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Principles of Planar Mechanical
System Modeling

Preview

In this chapter, we deal with the dynamic behavior of translational
and rotational planar motions. The basic physical law governing
these types of systems can be either expressed in terms of New-
ton's law for translational and rotational motions, or in terms of the
d’Alembert principle. The concepts will be demonstrated by means
of & number of practical examples such as a crane crab system and
an inverted pendulum. Towards the end of the chapter, we discuss

electro-mechanical transducers.

4.1 Introducstion

Mechanical systems are quite similar to electrical systems. Some of
the basic principles are exactly the same for both types of systems.
In electrical cirenit modeling, we have learned that the sum of all
currents in a node must always be gero. In modeling rigid mechanical
systems, we shall see that all internal forces and torques at any point
of the body must add up to zero. In electrical cireuit modeling,
we have learned that the potentials of all connecting branches at
a node mmst be the same. In mechanical systems, it is true that
the positions, velocities, and accelerations, both translational and
rotational must be the same at any connecting point in the system.

In fact, some electrical engineers like to convert mechanical sys-
tems to equivalent electrical circuits, and thereafter treat those using
the techniques that were discussed in Chapter 3. We shall not do so,
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but we shall see later (namely in Chapter 7) that & deeper truth lies
behind these similarities.

However, differences exist also which make it a little harder to
deal with mechanical systems than with electrical circuits. Let me
summarize these dissimilarities:

(1) Geometry plays an important role in mechanical systems. This is
not so in electrical systems unless one goes to very high frequency
(microwave frequencies) or to very small dimensions (integrated
circuits). Mechanical systems operate in a three-dimensional
space which is difficult to capture on two—dimensional drawings.
Therefore, it is a little more difficult to grasp the functioning of
most mechanical devices. However, this is compensated by the
fact that electrical circmits often contain thousands of cirenit
elements. Mechanical systems are always rather simple devices.

(2) To model electrical cireuits, only two types of signals were re-
quired: voltages and currents. Every facet of an electrical circuit
can be described in terms of these two quantities. In mechani-
cal systems, each body can be exerted simmltaneously by a force
(which usually has an z, a y, and a z component), and by a
torgue (again with three components). As a consequence, we
need to operate on & larger number of variables in order to cap-
ture all mechanical properties of & system.

(3) Mechanical systems are always subjected to constraints. Masses
can bump into aach other, or can fall down; springs cannot be
compressed or pulled to an arbitrary extent; bodies are not in-
finitely stiff in reality, but can sag or ean be deformed otherwise
(elastically or even plastically). This is, of course, also true for
electrical systems, but to a much lesser extent. Electrical sys-
tems are much “cleaner” than mechanical systems.

What this really means is that electrical svstems exhibit a more crisp
separation of the various governing physical phenomensa both in the
time as well as in the space dimensions. Most electrical circuits oper-
ate in the kHz to MH: range. In this frequency range, the electrical
phenomena as studied in Chapter 3 are strongly dominant. Mechan-
ical and thermal side effects are much slower, wsually too slow to be
considered in the model except for DC analysis. Quantum mechan-
jeal effects are much faster, usnally so fast that they ean sither be
ignored altogether, or at least, their influence can be aggregated to
a statistical description (noise analysis). Also, in the kHz to MH:z
range, the geometry of the circuit layout can still be ignored (except
inside an integrated circuit chip). On the other hand, mechanical
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systems operate in the H:z range. Therefore, it may be necessary
to consider thermal side effects. More important, however, are the
geometrical (spatial) influences. A simulation system which does
not allow us to formulate the geometrical constraints inherent in the
model is therefore virtually worthless.

However, let us start with the most simple principle that governs
the mechanical behavior of rigid bodies. This principle has been
formulated first by Sir Isaac Newton, and describes the dynamies of
a rigid body both in translational and rotational terms.

4.2 Newton's Law for Translational Motions

MNewton's law is often quoted as follows: The sum of all forces ex-

erted on a rigid body equals the mass of the body multiplied by its
acceleration, iLe.:

m~i=E,f.' (4.1)
i

However a little more precisely, the law should be written as:

ﬂ%l =Y 4 (4.2)
Wi

where the term m - v (the mass multiplied by the velocity) is some-
times called the momentum I of the rigid body, i.e.:

g=zﬁ (4.9)
whi

This distinction becomes important if the body is not all that “rigid”
after all, but loses mass on the way, such as our lunar landing module
from Chapter 2. Fig.4.1 illustrates Newton's law as applied to our
lunar landing module.
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Figure 4.1. Lunar lnding module
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For this system, Newton's law can be written as;

g I ¥+ - %—ﬂiﬁhﬂ g (4.4)

which ean be rewritten as:
m=d=lﬁ.ﬂ.ﬂ‘—ﬂ-=§—%'l (4.5)

which is the form that we had used in Chapter 2.
In an alternative approach, we can introduce a fictitious "mass
force™:
4T

=5 (4.8)

and, adding this “force™ to our set of forces acting on the rigid body,
we can reformulate Newton's law as follows:

E_f.=n (4.7)
W

In this modified form, Newton's law is known as the d'Alembert
principle. The two formulations are equivalent.

Let us exercise Newton's law by means of the simple mechanical
system that is depicted in Fig.4.2,
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Figure 4.2. Simple transistional problem

Let us assume that all elements of this mechanical system operate in
their linear range. The top body ma does not fall down, neither does
it lose any of its wheels. Also, the top body does not sag, and always
covers all the wheels that separate it from the two lower bodies my
and ms. The springs ky and ky do not overexpand or overcontract,
and the same is true for the hydraulie eylinder B;. Let us assume
furthermore that, for all times § < 0, the driving force F is sero, and
the system is in an equilibrium state in which all three positions =,
£y, and ry are defined as gero.

This problem is very simple. One approach to tackle such problems
is to freeze all bodies but one, and see what happens to that body
when we try to move it. Let us start with body my. If we apply
a force F at time ¢ = 0 pulling my to the right, the two frictions
between my and the two other bodies my, and my, which are told not
to move, will oppose our attempts. This settles the question of the
sign, and we find immediately the equation:

d'zs _ drg  dzy dzy  dzy
T e Tl e
The reaction to these friction forces (i.e., the same forces but with

opposite signs) are responsible for getting the bodies m, and m,
moving. Thus, we can for instance write the equation for body my:

(4.8a)

dzy

d dz
m,?- =.E'1[d-i-"—i-‘?"1- E[Iq- B -

dary
-~ ) ke (48

and finally for body m,:
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d? dzy ds d=z,
mﬁ=a;ifa;‘}—ﬂ1 r;[———-;um k2 (48)

In order to obtain a set of state-space equations, we need to solve
eq(4.8a-c) for their highest derivatives, and reduce the second order
differential equations to sets of first order differential equations. The

resulting state equations are as follows:
£ = (4-9a)
= _%[—i. a1 —(2By + By)w + Ba v + By ] (4.5%)
#y =y {4.9¢)
'l‘:|=$d[ﬂnn—h wa — (28 + Bajwa + By m] (4.0d}
iy = wy (4.8e)
hnmilr,mn+mn—mn+ﬂ=}] (4.91)

which can be coded directly in any of the simulation systems that
were introduced in Chapter 2.

The above approach works well for simple problems, but it can
become confusing when more parts are involved that move in all
directions and rotate at the same time. In those more complicated
cases, another approach works better. This will be [lustrated next.

In the second approach, we start again by identilving parts of the
system that can be moved without the rest of the system moving

with them. We now cut the system open at the interface between
the moving subsystem and the frozen subsystems, and replace the
influence of the frozen subsystems on the moving subsystem by an
equivalent force acting on the moving subsystem, and the reaction
(L.e., the influence of the moving subsystemn on the frozen subsys-
tems) by an equivalent force acting on the froszen subsystems. These
two indernal forces are always of the same size but of opposite di-
rection (ie., they annihilate each other when the system is recom-
bined). Fig.4.3 demonstrates this approach for the case of our simple
mechanical system.
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Figure 4.3. Simple iranslational problem cut open

Mow, we can apply the d'dlembert principle to the three bodies sep-
arately, and write those equations down together with the equations

governing the behavior of the individual forces:

F{!} = Fry 4+ Fg, + Fps

Fpa =Fra + Foe + Foa + Fia

Foy + Fps = Fnu + Fpa + Fui

i
F.'j
Fpa = Bim == )
Foy = By[ws —m )

Fpe=B v
Fgpg = B; wy

{4.10a)
{4.108)
{4.10¢)

[4.10d)
{4.10¢)
{4.10f)
(4.10g)
{420k}
{4.006)
{d.105)
{4.10k)

(#.200)
{4.10m)
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Fmy = By{my = m) (4.10n])
Fui =k 2y {4.10a)
Fiyy = ky 2y {4.20)

Motice that the directions of the arrows of the internal forces are
arhitrary {as were the directions of currents and voltages in electrieal
circuits). However, we must adjust the equations to our conventions.
This is demonstrated in Fig.4.4. [f friction forces and/or spring
forces have the opposite direction to the position (and velocity and
acceleration) of a rigid body, the contribution of the body itsell is
counted positively in the force equation while the contribution of the
environment is counted negatively. If the directions are the same,
the contribution of the environment is counted positively, while the
contribution of the body itself is counted negatively. If the direction
of the inertial force is opposite to the direction of the position, the
equation is entered with a plus sign, otherwise with a minus sign.

- -
[ - dm k) |
T E -1-—-—J--L

it m; . dt
i Fh 'k{:i “X athar/
= Fy =B (X Xy
Fp¢—

b i o
' l:_-__-; li . !
m; iy : Tlr::.]

—_—
: FH =k (X gpher %)
:_}F.I'I. " -
i F. =B(x =X}
] 3 B other *X
\_ Fg J
\ ¥

Figure 4.4. Convention for direction of forees
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Now, we can try to solve these equations using exactly the same
methodology that had been advocated in Chapter 3. As in Chapter
3, we start by solving all differential equations for their derivative
terms, and proceed until all equations and unknowns have been nsed

up.

Fit) = [Frs] + Fou + Fau (4-11a)
Fyo=[Frs]+ Fos + Foz + Faa (4.118)
Fps+ Fm = [F.n] 4+ Fpa 4+ Fiy {IJ l:}
| —— [%] (4.11d)
dey
[CEi== {4.11¢)
Fra = ma[ 22| (4.111)
2= m (4119)
Fnm m[%‘] (4.114)
[% =m (4.13i)
[Fre] = Bi(ma — m) {4.117])
[Fas)] = Bylvy = m) {d.11k)
[Foel= By w {(4.100)
[Fodl= B w {4.11m)
[Faa] = Balwa — m) {4.11m)
[Fis) = by =1 (4.11a)
[Faz] = by =5 {4.21p)

which can then be rewritten as:

Fzy = Fit) — Fpo — Fm (4.12a)
FPry=Fpy — Fgo — Fn — Fia [4.128)
Py = Fpy+ Fm — Fana— Fiy !‘ij}
% o= P i (4.12d)
% — (4.12¢)
2 = Fno/ma (4.321)
= (4.129)
. R (4.12h)
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diy

S =m (4.124)
Fpg = Byvy —vg) (4.125)
Fm = Bifvy = m) (4.12k)
Fp, =B w [4.124)
Fpa= By w {4.12m)
Fm = Ba(vg = w ) (#.12n)
Fog =ky 2y H-J‘ﬂ}
Fyg = ly m (4.12p)

which again can be programmed immediately using any of the pre-

4.3 Newton's Law for Rotational Motions

This version of Newton's law is often quoted as follows: The sum
of all torques exerted on & rigid body equals the inertia of the body
multiplied by its angular acceleration, Le.:

Jo=%"n (4.13)
Wil
However a little more precisely, the law should be written as:

ﬂ;T“l = g n (4.14)

where the term Juw (the inertia multiplied by the angular velocity)
is the tunst T of the rigid body, l.e.:

4T
— = (4.18)

which is sometimes also called the angular momentum. As before,
we can introduce a fictitious “mertial torque™ ry:
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dT

r=—— (4.18)

and reformulate Newton's law using the d'Alembert principle as:

Y on=10 (4.17)
L]

Let me [llustrate the modeling of rotational motions by means of
another simple mechanical system as illustrated in Fig.4.5.

i B, B, k, =

Agghghghgh
HHan R HHHHHHH

lllllllllllllll

Figure 4.5. A simple rotstional system

Since the system is sufficlently simple, we can proceed along the
first route, and write second order differential equations right away.
However, we first need to understand what the gear is doing to our
system. This is illustrated in Fig.4.6, which describes the transforma-
tion of the rotational subsystem to the translational subsystem. The
equations that govern the gear are the same irrespective of whether

the cause is & torgque applied to the pinion, or whether the cause is
a force applied to the rack.
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Figure 4.8. Modeling mechanical gears

Now, we are ready to write down the equations. Let us begin with
the subsystem Jy:

d'@

hg

Let me introduce two additional variables, namely a torque r; de-

noting the influence of the rack on the pinion J,, and a force F

denoting the influence of the pinion J; on the rack. This allows us
to write an equation for the second subsystem (J,):

J,i—s::ﬂi{%- %}-—h = Tg (4.188)

and for the third subsystem:

=1-—B.{%—%]—h% (4.18a)

mg;:?u-mr—ﬂjﬁ-—h: (4.18¢)

Now, we only need to describe the gear;

rg=r Fg (4.184)
z=rih {'Ll.!ﬂ:l
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Of course, from eq(4.18e), we can immediately derive two more equa-
tions:

de _ _db,

£E= E {4.19a)
z _ d'h

FErn (4.198)

Let us eliminate # and Fg from eq(4.18c) by replacing these terms
with #; and rg:

d? 1
mr‘u—?--rg —mg- B.r%—hrl‘ (4.20)
which can be solved for r5:
2
TG =mr’dd:: + By r’% +hyr?' By +mgr (4.21)

Plugging ¢q(4.21) into eq(4.18b}, and rearranging the terms, we find:

[f+m 1-']";—':’ =BG (B4 By ] [l ks s —m g (422)

The term [J; + m r?] is the apparent ineriia of the body J;, i.e., the
inertia that is visible when we measure the inertia from the rotational
end of the gear. Similarly, the terms [B, + B; r?] and [k, + ks r?]
denote apparent friction and spring coeffici

We are now ready to generate a set of state equations:

By = un {4.23a)

= }.[—{m + By Yoy + Buon + #(f)] (4.238)

By =y {4.23¢)
Jj_'_m',[ﬁl.ﬁ't—[h 4 by v’y — (By + By v juy = m g r)4.204)

e = riy (4.23¢)

which can directly be coded in any of the simulation languages.
Eq(4.23e) denotes an oufpul egquation. It is not needed in order
to solve the set of differential equations, but is computed only for
the purpose of display on output. Consequently, it does not make
sense to code this equation inside the DERIVATIVE section of the
program. To demonstrate this new concept, let me write down an
excerpt of an ACSL [4.8] program implementing this model:
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PROGRAM Retational Mechanical Syeiem
INITIAL
comstant
" Place values for all constanis here™
Jline = 1.0/J1
Bl = -{.ﬂ'l + Hi)
Jlapines 1LONJ2+ mereel)
ﬁlr =kl 4+ kT srsal
Bap =81+ Blarasal
mMgr =Mmegsr
END § "of INITIAL"
DYNAMIC
DERIVATIVE
thidot = omi
omldot= Jlines [Fll woml + B1 s om? 4 h.'l.]
thidot = om3
om2dots Jiapin (1 oml = kap » thT — Bap » oml — mgr)
thi = I'Iﬂlﬂﬂl]‘ﬂ'l,“ln'}
eml = integ{omldet, ornl0)
th3 = l'..llr[ﬂﬂﬂ,ﬂlﬂ}
eml = inlegemldat, omi0)
END § "of DERIVATIVE"
s =r=thd
termt (Lge.tmz)
END § "of DFNAMIC™
END ¥ "of PROGRAM™

This program demonstrates new concepts. Since the DERIVATIVE
segment of the program is being executed over and over again, it
is important to keep this segment as short as possible by throwing
out all computations that are not necessary for the solution of the
differential equations, in order to make the execution of the simmla-
tion program fast. In this context, all constant expressions should be
moved into the INITIAL segment, and all output equations should
be moved out of the DERIVATIVE block., Output eguations will
then be evaluated once per commmmmnication interval only, namely im-
mediately before the output variables are stored in the data base.

DESIRE [4.7) and DARE-P [4.14| offer equivalent features. In
DESIRE, outpul equations can be placed below the OUT statement,
and in DARE-F, they can be coded in a separate §D2 block.

Let me now demonstrate the other approach. Fig.4.7 shows the
same system after it has been decomposed into three subsystems, and
after all internal and fictitious forces /torques have been introduced.
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Figure 4.7. Rotational system afler decomposition inlo parts

Previously, it was stated that subsystems should be selected such
that each subsystem contains exactly one independently movahble
body. In this example, we did not adhere to this rule. The subsys-
tems J; and m cannot be moved independently from each other. It
will be demonstrated how this decision will affect our model.

We are now ready to write simulation equations directly. As be-
fore, the simulation equations comprise the equations resulting from
the d'Alembert principle, as well as the equations describing the
individual forces/torques (equivalent to the “branch equations™ of
electrical cireuits).

rt)j=rr+™m +Tm (4.24a)
TH =TT+ T+ Ta {4.34b)
Fa=Fr+Fu+Fpa+myg (4.24c)
" ';—:' (4.24d)
< T (4.34¢)

dury
s (4.241)
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- R (4:245)
Fr = m% (4-24k]
E =i {4.241]
rg = r Fg (4-247)

z=rily (4.24k)

o = Bilwy — wa) {4240}
oy = Hyay (4-24em )

Fm=Hyv (4.24n)
i = kil (4.240)
Fig =1k = {4.34p)

Among these equations, we find six differential equations. However,
we know already that this is a fourth order system. The reason
for this discrepancy is easily understood by looking at eq(4.24k). =
and #y are related to each other in a linear fashion, Le., those two
variables do not qualify for separate state variables, The problem was
caused by the fact that we ignored the rule that systems which eannot
be moved independently should not be split in two. Such a decision
will always create structural singularities. Nothing is wrong with
this approach though, we must only be prepared to do some extra
work in the end in order to come up with an executable simulation
model.

Rather than proceeding with this example, [ prefer to demonstrate

the learned concepts by means of a realistically complex problem,
namely the analysis of & crane crab system.

4.4 The Crane Crab Example

Fig.4.8 shows a crane crab system that is used in a mechanical shop
to move heavy loads from one place to another. A cart moves hori-
zontally on & bridge. The cart is pulled with a non—elastic rope. The
rope is moved by the motor M1. The load hangs on another rope the
length of which can be controlled by motor M2. It is assumed that
the masses of the ropes are negligible, that both ropes are ideally
stiff (they don't exhibit either an elastic or a plastic deformation),
and also the bridge is ideally stiff (no sag).
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Figure 4.5. Crane crab system

Since the system is fairly complex, it was decided to use the de-
composition technique, We decompose the system into four separate
subsystems describing (a) the crane crab, (b) the motor M1, (c) the
motor M2, and (d) the grab with the load. This is demonstrated in
Fig.4.9.

The first subsystem (the crane crab) exhibits a translational move-
ment in horizontal direction only (the vertical forces were also drawn,
but they must add up to zero at all times). The second subsystem
exhibits & rotational movement only, as does the third subsystem.
The fourth subsystem exhibits translational movements in two direc-
tions. This seems to indicate that the system is of 10°* order. How-
ever, linear dependencies exist between the subsystems | we again eut
the system into smaller portions than can be moved independently).
The position z; determines the angle ¢ completely. Also, the an-
gle o influences both the z, and the z; coordinates of the load (for
a constant value of ¥, the load has only one (circular) path along
which it can move. Consequently, the system order will have to be
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reduced to six, and structural singularities will pop up between our
initially chosen model variables.

g s

J_.l!i

- =

H

il

_’F

my

L8

crane
crab
F

Figure 4.8, Crane crab system decomposed

Let us write an initial set of simulation equations now. For a change,
we did not introduce any fictitious forces /torques, and shall operate
on Newton's law directly.

my #y = F + & sindl (4.25a)
hé=nt)-n F (4.358)
Id=nit)4nd (4.25¢)
my &, = -0 sinf (4.25d)
my iy = my g — & cosl {4.25«)
£y =Ty (4.251)
L= ryw [4.28g)

2y = my + £ sind (4.25A)

g5 =  coall (4,254}

It was easy so far. We ended up with nine highly non-linear equa-
tions in the nine unknowns z,, 2,, z,, é, ¥, 0, £, F,and G. In
order to come up with a set of simulation equations, we will need
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to analytically compute the second derivatives of ag(4.250-1). This
leads to:

£s =rid (4.28a)
{=rsy (4.284)
£, = &4 + Heosd — i sind + 2ifoosd + Lrind {4.26c)
By = —fBaind — 0P cosl — 2ihaind + leosd {4.264)

Now, let us eliminate the variables z, and 2, by plugging eq(4.25d)
into eq(4.26c), and by plugging eq(4.25e) into eq(4.26d).

~G wind = m,[Ey + thcosd — i sind + 2feosd + Lxind] (4.27a)
m, § — G cosd = m,|-Msin® — 30 cosh — 2 xind + Icosd) (4.27k)
These equations can be simplified by the following operation:

eq{4.27a) - cosfl — eg(4.27h) - sind = eg(4.28a)
eq(4.2Ta) - sinf + eq(4.278) - cosd = eq(4.28a)

This generates the equations:
—g sinf = £, cosd + 08 + 266 (4.28a)
m, g cosd — G = m,[5, sinf — 85" 4+ | (4.288)

We now have seven equations in seven unknowns, namely eq(4.25a-
c), eq(4.26a-b), and eq{4.28a-b). This set of equations is solvable
except for the fact that it contains algebraic loops. We must either
continue to eliminate variables {we can eliminate F' and &, for exam-
ple) until the algebraic loops disappear, or we must place the entire
set of equations into an JMPL construct as described in Chapter 2.
In the given example, the latter approach may be more feasible.

4.5 Modeling Pulleys

Pulleys are frequently used elements to enable human operators to
lift heavy loads. Fig.4.10 shows a four—pulley hoist which may serve

as an example.
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Figure 4.10. Four-pulley hoist

The guestion of interest is the following: Which force F' is necessary
in order to keep the system in an equilibrium state? The answer is
trivial. If we cut the system in the middle, we realize that the internal
forees (tensions) in the four ropes must add up to myg, otherwise, the
lower two wheels would move either up or down, Furthermore, il we
cut the system above the lowermost wheel, we see that the tensions in
the two outermost ropes must be the same, otherwise, the lowermost
wheel would rotate. We can thus conclude that the tensions in all
four ropes must be equal, Le. Sf. Consequently, in order to prevent
the uppermost wheel from rotating, we need to apply a force F = =%,
i.e., we require only one fourth of the force to lift the heavy load m
as compared to a direct lift.

4.8 The Inverse Pendulum Problem

Let us look at one more problem. A double pendulum s balanced
on a cart. We would like to simulate what happens to the pendulum
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as a function of time if various types of control inputs F are applied
to the system. The system is shown in Fig.4.11.

Figure 4.11. Double pendulum balanced on & cart

This system can be used to study a number of interesting control
problems. The most interesting question is the following: Assume
that we start out with both sticks in the upright position. Assume
that & small disturbance moves the sticks away from the unstahle
equilibrium point. Can we balance the two sticks to return to the
upright position simply by moving the cart back and forth? In other
words: Can we find & control strategy which stabilizes the system
around this steady-state point? Amazingly enough, the answer is
yes. Inm fact, it has been proven that an nfinitely large number of
sticks can (at least theoretically) be balanced in this way. By making
these infinitely many sticks infinitely short, we just reinvented the
Indian magicians rope trick (no flute though).

In order to tackle the modeling task, we must first realize that we
can replace the two sticks of lengths /, and {; and homegeneously
distributed masses m, and my by two other sticks with their masses
concentrated in their centers of gravity. We can then decompose
the system into three parts by introducing the internal forces at the
cutting points. This is shown in Fig.4.12.
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Figure 4.13. Doubls pendulum decomposed

Now, we are ready to write the differential equations for each of the
three subsystems. Notice that the two angles ¢, and ¢, are counted
positively clockwise from the vertical.

mi=F-F, (4.29a)
my & = Fig = Frs (4.204)
my & = Fy, {4.20¢)
my i = Fig— Fag —mi g (4.204)
Mg ﬁ - Fll =g g {'-“I!
Jiy = =(Fia+ F:.]-%'"mh +(Fiy + F:.]%'rilh (4.381)
Tads = —Fra Lot + Foy L rings (4.295)
B o= %n‘nﬁ. (4.204)
o 5}«4. {4.294)

£y = 2 + { singy + %'n-ﬁ (4.297)

3 = feoagy + %-nnth (4.28k)
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The model consists of eleven highly non-linear equations in the
Elt'ﬂ“ﬂhﬂml, til l’h Fis Vas ""1! ¢"h F‘I:Ir Fljlt Flli Mﬂ Flj'
As in the case of the crane crab system, we are plagued by struc-
tural singularities. Looking at the degrees of freedom of the system,
we realize that we can move the cart in one direction, the first stick
in one direction relative to the cart, and the second stick in one di-
rection relative to the first stick, i.e., we have three independently
movahle bodies with one direction each, that is: the system must be
of sixth order. However, looking into our equations above, we seem
to have a 14** order model here. This discrepancy can be explained
(as before) by the four linear constraints eq(4.20h-k). In order to
come up with a simmlation model, we would again have to compute
second derivatives for these four equations, detect the resulting al-
gebraie loops, and eliminate variables until they disappear, or solve
the equations in an [MPL block.

4.7T Modeling Electro—Mechanical Systems

We are now ready to model electro-mechanical devices. Electrical
and mechanical systems can interact in several ways, the most promi-
nent of which is through magnetic fields. This is how all electrical
motors work. Let us look at one such motor in a little more de-
tail, namely the DC-motor. Fig.4.13 shows an electro-mechanical
diagram of this motor.

Tm= Wiy

o=yl
Wek.ip

gl

Figure 4.13. Electro-mechanical disgram of & DC-motor
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The motor has two separate coils, the armature coidl which is
mounted on the rotating part of the motor, and the field coil which
is mounted on the stationary part of the motor. The current flowing
through the fisld coil generates a magnetic fleld. I current flows
through the armature coil as well, a force is generated in the arma-
ture coil which is responsible for the rotation of the cylinder which
is anchored to the armature coil. The resulting torque 7., is propor-
tional to the applied field current, and also to the applied armature
current:

T =k i, {4.30)

Very often, the DC-motor is operated with a constant fleld, i.e., the
angular velocity of the motor is controlled through & variation of the
applied armature current. Such a configuration is called armature
control. In that case, eq(4.30) can also be written as:

o =Py (4.31)

where ¢ is sometimes called the torgue constant, and sometimes the
Back EMF constant, since the same constant appears in a second
et ion:

5= wa (4.32)

which describes the voltage induced in the armature coil under the
influence of the rotation.

With these two equations, we can now model the DC-motor as
a whole since it consists of the two electrical subsystems describing
the field and the armature, the mechanical subsystem describing the
inertia and friction of the rotating cylinder, plus the two coupling
equations that connect the mechanical subsystem to the electrical
subaystem. The equations should be self-explanatory by now.

uy = Ry g+ Lj = (4.33a)
2 (4.338)
b b
J-..-Ftlﬁ—u—ﬂu.‘-i:— (4.33¢)
'r.--iilf fa {IJH]
W=k wm {4.33e)

Fig.4.14 shows a block diagram of the DC-motor.
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Figure d.14. Block diagram of & DC-motor

The motor has three different inputs, namely the voltage applied
to the field coil uy, the voltage applied to the armature coil u,,
and the torque load vy which results from the machinery that is
being driven by the motor. The block diagram also explains the
popularity of armature control. If the field current is constant, the
device degenerates to a linear system which is better amenable to
an analytical treatment (although, for the purpose of simulation, we
couldn’t eare less).

4.8 Summary

In this chapter, we have dealt with the problem of modeling planar
mechanical systems in both translational and rotational coordinates.
More can be said about mechanical systems than we were ahle to
cover in this chapter. Unfortunately, we lack the necessary space in
this text for an enhanced discussion. Notice that one of our major
goals is to bridge the gap between the various application areas af
differential equation models, and to come up with a consistant ter-
minology and methodology to deal with such models. It is not the
aim of this chapter to duplicate the tremendous effort that went into
the design of textbooks in mechanics.
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What are the topics that were left out of this chapter, and where
are they discussed?

This chapter discussed planar systems only. A more general dis-
cussion of the subject matter should include three—dimensional me-
chanical problems. A free moving rigid body can translate along and
rotate around the three spatial axes independently. Consequently,
Newton's law (or the d'Alembert principle) must be formulated six
times, once for each degree of freedom. Therefore, a free moving rigid
body is described through a 12** order state—space model. Exam-
ples of three—dimensional motions are presented in the two projects
of this chapter.

A number of textbooks [4.1,4.10,4.11] deal with the modeling of
mechanical systems, texthooks that are geared more towards the
needs of mechanical engineering students. However, all these texts
are junior level textbooks and not senior level textbooks. Conse-
quently, while they cover the modeling of mechanical systems on &
larger number of pages, they simply proceed at a somewhat slower
pace, and do not really extend their coverage beyond our discussion.
In particular, none of those textbooks covers general motions of me-
chanical systems in three space dimensions. Moreover, all these texts
are geared towards enalytical modeling rather than towards simula-
tion modeling. Consequently, they stop with the derivation of the
differential equations themselves, and don’t bother to translate these
don't discuss the concept of structural singularities and algebraic
loops at all. However, since these texts are meant to be used by
mechanical engineers, they provide nice chapters on hydroulic sys-
tem modeling and on pneumatic system modeling, topics for which
we lack the space in this textbook which has been written more with
the electrical engineering and systems engineering students in mind.

A good selection of general Newtonian mechanics textbooks exists
that indeed go far beyond our coverage of the topic [4.4,4.15,4.18].
All of these texts diseuss three—dimensional motions in great detail.
However, these texthooks deal with the physics of mechanical sys-
tems only, and are not really meant to be modeling textbooks.

Secondly, when modeling moving bodies (such as an aireraft), it
is quite common to describe the motion of the body relative to a
coordinate system that moves along with the body. The origin of the
moving coordinate system is then often assumed to be the center of
gravity of that body. Typical examples are bodies that move within
an Earth-fixed coordinate system, but relative to the movement of
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planet Earth, or a robot’s end—effector which moves relative to the
position of its wrist. The total movement of a rigid body is thus
decomposed into & movement relative to a moving coordinate frame,
and an absolute movement of that coordinate frame itself. In this
case, Newton's law (or the d'Alembert principle) mmst be slightly
modified by including two additional fictitions forces, namely the
centripetal force Fg, and the Coriolis force F.. Again, this topic is
carefully discussed in all classical Newtonian mechanics textbooks.
An example of a relative motion is presented in pr(P4.2).

Finally, & more modern approach to dealing with mechanical sys-
tems is through the use of the Lagrange eguafion which replaces
and generalizes Newton's law, Newton's law, as it was discussed in
this chapter, assumes that the equations of motion are deseribed in
Cartesian coordinates. This is not always practical. We can over-
come this limitation by formulating the fofal kinefic energy of all
bodies in the system in as many different velocities as the system
contains independently moving bodies. For example, for the system
of Fig.4.5, we find:

By = 30014 10503 4 gmd® = 208+ s b el (434)

bl |

We call the #, and =, variables our generalized displacemenis g;. In
these variables, we can then reformmlate Newton's law as follows:

4,08, oE
di’ 8¢ " Oy
where (J; stands for the sum of all generalized forces in the direction
of the generalized displacements g,. This formulation of Newton's
law is more powerful than the previously used formulation since it
is valid independently of the coordinate frame that is being used.
Furthermore, with this approach, it is no longer necessary to cut
the system into individually moving pieces by introducing coupling
forces which we must later eliminate again, Therefore, this approach
is often more economical than the direct application of Newton's law.
A special ense is the set of conservative systems, i.e., systems with-
out energy dissipation (i.e., the frictionless systems). For those sys-
tems, vet another formmulation of the equations of motion can be
found. This time, we consider also the potential energy E, of the
system. Thereafter, we build the so—called Lagrangian of the system
which is the difference between the total kinetic energy and the total
potential energy

=q (4.38)
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Ligui-- snifuy e rdn) = By — By (4.38)

Using the Lagrangian, we can reformulate Newton's law as follows:
4oL

ﬂttﬂﬁ

Another formulation of eq(4.37) is through the use of the so—called
Hamiltonian of the system which is equivalent to the total free energy
of the system

j—%:ﬂ (4.37)

Higs.oiuitreeeo i) = Ba + By (4.38)

We can now replace the derivatives of the generalized displace-
ments by generalized momentums. In translational coordinates,
the generalized momentum of a displacement =, is its momentum
m = I, = my#;, whereas in rotational coordinates, the generalized
momentum of an angle 8, (a generalized displacement) is its twist
p = T, = J;f,. We can thus reformulate the Hamiltonian in terms of
the new variables g, and p,. Using this version of the Hamiltonian,
we can reformmulate Newtons law as follows:

8 aH

2 = — |

Ba' [ o5 (4.39)
We shall resume this discussion in Chapters 7 and 8 of this text.

In many mechanical systems, the kinemafic constrainis are the
dominating factors that determine the motion of the system. The
system is so rigid and moves so slowly that the dynamics of the
system are no longer considered important, and are therefore sim-
ply being ignored. Inputs to these systems are no longer forces and
torques, but rather positions and angles. The goal of the investi-
gation is to determine the positions and angles of all parts of the
sysiem in response to the applied inputs. The responses are consid-
ered insfanfaneous. Time appears only through the input functions
themselves which are often assumed to be functions of time. Conse-
quently, these models are not differential equation models, and are
therefore outside the realm of this texthook., -

Very little was said in this chapter about software for dealing
with mechanical problems. Indeed, very little has been accom-
plished in this respect. A nicely written senior level textbook ex-
ists that describes in detail both the kinematics and the kinetics of
two—dimensional (planar) and three—dimensional mechanical systems

b= —
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[4.9]. However, while this textbook describes clearly how such sys-
tems are being modeled, and while it is also computer (simulation)
oriented, it is somewhat disappointing with respect to the maturity
of software concepts and user interfaces of the programs introduced
to deal with the simmlation of these systems. [t contains no more
than a bunch of Fortran coded subroutines that the student is en-
couraged to adapt to his or her needs. Unfortunately, this seems to
be the state—of-the-art in mechanical system simulation.

Three hot research topics in mechanical system modeling can be
named. One topic is related to full digital fight stmulators. Such
simulators are used for three separate purposes: (1) as parts of au-
topilots, (2) for pilot training, and (3) for system trouble-shooting.
The equations of flight motion are straightforward, and & number of
good texthooks exist that deal with those in great detail [4.3,4.5].
The major problem with flight simulators relates to their execution
speed. Flight simulators must execute in real time which either ealls
for very fast computers (which are still fairly expensive), or special
parallel processor architectures for which no good distributed real-
time operating systems exist yet. Consequently, flight simmlators still
rely heavily on assembly programming, and special tricks to reduce
the execution time required.

A second hot topic is robotl modeling for the purpose of robot con-
trol. Again, good textbooks can be found that deal with robot mod-
eling in great detail [4.12,4.13,4.16]. The major problem here is with
the kinematic constraints. Hobots are highly non-linear systems,
and the algebraic loops created by the kinematic constraints can of-
ten not be solved analytically. In many cases, the robot dynamiecs
are not considered at all, and the movement of the robot is dictated
entirely by its kinematic constraints. Newer papers, in particular
those dealing with dexterous hand movements and other sorts of
fine motion planning include the dynamic equations of motion. The
problems here are mostly concerned with the highly non-linear and
non-measurable friction and backlash coefficients. Clearly, more re-
search mmst be devoted to the development of user—friendly general
purpose robotics software. A good amount of work went recently into
the development of three—dimensional graphics engines which allow
to display the three-dimensional motion of robots on a computer
BLTEETL.

A third hot topic is related to the modeling of mechanical limabs
for the purpose of prosthests design. To my knowledge, no textbook
exists yet that deals with this topic, but a series of very good research
papers have been devoted to this topic recently.
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Homework Problems

[H4.1] Lagrangian
In the system of Fig.4.5, replace all frictions (dissipative terms) temporarily
by springs. Call the spring constants J;, F5, and F5. In this way, we have
transformed our previously dissipative system into another system which
is conservalive. [is poteniial energy can be computed as:

E = %ﬁd + iﬂ.m ~a) 4+ }&.ﬂ * ;m'+ ;n..' +mgn —viy (HLI1)

Find the Lagrangian of this system, and plug il into eq{4.37). Derive a =t
of differentinl equations describing this conservative system. In the very
end, replace ench term of type S,q; by the original friction term B,q;, and
show that you end wp with the same sel of differential sequations as with
our original approach. This cheap engineering trick allows us to use the
Lagrangian and/or the Hamiltonian to analyse also dissipative systems.

|H4.2] Hamiltonian

Find a Hamiltonian for the modified system of hw(H4.1), replace the deriva-
tives of the generalizsed displacements g by the generalizsed momeniums py;,
and write down the modifisd expression for the Hamiltoninn in the g and
pi variables. Then spply eq(4.39), and show that you end up with the same
set of differentinl equations as in hw{H4.1) prior to replacing the dissipative
terms back into the system equations.

[H4.3] Cervical Syndrom
Snmpmph[nﬂuurhiﬂ}mtmun—undmvhﬂmﬂ:m
Their neck i not sufficiently stiff to connect their head solhidly with ther
upper torso. Therefore, if their upper lorso is exposed o vibrations, such
as when riding in & car, these people often react with severe headaches.
A car mamufacturer wants to design & new car in which these problems
are minimized. Resonance phemomens are to be studied with the purposs
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of svoiding resonance frequencies of the human body Lo appear as eigen-
frequencies of the car,

Fig.H4.3 shows a mechanical model of & sitting human body [4.8]. The
legs are left out since they do not contribute to potential oscillations of the
upper body. The dats are average dais for & human aduli.

Head
M=12kg TI :

ky = 0.3 kgsec? % \_Irh;l. 0.8 kgsec

1y

-
E
i

M, =24 kg o 1

F
Figure H4.3. Mechanical model of a sitting human body

Derive & statc—space model for this system. Since this is & lineasr time—
invariant system, put it in linear siaie-space form, and simulate the system
directly in CTRL-C {or MATLAB) using an AC fores input of 1.5 Kz, The
output of interest is the distance between the head and the upper torso.

In order to snalyse the resonance phenomens, we wish to obinin & Fode
diagram of this system. Create n frequency base logarithmieally spaced be-
tween 0.01 Kz and 100 Hz using CTRL-C's (MATLAB"s) Logspace fune-
tion. Then compuie s Bode dingram using the Hode fanciion. Converi
the smplitude into Decibels, and plot, on two graphs, the magnitude amd
the phase in & semi-logarithmic scale using CTRL-C's (MATLAB) Plot
function. Both CTRL-C and MATLAB offer intersctive Help on all thess
funetions (in CTRL~C, you need also the Window, Title, Xlabel and ¥lo-
bel fumctions; MATLAB offers similar facilities). Determine all resonance
frequencies together with the maximum overshoot at these frequencies.
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Finally, we wish to perform a sensitivily analysia. 'We want to study
the variability of the spring constant and the damper between the hend
and the upper torso. For this purpose, we assume » variability of k; and
By of +50%. Hepent the frequency analysis from above for the four worst
case combinations, and determine the range of resonance frequensiss to be
avoided. Determine also the maximum overshoot to be expecied in the
worst case. [ suggest that you create & CTRL-C (MATLAB) function
which computes the A-matrix and the b-vecior as & funclion of the two
model parameters by and By. This will allow you to genersie the four
models more easily. While you execute these simulations, keep » diary of
what you are doing (using CTRL-C"s or MATLAB's Diary fanction).

|H4.4] Eloctro-Mechanical System

The electro-mechanical system shown in Fig.H4.4 can represent either a
microphone, & londspeaker, or & vibrating table.

e

7

e e - 1.-1:3
sy¥sbemm

A moving induction codl is placed in the circular gap of a permanent magnet
with the magnetic induction B, It can oscillate in axial direction. The coil
has the inductance [ and the resistance R. It consists of v windings with
& radius v. The length of the coil is £. Coupled to the coil is & mechanical
system with a mass m, & spring constant k, and & damping factor d. The
eoupling between the electrical and the mechanical sysiem can be described
by the following two squations:

FuBeid [ H4.4a)
wi=B-n-8 [ H4.48)
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where F denotes the force exerted on the mechanical system as & function
of the eurrent i that flows through the eoil, and u; demotes the voltage
induced im the coil as & result of the mechanical movement.

Determine s state—space model for this slectro-mechanical system, and
draw a block diagram with uit) as input, and z{f) as cutput.

[H4.5] Translational System
The translational mechanical system shown in Fig. H4.5 is to be modeled.

Find a linear state—space model for this system with F(t) as input, and
2y (t) a8 output.

[H4.8]* Mixed Translationsal and Rotational System

The mixed translational and rotational system shown in Fig.H4.6 is to be
modeled and simulated, This is & simplified version of a slipping clutch. A
force F' pulls [or pushes) & mass m = 3.2 kg along & floor. Viscous friction
exisis between the mass m and the fioor. The friction force is:

Fr. = Byé (Hd.ba)

where By = 0.8 kg #ec™!, The mass m is also atiached to the rear wall
with & spring. The spring constant is ky = § kg sec—?. A cylinder with the
inertin J = 0.001 kg m? and the radius r = 0.06 m sits on top of the mass.
It can either roll on the mass or slip over the mass. Coulomb frichion exisis
beiween the mass m and the cylinder. The friction force ja:

Fouut < By wign(#) (H4.88)



Homework Problems 113

where B; = 0.4 kg m sec™?. As long as the internal foree at the contact
point between the mass m and the cylinder is smaller than the maximum
Coulomb friction, the cylinder will roll, and behaves exactly like n gear.
However, as soon as the internal force becomes larger than the maximum
Coulomb friction, the cylinder will start to slip. Thereafter, the cylin-
der will continue to slip until the two velocities st the contact point have
equalised ngain. At this point in time, the cylinder will return to its rolling
mode. The cylinder is attached to the two side walls with two rotational
springs with the spring constants ky = ky = 0.001 kg m? sec™?.

= NC
B,
k; o ks
I J
1 1 K B2
B, o

F.x

Figure H4.8. Mixed iranslational and rotstional system

Model this non-linear system in ACSL using F(f) ss input, and both ={i)
and & (1) as outputs. Apply s foree:

Ft) = 0.1 - £ - wim(t) { Hd.8e)

and simulate this system during Th see.

This simulation is not so simple. We need Lo toggle between two different
models, The overall mode] is of second order whenever ihe eylinder rolls,
but it is of fourth order when the cylinder slips. This is therefore & so—called
variable struciure model In order to model the switching between the two
modes correctly, we require two stote-evenis. AUSL's state—event scheduler
is called from within the DERIVATIVE segment. The two statemenis:

scheduls goslip .xn. slpeon
schedule gorall .xn. rolcon
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can be placed within the DERIVATIVE section. Sipeon is a real expression
which triggers the execution of & DISCRETE section by the name of goslip
to be executed whenever sipcon changes its sign from positive to negative.
Roleon works accordingly.

FProjects

[P4.1] Alreraft Modeling

Flight stability can be studied through two independent models: longitudi-
the lateral ones if the following simplifying assumptions are walid:

(1) The airplane is perfectly symmetrical with respect to its median lon-
gitudinal plane,

(2} No gyroscopic effects of spinning masses (engine rolors, airscrews, ebc)
nct on the aircraft,

In this project, we want to adopt the above assumpiions, and consider the

longitudinal model of & BT4T aireraft in eruise flight st high altitude.

A longitudinal flight is characterised by the sbsence of forces and mo-
ments that would cause its lateral motion. (Notice the terminological con-
fusion: the term *moment" is here used as & synonym for *torque”, and
not in the sense in which we have introduced that term before. However, 1
decided to stick to the conventional terminology since this is the one that
you will commenly find when you scan through serodynamics literature,)
Farthermore, the aeroelastic aature of the airplane's structure is neglecied
a8 well, so that the rigid body equations of motion spply to the model,

The mathematical model deseribed in this project reflects an essentially
longitudinal flight restricted to longitudinal deviations from & trimmed ref-
erance fight condition. This reference flight is characterised by the require-
ment that the resultant force and torque acting on the aircrafl's center of
RS AFE BT,

We deflne & reference flight condition as being characterized by a steady
longitudinal and horisontal flight where the resuliant force and moment
acting on the plane are sero. The beadwind is assumed fo be constani and
horisonial

The theory presented in this project is developed with respect to & szt
of body—fized axes named the stabilily azes. The origin of this coordinate
system is the cemter of gravity of the mirplane: the x-axis points im the
direction of the motion of the sirplane in the reference flight condition, the
s-nxis poinks “downward”, and the y-axis runs spanwise and poinis to the
right.



