Principles of Active Electrical
Circuit Modeling

Preview

In this chapter, we discuss the tools and techniques of today’s pro-
fessional circuit designers. We discuss how SPICE works, and what
additional tools exist that support SPICE, such as the PROBE fea-
ture to view simulation trajectories graphically, or Workview [6.11]
for schematic capture. We shall then explore the pro’s and con’s of
using DYMOLA [6.3] for electronic circuit modeling.

6.1 Topological Modeling

As we have shown in Chapter 3, it is rather inconvenient to man-
ually derive a state—space description for even fairly simple passive
electrical circuits. We have seen that it may not be desirable at all
to even attempt to generate such a state-space description due to
the frequent algebraic loops and structural singularities inherent in
most practical electrical circuits.

For this reason, circuit designers prefer to model their circuits by
specifying a topological description. Let us revisit the simple passive
circuit that was discussed in Chapter 3. It is shown once more in
Fig.6.1.
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Figure 6.1. Example of a passive circuit

Using the topological modeling approach, we simply number all
nodes of the circuit, and describe the circuit topology by specify-
ing terminal nodes for each circuit element. This is the approach
taken by all current circuit analysis programs. The most common
among those is SPICE. Various SPICE dialects exist which have
partly been coded in Fortran and partly in C. Among those, we cur-
rently recommend PSpice [6.9] which runs both on main frames and
on PC’s, and which works fairly well. The above shown circuit can
be modeled in PSpice in the following manner:

Simple Passive Electrical Circuit
R1 1 2 100

R2 2 0 20
L 1 0 15M
¢ 2 0 oW
Vo 1 0 10
.OP
.END

The “.OP” statement describes the simulation experiment, i.e., the
type of analysis that is to be performed on the circuit (in this case,
a computation of the DC steady—state value). The first character of
the element names is semantically significant. It determines the type
of circuit element being used. Node numbers are positive integers
except for the ground node which is always declared to be node 0.
A character immediately following a numeric constant (an element
value) denotes a scaling factor. For example, “M” stands for “milli”,
and “U” stands for “micro”. SPICE uses the branch admittance
matriz approach to convert the topological circuit description into
an implicit matrix description in the way described in Chapter 3.
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6.2 Models of Active Devices in SPICE

Circuits that are of any practical interest today are always heavily
non-linear. This is due to the fact that most circuits today are built
as integrated circuits, and the electrical phenomena that occur in a
P junction are governed by heavily non-linear equations.

Let us look at a simple p—n junction first. Such a junction is shown
in Fig.6.2.

Figure 6.2. Model of a p—n junction

Every p—n junction can be described as a diode which has its anode
on the p—side and its cathode on the n-side of the junction, i.e.,
the junction is forward biased if the potential on the p—side of the
junction is higher than that on the n—side. In this case, current flows
through the junction. The junction is reverse biased otherwise. The
relation between current through and voltage across a diode can be
described by the following equation:

iy = LA ,
ig = I,[exp( VTNd) 1] + Gintig (6.1)

1, is the saturation current of the diode, V1 is the thermal voltage,
Vr = 5}, and N, is the emission coefficient. The second term denotes
a resistive leakage current.

Especially for reverse biased junctions, electrical charge will build
up along the junction since no current can flow. This charge can be
described as a non-linear capacitance that is connected in parallel
to the diode. In Chapter 3, we saw that the relation between current
through and voltage across a capacitor is:
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. du,
i.=C 7 (6.2)

However, this equation is only correct for linear capacitors. If the
capacitance value changes over time, this equation must be replaced
by the more general equation:

. d _ d‘Ic

e = dt(C-uc) == (6.3)
where g, = C - u, is the electrical charge stored in the capacitance.
Even more generally, the relation between current and voltage in the
junction capacitance can be described as:

. d

e = thg) qc = f("‘c) (6'4)
The charge in the junction capacitance can be approximately de-
scribed by the following equation:

$aCal1 - (1 - 34~
1—myq

gc = Tatd + (6.5)
where i4 stands for the current through the junction diode, and is in
itself a function of u4 as stated in eq(6.1). 7; is the time constant of
the capacitance, and the parameters @q, C4, and mg model second
order transient effects.

Let us now look at transistors. A bipolar junction transistor (BJT)
basically consists of two p—n junctions: a base—collector junction, and
a base—emitter junction. Fig.6.3 shows two ways that BJT’s can be
built.

S S

Figure 6.3. Vertical and lateral NPN transistors
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The two p-n junctions can either be embedded into each other as on
the left of Fig.6.3. Such transistors are commonly referred to as ver-
tically diffused transistors. Alternatively, they can be placed next to
each other. Such transistors are called laterally diffused transistors.
Both transistor types shown in Fig.6.3 are NPN transistors (identi-
fying the doping of the three major regions (N:Emitter, P:Base, and
N:Collector). PNP transistors look exactly the same except that
all doping concentrations are reversed. The NPN transistor can be
modeled as shown in Fig.6.4.

iy external
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I X int. Collector
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Figure 6.4. Model of vertical and lateral NPN transistors

In the vertically diffused BJT, the substrate is connected to the col-
lector, while in the laterally diffused BJT, it is connected to the base.
The Cy, capacitance is actually a part of the junction capacitance
of the base—collector junction diode. By splitting this capacitance
between the external base and the internal base, the physically dis-
tributed junction charge can be represented a little more realistically.
The model for PNP transistors looks exactly the same except that
all diode polarities are reversed. The two dependent current sources
are modeled in the following way:
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ibe - ibc ibc

Ico = - — 1 6.6a
Co @ 1;}% ben ( )
ibe . ibc . ibe
I = — —_— - —= .
Bo= B +iben + ot iben — (6.60)

where 7, and 7. denote the diode currents through the base—emitter
and base—collector junction diodes, %., and 7;., denote the same
quantities once more, but this time using altered saturation currents
and modified emission coefficients, and By and By are the ideal
forward and backward 8 coefficients which denote the DC current
gain factors from the base to the emitter and to the collector, i.e., f
and —‘1. ¢» is the base charge, and is in itself a computed quantity
wlnch in SPICE, is approximated by the following equation:

= %(1 + 1+ 4q2) (6.7)

where

1
S vy (6.8a)
Var Var
Tbe Tbe
= + 6.8b
7 Ixkr  IkrF (6.80)

The base resistance is the most important resistance in the BJT
model. Consequently, it is modeled more accurately than the other
two resistances. The base resistance depends on the base current.
The following equation is used to model the current dependence of
the base resistance in SPICE:

tan(z) — z
_ _ tan(z) — z 6.
™ = Rpm + 3(Rp RBM)z(tan(z))z (6.9)
where:
_14 /15l
7= —V Tinm (6.10)

_4 /
Not all SPICE dialects use exactly the same equations. The equa-
tions presented in this text are those of the BBSPICE [6.1] dialect,

an HSPICE [6.8] offspring, since this is the only version of SPICE
for which I have source code available. Unfortunately, few SPICE
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manuals are explicit in these matters, and many are inaccurate. It
is therefore dangerous to rely in these matters on information pro-
vided in a user’s manual rather than to extract it from the source
code directly.

The equations presented in this chapter are in fact only a subset
of those that are actually used in the SPICE model. For example,
eq(6.10) won’t work if the parameter Irp takes on its default value
of 0.0. In that case, SPICE automatically switches over to another
simpler equation to approximate the base resistance, namely:

Rp — Rpum

T = Rpm + (6.9%%)

'3

where ¢ is the previously introduced base charge.

In fact, while the BJT model used by BBSPICE is the Gummel-
Poon model, BBSPICE will automatically revert to the simpler
Ebers—Moll model if default values are used for the secondary de-
vice parameters.

Also, it can easily happen that the denominator of eq(6.8a) be-
comes zero in which case this equation would blow up. BBSPICE
automatically flattens out denominators in the vicinity of zero, and
limits expressions to be exponentiated in size to prevent the model
from blowing up.

Finally, many of the model parameters are temperature depen-
dent. Military rated devices must operate correctly between —55°C
and +120°C. It is thus important that the circuit simulator can take
effects of temperature variation into account. In BBSPICE, temper-
ature variation is modeled by a quadratic approximation. Many of
the device parameters have temperature coefficients associated with
them. They all work basically in the same way. For instance, the
temperature variation of the base resistance is modeled by:

ATemp = Temp — Troom (6.11a)
ry = R + Trp1 ATemp + Trps ATemp? (6.11d)
Tem = RM + Trm1ATemp + T}u,nATeTnp2 (6.11c)

In reality, the temperature dependent coefficients r, and 7, are
plugged into eq(6.9) and eq(6.9%*), and not the user supplied con-
stant coefficients Rp and Rpy.

BBSPICE offers an analysis statement of the type:
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TEMP —55 —30 —5 20 45 70 95 120

which allows us to repeat whatever analysis was requested for a num-
ber of different temperature values. All temperature dependent pa-
rameters are updated between simulation runs.

It would not be very practical if all model parameters would have
to be user specified for every single transistor in the circuit sepa-
rately. For example, in BBSPICE, BJT’s contain 53 different model
parameters that can be user specified. Since typical circuits are fab-
ricated as integrated circuits on one chip, and since for economic
reasons not too many different processes can be involved in the fab-
rication of a single chip, chances are that most of the BJT’s in a
circuit are very similar, maybe except for the area that the emitter
occupies (which, in turn, will influence many of the other parameters,
i.e., the resistances will be divided by the area while the capacitances
will be multiplied by the area; however, most SPICE dialects provide
for one Area parameter). To avoid this problem, SPICE allows us to
group sets of device parameters into a .MODEL statement such as:

.MODEL PROC35.N NPN

IS=11FA BF =190 BR=.1 EG=1.206612 ISS§=0

ISE=0 ISC=0 NE=15 NC=2 BULK=SUB

VAF =110 VAR=0 IKF=36MA IKR=0 SUBS=1
RB=1109.9 IRB=563MA RBM =3684 RE =133 RC =750
XTB =.006 XTI=233 TREl1=.0006 TRB1=.006 TRC1=.005
TRM1=.006 TRE2=0 TRB2=0 TRC2=0 TRM2=0
CJE = 597TPF VJIJE=.77T MJE=23

CJC = .36PF VJC =.64 MJC = .425

CJS=0 VJS=.718 MJS=0 XCJC=1 TLEV =1

NF=1 NR=1 NS=1 LEVEL=2 VIF=0 AF-=1

TF =50PS TR=1US XTF=1 ITF=36MA PTF=0 KF =.16F

+H+++H++++++

.MODEL PROC35.P PNP

IS=11FA BF =125 BR=.1 EG =1.206612 ISS=0

ISE=0 ISC=0 NE=15 NC=2 BULK =SUB

VAF =30 VAR=0 IKF=36MA IKR=0 SUBS=-1

RB =778 IRB=193MA RBM =576 RE =233 RC = 450
XTB=.06 XTI=233 TRE1=.0005 TRB1l=.005 TRC1=.005
TRM1=.005 TRE2=0 TRB2=0 TRC2=0 TRM2=0

CJE = 652PF VJE=.77 MJE=23

CJC = .065PF VJC =.64 MJC = 425

CJS=0 VIS=.7 MJS=0 XCJC=1 TLEV =1

NF=1 NR=1 NS=1 LEVEL=2 VIF=0 AF=1

TF =100PS TR=1US XTF=1 ITF=90MA PTF=0 KF =.16F

++H+++++++++
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In SPICE, lines starting with a “4” are continuation lines. Models
can then be invoked by referring to their model identifier. For ex-
ample, models of the two types PROC35.N and PROCS35.P can be
invoked through the statements:

Q120 7 21 15 PROC35.N
Q121 9 42 31 PROC35.P

where the character “Q” in the element name indicates the BJT. A
small subset of the model parameters can also be specified during
the element call itself in which case this value supersedes the value
specified in the .MODEL statement, which in turn supersedes the
default value. Typically, the area parameter will be specified during
the element call since it varies from one transistor to the next while
other process parameters remain the same.

How can we identify a decent set of model parameters for a given
transistor? Two answers to this question can be given. On the one
hand, some companies sell model libraries for various SPICE dialects
that contain sets of model parameters for most of the commercially
available semiconductor devices. One such product is ACCULIB
[6.7], a model library for the SPICE dialect ACCUSIM [6.6]. On
the other hand, it is possible to buy computerized data acquisition
systems which automatically produce test signals for a variety of
semiconductor devices, and quickly identify a set of model param-
eters for the given device. One such product is TECAP [6.4]. The
TECAP system consists of an HP 9000 computer, an HP 4145 semi-
conductor analyzer, a network analyzer, and a capacitance meter.
The chip to be modeled is inserted in the system. The system then
generates a series of test signals for the chip, and records the chip’s
responses. It then computes a rough first set of model parame-
ters. Thereafter, it uses these model parameters as initial parameter
values for a PSpice optimization study. Simulations are run, and
the parameters are adjusted until the PSpice simulation is in good
agreement with the measured characteristics. When operated by an
experienced user, TECAP requires roughly 20 min to identify the
DC parameters of a BJT transistor, and another 30 to 40 min to
identify its AC parameters.

In this section, we have used the BJT to explain, by means of an
example, how involved the active device models in modern circuit
analysis programs are. We chose the BJT because its model is quite
a bit simpler than the MOSFET model. However, the modeling
principles are the same.




208 Chapter 6: Principles of Active Electrical Circuit Modeling

One disadvantage of the intrinsic “model” concept employed in
SPICE is the fact that most device models are very complex, and
they are not transparent to the user. Furthermore, most SPICE
versions (exceptions: BBSPICE [6.1] and HSPICE [6.8]), provide
the engineer with insufficient access to the internal voltages, cur-
rents, and circuit element parameters of the models. Consequently,
it is often quite difficult to interpret effects shown by the simulation
since the equations used inside the models are not truly understood
by and often not known to the design engineers. Also, the SPICE
models are rather difficult to maintain and to upgrade. Recently, I
added a four terminal GaAs MESFET model to BBSPICE that we
had received from another company. It took me a whole week and
required changes to 25 subroutines to integrate this model with the
BBSPICE software.

6.3 Hierarchical Modeling

In many circuit simulation studies, it is not practical to model each
circuit down to the level of the available SPICE models (the BJT’s,
JFET’s, and MOSFET’s) since the same higher level components
(such as a logical inverter subcircuit) is reused in the circuit several
times. It would, of course, be feasible to implement such a subcircuit
as a new SPICE model, and this is certainly the right approach if
this same component is going to be reused over and over again,
such as a Zener diode. However, this approach is painfully slow and
cumbersome at best.

Therefore, SPICE also offers the possibility to declare an ensem-
ble of circuit elements as a subcircuit, and to reuse it thereafter as
often as needed. Subcircuits are macros as introduced in Chapter 5.
However, at the abstraction level of a topological circuit description,
macros are truly modular which was not so in the case of state—space
descriptions.

The following code shows a typical BBSPICE subcircuit which
describes a generic gain stage of an operational amplifier:
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.SUBCKT GAIN 100 101 1 2 RG = 500
+INPUT CIRCUIT

RS 100 3 500hm
RIN3 0 500khm
*LOAD CIRCUIT

RO 5  101500hm

RL 101 0 500hm
*GAIN SET RESISTORS
RF15 26 5000hm

RF2 26 25 5000hm

RF3 4 25 5000hm
CP125 0 14pF

CP2 26 0 14pF

RE 4 0 RG
+AMPLIFIER

XAMP 34512 SERSHNT
.ENDS GAIN

which then can be invoked through the statement:
XT1505178 GAIN RG = 78.95

The node numbers of the subcircuit definition are formal positional
parameters that are replaced by the actual node numbers during the
invocation of the subcircuit. Other (internal) nodes of the subcircuit
are local variables of the macro, and are unaccessible from the out-
side. RG is a subcircuit parameter which can be assigned a default
value in the subcircuit declaration (in our case 500). The default
value can be overridden during the subcircuit invocation process. In
our example, RG receives now a value of 78.95. The “X” character
in the element name (XT1) indicates that this “element” is in fact
not an element, but a subcircuit call. Subcircuits can be nested. In
our example, the subcircuit GAIN calls upon another subcircuit of
type SERSHNT.

In practice, the subcircuit concept in SPICE is a little clumsy, and
subcircuits often create problems. On the one hand, many SPICE
versions give the user access to the top level of the hierarchy only,
i.e., the node voltages and branch currents that are internal to a
subcircuit cannot be displayed on output. On the other hand, most
SPICE versions do not allow the user to specify an initial node-
set for internal nodes of subcircuits (cf. the subsequent discussion of
ramping). This often creates serious problems with DC—convergence.
The cause of these difficulties is the fact that, in the original Berke-
ley SPICE, nodes had been numbered rather than named. Some of
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the newer versions of SPICE have solved this problem by introduc-
ing node names. In such versions, internal nodes of subcircuits can
be accessed using a dot-notation. For example, the voltage of the
internal node emitter of the subcircuit opamp can be addressed as
V(opamp.emitter), and the current through the base resistance Ry,
of the subcircuit opamp can be addressed as I(opamp.rbb).

6.4 Transient Analysis in SPICE

Transient analysis, in a circuit analysis program, corresponds to the
previously introduced mechanism of system simulation. Starting
from a given initial condition, the trajectory behavior of the sys-
tem over time is determined. SPICE has a peculiar way of handling
initial conditions. In SPICE, it is assumed that the initial value of
all sources have been present for an infinite amount of time before
the simulation starts. Let me explain this concept.

In a linear system of the type:
x = Ax + Bu (6.12)

we can set u to its initial value ug, and compute a steady-state
solution. In steady—state, all derivatives have died out, i.e., X = 0.0.
Therefore, we find:

xo = —A"!Bug (6.13)
In a non-linear system of the type:
x = f(x,u,t) (6.14)
we must solve an implicit set of non-linear equations of the form
f(xo,up,t) = 0.0 (6.15)

for the unknown vector Xo. This is what SPICE attempts when it
computes an “OP-point”.

SPICE tackles this problem by assuming an initial value for xo,
linearizing the circuit around this assumed value, and then comput-
ing a better estimate for xo using the approach of eq(6.13). This
scheme is called Newton—Raphson iteration.
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Let us look once more at the junction diode example. The current
through the diode is a non-linear function of the voltage across the
diode. The algorithm starts with an initial voltage which the user
can specify in a so—called “nodeset”, and which is assumed to be
zero by default. Then, all non-linear functions are linearized around
the present working point as shown in Fig.6.5.
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g,= tan(a)

Figure 6.5. Linearization of non-linear diode characteristic

In the linearized model, the diode is replaced by a conductance
ga = g‘u;:-, and a current source I;. Now, we can use this model to
solve the branch admittance matrix equation for a new, and hope-
fully improved, nodeset. The iteration continues until the difference
between subsequent nodesets has become negligible.

Unfortunately, in a non-linear circuit, no guarantee can be given
that this algorithm will converge to the correct OP—point, or will
converge at all. DC-convergence is one of the big problems in circuit
analysis. The design engineer can help the program by specifying a
good nodeset, i.e., by specifying good initial guesses for some or all
of the node potentials in his or her circuit. The closer the nodeset is
to the true value, the more likely it is that the iteration will converge
to the desired value, and the faster the convergence will be.

Sometimes, this approach does not work since the design engineer
is unable to come up with a sufficiently close nodeset for her or his
circuit. In these cases, design engineers have developed a technique
of “ramping up all sources”. This works in the following way: We
first perform an experiment (i.e., a simulation) in which all (voltage
and current) sources are initially set to zero, and in which all active
devices (transistors, diodes) have been switched off (one of the device
parameters). In this setup, the OP—point computation is trivial. All




212 Chapter 6: Principles of Active Electrical Circuit Modeling

node voltages must obviously be zero. Now, we perform a transient
analysis (i.e., a simulation) in which we apply a ramp to all sources
as shown in Fig.6.6.
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ramping time settling time

Figure 6.6. Ramping of sources in an electrical circuit

The final value of each ramp is the desired initial value for the real
simulation which is then held constant for some time to allow the
circuit to settle down. The final value of all node voltages can then be
printed out and copied into a nodeset to be used by the subsequent
simulation in which the real problem is being solved.

Some versions of SPICE (but not PSpice [6.9]) have automated this
procedure. In BBSPICE [6.1], I have added a “.RAMP” statement
of the form:

.RAMP < ramping time >< settling time >

Whenever the initial OP-point fails to converge, BBSPICE will au-
tomatically modify the circuit internally to the form described above,
perform an invisible transient analysis, compute an initial nodeset,
convert the circuit back to its initial specification, and then perform
the desired analysis. This approach works very well, and the design
engineers at Burr Brown are very happy with this utility.

Once the initial condition has been determined, we can proceed
to compute the trajectory behavior of the system over time. Here,
we also face a number of awkward problems. In past chapters, we
have learned that we always like to solve differential equations for
their highest derivative terms, and then integrate the derivatives
into a new set of states via numerical integration. Unfortunately,
this approach doesn’t work in SPICE. Let us look once more at the
junction capacitance equations, eq(6.4). We would like to solve the
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differential equation for §.. However, this would make ¢, a “known”
variable, and we would have to solve the equation ¢. = f(uq), eq(6.5),
for the variable u;. However, this cannot be done since this equation
does not have an analytical inverse, and moreover, since the initial
value for u, is user specified (in the nodeset). Consequently, SPICE
has no choice but to compute ¢. from the non-linear equation ¢. =
f(uq), and then evaluate i, using numerical differentiation. As will
be shown in the second volume of this text, this approach is dubious
from a numerical point of view unless we use an implicit numerical
differentiation scheme.

Once all the currents have been determined, a new nodeset can be
projected for At time units into the future.

6.5 Graphical Modeling

About three years ago, a new facet was added to industrial circuit
design technology. This came with the advent of the new 386-based
engineering workstations. For the first time, it was feasible to place
a computer on every design engineer’s desk, a computer that is not
just a toy, but is capable of solving even relatively large circuit anal-
ysis problems in a decent time frame. At Burr Brown, every design
engineer has now a Compaq 386 on his or her desk, and most circuit
analysis problems are being solved in PSpice which runs beautifully
on these machines. PSpice (and BBSPICE) offer a powerful Probe
option which allows the design engineer to perform a transient anal-
ysis, and then look at arbitrary node voltages or branch currents
interactively on her or his screen. This feature has enhanced the ef-
ficiency of circuit design drastically. Previously, the engineer had to
decide beforehand which variables s/he wanted to print out, and if
his or her analysis of the obtained results indicated that s/he needed
more output, s/he actually was forced to rerun the entire simula-
tion, which often required several hours of execution time on a VAX
11/750.

Model input is now also being performed graphically using
schematic capture programs. At Burr Brown, we use software called
Workview [6.11] which allows us to draw electrical circuits on a vir-
tual screen. Workview is one among roughly a dozen or so similar
schematic capture programs currently on the market. In Workview,
the physical screen can be moved over the virtual screen (zoom and
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pan). This is necessary for drawing complex circuits since it is often
impossible to fit an entire circuit drawing on one physical screen.
Fig.6.7 shows the Workview drawing of a simple (integrated) opera-
tional amplifier consisting of 12 BJT’s, one resistor, and one capac-

itor.
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Figure 6.7. Workview drawing of an opamp

Workview enables the user to automatically generate code for
PSpice. Below, the code is shown that Workview generates for the
simple opamp of Fig.6.7.
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* Project OPAMP
* WorkVIEW Wirelist Created with Version 3.0

Q12 1 2 3 3 PROC3.N 1
Q5 4 4 5 3 PROC3.N 1
Q3 4 6 7 3 PROC3.P 10
Q1 6 6 7 3 PROC35P 2
Q2 8 6 7 3 PROC35.P 1
Q4 7 4 9 3 PROC3.N 1
Q6 2 108 3 PROC35.P 1
Q1 1 11 8 3 PROC35.P 1
Qs 5 5 12 3 PROC3.N 1
Q9 3 129 3 PROC35.P 1
Q10 121 3 3 PROC3.N 1
Q11 2 2 3 3 PROC3.N 1
C1 1 12 10P

R1 3 6 15MEG

* DICTIONARY 6

* +VI = 11

* —VI =10

*V0 =9

*VCC = 1T

*VEE = 3

*GND =0

.END

Notice that all BJT’s are produced using the same process tech-
nology, i.e., the same photolithography and diffusion steps. They
are all of either the PROC35.N type (for NPN transistors), or the
PROCS35.P type (for PNP transistors). The area parameter is speci-
fied on the element call statement. For example, the PNP transistor
Q3 occupies an area which is 10X as large as the area that was used
to determine the values of the model parameters on the .MODEL
statement.

Workview also supports the concept of hierarchical modeling. A
subcircuit can be drawn, its terminals can be identified, and a new
symbol (icon) can then be sketched which must have as many ter-
minals as the subcircuit has, and which, from now on, represents
the subcircuit, and can be used as a circuit element in the next
higher level of the modeling hierarchy. In Fig.6.8, a new icon was
constructed to denote the opamp, and the opamp is being used as a
modeling element in a higher level circuit.
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Rf=1MQ

Figure 6.8. Drawing of an analog signal adder/inverter

Workview can be requested to map its modeling hierarchies into
PSpice’s subcircuits. Alternatively, the graphical modeling hierarchy
can also be flattened out. We shall discuss the pro’s and con’s of
hierarchy flattening in Chapter 15 of this text.
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Figure 6.9. PROBE output of the analog inverter’s transient response
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Fig.6.9 shows the transient behavior of this opamp as displayed by
the Probe feature. Signal V(11) points to the input of the inverter
while V(9) shows the inverted output signal.

Obviously, this opamp is not all that great, but it suffices to illus-
trate the concept. After all, it is not the goal of this text to teach
circuit design, but to teach modeling concepts. Fig.6.10 shows the
AC-output (Bode diagram) of the opamp as shown by the Probe
feature. VDB(9) depicts the gain of the opamp in decibels, while
VP(9) shows its phase in degrees. The opamp has a band width of
approximately 400 kH z.
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Figure 6.10. PROBE output of the analog inverter’s AC response

6.8 Circuit Design Using DYMOLA

In Chapter 5, we have shown that DYMOLA might provide us with
an alternative approach to handling complex systems. Let us see
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how DYMOLA could be used as an alternative to SPICE for model-
ing electrical circuits. The advantages are obvious. If we are able to
make DYMOLA powerful enough that it can handle arbitrarily com-
plex circuits containing arbitrary algebraic loops and structural sin-
gularities, we can automatically generate a state—space model which
will execute much more efficiently at run—time than the currently

used SPICE code.

First, we need to model the basic circuit elements. This is straight-
forward. The following code shows the DYMOLA model types de-
scribing resistors, capacitors, inductors, voltage sources, and the
ground. These models are equivalent to those used in BBSPICE.

model type resistor
cut A(Ve/I), B(Vb/ —1I)
main cut C[4, B]
main path P< A—-B >
local V, Rval
parameter R = 0.0, TR1 = 0.0, TR2 = 0.0, Area = 1.0
external DTemp, DTempSq

V=Va-Vb
Rval = (R + TR1* DTemp + TR2 «+ DTempSq)/Area
RvalxI=V

end

model type capacitor
cut A(Va/I), B(Vb/ - 1I)
main cut C[A, B]
main path P< A-B >
local V, Cval
parameter C = 0.0, TC1 = 0.0, TC2 = 0.0, Area = 1.0
external DTemp, DTempSq
V=Va-Vb
Cval = (C +TC1* DTemp + TC2 * DTempSq) * Area
Cualxder(V) =1

end

model type inductor
cut A(Va/I), B(Vb/ —1I)
main cut C[4, B]
main path P< A-B >
local V, Lwval
parameter [ = 0.0, TL1 =0.0, TL2 = 0.0
external DTemp, DTempSq
V=Va-Vb
Lval =L +TL1» DTemp+ TL2x DTempSq
Lvalsder(I) =V

end
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model type vsource
cut A(Va/I), B(Vb/ -1I)
main cut C[4, B]
main path P< A-B >
terminal V
default V = 0.0
V=Vb-—Va

end

model type Common
main cut A(V/.)
V =0.0

end

These DYMOLA models suffice to describe the simple passive circuit
of Fig.6.1. The DYMOLA code needed to describe that circuit is as
follows.

model RLC
submodel(resistor) R1, R2
submodel(capacitor) C
submodel(inductor) L
submodel(vsource) U0
submodel Common
parameter Temp = 300.0
constant T Room = 300.0
local DTemp, DTempSq
internal DTemp, DTempSq
input »
output y
DTemp = Temp — TRoom
DTempSq = DTemp x* DTemp
connect Common — U0 — ((R1—(C//R2))//L) — Common

U0V =u
y=R2.Va
end

In this model, several new language elements were introduced. The
“—” sign is equivalent to the keyword “to”, and denotes a series
connection, whereas the “//” symbol is equivalent to the keyword

“par” and denotes a parallel connection.

It is now time to analyze DYMOLA’s declaration statements a
little more closely. In DYMOLA, all variables must be declared.
Constants are variables that obtain once (upon declaration) a con-
stant value, and that are never reassigned. Parameters are similar to
constants. They never change their values during a simulation run.
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They can be reassigned, but only between simulation runs. This en-
ables the compiler to extract all parameter computations from the
dynamic loop. Parameters are one mechanism for data exchange
between models. In this context, parameters are similar to formal
read—only arguments of a subprogram call in a traditional program-
ming language. Parameters cannot be reassigned within the model
in which they are declared as parameters, only within the calling
program. Ezternals are similar to parameters, but they provide for
an implicit rather than an explicit data exchange mechanism. In
this respect, they are similar to COMMON variables in a Fortran
program. Externals are used to simplify the utilization of global
constants or global parameters such as the temperature Temp or the
thermal voltage VT. For security reasons, the calling program must
acknowledge its awareness of the existence of these globals, by spec-
ifying them as internal. Notice, however, that “internal” is not a
declaration but only a provision for redundancy, i.e., all “internal”
variables must be declared as something else also.

Variables that may change their values during a simulation run are
either locals or terminals, depending on whether they are connected
to the outside world, or whether they are local to the model in which
they are used. Terminals can be assigned using a dot notation (as
this was done in the case of the voltage source: U0.V = u), or they
can form part of one or several cuts in which case they can be con-
nected. Inputs and outputs are special types of terminals. Variables
declared as “terminals” or in “cuts” are undirected variables. For
example, the statement V = Vb — Va of the model vsource can be
rearranged by the compiler into either Vb=V +VaorVa=Vb-V
if needed. Had V been declared as “output”, the compiler would be
prevented from rearranging this equation.

Of course, not all circuits are conveniently described by sets of
series and parallel connections. Alternatively, DYMOLA allows us
to formulate the circuit in a topological manner similar to that used
in SPICE. The following code shows an alternate way to formulate
the above circuit using DYMOLA.
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model RLC
submodel(resistor) R1, R2
submodel(capacitor) C
submodel(inductor) L
submodel(vsource) U0
submodel Common
node NO, N1, N2
parameter Temp = 300.0
constant TRoom = 300.0
local DTemp, DTempSq
internal DTemp, DTempSq
input u
output y

DTemp = Temp — T Room
DTempSq = DTemp * DTemp

connect — >
Common at NO, — >

Uo from NO to N1, — >
R1 from N1 to N2, — >
R2 from N2 to NO, — >
C from N2 to NO, — >
L from N1 to NO, — >
UoV=u
y=R2.Va

end

The “— > symbol denotes continuation lines in DYMOLA.

The generated code can be optimized by requesting DYMOLA to
automatically throw out all terms that are multiplied by a parameter
with value 0.0. Therefore, if the equation:

Cval = C +TC1x DTemp + TC2 « DTemp % Dtemp (6.16)

uses its default values of zero for both T'C1 and T'C2, the equation
would automatically degenerate into the equation

Cval =C (6.17)

at which time another DYMOLA rule will be activated that will
throw out this equation altogether, and replace the variable Cval by
C in the subsequent equation

Cval xder(V) =1 (6.18)
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since parameters take preference over local variables. In this way,
DYMOLA can achieve indirectly the same run-time savings as
SPICE does since only significant equations and terms will survive
the translation. DYMOLA can also be requested to automatically
extract all parameter computations from the dynamic portion of the
simulation code into the initial portion of the code.

Let us now investigate what it would take to simulate a BJT in
DYMOLA. As shown in Fig.6.4, the BJT model contains three junc-
tions, and thus, we require a junction diode model. Its code is pre-
sented below.

model type jdiode
cut Anode(Va/I), Cathode(Vb/ —I)
main cut C[Anode, Cathode]
main path P < Anode — Cathode >
local V, I¢, Qc, ISval, VDval, CDval
terminal Id
parameter ND =1.0, IS =1.0E-16, TD = 0.0, — >
CD =0.0, VD =0.75, MD = 0.33, Area = 1.0
external DTemp, FTemp, Gmin, XTI, — >
VT, EGual, VD fact

{Electrical equations}

V=Va-Vb

I=Id+1Ic

Id = ISval * (exp(V/(VT * ND)) — 1.0) + Gmin *x V
Ic = der(Qc)

Qec=TDxId — >
+VDval * CDval * (1 — (1 — V/VDval) » (1 — MD))/(1 — MD)

{Temperature adjustment equations}

ISval = IS x Area » exp((FTemp — 1.0) * EGval/VT) x FTemp « xXT1I

VDval = FTemp» (VD — VD fact) + VD fact

CDval =CD * Area/(1.0 + MD % (1.0 —~ VDval/V D + 4.0E-4 * DTemp))
end

This model contains one algebraic loop which, however, can be solved
easily. Obviously, we wish to solve the differential equation for the
derivative. Therefore, Q¢ is a state variable. Thus, we must solve
the equation Qc = ... for another variable, namely either V or Id.
However, the equation Id = ... depends also on V, and thus, these
two equations form an algebraic loop involving the variables V' and
Id. One way to solve this problem would be to replace the Id from
the equation Q¢ = ... by the other equation. In this way, the variable
Id has been eliminated from the equation Q¢ = ..., and we can
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thus solve this equation for V. Thereafter, we can use the equation
Id =... to determine Id. Unfortunately, the resulting equation:

$aCall — (1 - 32)' ™)
1—mgq

Q.= 131, [exP( ) - 1] + TaGminV +

4 (6.19)
VrNg )
is highly non-linear in V, and does not have an analytical inverse.
Thus, we must either simplify the equation until it has an analytical

inverse, or employ a numerical iteration scheme to find V' for any
given value of @, from this equation.

The junction capacitance model shown above is not the one that
is currently employed in BBSPICE since I recently implemented an
improved model which had been proposed by Van Halen [6.10]. This
model avoids, in an elegant fashion, the singularity that occurred
in the previously used model at V = ¢;. However, since the new
equation is even more bulky than the one shown in eq(6.19), I shall
refrain from presenting it here. Moreover, the inversion problem that
was demonstrated by means of eq(6.19) remains exactly the same.

Next, we need a model for the variable base resistance of the BJT.
Such a model is shown in the following code segment.

model type 7bb
cut A(Va/I), B(Vb/ —I)
main cut C[4, B]
main path P< A - B >
local V, Rval, RBval, RBMual, z, tz
constant pi = 3.14159
parameter RB = 0.0, RBM = 0.0, IRB = 0.0, Area = 1.0, — >
TRB1 = 0.0, TRB2 = 0.0, TRM1 = 0.0, TRM2 = 0.0
external DTemp, DTempSq, gb

V=Va-Vb
RBval = (RB+ TRB1+ DTemp+TRB2 * DTempSq)/Area
RBMval = (RBM + TRM1 %+ DTemp + TRM2 * DTempSq)/Area
Rval = if IRB =0.0 — >

then RBMwal + (RBval — RBMwval)/gb — >

else RBMval+ 3.0 * (RBval — RBMual) % (tz — z) /(2 * tz + )
z=IifIRB =0.0 — >

then 0.0 — >

else (—1 4 sqrt(1 -+ 144 » I/(pi x pi * IRB  Area))) — >

/(24 % sqrt(I/(IRB = Area))/(pi * pi))
tz = if IRB = 0.0 then 0.0 else tan(2)
RyalxI =V
end
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This model demonstrates one of the weaknesses of DYMOLA. In
order to be able to sort all equations properly, DYMOLA provides
us with a funny looking “if” statement of the form:

< var >= if < cond > then < expr > else < expr >

This becomes quite awkward when a condition propagates through
a number of statements. Notice that in this text, we shall usually
present the full models only, and skip their degenerated versions in
order to keep the models short and understandable. Notice further
that also this model contains an algebraic loop for the case IRB #
0.0 involving the variables Rval, z, and I. The simplified model (for
IRB = 0.0) does not contain any algebraic loop.

Next, we require a model for the non-linear external base junc-
tion capacitance cbcz. The following code describes this non-linear
capacitance.

model type cbez
cut A(./I), B(./-1I)
main cut C[A, B]
main path P< A—- B>
local Qz, Vval, Cval

terminal vbc
parameter CJC = 0.0, MJC =0.33, VJC =0.75, XCJC =1.0, — >
Area = 1.0

external DTemp, FTemp, VD fact

Qz = Voval* Cval*x (1 - XCJIC) — >
#(1 — (1 — vbe/Vwal) » x(1 — MJC))/(1 — MJC)
der(Qz) =1

{Temperature adjustment equations}

Veal = FTemp* (VJC — VD fact) + VD fact

Cwal = CJC » Area/(1.0 + MJC % (1.0 — V Dval/VJIC + 4.0E-4 + DTemp))
end

Finally, we need the BT model itself. In SPICE, all four types (NPN
and PNP, vertical and lateral) are coded in one single subroutine. In
DYMOLA, this is hardly feasible at the moment. So, let us look at
one of the transistor types only, namely the laterally diffused NPN
transistor. The models for the other three types are similar.
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model type NPNlat

submodel (resistor) rce(R = RC, TR1 = TRC1, TR2 = TRC2, — >
Area = Area), — >
ree(R = RE, TR1 =TRE1, TR2 =TRE2, — >
Area = Area)
submodel +bb(RB = RB, RBM = RBM, IRB = IRB, Area = Area, — >
TRB1=TRB1, TRB2 =TRB2, TRM1=TRM1, — >
TRM?2 = TRM2)
submodel cbez(CJC = CIC, MIC =MJC, VIC =VJIC, — >
XCJC = XCJC, Area = Area)
submodel (jdiode) dbc(ND = NR, IS = IS, TD = TR, Area = Area, — >
CD =CJC+XCJC, VD =VJC, MD = MJC),— >
dbe(ND = NF, IS =1S, TD =TF, Area = Area, — >
CD =CJE, VD =VJE, MD = MJE),— >
dbs(ND = NS, IS =155, TD =0.0, Area = Area, — >
CD=CJS, VD =VJS, MD = MJS)
submodel (csource) ice0, ibed
cut Collector(VC/IC)
cut Base(VB/IB)
cut Emitter(VE/ — IE)
cut Substrate(VS/ISUB)
main cut CBES [Collector, Base, Emitter, Substrate]
path Basemitier < Base — Emitter >
path Colemitter < Collector — Emitter >
node IntCollector, IntBase, IntEmitter

constant p: = 3.14159
parameter IS = 1.0E-16, ISC = 0.0, ISE = 0.0, 1SS = 0.0, — >
BF = 1000, BR = 1.0, TF = 0.0, TR = 0.0 — >
NC =20, NE=15, NF=10, NR=10, NS=1.0, — >
VAF =0.0, VAR =00, IKF =0.0, IKR =0.0, — >
vVJC =0.15, VJE =0.75, VJS§ =0.75, — >
CJC =0.0, CJE=00, CJ§=0.0, — >
MJC =0.33, MJE =0.33, MJS =05, — >
RB =0.0, RBM = 0.0, RC = 0.0, RE =0.0, — >
TRB1 = 0.0, TRM1 = 0.0, TRC1 =0.0, TRE1=0.0, — >
TRB2 = 0.0, TRM2 = 0.0, TRC2 =0.0, TRE2 =0.0, — >
XCcJC =1.0, EG=1.11, XTI = 3.0, IRB = 0.0, Area =1.0
local q1, ¢2, gb, zti, vbc, vbe, ibc, ibe, ibcn, — >
iben, I1B0, IC0, EGval, EGroom, VD fact
external Temp, TRoom, DTemp, DTempSq, FTemp, — >
Charge, Boltz, VT, VTroom, BT, BTroom, — >
GapCl, GapC2, Gmin
internal DTemp, DTempSq, FTemp, VT, gb, EGval, — >
VDfact, Gmin, zti




226 Chapter 6: Principles of Active Electrical Circuit Modeling

{Compute frequently used internal voltages and currents}
vbe = rbb.Vb — rec.Vh

vbe = rbb.Vb — ree.Va

ibe = dbe.Id

ibe = dbe.Id

{Compute the base charge}

g1 =1.0/(1.0 — vbe/VAF — vbe/V AR)
q2 = (ibe/IKR + ibe/IKF)[Area

gb = q1 * (1.0 + s¢rt(1.0 + 4.0 x g2))/2.0
zti = XTI

{Compute the nonlinear current sources}

iben = ISC * Area % (ezp(vbe/(VT x NC)) — 1.0)
iben = ISE x Area * (exp(vbe/(VT x NE)) — 1.0)
I1C0 = (ibe — ibc)/qb — ibe/ BR ~ ihen

IBO = ibe/BF + iben + ibc/ BR + ibcn — ibe/qb

{Compute the globals}
EGroom = EG — GapC1 * TRoom * *2 /(T Room + GapC2)
EGual = EG — GapC1 * Temp x 2 /(Temp + GapC2)
VDfact= —2.0%« VT » (1.5 x log(FTemp) — >

—0.5 * Charge * (EGval/ BT — EGroom/BTroom))

{Plug the internal circuit together}

connect rbb from Base to IntBase
connect rcc  from Collector to IntCollector
connect ree from IntEmitter to Emitter
connect dbc from IntBase to IntCollector
connect dbe from IntBase to IntEmitter
connect dbs from IntBase to Substrate
connect cbcz from Base to IntCollector
connect ibe0 from IntBase to IntEmatter

connect ice0 from IntCollector to IntEmitter

1¢e0.J0 = ICO
1be0.I0 = IBO

chez.vbe = vbe

end

This model is currently not without its problems. It seems that the
BIJT is described as a fourth order model since it contains four sep-
arate capacitances each of which is described through a first order
differential equation. Unfortunately, this is an example of a degener-
ate system, as can be easily shown. Let us assume that we describe
the capacitance of the base—collector junction diode through a dif-
ferential equation. Then, the charge over this capacitance dbc.Qc is
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a state variable, and we need to solve the “dbc.Qc = ...” equation
for the variable dbec. V. However, this variable is the same variable as
NPNlat.,vbe which is connected to the terminal variable of the exter-
nal base collector junction capacitance, i.e., cbcz.vbc = NPNlat.vbe
= dbc.V. Therefore, we must solve the charge equation of the ex-
ternal capacitance for cbez.Qz which gets us into trouble since we
would also like to solve this variable from the differential equation
der (cbez.Qz) = cbez.L

In order to overcome this model degeneracy, we would need to
analytically compute the derivative of the equation cbcz.Qz = ...,
and eliminate the differential equation.

Currently, the major benefit of these DYMOLA circuit descrip-
tions is with their documentary value. We feel that our BJT model
description is much more readable and understandable than the de-
scription given in most SPICE manuals, and it is also much easier
to read than the SPICE source code listing. Currently, several of
our graduate students are working on DYMOLA to make the soft-
ware more powerful than it currently is, and one of them is explicitly
looking at DYMOLA as a tool for electrical circuit design.

6.7 How DYMOLA Works

Until now, we have only discussed how an input file for DYMOLA
(i.e., a hierarchical model) is to be prepared. We have not yet seen
what the DYMOLA preprocessor does with this model upon exe-
cution. This will be demonstrated now by means of a very simple
example. Fig.6.11 shows an almost trivial electrical circuit consisting
of one voltage source and two resistors.

Figure 6.11. Schematic of a trivial electrical circuit
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Using the electrical component models that were introduced earlier
in this chapter, the above circuit can be described through the fol-
lowing DYMOLA program.

Q@usource.elc
@resistor.elc
@Qcommon.elc

model circuit
submodel (vsource) Uin
submodel (resistor) R1(R = 10.0), R2(R = 20.0)
submodel Common
input »
output y
connect Common — Uin — R1 — R2 — Common
UinV0=u
y = R1.Vb
end

The @ operator instructs the DYMOLA preprocessor to include an
external file at this place. A DYMOLA program may contain defi-
nitions for (or inclusions of ) an arbitrary number of model types fol-
lowed by exactly one model which invokes the declared model types
as submodels.

The following command sequence calls upon the DYMOLA pre-
processor which is requested immediately to read in the model defi-
nition:

$ dymola
> enter model
— @circuit.dym
>

At the operating system prompt ($), we call the DYMOLA prepro-
cessor which enters into an interactive mode, and responds with its
own prompt (>). The next statement instructs DYMOLA to read in
a model. DYMOLA will present us with the next level prompt (—),
until it has read in a complete model specification. We could enter
equations here, but it is more practical to invoke them indirectly
(@). At this point, DYMOLA is satisfied since it found a model
definition, and returns to its first level interactive prompt (>).
Already at this point, DYMOLA has replaced all submodel refer-
ences by their model definitions, and has generated the additional

equations that are a result of the submodel couplings (i.e., DYMOLA
has replaced the connect statements by the coupling equations. The
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result of this text replacement can be observed by issuing the com-
mand:

> output equations

which will result in the following display:

Common VvV =0.0

Uin Vo=Vb—Va

R1 V=Va-Vb
RxI=V

R2 V=Va-Vb
R * I =V

circust UinV0o=u
y = R1.Vb
R1.Va =Uin.Vb
R1.I=Uin.I
R2.Va = R1.V)
R2.I = R1.1
R2.Vb=UinVa
Common.V = R2.V)

assuming that a simplified resistor model was used which does not in-
clude the temperature variation effects and the area parameter. The
output can be redirected to a file (for printout) using the command:

> outfile circuit.eql

to be issued prior to the output equations command.

At this point, we can try to determine which equation needs to be
solved for what variable, and simultaneously, sort the equations into
an executable sequence. This algorithm was thoroughly described
in Chapter 3. In DYMOLA, the algorithm is invoked by issuing a
partition command:

> partition

Thereafter, we may wish to look at the marked and sorted but not
yet solved equations. This is achieved with the command:

> outfile circuit.srl
> output sorted equations

which will write the following text to the file circuit.srl:
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Common [Vl=o0.0

circuit Common.V = [R2.Vb]
R2.Vb =[Uin.Va]
[Uin.VO] =u
Uin Vo=[Vb]—Va
circuit [R1.Va] =Uin.Vd
- R2.I = [R1.0}
—R2 R«[I|=V
- [Vl=Va-Vb
—circust [R2.Va] = R1.Vb
—R1 V=Va-[V}
- RxI=[V]
circuit R1.I = [Uin.J]
[y] = R1.Vb

A first set of six equations was sorted correctly. This is followed
by another set of six equations that form a linear algebraic loop.
DYMOLA marks the equations belonging to an algebraic loop with
—. Finally, the last two equations can be properly sorted once the
algebraic loop is solved. As this example demonstrates, algebraic
loops occur indeed rather commonly.

We can now proceed to optimize the code. The above set of equa-
tions contains many aliases, i.e., the same physical quantity is stored
several times under different variable names. This will slow down the
execution of our simulation program. The command:

> eliminate equations
gets rid of equations of the type:
a="b

and replaces all occurrences of the variable a in all other equations
by the symbol b. One exception to the rule must be stated: The
eliminate operation never eliminates a variable that was declared as
either input or output. If a is an output variable, DYMOLA will
throw the equation away as well, but in this case, all occurrences of
b are replaced by a. If both a and b are declared as output variables,
the equation will not be eliminated at all.

This algorithm can be applied either to the original equations or
to the partitioned equations, and it will work equally well in both
cases. The resulting code is shown below:
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Common [Uin.Va] = 0.0

Uin circuitu = [Vb] - Va
—R2 Rx[UinlI| =V

- [V] = circuit.y — Uin.Va
—R1 V =Uin.Vb — [circuit.y]
- RxUind =[V]

In reality, this algorithm reduces all equations of the types:
+a = xb
and:
tatdb=0

which are variants of the previously discussed case. The algorithm
works also if either a or b is a constant. Consequently, the above set
of equations is not yet the “final product”. Below, the truly reduced
set of equations is presented.

—R2 R * [Uin.I] = circuit.y
—R1 V = circuit.au — [circuit.y]
- R+Uind = [V]

We can now optimize the code a little further by requesting:
> eliminate parameters

The algorithm that is now executed will perform the following tasks:

(1) All parameters with a numerical value value of 0.0 or 1.0 are
eliminated from the model, and the numerical value is replaced
directly into the equations.

(2) A numerical value of 1.0 that multiplies a term is eliminated
from that term.

(3) A term that is multiplied by a numerical value of 0.0 is replaced
as a whole by 0.0.

(4) Additive terms of 0.0 are eliminated altogether.

(5) If, in an equation, an expression consists of parameters and con-
stants only, a new equation is generated that will evaluate this
expression (assigned to a new generic variable), and the occur-
rence of the expression in the equation is replaced by the new
generic variable.
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(6) If an equation contains only one variable, it must be solved for
that variable. This variable is then automatically redeclared as
a parameter, and the equation is marked as a parameter equa-
tion which can be moved from the DYNAMIC portion of the
simulation program into the INITIAL portion of the simulation
program.
In our example, nothing will happen if we apply this algorithm since
none of the parameters has a value of either 1.0 or 0.0. However, in
reality, we did not use a simplified resistor model, but we used the
full resistor model in which the temperature variation coefficients
defaulted to 0.0, and in which the Area parameter defaulted to 1.0.
Applying the above algorithm to the full resistor model will reduce
the equations to exactly the format that we found in our last display.

Notice that this algorithm may have undesirable side effects. Of-
ten, we may wish to start off with a simple model (by setting some
parameters equal to 0.0), and then successively make the model more
realistic by assigning, in the simulation program, true values to the
previously defaulted parameters. In this case, we shouldn’t eliminate
parameters since this algorithm will put the eliminated parameters to
the sword once and for all. These parameters will no longer appear
in the generated simulation program.

We can now proceed to eliminate variables. This algorithm can
only be applied after the equations have been partitioned. It affects
only algebraic loops, and it affects each algebraic loop in the model
separately. DYMOLA counts the times that each loop variable is
referenced in an algebraic loop. Obviously, each loop variable must
occur at least twice, otherwise, it would not be a loop variable. If
we request DYMOLA to:

> eliminate variables

then DYMOLA will investigate all loop variables that occur exactly
twice in a loop. If it found such a variable, and if this variable ap-
pears linearly in at least one of the two equations, DYMOLA will
solve the equation for that variable, and replace the other occurrence
of the variable by the evaluated expression, thereby eliminating this
variable altogether from the loop. If the eliminated variable is refer-
enced anywhere after the loop, the equation defining this variable is
not thrown away, but taken out of the loop and placed immediately
after the loop. The same is true if the eliminated variable has been
declared as an output variable. Although the same algorithm could
be applied to variables that occur more than twice, this is not done
since the algorithm tends to expand the code (the same, possibly
long, expressions are duplicated several times).
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If we apply this algorithm to our example, we first notice that
our algebraic loop contains the three loop variables Uin.l, circuit.y,
and R1.V. Each of them appears exactly twice in the loop. We
investigate Uin.I first, and find that it occurs linearly in the first
equation. Therefore, we solve that equation for Uin.l, replace the
found expression in the third equation, and eliminate the variable
since it was not declared as an output variable. The result of this
operation is as follows:

—R1 V = circuit.u — [circuit.y]
- R * (circuit.y/R2.R) = [V]

Since circuit.y is an output variable, we prefer to analyze R1.V next.
We find that it occurs linearly in the second equation, solve for it,
and replace the result in the first. The result is as follows:

R1 R x ([circuit.y])/ R2.R) = circuit.u — [circuit.y]

at which time the algebraic loop has disappeared. DYMOLA’s equa-
tion solver is able to turn this equation into:

R1 circuit.y = circuit.u/(1 + R/R2.R)

At this point, we can once more eliminate parameters, which will
lead to the following code:

Initial :

D00001 = 1/(1 + R1.R/R2.R)
Dynamic :

circust.y = D0O0001 * circuit.u

DYMOLA offers yet another elimination algorithm. If we request
DYMOLA to:

> eliminate outputs

DYMOLA will check for all variables in the DYNAMIC section of the
code that appear only once in the set of equations. Obviously, the
equations containing these variables must be used to evaluate them.
Since these equations will not otherwise influence the behavior of the
dynamic model, they can be marked as output equations, and can be
taken out of the state—space model. If we apply this algorithm to
our example, the following code results:

Initial :

D00001 = 1/(1 + R1.R/R2.R)
Dynamsic :

Output :

circuit.y = D00001 * circust.u
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The command:
> partition eliminate

will partition the equations, and then automatically perform all types
of elimination algorithms repetitively until the equations no longer
change.

At the time of writing, not all of the above code optimization
techniques have been fully implemented yet. However, the com-
mand partition eliminate can already be used. It simply skips those
optimization tests that haven’t been fully implemented.

We can receive a printout of the solved equations by issuing the
command sequence:

> outfile circuit.svl
> output solved equations

At this point, the circuit topology has been reduced to a (in this case
trivial) state—space model. Now, DYMOLA's code generator portion
can be used to generate a simulation program either for DESIRE
[6.5], SIMNON [6.2], or FORTRAN. However, before we can do so,
we need to add an experiment description to our DYMOLA program.
The experiment may look as follows:

cmodel
simutime 2E-5
step 2E-T
commupoints 101
input 1, u(independ,10.0)

ctblock
scale=1
Xccc =1
label TRY
drunr
if XCCC < 0 then XCCC = —XCCC | scale =2 « scale | go to TRY
else proceed
ctend

outblock
ouT
dispt y1, 32
outend
end

This portion of code is specific for each of the target languages.
The version shown here is the one required for DESIRE [6.5]. The
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ctblock set of statements instructs DESIRE to automatically scale the
run—time display. XCCC is a DESIRE variable which is set to —1
whenever the DESIRE program is interrupted with an “overflow”.
This happens when one of the displayed variables hits either the
top or the bottom of the displayed window. At this time, the plot
is simply rescaled, and the simulation is rerun with a new drunr
statement. Since DESIRE is so fast, it is not worth the effort to
store the results of the previous attempt, instead, we simply rerun
the entire simulation.

The experiment description is entered into DYMOLA using the
statements:

> enter experiment
— @circuit.ctl
>

Now, we are ready to generate the simulation program:

> outfile circuit.des
> output desire program

To exit from DYMOLA and enter the DESIRE [6.5] program, we
issue the command sequence:
> stop
$ desire 0
> load 'circuit.des’
> save
> run

> bye
$

The 0 parameter on the DESIRE call instructs DESIRE to not au-
tomatically load the last executed DESIRE program into memory,
the load command loads the newly generated DESIRE program into
memory, the save command saves the program in binary form onto
the file circuit.pre for a quicker reload at a later time using the com-
mand:

> old 'circuit’

The run command finally executes the DESIRE program, and the
bye command returns control to the operating system.
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6.8 Summary

In this chapter, we have discussed the tools that commercial circuit
designers use to analyze and design their circuits. PSpice [6.9] and
BBSPICE [6.1] are two of several available SPICE and ASTAP di-
alects. Workview [6.11] is one of a number of available schematic
capture programs. I chose to mention those programs in the text,
since I have the most familiarity with them. However, I truly be-
lieve that, among the programs that I have had a chance to review,
the selected ones are indeed the most powerful. With respect to cir-
cuit analysis programs, PSpice has probably today become the most
popular among the SPICE dialects due to its availability and ex-
cellent implementation on PC—-class machines. With respect to the
schematic capture programs, some of the other commercially avail-
able programs don’t provide an interface to PSpice, or their interface
(the so—called netlisting feature) executes much slower, or they run
only on more specialized hardware (such as Apollo workstations),
hardware that is not as readily available, or they are considerably
more expensive. Finally, Workview offers a very convenient feature
related to the simulation of digital circuits. It contains a logic sim-
ulator which allows the user to quickly analyze the behavior of a
digital circuit before s/he ever goes through the slow and painful
process of decomposing the circuit down to the transistor level, and
simulating it in greater detail using PSpice.

We then returned to DYMOLA [6.3], and discussed the potential
of this powerful modeling tool for circuit modeling. While DYMOLA
is not yet capable of dealing with complex electronic circuitry due
to the frequently cited problems with algebraic loops and structural
singularities, I am convinced that eventually DYMOLA can become
a true alternative to SPICE.

We shall return once more to electronic circuit simulation in the
second volume of this text to discuss, in more detail, how the numer-
ical integration (or rather differentiation) is performed in SPICE.

The aim of this chapter was to discuss circuit analysis from a
modeling and simulation perspective, and not from the perspective
of transistor circuit design. Dozens of texts are on the market which
discuss transistor circuits very elegantly and in great detail. We
didn’t see a need to duplicate these efforts here. The bibliography
of this chapter lists a more or less arbitrary collection of textbooks
that deal with electronic circuit design issues.
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Homework Problems

[H6.1] Tunnel Diode

A forward biased tunnel diode can be represented through the static char-
acteristic shown in Table H6.1:

Table H6.1 Tunnel diode characteristic

voltage ug [V] current ig [mA]
0.00 0.00
0.05 1.70
0.10 2.90
0.15 4.00
0.20 4.75
0.25 5.00
0.30 4.90
0.35 4.25
0.40 3.20
0.45 2.356
0.50 2.00
0.55 2.20
0.60 2.70
0.65 3.50
0.70 4.35
0.75 5.30
0.90 9.00

Use CTRL-C (or MATLAB) to obtain a graphical representation of this
static characteristic.

We wish to analyze the behavior of the circuit shown in Fig.H6.1a.
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Figure H6.1la. Schematic of a circuit with a tunnel diode

In the first configuration, we shall use a resistor of R = 25 §2, a DC~
bias of Uy = 0.48 V, and a driver voltage of u;(t) = 0.0 V, ie., we
analyze the behavior of this circuit under “free~running” conditions. Write
a simulation program in ACSL that implements this circuit, simulate the
circuit during 0.2 msec, and display the diode voltage u4 and the diode
current i4 as functions of time. Describe the behavior of this circuit in
qualitative terms.

In a second experiment, we wish to analyze the same circuit under
modified experimental conditions. This time, we shall use a resistor of
R =200 2, and a DC-bias of Uy = 1.075 V. The driver voltage is a pulsed
voltage source as depicted in Fig.H6.1b:

-
ug[V]
r — 01—

0.5 ‘

9'91,} 0.1 ” |

+ ! > t[msec]
0.05 U I_‘

- 0.5+

Figure H6.1b. Pulsed driver voltage source
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Implement this modified setup in ACSL using the time—event scheduling
facility to describe the pulsed driver voltage. The first two time-events
are scheduled in the INITIAL section of the program, namely a time-
event by the name of VON to occur at ¢ = 0.05 msec, and another time—
event by the name of VOFF to occur at time ¢ = 0.1 msec. As part of
each event description, a new event of the same type is scheduled to occur
At = 0.05 msec later.

[H6.2] Differential Equations

We want to analyze the step response of a system described by the following
transfer function:

10

Gl)= a3 710

(H6.2)
In a first experiment, use CTRL-C (MATLAB) to transform this frequency
domain representation into a state-space representation, and simulate the
step response of this system during 10 sec directly in CTRL-C (MATLAB).

As an alternative, design a simple passive circuit that could be used to
obtain the same step response. Write a PSpice program that implements
this circuit, perform a transient analysis, and display the obtained step
response with the Probe option.

Since we don’t want SPICE to perform a DC-analysis first in this case,
we can prevent this from happening by adding the UIC qualifier to our
transient analysis command:

.TRAN 0.1 10.0 UIC

[H6.38] Analog Computers

Analog computers are electronic circuits that basically consist of three dif-
ferent element types: analog adders, analog integrators, and potentiometers.
We have already met the analog adder (cf. Fig.6.8). Adders used in com-
mercial analog computers usually provide several inputs with a gain factor
of —1.0 (i.e., 1 V at the input results in —1 V at the output), and one
or several inputs with a gain factor of —10.0. A gain factor of —10.0 is
achieved by making the corresponding input resistor 10 times smaller than
the feedback resistor. The operational amplifier can ideally be represented
through a high gain amplifier with an amplification of A = —1.35 X 108, for
example. An analog integrator can be built in almost the same way, Just
by replacing the feedback resistor of R; = 1 M with a feedback capacitor
of Cy =1 pF. In this circuit, 1 V at a unity gain input results in a ramp
at output which, after 1 sec reaches a value of —1 V (assuming zero initial
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conditions). When the 1 V input is applied to an input node with a gain
factor of —10.0, the ramp reaches —1 V already after 0.1 sec.

Build a PSpice subcircuit for an ideal high gain amplifier. This can
be achieved using a voltage driven voltage source (an E—element). Then
build subcircuits for the analog adder and the analog integrator using the
previously designed ideal high gain amplifier as a component. Finally,
build a subcircuit for the potentiometer. This can again be achieved with
a voltage driven voltage source, but this time, the gain A is variable with
allowed values anywhere between 0.0 and 1.0. Depending on the SPICE
dialect that you use, you may be able to specify the gain A as a parameter
of the subcircuit, but PSpice does not support this feature. If your SPICE
version does not allow you to specify parameters for your subcircuits, it
may not be worthwhile to specify the potentiometer as a subcircuit at all.

Draw a block diagram for the state—space model of the differential equa-
tion of hw(H6.2), and convert it to an analog computer program. Don’t
forget that both the adder and the integrator contain built in inverters.

The traditional symbols (icons) used to denote analog computer compo-
nents are shown in Fig.H6.3.

I1.C.
1 1
1 Add 1 @
10 10

Figure H6.3. Components of analog computers

Use PSpice to simulate the just derived analog computer circuit. Since
you don’t want SPICE to perform a DC-analysis first in this case, you can
prevent this from happening by adding the UIC qualifier to your transient
analysis command:

.TRAN 0.1 100 UIC

It would now be possible to replace the ideal high gain amplifier by the
operational amplifier subcircuit presented earlier in this chapter. However,
we won’t do this since the simulation will take forever. The time step of
the transient analysis (the numerical integration) would have to be adjusted
to the (very fast) time constants inside the BJT’s which are in the order
of 100 nsec, and a simulation of the overall circuit during 10 sec would
thus not be realistic. We ran this model for roughly 1 hour on a VAX-
3600 (using BBSPICE), and were able to complete (correctly) just the first
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1 masec of the simulation. Consequently, the total simulation would require
about 10000 hours. It was explained previously that modeling must be
always goal driven. A finer granularity of the model does not necessarily
make the model any better. Quite the contrary can be true as this example
demonstrates.

[H6.4] Logic Gates

Fig.H6.4 shows a circuit for an OR/NOR gate in ECL logic. In this type
of logic, —1.8 V corresponds to a logical false (or off), whereas —0.8 V
corresponds to a logical true (or on).
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Figure H6.4. Circuit for an OR/NOR gate in ECL logic
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Build a PSpice program that simulates the above circuit during 25 usec.
Use our PROC35.N model to describe the NPN transistors. Connect the
substrates of all transistors to the lowest voltage, i.e. to —5.2 V. The
Area parameter to be used for the transistors is indicated on the schematic
except for those transistors that use the default value of 1.0.

Keep the input A at —1.8 V during the first 5 psec, then raise it to
—0.8 V, and keep it at that level until t = 15 usec. Thereafter, the input




Homework Problems 243

A is kept at —1.8 V for the rest of the simulation. The second input,
B, behaves similarly, except that it is raised from —1.8 V to —0.8 V at
t = 10 psec, and it is reset to —1.8 V at ¢ = 20 usec. Use the PULSE
function to model the two time dependent voltage sources. Choose a raise
and drop time for the input pulses of 100 nsec each.

Probe several of the voltages and currents in the circuit to come up with
an explanation as to how this circuit works.

Reduce the raise and drop times of the two inputs until they are clearly
faster than those produced by the circuit. Zoom in on the raising and
dropping edges of the two output signals, and determine the natural raise
and drop times of the the two output signals.

[H6.5] Digital to Analog Converter (DAC)

Fig.H6.5 shows a four bit digital to analog converter that can be driven by
ECL logic.

5kQ

-l -18V

10.7V

10kQ 20kQ 40kQ 80kQ
-15V

Figure H6.5. Four bit DAC for ECL logic

Vi represents the least significant bit (LSB), while V4 represents the most
significant bit. If your version of SPICE supports subcircuits with formal
parameters, design a subcircuit that describes one of the four DAC stages,
and call it four times with different values of the parameter R. If your
SPICE version does not support parameters, you better leave the resistor
out of the subcircuit, and place it in the main program. Use the ideal
opamp of hw(H6.3) for the analog output stage. Connect the substrates
of all BIT’s to the lowest voltage in the circuit, i.e., to —15 V. Apply the
following voltages to the four input nodes of the circuit:
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V11 0 PULSE(-1.8 -0.8 24U 100N 100N 23.8U 48U)
V2 2 0 PULSE(-1.8 -0.8 12U 100N 100N 11.8U 24U)
V3 3 0 PULSE(-1.8 -0.8 6U 100N 100N 5.8U 12U)
V4 4 0 PULSE(-1.8 -0.8 3U 100N 100N 28U 6U)

and simulate the circuit during 60 usec. Probe several of the voltages and
currents in the circuit to understand how the circuit works. Explain the
behavior of the output signal Vi,.(2).

This time, we want to replace the ideal opamp by the transistorized
opamp described earlier in this chapter. Tie the positive supply of the
opamp, Voc to +15 V, and the negative supply, Vgg to —15 V..

Repeat the previous experiment. You may have difficulties with DC-
convergence. Possibly, you may have to ramp up all the supplies during
2 psec and let them settle down during another 2 usec, in order to obtain a
decent initial nodeset. In that case, don’t forget to switch all active devices
(BJT’s) off for the ramping experiment. Use the resulting OP—point as a
nodeset for the subsequent experiment in which you perform the desired
transient analysis.

[H6.6] Circuit Modeling in DYMOLA

In Fig.H6.6, a simple passive circuit is presented. The only new component
is a current source for which a DYMOLA model type csource must be
derived in analogy to the voltage source vsource.
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Figure H6.8. Circuit diagram of a simple passive circuit

Augment DYMOLA'’s electrical component library by a model type describ-
ing the current source. The fact that the current source in our example is
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a dependent current source does not make any difference here. Contrary
to SPICE, DYMOLA does not force us to distinguish between independent
and dependent sources.

Derive a model for the overall circuit, and partition the equations once
using the partition command and once using the partition eliminate com-
mand. In each of these cases, print out the equations, the sorted equations,
and finally the solved equations. Thereafter, generate either a SIMNON
[6.2] or a DESIRE [6.5] program, and simulate the system over 50 usec.
Use a step size of 50 nsec. Compare the results with those of hw(H3.4).

[H6.7]* Logic Inverter Modeled in DYMOLA

Fig.H6.7 shows the schematic of a simple logic inverter model.

R’in= 5.6kQ

y(t)

Figure H8.7. Schematic of a logic inverter model

For the transistor model, we want to use the default values except for the
following parameters:

BF =190.0
BR = 0.1

TF = 50 psec
TR =1 psec
IS=11fA
RB =1109.9

However, before you can invoke the DYMOLA preprocessor, you will have
to modify the model manually to some extent. Remove the external base-
collector capacitance, and replace the base resistance by a regular resistor.
Then, you will also have to modify the junction diode model. Since we
know that we must solve the diode equation for ug rather than for i4, we
must invert this non-linear equation manually. Simplify the equation until
it has an analytical inverse, and invert it. You may also want to limit the
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diode current ¢y to prevent the inverted diode equation from ever trying
to compute the logarithm of a negative number. With these modifications,
DYMOLA will be able to handle the transistor model.

I suggest that you print out the equations, but then immediately use the
eliminate parameters command followed by the eliminate equations com-
mand to get rid of the many remaining defaulted parameters and trivial
equations. Observe what happens to the equations on the way. There-
after, partition your equations, and observe the sorted equations and the
solved equations. Then generate a simulation model, and simulate the cir-
cuit during 150 nsec with a step size of 15 psec using either DESIRE [6.5]
or SIMNON [6.2). The pulsed input is supposed to be u(t) = 0.0 V except
during the time from 20 nsec to 100 nsec, when the voltageis u(t) = 7.0 V.

Now return to your original DYMOLA program, and add two more pa-
rameters:

RE=13310
RC =1750.0

Notice that you must return to your original DYMOLA program since both
parameters had been optimized away with the eliminate parameters com-
mand. Repeat the same sequence of operations as before. You will observe
that, this time, an algebraic loop occurs. After partitioning the equations,
apply the various elimination algorithms, and observe what happens to
the algebraic loop. After the equations have been totally optimized, an-
alyze the algebraic loop using CTRL-C (MATLAB). You will notice that
all loop variables appear linearly in all loop equations, i.e., this is a linear
algebraic loop. Concatenate all loop variables into a column vector, x, and
concatenate all previously computed variables into another column vector,
u. Using this notation, the algebraic loop can be written in a matrix form
as:

A-x=B-u

A and B are constant matrices that depend only on parameter values. Use
CTRL~C (or MATLAB) to solve these equations numerically for the loop

vector x:
-1
x=A" -B-u

Replace the loop equations in your DESIRE [6.5] or SIMNON [6.2] pro-
gram manually by the set of solved equations obtained from CTRL-C
(MATLAB), and repeat the simulation as before. It is foreseen to eventu-
ally automate this procedure in DYMOLA by providing an eliminate loops
command.
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Projects

[P6.1] Transistor Models

From the HSPICE manual [6.8] (which, to my knowledge, is currently the
most extensive and most explicit SPICE manual available), develop DY-
MOLA models for the MOSFET and JFET devices similar to the BJT
(NPNlat) model presented in this chapter.

[R6.2] Linear Algebraic Loops

Design and implement an algorithm that will automatically solve all sets
of linearly coupled algebraic equations using the mechanism advocated in
hw(H6.7). Test this algorithm by means of transistor models that contain
emitter and collector resistance values.

Research

[R6.1] Junction Capacitance Model

Paul Van Halen [6.10] proposed a new junction capacitance model that
avoids problems with a singularity that was inherent in the original SPICE
junction capacitance model. As we have seen, this model cannot directly
be applied to a DYMOLA circuit simulator since the charge equation must
be solved for the voltage v rather than for the charge Q.. Unfortunately,
neither the original SPICE junction capacitance charge equation nor the
modified junction capacitance charge equation has an analytical inverse
(except in the simplified case that was treated in hw(H6.7). Use curve
fitting techniques to come up with yet another junction capacitance charge
equation that computes the voltage across the junction capacitance v as a
function of the charge Q. stored in the junction capacitance.

Also, come up with a better mechanism to represent the distributed
base—collector junction capacitance than that of an internal and an external
capacitance, a mechanism that avoids the structural singularity inherent
in the above separation.

The goal of this research is to minimize the number of algebraic loops
and structural singularities in a transistor model by at least eliminating
those that are currently inside one transistor model. However, as we have
seen in Chapter 5, new algebraic loops and/or structural singularities may
be introduced in the course of coupling different submodels together.




