2

Basic Principles of Continuous
System Modeling

Preview

In this chapter, we shall introduce some basic concepts of continuous
system modeling. By the end of this chapter, the student should be
able to code simple modeling problems in some of the currently used
simulation languages. The languages ACSL, DARE-F, and DESIRE
are introduced in order to demonstrate the similarities that exist
between the various continuous system simulation languages.

2.1 Introduction

While the continuous system simulation languages that are available
on the software market today differ somewhat in terms of syntactical
details, they are all derivations of the Continuous System Simulation
Language (CSSL) specification generated by the CS55L committee in
1967 [2.1], Their basic principles are thus identical. In particu-
lar, they all are based on a stafe-space description of the system
equations, i.e., on a set of first order ordinary differential equations
(ODE") of the form:

x = f{x,m,1) (2.1)

A typical simulation language may allow us to express a representa-
tive model through the set of equations:

24 Chapter & Basic Principles of Continuous System Modeling

DY NAMIC
thrusl = [t}
[=y
=a
= (1 m)= [thrasd— mag)
= —cleabs thrusi)
m el (k] e el

g e

2w

ENI»

which describes the vertical motion of & rocket that is just about
to perform a soft landing on the surface of the moon. This model
contains three state wariables, namely the altitude h, the vertical
component of the velocity v, and the mass m of the rocket describ-
ing & third order model of the rocket dynamics. The dot (.) denotes
the firat derivative with respect to the independent variable which,
in simulation languages, is traditionally assumed to be time (t). This
model also specifies three additional aurdiery variables, namely the
vertical component of the rocket's acceleration a which encodes New-
ton’s law applied to the rocket's rigid body, the gravity foree g which
increases quadratically with decreasing altitude of the rocket, and
the thrust which is specified as an externally computed function of
the simulation clock ¢, The model also references three constants,
namely the lmar radius v, the gravitational constant ¢2, and the
fuel efficiency constant cl. The first iwo slate eguations (for the
state variables h and v) denote the mechanical interrelation between
position, velocity, and acceleration of a rigid body, while the third
state equation (for the state varlable m) describes the reduction of
the rocket’s mass due to fuel consumption which is assumed to be
proportional to the absolute value of the applied thrust.

This simple model teaches us a number of things. First, we notice
that some of the variables, such as o, are referenced before they
have been defined. In most programming enviromments, this would
result in a run time exception, but not so in CS5L"s. The underlving
physical phenomena which are captured through the equations of the
simulation model are all taking place in parallel This is reflected in
CSSL% by allowing the user to specify his equations as parallel code.
The sequence of the equations that make up the dynamic model of
the system is entirely immaterial. An eguation sorter which is an
intrinsic part of most CSSL"s will sort the equations at compilation
time into an executable sequence.

An immediate consequence of the ahove decision is the rule that no
variable can be defined more than ance (since otherwise, the sorter
wouldn't know which definition to use). C55L's belong to the class of

£.8 The Algebraic Loop Problem 35

single assignment languages (SAL's). All time dependent variables
(state variables and auxiliary variables) must be defined exactly once
inside the dynamic model description section of the simulation pro-
Eram.

The dynamic model equations are really of a declarafive rather
than an erecufive nature. In CS55L's, the equal sign (=) denotes
equality rather than assignment (Some programming languages,
such as PASCAL, distinguish between these two different meanings
of the equal operator by using a separate operator symbaol, namely
“=" to denote equalily and “:=" to denote gssignmeni. However,
other programming languages, such as FORTRAN, don’t make this
distinction which is bound to create a certain degree of confusion.)
A statement such as:

i=1+1 (2.2)

which is one of the most commeon statements in traditional program-
ming languages, meaning that the value of the integer variahle i is
to be incremented by one, is entirely meaningless in a CS55L type
language. If we interpret eq(2.2) as & mathematical formula, the
formula is simply incorrect since we then can cancel the variable
from both sides of the equal sign which now implies that 0 is equal
to 1 which is obviously not true. On the other hand, if we interpret
eq(2.2) as a declarative statement (which reflects a little more accu-
rately what the simulation languages do) then we realize that we are
confronted here with a recursive decloration which makes the sorting
algorithm as helpless as [am when I read in one of my TIME-LIFE
cookbooks that the recipe for tarafoor requires one table spoon of
tahini while the recipe for takini calls for one table spoon of taratoor
(I meanwhile solved that problem — I buy fahini in the store).

2.2 The Algebraic Loop Problem

The above discussion unveils that not all problems related to equa-
tion sorting are solved hy simply requesting that every variahle he
declared exactly once. The above example can be expressed in terms
of & C55L notation as:

taraloor =] takimi) [2.3a)
tahini = glfarafoor) [2.38)

38 Chapler & Basic Principles of Condinuous Sysiem Modeling

With this program segment, the sorter gets stuck exactly the same
way that I did. The typical response of most C55L% in this case
will be to flag the program as non-executable, and return an er-
ror message of the type: “Algebraic loop delected involving variables
taratoor and fahini”. Arbitrarily many variables can be involved in

an algebraic loop.

2.3 Memory Functions

Let us look a little closer at some of the equations of our rocket
model, for example:

vdot = a (2.4a)
a = (1/m)s{thrust — mag) [2.48)
v = INTEG(wdot, v} {2.4¢)

I used here a slightly different notation which is also commonly found
in many CSSL%s. Instead of specifying the model in & state—space
representation |with the integration operation being implied), some
CSSL's provide for an explicit integration operator [called INTEG
in our example). This notation is a little more bulky, but it has the
advantage that the initial condition v, can be specified as part of
the dynamic model deseription rather than being treated separately
together with the constants.

From this description, we could get the impression that the vari-
able v is a function of the variable vdot (throngh eq(2.4¢)), that dot
in turn is a function of the variable a (through eq{2.4a)}, and that
finally a is a function of v (through eq(2.4h)).

Did we just detect an algebraic loop involving the three variables
v, edol, and a? To answer this question, we need to look a little more
closely into the process of numerical integration. As was mentioned
already in Chapter 1, it is necessary to discretize the continuous
process of numerical integration to make it treatable on a digital
computer. Many schemes exist that demonstrate how this can he
accomplished, and we shall disenss those intimately in the second
volume of this text. However, for now, let us just look at the two
simplest schemes that can be devised. Fig.2.1 depicts the process of
mumeTical integration.

2.8 Memory Functions 2T

B v
10
Gl
trt+ﬁt.
|:} i 1 i |] 1 1 1
00 05 10 15 20 25 3.0 35 40 45 5.0

Time
Figure 2.1. A simple scheme for numerical integration.

Given the value of our state variable v at any time f, we can approx-
imate the value of v some Af time units later through the formula:

vt + At) = w(t) + At = #(F) {2.5)

which is commonly referred to as Euler’s infegration rule,

Since v at time ¢ = 1, iz given as vy, we can immediately evaluate
eq(2.4b), followed by eq{2.4a). At this point, we have evaluated
t{tg). Therefore, we can now evaluate eq{2.5) to find oty + At).
Now, we can again evaluate eq(2.4b), followed by eg(2.4a) to find
ity + Af), as.l

Obviously, the integration function has broken the algebraic loop
since il depends on values of variables at past values of time only. A
function which has this property is called 8 memory function. Any
memory function will break algebraic loops, and thus, the sorter must
know whether or not a function that it comes across is A memory
function. The two most prominent memory functions in continuous
system simmlation are the integration function and the delay func-
tion. Some CS5L's allow the user to declare his or her own additional
memory functions.

28 Chapter & Basic Principles of Continuons Syatermn Modeling

2.4 Explicit Versus Implicit Integration

Let us repeat the previous discussion with a slightly modified inte-
gration scheme. Fig.2.2 demonstrates this scheme.

15

" Tros
Valus
10 \
3
5 ‘ ¥alus
0 _] L+ AL . : . .
00 05 10 15 20 25 30 35 40 45 50

Time

Figure 2.2, Numerical Integration by Backward Euler Techmnigue.

In this scheme, the solution v(t 4+ At) is approximated using the
values of v(t) and o(t + At) through the formmla:

vt + Ad) = w(l) + Ad» w1 + Af) (28]

This scheme is commonly referred to as the Backward Euler integra-
tion rule,

As can be seen, this integration formula depends on eurrent as
well as past values of variables. It is thus not & memory funection.
Consequently, it will not break up the algebraic loop. It can easily be
verified that, in order to compute ©(f;+ Af), we require knowledge of
alts + At) (according to eq(2.4a)) which in turn requires knowledge
of vty + At) (according to eq(2.4b)). However, in order to compute
v(ta + At} (according to eq(2.6)), we need to know @iy + At). In
other words, the algebraic loop has not been broken.

Integration algorithms that are described by memory funetions are
therefore often referred to as explicit inlegration fechnigues, whereas

L5 fmplicit Loop Solvers 29

algorithms which are not of the memory function type are called im-
plicat integratfion technigues. Although the implicit integration tech-
nigues are advantageous from a numerical point of view (as we shall
learn later), the additional computational load created by the neces-
sity to solve simultaneously a set of non-linear algebraic equations
at least once every integration step makes them undesirable for use
in CSSL's. Therefore, all integration techniques that are commaonly
available in CSSL type languages are of the explicit type.

2.5 Implicit Loop Solvers

Let us return once more to the algebraic loop that we had met
previously in this chapter. Clearly the best way to deal with alge-
braic loops is to solve them manually and replace the “delinguent™
equations by a set of new equations which are now explicitly solvable,

Let us assume that the sorter found a set of two algebraically
coupled equations:

y=—2sa+3sn {ﬂ.'.l'd:l
z==p/34+Ten (2.7h)

We can easily satisly the sorter’s needs by manually selving these
two equations as follows:

p=—X=u {2-Ba)
r=4]8su (2.85)

which can now be inserted in place of the two original equations.

However, this technique does not always work. Often, the set of
equations does not have an analytical solution. In that case, we
would like to be able to “buy tahini in the store”. Some CSSL's,
such as CSMP-III [2.4], provide a special mechanism for this pur-
pose which is called an implicit loop solver. CSMP-III enables us to
reformulate the problem as follows:

o kimi = IMPL{ store tahins, errmaz, neat.fohin |
taraloor = [[iakind)
next dahini= g|taratoor)

30 Chapier £: Basic Principles of Continuons Sysfem Modeling

which is a (somewhat clumsy) way to specify the following algorithm.
First, we buy a can of fakini in the store (store tahini). Then, we
produce one batch of faratoor, However, it could well be that the
store_tahmi is somewhat different from our favorite tahini recipe.
Therefore, we now use the just produced faratoor to make a new
version of fahini (called mezt_tahini), from which we then can pro-
duce a new batch of farafoor, a.s.f., until two consecutive batches
of tahini taste almost the same (their difference is smaller than er.
rmaz). (The third parameter of the IMPL funetion provides the
compiler with the name of the assignment variable of the losf state-
ment that belongs to the algebraic loop.)

Now, remember that this iteration must take place once per func-
tion evaluation, i.e., at least once every integration step. In other
words, the next day, we have to go and buy a new can of store_tahini,
and the process starts all over again. After a short while, we may
decide that this algorithm is wasteful. Surely, the final solution of
last day's tahini is & better starting value for today's tfahini than
store_fahkini. In other words, I should save one table spoon of last
day's tahing, and put it in the freezer for reuse today rather than
starting from scratch with a new can of store_lahin.

CSMP-III allows us to formulate this modified algorithm as fol-

INITIAL
lasitakini = slors takind
DYNAMIC

tafini = IMPL[lasf dahing, errmaz, nestdahin)
taratoor = [[laking)
nezi_inhini= gliaratoor |

NOSORT
last_tahini = tahime
END

2.8 Procedural Sections

Many C55L% don't provide for an IMPL function. However, other
mechanisms are available that can replace this construct easily. One

2.8 Procedural Sections 81

such mechanism is the procedural section which is offered by almost
all CSSL type languages.

A procedural section can be considered a “sandwich™ equation,
i.e. a set of regular procedural statements that are treated by the
sorter like one equation to be sorted as & whole with all the other
equations, while the assignment statements which form the proce-
dural hlock stay together and are left unchanged. The header of
the procedural section instructs the equation sorter about the place
where the section needs to be inserted. The sorter never checks the
inside of the procedural section itself,

For instance, the previous algorithm could be expressed in DARE-
F [2.9] as follows:

#D1

PROCED tahind = lasi tahini
dish _conni = 0
10 taratoor = filosi toking)
tahind = gl toradoor)
dish eouni = dish count 4 1
IF ldhh_mlnt.'l...mjl'lll.} G0 TO 20
IF (abajtakini — last takini).gterrmaz) GO TO 10
GO TO 30
20 WRITE(G6,21)
31 FORMAT|" I'eration failed to converge”)
50 CONTINUE
ENDPRO

FROCED dummy = tahini
lastdakind = takini
ENDPRO
END
laal babind = slore taking
END

As can be seen, DARE-P employs FORTRAN statements to de-
scribe procedural sections. This is understandable since DARE-P

is compiled (preprocessed) into FORTRAN. Most CSSL's use their
infermediate language to express procedural sections.

Note that DARE-P “procedures™ serve a completely different pur-
pose than procedures in most of the other programming languages

83 ﬂ'.hl._pi:r 5. Ramic P"r'l"rn:l'_pﬁl: r.if Continnous .S"gaum Mﬂﬂ-ﬂ'—ﬁ'l.[

{such as PASCAL). They are used as structuring elements to declare
“sandwich” equations. The outputs of the procedure are specified
ta the left of the equal sign (separated by comma), while its inputs
are specified to the right of the equal sign. The sorter will place the
procedural block such that all its inputs have been evaluated before
the procedure is computed, and that none of its outputs are nsed
before the procedure has been computed. In other words, the inputs
and outputs of the procedure follow the SAL rule, while this is not
true for assignments inside the procedure.

In our example, the first procedure is used to program out the
iteration loop which was implied by the previous IMPL construet.
The iteration loop ends when we can't tell subsequent batches of
tahini apart any longer, or when all dishes are dirty, which ever
ocenrs first. The second procedure is uwsed to break the algehraic
loop. Since the sorter never looks inside the procedure, it will not
detect that last_tahini is actually being redefined inside the second
procedure. However, the header information of the two procedures
will ensure that the second procedure is placed affer the first since
it needs tohini as an input, whereas the same variable fahini was
declared as an output of the first procedure. Each PROCED is
accompanied by an EN[}statement to mark the end of the procedura.

The §D1 statement marks the beginning of the dynamic model
description. The second to last END statement marks the end of the
dynamic model deseription. Between this END and the final END
of the code segment, DARE-P expects the declaration of constants
and initial conditions.

2.7 The Basic Syntax of Current CSS5L"s

Let me formmlate the simple lunar landing problem in terms of three
current CSSL's, namely ACSL [2.7), DARE-P [2.9], and DESIRE
[2.5]. This is to demonstrate how similar the various CS5L%s are in
their basic formalisms, i.e., to show that, once we understood one,
we really kmow them all.

2,7 The Bamc Syniaz of Currend C55L % Lk

In ACSL [2.7], the problem can be formulated as follows:

PFROGRAM Lunar Landing Maneueer
INITIAL
eoamstant ...
= 1TIR0EY, 2 m 4 926E12, J1 = 163500, ...
1= 13084 cl]= 0000377, cll=0.00037T, ...
bl = 59404.0, vl = —=20063.0, mid = 1038358, ...
tme = 21300, tdec = 4.2, tend = 210.0
clntearval cind = 0.2
END § "of INITTAL"

DY MNAMIC
DERIVATIVE

thrust = (1.0— step(tend]) = (1 = [f1 = f2)estepltdec))
cl = [1.0— sdep{tend]) = (¢11 = [e1] = el }jestep]idec))
h = inbegi{ v, kO]
L = ill-l‘[d-, HH
& = [1.0/m) » (thrust — m =g}
i = ’.I!.l-“' m-dﬂi. H'I'I]:I
mdei = —clsabs(ihruat)
] =clf(h+r)eed

END § "of DERIVATIVE"
termt |Lgedms or. Lle0.0 or wge0.0)
END § "of DYNAMIC"
END § "of PROGRAM=

From the previous discussions, this program should be almost self-
explanatory. Step is an ACSL system function the output of which
is zero as long as the system variable ¢ (the simulation clock) is
smaller than the parameter (in our case fdec and fend). Therefore,
the thrust takes a value of f1 for ¢ smaller than tdec. It then takes
a value of f2 for { between tdec and fend, and it takes a value of 0.0
thereafter. The fuel efficiency constant ¢l Is computed by the same
mechanism. This equation was introduced since the main retro mo-
tor which produces the thrust f1 and the three vernier engines which
together produce the thrust f2 may have a different fuel efficiency.
Tmz denotes the final time of the simulation. Cint denotes the com-
mumnication inierval, ie., it tells ACSL how often results are to be
stored in the simulation data base. Finally, termi is a dynamac fer-
mination criterion. Whenever the logical expression of the fermi
statement hecomes true, the simulation will terminate. Notice that
tmr is not & system constant, and must be manually tested in the
fermi statement.

Motice that this program does not contain any outpul statemenis.
In the compilation process, the ACSL eode is first preprocessed into

34 (Chapfer ¥: Basic Principles of Continuons System Modeling

FORTRAN by the ACSL preprocessor, then it is compiled further
inte machine code, and thereafter it is linked with the ACSL run-
time library. During execution of the resulting code, AUSL auto-
matically switches to an interactive mode in which parameter values
can be modified, simulation runs can be performed, and simulation
outputs can be plotted.

The two-step compilation is standard practice in most CS5L's
since it provides machine independence, as it can be assumed that
all computers provide for a FORTRAN compiler.

Now, let me write down the corresponding DARE-P [2.9] code:

fD
THRUST = (1.0 - STPE) s (F1 - (F1 - F1)« STPD)
o1 = (10— STPE)«{C11 - (C11 — C12) = STPD)
H. =¥
V. = A
A = (1.0/X M) s (THRUST - XM « G)
XM. = -ClsABS(THRUST)
& =03 H + R) ==

STPE =STRT,TEND)

STPD =5TPT.TDEC)

TEREMINATE -H=V
&F

FUNCTION STP|T,TON)

STP = Q.0

IF (T.GE.TON) 5TP =140

RETURN

END
END
R =17T18.0E3, 2 =4915E12, Fl1=38350.0
Fi = 13080, Cii = 0.0002T7, &12 = 0,000ZTT
H = 504040, V = —2008.0, XM = 1038.158
TMAX = 2300, NPOINT =301, TDEC =432, TEND = 2100
END
«LUNAR LANDING MANEUVER
GRAPH H
GRAPH V
END

DARE-F is a much older (and a mmch more old-fashioned) language
than ACSL. It was originally designed for CDC machines which did
not operate on a full ASCII character set, and consequently, even to-
day, many versions of DARE-F don"t support lower case characters.
The mass m had to be renamed into XM since any variable starting
with I, J, K, L, M, or N is considered to be of type INTEGER,

£.7 The Basic Syniaz of Cuorrend OF5LY 35

and no mechanism exists in DARE-P to reassign the type of such
variables. In the previous DARE-P program segment, [had ignored
these restrictions in order to improve the readability of the code, and
I shall do so again in the future since, contrary to many other areas
of life, in programming languages, age does not deserve reverence.
Nevertheless, DARE-F still has its beauties and advantages as we
shall see later. One of its true advantages is the fact that its syntax
is wery easy to learn.

Other than that, the two programs are similar, DARE-F prefers
the “dot™-notation over the INTEG operator. The dynmamic ter-
mination condition is here called TERMINATE and operates on
a numerical rather than a logical expression. The simulation run
terminates whenever the numerical expression associated with the
TERMINATE statement becomnes negative. This is a little less pow-
erful than ACSL's technique since it could eventually happen that
both the altitude & and the velocity v change their sign within the
same integration step, and under those circumstances, the TERMI-
NATE condition would not trigger. DARE-F does not allow the user
to specify several termination conditions on separate TERMINATE

statements. STP is not a DARE-P system function, but can easily
be created by use of the $F block in which arbitrary FORTRAN sub-

programs can be coded. (ACSL provides for the same mechanism
by permitting the user to code her or his FORTRAN subprograms
following the final END statement of the ACSL program.) The final
time is here called TAAX rather than tme, and is treated as a system
constant which is automatically tested, and the communication in-
terval is determined indirectly by specifying how many data points
are to be stored during the simulation run. NPOINT = 301 does
not give us a communication interval of 0.2 sec, but it is the largest
number allowed in DARE-P hefore some internal arrays overflow.
(FORTRAN programming is so much fun!)

The model description is followed by a program section in which
constants and initial conditions are specified. The final code section
of any DARE~F program lists the output commands,

MNotice that the segment separators in DARE-F are column sen-
sitive, All 8 block markers (D1 and 8F in our example) must be
coded with the § starting in column 2, and the three DARE-F END
separators (before and after the constants, and following the out-
put declarations) must be placed in columns 1 to 3. (The DARE-P
syntax is an excellent example of how not to design a language gram-
mar, however in the early 1970°s when DARE-F was developed, soft-
ware engineering was still in its infancy, and as a university product,

36 Chapler #: Basic Principles of Continuous System Modeling

DARE-P did not carry the financial means behind that would have
permitted a constant upgrading of the product.)

Let us finally look at DESIRE [2.5]. The following DESIRE pro-
gram is equivalent to the two previous programs.

— i — S G W o — — —— ——— — — - - W

== CONTINUOUS SYSTEM
== Lunar Landing Mansuver

L ————————S S A g g R]

—— Clonstants

r=1T30.0E <3 I o) = 4.028E 412 | j'l = JEIE0.0
.f: = 1 &0 | ell = 0000277 | 2= 0000377
tdec = 437 | tend = 210.0

== Initin]l conditions

ho= B8040 | vw=-21003.0 | wm=1038.358

T T B T T i . i e e i . e e e R . S (W —_— — i =

SIS I ———————]

if XOOC « 0 them XCCOC = - XOCC
sonle = 3w scale

v v (S (e - i (e e . . A S W — i -

thrust = ({f1 = fI}sawtchitdec — £} + FEjuswich{tend —]
el = {ic1] = e12jeswtchiidec —]} + c12)sawechitend -)
mdot = —clenba{thrust)

g =eAf{h+r)hd

a = (L.0fm) e [threst —meg]

AR =

didis =a

dfde m = madot

torm ¥
ha=helE5 | mi=mebE-4 | mwarsSEA

dispt ha,va, ms

2.7 The Bamc Syntaz of Current C55L% 3T

While ACSL was designed for moderately sized industrial simulation
problems, and DARE-P was designed for easy learning (class room
environments), DESIRE has been designed for maximum interactiv-
ity, and for ultra-fast execution speed.

These goals have considerably influenced the software design. DE-
SIRE is one of the few CS55L"s that does not base upon a target lan-
guage for improved portahility since portability goes always at the
expense of execution speed. The statements above the DYNAMIC
declaration describe the erperiment to be performed on the model,
i.e., they constitute procedural code to be executed only once. These
statements are coded in an interpreted enhanced BASIC, and are
therefore slow in execution. However, since this code is executed
only once rather than constantly during the simulation run, speed
is not the issue. The statements following the DYNAMIC decla-
ration describe the dynamic model They are micro-compiled into
threaded code when the simulation starts. A simulation run is per-
formed whenever, during execution of the experiment section, & drun
or drunr statement is met. Although the model description code is
heavily optimized, the execution of the micro—compiler is ultra—fast.
The above program compiles within less than 0.1 see, and there-
after, the program is ready to run. However, in order to keep the
compilation time down, it was decided not to provide for an anto-
mated equation sorter, i.e., it is the user's responsibility to place
the equations in an executable sequence.

DESIRE is modeled after the analog computers of the past. It
provides for the ultimate in flexibility, interactivity, and responsive-
ness. The dispt statement, for instance, invokes a run—time disploy,
i.e., the user can view the results of his or her simulation run as
they develop. The price to be pald for this sportscar among the
simulation languages is a certain reduction in programming comfort,
program reliability (compile-time checks), and program robustness

(run—time checks).

DESIRE is by far the most modern of the three languages. While
a version exists that executes on VAX /VMS, the beauty of DESIHE
lies really in its PC implementation. The execution speed of pro-
grams that consist of several hundred differential equations on a 386
class machine is breath—taking. This is due to the fact that the user
doesn't share this powerful machine with anybody else. As the de-
signer of the software, Granino Korn, always says: “Time-sharing
is for the birds". DESIRE certainly goes with the trend of modern
design software which is away from the main frames onto ever more

38 Chapier ¥ Banc Principles of Confrnuous System Modeling

powerful engineering workstations such as the 386%, the MacIntosh-
I, and the MicroVAX and SUUN workstations.

Other than that, the program listed above requires little additional
explanation. DESIRE is case sensitive, ie., TRY, Try, and try are
three perfectly good variable names, but they denote three different
variables. This is important to remember in particular in the context
of system variahles (for example, the simulation clock is called ¢ and
not T). NN is a system variable that serves the same purpose as
NPOINTin DARE-P. The integration step sizge DT must be specified
since the defanlt integration algorithm of DESIRE is a fired-step
Heun algorithm rather than the varable—step 4" order Runge-Kulia
algorithm which is most commonly used as the default algorithm of
C88L%. XOCC (what a name!) is a system variable which is set
negative by DESIRE when a run-time display variable exceeds the
scaling bounds | defined by the system variable scale). Since DESIRE
simulation runs are so fast, we ean afford to simply repeat the entire
simulation with a larger scale for the display, rather than bother to
store the previous data away and recover them from memory. swich
is a DESIRE system function which uses a slightly different syntax
than ACSL's step function, but performs the same task. DESIRE
uses a “dot"-notation (as DARE-P), but a different syntax (d/df).

DESIRE's OUT block is similar to ACSL's portion of the DY-
NAMIC block which is outside the DERIVATIVE section. State-
ments in the OU'T block are axecuted only onee per commumnication
interval rather than during every integration step. This is not impor-
tant except for speeding up the execution of the simulation run. has,
ma, and vs are sealed variables. Sealing was necessary to make all
three variables comparable in amplitude, since DESIRE's run—time
display uses the same scaling factor for all dependent variables (again
in order to speed up the execution). The ferm statement operates
on a numerical condition (as in DARE-P), but this time, it triggers
whenever the associated expression becomes positive. Moreover, DE-
SIRE tolerates several separate term statements to be specified in a

TFW .

Let us now discuss the results of this simulation study. Fig.2.3
shows the time trajectories of five of the simulation variables.

2.7 The Basie Synior of Current OS5LY 3D

Lunar Landing Maneuver
I T [T ! T T ¥ T

] 1 i
&, D00 -—Fﬁ—
s o ch - AL TR

F 1 ; i i
6.0 20, 40. @O0, @9, 190, 130, §e0. S8, 189, 200, 394
Time [sec]

Mass [icg]

i It i F i i H 2 i.
H.8 oS8, 40, &4, 80, 00 130, §40. 190, 184G, 200, Z20.
Time [sec]

Gravily [m//sec"]

-0 0. W W, 5. 100, 10, 140, 180. 180. 200, 230.
Time [sec]

L B ; Il ; i Il L i
R, e WD, DU, #0. 100, 120, 140. 180. 199, 200, .

Time [sec]

Figure 2.3. Results from the Lunar Landing Maneuver.

d0 Chapiler ¥: Basic Principles of Continuous System Modeling

Valocity [m/sec]

BO. B0, 100, 130, M40, LEO, 1M, 300, 2.
Time [sea]

Figure 2.3. Results from the Lunar Landing Maneuver {continued).

The main retro motor is fired at time gero, and remains active during
the first 43 sec of the landing maneuver slowing the landing mod-
ule down from an Initial vertical velocity of 1800 m/sec to about
150 m/sec. From then on, only the three vernier engines are used.
At time 210 see, the module has landed. (A soft landing requires
a vertical velocity of less than 5 m/sec at impact.) During these
210 see, the module has lost hall of its initial weight due to fuel

consumption.

The results shown on these graphs were produced by the ACSL
program which, however, was executed under control of yet another
program, called CTRL-C [2.8], a technique that we shall use fre-
quently in this textbook. The graphs themselves were produced
after the simulation run was completed by use of CTHL-Cs graphic
routines. A similar interface exists also between ACSL and Pro-
MATLAR [2.6]. More and other simulation systems will be discussed
at a later time.

The main purpose of this section was to illustrate how similar the
varions (J55L% are to each other. Once we have mastered any one of
them, we basically know them all. In this texthook, we shall mostly
use ACSL for demonstration purposes since we believe it to be the
mast flexible, the most convenient, and the most widealy used among
the currently available C55L's. However, for those who have another
CS5L saftware installed in their computer, it should not prove overly
difficult to transcribe the presented concepts in terms of their CSSL
software.

2.4 Discontrmuily Handling 41

2.8 Discontinuity Handling

Already the first simple sxample of & contimaous system which we
presented in this chapter showed the need to model discontinuous
sysiems. During the course of the simmilation, the thrust of the rocket
changed abruptly twice. This was not an accident. Discrete changes
within continuous systems are extremely common, and any decent
CSSL should offer means to code such discrete changes in a conve-
nient and efficient way. Unfortunately, this is not the case. The need
for such a language element had not been anticipated by the CS5L
committee [2.1], and therefore, none of the subsequently developed
CSSL systems offered such a feature. This is the drawback of too
early a software standardization — it tends to freeze the state-of-
the-art, and thereby hampers fature developments. This issue had
not heen addressed to its full extent until 1979 [2.2,2.3]. Among the
three systems presented in this chapter, only ACSL offers & decent
discontinuity handling facility.

Some discrete changes are known in advance and can be scheduled
to occur at a particular point in time. This type of discontinnity
is called a time-event. The change in the rocket thrust belongs to
this type of discontinuity. Time—events can be scheduled during the
execution of the INITIAL block. At the time of occurrence, the
DERIVATIVE block will be interrupted, and a special DISCRETE
block is executed once. During the execution of the DISCRETE
block, new time—events can be scheduled to happen at an arbitrary
time in the future.

Let me illustrate this concept by means of the previous example, A
more elegant reformmulation of the lunar landing maneuver in ACSL is
given helow. This version of the code contains two time—events, one
to shut down the main retro motor, and the other to shut down the
vernier engines. The time of shut-down has been precomputed, and
the two events can therefore be scheduled from within the INITIAL
block.

42 Chapter £: Basic Principles of Continwous System Modeling

PROGRAM Lunar Landing Maneuver
INITIAL
constant . . .
r=1TILDE], =3 =4926E12, f1= 363500, ...
f2=13080, ¢1] = 0.O0DOITY, 123 = DLOOOZTT, ...
b = 59404.0, »0 = =2003.0, mi= 1038.358, ...
tmo = 2300, ideec = 43.3, tend = J10.0
cinterval cind = (1.2
schedule shuilp .nt. fdec
scheduale shuism ., tend
ff=n
o = £ll
END § "af INITIAL"
DYNAMIC
DERIVATIVE
thrust = ff
el =g
k = integ{v, k)
i = integ{a, vl)
a = [1.0fm) = [thrusd —meg]
m = integ| mdot, m0)
mdal = —¢leaba|thrusi]
g = d,l'{l. + r} wal
EWD § "of DERIVATIVE"
DISCRETE shutly
ff=f2
ex=cil
END % "of DISCRETE ahutlg"
DISCRETE shutsm
fF =00
e = L
END § "of DISCRETE shutsm™
termt |Lge.dmsz o ble.0.0 .or. egt0.0)
END § "af DY NAMIC
END § "af PROGRAM"

At time idec, the retro motor is shut down. This is being accom-
plished by the time—event shutly. At time fend, also the vernier en-
gines are shut down. This is being accomplished by the time—event
shutsm. Notice that the two variables ff and ec must be assigned
initial values. This solution is much more readable than the previ-
ous one. It also has numerical benefits as we shall see in the second
volume of this texthook.

Sometimes, time—events recur in constant time intervals. Al-
though such events could be coded in exactly the same way by sim-
ply scheduling the next occurrence of the same event from within the
DISCRETE block ltself, this case is so common that ACSL offers a

2.8 Discontinmity Handling 43

simplified way of scheduling recurring events. If a DISCRETE block

contains an INTERVAL statement, it is tmpheitly scheduled to occar
ance every sampling interval. No schedule statement is necessary in
that case. The following program shows how the set of difference

equations:

2k + 1) = (1 = a)e, (k) + bz (E)xalk) {2.8a)
zalk + 1) = (1 +clag(k) — d 2y (k)xaik) {2.88)

can be coded in ACSL.

PROGRAM Difference Equalions
INITIAL
constant ...
a=007, b=003, ¢=0.06, d =003, ...
tme = 100.0
cinterval cind = 1.0
z] =3.8
=] = 1.7
END & "of INITIAL"
DYNAMIC
DISCRETE difrne
Imterval Te = 1.0
FROCEDURAL (21,21 =)
zilme] s el
inew = (L0 —a)=al + el
zinew = (L0 +chwz2 —d = 212
2] = rlnew
z2 = zinew
END § "of PROCEDIRAL=
END § “of DISCRETE di frnc”
termi (Lge.dms)
END § “af DY NAMIC™
END § "of PROGREAM™

The DISCRETE hlock difrnc is implicitly scheduled to occur once
avery Tstime units. The communication interval cint is chosen to he
identical with the sampling interval. The model is execated over 100
iterations of the set of difference equations. The PROCEDURAL
block is ACSL's equivalent of DARE-FP's PROCED block which we
met before. It is needed here to prevent the equation sorter from
detecting algebraic loops between rf and sinew, and between z2
and r2new.

Sometimes, discontinuities depend on the model states rather than
an time. Such discontinuities are therefore called state-events, For

44 Chapier £: Bosic Principles of Continnous System Modeling

example, we could reformulate our lunar lander example such that
the main retro motor is shut down when the landing module has
reached an altitude of 9934 m rather than at time 43.2 sec. This
may, in fact, be a more robust formmlation of our problem since it
may be less sensitive to disturbances such as a somewhat inaccurately
guessed initial mass value.

State—events cannot be scheduled ahead of time. ACSL “sched-
ules” state—events from within the DERIVATIVE section of the
model whenever a specified state condition is met. The following
code shows the reformulated luner landing maneuver.

PROGRAM Lunar Londing Maneurer
INITIAL
r= 1T38.0E3, 2 =4035E12, §1= 36350.0,...
f3m 13080, 1) =0.000277, 12 = 0.00027T, ...
hil = 554040, »0 = —2003.0, mi = 1038.358, ...
tme = 2300
cinterval cint = 0.2
=1
e = oll
END § "af INITTAL"
DYNAMIC
DERIVATIVE
thrusi = _f_f
&l = o
h = integ{v. A0}
v = integla, v}
o = [L0fm) e (hrust —me g
m = integ| madot, mib]
mdot = —cleabs|thrust])
g =edf(h+rjued
schedule shutly .xp. #034.0 — &
schedule shutam xp. 150 — A
END § “of DERIVATIVE"
DISCRETE shuilg
ff=f3
e =cll
END § "of DISCRETE shutlg"
DISCRETE shutam
ff=o00
ce = 0.0
END § "of DISCRETE shutsm"
termt (f.ge.tme oF. ble.00 .or. wgt.0.0)
END § "af DY NAMIC"
END § "af PROGREAM=

2.8 Model Vahdafion 45

In ACSL, state—events are fired whenever the specified state condi-
tion erosses gero in positive direction [using the “.xp.” operator),
or whenever the specified state condition erosses zero in arhbitrary
direction (using the “.xz." operator).

2.8 Model Validation

Validating & given model for a particular purpose is a very diffieult
jssue that we are not ready yet to deal with in general. However, one
particular validation technique exists that I would like to discuss at
this point, namely the issue of dimensional consistency checking.

The concept of dimensional consistency is a trivial one. In any
equation, all ferms must carry the same units. For example, in the

equation:
1

a= ;{iﬁ.ml — i g) (2.10)
the thrust is a force which is expressed in N or kg m sec™®. We
often shall write this as thrust[N] or [thrust] = N. The square
brackets denote “units of”. Consequently, the term m . g must also
be expressed in the same units which checks out correctly since [m| =
kg, and g is an acceleration, and therefore [g] = m sec~?. Finally, we
can check the dimensional consistency across the equal sign: [a] =
m see~? which indeed is the same as the dimension of a foree divided
by the dimension of a mass, since N kg™' = m sec™?. While this
principle is surely trivial, I find that one of the most common errors
in my students’ papers is & lack of dimensional consistency across
equations. The principle is obviously so trivial that the students
simply don't bother to check it.

While it would be perfectly feasible to design simulation software
that checks the dimensional consistency for us, this is not done in the
currently used simmlation languages. The reason for this is explained
below, Let us look at the simplest stahle state-space equation:

&= -z (2.11)

Physically, this equation does not make sense since:

48 Chapter 2: Basic Principles of Continuous System Modeling

oy pdE =) i -1
[:]_LE]_W = [x] « wec [2.12)
i.¢., different units are on the left and on the right of the equal sign.
A correct differential equation would be:

i=asz (2.13)

where the parameter (or constant) a assumes a value of @ =
—1.0 sec™?,

If the simulation software would check the dimensional consistency
for us, this would force us to code the above differential equation ei-
ther using a constant or & parameter properly declared with its units,
rather than being able to plug in a number directly. Eventually, it
would be useful to have a modeling tool that can check dimensional
consistency upon request. In any event, I strongly urge any potential
maodeler to perform this consistency check regularly.

2.10 Summary

We have introduced the basic syntax of a few current CS5L"s, and we
have discussed the major problems in formulating continuous system
models, such as the algebraic loop problem. By now, the student
should be able to code simple problems in any current CS5L. FPlease,
notice that it is not the aim of this text to provide the student with
the details of any particular language syntax. For that purpose, the
textbook should be accompanied by language reference manuals for
the chosen simulation languages. We feel that a student should be
perfectly capable of studying such a language reference manual on
her or his own, and that it is much more important to provide insight
into the hasic principles of modeling and simulation mechanisms.

Bibhography 47

References

[2.1] Domald C. Augustin, Mark 5. Fineberg, Bruce B. Johnson,
Robert N. Linebarger, F. John Sansom, and Jon €. Strauss
(1967), “The SCi Continuous System Simulation Language
(CSSL)", Simulation, 8, pp. 281-303.

[2.2] Frangois E. Cellier (1879), Combined Continuous/Discrete Sys-
tem Simulation by Uee of Digital Computers: Teehmigues and
Toaols, Ph.D. Dissertalion, Diss ETH No 483, ETH Ziirich, CH-
8092 Zarich, Switserland,

[2.3] Frangois E. Cellier (1986), “Combined Continuous /Discrete Sim-
ulation — Applications, Techniques and Tools", Procesdings
1888 Winler Simulation Conference, Washington, D.C., pp. 24—
33.

[2.4] IBM Capads Ltd. (1972), Continnous Systemn Modeling Fro-
gram [T [CSMP-III} — Program Reference Manual Program
Number: 5734-X5%, Form: SHI18-T001-2, IBM Capada Lid.,
Program Produce Centre, 1150 Eglington Ave. East, Don Mills
402, Onmtario, Canads.

[2.8] Gramino A. Korn (1889), Inferactive Dynaomac-Syatem Simulo-
tion, MeGraw-Hill, New Yook,

[2.8] Mathworks, Inc. (198T), Pro-MATLAR with System Identifica-
tion Toolbor and Control System Toolboz — User Manual, 211
Elict 3¢, South Natick, MA 01760,

[2.7] Edward E. L. Mitchell, and Joseph S. Gauthier [1988), ACSL:
Advanced Continuous Simulation Language — User Guide / Ref-
erence Manual, Mitchell & Gauthier Assoc., T3 Junction Square,
Concord, MA 01742,

[3.8] Systems Control Technology, Inc. (1985), CTRL-C, A Lan-
guage for the Compuler-Aided Dewign of Mulbivamable Control
Systema, [eer’s Gwide, 2300 Geng Rd., P.O.Box 10180, Palo
Alte, CA 94303,

[2.0] John V. Wait, and DeFrance Clarke, [11 (1976), DARE-P [lser's
Manual, Version 4.1, Dept. of Electrical & Computer Engineer-
ing, University of Arisana, Toeson, AZ, B5T21.

Bibliography

[B2.1] YaoHan Chu (1968), Digitel Simulation of Contmuous Systemas,
MeGraw-Hill, New York.

48 Chapter £: Banic Principles of Contmuons Sysfem Modeling

[B2.2] Charles M. Close, and Dean K. Frederick (1978}, Modeling
and Analysis of Dynamic Systemns, Houghton Miffin Company,
Boston, MA.

[B2.3] Waoligang K. Giled (1975), Principles of Continuous Spatem Sim-
wlation, Teubner Verlag, Stuiigari, FRG.

[B2.4] Granino A. Korn, and Johs V. Wait (1978), Digital Continuous-
System Simulation, Prentice-Hall, Englewood Chiffs, N.J.

Homework Problems

[H2.1] Limit Cyecle
The following two equations deactibe a so-called limit evels:

TR L }:;::; ¥ (H1.1a)
oy RIS 9P) ;
i= e (H2.18)

The initial conditions are given as:
(im0} =, pi=0)=zy0 {H1.1e)

Simulate this system over a period of 10 sec with the following four sets of
initial conditions:

el m D4, p0m=]D {HL.1d}
o0 = 0.0, 30 =08 (H2.1e)
ol =00, y0=0.001 (H2.1f)
ol = 1.0, pl=I1.45 (Ha.ig)

The constant k takes o value of k = 2.0. Plot all four trajectories in the
[z, y]-plane on the same graph. An example of what such a graph may look
like is given in Fig.8.18 (for a different limit cyele though). For this purpose,
I recommend to use ACSL with either Pro-MATLAB or CTRL-C.

[H2.2] Cannon Ball

A famous cannon ball used by the United States forces during the Indepen-
denee War can be described by the following set of differential equations:

Homework Problems 48

Em=—R-w-2 (i l.2a)
f=-R-w-j—yp (H2.28)

where z denotes the horisontal position, y denotes the vertical position,
and v denotes the absolute welocity of the cannon ball. The following
constanis are nesded in the model: vy = 300 Fi/sec 15 the initinl velocity,
R =175x10"F fi~! ia the air friction constant, and g = 32.2 fi/sec’ is
the gravity constani.

The cannon was congquered by the Redeoats when they temporarly tock
Philadelphia in the late fall of 1777. This, of course, created & major secu-
rity brench, As a consequence, the above model was officially declussified
by Congress in 1810,

Simulate the system for various shooting angles (10°, 167, ... 68°), Each
simulation is to be carried out for the duration needed until the cannon
ball hits the ground again. Plot all trajectories as functions of time on one
ahesl nfpi.pﬂ'.

[H2.3] Hysteresis
Use two differential equations (o generate the sine wave function

E(t) m I e gint) {H1.3a)

Use iwo state-events to code a vertical hysteresis as shown in FigH2.3a.
Use ACSL's LOGD subroutine to record the corners of the discontinuity
immediately before and after the event. Choosea = 1.0, = -1.0, p = 1.0,
and n = —1.0. Simulate the system during 10 sec, and plot gl{z). The
resulting curve should look similar to Fig.H2.3.

- T~y A
b o ? X
"_H Il’n
% A

Flgurs H3.3. Vertical hysteresis function.

50 Chapter #: Basic Principles of Continuons System Modeling

[H2.4] Difference Equations

Recode the lunar landing maneuver (the version with scheduled time-

events) into a set of difference equations using the Forward Euler inte-

gration algorithm presented in this chapter with a fixed step size of 0.1 sec.
Code the resulting set of non-linear difference equations in ACSL, and

simulate. Compare the results with those presented in the chapter.

[H2.5] Bouncing Ball

A ball is dropped from an altitude of 2 m. No initial velocity is applied.
The ball falls simply due to the gravitationsl force, When the ball hits the
floor, it bounces. It is sssumed that the coefficient of restitution is k& = 0.7,
i.e., the velocity immedistely after the impact is exactly T0% of what it
was just before the impact, bat with reversed sign.

Simulate the system over 10 bounees, and plot the altitude of the ball
versus time. Recompute the communication interval during esch bouncing
event such that 10 communication intervals lie betwesn any two subssquent
bounces {this problem is so simple that the time of the nexi bounce can be
computed analytically once the new initinl velocity is known). Use ACSL's
LOGD function to record the times of impact,

[H2.8] Model Validation

Determine & st of consistent measurement units for all constants of the
lunar lander model. Verify the dimensional consistency scroas all of the
equations contained in the lunar lander model,

