance) none of the randomly
generated 100 genetic strings had an A in that position, or if those
genes that had an A initially got purged before they could prove
themselves, we will never produce a child with an A in position
15. For this reason, we add yet another rule to the genetic game.
Once every nmuta = 50 iterations, we arbitrarily replace one of the
characters in the combined string by a randomly chosen new value,
simulating a mutation. Eventually, this mutation will generate an A
in position 15.

Obviously, this algorithm can be applied in an adaptive learning
mode. Our “genetic pool” will hopefully become better and better,
and with it, our forecasting power will increase.

Of course, this algorithm can be improved. For instance, if we
notice that a particular parameter stabilizes into one class, we can
re—categorize the parameter by taking the given class for granted and
by selecting new subclasses within the given class. In our example,
we might notice that the parameter 27 which belongs to W1 always
assumes a qualitative value of C, i.e., its quantitative value is in the
range between 0.0 and 1.0. In this case, we can subdivide this range.
We now call values between 0.0 and 0.25 very small, and assign a
character of 4 to them. Values between 0.25 and 0.5 are now called

684 Chapter 14: Artificial Neural Networks and Genetic Algorithms

small, and obtain a character value of B, etc. I decided to check for
re—categorization once every 50 iterations, whenever I simulated a
mutation. I decided that a re—categorization was justified whenever
90% of the genes in one column of GenPool had assumed the same
value, nperc = 0.9.

I ran my genetic algorithm over 800 iterations which required
roughly 2 hours of CPU time on our VAX-11/8700. The execu-
tion time was less than that of the backpropagation program since
each iteration contains only the forward pass and no backward pass,
and since the length of the hidden layer was reduced from 16 to eight.
Thus, for a fair comparison between the two techniques, I should have
allowed the genetic algorithm to iterate 2800 times. The results of
this optimization are shown in Fig.14.24a.

Genetic Network of Linear System
300. T T T T r :

250. }- .) N ~ PN Y SR
200.

150.

Total Error [-]

100.

0. : ; : s : 5 ;
0.0 100. 200. 300. 400. 500. 600. 700. B800.

Iteration Count [#]

Figure 14.24a. Optimization of linear system with genetic algorithm

Obviously, this optimization didn’t work too well. Fig.14.24b shows
a moving average computed over 100 iterations. The first value on
Fig.14.24b is the average of the first 100 values of Fig.14.24a, the
second value is the average of values 2 through 101 of Fig.14.24a,
etc. I computed the moving average using the AVERAGFE function
of SAPS-II.

14.11 Genetic Learning 685

Mc;ving Average of Genetic Network

180. , , T y
s PN NN SR SSUURUSURUS SURUURR ST
—_ : : :
‘L‘ 170. 4 - LY. ... FERRREEE T SAELREEEEE ERREREREREEE AR Trreeeeeeees Heeaaeiaes
= : : : : :
E 165. b ccceeenit S 1| SEETTEREE Seeeen ' R NPT A eeeiaiean
L SRRV N N I MU ¥ i O ORI A
S : : ? : : :
—) 11T R EEEEERPETRPE-PR N P EEER IR Beesienans -
150, ; ; : i ; :

100, 200. 300. 400. 500. s00. 700. 800.
Iteration Count [#]

Figure 14.24b. Moving average of linear system

The genetic algorithm does learn indeed. However, the progress is
painfully slow. My interpretation of these results is as follows: The
terrain (in the parameter space) is very rough. Therefore, since
we decided to use four levels only, each level contains both high
mountains and deep gulches. Since we only retain the class values
but not the quantitative values themselves, we throw away too much
information. Consequently, I decided to rerun the optimization with
nlev = 16. Since there are now more possible outcomes, I decided
to consider 30% a solid “majority vote”, and thus, I reduced nperc
to 0.3. Another 1.2 CPU-hours later, I obtained the results for the
modified algorithm. The simulation required less time because the
optimization was terminated after 445 iterations. The results are
shown in Fig.14.25.

[

Genetic Network of Linear System
250. - , : : : : :
— 200. ...
L
1 : : : : i : :

E 150. h:.
g 100. -]l -
50 i i i i H i t i

0.0 50. 100. 150. 200. 250. 300. 350. 400. 450.

Iteration Count [#]

Figure 14.25. Optimization of linear system with genetic algorithm

686 Chapter 14: Artificial Neural Networks and Genetic Algorithms

This time, the genetic algorithm learned the weights much faster.
Unfortunately, good genetic material was weeded out too quickly,
and the algorithm ended up in a ditch.

Montana and Davis designed another genetic algorithm specifi-
cally for the purpose of training neural feedforward networks [14.24].
They argue against eliminating useful information by coding fuzzy
information into our genetic strings. Indeed, both the crossover op-
erator and the mutation operator can be applied to both quantitative
(real) parameters and qualitative (fuzzy) parameters. In addition,
they designed a set of interesting more advanced “genetic operators”.
They claim that networks function due to the synergism between
weights associated with individual nodes. Thus, instead of applying
the crossover algorithm blindly, they keep all the incoming weights
of a node intact, and use either those of the father or those of the
mother. Also, they consider multiple crossovers. Each node with all
its incoming weights is arbitrarily taken from either the father or the
mother. Thus, they simulate multiple crossovers of entire features.
This makes a lot of sense. Montana and Davis also developed a very
interesting concept of node assessment. They evaluate the quality
(error) of a network in exactly the same manner that I use, i.e., they
add the errors of the network over all training pairs. Then, they re-
move an individual node from the network, i.e., they lobotomize all
incoming and outgoing connections of that node by setting the cor-
responding weights equal to zero, and recompute the quality of the
modified network. They repeat the same procedure over and over,
each time lobotomizing exactly one node. Using this information,
they define the node whose presence has the least effect on the over-
all quality as the weakest node. Their mutation algorithm influences
all incoming and outgoing weights of the weakest node in the hope
to thereby improve the quality of the overall network. Again, this
algorithm makes a lot of sense from an engineering point of view.
They use a different distribution function for randomizing the initial
weights of the network. Initially, they evaluate the quality of the
entire genetic pool. However, in each generation, they pair up only
one couple (as I do), and produce only one child which replaces the
worst genetic string in the genetic pool (unless it is even worse). The
parents are chosen randomly, but with a distribution function such
that the second best genetic string is chosen 0.9 times as often as
the best, and the third best string is chosen 0.9 times as often as the
second best, etc. This rule makes also a lot of sense. Fig.14.26 shows
the results of a simulation of the same problem that was discussed
earlier, but now using Montana’s and Davis’ algorithm [14.24].

14.11 Genetic Learning 687

s00 Genetic Network of Linear System
: T H : :

Total Error [-]

0.0 3o. 60. Q0. 120. 150.
Iteration Count [#]

Figure 14.26. Montana/Davis optimization of linear system

The algorithm is very efficient. The error is reduced quickly, and
the system learns fast. Unfortunately, it stagnates. Because the
real parameter values are stored, no new information is entered into
the system except through mutation. The system finds the smallest
error among all the combinations of parameters present in the initial
genetic pool reliably and quickly, but then it is stuck. The local
superman wipes out his competition effectively and efficiently, and
becomes a tyrant ... unfortunately, he is but a midget in global
terms.

The algorithm suffers from the same disease as mine. In both
algorithms, we were greedy, and tried to retain as much “good”
genetic material as possible. We never let a “good” genetic string
die. This is the seed to stagnation.

Even the fittest among us must die for progress to survive.

Goldberg suggested using a genetic algorithm closer to a biological
model [14.6]. He proposed the following genetic dialect: We start
out with a randomly chosen qualitative genetic pool (as in my al-
gorithm). We evaluate the quality of the entire genetic pool (as in
the case of Montana’s and Davis’ algorithm). We rank the genetic
strings according to their quality. We define the fitness of a genetic
string as:

1.0

itness = ——————
f total error

(14.43)

688 CRhapter 14: Artificial Neural Networks and Genetic Algorithms

We then add up the fitnesses of all genetic strings in the genetic pool,
and define the relative fitness of a genetic string as:

fitness

relative fitness = (14.44)

sum over all fitnesses

We then replace the entire genetic pool by a new pool in which each
genetic string is represented never, once, or multiple times propor-
tional to its relative fitness. Poor genetic strings are removed, while
excellent genetic strings are duplicated many times. We then pair
the genetic strings up arbitrarily. Each pair produces exactly two
offsprings, one consisting of the head of the first string concatenated
with the tail of the second, and the other consisting of the head of
the second string concatenated with the tail of the first. We then let
the old generation “die”, and replace the entire genetic pool by the
new generation. The algorithm is repeated until convergence.

This algorithm grants fit adults many children with varying sex
partners potentially including twin siblings, and deprives unfit adults
of the right to reproduction. The algorithm enforces strict birth
control.

An obvious disadvantage of this genetic dialect is the need to eval-
uate the fitness of the entire genetic pool once per generation. Thus,
we can optimize this algorithm over 16 generations only if we wish
to compare it with the previously advocated dialect. However, I de-
cided to compute 100 iterations anyway. Fig.14.27a shows the results
of this optimization. I plotted the mean value of the total errors of
all genetic strings in the genetic pool.

7Grrenetic,: Net%vork of Linear System

180. T T T T T T
Loz,
B
e
| =)
= 160.
=
o3
=
- 150.
o
B
140.
0.0 10. 20. 30. 40. 50. 60. 70. 80. 80. 100.

Iteration Count [#]

Figure 14.27a. Optimization of linear system with Goldberg’s algorithm

14.11 Genetic Learning 689

The results are disappointing. If the algorithm has learned anything,
the improvement is lost in the noise. I then computed a moving
average of the previously displayed mean values over 50 generations.
The results are shown in Fig.14.27b.

Moving Average of Genetic Network
I H

185. ; v
Pon— : :
N
Bt
E 163,

&

«

§ 161.

-t

£ 159, : i i i

50. 0. 70. 80. 90. 100.
Iteration Count [#]

Figure 14.27b. Moving average of Goldberg’s algorithm

Notice that the algorithm does indeed learn. However, the progress
is unbelievably slow. I ran this program in batch. It required just
over 12 CPU-hours. Obviously, I cannot determine whether this
algorithm will stagnate or find the true minimum, but I believe that
it will eventually find the true minimum.

The problem with Goldberg’s algorithm is the following. The en-
tire idea of the genetic crossover operator bases on the naive belief
that the child of two fit parents is, at least in a statistical sense, a
fit child. This belief is justified in nature since the genetic parame-
ters reflect features, and since the child will inherit an entire feature
either from the father or from the mother. The overall fitness of a
person is defined as the cumulative quality of all of his or her fea-
tures. Thus, by inheriting features from both parents, fit parents
will indeed have fit children. However, in our case, the individual
parameters don’t represent features. Each parameter influences all
features, and each feature is influenced by all parameters. There
is no compelling reason to believe that the crossover child of two
fit parents is more fit than the average genetic string. Amazingly,
the simulation results showed that such a child is indeed statistically
more fit than the average genetic string ... but only by a narrow
margin. This is why progress was so incredibly slow. It might have
been worthwhile to combine Goldberg’s algorithm with the previ-
ously proposed algorithm by Montana and Davis by combining the

890 Chapter 14: Artificial Neural Networks and Genetic Algorithms

genetic operators of the latter (crossover of features and mutation
of the weakest node) with the social behavior of the former (replace-
ment of the entire population once per generation), but I was afraid
that the director of our computer center would knock me over my
head if I continued in this way.

We have just demonstrated the power of evolutionary develop-
ment. We learned a lesson: For evolution to work, we must per-
mit all individual genetic strings to die irrespective of their quality.
Retaining any individual string invariably leads to stagnation, and
the evolutionary process comes to a halt. It is the power of ever—
changing, non-repetitive variations — we call this phenomenon a
chaotic steady—state — which enables the evolutionary process to
continue.

In the beginning, there was Chaos.

Chaos nurtures Progress.

Progress enhances Order.

Order tries to defy Chaos at all cost.

... But the day Order wins the final battle
against Chaos, there will be mourning.
’Cause Progress is dead.

Genetic algorithms are a class of simple stochastic optimization tech-
niques. Their behavior was demonstrated here by means of a neural
network learning problem. However, no direct relationship exists
between the two. Genetic algorithms can be interpreted as one par-
ticular implementation of a Monte Carlo optimization technique, and
can be applied to arbitrary optimization problems. We shall return
to this discussion in the second volume of this text in the context
of general parameter estimation methods. It made sense to intro-
duce the genetic algorithms here due to their inspirational biological
foundation.

In the context of artificial neural networks, the genetic algorithm
provides us with a systematic and stable technique to optimize arbi-
trarily constructed networks. This idea is fairly new, and it hasn’t
yet been exploited to its full potential. The idea is fruitful, because it
removes configuration constraints on artificial neural networks. For
instance, it allows us to optimize arbitrarily connected perceptron
networks in a general, systematic, and robust (though fairly ineffi-
cient) way.

14.12 Neurobiological Learning 691

14.12 Neurobiological Learning

We have discussed various techniques for learning the weights of a
neural network. The explicit counterpropagation network, both in
its original feedforward form and in its derived recurrent form, is
very attractive since it does not require any training at all. Yet,
the algorithm requires that the coded (symbolic) targets be known
a priori, and this is certainly not how our brain works. A freshly
born human child does not have a notion of a DPOG. It learns the
symbol itself from observation. In this sense, human learning is
indeed “unsupervised”. It is not even obvious that different human
beings use the same symbolic representation for DOG. If we were
able to connect the ego of one person to the self of another (what an
atrocious idea!), we might discover that the ego doesn’t understand
a word of what it reads in the self ... since the self uses a foreign
alphabet.

The same difficulty holds true for the backpropagation algorithm,
aside from the fact that the backpropagation algorithm learns far
too slowly to be a realistic model of what happens in our brain.

Genetic algorithms are not plausible at all in the context of neuro-
biological learning, but at least, they add a stochastic component to
the learning process. I am convinced that this stochastic component
exists in our brain, but it is introduced through the mechanism of
chaotic feedback loops.

How does the brain learn? We don’t really know yet. All we can
say is that the brain learns very reliably (no stability problems), and
with amazing efficiency.

However, first attempts to shed light on this mystery have been
made. Green and Triffet [14.7,14.33] have modeled “unit circuits” of
the human brain (the allocortex, the cerebellum, and the cerebrum).
Unit circuits are themselves organized in mini—zones (columns)
which are connected to macro—zones (rows), comprising a matrix
structure. The unit circuits are interconnected in various ways. For
example, in the cerebellum, the granule cells connect to the Purk-
inje cells of all four neighboring unit circuits (excitatory synapses),
and also the basket cells connect to the Purkinje cells of all four
neighboring unit circuits (inhibitory synapses).

Triffet and Green represent their artificial neurons in a way which
resembles the biological reality much more closely than any other

692 Chapter 14: Artificial Neural Networks and Genetic Algorithms

artificial neural networks. Their artificial neurons simulate the fre-
quency modulation of real neurons. The potential of each neuron
can assume one of 10 discrete levels. Levels ‘—6’ to ‘—1’ represent
refractory states, level ‘0’ represents the resting state, levels ‘+1’
and ‘42’ represent excited states, and at level ‘+3’, the neuron fires,
thereby returning to level ‘—6’ for the next refractory period. The
neuron may immediately return to a higher refractory level. This
will happen if the sum of the incoming weights of the firing neuron
is sufficiently large.

The proposed model is a discrete—time model. Each clock impulse
represents 2 msec. During the refractory period, the potential is
incremented by one level once every clock impulse. Consequently, it
will take 12 msec for a neuron to return from the lowest refractory
level to the resting level. During the refractory period, all other
input is ignored. This procedure simulates the compulsory refractory
period of biological neurons.

Once a neuron has reached its resting level or an excited level, it
is susceptible to both synaptic and extracellular input. Whether or
not the potential of a resting or excited neuron will change during
one clock impulse depends on three factors:

(1) Neurons have a natural tendency to return to their resting state.
Thus, if no input is applied to the neuron, it will gradually re-
turn to its resting state. This is called the potential relazation
mechanism,

(2) Neurons are influenced by firings of neighboring neurons located
both within the same unit circuit and also within neighboring
unit circuits. The synaptic weights of the (partly excitatory
and partly inhibitory) inputs will influence the potential of the
neuron. If the neuron is exposed to a strong inhibitory input,
the potential will be decremented. If it is exposed to a strong
excitatory input, the potential will be incremented.

(3) Neurons are influenced by global electromagnetic wave trans-
missions (extracellular excitation or inhibition). Neurobiological
measurements confirm that “intention potentials” sweep across
specific regions of animal brains in advance of any motoric ac-
tion.

In terms of our standard nomenclature, we can describe the potential
(state) updating algorithm in the following way:

14.12 Neurobiological Learning 693

2t 5 = f + relax(zf) + (1 — relax(zf)) - (Z wi? - yf + b} — relax(—zf))

oy

’ (14.45)
where 3] is the output of the j** neuron at time ¢. relaz(.) is the
relaxation function. It is ‘1’ if its argument is negative, and it is ‘0’
otherwise. Consequently, the (negative) state of a refractory neuron
is simply incremented by ‘1’ once every clock impulse. The non-—
negative) state of a resting neuron is exposed to synaptic input from
all incoming neurons. The synaptic strength of the connection from
the j®* to the £** neuron at time ¢ is represented by the weight w?.
The extracellular input to the £** neuron at time t is represented
through the bias bf. The third term ensures that excited neurons
relax to their resting state when left alone.

The output function is simply:

yf+6t = ﬁring(zf_,_“) (14.46)

The firing function is ‘1’ if its argument is ‘+3’ or larger. It is ‘0’
otherwise. That is: the output of the neuron simply registers the
fact the the neuron just fired.

Finally, we need to return the fired neuron to a refractory state.
The proposed rule is simply:

if yf, ;=1 then zf , = min(z}, 5, — 9,—4) (14.47)

Thus, if the state is at the lowest firing level (level +3), it returns
immediately to the lowest refractory level (level —6). If the state
is elevated one level beyond the lowest firing level, it returns to the
refractory level —5. Ifit is elevated two levels beyond the lowest firing
level, it returns to the refractory level —4, but this is the highest level
that we allow a fired neuron to return to. Such a neuron will require
8 msec to relax to its resting level.

Both the notation and the precise logic of the described algorithm
deviate slightly from those used by Triffet and Green [14.7,14.33] in
order to fit smoothly into the framework of this chapter.

The neural network learns both temporal and static patterns using
three separate mechanisms:

(1) The synaptic weights, which are represented as integers, are in-
cremented or decremented using a modified Hebb rule. How-
ever, unlike the traditional artificial neural networks, the opti-
mal weights of a temporal pattern are themselves functions of

694 Chapter 14: Artificial Neural Networks and Genetic Algorithms

time. They may constantly be modified (even after learning is
completed) while a temporal pattern is processed by the brain.
Green and Triffet [14.7,14.33] call these temporal sequences “pro-
grams”.

(2) The circuit learns particular features of temporal patterns sim-
ply as a consequence of the memorizing power of the feedback
loops in the circuit.

(3) The circuit is prepared for learning by the electromagnetic “in-
tention wave” which precedes the actual neuronic signals.

The weight updating algorithm is straightforward. Whenever fir-
ing of one neuron leads to firing of another, the weight connecting
these two neurons is incremented or decremented depending on the
nature of the synaptic connection. If the connection is excitatory,
the (positive) weight is incremented, if it is inhibitory, the (negative)
weight is decremented. In both cases, the weight becomes stronger.
If a weight has not been modified for a given period of time, it can be
automatically weakened, i.e., positive weights are decremented while
negative weights are incremented. This mechanism is called weight
relazation. Weight relaxation simulates the process of forgetting.
Notice that this simple algorithm solves the problem of updating
the “hidden layers” of traditional neural networks. Implementation
of the frequency modulation of biological neurons provides us with
an algorithm to train neurons arbitrarily located anywhere in the
network.

Biases are updated by a discrete implementation of the (dis-
tributed) wave equation. The input to the wave equation is the
(distributed) firing pattern of the Purkinje cells. Whenever a Purk-
inje cell fires, the bias of that unit circuit is incremented. The time
constant of the wave equation is chosen such that the electromagnetic
wave travels slightly faster through the network than the neuronic
signals.

Green and Triffet [14.7,14.33] claim that their networks can learn
patterns much more quickly than traditional networks. All weights
are learned in parallel. No backpropagation is necessary. While
the authors haven’t convinced me yet that they really have modeled
true neurobiological learning, their conceptual framework is revolu-
tionary, and it certainly deserves further pursuit.

References 895

14.13 Summary

In this chapter, we have discussed how biological research can inspire
us in solving engineering problems, and how engineering methodolo-
gies can help us understand biological processes better. It has helped
us gain a better understanding of how our brain and body functions
achieve optimal performance, and it has brought us a step closer to
answering the question how engineering systems, such as robots, can
be equipped with a modest amount of decision making capability
and responsibility. This entire research area is very new, and many
problems still await a solution.

References

[14.1] Albert Bandura (1977), Social Learning Theory, Prentice—Hall,
Englewood Cliffs, N.J.

[14.2] Rodney A. Brooks (1986), “A Robust Layered Control System
for a Mobile Robot”, IEEE J. of Robotics and Automation, Vol.
RA2, pp.14-23.

[14.3] Rodney M. J. Cotterill, ed. (1988), Computer Simulation in
Brain Science, Cambridge University Press, Cambridge, MA.

[14.4] William R. D. Fairbairn (1954), An Object-Relations Theory of
the Personality, Basic Books, New York.

[14.5] Paul Federn (1952), Ego Psychology and the Psychoses, Basic
Books, New York.

[14.6] David E. Goldberg (1989), Genetic Algorithms in Search, Op-
timization, and Machine Learning, Addison-Wesley, Reading,
MA.

[14.7] Herbert S. Green, and Terry Triffet (1989), “A Zonal Model of
Cortical Functions”, J. Theoretical Biology, 136, pp. 87-116.

[14.8] Stephen Grossberg (1982), Studies of Mind and Brain: Neural
Principles of Learning, Perception, Development, Cognition, and
Motor Control, D. Reidel Publishing, Hingham, MA.

[14.9] Stephen Grossberg (1987), The Adaptive Brain, North—Holland
Publishing, Amsterdam, The Netherlands.

[14.10] Stephen Grossberg (1988), Neural Networks and Natural Intelli-
gence, M.I.T. Press, Cambridge, MA.
[14.11] Donald O. Hebb (1949), The Organization of Behavior: A Neu-

ropsychological Theory, John Wiley & Sons, New York.

696 Chapter 14: Artificial Neural Networks and Genetic Algorithms

[14.12]
[14.13]

[14.14]

[14.15]

[14.16)

[14.17]

[14.18]
[14.19]
[14.20]

[14.21]

[14.22]

[14.23]

[14.24]

[14.25]

[14.26]

[14.27]

Robert Hecht-Nielsen (1990), Neurocomputers, Addison-Wesley,
Reading, MA.

John Holland (1975), Adaptation in Naturel and Artificial Sys-
tems, University of Michigan Press, Ann Arbor, MI.

John J. Hopfield (1982), “Neural Networks and Physical Systems
With Emergent Collective Computational Abilities”, Proceedings
of the National Academy of Sciences, USA, T9, pp. 2554-2558,
National Academy of Sciences, Washington, D.C.

Otto Kernberg (1975), Borderline Conditions and Pathological
Narcissism, Aronson, New York.

Christof Koch, and Idan Segev, eds. (1989), Methods in Neuronal
Modeling: From Synapses to Networks, A Bradford Book, M.I.T.
Press, Cambridge, MA.

Teuvo Kohonen (1989), Self~-Organization and Associative Mem-
ory, Third Edition, Springer Verlag, Series in Information Sci-
ences, 8, Berlin.

Granino A. Korn (1991), Neural-Network Ezperiments on Per-
sonal Computers, M.I.T. Press, Cambridge, MA.

Ronald D. Laing (1969), The Divided Self, Pantheon Books, New
York.

Richard P. Lippmann (1987), “An Introduction to Computing
with Neural Nets”, IEEE ASSP Magazine, April, pp. 4-22.
Warren S. McCulloch, and Walter Pitts (1943), “A Logical Cal-
culus of the Ideas Immanent in Nervous Activity”, Bulletin of
Mathematical Biophysics, 5, pp. 115-133.

Marvin Minsky (1985), The Society of Mind, Simon and Schus-
ter, New York.

Marvin L. Minsky, and Seymour Papert (1969), Perceptrons:
An Introduction to Computational Geometry, MIT Press, Cam-
bridge, MA, Expanded Edition: 1988.

David J. Montana, and Lawrence Davis (1989), “Training Feed-
forward Neural Networks Using Genetic Algorithms”, Proceed-
ings International Joint Conference on Artificial Intelligence,
IJCAI-89, Vol. 1, Morgan Kaufmann, Palo Alto, CA, pp. 762~
767.

Kumpati S. Narendra, and Kannan Parthasarathy (1990), “Iden-
tification and Control of Dynamical Systems Using Neural Net-
works”, IEEE Transactions on Neural Networks, 1(1), pp. 4-2T7.
Jean Piaget, and Barbel Inhelder (1967), The Child’s Conception
of Space, Norton, New York.

John R. Rice, and Ronald E. Boisvert (1985), Solving Elliptic
Problems Using ELLPACK, Springer Verlag, New York.

Bibliography 697

[14.28] Edward Rietman (1989), Ezploring the Geometry of Nature:
Computer Modeling of Chaos, Fractals, Cellular Automata, and
Neural Networks, Windcrest Publishing, Blue Ridge Summit,
PA.

[14.29] Helge Ritter, Thomas Martinetz, and Klaus Schulten (1990),
Neuronale Netze, Addison—Wesley, Munich, FRG, English trans-
lation currently under preparation.

[14.30] Frank Rosenblatt (1962), Principles of Neurodynamics: Per-
ceptrons and the Theory of Brain Mechanisms, Spartan Books,
Washington, D.C.

[14.31] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams
(1986), “Learning Internal Representations by Error Propaga-
tion”, in: Parallel Distributed Processing: FEzplorations in the
Microstructure of Cognitions, Vol.1: Foundations, (D.E. Rumel-
hart, and J.L. McClelland, eds.), M.I.T. Press, Cambridge, MA,
Pp. 318-362.

[14.82] Timo Sorsa, Heikki N. Koivo, and Hannu Koivisto (1990), “Neu-
ral Networks in Process Fault Diagnosis”, submitted to IEEE
Trans. Systems, Man, Cybernetics.

[14.38] Terry Triffet, and Herbert S. Green (1990), “Structured Neuro-
biological Networks”, submitted to J. Theoretical Biology.

[14.34] Philip D. Wasserman (1989), Neural Computing: Theory and
Practice, Van Nostrand Reinhold, New York.

[14.35] Bernard Widrow, and M. E. Hoff (1960), “Adaptive Switching
Circuits”, IRE WESCON Convention Record, Fourth Part, In-
stitute of Radio Engineers, New York, pp. 96-104.

[14.86] Ben P. Yuhas, Moise H. Goldstein, Jr., and Terrence J. Sejnowski
(1989), “Integration of Acoustic and Visual Speech Signals Using
Neural Networks”, IEEE Commaunication Magazine, 27(11), pp.
65-T1.

Bibliography

[B14.1] Casimir C. Klimasauskas, ed. (1989) The 1989 Neuro—Computing
Bibliography, M.I.T. Press, Cambridge, MA.

[B14.2] Philip D. Wasserman, and Roberta M. Oetzel (1990) Neural
Source, The Bibliographic Guide to Artificial Neural Networks,
Van Nostrand Reinhold, New York.

698 Chapter 1f: Artificial Neural Networks and Genetic Algorithms

Homework Problems

[H14.1] Perceptron Network for Exclusive—Or Problem

Implement a perceptron network as shown in Fig.14.8 which solves the
exclusive—or problem. For this purpose, compute the weights and thresh-
olds of the two hidden perceptrons such that each one of them implements
one of the slanted lines of Fig.14.9. Manually evaluate the truth table be-
tween the two inputs u; and u; and the two outputs of the hidden layer ¥,
and y;. Since you know what is the desired output value y for each com-
bination of the hidden layer outputs, you can also generate a truth table
which maps the hidden layer into the output layer. Draw a picture in the
< %1, Y2 > plane similar to Fig.14.7 which represents this truth table. Draw
a new slanted line into this picture which separates the ‘1’ outputs from the
‘0’ outputs. Design the weights and thresholds of the output perceptron
such that it implements the new slanted line.

Program the perceptron network in CTRL-C (MATLAB), and check its
correct performance by looping over all four input combinations.

[H14.2] Backpropagation Network for Linear System

Reimplement the backpropagation network of the linear system (with
four inputs and three outputs) in DESIRE/NEUNET. Compare the DE-
SIRE/NEUNET solution of the exclusive—or problem (presented in this
chapter) with the CTRL-C version of the same problem (also shown). This
should give you sufficient help to make the transcription of the CTRL-C
solution to the backpropagation network for the linear system (shown in
this chapter) to its DESIRE/NEUNET equivalent an easy task.

Run the program over 774 iterations (preferably on a 386 or 486—class
machine) and compute the speed ratio between the DESIRE/386 solution
and the CTRL-C/VAX solution. Let the DESIRE/NEUNET program run
further and find which is the smallest value of the performance index that
you can obtain.

[H14.3] Adaptive Backpropagation Network for Linear System

In hw(H14.2), we simulated the continuous system once over 900 time
units, and stored the results away for training the backpropagation network.
Modify the program of hw(H14.2) such that you constantly integrate the
continuous system in parallel with training the backpropagation network.
Set the communication interval to 3 sec. The backpropagation network is
now placed in the OUT block which is executed once per communication
interval. This is necessary since you will require an integration step size

Homework Problems 699

which is considerably smaller than three time units to obtain decent simu-
lation results. The updating of the WW?! and WW?2 matrices and of the
bb! and bb? vectors occurs in a SAMPLE block which is executed once
every 300 communication intervals.

[H14.4) Counterpropagation Network for Linear System

Find a CTRL-C (or MATLAB) solution to generate Fig.14.20. Start by
designing two small procedures implementing 10 bi¢ A/D and D/A convert-
ers. The A/D converter takes a real number between ~1.0 and +1.0, and
generates a vector of length 10 containing only —1.0 and +1.0 elements.
The D/A converter accepts a binary vector of length 10, and generates
a real number between —1.0 and +1.0. Test the correctness of the two
routines by computing:

zx = DtoA(AtoD(z))

for various numbers ¢ between —1.0 and +1.0.

Use the inpt matrix from before, and generate the new analog input
matrix ainpt by concatenating ug_; with xx_;, then with u, further with
Xk, and finally with ug41. This is accomplished by concatenating columns
of the former inpt matrix shifted down by one or two elements. Notice that
you lose two rows in this process. Compute the new analog target matrix
atarg from the old inpt matrix in the same way. ainpt should be a matrix
with 299 rows and nine columns, while atarg should be a matrix with 299
rows and three columns.

Convert the two analog matrices to digital matrices using the previously
defined AtoD routine. The digital input matrix dinpt should have 299 rows
and 90 columns, while the digital target matrix dtarg should have 299 rows
and 30 columns.

Set up the weight matrices of the counterpropagation network by using
the first 269 rows of each of the digital matrices.

Recall the counterpropagation network by applying the remaining 30
rows of the digital input matrix to the counterpropagation network. Com-
pute the resulting digital target vectors for each of the digital input vectors.
Convert the resulting digital target vectors back to analog target vectors
using the previously designed DtoA routine, and plot the resulting values
together with the original values.

(H14.5] Adaptive Counterpropagation Network for Linear System

This program consists of a big loop which is executed 299 times. Construct
digital input and target vectors one at a time from the previously computed
inpt matrix. During the first iteration, simply place the two vectors in the

700 Chapter 14: Artificial Neural Networks and Genetic Algorithms

weight matrices. The hidden layer has a length of one. In subsequent iter-
ations, apply the digital input vector to the existing network, and compare
the resulting digital output vector with the correct digital output vector.
If the vector is correct, do nothing, otherwise add the correct input/target
pair to the weight matrices, thereby incrementing the length of the hidden
layer by one.

Generate three different graphs. The first graph compares the true ana-
log outputs to the computed analog outputs for rows 10 to 39, the second
compares the same values for rows 150 to 179, and the third compares the
same values for rows 270 to 299. Discuss the results! Determine the length
of the hidden layer after 299 iterations!

[H14.6]* Reinventing the Binary Code

Design a two-layer pseudo-backpropagation network (i.e., & backpropa-
gation network using LIMIT/TRI activation function pairs) which map
binary unit vectors of length 16 through a hidden layer of length four back
into the original unit vector representation. I suggest to code the k** unit
vector as:

ex=[-09, ..., —09, 409 , -09 , ... , -09]

That is, the logical true state is represented by the real value 40.9, while
the logical false state is represented by the real value —0.9. This applies
both to the input and to the target vectors.

Use gain values of g; = 0.05, and g, = 0.07, and use relaxation momen-
tums of my = —0.06, and ma = —0.08. Initialize the weight matrices to
0.1- RAN D. Simulate the network over 20,000 iterations, applying sequen-
tially one input pair after the other. The weights can be updated once per
iteration, i.e., it is not necessary to loop over all input/target pairs before
updating the weights. Display the mean square error.

Create a DESIRE/NEUNET program implementing this algorithm.
Don’t try CTRL-C or MATLAB on this problem. One simulation run
in CTRL-C or MATLAB will require several hours of CPU time, while
DESIRE/NEUNET will execute the same problem in less than 1 min on a
486—class machine.

Recall the learned network once for every input/target pair, and display
the resulting hidden layer output vectors. Look at the signs of the vector,
and interpret the results. You should notice that this neural network just
“reinvented” the binary code. Repeat the simulation several times. Notice
that each result is different. Each simulation reinvents the binary code,
but generates a different sequence of binary numbers. This is what I meant
when I wrote that each human brain probably uses a different alphabet to
encode the same symbolic knowledge.

Research T01

Projects

[P14.1] Intelligent Autopilot

Apply the recurrent counterpropagation network presented in Section 14.7
to the continuous simulation of a Boeing 747 jetliner in high altitude hor-
izontal flight, i.e., to the simulation program designed in pr(P4.1). The
purpose of this study is to check whether we can apply the proposed tech-
nique as reliably to a highly non-linear system as to a linear system.

Enhance the ACSL program designed in pr(P4.1) by a set of faulty op-
erational modes such as heavy ice on the wings or loss of one of the four
engines.

For each of the fault modes, identify a set of weighting matrices that
characterize the fault.

Modify the ACSL program once more. This time, one of the faults
should be chosen arbitrarily at a randomly selected point in time during
the simulation.

Use the counterpropagation network of the undamaged aircraft to iden-
tify when the accident has happened, and discriminate the correct fault
by comparing the recoded continuous data after the accident occurred and
after the transients resulting from the accident have died out with forecasts
obtained from the neural network using all of the stored weighting matri-
ces. The forecast with the smallest deviation identifies (most likely) the
type of fault that has occurred.

Research

[R14.1] Simulating an Ant Brain

Rodney Brooks [14.2] developed a series of cellular automata which coop-
erate in simulating ant behavior. He designed and built a very small robot
using solar batteries as its only source of energy, with an on-board chip
implementing his cellular automata programs. He produced a beautiful
and very impressive video showing the behavior of his robot as it walks
over phone books and gravel, and reacts in various other ways to its envi-
ronment.

This robot clearly exhibits insect behavior. Therefore, we can say that
Brooks’ cellular automata represent a good working hypothesis of how a
relatively small series of independent unintelligent agencies [14.22] can co-
operate to perform amazing tasks. While the cellular automata demon-
strate how autonomous agencies can cooperate in task solving, it does not
tell us anything about the physical configuration of an ant brain.

702 Chapter 14: Artificial Neural Networks and Genetic Algorithms

It should be perfectly feasible to simulate a true ant brain since an ant
brain contains only about 20,000 neurons, and yet, ants exhibit a highly in-
teresting and fairly complex social behavior. The problem is that we don’t
yet truly understand how brains are configured, and how they process in-
formation. If we are able to reproduce ant behavior using a neural network,
we might learn something about the potential physical configuration of a
very simple id.

I propose to take Green’s and Triffet’s neural network approach [14.7,
14.33], and try to implement Brooks’ [14.2] cellular automata with it. Try
to re-utilize the same unit circuits as much as possible for different related
tasks. Determine what is the minimum number of unit circuits necessary
to reproduce Brooks’ ant behavior using a neural network.

[R14.2] Teacher Network

Investigate the potential of neural networks for data preprocessing. A
“teacher network” accepts arbitrary input/target pairs and prepares them
for training a “student network”.

Investigate the possibilities for training a future teacher network, i.e.,
find out whether it is possible to have a teacher network train a student
network to be become a better teacher network than the original teacher
network was.

[R14.3] Chaos and Learning

Build a neural network system with a forward network and an inverse
network. Both networks are of the same type. To start with, they might
be feedforward networks. However, feedforward networks are not useful
for learning temporal patterns which are fed sequentially into the network.
On the longer run, you may wish to replace the feedforward networks by
recurrent counterpropagation networks as proposed in Fig.14.19. Introduce
global feedback loops as proposed in Fig.14.21. Implement an adaptive
controller as suggested in Fig.14.22, i.e., a simple ego, to ensure global
stability of the overall system. Design the adaptive controller such that
the overall system is either deterministic or mildly chaotic. Expose both
versions of the network system to various stimuli, and investigate the role
of chaos in neural network learning.

