3

Principles of Passive Electrical
Circuit Modeling

Preview

In this chapter, we discuss issues relating to the modeling of simple
passive electrical circuits consisting of sources, resistors, capacitors,
and inductors only. The traditional approach to these types of sys-
tems is through either mesh equations or node equations. However,
the resulting models are not in a state—space form, and they cannot
easily be comverted into & state—space form thereafter. We also dis-
cuss ancther technique which allows us to derive a state—space model
directly, and we shall see why this approach is not commonly used:
very often, the resulting equations contain either algebraic loops or
structural singularities,

3.1 Introduction

A good selection of textbooks deal with passive electrical circuits and
simulations thereof [3.1,3.2,3.3,3.4]. The most commenly used maod-
eling principles are to express the circuit equations either through &
special selection of mesh equations (expressed in terms of so—called
loop currents wsing Kirchhoff™s voltage law), or through a special
selection of node equations (expressed in terms of so—called cutset
voltages using Kirchhoff's current law). Let me explain the basic
idea behind these two methods by means of the example shown in
Fig.3.1.
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Figure 3.1. Example of & passive circuit

We have two elements that can store energy (the capacitor ¢ and
the inductor L), and we thus expect to obtain two state equations
in the end.

3.2 Mesh Equations

Let me first discuss how the loop current approach (mesh equations,
Kirchhoff's voltage law) can be used to generate a mathematical
model for this cirenit. Fig.3.2 shows the same cireuit after the cirenit
has been “colored™ by introducing a “tree”.

Figure 3.2. Passive circuit after selection of & tree

The ®“tree_branches™ of the tree are those branches of the circuit
that have been marked by bold lines (i.e., the branches containing
the resistor &, and the capacitor ('), Let me define what a tree is.

“A tree consists of a set of connected tree_branches such that
the tree branches alone don’t form closed loops, and such
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that any addition of another branch to the tree would create
& closed loop consisting of tree_branches only. The remain-
ing branches of the circuit structure are called the links of
the cirenit.”

A considerahle freedom exists in the selection of tree_branches. How-
ever, some rules must be observed.

(1) Mesh equations cannot tolerate any independent current sources.

Node equations eannot tolerate any independent voltage sources,
If the circuit contains the wrong type of sources, they must be
converted to equivalent sources of the other type. Fig.3.3 shows
the conversion of independent sources.

o

Figure 3.3. Conversion of independent sources

Furthermore, if the “wrong™ sources are ideal sources (i.e., they
have zero impedance associated with them), they must first be
moved into other branches until the problem disappears,

(2) In the case of mesh equations, all voltage sources should be
placed in links. In the case of node equations, all current sources
should be placed in branches. In this way, they will appear only
once in the resulting set of equations.

Using the following notation:

number of circuit nodes
number of circuit branches
number of links
number of tres_branches
number of ideal current sources
number of ideal voltage sources
number of mesh equations
number of node equations

WoWomwwwno
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we can compute the number of tree_branches n,, and the number of
links ny as follows:

figh = Ty = 1 (3.1a)
Ty = iy — gy (3.18)

and therefore, we can compute the number of equations that are
needed for the two methdds as:

By, = Mg — Oy (3.2a)
ny = -0 (3:28)

We usually select the technique that lets us get away with the smaller
number of equations.

In our example, we have an ideal independent voltage source, thus
mesh equations may be more convenient, i.e., we operate on Kirch-
hoff*s voltage law rather than using Kirchhoff's current law.

It is useful to replace all passive circoit elements by impedances as
shown in Fig.d.4 (i.e., we convert the circuit from the time domain
to the frequency domain).

Zy z e
b
U"J.CD Zg 3:."1'

E[:I].."Iﬂ

Figure 3.4. Frequency domain represeniation using impedances

Now, we introduce so—called [oop currents, one for each link of the
circuit. A loop is & generalized mesh. Except for the one link that
it represents, it consists of tree_branches only. Fig.3.5 depicts the
thres loops of our circuit. Once the tree has been selected, the loops
are fully determined. Notice that the short—circuit at the lower right
corner of Fig.3.5 is drawn for convenience only and does not qualify
for & link. The loop currents j,, j;, and j; are identical with the link
currents @, ty, and iy of Fig.3.6. The tree_branch currents i,, and
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iy are the directed sums of the loop currents that traverse the two
tree_branches.

Figure 3.5, Circuit with tree and loop currents

h=Zo(h-h)+Zoe(h -5 —h) (3.3a)
O=Zren+Hie(h-R)+Zecs(n+n—-—n) {3.38)
0=Ziejs+Zae(h+h—h) (3.3¢)

The terms can be recrdered as follows:

UVp=(Z1+ Ec)ei—(Br+ Bc)oa—Zovin (3.4a)
D==[(HH+Ze)on+ (S +Zc+E)eha+Ecen (3.48)
0=-Zcrp+Zcen+(E3+8c)*h (3.4¢)

which can be expressed using a matrix notation as:

My &+ 2 —{3[ +* -Et:r} -&g n
0 |=|~-(&1+23) S1+Zc+ 8L Ze | A (3.5)
0 -Eo Zg 2+ 2¢ b1

which can be abhreviated ms:

g, =Tmo ] (3.6)

e, denotes the source vollage vector, T,, denotes the mesh impedance
mairez, and §; denotes the loop current vector.

Somewhat more systematically, we can achieve the same result by
starting off with two other matrices, namely the mesh incidence ma-
trix and the branch impedance matrix. The mesh meidence matriz
%, which in some texts is also called the fundamental loop matriz,
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is defined as a matrix that describes the circuit topology by coding
the direction of the loop currents in the branches. Fig.3.6 illustrates

the procedure.
iy h
1©
5
gt

Figure 3.8. Circuit topology used for the mesh incidence matrix

i3
0 1 1

0 -1 -|) (3.m)
1

which contains +1 entries where the direction of a loop current cor-
responds with the direction of the branch current, it contains -1
entries where the loop current and the branch current have opposite
directions, and it contains 0 entries for branches in which the loop
current is not present.

The branch impedance matriz &, is defined as a diagonal matrix
containing the individual branch impedances along the main diago-
nal:

il 2 i3 4 5
ilfo o 0o o 0
20 «of£ 0 O (1]
Li=3|0 0 Ry 0 0 (3.8)
|0 0 0 R O
S\0 0 0 @ 1fsC

which we sometimes abbreviate as:
Ty = diag(0, oL, By, Ry, 1/2C) (3.9)

We can now write all equations in & compact matrix form. Let us
start with Kirchhoff's voltage law:
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.0 =0 (3.10)

where uy denotes the vector of voltages across each of the circuit
Jbranches. This can then be expressed as:

w =Ty b+, (3.12)

where i, denotes the vector of currents through each of the cireuit
branches, and u, denotes the vector of voltage sources in the circuit
branches. We can now transform the vector of branch corrents imto
the vector of loop currents as follows:

i =8 - § (3.12)
Plugging the last three equations into each other, we find:
275,87 ji=-%u, (3.13)
A comparison with eq(3.6) yields:

B =8-2,-87 (3.14a)
o =% u, (31448}

We can now evaluate all loop currents at once by computing:

h=8atu (3.15)
which we shall often abbhreviate as:

b=3.\e, (3.18)

using the slash operator (“/*) to denote matrix division from the
right, and the backslash operator (“\") to denote matrix division
from the left. This is the notation used in MATLAB and in CTRL~-
C. We can then immediately find all branch currents using eq({3.12),
and finally, we can find all branch voltages using eq(3.11). Notice,
however, that the evaluation of eq(3.16) is more tricky than it seems
at first sight since it invalves the symbolic inversion of a polynomial
matrix. Neither MATLAB nor CTRL-C can handle this type of
matrix inversions.
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3.3 Node Equations

Let me next discuss the alternative approach using node equations
and Kirchhofls current law. Since we now have a source of the
“wrong” type, we first need to convert the cirenit. Fig.3.7 shows
how this is done.

Figure 3.7. Conversion of the voliage source

Since the “wrong"™ source is ideal, we start by moving the source

into other branches. This is easily accomplished by compensating
the source with an equivalent source of reverse polarity as shown
in Fig.3.7a and Fig.3.7b. Fig.3.7b is equivalent to the original cir-
cuit in every respect except for the potential at the additional top
node. Mow, we can convert the voltage sources to equivalent current
sources as shown in Fig.3.Te. This circuit is again equivalent to the
previous ones except for the infernal characteristics of the sources.
Consequently, the voltage acrass and the current through the indue-
tor [ and the resistor K, are no longer the same as before. In fact,
the inductor has been short—circuited altogether. Since these “modi-
fications™ affect about half of our original eircuit, this approach may
not be sensible for the given problem. However, if we wish to de-
termine the voltage across the capacitor only, this approach works
perfectly well.

Instead of continuing with this example, let me demonstrate this
technique by means of a slightly different example. Fig.3.8 shows
another passive circuit.



Figure 3.8. Another passive circuit

Fig.3.9 demonstrates the steps needed to prepare the cireuit for the
formulation of node equations using Kirchhoff's current law.

Yi=1/R
Y” Yy= 1R,
i

Y, =1/sL

(a) (b)
Figure 3.0, Preparaiion of the circuit for node equations

Fig.3.9a shows the selection of the tree which now should contain
the current source. Every node of the circuit must be reached by
the tree. It is usually a good idea to build the tree as a star with
the center at the ground node (reference node). For this purpose,
it is often necessary to introduce additional fictitious tree_branches
(tree_branches with gero admittance). Fig.3.9b shows the conversion
of the circuit from the time domain to the frequency domain, now
using admifiances rather than impedances,

Then, we introduce so—called cutset potentials, one for each
tree_branch of the circuit. A cufset is a generalized node. Except
for the one tree_branch that it represents, it cuts through links only.
Fig.3.10a depicts the three cutsets of our circuit. Once the tree has
been selected, the cutsets are fully determined. The cutset poten-
tials e;, €3, and e, are identical with the node potentials at the
nodes in which the tree_branches end. If every tree_branch connects
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one node of the circuit with the reference node (as in our example),
the cutset potentials are also identical with the voltages across the
tree_branches u,, uy, and uy of Fig.3.10b. The link voltages u,, and
g are the directed sums of the cutset potentials that cut through
the two links.

(a) (b)
Figure 3.10. Introducing cutset voltages

Fig.3.10a shows the introduction of cutset voltages and their polar-
ities. Fig.3.10b places direction conventions on all branch voltages.

Using the circuit as shown in Fig.3.10a, we can immediately pro-
eeed to generate circuit equations by applying Kirchhoff's current
law to every cutset of the tree:

L=Yie(ey—eg)+Youe (3.17a)
D=Yreeg+ Y oleg—e1)+Ysve; (3.17h)
which can be reordered as:
Ia=(¥i+Yg)wey =Yyney {3.18a)
I==Fiesn+(H+¥H+¥)eq {3.188)
which can further be written in & matrix notation as:
I h+ T =¥ &
[:;)= ( R r,n:_.lr,,)‘ (_:) (3.19)

which can be abbreviated as:
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Je=Yure (3.20)

where j, denotes the source curreni vector, Y, denotes the node
admiliance matriz, and ¢ denotes the culsel vollage vecior.

As before, we can achieve the same result more systematically by
starting off with two other matrices, namely the node incidence ma-
trix, and the branch admittance matrix. The node incidence matriz
¥, which is sometimes also called the fundamental cutset matriz, is
defined as a matrix that describes the circuit topology by recording
the direction of the cutset voltages relative to the direction of the
branch voltages. This procedure is illustrated in Fig.3.10b which
allows us to generate the following node incidence matrix:

ul w2 =3 wi ub

iy E & ¥ I 8
'=:2(u ¥ =F # 1) )

The nod incidence matrix contains 41 entries where the direction of
a cutset voltage corresponds with the direction of the branch voltage,
it contains —1 elements where the eutset voltage and the branch volt-
age have opposite directions, and it contains 0 entries for branches
in which the cutset voltage is not present.

The branch admitiance madrmz Y, s defined as & diagonal ma-
trix containing the individual branch admittances along the main
diagonal:

¥y = diag(0, 1/aL, 1/ Ry, #C, 1/ Ry) (3.22)

We can again write all equations in & compact matrix form. Let us
start with Kirechhoff's current law:

2. 4L=0 (3.23)

where iy denotes the vector of currents through each of the circuit
branches. This can then be expressed as:

=Y. u+i (3.24)

where u, denotes the vector of voltages across each of the circuit
branches, and i, denotes the vector of current sources in the circuit
branches. We can now transform the vector of branch voltages into
the vector of cutset voltages as follows:
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w =B - (3.28)
Plugging the last three equations into each other, we find:
Y- =i, (3.26)

A comparison with eq(3.20) yields:

Yo=Y, - 87 {3.27a)
Je=—T-i, {3.278)

We can now evaluate all cutset voltages at once by computing:
o =Y.\l (3.28)

We can then immediately find all branch voltages using eq(3.25),
and finally, we can find all branch currents using eq(3.24). Notice,
however, that also the evaluation of eq(3.28) is more tricky than it

seems since it again involves the symbolic inversion of a polynomial
matrix.

3.4 Disadvantages of Mesh and Node Equations

We have not answered the question yet how these techniques can

h]puhmnpnﬂhlutdﬁrﬂﬁﬂwm
i.e., our siale—space model Let us return once more to the original

:I:tulltumph and the set of equations as formmulated in eq(3.3a-c).
In order to derive a state—space description, we need to transform
these equations back to the time domain:

Uo = Bal— )+ g [ (= s = jler (3.29)
Q
n=51:'-+mu,-ﬂ}+%!{j,+;.-mdr (3.208)

E
=R.ﬁ+$!hﬂ-+.i:—ﬁhrr (3.28¢)
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In order to come up with state equations, we need to get rid of
the integral terms. This can be achieved by differentiating all three
equations once:

= e
TR - S5 ) (3.300)
o=rSB @B Lo eaw
0= Ra%e + 20 +52 - i) (3.30¢)

We realize that several bad things have happened.

(1) In our equations, the term %5 suddenly appears. This is a
derivative of an input signal. We certalnly don't want to operate
on such a signal, and yet, we shall have a hard time getting rid
of it again.

(2) A second derivative term appeared in our equations, which does
not fit into our state—space description, and which needs to be
reduced to two first order terms (by means of a technigue that
we shall discuss in Chapter 5).

(3) These equations seem to describe a fourth order system while we
know that the order of our system can certainly not be higher
than two. Consequently, linear dependencies must exist between
some of the derivative terms in these equations.

This discussion clearly demonstrates that circuit equations are not
geared towards the generation of a state—space model. We can draw
two possible conclusions:

(1) The methodology demonsirated above is not adequate to gen-
erate & state-space model, and thus, we need to come up with
& different modeling methodology that will allow us to generate
the requested state-space model directly, or:

(2) State-space models are not the right approach to describe elec-
trical cireuits, and thus, we need to come up with a different
simulation methodology that will allow us to perform simula-
thon runs using the above generated cirenit equations directly.

Both argumentations have their pro's and con's, and thus, we shall

proceed along both avenues.,
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3.5 State—Space Models

Let me begin with the first alternative. A good technique to come
up with state equations directly is the following. We start by intro-
ducing variables for every single current and voltage in the circuit.
This is shown in Fig.3.11 for our original circuit example,

”'“lf I =

ST Ry ig
”cl::_r:

o 10

Figure 3.11. Paasive circnii with all variables named

In our example, we have introduced the following nine unknowns:
Uy, By, Ug, U, {h{hiﬂl il-'rudi'ﬂ"

We can now go ahead and write four branch equations and five
mesh and {or node equations. In general, we add linearly independent
equations until we have as many equations as we have variables in

My =Ry iy (3.31a)
uy = Hy sy (3.314)
up=mLe ﬂ {!.11:}
di
o % (3.31d)
Uy = uy +ue (3.31e)
g = Ny (3.31F)
BE = ug + g i{3.31g)

o= 4L {3.314)
o= +ie {3.314)
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Now, we need to solve these equations for the appropriate variables,
We start by remembering that our goal is to come up with a set
of first order differential equations. Therefore, we solve eq(3.31c)
and eq(3.31d) for the derivative terms. Consequently, our two state
variahles will be the current through the inductor i, and the volt-
age across the capacitor ug. We can mark these two variables as
“solved™ in our list of variables (by crossing them out from the list
of unknowns. We place the two derivative terms in eq(3.31c) and
eq(3.31d) in square brackets (meaning that we want to solve for
these variables ), and we underline the two state variables in all other
equations where ever they occur,

Now, we can proceed with either of two philosophies.
(1) We can look for equations which have only one unknown left.

We need to solve that equation for this one unknown, or we

won't use the equation at all.

(2) We can look for variables that occur in one equation only. We
must use that equation to evaluate the unknown, otherwise we
won't evaluate that variahle at all.

With each unknown found, we proceed in the same way. We cross
it out from the list of unknowns, we place it in square brackets in
the equation that we plan to use for its evaluation, and we underline
it in all other equations. {Of course, all input variables, such as [Ty
in our example, are known right away, and can thus be underlined
in all aquations from the beginning.) We proceed until all variables
have heen erossed out, and until all equations have been uwsed up. In

Wy = R| i-l:ill EIJﬁ-ﬁl]
wy = My »ia] (3.325)
e {%} (3.32¢)
ie==0Cw [%] (3.31d)
Us = [ui] + ue (3.32e)
= [ug] (3.321)
[ug] = ws + 1w (3.329)
[fs] = tx =+ g [3.32h)
1 = s + [ig] (3.3%)

which can now be rearranged as follows:
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iy =y /Ry (3.33a)

ta =ug /Ry {3.338)
% = ug /L (3.33c)
% =ig/C (3.33d)
wy =0 =ug (3.33e)
Hy = Eg [3.33f)
(e TR (3.33g)
=g+ g (3.334)
o =4 —ig [I.lli]

Sinee most CSSL% allow us to specify anxiliary algebroic equations
hlddkimmthuddzm“dmuthqmﬂlrpmﬁdeh
gn-ud.ﬂﬂﬂl. ﬂ,fumi:nmﬂdd.n:ﬂptm

3.8 Algebraic Loops

Let us now consider the slightly modified cireuit depicted in Fig.3.12:

-

Figure 3.12. Another passive circuit with all varisbles named

In this example, we have introduced the following nine unknowns:
uy, Uy, g, U, 6, 0y, Ty, 1, u"d"ﬂ‘
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We can go ahead and write four branch equations and five mesh
and/or node equations as before.

mo=Ryeiy (3.34a)
uy = fawia [3.348)
my = Hj w3 {I..I-ﬁ'}
Mg = Lw 1—'1' -I:I.IH}
D =+ s (3.34¢)
uy =y (3.341)
L= 4 (3.34g)
s =14 +1ig (3.344)
i o=1iy+ i (3.344)

We try to solve these equations for the appropriate variables uvsing
the previously introduced recipe. However this time, the solution is
not unique. After marking the first three equations, we are stuck:

up = Hy ey {3.35a)
uy = fy ey {3.35h)
g = Hy wig {3.36c)
ap=>Ls [%] (3.354)
Uy =wy 4+ 55 [1.38e)
Hy = g (3.38f)
[5e] = w1 + wa (3.35g)
Bl = b + i (3.358)
iy = iy oAy {:..-II'I'}

At this point, all remaining equations contain at least two unknowns,
and all remaining unknowns appear in at least two equations. We
now have to make & choice. We can do this in an arbitrary fashion.
Fbrmh,tu:ﬂnlﬂﬂnﬁdetumhuq[ﬂ.ﬂﬁu]fut#nﬁlﬂlu. From
then on, everything else will follow as before, and we obtain the
following set of equations:
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[wa] = Ry # g (3.36a)
uzg = By = i3] [I-.Elﬁj
us = Hy » [ia] (3.38<)
ar=5L»= [%] {S.IH!
Us =um; + ['I..|] ﬂl.“l}
uy = [ug) (3.381)

[ua] = ms +us (3.36g)
[!-'vl] = iy 4 (3.36h)
[ig] = iy + iy {3.364)

However, the fact that we had to make a choice invariably results in
an algebraic loop. Let us rearrange the equations, and let us try to

recognize the resulting algehraic loop.

= Ry e (3.37a)

s = uafHy [3.97h)

iy = uy Ry {337

%—fr = ug L (2.37d)

uy = I — my [!-.ITI:]

Wy = Uy (3.371)

Bg =y 4+ ¥ (3.375)

iy iy i {1.3TA)

iy =g+ 1y {3.3T)

In order to compute uy from eq(3.3Te), we need knowledge of w,.
However, in order to compute u, from eq(3.37a), we need knowledge
of i,. In order to compute 4, from eq(3.37i), we need knowledge of i,.
Finally, in order to compute i3 from eq{3.37c), we need knowledge
of ug which closes the algebraic loop,

Unfortunately, algebraic loops are extremely common in electrieal
circuits, and this is the most serious drawback of the above cutlined
technigue.
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3.7 Structural Singularities

Let us now look at yet another circuit as depicted in Fig.3.13.

Figure 3.13. Yei another passive cireuit with all variables named

In this example, we have introduced the following nine unknowns:
Thyy Ugy Thery WE, iI'r ".'h {ﬂ"r il-'l and {ﬂ-

We go ahead and write four branch equations and five mesh and /or
node equations as before.

w=HRen [3.38a)
uy = Hy ey (3.38b)
i
sp=Ls i" (3.38c)
. "% (3.38d)
My = wg +ug {3.38e)
BL = Ey (3.381)
e =m +ug (3.38g)
& i ie (3.38K)
=i 4L (3.38)

We try to solve these equations for the appropriate wariables using
the same recipe. However this time, the problem is overspecified.
This situation is frequently referred to as a structural singularity.
The term stems from the equivalent situation as it occurs in me-
chanical system modeling.
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We are stuck after the first three equations have been utilized:

ug = Hj oy {I.IH}
uy = My v g (3.380)
sk [% 1 (3.3%)
ic=0Cs ['% (3.38d)
B = wy + ug [l.]h}
= (3.39f)
LS TR {2.399)
[ie] = s + i (3.39h)

f=h+i (3.3%)

At this point, we have no equation lelt to compute iz, Obviously,
we cannot use up &8 & state variable since we need that equation

to compute iz. We thus must revise our strategy, solve eq(3.39d)
for io rather than for ug, and continue from there. Let us see what
happens now:

my = Ry ey {l.-l-h}
uwy = Hy ey (3.408)
up =La [% {3.40c)

. dug
lic] = C» 3 [2.404)
g = uy dug [ 3.40)
ug = ug (3.40f)
[sg] = +ua (3.40g)
Rl =0 +ie {3.404)
W =g iy (3.400)

At this peint, we are left with an algebraic loop as before.

3.8 Disadvantages of State—Space Models

In the last example, we could not avoid leaving one of the differen-
tial terms on the right hand side of the equal sign. Whenever we
face the situation of having no equation left to solve for a partic-
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only known variables [assuming that we didn't choose linearly de-
pendent equations right from the beginning), we are confronted with

a degenerate system (& so—called structural singularity). In our ex-
ample, the system really is of first order and not of second order, and

the additional differentiator is a true differentiator which cannot be
eliminated from the cirenit. Such systems do not have & state—space
model. The best that we can hope for (and in & linear system, we
can always achieve this) is to move the differentiation operator out
of the integration loop into the output equation. We then end up
with a generalized state-space model of the form:

x = Ax + Bu (3.41a)
¥ = Cx + D{s)u (3.418)

Algebraic loops and structural singularities are serious problems that
make the derivation of state—space models for electrical cirenits dif-
fieult if not impossible. For this reason, the approach is not com-
monly used in today's conventional cireunit simmlators, Howewer, the
approach has its beauties, and, if successful, can speed up the run-
time execution of the resulting model quite dramatically. Several
techniques exist to reduce algebraic loops and structural singular-
ities antomatically, and we shall discuss some of these techniques
In Chapter 5 of this text, However, whether or not algebraic loops
and for structural singularities can always be removed in an auto-
mated (i.e. algorithmic) fashion, is still an unanswered guestion.
Therefore, the development of such algorithms must be considered
open research.

3.9 Summary

We have introduced the two standard techniques used in the analy-
sis of electrical cireuitry, the mesh equation approach and the node
equation approach. More details on the implementation of these
techniques in modern circuit simulators (such as SPICE) will be pre-
sented in Chapter 6 of this text. Details of the numerical techniques
required to simulate these types of models (using smplicit differen-
tiation) are discussed in the second volume. We have also shown
an alternative approach to circuit analysis, an approach that leads
directly to a state-space description. However, we have shown that
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this route is quite problematic due to algebraic loops and structural
singularities which oceur frequently in electrical circuits. More de-
tails about these problems and how we deal with them are presented
in Chapter 6 of this text, together with a tool (DYMOLA) which
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Homework Problems

[H3.1] Choosing between Mesh and Node Equations

Fig.H3.1 shows & simple passive circuit, The circuit contains one dependent

currend source. The current iy is sk all kimes proportional to the voliage

vy. The proportionality factor is 4 4 V-1,
Determine how many mesh sguations (node equations) will be nesded

to deseribe this cireuit.
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Flgare H3.1. Clrenit disgram of a simple paasive circuii

[H3.2] Mesh Equations
For the circuit of Fig.H3.1, replace all storage elementis by equivalent

impedances, choose an approprinte iree, and determine s consistent sef
of mesh equations. Preseni these equations in & mainx form.

[H3.3] Node Equations

For the circuit of Fig.H3.1, reduce the independent voliage source to &
sel of currenl sources, replace all storage elements by equivalesi admit-
tances, choose an appropriate tree, and determine a consistent sel of node
equations. Present these equations in a matrix form.

[H3.4] CSSL Model

For the circuit of Fig.H3.1, use the sinte—space modeling approach to de-
fermine & consistent sef of simulation equations. Code these equations in
any CS5L, and simulate the system over B0 psec,

[H3.5] Linear State-Space Modal

From the simulstion equations of hw({H3.4), eliminste all suxiliary wari-
nbles, and write the resulting state equations in & matrix form of the type

t=A-x+b-u {H3.5q)
y=C-x+d+u (H3.56)
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where the output vector consists of the variables vy and i, and where the
single input is the independent voltage source U,

Use CTRL-C [or MATLAB) to determine the cigen-modi of this system
(which are the sigenvalues of the A mairix). Choose the final time of the
simulation to be minus three times the inverse of the slower of the two
cigen modi,

Simulate a step response of this system wsing CTRL-C (MATLAR) di-
rectly. For this purpose, it is necessary to create & time base, ie., & vector
of time values at which we wish to snmple the simulsted trajectories. This
is mecomplished with the statement:

[ #&=0:tmez 1000 1 tmz;

which generates a vector of length 1001 containing sumbers that are
equidistantly spaced beiween 0.0 and fme This vector contains the com-
munication points. Nexi, we need to generate the inpat signal sampled at
ihe communication points. Since we wanl io simulate a siep response, we
can create & vector of length 1001 ench element of which is 1.0, This can
be achieved wilh the statemeni:

[ w=U0«ONES(t);

Finally, we can apply an imitial condition, and simulate the system over
time, using the CTRL-C statements:

=0 = [v30; iL0];
[> SIMU('IC',=0)
[> wy=8IMU{a,becdut)

The MATLAB solution looks very similar.

Determine analytically the steady-state 'ﬂhllﬂ['l-hl‘ﬂ'ltp‘l‘i“#‘lﬂ]‘h
step input. [ Al steady-staie, all derivatives have died out, and thus, x5 =
0. Compare the analytically found value with the “nnnﬂ:ﬁ-ud value
as a means bo validate your simualation.

[H3.6] Structural Singularity
Fig.H3.6 shows another simple passive cirenit. Use the state-space model-
ing technique to determine & set of simulation equations. You will notice
that this circuit exhibits s structural singularity.

Prove that the two inductive currents are lincarly dependent on ench
other, and thus, do not qualify as two separaie state variables.
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Figure H3.8. Circuit diangram of another simple passive cirenit

|H3.7] Passive Filter

Fig.H3.7 shows & simple passive filter,
L=02mH
S 5 ]
.L]_Tn
Ry=10 o
by -k e |v
U, = 35nF =800
I i
¥ T

Figure H3.T. Cirenit diagram of a simple pussive filier

Use the siate—space modeling approach to derive & set of first order dif-
ferential equations to describe this system. Use any CSSL to simulate the
system over 50 peec, and display the resulting trajectories for wg, dp, and
tig. Use the step-function approach to generate the square-wave voltage
source [y,

[H3.8] Connecting Power to an Unloaded Power Line

Fig.H3.3s shows an unloaded snd initially unenergized power ine that mmst
be bromght on-line.
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Figure H3.8a. Circuit disgram of & power line

The AC voltage source is connecied to the power line which has & charse-
teristic impedance of Roy + j - Lop. The power line itself is represented
through a single r—element.

The aim of this experiment is to determine how we can minimize the
overshoot on the power line, For this purpose, we shall connect the voltage
source to the power line (by closing the switch) at different phase angles.
We shall iry seven different phase angles equidistantly spaced between 07
and 180°,

Also;, we want to try whether a shunt resistor may help suppress the
overshoot on the power line. For this purpose, we introduce s time—wmrying
shunt resistor Kz, as shown in Fig. H3.8b.

J6TE 24162 12541
Flgure H3.8b. Circoit disgram of the shunt resistor

The shunt resistor Rgy is pleced in parallel with the main switch, It con-
tains itself four switches which sre being closed ai various time instants:
the switch Sy closes sl time sero, 5y closes afier 3.5 maec, 5y closes after
f meec, and 55 closes after 18 maec.

Simulate the system with and without shunt resisior for all seven phase
angles, and plot uy on two scparate graphs (seven curves per graph). Use

the state-space approach for modeling. The shuni resistor is easiest coded
as n Fortran subroutine.
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[H3.0]* Resonance Circuit
Fig. H1.9 shows a simple resonance cireuit,

c 5 R
i 10 uF lmH; mn[] '

} 0

Flgure H3.0. Resonance circudl

We want to analyse the response of this circuil {0 a Dirnc current impulse:
tn(t) = §(t) (H9.3a)

For this purpose, we petform two separais simulation experiments.

In the first experiment, we approximate the Dirac impulse by & rect-
angulsr pulse of length §i. Choose the height of the pulse such that the
identity:

f Bit) dt =1 (E73.88)

is preserved. Repeat this experiment for thres different values of §, namely:
8 = 8 peec, B = 0.8 poee, and # = 0.08 ysec. Simulsie the system for
& duration of t,,; = 1 maeee. Use & fived step integration algorithm with
the step sine Ai = 0.01 - & ap to the tims §i, and & muoch increased siep
sise of &1 = 60 psec thereafier. Plot v(f) on one graph for sll thres
simulation runs. Use the state—space approach, and formulate the model
in any of the C55L%. Some languages (such as ACSL) don't provide for
fized siep algorithms, In that case, simply sel the communication interval
mccordingly. In ACSL, you can set the communication interval initially in

a CINTERVAL declaration:
cnterval cini = 2.0E — §

This declares the variable cimt Modify eind immediately in the INTTIAL
pection bo;

ot = .01 = wadih
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and declare a discrete event of type change to happen at time width (= §i):
schedule change .ai. width

This statement will force ACSL to enter a DISCRETE block (to be coded
as part of the DYNAMIC block, but outside the DERIVATIVE block) by
the name of change in which you can modify the communication interval:

DISCRETE change
cind = 60.0E — 8
END § "of DISCRETE change”

The current I can, of course, be modified simulianecusly.

In the second experiment, we shall notice that this is & linesr system
which can be written in the form:

i=A x4+b-u (H3.8¢c)
y=¢ x4d-u (H3.8d)

whete the single inpul w is the current source ig(t), and the single output
v is the voltage v(l). We can further notice that any such system can be
analytically selved. The analytical sclation is:

¥{t) = € exp(At)xe + ¢ j exp{A{t — r))bulr)dr (H3.9¢)

and since u(f) = §(f), we can use the sifting property of the Dirac distri-
bution to ewaluste the integral. This allows us to reformulste the given
problem which has & Dirse input and no initial condition s another equiv-
alent problem which bas no input but & nom-vanishing initial condition.
Determine what the equivalent initisl condition hes to be in terms of the
matrices A, b, ', and 4. Simulate this modified problem, and compare the
results to those obtmined from the previous simulations, It may be easiest
to simulate this linear time—invariant problem in CTRL-C jor MATLAB)
directly.



