Hierarchical Modular Modeling of
Continuous Systems

Freview

To this point, we have dealt with very simple and small problems.
This chapter covers some of the techniques necessary for modeling
larger systems. Very often, systems consist of subsystems which may
be described in quite different ways. Besides state—space represen-
tations and topological descriptions (that we have met previously),
subsystems may also be described in the frequency domain in terms
of transfer functions, or may simply be given as a static characteris-
tic relating one output variable to one or several input variables, It is
therefore important that models can be structured. Modular model-
ing enables us to encapsulate subsystem descriptions, and treat them
as unseparable entities which can be incorporated in a hierarchical
fashion within ever more complex system descriptions.

5.1 Modeling Transfer Functions

Let us assume, & system is described by the following transfer func-
tion:

841
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In order to make this system amenahle to simulation, we need to
convert the specification back from the frequency domain into the
time domain. The easiest way to do this is the following.

G(s) = 200 (5.1)
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where (7(s) denotes the transfer function, P(s) denotes its numerator
polynomial, Q(s) denotes its denominator polynomial, ¥'(s) denotes
the output signal, and [/(s) denotes the input signal. We introduce
an additional signal X (a)

Gla) =

¥io) ¥is) X[sa

@)= F) = X(a) Tia) (5.3)
such that
X{s) _ 1
Ts) ~ Qla) (8.4a)
% = Ps) (5.48)

We now look at eq(5.4a) first. We can rewrite this for our example

as:
[200 + 308 + "] X(s) = (4] (5.5)

which can be transformed back into the time domain as:

200=(t) + 30&(1) + E(t) = u(r) {6.8)
assuming that all initial conditions are zero which is standard prac-
tice when operating on transfer functions. We now solve eq(5.6) for
its highest derivative:

£(t) = —200=(t) — 304(t) + u(t) (5.7)
Finally, we introduce the following state variahles:

== (5.Ba)
=@ (5.88)

which leads us to the following state-space model:
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fll = § [5.9a)
€ = — 2006, — 306 + (5.58)

We now look at eq{5.4b) which can be written for our example as:

¥ () = [200 4 200s] X (a) {6.10)

or in the time domain:

y(t) = 200=(t) + 2002(t) (5.11)
and using our state variables:
¥ = 200§, + 200§, (5.12)

We can rewrite eq(5.9a-b) and eq(5.12) in a matrix form as:

(o (e o

y={(200 200)¢ (5.13b)

In general, if & system is specified through the transfer function:

bo+Byn+bye? 4 ...+ by gt
o +aa+age? 4. eyt 40

we can immediately convert this to the following state—space descrip-
tion:

ﬂ[l] =

(5.14)

o 1 ! B 1} 1 0
] (1] [ (i} i} a
dmil £ = = % 3 P x| f e (sase)
o 1] B e | o 0
] 0 & 0 1 a
=@y =@y =8y ... =03 =lx-] i

pmibs b b ... s bha)x (5.158)
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In other words, the siate matriz consists of all zero elements except
for a superdiagonal of one elements, and except for the last row in
which the negative coefficients of the denominator polynomial are
stored. The input vector consists of zero elements only except for
the last element which is one, and the outpul vector contains the
positive coefficients of the numerator polynomial.

This technique will work fine as long as the numerator polynomial
is of lower degree than the denominator polynomial. If this is not
the case, we need to divide the numerator by the denominator first,
and separate in this way the direct impul/ouwtput coupling from the
remainder of the system. This procedure will be illustrated by means
of another simple example:

Ba? 4+ 3207 4 100+ 2
Ba? + B+ 4

We always start by normalizing the highest degree coefficient of the
denominator polynomial to one, i.e.:

140 4 1807 4 Ba 4 1
FLEA T )

The division of polynomials works exactly the same way as the divi-
sion of regular numbers:

(%4 1607+  Bo+ 1): (P + 0042 =30 44
- Yo% 12674 Gu

Gla) = (5-18)

@(s) =

\ is- ~+ 1
- A5+ 18a+ B

\ =1Te= T

le., G(s) can also be written as:

=1Ta =T
FLE T T

which can be interpreted as a parallel connection of two subsystems
as depicted in Fig.5.1. The transfer function has been split into a
polynomial which contains the direct input/output coupling of the
system, and a remainder transfer function, the oumerator of which
is now guaranteed to be of lower degree than the denominator poly-
system.

Gla) = (32 +4) + (5.18)
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Figure 5.1. Separation of the direct input /output coupling

In the case of our little example, we end up with the following sim-
ulation model:

& =33 '[I.lﬁ}
i: = =Zpy 4 42y 4+ 6 [l.l“}
y=—Tay — 1Teg + du+ 3a [6.18¢)

As can be seen, a true differentiation of the input signal u was un-
avoidable in this case. This is always true when the numerator poly-
nomial of a transfer function is of higher degree than the denominator
polynomial. As a small consolation: The necessary numerical differ-
entiation is performed as part of the svaluation of output equations,
and has thereby been removed from the simmlation loop. Numeri-
cal errors made in the process of numerical differentiation will not
grow by being passed around the integration loop many times. We
had met this situation once before in Chapter 3, and at that time, [
had mentioned (without a proof) that essential differentiators can,
in linear systems, always be moved out of the simulation loop into
the output equations. It has now become clear why this is the case,

and how this can be accomplished in practice.
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5.2 Modeling Static Charnacteristics

Often, static but non-linear functional relationships exist between
input variables and output variables of a subsystem. Often, math-
ematical equations describing these relationships are not available,
Instead, these relationships have been found through experimenta-
tion with & real system.

Let us demonstrate this concept by means of our lunar landing
module which now should be equipped to land on Earth instead. Of
course, this wouldn't work with the rockets designed in the previous
model, but let us be forbearing with these lesser details, However, it
will be important to modify our mechanical squations to take the air
density into consideration. This is proportional to the active surface
5, the air density p, and the square of the velocity v’

Foir = k 8 p{h) +* {5.20)

The air density is a experimentally determined function of the
altitude as depicted in Fig.5.2.

Static Chara cte_ri.st._ic:

1.5 L] i i ] 1

kir Density [kg/m’]

D000 3200, 4000, (0000, 8000, 19900, 13000, 14000, 16000, 19009,
Altitude [m]

Figure 5.3. Earth's air density as a function of altitude

Most CS5L's provide for mechanisms to deseribe such functions in
a tabular form. For instance, DARE-P [5.21] provides for a sepa-
rate tabular function block in which static characteristics of one and
two variables can be coded. The above example could be coded in
DARE-F as follows:
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'T

RHO,12
0.0, L2853
300.0, 1.256

600.0, 1.22
1200.0, 1.152

1800.9, 1.082
3000.0, 0.955
4500.0, 0815
$000.0, 0.67%
P000.0, 0478
12000.00.31%
16000.00.196
18000.00.123
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where the first column denotes the independent varable, here alti-
tude expressed in m, and the second column denotes the dependeni
variable, here air density expressed in kg m~?, The first line specifies
the name of the table and the number of recordings collected. This

table can be used in the model like a Fortran function, ie.

A=(THRUST - XM+ G- XMDOT + V — XK o 5+ RHO(H) s V » o2)/ X M

(5.21)

ACSL [5.16] uses a different format, but the idea is the same. In

ACSL, the above problem would be formulated as follows:

table REO,1,12/ ..

0.0, 200.0, 000, 12000,
30000, 46000, S000.0, #0000,
150000, 150000, ...

1.2%3, 1356, 133 , 1.153,
0966, 0815, 0876, 0476,
0.196, 0.123/

which ean also be used like a Fortran function. DESIRE [5.13] offers
a similar mechanism, and extensions to several independent variables

exist.
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5.3 Dynamic Table Load

The tabular function as presented above js not all that useful when
we are confronted with huge amounts of data, such as wind tunnel
data of an aircraft wing. We certainly don't want to recode (or even
re—edit) the data into the format of such tables. For such purpose,
it is mandatory that tables can be loaded dymamicelly from a data
base. Amazingly, this feature was offered already fifteen years ago
in the software system CSMP-III [5.9] ( call tvload), and yet, none of
the currently advocated systems offers such a function as a standard
feature. However, this function is easy to implement when needed.

5.4 Modular and Hierarchical Modeling

Another requirement that comes immediately to mind is the need
to model systems in a modular and hierarchical manner, It should
be possible to create reusable modules that can be grouped hierar-
chically. Modules should be groupable in exactly the same way as
real equipment is, Le., if one wishes to model a cupboard full with
electronics, one should be able to model the cupboard as.a rack
filled with individual instruments, each instrument as a box filled
with printed circuit boards, each printed cirenit board as a collec-
thon of chips, each chip as consisting of & set of transistors, and each
transistor through a set of individual discrete elements.

In practice, nobody in his or her right mind would ever attempt
to model such a system in all details. Models are always goal driven.

The goal dictates the level at which the highest hierarchical layer is
placed. Usually, the details of lower hierarchical layers become less
and less important to the specified goal, and should be aggregated
into atomic units that are not further decomposed. However, it is
important that the conceptual mechanism of hierarchical structuring
is preserved in the modeling environment. Two hierarchical levels
are extremely common in models of practical systems, three to four
hierarchical levels can still be found. In Chapter 8, we shall present
a model of & solar heated house which contains & five layer hierarchy.

Let us discuss some major mechanisms for hierarchical modeling
as they are provided in continmous system modeling environments.
By far the most popular mechanism is the macre facility.
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5.5 The Macro Facility

Most CS5L's allow us to formulate subsystem descriptions as
macros. Superficially seen, macros look very similar to subpro-
grams in traditional programming languages. This concept will be
demonstrated by means of the electro-mechanical system depicted
in Fig.5.3.

Figure 5.3. Functional disgram of the cable reel system g

A new light weight fiber optics deep sea communication cable is to
be lald through the British Channel between Calais in France and
Dover in the United Kingdom. The cable comes on a huge reel which
is placed on a ship. The ship moves slowly from one coast to the
other by constantly leaving cable behind. A large DC-motor unrolls
the eable from the resl. A speedometer detects the speed of the
cable as it comes off the reel. A simple proportional and integral
(PI) controller is used to keep the cable speed v at its preset value
F"‘l

In modeling this system, we miist first realize that we cannot use
the block diagram of the DC-motor as it was developed in the last
chapter, The reason is that the inertia J;, of the cable reel changes
with time. Consequently, we must use the modified version of New-
ton's law by operating on the twist T of the motor. Fig.5.4 shows
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a modified block diagram of the DC-motor that will work correctly
for our application.

y

Figure 5.4. Modified block disgram of & DC-motor

The modified version of Newton's law manifests itsell through a
swapping of the inertial box and one of the integrator boxes in the
mechanical subsystem. Notice also that it was necessary to intro-
duce a fourth input variable, namely the inertia of the load, Jy.
It wouldn™ have been a good idea to combine this term with the
torque load (by treating it as an fictitious “inertial torque™) since,
under those circumstances, an algebraic loop would have resulted.

Let us now analyze the dynamics of the cable reel jtself. The

length of one winding of the eable is obviously:
by = 2xR (s.22)

where | is the current diameter of the cable reel. With the width of
the cable reel being W, and the dinmeter of the cable being D, the

length of one cable layer can obviously be computed to:

W IxRW
sl heie

The velocity of the cable can be computed to be:

(5.23)

dfl
= .R--i— [5.24)
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and since the velocity was assumed to be approximately constant,
=4 _ WW
T v Dug
During this time, the radius of the cable reel is reduced by one cable

b (5.25)

AR=-D (6.26)
and therefore, we can find a differential equation describing the
change of the cable reel radius as follows:

dR AR D?
e = (s2m
The inertia of the cable reel is a function of the radius E. It can be
computed by the following formula:
Iy = 05xWplR' - R,,...)+ Jo (5.28)

where p denotes the density of the eable material, and J, denotes
the inertia of the empty cable reel. The torque load v, consists of
the friction torque, and the torque produced by the force F which
is a result of the weight of the already laid cable. However, this
force supports the DC-motor rather than impeding it. Therefore,
this term is entered with opposite sign

Tt = Bru — F R (5.20)
Fig.5b.5 shows a block diagram of the cable reel dynamics.
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Finally, we need to look into the internal dynamics of the speedome-
ter. These were specified by the manufacturer in the frequency do-
main ms:

Gls) = % (5.30)

which can immediately be transformed into the state—space repre-
sentation:

f=-M+u (5.31a)
p=X [6.318)

We eould now go ahead and simply concatenate all these equations

to & monolithie program. However, in & sufficiently large model, this
approach is certainly error prone. It seems desirable to be able to for-

mulate the program through modules which represent the structural
components of the system as depicted in Fig.5.6.

Figure 6.0. Block diagram of the overall cable recl system

This can be achieved by using the macro focility. Let me demon-
strate this facility by means of the ACSL [5.16] language (DARE-F
[6.21] does not offer a macro facility, and while DESIRE [5.13] pro-
vides for such a facility, it is much less powerful than the one offered
in ACSL). The following maero describes the speedometer:
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MACRO TACHO{out, in, 20)
MACRD redefine ¢, sdot
MACRD standwal =0 = 0.0

wdol = =3 & & 4 in
z = INTEG{sdot,=0)
ol =3aam

MACRD END

This macro can then be utilized in the ACSL program by use of the
staterment:

TACHO{vmeas = v)

the STANDVAL directive allows us to assign default values to pa-
rameters that can then be omitted in the macro call. The REDE-
FINE directive is necessary due to the SAL rule. If the model would
contain several speedometers, several “zdot = . .." statements would
otherwise appear in the resulting program after the macro call has
been replaced by the macro definition, and the equation sorter would
complain. The REDEFINE directive instructs the macro handler to
replace each oceurrence of the names z and zdot during macro re-
placement by a unique identifier (in ACSL, a Z followed by 5 digits).
In other words, if it is intended to use a macro several times within
a program, all local variables of the macro must be declared in a
REDEFINE statement.

Let us now write & macro to describe the cable reel dynamics:

MACRO CABREL[v,taul JL R, omega, F,.D W rho, ...
Rfull, Rempty, JO, BL}
MACRO redefine Rdot
constamt g = 3141589
Rdot = ={[D s D)f[2.0% pi s W)) s onega
R = INTEG(Rdst, Rfuil)
w = R = omege
JL =05spieWarkow [Rowd = Rempiys nd) 4+ JO
taul = BL s omega — F» R
MACRO END

From this macro, we can learn several new lessons. First, we may
notice the long parameter list. While it would be perfectly acceptable
nof to list all the constants among the input parameters of the macro,
this would prevent us from simulating several cable reels at once with
different values for these parameters. Unfortunately, while the macro



144 Chopler §: Hierarchical Modular Modeling of Confinuons Systems

facility provides us with a mechanism to hierarchically decompose
program structures, it does not allow us to hierarchically decompose
the data structures along with the program structures. We shall
disciiss later in this chapter another mechanism that will provide
us with such a feature. Clearly, when using the macro facility, all
parameter values must be passed on to higher and higher hierarchical
levels until the calling sequences become totally unmanageahle, This
is a serious drawback of the macro concept. Also, we have learned
before that it helps the efficiency of the program execution if all
constant computations, such as — 25 and RS, are moved out of
the DERIVATIVE section into the INITIAL section of the program.
We cannot do so in this case without destroying the integrity of the
macro, Unfortunately, few CS5L macro handlers have been devised
to contain an INITIAL section (although this would be quite easy

to implement). One simulation language that offers such a facility is
SYSMOD [5.19).

Now, let us look at the macro describing the dynamics of the DC-
maotor.

MACRD DOMOT(theta, omega, ua, uf, taul, JEL,...
Ra,La,Bf, L]k, Jm, Bm, flag,if0, a0, TO, th0)
MACROD redefine ia, dadot, if, ifdot, wi, pai
MACROD redefine taum, Twist, Tdoi
MACRO standwval if0 = 0.0, fal = 0.0, T0 = 0.0
MACRO standval thd = 0.0
MACRO If (flag = IND) labind

if =uf/Rf
ia = (ua = wi)/Ra
MACRO goto goon
MACHRD lakiad contlnus
ifdot = (uf ~ Rfeif)/L]
if = INT EG(ifdod, i fO)
todol = {(uwa —wi— Rawia)/La
ia = INTEG(iadot,ia0)
MACRO goon..continne
f = keif
famsm = i e id
=i = pal e CmEga
Tdoi = fawm — fanl — Bm & omegs.
Twist = INTEG(Tdot, T0)
omega = Twist/[Jm + JL)
thetn = INTEG{omega, th)
MACRO END
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Also this macro exhibits a number of additional features. Let us look
once more at the armature equation:

e = + Ry i.+5.% (5.32)

Usually, eq(5.32) will be implemented in the form of a differential
equation in state-space form, ie.:

dis we-w-R,i,
o o S

This is done since we always wish to transform continuous models
into a state—space form such that all differential equations can he
numerically integrated instead of being numerically differentiated.
However, the electrical time constants of the DC-motor are often
#0 much smaller than the mechanical time constant that the effect
of the armature inductance on the overall system behavior can be
neglected. In this case, we cannot operate on eq(5.33) since, if we'set
L, = 0.0, this results in & division by zero. Instead, we mmst return
tnaq[ﬁ.ﬂﬂ},ﬂduhtbuhuminl.ﬁmnthuqnﬂhm,udrzuﬁhit

(5.34)

Notice that this example confronts us with two different versions
of DC-motor models. Instead of creating two separate macros for
these two cases, it was decided to code them as two variants within
the same macro. The constant parameter flag can assume either the
value IND or NOIND in the macro call. Depending on the setting of
this compile-time parameter, the macro replacer will generate code
either in the form of £q(5.33) or in the form of eq{5.34).

We are now ready to code the entire cable reel simulation program.
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PROGRAM Cable Reel Dynamics
INMITIAL
MACRO TACHO[out, in, o)
MACRO END
MACRO CABREL(...)
MACRO END
MACRO END
Rfull = 1.3, Rempiy =04, W =15, D =0.0127, ...
rho = 1350.0, JO = 1500, Jm =80, Bm =01, ...
BL=45, Ra=0.35 La=08E-3, Rf=10, ...
Lf =0002, kmot = 1.5, kprep = 6.0, kini = 0.3, ...
vaet = 16.0, kohip = 10.0, FO = 100.0, tme = 3600.0
cinterval cini = 1.0
algorithm jaly = 2
nsteps asip = 1000
uf =280 .
END 8 "of INITIAL"
DYNAMIC
DERIVATIVE
err = Pifl = vineas
wa = kprap = err + kint« JNTEG|erv,0.0)
DCMOT(theta, emegs = va, uf, taul, JL,...
Ra, La, Rf, Lf, kmol, Fm, Bm, " NOIND")
ﬂﬂuﬂ-,hﬂ.:ﬂﬂ.ﬂ - mq.,f‘,._.
D, W, rho, Rfull, Rempty, JO, BL)
F = AMAX 1 kahip » [vaet = u), FO)
emeas= T ACHO(v)
END & "of DERIVATIVE"
termt [f.ge.ima or. Rl Rempiy)
END 8 "af DY NAMIC™
END 8 "of PROGRAM™

As the TACHO call demonstrates, it is allowable to call macros that
produce only one single output as a function instead of as a proce.
dure. The ALGORITHM and NSTEPS instructions were necessary
to keep the numerical integration happy. The meaning of these in-
structions will be discussed later, It made little sense to model the
electrical time constant of the DC-motor. This time constant is so
much smaller than the mechanical time constants that the results
would look just the same if the inductances were included, but the
simulation would execute much more slowly since the step size of the
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integration algorithm must adapt itself to the fastest time constant
in the system.
The results of this simulation are shown in Fig.5.7.

Cable Reel Dvna mi;:s‘

Velocily [m/sec]
i
:
;
;
;
i

.0
.00 200, 400, 800, BO0. 1000, 1200, 1400, 1000, 1800, 2000, 2200, 3400,
Time [sec]

Time [nn]

a4 i e T M 5 s - - i i i
2.00 200. 400. 000. BO0. 1008. 1200. 1400, 1800. 1B00. 3600, 2200. 3400,
Time [sec]

Figure 5.7. Simulation results of cable reel dynamics
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As can be seen, it took almost 10 min to sccelerate the cable reel
to its steady-state speed. Obviously, the DC-motor is & little weak
for this application, and it might have made sense to replace it by a
more sturdy hydraulic motor, However, the control worked just fine.
The motor accelerates constantly in order to keep the speed of the
unrolling cable at a constant value.

Let us now look at the equations that the macro handler generates
during the macro expansion. For illustration, the induetances were

main:  err = ppet — vmeas
i = kprope err + kind « JOF08T
200987 = INTEG(err,0.0)
demot: Z09996 = (uf — RS « J00907)/Lf
209997 = INTEG{ Z009946,0.0)
Z09998 = (ua — 209995 — Ra +» J09999)/La
Zoospe = INTEG{Z0pess,0.0)
£0090d = kmot = 00907
209993 = TO0994 =« T00909
Z0099E = Z00094 « omega
200881 = Z00991 - faul — Hm s omega
Z00993 = JNTEG(Z08951,0.0)
omega = F00092/(Jm + JL)
thets = INTEG(emega,0.0)
cabrel: F00090 = —[[D hﬂ‘]ﬂl.ﬁ- 1L.14150 = IF]-} = pmega
R = INTEG(Z09990, R full)
i = R » omega
JL =05+ 014150 « W s rhos [ He od — Hempty « od) + JO
tan L = BL+omega—F s R
maim F = AMAX1 kakip = (waet — v), FD)
tachor ZFOS0E8 = -1+ FODDE0 4 w
Zosese = INTEC| Z09%828,0.0)
vmeas = 3o F0O580

We recognize that, while the REDEFINE declaration is necessary for

the proper functioning of the macro mechanism, it does not exactly
contribute to the readability of the generated code.

Let us go one step further, and sort the above equations into an
executable sequence. The result is as follows.
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demoty FOS096 = (uf — Rf » Z00997)/LF
Z0989 = kmot « FOUFET
200893 = Z00904 » Z00009

cabrel: JL =05 3.14150 « Warkos (R e od — Bempiy o od) + JO
tacho: vmeas =3« J0F0ED
maln: err = paef — vrmeay

ua = kprop e err 4 kint « 09987
demot: omega = J09993/(Jm + JL}
cabreli Fousnd = —((D « D)/{2.0 =« 3.14150 « W)) « omega
L] = R » omaga
tauli = BEL+omega— Fa R
mainy F = AMAX 1 kahip s [waet = v), FO)
tachor FO99AE = =3 « Z0O0080 + v
demotr 209995 = J09094 « omega
208801 = Z09093 — taul — Bm » omega
209998 = (ua — Z09995 — Ra « Z0999%)/La
maln: 209987 = INTEG(err,0.0)
demot: 209997 = INTEG( 209096, 0.0)
F09993 = [NTEG]Z09998,0.0)
F09991 = INTEG|Z09991,0.0)
thein = INTEQ|omega,0.0)
eabrel: W = INTEG{ 209080, R full)
tacho: 209989 = INTEG({Z09988,0.0)

A number of different algorithms exist that the squation sorter can
use. One algorithm is the following. We start by assuming all out-
puts of memory functions (Le., the outputs of integrators) to be
which does not define a memory function, and which has only known
variables to the right of the equal sign. If we found one, we write it to
the output file, and add the defined variable to the set of known vari-
ables. When we reach the end of the input file, we check whether
any equations were written to the output file during this pass. If
not, we obviously have one or several algebraic loops, and another
algorithm is being activated to detect algebraic loops among the re-
maining equations. On the other hand, if we have written one or
several equations to the output file, we check whether the set of re-
maining equations is now empty or contains only memory function
definitions, otherwise we go back, and start all over again with the
remaining equations. We continue until the set of unsorted equations
contains only memory function definitions which can then be added
to the output file, or until no more equations can be written to the
output file due to the presence of algebraic loops.
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We learn from the above example that, during the sorting process,
equations from the various macros are being completely interspersed.
As a consequence, the macro replacement must be performed before
the equation sorter can be activated, and consequently, macros can-
not be separately compiled, but must always be stored as source
code. In this respect, macros are totally different from the subpro-
grams of general purpose programming languages.

This last observation explains why DESIRE's [5.13] macro facility
is not very powerful. Since DESIRE does not provide for an equation
sorter, macros can only be coded for subsystems that do not require
sorting of the equations after the macro replacement has taken place.
This makes DESIRE's built in macro facility virtually worthless.
However, in the next section, we shall introduce an alternative utility
which can replace the macro handler altogether, and which will work
fine also in connection with DESIRE,

Let us now look at another example which will unravel some more
of the shorteomings of the macro facility as it is offered in today's
C55L"%. One of the requests that we may have when using a DC-
motor is that the angular velocity of the motor w,, Is insensitive to
changes in the torque load T';. Unfortunately, this is not the case in
the standard armature control configuration. Let us look once more
at the equations describing the dynamics of the DC-motor:

diy =n-m-R.i-

3 ¥ (5.354)
T = Wi [5.35b)
W=y e (5.35<)
diy Tm-Tp
s L+1: .

In steady-siate, all derivatives are zero, i.e., eq(5.35a-d) can be
rewritten as:

0.0 =m, = w =K, ig {5.36a)
T = W iy {5.26k)
= e (5.36¢)
0.0 =19y =1L [5.38d)

which can be reduced to:
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oy, ™ i—u - %ﬂ. (6.37)

Eq(5.37) can be graphically depicted as follows (Fig.5.8):

-,

Figure 5.8. Angular velocity v torque load in DC-motor

In order to keep the angular velocity constant under the influence
of a changing load, it is necessary to change the armature voltage
along with the load. However, the load is usually considered to be an
unpredictable disturbance of the system. For this reason, armature
control may not be the best of all choices. However, if we are ahle
to feed the armature circuit with a constant current source, and
apply field control, the dependency of the angular velocity from the
torque load vanishes. Unfortunately, constant current sources for
high power applications aren’t so easy to come by. A more practical
solution to the problem is to use a Ward-Leonard group as depicted
in Fig.5.9.

igg Tgs
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The DC-motor M, is driven with constant armature and constant
field, and thereby produces an angular velocity which is used to drive
the generator (#5. The generator is & machine of exactly the same
type as the motor. The electro-mechanical coupling works both
ways. We can either generate a rotation by having currents flow
through both the field and the armature circuits (motor ), or we can
induce & voltage in the armature circuit by rotating the machine
externally if we feed current through the field cireuit at the same
time (generator). Fig.5.10 depicts a functional diagram of the DC-
generator,

&)

u, 31.'“1.*"-1

Figure 5.10. Fanctional dingram of & DC-generator

When the machinery is operated in its gemerator mode, the main
input to the system is the driving torque. It causes the motor to
rotate. Once an angular velocity o has been built up, it induces a
voltage u; on the electrical side which causes a current i, to flow
through the armature coll. The armature current i, causes a me-
chanical torgue r;, to be built up back on the mechanical side which
opposes the driving torque. The armature current i, is also respon-
sible for building up an armature voltage u, across the two armature
terminals, The armature voltage u, is subtracted from the induced
vaoltage w; thereby weakening the armature current i,. This process
continues until an equilibrinm is reached. The load is now electrical,
symbolized in our model by a resistive load R; and an inductive
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load L; which, in themselves, are not part of the DC-generator, and
are therefore additional inputs to the DC-generator model. Fig.5.11
depicts the block diagram of the DC-generator.

5 Ir
|
i)

Figure 5.11. Block disgram of & DC-generaior

The following ACSL macro can be used to code the DC-generator
equations,

MACRO DCGEN(thets, omega, wa, ia, tawin, uf, RL, LL,...
Ra, La, Rf, L}k, Jm, Bem,if0,ia0, omd, th0)
MACRO redefine iadot, if, ifdof, ui, pei
MACRO redeflne toul, omdot
MACRO standval 0 = 0.0, il = 0.0, emi = 0.0
MACRO standval thi = 0.0
ifdet = (uf— Rf«if)/Lf
if = FNTEG(ifdat, 410}

o (ui = (Ra 4 RL)»ia)/{La+ LL)

= [NTEG(iadat, wal)

= REL wia 4 LL » dadsi

=keif

=:Filﬂ.

= pai » omega

= touin — taul — Bm » omagn

= INTEG(Tdot, T0)

= TwistfJm

= INTEG|{emaga, thi)

MACROD END

As in the case of the electrical cireuits of Chapter 3, we see that the

THE L



154 Chapter 5: Hierarchical Modular Modeling of Continuous Syslema

can lead to quite different model equations depending on the envi-
ronment in which the model is being used. We have learned before
that macros aren’t really modular with respect to the mecorporated
data structures, Now, we learn that macros aren't even modular with
respect to the represented program structures. The same physical de-
vice calls for quite different macros depending on the environments
in which it is supposed to operate. The simplest “macro™ represent-
ing an electrical resistor, for instance, must be stored in the macro
library in two different versions, one modeling the squation:

wg=R-ig {5.38a)

e
=g (5.38b)
If the resistor is placed over a current source, the current iy through
the resistor is known, and we need to use the macro which reflects
the model according to eq(5.38a), whereas if we place the resistor
over & voltage source, the voltage uy across the resistor is known, .
and we need to use the maero which reflects the model aceording to
eq(5.38b). Obviously, an equation sorter is insufficient. We require
an equation solver which accepts general equalities of the type:

< EEPression > = < gEpression > (5. 38a)

< ezpression > = 0.0 (5.308)

and which can solve these equalities for arbitrary variables. In the
sequel, we shall discuss a software which satisfies this requirement.
However, let us return once more to the Ward-Leonard example.
We now have two separate “macros” to describe the two DC-motors
and to describe the DC—generator. Let us try to call them from an
ACSL program and see what happens. Well, it won’t work. Aec-
cording to our “models”, wyy Is supposed to be a state variable of
the DC-motor My, but at the same time also & state variable of
the DC-generator /3. This obviously can't be true. We just de-
tected a degenerucy (structural singularity) of our system. Simi-
larly, the armature current i, is supposedly a state variahle of the
DC—generator 3, but at the same time also a state variable of the
DC-motor My. So, we just found a second degeneracy of our system.
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What can we learn from this example? While we can propose
the implementation of an aulomated single eguation solver as an
extension to the common equalion sorfer to take care of the problem
illustrated in eq(5.38a) and eq(5.38b), even such a mechanism won't
suffice.

Algebraic loops are quite common, and they cut right across the
borders between individual macros, Le., the IMPL block as presented
in Chapter 2 is totally incompatible with the demand of modular
modeling. For this purpose, we should request a compiler option
which would instruct the CS5L preprocessor to automatically gen-
erate the necessary IMPL block structures for us after the macro
replacement and a partial equation sorting have already taken place.
Unfortunately, even this feature won't help us with system degen-
eracies that occur as a result of subsystem coupling.

Let me repeat my conclusion from Chapter 3. We have exactly
two choices. Either we put slate equations as a mechanism to de-
scribe simulation models to the sword once and for all and use the
topological system description directly for the simulation, or we come
up with & much more powerful mechanism to generate appropriate-
state equations out of the topological system description than our
simple macro facility represents. Let me develop this second path a
little further in the remainder of this chapter.

5.8 Modular State—Space Models

As we have seen, it is necessary to store macros at all times in source
form, and it is essential that the macro handler be executed before
anything else happens to the simulation program. Therefore, it is
not really essential that a CSSL provides for a macro handler of its
own. It would be equally acceptable to employ a totally &

general purpose maero handler as & separate program to be called
before the simmlation compiler is entered. In this section, a new
tool, DYMOLA [5.5], will be presented which is a stand-alone pro-
gram that can be used as a front end to several different simulation
languages. Two different versions of DYMOLA have been written.
One is coded in Pascal, the other is coded in Simula. The Sim-
ula version runs on UNIVAC computers, the Pascal version runs on
VAX/VMS and also on PC compatibles using Turbo Pascal (Version
4.0 or higher). DYMOLA is & program generafor since a compiler
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switch decides for what sirmlation language code is to be gener-
ated. DYMOLA currently supports the simulation languages DE-
SIRE [5.13] and SIMNON [5.4] (another direct executing language)
and also plain Fortran, and an interface to ACSL [5.16] is currently
under development. DYMOLA is not & simulation language in its
own right since it does not provide for a siomlation engine of its
own. Instead, DYMOLA is a modeling longuage since it supports
the user in coding more readable and better modularized hierarchi-
cally structured model descriptions. We shall dwell more on this
topic in Chapter 15 of this text. On a first glance, DYMOLA looks
like & powerful macro handler,

Let us discuss how the above DC-motor example can be coded in
DYMOLA:

maodel type DOMWOT

terminal theta, omega, wa, uf, taul, JL
local is, if, wi, pai, tawm, Tuist
paramster Ra, RS, kmot, Jm
parameter [a =00, Lf =00, Bm =00
defanli va = 360, wf = 36.0

Lfsder(if) =wf— Rfif

Lasder(ia) = ua = uwi = Ra =ia

pai = o » 4 f
Laum = pri » i
w -F-I-m

der(Twist) = laum — taul — Bm + omega
Twist = (Jm + JL) » omega
der(iheta) = omega

end

This code is fairly self-explanatory. However, let us discuss some of
the special properties of DYMOLA model descriptions.

{1) DYMOLA variables belong either to the type terminal or to the
type locall They are of type terminal if they are supposed to
be connected to something outside the model. They are local if
they are totally connected inside the model.

(2) Terminals can be either inputs or outpuis. What they are, of-
ten depends on the environment to which they are connected.
However, the user can explicitly specify what s/he wants them
to be by declaring them as input or output rather than simply
A5 terminal.

{3) Terminals can have defaull values. In this case, they don't need
to be externally connected.
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{4) DYMOLA constants can be declared to be of type parameter.
For parameters, values can be assigned from outside the model.
Parameters can have default values in which case it is not nec-
essary to assign a value to them from outside the model.

(5) Derivatives are either expressed using the der(.) operator or
a prime (). It is also allowed to use a der2(.) operator or a
double prime (") to denote a second derivative, and even higher
derivatives are admissible. Contrary to most C55L%, DYMOLA
allows us to use these operators anywhere in the equation, both
to the left and to the right of the equal sign.

(6) Consequently, it is not possible to set initial conditions for the
integrators inside & model which is clearly a disadvantage of
DYMOLA.

(T) DYMOLA equations use the syntax of eq(5.3%9a). During the
process of model ezpansion, equations are solved for the appro-
priate variable. For this reason, the SAL rule no longer applies.
It is perfectly acceptable to have der(Twist) on the left hand
side of one equation, and Twist on the left hand side of another.

(8) Terms which are multiplied by a zero parameter are automati- *
cally eliminated during the model expansion. Consequently, if
La = 0.0, the model equation La » der{iz) = ua — ui — Ra+ia
is first replaced by the modified model equation 0.0 = ua -
ui — fa»ia which then results in one of three simulation equa-
tions, namely (i) uwa = wi + Ha » ia, (ii) wi = wa — Ha « ig,
or (ili) ia = (ua — wi)/Ka depending on the environment in
which the model is used. However, if La £ 0.0, the modal
equation is always transformed into the simulation equation
der{ia) = (ua — ui — Ra+1a)/La. This is & very elegant way to
solve the “variant macro™ problem of ACSL.

(9) The above rule indicates that parameters with value 0.0 are
treated in a completely different manner from all other param-
eters. This decision has a side effect. Parameters that are not
set equal to zero are preserved in the generated simulation code,
and can be interactively altered through the simulation program
directly without a need to return to DYMOLA. Parameters with
value 0.0 are optimized away by the DYMOLA compiler, and are
not represented in the simulation code. However, the advantages
of this decision are overwhelming, since this does away with an
entire class of structural singularities.
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The above model can then be called in the following way:

submodel {DCMOT) dem1{Ra = 2.0, Rf = 5.5, kmet = 1.0, Jm = 15.0)

It can be connecled to the outside world using a dot-notation:

deml.us = halph « err

deml.af = 12.0

demml JL = arll JL
demlfoul = erll fanl

cril.omegs = deml.omega

where crll is the name of a model of the cable reel type.

DYMOLA models are mnch more modular than ACSL macros
the variable which is appropriate in the context of the model call
environment. The utilization of named parameters instead of posi-
tional parameters upon nvocation of a DYMOLA model helps with
long parameter lists. Default values can and should be assigned
to many parameters, and with the named parameter convention, the
user can selectively specifly values for those parameters only for which
the default values are not appropriate. The connection mechanism
as presenied so far is very general, although a little clumsy. Each
connection corresponds to connecting two points of & circuit with &
wire,

It can be noticed that wires are frequently grouped into cables
or buses. For example, consider an R5232 connector. The R5232
male connector has 25 pins, while the eorresponding RS5232 female
comnector has 25 holes. It seems natural that & modeling language
should provide for an equivalent mechanism. DYMOLA does this by
providing so—called CUTs.

Let us look at the cable reel example once more. It ean be noticed
that the eable reel and the DC-motor have three variables in com-
mon, namely omega, toul, and JL. We can therefore go ahead and
declare those three variables in a cuf rather than as simple ferminals.
The modified model type DOCMOT looks now as follows:
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model type DCMOT
ierminal theia, wa, sf
local ia, if, wi, po, foum, Twisi
parameter Ba, Rf, kmoi, Jm
parameter La =00, Lf =00, Bm =00
defanlt ua = 25.0, uf = 350
Lfsder(if) =uf - Rfsif
Lasder{ia) = ua — ui — Ra »a

P = kot o f)f
tamm = i e fa
i =’j'|'-m-.

der{Twist) = taum — laul — Bm » omaga
Twint = [ Jm+ JL) » omega
der(theta) = omega

end

If we declare a similar cut in the model type CA BREL, we can invoke
in the main program a DC-motor demd of type DOMOT, and a cable
reel erll of type CABREL, and connect the eut mech of dem? at the
cut mech of erll. This is coded as follows:

submodel ([POMOT) demi{fa = ...}
submodel (CABREL) erll{Bl = ...}
connect demlimech at erllimech

The conneci stalement! antomatically generates the three model
eqiiations;

deml.omegs = crll omaga
dem] tanl = erll foul
demnl JL = erll JE

Cuts can be hierarchically structured. For example, we could mod-
ify the model type DOMOT once more:
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maode] typs DOCMOT

terminal theia

:ﬂmrl{mﬁ taul, JL)

eut eloctina, uf]

cut bothimech, elect]

local ia, if, wi, pai, tawm, Twisd

parameter Ha, Bf, kmet, Jm

parameter La = 00, Lf = 0.0, Bm = 0.0

defanlt wa = 26.0, wf = 25.0
Lfsder(if) ==wf— Bfaif
Lasder{ia) = wa —wi— Rasia

el = kmol » i f

tamm = gl * g

uil = psi » oTREga

der(Twnist) = tawm — toul — Bm s omego
Tariad ={Jm + JL)» omega
der{theia) = omaga

end

in which case we can either connect the cut mech and the cut elect
the connect statement, DYMOLA checks that the connected cuts
are structurally compatible with each other.

However, in many cases, even this won't suffice. We may notice
that, by connecting a wire between two points in an electrical cir-
cuit, we actually connect fwo variables, namely the potential at the
two points, and also the current that flows through the new wire.
However, the two connections work differently. This is illustrated in
Fig.5.12.

Figure 5.12, Connection conventions in an electrical circuit
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While the potentials of all cuts that are connected at & point must be
equal, the currents must add up to zero. Variables of type potential
are called across varables, while variables of type current are called
through veriables. DYMOLA provides also for this second type of
connection. The generalized form of a DYMOLA cut looks as follows:

eut o eulname > (< threugh variables > [ < across_variables =)

If the three models ml, m2, and m3 have each a cut of type A4
declared as:

cut A(V/I)
we can use the connect statement:

connect ml:d al m3:Ad al m3:A

which will generate the following model equations:
mle = ml.w

ma.r = ml.p

mld 4+ mia 4+ mdad = 0.0

HNotice that currents at cuts are normalized to point info the subsys-
tem. If a current is directed the opposite way, it must take a minus
sign on the cut definition.

This concept is more generally useful that just for electrical cir-
cuits. In a mechanical system, all positions, velocities, and acceler-
ations are across variables, while all forces and torques are through
variables. In & hydraulic system, water level and pressure are across
variables, while water flow is a through varable. In a thermic sys-
tem, temperature is an across variable, while heat flow is a through
varishle, ete. These similarities between different types of physi-
cal systems are particularly emphasized in the bond graph modeling
methodology which will be discussed in Chapter T of this text.

One cut can be declared as the main cut. The main cut is the
default cut in & connection, i.e. it suffices to specify the model name
to connect the main cut of & submodel.

Sometimes it is useful to allow connections to take place made a
model instead of across model boundaries. For this purpose, DY-
MOLA provides & node declaration. Nodes are named, and cuts can
be connected to nodes. Nodes are hierarchically stroctured the same
way cuts are,
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model M
ewt A{wl, w1}, Bwd, vd), O(v6,vh)
main cut D[A, B, C)

end
node N
connect M at (N, ¥, N)
The connect statement is equivalent to:
connect Mid ni N, M:Bat N, M:C at N
which is identical to saying:
connect Mid st M at M:C

which will result in the following set of equations:

Myl = Ml
M.e) = M.wb
Mayl= M
M.ovd = M.wl

Sometimes, it is also useful to connect a type of variable through
from a source to a destination. For this purpose, DYMOLA allows
us to declare a directed path from an input cut to an output cut.

Let us assume we have s model describing a pump which is de-
clared as follows:

model pump
cut inwater{wl), outwater{w?)

plll-hr{il-hrr-niu:hr}
anid

Let us assume we have two more models describing a pipe and a
tank with compatibly declared cuts and paths, then we can conneét
the water flow from the pump through the pipe to the tank with the
statement:

eonnect [water ) pump to pipe to tank

Omne path can always be declared as the mam path. If the main path
is to be connected, the path name can be omitted in the connect
statement.
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Besides the at and to operators, DYMOLA provides some addi-
tional connection mechanisms which are sometimes useful., The re-
versed operator allows us to connect a path in the opposite direction.
The par operator allows for a parallel connection of two paths, and
the loop operator allows us to connect paths in a loop. Also, DY-
MOLA provides for abbreviations of some of these operators. The
#=" symbol can be used as an alternative to al, the *~" operator
can be used instead of fo, the */ /™ operator can be used as an alter-
native to par, and the *\™ operator denotes reversed. Examples of
the use of these elements will be presented in Chapter 6.

5.T The Equation Solver

DYMOLA can solve equations for any variable which appears lin-
early in the equation. This does not mean that the squation as a
whole nmst be linear. For instance, DYMOLA iz able to handle the

following equation:

Tez+ysy—3ezay=125 (5.40)
if the variable it wants to solve this equation for is =. In this case,
DYMOLA will transform the above equation into:

e= (B —yey)/(T-30y) (5.41)

However, it cannot solve eq(5.40) for the variahle y.

For some simple cases, it would be very easy to implement the ap-
propriate transformation rules to handle even non-linear equations,
but most non-linear equations don’t provide for unique solutions.
For example, the problem:

B4y=1 (5.42)

when solved for y has the two solutions:

=4yl =g [B.43a)
y=—v1-2? [5.434)

DYMOLA would have no way of knowing which of the two solutions
to use. The same is true when the non-linear equation is solved
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numerically by automatically generating an IMPL block around the
equation. The numerical algorithm will simply approach one of the
two solutions, often even depending on the chosen initial value, and
that may be the wrong one. This will be illustrated by means of the

following equation:

£ —5x+2=0 (5.44)
We could reformmulate this problem as follows:
z=+Bz-1 (5.45)

We now choose an initial value for x, and plug it iteratively into
eq(5.45) until convergence. Fig.5.13 illustrates what happens in this
CAse.

Iteration of x = SQRT(5x—2)

T

“l. O 1. - 3. 4 5. A 7. B.
Ximmt

Figure 5.13. lieration of non-linear equation

As can be seen, two solutions to this non-linear equation exist., De-
pending on the starting value, we either approach solution B, or
the algorithm diverges. Solution A s an unstable solution of this
iteration process.
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However, we could have decided to formulate the problem in a
different way:

=022+ 0.4 (5.48)

and iterate this equation instead. Fig.5.14 shows what happens in
this case,

Iteration of x = 0.2#x° + 0.4
14, - - - - - -

12.
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Figure 5.14. licration of non-linessr equation

Obwviously, this problem must have the same two solutions A and B
as the previous one. However, as can be seen, this time, solution A is
the stable solution, while solution B is unstable. Also, the range of
attraction (i.e., the set of stable initial conditions) is different from
the previous situation.

No generally applicable algorithm can be found for the automated
solution of non—linear equations. The best that can probably be
achieved is that the DYMOLA preprocessor stops when it comes
across A non-linear equation, and requests help from the user. It
may then store this information away for later reuse in another com-
pilation of the same model. One possible answer that the user may
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provide is to request the system to build an IMPL block around the
equation, and tell it which initial value to use for the iteration.

5.8 Code Optimization

DYMOLA already provides for a feature to eliminate trivial equa-
tions of the type a = b, by eliminating one of the two variables, and
replace other occurrences of this variable in the program by the re-
tained variable. This can significantly speed up the execution of the
simulation program. However, much more could be done. It is fore-
seen to enhance the code optimizer by a fully automated algorithm to
move all constant computations from the simulation language’s “DY-
NAMIC?” section into its program control section, and, in the case
of DESIRE, all output computations from the “DYNAMIC” section
into the “OUT” section. The code optimization is somewhat target
language specific.

5.9 Linear Algebraic Loops

Let us revisit the electrical circuit as presented in Fig.3.12. The
resulting set of equations was given in eq(3.34a-i). Let us discuss
what DYMOLA would do with these equations.

Let us start from the initial set of equations:

ul = R1%il (5.47a)
u2 = R2 12 (5.47b)
u3 = R3 143 (5.47¢)
ul = L * dex(iL) (5.47d)
U0 =ul+u2 (5.47€)
u3 = u2 (5.47f)
ul =ul+u2 (5.479)

i0 = i1+iL (5.47h)

i1=i2443 (5.47i)

which are nine equations in the nine unknowns: ul, 42, u3, uL, 10,
il, 42, 13, and iL. U0 is not an unknown since this is the input to
the system.
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DYMOLA will start by recognizing that eq(5.47d) contains a
der(.) operation, which determines that this equation must be
solved for the derivative, and which moves iL from the list of un-
knowns to the list of knowns. It further recognizes that uL and 70
appear only in one of the remaining equations each, namely eq(5.47g)
and eq(5.47h). This moves the variables uL and 0 from the list of un-
knowns to the list of knowns. Finally, it is recognized that eq(5.47f)
is a trivial equation. We solve it for u3, and simultaneously replace
all other occurrences of u3 by u2. Therefore, we have meanwhile the
following set of solved equations:

der(iL) =uL/L (5.48q)
u3 = u2 (5.48b)
ul = ul 4 u2 (5.48¢)
10 = i1 + <L (5.48d)
Five equations remain:
ul = R1*il (5.49a)
u2 = R2 *i2 (5.495)
u2=R3x1i3 (5.49c¢)
i1=i2+143 (5.49d)
U0 =ul+u2 (5.49¢)

which depend on the five unknowns ul, u2, i1, 2, and 3. Each
remaining equation contains at least two unknowns, and each of
the unknowns appears in at least two equations. Thus, we have an

algebraic loop.

At this moment, DYMOLA is stuck. However, this will change
soon. DYMOLA could easily recognize that all unknowns appear
linearly in all the remaining equations, and thus rewrite the above
system of equations in a matrix form as:

1 0 —RlL 0 0 ul 0
01 0 -R2 0 u2 0
01 0 o -—-R3|-lafj=]o (5.50)
00 1 -1 -1 i2 0
11 0o © 0 i3 Uo

which could be coded in the following way:
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209999 =[1,0, —R1, 0, O

0,1, 0, —R2, 0

0,1, 0, 0,—R3;

0,0, 1, -1, -

1,1, 0, 0, 0
[w1;42;1i1;42;13] =inv(Z09999)+[0;0;0;0; U0]

Notice the notation. The square bracket denotes the beginning of a
matrix definition. The ,” operator separates elements in neighbor-
ing columns, while the “;” operator separates elements in neighbor-
ing rows.

If all we have here is a linear algebraic loop, the matrix Z09999
will be non-singular, and the above set of matrix equations has a
unique solution.

At this point, the code optimizer can become active and recognize
that all elements within Z09999 are constants, i.e., that the eval-
uation of the matrix can be moved out of the DYNAMIC section
into the control block, and that even inv(Z09999) is a constant ex-
pression which can be moved out into the control section where the
matrix inversion will be performed exactly once prior to the execu-
tion of the simulation run.

Since DESIRE [5.13] is able to handle matrix expressions elegantly
and very efliciently, this will be an easy task to implement. Cur-
rently, the regular version of DESIRE handles matrices only within
the interpreted control section, and not within the compiled DY-
NAMIC block. However, a modified version DESIRE/NEUNET
[6.14] exists already which was designed particularly for the sim-
ulation of neural networks. This version handles matrix expressions
within the DYNAMIC block in a very efficient manner.

5.10 Non-linear Algebraic Loops

The problem with non-linear algebraic loops is exactly the same as
with the solutions of single non-linear equations. Depending on how
we iterate the set of equations, we may end up with one solution,
or another, or none at all. Unfortunately, no generally applicable
method can be found that would deal with this problem once and for
all. As before, the best that DYMOLA may be able to do is interrupt
the compilation, display the set of coupled algebraic equations on
the screen together with the set of unknowns contained in these
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equations, and ask for help. Proper help may not always be easy to
provide.

One way to tackle this problem is to get away from state—space
models altogether. Instead of solving the set of first order differential
equations:

x = f(x,u,1) (5.51)

we could try to find integration algorithms which can solve the more
general set of equations:

A -k =f(x,u,t) (5.52)

directly, where A is allowed to be a singular matrix. This formulation
takes care of all linear algebraic loops. Integration algorithms for
this type of problems have been known for quite a while. Non-
linear algebraic loops can be handled by integration algorithms that
are able to solve the following set of implicit differential equations
directly:

f(x,%,u,t) = 0.0 (5.53)

The price to be paid for this generality is a reduction in execution
speed and in solution robustness. It can no longer be guaranteed that
these equations have exactly one correct solution for each set of initial
conditions. MODEL [5.17] is a language in which this approach was
implemented. MODEL is another experimental language with a user
surface that is quite similar to the one of DYMOLA.

B5.11 Structural Singularities

Usually, each component of a system that can store energy is repre-
sented by one or more differential equations. Capacitors and induc-
tors of electrical circuits can store energy. Each capacitor and each
inductor normally gives cause to one first order differential equation.
Mechanical masses can store two forms of energy, potential energy
and kinetic energy. Each separately movable mass in a mechani-
cal system usually gives rise to a second order differential equation
which is equivalent to two first order differential equations. However
sometimes, this is not so. If we take two capacitors, and connect
them in parallel, the resulting system order is still one. This is due
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to the fact that a linear dependence exists between the two voltages
over the two capacitors (they are the same), and thus, they do not
both qualify for state variables.

Such situations are called system degeneracies or structural sin-
gularities. Usually, subsystems will be designed such that no such
singularities occur. The two parallel capacitors are simply repre-
sented in the model by one equivalent capacitor with the value:

Cey=C1+Cy (5.54)

However, difficulties occur when subsystems are connected together,
and when the structural singularity is a direct result of the coupling
of the two subsystems. Let us assume the two subsystem orders
of subsystems S, and §, are n,; and n,. If the coupled system S,
has a system order n. which is smaller than the sum of n; and n,,
a structural singularity exists which is a result of the subsystem
coupling.

These problems must be carefully analyzed, and they are often
quite difficult to circumvent. For this purpose, let us study once
more our Ward-Leonard group from before. The goal is to come up
with a model of a DC—motor/generator which is powerful enough to
be used under all circumstances, i.e., it must be possible to model
the Ward-Leonard group by coupling together three submodels of
the same type DCMOT.

Let us start by looking at the coupling between the motor M; and
the generator G;. Under this coupling, the two angular velocities
are forced to be the same except for their signs which are opposite
since the two machines are coupled back to back:

wy = —w; (5.55)

Since the angular velocities of both submodels are essentially outputs
of integrators, a structural singularity has occurred. We can now
realize that the torque produced by each of the two rotating machines
represents the torque load of the other machine, and that the inertia
of each of the two machines is seen as an inertial load by the other
machine. Therefore, each machine can contain the equations:

i’l_’_
dt
w = T/(Jm -+ Jload) (5.56b)

= Tm — TNoad — Bm w (5.560,)
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and the couplings can be expressed as follows:

Tload1 = Tm_2 — Bm_2 w3 (5.57a)
Tload3 = Tm.1 — Bm.1 @1 (5.57b)
Jicad1 = Im.2 (5.57¢c)
Jioad 2 = Jma (5.57d)

Now, we realize that we don’t even need to specify the equality of
the angular velocities any longer since they will be guaranteed auto-
matically. In the coupled model, we waste computing time since we
integrate the same angular velocity twice, but the structural singu-
larity has been avoided.

Let us now look at the coupling between the generator G, and the
motor M. We could express the coupling through a connection of
the two armature cuts (u4/i,), but we immediately realize that the
two currents, which are now forced to be equal except for their signs,
are outputs of two integrators.

[ R
ia2 a9

Figure 5.15. Electrical coupling in Ward-Leonard group

Thus, also this coupling represents a structural singularity. Fig.5.15
depicts the conventions for voltage and current directions. Therefore,
we can write down the following equation:




172  Chapter 5: Hierarchical Modular Modeling of Continuous Systems

utz + Raz ta3 + Lag d;(:z = uts + Ras ias + Las % (5.58)
which can be written in terms of ia, as:
;iiag . .
pral (%toad-2 — uiz — Raz iaz)/(Laz + Licad_2) (5.59a)
Uload2 = Uiy + Ray iay (5.59b)
Licada = Las (5.59¢)
or in terms of iag:
dia; . N
at (%10ads — uis — Ras ias)/(Las + Licad_s) (5.60a)
Uload_s = Utz + Raz ia2 (5.60b)
Liocaas = Laa (5.60c)

In other words, we can solve the structural singularity in exactly
the same way as in the case of the mechanical coupling, again at
the expense of some extra computation since the above equations
eq(5.59a-c) and eq(5.60a-c) represent the same physical variables.
Therefore, we can write the following equations into our generic DC-
MOT model:

dic

i (%10ad — %i — Ra 1a)/(La + Licad) (5.61a)
wa =i + Ra ia+ Lo 22 (5.61b)
dt
The coupling equations are written as follows:
Uload-2 = uis + Ras ias (5.62a)
Licada 2 = Las (5.62b)
Uload_s = utz + Raz iaz (5.62¢)
Licads = Laa (5.62d)

Let us now look how these equations must be modified if it has been
decided to ignore the armature inductances. In that case, in order to
avoid an algebraic loop, the resistance of the other machine cannot
be included in the load voltage ;,,4, but must instead be treated as
a resistive load. The generic model equations now look as follows:
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ia = (%toad — %)/ (Ra + Ricaa) (5.63a)
%a =t + Ra ia (5.63b)

and the coupling equations can be written as follows:

Uload 2 = Uls (5.64a)
Ricada = Ras (5.64b)
Uload 3 = U2 (5.64c)
Riocaas = Ras (5.64d)

The following ACSL [5.16] macro is a general macro that can be used
both as a DC-motor and as a DC~generator.

MACRO DCMOT(theta,omega,taum, Jm,va, RLa,ia,ui,uf,uld, RLU,...
tauld, Jid, Ra, La, Rf, L f, kmot, Jm0, Bm, flag,:f0,1a0, T0, th0)
MACRO redefine iadot, if, 1fdot, psi
MACRO redefine Twist, Tdot
MACRO standval :f0 = 0.0, ia0 = 0.0, 70 = 0.0
MACRO standval th0 = 0.0
MACRO if (flag = IND) labind

if =uf/Rf

ia = (uld — ui)/(Ra + RLId)
ua = ut+ Raxia

RLa = Rea

MACRO goto goon
MACRO labind..continue
ifdot = (uf — Rf %if)/Lf

if = INTEG(ifdot,if0)
iadot = (uld — ui — Ra xia)/(La + RLId)
ia = INTEG(iadot, ia0)
ua = ui + Ra * ia + La *» tadot
RLa = La
MACRO goon..continue
pst = kmotx1if
taum = psi*ia
ui = psi x omega
Tdot = taum — tauld — Bm * omega

Twist = INTEG(Tdot,T0)
omega = Twist/(Jm + Jid)
theta = INTEG(omega,th0)
Jm = Jmo

MACRO END
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With this macro, we can simulate the Ward-Leonard group in the
control configuration depicted in Fig.5.16.

4 ~
Tload Jload
MK ]
0 et + err . 0
. Ward-Leonard
— Group
kpl‘oy
\ J

Figure 5.16. Block diagram of controlled Ward-Leonard group

The Ward-Leonard group is embedded in a position control circuit
with a PI-controller. The angular position 6,., is set to 10.0 initially,
and is reduced to 5.0 at time 50.0. The Ward-Leonard group is
originally idle, but it is loaded both with a torque 7j,,4 and an inertia
Jioaa at time 100.0. The simulation extends over 200.0 time units.
The following program implements this control problem.

PROGRAM Ward — Leonard group
INITIAL
MACRO DCMOT(...)

MACRO END

constant ...
Jm0 = 0.05, Bm = 2.0E —4, Ra =10.0, La =0.5E -3, ...
Rf =25.0, Lf = 2.2E — 3, kmot = 0.5, kampl == 0.06, ...
kint = 0.002, uf1 = 25.0, uf3 = 25.0, uldl = 25.0, ...
RLld1 = 0.0, tmaz = 200.0

cinterval cint = 0.5

thset = 10.0
Jid =00
tauld = 0.0

schedule angle .at. 50.0
schedule load .at. 100.0
END $ "of INITIAL”
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DYNAMIC
DERIVATIVE
err = thset — theta
uin = kampl * err + kint * INTEG(err,0.0)

DCMOT(thl,oml,tml,Jml,ual, RLal,ial,uil = ...
ufl,uldl, RLId1, tld1, Jid1, ...
Ra,La,Rf,Lf, kmot,Jm0, Bm,” NOIND”)
DCMOT(th2,0m2,tm2,Jm2,ua2, RLa2,1a2,ui2 = ...
uf2,uld2, RLId2, t1d2, Jid2, ...
Ra, La, Rf, Lf, kmot, Jm0, Bm,” NOIND”)
DCMOT(th3,0m3,tm3,Jm3,ua3, RLa3,1a3,ui3 = ...
uf3,uld3, RLId3, tld3, J1d3, ...
Ra,La, Rf, Lf, kmot, Jm0, Bm,” NOIND")

tldl =1tm2 — Bm*om?2
Jidl =Jm2

uf2 = -—uin

uwld2 = ui3

RLId2 = RLa3

tid2 =tml— Bmx*oml
Jid2 =Jml

uld3 = w2

RLId3 = RLa2

tid3 = tauld

Jid3 =Jld

theta = th3

END $ "of DERIVATIVE™
DISCRETE angle
thset =5.0
END $ "of DISCRETE angle”
DISCRETE load
Jid =0.05
tauld =0.01
END $ ”of DISCRETE load”
termt (t.gt.tmz)
END $ "of DYNAMIC”
END $ "of PROGRAM”

The discontinuous driving functions were implemented using time-
events.

The results of this simulation are shown in Fig.5.17.
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Ward—Leonard Group: Position Control
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Figure 5.17. Simulation results of Ward-Leonard group
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The output position 8; follows the input rather well. The overshoot
behavior is due to the integral portion of the control circuit. The
torque produced in motor Mj is responsible for the rotation of the
motor. Since the motor is idle, the torque returns to zero as soon as
the desired position has been reached. However, after time ¢t = 100.0,
the motor is loaded with a torque load. Now, in order to keep the
position stationary, the motor needs to produce a constant motor
torque that compensates for the torque load. The integral portion
of the controller is responsible for returning the angular position of
the motor bias—free back to its desired value after each disturbance.
Nevertheless, the group is not able to keep the position constant
under the varying load. In order to improve the performance of the
system, we must guarantee a constant rotation of the driving shaft
wy. This can be achieved by replacing the driving motor M; with a
stronger machine, or eventually, by replacing it with a synchronous
AC-motor.

The modeling approach did work since the DCMOT macro does
not call for many equations to be rearranged with respect to their
outputs. However, quite a bit of insight was needed in order to
get all equations into an adequate form, and to solve all problems
related to system degeneracies and algebraic loops. The approach is
therefore not very convenient and user—friendly, and it may be quite
difficult to apply this solution to a more intricate problem than the
one presented. '

We are convinced that, in principle, the DYMOLA approach is the
better answer to the problem. However, at this moment, DYMOLA
won’t do the job yet. A number of extensions will be needed before
DYMOLA will be able to take care of such problems in a completely
automated manner:

(1) DYMOLA should be able to eliminate variables not only from
equations of the type a = b, but also from equations of the type
a+b=0.

(2) DYMOLA should be able to recognize equations that have been
specified twice, and eliminate the duplicate automatically.

(3) DYMOLA should be able to handle superfluous connections, i.e.,
if we specify that 6; = —#0,, it is obviously true that also w; =
—w,;. However, DYMOLA won’t let us specify this additional
connection at the current time. Superfluous connections should
simply be eliminated during the model expansion.

(4) DYMOLA should recognize that connections of outputs of in-
tegrators can always be converted into connections of inputs of
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these integrators, i.e., if we have specified that ia3 = —ia,, it is
obviously true that iadotg = —iadot;. This reformulation can
help to eliminate structural singularities, usually at the cost of
generating additional algebraic loops.

(5) DYMOLA should be enabled to handle linear algebraic loops in
the manner previously suggested.

A fair amount of program development and even research is still
needed before DYMOLA can be turned into a production code, but
we are convinced that this is a good way to go. We shall return to
this problem once more in Chapter 15 of this text.

5.12 Large Scale System Modeling

A true disadvantage of the above proposed methodology is the fact
that, as with macros, DYMOLA models need to be stored as source
code. This may be quite impractical if models of maybe 20,000 lines
of code are to be simulated. A small structural modification of one
single equation within one single submodel will force us to recompile
the entire code which may take quite a long time, and consume an
undue amount of computing resources.

Separate compilation of submodels is difficult to achieve. One way
to solve this problem is to generate the target code such that each
single equation is preceded by a label and followed by a “goto” state-
ment with an address which is not static, but which is stored in a
large connection table. If a submodel is to be modified, it suffices to
recompile that submodel, and to correct the connection table accord-
ingly. None of the systems presented so far offers this capability. One
system that does offer this facility is SYSMOD [5.19]. The SYSMOD
language is a superset of Pascal. The SYSMOD system consists of a
Pascal-coded preprocessor that compiles (sub—)models into Fortran
subroutines, a Fortran—coded simulation run-time system containing
the integration routines and output routines, and a special purpose
“linker” which is responsible for updating the connection table after
a recompilation of a submodel has occurred.

The price for this separate submodel compilation capability is a
reduction in run—time efficiency. According to information obtained
from the producers of SYSMOD, the run-time overhead is about
20% which seems quite acceptable. We have not yet had a chance
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to verify or reject this information on the basis of significantly large
sample programs.

5.13 Graphical Modeling

With the advent of increasingly powerful engineering workstations,
the demand has risen to model systems graphically on the screen.
Submodels are maintained in a model library. Such submodels could
be either DYMOLA models, regular CSSL macros, transfer func-
tions, linear state—space descriptions written in matrix form, or static
characteristics. Each of these models is associated with an icon which
is stored in an tcon library. Invoking a submodel simply means to
place the corresponding item on the screen. Connections between
submodels are done by drawing a line between two terminals (cuts)
of two icons.

Several such systems exist already on the software market. Some
of these systems are generic program generators in that they allow
the user to specify what code s/he wants to generate as a result of the
graphical compilation (i.e., the evaluation of the graph). One such
system, EASE+ [5.8], has been successfully employed as a graphical
preprocessor to ACSL. Others are either stand-alone systems, such
as EASY5 [5.1], or they are integral parts of particular software
systems, such as SYSTEM-BUILD [5.11] which has been designed
as a modeling tool for MATRIXx [5.10], or MODEL-C which is a
modeling tool for CTRL-C [5.18].

Most of these systems are based on the concept of block diagram
modeling. The basic building blocks are those used in block dia-
grams, i.e., single-input/single-output (SISO) system descriptions,
summers, and branching points. The disadvantage of these systems
is obvious. They do not provide for a hierarchical decomposition of
data structures (cuts), and they do not provide for the representation
of through variables.

Some systems are specialized tools for particular types of models.
For example, Workview [5.20] is a graphical modeling system for elec-
tronic circuits. As a result of the graphical compilation, Workview
generates a PSPICE [5.15] program. Workview will be presented in
Chapter 6.
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Another system, HIBLIZ (5.6}, has been designed specifically as a
graphical preprocessor to DYMOLA. HIBLIZ supports all concepts
that DYMOLA does, and can therefore be used for generic modeling
of arbitrarily coupled systems with hierarchical cuts and across as
well as through variables. The result of the graphical compilation
is a DYMOLA program. Unfortunately, while most of the available
graphical systems have been developed for PC compatibles, HIBLIZ
runs currently on Silicon Graphics (IRIS) machines only which makes
the software much less accessible (though faster executing).

One problem with the graphical approach is the fact that the
screen is not large enough to depict reasonably complex systems.
One typical solution to this problem is to resort to a virtual screen.
The virtual screen can be made arbitrarily large, and the actual
screen covers a window out of the virtual screen, i.e., the physical
screen can be moved over the virtual screen much like a short-sighted
person may use a magnifying glass to move over a page of a book.
Another approach is the zoom in facility which allows us to modify
the size of the icons on the screen. Virtual screens and zooming are
often combined. When zooming in on a portion of the virtual screen,
the window of the physical screen is made smaller, i.e., it covers a
smaller portion of the virtual screen.

Also in this respect, HIBLIZ offers a rather unique feature which
is called a breakpoint. Breakpoints allow the programmer to alter
the drawing as a function of the magnification (zooming). As an
example, it is possible to start out with a box as large as the virtual
screen which is empty except for the name of the problem which
appears in large letters. The physical screen at this moment coincides
with the virtual screen. As soon as we start zooming in on the
graph, a breakpoint is passed, and suddenly, the title disappears
and is replaced by some text which described the purpose of the
model. When zooming in further, another breakpoint is passed, and
the text is replaced by a set of smaller boxes with interconnections.
Each box contains the name of the submodel represented by this
box. Now, we can zoom in on any of these boxes. Meanwhile, the
physical screen has become considerably smaller than the virtual
screen, and we no longer see the entire picture at once. Again, a
new breakpoint is passed, and now, we see a text that describes the
purpose of the submodel on which we are currently focusing. When
zooming in further, the text is replaced by the internal structure
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of the submodel which may consist of some more submodels with
interconnections. Ultimately, we come to the layer of atomic models
in which case the description may be replaced by a graph denoting a
static characteristic, by a state—space model, by a transfer function,
or by a set of DYMOLA statements. If we zoom in on the point
where an interconnection meets a box, we can notice that each such
point in reality is represented by a little box itself. Zooming in
further on that little box, we can determine the nature of the cut
that is represented by the interconnection, i.e., we can learn about
the variables represented in the cut.

The graphical representation can also be used later, i.e., during or
after the simulation phase. For example, HIBLIZ allows to point to
a particular connection after the simulation has been executed. As a
result of this action, a new window is opened in which the trajectories
of all variables contained in the cut are displayed as functions of time.

On the long run, this is clearly the right approach. However, in
order to enhance the accessibility of the HIBLIZ code, it is hoped
that the developers of the software (the Technical University of Lund,
Sweden) will port the code to X Windows. We shall talk more about
HIBLIZ in Chapter 15 of this text.

It was demonstrated how hierarchical modeling has become the
key issue to coping with the increasing demands of modern large scale
continuous system simulation. I would like to acknowledge in par-
ticular the important research results obtained by Hilding Elmqvist
of the Technical University at Lund. Hilding Elmqvist produced
in 1975 the first direct executing CSSL language, SIMNON, which
paved the way for the work that resulted much later in the DESIRE
software which has been advocated in this text. SIMNON was de-
veloped by Hilding Elmqvist as his Master Thesis. Later in 1978,
Hilding developed DYMOLA for his Ph.D. Dissertation, a software
system which is still, twelve years later, very much state—of-the-art.
In 1982, he developed the first prototype of HIBLIZ, at least three
years before any competitor products came on the market. HIBLIZ
is even today considerably more powerful than all of its competitors
since it implements hierarchical cuts and through as well as across
variables.
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5.14 Summary

In this chapter, we have discussed the problems associated with large
scale system modeling: modularity and hierarchical decomposition of
submodels. We have introduced a new language, DYMOLA, which is
particularly well suited to support the process of modeling large scale
systems. In subsequent chapters, we shall present many examples of
the concepts that were introduced here.
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Homework Problems

[H5.1]* Control System

Fig.H5.1 shows a typical single input single output (SISO) control system
designed in the frequency domain. A second order plant is controlled by
use of a lead compensator. The output variable = is measured using mea-
surement equipment with dynamic behavior of its own.

Controller Plant
. e 500.025+1) | u >{ 40 >y
N 0.005s + 1 s2 +17s + 80
Jm 1
0.002s + 1
Measurement
Apparatus

Figure H5.1. Block diagram of a SISO control system

Many CSSL’s (such as ACSL) offer built in macros to model systems that
are either totally or partially described in the frequency domain directly
without need to transform the model back into the time domain. Model
this system in ACSL using the LEDLAG macro to model the controller,
the TRAN macro to model the plant, and the REALPL macro to model
the measurement equipment. Simulate a step response of this system. Use
a dynamic termination condition to bring the simulation to an end as soon
as three values of y that are separated in time by At = 0.03sec differ less
than 0.001 from each other. Use ACSL’s DELAY operator to construct the
signals:

Ay = y(t) —y(t — At); Ay = y(t — At) — y(t — 2A¢) (H5.1)

which can then be used in a TERMT condition.

Since this is a linear system, we could also simulate it in CTRL-C
(or MATLAB) directly. Use CTRL-C’s (MATLAB’s) TF2SS function to
transform each of the three transfer functions into state-space models.
Thereafter use CTRL-C’s INTERC function to come up with a state—
space model for the total interconnected system. Thereafter, use CTRL~
C’s SIMU or STEP functions to simulate the system with step input. Re-
member that CTRL—C offers interactive HELP for all its functions. If you
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use MATLAB, consult the manual for the names of these functions. All
CTRL-C capabilities are offered in MATLAB as well.

[H5.2]* Sampled Data Control System

Fig.H5.2 shows a sampled data control system [5.16]. The plant to be
controlled is a second order “Type 1” system (indicating that the plant
has a pole at the origin). This model represents a DC-motor in which
the armature inductance has been neglected. The output variable z is
the angular position of the motor. The system is to be controlled by a
microprocessor. An optimal controller was designed in the s—-domain, and
it was found that a lead compensator of the form:

_142.5s
T 1405s

G. (H5.2a)

would be optimal for this system using unity feedback (i.e., assuming an
ideal measurement apparatus).

T T

u
o Gd(s) o—ld Plant
+
r e Controller \.l, 25 >y

s (s'+ |7
Gc(s) Ue [_O

" Figure H5.2. Block diagram of a sampled data control system

‘We want to simulate the continuous control system in ACSL using the LED-
LAG macro to describe the controller, and the TRAN macro to describe
the plant. Simulate the system over a duration of 5 sec.

Unfortunately, the above simulation is not very realistic since the mi-
croprocessor cannot properly represent the lead compensator dynamics.
We can compute an equivalent discrete controller in CTRL-C (or MAT-
LAB). Use the TF2SS function to get a state-space representation of your
controller. Thereafter, use the C2D function to transform the continuous—
time controller model to an equivalent discrete-time controller model. Use
a sampling interval of T, = 0.1 sec. It turns out that the transforma-
tion affects only the A matrix and the b vector (in our example, they
are both scalars), while the output equation remains unchanged. Augment
your previous ACSL program by including now the discrete controller using
the design that was computed in CTRL-C (MATLAB). Use a DISCRETE
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block with an INTERVAL specification to model the discrete controller.
This can be achieved using the following language construct:

DISCRETE controller
INTERVAL Ts =0.1

PROCEDURAL
zinew —a*xsi+bxe
udis =csztt+dxe
zi = zinew

END

END

The INTERVAL specification will ensure that this block is being executed
exactly once every T, time units. The PROCEDURAL declaration is nec-
essary to break the algebraic loop between £ and £,.,. Upon execution of
the DISCRETE block, a new value of ug4;, is computed which thereafter
stays constant for the duration of one sampling period (sample and hold).
Model the switch using ACSL’s FCNSW function. Simulate the step re-
sponse of the sampled data system, and compare the results to the idealized
continuous—time simulation performed above.

Even the sampled data model is not truly realistic since it takes the com-
puter some time to perform the computations expressed in the DISCRETE
block. Assume that the time needed for the computation is At = 0.003 sec.
This can be simulated by replacing the ug;, signal in the above described
DISCRETE block by another signal, say u,¢, and schedule from within the
DISCRETE block another DISCRETE block called dac to be executed At
time units in the future using ACSL’s time—event scheduling facility. All
that the dac block needs to do is to pass the current value of the u,; vari-
able on to uy,. Simulate the step response of the once more refined model,
and compare the results with those of the previous simulations. If you run
ACSL through CTRL-C or MATLAB, you can easily plot all simulation
results on top of each other on one graph.

(H5.8] Water Flow Through a Reservoir

A community uses a small reservoir for irrigation purposes, but also to
prevent damage otherwise produced by flooding during storms. When the
reservoir contains a water volume of V = Vp = 4000 m?, water will begin
to overflow from the reservoir into a series of drainage channels. Assume
that, at ¢ = 0, the reservoir contains V; = 3900 m? of water. A storm that
lasts for 25 hours adds water to the reservoir as specified in Table H5.3a.
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Table H5.3a Water inflow g;» during a storm

time ¢ [h] inflow gin [m®/h]
0.0 10.0
1.0 35.0
2.0 58.0
3.0 70.0
4.0 75.0
5.0 68.0
6.0 55.0
7.0 38.0
8.0 28.0
9.0 21.0
10.0 18.0
11.0 16.0
12.0 14.0
13.0 13.0
14.0 12.0
15.0 11.0
20.0 10.5
25.0 10.0

The overflow is described by the function:
dout = 0.02 + f(dout) - [max(V — Vp,0.0)]* (H5.3)
where the overflow characteristic f(gout) is specified in Table H5.3b.

Table H5.8b Water outflow characteristics f(gout)

outflow gou: [m>/h] F(dout)
0.0 0.8
25.0 0.85
50.0 0.95
75.0 1.0
100.0 1.0

Code this problem in ACSL using tabular functions and an IMPL block
to describe the implicitly defined overflow characteristic.

Simulate this system over the duration of the storm, and plot on separate
graphs the inflow rate, the outflow rate, and the volume content of the
Ieservoir.

[H5.4] Surge Tank Simulation

A water turbine is fed from a reservoir through a pressurized pipe. The
turbine in turn feeds an electrical generator (a synchronous AC-machine).
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In case of a short—circuit on the electrical circuit, it may be necessary to
shut down the generator very fast (within a few seconds) which may force
us to close the valve in front of the turbine within a very short time period.
When the valve is open, water flows from the reservoir into the turbine.
This water flow contains a potentially destructive amount of kinetic energy.
If we are forced to close the valve quickly, the kinetic energy could destroy
the rear end of the pressure tunnel. In order to prevent such damage from
happening, we need to add a surge tank to the system into which the water
can escape. The surge tank will help to convert the kinetic energy into
potential energy, thereby reducing the maximum pressure in the pressure
tunnel. The system is shown in Fig.H5.4a.

Pressure
Tunnel

Pressure
Pipe

zTV

Figure H5.4a. Power generation using a water turbine

The reservoir surface is at an altitude of zp = 3168 m. It is assumed
that the reservoir is sufficiently large so that the outflow of water from the
reservoir does not noticeably change the water level in the reservoir.

We can compute the amount of water that flows from the reservoir into
the pressure tunnel by formulating Newton’s law for the pressure tunnel:

mb, = Fip — Four — Fp» (H5.4a)

F;, and F,,; are the forces produced by the water pressure at the inflow
and outflow of the pressure tunnel. These forces are equal to the water
pressure multiplied by the active surface, i.e.

Fl'u = At * Pin (H5.4b)
Fout = At - Pout (Hb5.4c)
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where the cross—section of the pressure tunnel 4, has a value of 12 m?2.
The water pressures can be computed to be

Pin=p° 9" hiu (H5.4d)
Pout =p- g hout (H5.4e)

where p is the water density (p = 1000 kg m~3), g is the gravity (g =
9.81m sec'z), and h;, and hoy: denote the momentary values of the water
columns (i.e., h;y, is the depth of the reservoir, and hy; is the current water
level in the surge tank minus the altitude of the pressure tunnel). The mass
of the water can be specified as the product of density and volume:

m=p-V=p-A- 4 (H5.4f)
where £; is the length of the pressure tunnel (¢; = 13580 m). In turbulent
flow, the inner friction of the water is proportional to the square of the
velocity:

Fp,:k-Ag-p-y-vdvd (H5.4g)

where k is the friction constant (k = 4.1 m~! sec?). These informations
suffice to generate a differential equation for the tunnel velocity v;.

At the rear end of the pressure tunnel, we can formulate the mass con-
tinuity equation (what comes in must go out), assuming that the water is
ideally incompressible:

Gt =do + dp (H5.4k)

where the mass flow rate in the pressure tunnel g, is the product of the
tunnel velocity and the tunnel cross—section:

ge = At - e (H5.41)

the mass flow rate in the pipe is the product of the pipe velocity v,, the pipe

cross—section (A4, = 0.6 m?), and the current percentage of valve opening
S(t):

dp = Ap - vp - S(2) (HS.45)

Finally, the mass flow rate into the surge tank g¢ is the product of the

cross—section of the surge tank and the time derivative of the water level 2

in the surge tank. In other words, eq(H5.4h) can be rewritten as:

Ay v dt = Ay v, S(t) dt + FSW(2) dz (H5.4k)
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where S(t) stands for either the closing characteristic or the opening char-
acteristic of the valve which have been chosen to follow the following static
characteristics (Fig.H5.4b-c):
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Figure H5.4b-c. Cl&;ing/opcning characteristics of the valve

FWS5(2) represents cross-sections of the surge tank at different altitudes.
This tabular function is given in Table H5.4.

Table H5.4 Topology of the surge tank

altitude z [m] surge tank surface FWS [m?]
3100.0 20.0
3110.0 20.0
3120.0 100.0
3130.0 40.0
3160.0 40.0
3170.0 80.0
3180.0 80.0
3190.0 10.0
3210.0 10.0

The only quantity that we are still missing is the pipe velocity v,. To
compute this variable, we need to see what happens at the valve. Let me
assume that the valve is initially open. Water flows into the turbine which
carries a kinetic energy of:

1 1
Ey = Emv: =3P 14 'v: (Hb5.41)
The water carries also a potential energy of:

E,=mgh=pV gh (H5.4m)
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If we now start to close the valve, the total free energy doesn’t change, i.e.,
the reduction in kinetic energy must be equal to the increase in potential
energy:

%p AV 'v: =pAV gh (H5.4n)
and therefore:
vp = 4/2gh (H5.40)

Under the assumption that the change in the water level can be neglected,
we can write this as:

vp = v/2g9(2r — 27) (H5.4p)

The altitude of the turbine z7 is 3072 m.

The critical quantity that we are interested in is the inertial pressure at
the rear end of the pressure tunnel during valve openings and valve closings.
The inertial pressure can be computed as:

F mov A .
pr=iI T Pl g, (H5.4q)

Simulate separately one opening and one closing of the valve over a duration
of 2000 sec each, starting from steady-state initial conditions. Plot on
separate graphs the tunnel velocity v:(t), the water level z(f) in the surge
tank, and the inertial pressure pr(t) as functions of time, and determine a
numerical value for the maximum absolute inertial pressure.

For a configuration without a surge tank, the equations become so simple
that the inertial pressure can be computed analytically. Determine the
maximum value of the inertial pressure if the surge tank is being removed,
and compare this value to the one found by simulation before.

[H5.5] Macros

Four bicyclists start at the coordinates indicated on Fig.H5.5. They travel
with constant velocities vy = 17 km/h, v2 = 14 km/h, v = 12 km/h,
and v4 = 15 km/h. Each bicyclist travels at all times straight into the
momentary direction of her or his next neighbor, i.e., bicyclist #1 tries to
catch bicyclist #2, etc.
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Four Bicyclists

(1.;.1.8)

y [km]

Figure HB5.5. Phase plane plot of four bicyclists trying to catch each other

Compute the positional coordinates of each of the four bicyclists as func-
tions of time. Terminate the simulation as soon as the distance between
any two bicyclists has decreased to below 10 m. Develop a macro that
describes the motion of any one of the four bicyclists, and call that macro
four times in your simulation program.

[H5.6] Electric Power Generation

Fig.H5.6 shows the configuration of a small electric power system consisting
of two synchronous generators, three transmission lines, and three different
loads [5.5].
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Lo ad, | Loads

Figure H5.6. Topology of a small electric power system

It is assumed that all voltages and currents in this system are basically
sinusoidal with slowly varying amplitudes and phases. We can therefore
conveniently model the system with complex voltages and currents.

The generators are represented by AC voltage sources series connected
with a pure reactance:

Vo=FE;—j Xal, (H5.6a)

where E is the ideal voltage source, and Vj is the effective voltage that is
connected to the net. I, is the current that flows through the generator,
and X is the (inductive) reactance of the generator. Both generators have
a reactance of X4 = 0.0540. The electric power produced by the generator
is the real part of the product of the generator voltage E, and the generator
current I,:

P, = Re{E,-1,} (H?5.6b)

For reasons of energy conmservation, the electric power P, must be equal
to the mechanical power P; of the water turbine that is responsible for
rotating the generator. If this is temporarily not true, the phase angle
between current and voltage will change to make it true. A model for this
adaptation is the so—called swing equation [5.3]:
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—$¢+Dp=P P, (H5.6¢)

H
fo
where fo is the net frequency (60 Hz in the United States, and 50 Hz in

Europe), and H and D are generator parameters. For our two generators,
we want to assume that Dy = Dy = 0, H; = 30 Joule, and H, = 300 Joule.

The transmission lines are modeled by (inductive) reactances:

Vowr =Vin—j X I, (H5.6d)

where X, is the reactance of the transmission line. In our example, we want

to assume that all three transmission lines are equal, and have reactances
of 0.0552.

The loads are modeled as impedances:

Vicad = Z - Ioaa (H5.6¢)

We want to analyze the reaction of the power system to various load func-
tions. Therefore, the loads are not a priori specified. All we know is that
the second load is purely capacitive, while the other two loads can be any-
thing.

Create three separate DYMOLA model types for the three types of com-
ponents: the generators, the transmission lines, and the loads. Then con-
nect these components to the topology shown in Fig.H5.6. While we made
the task of modeling easy and convenient, we now have to pay the price:
the model does not contain enough differential equations, and therefore,
the system contains several algebraic loops. Use the DYMOLA preproces-
sor to detect those algebraic loops, and determine how many variables are
involved in each of them.

Projects

[P5.1] The Domino Game

The domino game consists of 55 stone with the dimensions zp = 8 mm,
Yp = 2.4 ¢cm, and zp = 4.6 cm. The mass of each stone is m = 10 g. We
place these 55 stones in a series at a distance d from each other. We push
the first stone, and the entire series of stones falls flat [5.2]. This is shown
in Fig.P5.1a.
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Figure P5.1a. Domino game

The question that we wish to answer is the following: At what distance d
between two consecutive stones is the chain velocity v¢, maximized. The
chain velocity can be defined as follows:

d

ven(k) = trimp(k + 1) — trmp(k)

(P5.1a)

which is a discrete function. k stands for the stone #k. Tim, is the time
of impact, i.e., t7mp(k + 1) is the time when the stone #k bumps into the
stone #(k+1). This problem must have a non—trivial answer since, for very
small values of d, the impacting stone has not yet gained a sufficiently large
momentum at impact, while, for large values of d, most of the momentum
is directed towards the floor already.

This is a very difficult problem to model accurately. We want to make
some simplifying assumptions. First, we assume the impact to be totally
elastic, i.e., just before impact, the impacting stone has a certain momen-
tum 7 = m - v which can be decomposed into its horizontal component
I, and its vertical component Z,. At impact, the horizontal component
of the momentum is passed on to the next stone, i.e., immediately after
impact, the horizontal momentum of the impacting stone is zero, while the
horizontal momentum of the impacted stone has taken over the momentum
from the impacting stone. Second, we shall neglect the interaction between
the stones after impact, i.e., the interaction is assumed to be momentary
only, and thereafter, both stones are treated separately again. Each stone
is simulated until it hits the ground, i.e., we shall neglect the kinematic
constraints of two different stones occupying the same point in space at the
same time.
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At time zero, the first stone is pushed at an altitude h = 0.75 - zp. It
thereby receives an initial horizontal momentum of Z = 0.002 kg m sec™!.
This produces an initial velocity of:

I
v = ™ (P5.1d)

Due to Coulomb friction between the stone and the ground, the stone will
not slip along the floor, but starts to roll. The initial angular velocity is
therefore:

we = " (P5.1c)
We can now formulate Newton’s law in rotational coordinates:
Lo=r (P5.1d)

where I, is the inertia of the stone to rotation around the y-axis. The
inertia can be computed easily:

I, = %m(z% +23) (P5.1e)

+ is the gravitational torque. Fig.P5.1b shows what happens while the
stone falls.

R )
mg

Figure P5.1b. Newton’s law for the domino game
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The gravitational force can be decomposed into a normal and a tangential
component. Only the tangential component produces a torque which can
easily be computed:

T =mg R sin(p) (P5.1f)

where
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1
R= E\/zi, + 23 (P5.1g)
Notice that the initial angle g is negative, namely

po = —tan"}(Z2) (P5.1h)
2p
and therefore, the initial torque is also negative. If the momentum 7 is
chosen too small, the stone will never fall, but only rock for a while, and
then return to its initial upright position.

Generate an ACSL macro that describes the behavior of a stone. The
differential equations are multiplied by a constant ¢ which is initially set
equal to zero. When the stone is pushed (modeled using ACSL’s state—
event scheduling feature), it obtains its initial angular velocity wo, and the
constant c is altered from zero to one. The stone starts moving, and a
new state—event is scheduled to occur at the time of next impact. At that
moment, the angular velocity of the impacting stone changes abruptly, and
the stone continues to fall until ¢ = 90°. At that time, another state—event
is scheduled which will set the constant ¢ back to zero. We shall assume
the impact with the ground to be totally plastic, i.e., the fallen stone does
not bounce.

Call the above macro 55 times for the 55 stones of the domino game, and
simulate the overall system. Plan a strategy that will optimize the chain
velocity vep. Obviously, the distance d must be chosen in the range:

d€[za, zp + 20] (P5.17)

ACSL permits you to branch from the TERMINAL section of the program
(which is executed after a simulation run has been completed) back to the
INITIAL section using a GOTO statement. By doing so, a next simulation
run is initiated. This feature enables you to program your strategy.

Each stone is described by a second order differential equation. Conse-
quently, the entire system order is 110 at all times, even though only a few
stones move simultaneously. This is most unfortunate since this costs a lot
of execution time in vain. Very few languages permit you to dynamically
create/destroy processes involving differential equations, i.e., invoke a new
instantiation of a macro at run time during a discrete event. One such
language is COSMOS [5.12].

Try to outwit ACSL by assuming that never more than eight stones will
simultaneously move at any one time. Consequently, when you push stone
#9, you can simply revive the already fallen stone #1, etc. Thereby, the
overall system order can be reduced from 110 to 16 which will speed up
the simulation dramatically.

For the optimal distance d, plot the chain velocity over the stone number.
For each simulation run, store away the last value of the chain velocity
von = von(54) and the currently used value of d. After all simulations
have been completed, plot veni(d).
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[P5.2] Robot Modeling

We wish to analyze once more the behavior of the Stanford arm (for a
detailed description, cf. pr(P4.2)). This time, we wish to model each
limb separately. Describe a general limb through a DYMOLA model type.
Each two consecutive limbs are connected with a joint. Describe in another
set of DYMOLA model types the different types of joints (revolute and
prismatic). Build a model of the entire Stanford arm by connecting the
limbs and joints together.

Employ the DYMOLA preprocessor to obtain a total set of equations de-
scribing the Stanford arm. Obviously, the kinematic constraints imposed
by the connections will result in structural singularities. Use the differ-
entiation algorithm outlined in this chapter to manually get rid of these
singularities.

Research

[R5.1] The Modular Modeling System

The Modular Modeling System (MMS) [5.7] was developed by the Electric
Power Research Institute (EPRI) for the simulation of various types of
electric power distribution systems. Currently, two implementations of
MMS exist, one in the form of a macro library for ACSL {5.16], the other
as an application of Easy5 [5.1]. Both implementations suffer from the
fact that the parent languages do not provide for truly modular modeling
facilities. Consequently, the macros that make up for the MMS library are
rather involved, somewhat clumsy, unnecessarily slow in execution, and not
truly flexible. It would therefore make a lot of sense to reimplement MMS
in DYMOLA which is ideally suited to provide for a flexible and totally
modular parent language environment.

Reimplement MMS in DYMOLA. Since power system models can be
quite large, neither SIMNON [5.4] nor DESIRE [5.13] are well suited as
simulation run—time environments. Enhance DYMOLA to alternatively
generate ACSL code as well. A graphical preprocessor/postprocessor for
MMS exists also which was written in EASE+ [5.8]. In the context of recod-
ing MMS in DYMOLA, I suggest to replace this preprocessor /postprocessor
by HIBLIZ [5.6].

[R5.2] Structural Singularities

Design a general-purpose algorithm that reduces structural singularities by
analytic differentiation. Implement this algorithm as part of the DYMOLA
language. The project pr(P5.2) can serve as a test case for this algorithm.




