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Bond Graph Modeling

Preview

When I read a technical paper written by an author from whom
I never have read anything before, [ usually find that I have the
biggest problems not with mastering the intellectual challenges that
the paper presents, but with understanding the suthor's terminol-
ogy, and relating it back to concepts that [ am familiar with. In
this context, modeling is a notoriously difficult subject since it is so
utterly interdisciplinary. It is therefore one of the major goals of this
text to introduce a variety of different modeling concepts (terminolo-
gies), and relate them to each other. In this chapter, we shall discuss
several graphical modeling techniques among which, in more detail,
the bond graph modeling technique which has found wide-spread ac-
ceptance and utilisation among a number of modelers from several
application areas, but in particular among mechanical engineers. We
shall see that bond graphs are very easy to relate back to previously
introduced concepts, and yet, they are somewhat difficult to read on
a first glance.

7.1 Block Diagrams

We have used block diagrams previcusly in this text on an ad hoc
basis without properly introducing them. I felt that this approach
was guite adequate since the interpretation of & block diagram
straightforward. But let me now go back, and introduce block dia-
grams formally.

B
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Block diagrams consist of blocks that are connected by paths. The
paths represent signals, and the blocks are transducers that trans-
form one (set of) signal(s) into another. While these two types of
modeling elements would, in theory, suffice to draw any block di-
agram, two frequently used types of transducers are usually being
represented by special symbols: the take—off point and the summer.
Fig.7.1 shows ihe four elementary block diagram modeling types.

Xy = ) o X 4 E=X=Y
u y |22 fixy u
R v ? ’

Figure 7.1. Modeling elements of a block diagram

Let us return once more to our simple electrical circuit of Fig.7.2:

Figure 7.2. Simple passive cirems

We wish to construct a block diagram for it. We start with a set
of equations that describes the eircuit correctly in terms of a com-
putational structure. One such set of equations had been derived in
Chapter 3. Let us write down these equations here once mare.

i o= (R (7.1a)
g = uy /Ry (7.18)
% il (7.3¢)

L = ic/Cy (1.1d)
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uwy = Ul —ug (T.de)
g = w (T.11)
BE =y +Hg (T.1g}
=1 +iL (7-1h)
igmiy =iy (7.14)

When constructing & block diagram, I always start by drawing all
integrators as boxes (blocks) below each other. The inputs to these
hoxes are currently unresolved variables. For each unresolved wvari-
able, I simply proceed to the equation that defines that variable, and
ables have been reduced to true inputs of the system. Each equation
that has been used in the block diagram is removed from the set of
unused equations. [n many cases, no unused equations are left at
the end. If equations have not been used, these are ouiput equations
that can simply be added to the block diagram in the end.

This algorithm leads to the block diagram shown in Fig.7.2:
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Figure 7.3. Block diagram of the passive circuit

which can thereafter be simplified as shown in Fig.7.4:
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Figure 7.4. Simplified block diagram of the passive circuit

While the block diagram clearly shows the compuiational structure
of the system, it does not preserve any of the topological proper-
ties of the system. As we have seen in the past, a small change in
the cirenit may force us to rearrange the computational structure
entirely, and therefore, its corresponding block diagram may bear
little resemblance with the previously used one.

This is a clear disadvantage of block diagrams, and therefore, block
diagrams are not commonly used to describe electrical circuits. They
are mostly used by control engineers because control engineers foree
their circuits to behave in such a way that the computational strue-
ture and the topological structure coincide. This can be achieved by
placing a voltage follower circuit between any two consecutive blocks
of the block diagram as shown in Fig.7.5:

Conmumer

Canaratar u Block
Block

Figure 7.5. Impedance decoupling with a valtage follower
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mﬂmmwmmmmﬁﬂm.
The generaior block produces a control signal u that is independent
of the consumer block, i.e., the voltage produced by the generator
does not depend on the current that is drawn by the consamer.
While this technique is common practice mamong control engineers,
the voltage follower cirenits are never shown in the block diagrams.
They are simply assumed to be there.

However, if we connect two wires in an arbitrary electrical cir-
cuit, we actually connect fwo variables at the same time, namely
one across variable, the potential v, and one through variables, the
current . In the block diagram, these two variables get separated
from each other, and it is this fact which destroys the symmetry
hetween the topologicel siructure and the computational structure.

7.2 Signal Flow Graphs

Another frequently used graphieal modeling tool is the signal flow
graph. A strong relation exists between block diagrams and signal
flow graphs. Fig.7.6 shows the correspondence between the elemen-
tary modeling tools in a block diagram (top) and the equivalent
elementary modeling tools in a signal flow graph (bottom).

ol o Uy ENHE*Y
——U—*Li o “_{“—'ﬁ(?'_)
¥

Figure T7.6. Elements of block diagrams vs signal flow graphs
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Each “path” in a block diagram turns into & “node”™ in the signal
flow graph. Each “box™ in the block diagram becomes a “path”
in the signal flow graph. In this respect, the two diagrams could be
called dual representations. However, no signal flow graph equivalent
exists for & multi-port block diagram box. In this respect, signal flow
graphs are a little less powerful than block diagrams.

When converting a block diagram into a signal flow graph, I always
proceed along the following lines. First, I assign a name to all signals
(paths) in the block diagram that have not yet been named. [ usually
call these signals e,, ¢;, etc. In our example, all signals have been
named already. Next, [ draw nodes (little circles) where ever the
block diagram had a signal path. Finally, I connect these nodes with
paths according to the correspondence shown in Fig.7.6.

For our passive circuit, we find the signal flow graph shown in
Fig.7.7:

"

Figure T.T. Signal flow graph of the paasive circuit

The signal flow graph can be simplified by eliminating all nodes
that represent series connections of paths. The corresponding path
functions are simply multiplied with each other. The result of this
simplification is shown in Fig.7.8.



Figure 7.8. Simplified signal flow graph of the passive circuit

When interpreting & signal flow graph, it is essential to realize that
nodes represent both take—off points and summers at the same time.
Incoming paths represent summing functions, while outgoing paths
represent take—offs. Looking at the node u,, for example, we find
that:

wp=lelly+(=1)+us (1.2)

m:l#ﬂ'u+{—~1]-ug-1¢|5—ill-i, (1.3)
Onece this small detail has been understood, signal flow graphs be-
come as easy to read as block diagrams, and they really are more or
less equivalent to each other. In particular, they share the same ad-
vaniages and disadvantages, namely they capture the compuiational
structure while they do not preserve the fopological structure of the
system which they represent. They are about equally frequently
found in control engineering texts. Some texts operate on signal
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flow graphs only while others use block diagrams exclusively. The
most prominent use of signal flow graphs is for the determination of
a transfer function between any two nodes (signals ) in a linear circnit
using Mason's rule. [ don't care too much for signal flow graphs since
they are not “computer-friendly”, i.e., I have a hard time drawing
them neatly on my MacIntosh. Therefore, I won't use them much in
this text.

T.3 Power Bonds

While block diagrams and signal flow graphs preserve the computa-
tional structure of a system only, circuit diagrams reflect the topo-
logical structure exclusively. Moreover, they are restricted to use in
electrical systems. For these reasons, H.M. Paynter, a professor at
M.IT., recognized around 1960 the need for yet another graphical
representation of systems which would be able to show simmltane-
ously the topological as well as the computational structure, and
which would be general, i.¢., could be applied to all kinds of physical
systems. He came up with the bond graph [7.14]. A bond, repre-
sented by a bold harpoon, is nothing but a connector that simmlta-
neously comnects two variables, one across variable, in bond graph
terminology usually referred to as the “effort™ ¢, and one through
variable, called the “flow” f. The bond is shown in Fig.7.9:

_—
f

Figure 7.9. The boad

The bond graph literature is not systematic with respect to the bond
graph conventions. The harpoon is sometimes shown to the left
and sometimes to the right of the bond, and the effort variable is
from the harpoon. This inconsistency can be explained by the fact
that most bond graphers viewed the bond graph methodology as a
pure modeling aid to be used with paper and pencil. The fact that
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a model represents always a codified form of knowledge occurred to
them at best as an afterthought.

However, if we wish to use bond graphs as a tool to formalize a
model and to formulate it as input to a computer program (as we
shall do in this chapter), we need to be more rigorous. For this
purpose, I decided that the harpoon must sit always on the left of
the bond, and the effort variable is always indieated on the side of
the harpoon, while the flow variable is indicated on the side away

from the harpoon.

The bond is able to preserve the topological structure because the
two types of variables are not dislocated from each other. Bonds
connect either to system elements, such as a resistor R which, in
bond graph terminology, is & single port element (sinee both variables
ug and ip are connected simmitaneously), or they connect to other
bonds in & junction. Two different types of junctions exist, the so—
called “0-junction”, and the so—called “1-junction” [7.11]. In a 0-
junction, all effort variables are equal, while all flow variables add
up to sero. A (—junction is thus equivalent to a node in an electric
circuit diagram, or a node in a DYMOLA ([7.7] program. In a 1-
junction, all flow variables are equal, while all effort variables add
up to zero. The two junction types are shown in Fig.7.10.

A ealf

e e
(RO e

Figure 7.10. The two junction types

The 0—junction thus represents Kirchhoff's current law, while the
l-junction represents Kirchhoff™s voltage law. If & bond connects
two junctions, one will always be of the 0-junction type, while the
other is of the 1-junction type, ie., in a bond graph, (-junctions
and 1-junctions toggle among each other. Neighboring junctions of
the same gender can be combined into one.
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7.4 Bond Graphs for Electrical Circuits

Let me explain by means of my passive cirenit, how a bond graph can
be constructed. Electric circuit designers have the habit to choose
one node as their reference node, usually the ground. Since the
ground appears ai many places in a complex dreuit, they usually do
not bother to connect all the grounds together in a circuit diagram.
The circuit diagram shown in Fig.7.11 is equivalent to the previously
shown diagram of Fig.T.2.

Figure T.11. Electric circuit diagram of the passive circuit

In the bond graph, we shall do the same thing. We start by rep-
resenting each circuit node by a O-junction except for the reference
node which is drawn like in a circuit diagram. We then represent
each branch of the cirenit diagram by a pair of bonds connecting
two (-junctions with a l-junction between them. We let the har-
currents. Finally, we attach the circuit elements to the 1-junctions
with the harpoons directed away from the junction for passive circuit
elements, and directed towards the junction for sources [7.1]. This
algorithm leads to the bond graph shown in Fig.7.12:
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Figure T7.12. Bond graph of the passive circuit

This bond graph can still be simplified quite a bit. Remember that,
when writing down the cirenit equations, we always skipped Kirch-
hoff™s current law for the reference node. In DYMOLA [7.7] neo-
tation, we placed a “." in the current's position of the Common
submodel's cut which instructs the DYMOLA compiler to skip the
current equation. We did this becanse we knew that this equation
wounld be redundant. Accordingly, since the reference node in the
bond graph actually represents a degenerated 0—junction which rep-
resents Kirchhoff™s current law for the reference node, we can as well
leave out the reference node together with all the bonds connecting
to it. This rule makes also physical sense. The power that fows
through bonds connecting to the reference node is the product of
the current flowing through the bond and the potential of the ref-
erence node. Since this potential can, without loss of generality, be
assumed to be gero, we can say that no power flows into or out of
the reference node. Thus, it makes physical sense to eliminate such
bonds from the bond graph.
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Also, if a junction has only two bonds attached to it, and if their
harpoons point both in the same direction, we can eliminate this
juonetion, and amalgamate the two bonds into one [7.1]. This proce-
dure leads to the simplified bond graph of Fig.7.13:

I:1a R:ry
= L6 mH =1000

F

SE:U, _.a g _.5_\. _L\ﬂ;.'“_’.:. R: e
= 10W 1
ictnc

C:q
= 0.1uF

Figure 7.13. Simplified bond graph of the passive eireuit

Notice that the bold printed element type denotes the type of equa-
tion that describes the circuit element. R stands for resistance, C
stands for capacitance (or compliance), I stands for inductance (or
inertia), and SE stands for effort souree. Correspondingly, SF stands
for fow source.

It is quite evident that the bond graph preserves the topological
structure. However, we have not seen yet how it represents the
computational structure at the same time. For this purpose, we
introduce the notion of bond graph cousality [7.11].

Each bond is involved in two equations, one to determine its affort
&, and the other to determine its flow f. Each of these two equations
is formmuiated at one of the two ends of the bond. The causality is
indicated by a short stroke perpendicular to the bond which is placed
at one of the two ends of the bond. It marks the side of the bond at
which the flow variable is being determined.

Let me explain this concept by means of a simple example. If &
bond connected to a resistance R has its stroke at the end at which
R is attached to the bond, as shown in Fig.T.14a,
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B

Figoure T.14a. Causal bond consected to & resistance

then we need to compute the flow variable at the resistance which
leads to the equation:

in=ur/R (7.4)

This means that up must be computed elsewhere, namely at the
other end of the bond. However, if the causality is assigned the
other way around, such as shown in Fig.T.14b:

by

Figure 7.14b. Causal bond connected to a resistance

then, the effort needs to be computed at the resistance, and we obtain
the equation:

ug=H-ig (7.5)

whereas the equation used to compute the flow will be formmiated
at the other end of the bond.

For a resistance, both cansalities are physically and computation-
ally meaningful. However, for effort sources and flow sources, the
causality is physically determined as shown in Fig.7.15,

ug(t) u iglt) Uy
Figure T.15. Necessary causality for «ffort and flow sources

whereas for capacitances and inductances, the desired causality is
dictated by computational requirernents since we wish to numerically
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integrate over all state variables rather than to differentiate them.
The desired causalities for these elements are shown in Fig.7.16.

I—ﬁ-—‘ﬂ —1"11

ig

Figure T7.18. Desired camsality for capacitances and inductances

Finally, rules can be specified for the two junction types. Since only
one flow equation can be specified for every (—junction, only one of
the bonds can compute the flow at the junction, i.e., exactly one
stroke must be located at every 0-junction. Since only one effort
equation can be formmiated for every l-junction, only one of the
bonds can compute the effort, i.e., only one siroke can be located
away from every l-junction. Fig.7.1T shows the causal bond graph
for our passive circuit.
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Figurs 7.17. Cansal bond graph of the passive circnit

In this example, all conditions can be satisfied, and the solntion is
unigue. This is the preferred situation. If not all necessary conditions
can be satisfied, we are confronted with a non—cousal system. This
case occurs for example if we try to parallel connect two voltage
sources with different voltage values. If we cannot satisfy all desired
conditions, i.e., if we run into wrong causalities at either C or I
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elements, we are confronted with a degenerate system, ie., the true
system order is lower than the number of integrators would indicate.
We are thus confronted with & structural singulority. I we have a
choice in assigning the caunsalities without offending any of the rules,
the model contains an algebraic loop.

Please, notice that the specification of the voltages as “efforts”
and the currents as “flows” is somewhat arbitrary. The bond graph
is completely symmetrical in this respect. Had we decided to call
the currents “efforts™ and the voltages “flows”, then all junctions
would change their gender, and the causality laws for capacitances,
inductances, and the two types of sources would be reversed. We call
this the dual bond graph. It will be discussed later in this chapter in
more detail.

7.5 Bond Graphs for Mechanical Systems

If all we could do with bond graphs were to have yet another tool
to describe electrical circuits, this wounld not be very exciting since
we already had a topological description mechanism (the circuit di-
agram) which comes more natural to electrical engineers than bond
graphs. However, the concepts of effort and flow are mmch more
general than that.

If we take three levers, and join them in one point, we notice that
the velocities of the three levers at that point must be equal, while
the forces add up to sero. In simple analogy, we are therefore inclined
to come up with the following equivalencing scheme:

effort <=+ potential < velocily
floaw =% cwrrend = [force

Onece we made this decision, all other quantities in the bond graph
are determined. Let us look at Newton’s law:

B|E

]
1 1
=—-E L = = — E fidr+4vg (T.8)
m i ’ ﬂ!“ »

B %

-%"'ﬁ =

We immediately notice the similarity with the voltage/current rela-
tionship for a capacitor:
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¢
deg . dee 1 . T
'C-'“fﬁ——l-ﬂ it TR G M M—E'!iﬂ"f'i"c. (7.7T)

Thus, the mechanical mass corresponds to an electrical capaciior.
Let us now look at a spring. For the spring, we have the relationship:

fop=k.z2 = #T;lﬂi"l (7.8)

which can immediately be compared to the voltage/current relation-
ship for an inductor:

%=%.q (7.9)
Thus, the inductance can be equivalenced to the inverse of the spring
constant which is sometimes called the complignce of the spring.
Finally, we can look at friction phenomena:

fre=b» = wv==:fp (7.10)

Lol ]

which can be compared to Ohm's law for resistors, i.e., the electric
conductance can be compared to the friction constant b

Unfortunately, “bond graphers” around the world did it just the
other way around. They once decided to let the forces be called
efforts, and the velocities be called flows. As I explained before, due
to symmetry, both assumptions are equally acceptable. [ assume
that the original reason for this decision was related to a mixup of
the terms “effort™ and “flow™ with the terms “canse™ and “effect™.
In many mechanical systems, the forces are considered the “causes”,
and the velocities are considered their “effects” (except if I drive my
car against a tree). In any event, the decision is an arbitrary one,
and, in order to be in agreement with the existing literature on bond
graphs, I shall bow to the customary convention.

In this case, of course, we now need to compare Newton's law to
the inductor rather than the capacitor:

dig _ dig, _ 1 -1,
by o Bl s is [uif-r-m (7.11)
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Thus, the mechanical mass corresponds now to an electrical indue-
tor. In accordance with this convention, the spring compares to the
capacitor as shown below:

% = é:.: (7.12)

i.e., the capacitor corresponds to the compliance of the spring. Fi-
nally, the friction constant b corresponds now to the electrical resis-
tance, rather than to the electrical conductance.

Notice that the terms “effort” and “fSow” were defined by re-
searchers dealing with bond graphs. On the other hand, the terms
“across” variable and “through" variable were defined by other
researchers who probably weren't even aware of the ongoing re-
search on bond graphs. These researchers defined the forces as
“across” variables and the velocities as “through™ variables (which
makes sense). For this reason, the correspondence of “effort™ with
“seross” varishle, and “flow™ with “through™ variable is not com-
sistent throughout the literature. However, in this text, I shall use
“affort” and “across™ variable interchangeably. For this purpose, I
simply redefined the term “acroms™ variable to mean “effort”. Thus,
my mechanical “across” variables are the forces and torques, whereas
my mechanical “through™ variables are the velocities and angular ve-
locities. As I mentioned earlier, this assignment is purely arbitrary.
It simply made sense to use a consistent terminology at least within
this text, bearing the risk of a potential confusion for readers who
are familisr with the more conventional definitions of “across™ and
“through™ variahles.

Let us go ahead and derive a bond graph for the simple mechanical
system that had previously been presented in Fig.4.2. To refresh our
memory, here it is once more.
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We start by identifying all free moving bodies. 'We place 1-junctions
for each of their velocities. Where ever two bodies interact with
each other, we connect their junctions with branches consisting of
two bonds and one (—junction in between, and attach all interacting
elements to that 0—junction. Newton's law (or rather the d'Alembert
principle) is formulated at the 1-junctions themselves (7.1). Fig.7.19
shows the bond graph for the simple translational system of Fig.7.18.

AR
KR A
g xa,

{ B {m

Figure 7.19. Bond graph for the translational problem

.'la'kl

HRotational systems work exactly the same way. Here, the torques are
taken for the “effort” variables, and the angulor velocities are taken
for the “flows®.

7.8 Generalization to Other Types of Systems

Besides the two basic quantities effort ¢ and flow f, we often make
use of two additional derived quantities, namely the generabized mo-
menium:
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£
p= [ edr (7.13)
/

and the generglized displacement:

- ! fdr (7.14)

In electrical systems, the generalized momentom is the fluz through
a coil, and the generalized displacement is the charge in a capacitor.
In translational mechanical systems, these are the momenfum and
the displacement (bond graphs were invented by a mechanical en-
gineer), and in rotational mechanical systems, they are the angular
momentem and the angulor position.

All these quantities are commen to a large variety of other physical
systems as well, as are the two Kirchhoff laws. Hydraulic, pneumatic,
and acoustic systems operate similarly to the electrical and mechan-
ical ones. In all these systems, the pressure is defined as the effort
variable, while the volume flow rate is defined as the flow variahle.
The derived quantities are the pressure momenium and the volume.

The element laws, however, may look different for different types of
systems. In particular, it may be noted that the equivalent te Ohm's
law for these types of systems is often non-linear. For example, the
relation between the pressure (effort) p and the flow g in a (turbulent)
hydraunlic valve is quadratic:

Apx g’ (7.15)

Notice the confusing nomenclature, The symbols p and ¢ are the
most commonly used symbols in the hydranlic and pneumatic liter-
ature to denote pressures and flows. However, these are effort and
flow variables, and not generalized momentums and generalized dis-
placements,

Table 7.1 presents a summary of the four generic variables for the
most commonly used physical system types.
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Table 7.1. Power—{ef) and energy—(p,q) variables [7.17]

Effort Flow Gemaralised Generalized
Momemium Displecement.
& Fi P q
Electrical voltsge current fux charge
= [¥] i[4] & [V see] q (A sec]
Translational [orce velboeity momentum  displscemeni
F [N] vmsec™") I[N aec] z [m]
Rotatbonal Larque angular bwriai angle
welociiy
T[Nm|  wiredsse™] T[N moec] ¢/rad]
Hydranlic pressare volome flow — pressure volume
momeniam

i

g [m® o] T[N m= sec] ¥ [m]

molar Sow —_ number of
molea

¥ [mole see=1] n [maole]

entropy - eRLIOpY

How

& WK~ 8K

7.7 Energy Transducers

Until now, we have looked at different types of systems in isolation.
However, one of the true strengths of the bond graph approach is
the ease with which transitions from one form of system to another
can be made, while ensuring that the energy (or power) conservation

rules are satisfied.

The power in an electrical system can be expressed as the product
of voltage and current, or in terms of the bond graph terminology:

P=e-f (7.16)
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Thgmilmﬂnﬂdh'i?lﬂ[“?]-[i’wﬂ. The energy is the
integral of the power over time

E
E= [e-fdr (1.17)
/

which is measured in Joule [J] = [W - sec] = [V - A - see].

Until now, we assumed that we could select the effort and flow
varishles more or less freely. Howewver, this assumption is incorrect.
In all system types, the variahles are chosen such that their product
results in a variable of type power [7.17].

In an energy transducer {such as a transformer, or & DC-motor),
the energy (or power) which is fed into the transducer is converted
from one energy form to another, but it is never lost. Consequently,
the energy that enters the transducer at one end must come out
in one or more different form{s) at the other. A “loss—less” en-
ergy transducer may, for example, transform electrical energy into
mechanical energy. In reality, every energy transducer “loses” some
energy, but the energy does not really disappear — it is simply trans-
formed into heat.

The above energy conservation law can be satisfled in exactly two
ways in an “ideal” (i.c., loss—less) energy transducer. One such trans-
ducer is the ideal transformer. It is governed by the following set of
relationships:

£1 = My (T.18a)
fi=m-fi (T.188)

The ideal transformer is placed between two junctions. Two types
of causalities are possible as shown in Fig.7.20.

- s | e
B i

o =me, oy (Vm) oy
f,=mf f:l-{.'l.-"ll]lft

Figure 7.20. Causality bond geaph for the ideal transformer
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Examples of transformers are the electrical transformer (shown
in Fig.7.21a), the mechanical gear (shown in Fig.7.21b), and a

mechano—hydraunlic pump (shown in Fig.7.21c).
] H R o=
rn-—,f Ll
ug= H‘: | r Fy = Apg
il-Hh i ml._rfmi Qg = Apy
{a) Electrical (b) Mechanical {e) Hydraulic
Transformer Cear Pump

Figure 7.21. Examples of ideal transformers

The other type of energy transducer is the ideal gyrator. Its behavior
is governed by the equations:

w=rfi (7.19a)
a=rfi (7.198)

Also the ideal gyrator exhibits two forms of causalities as shown in
Fig.7.22.

l_:\ G'f_:q __:thﬂfl_";b
1
% = riyg f=ilir)e
By mrfy fi=(liriay

Figure 7.22. Causality bond graph for the ideal gyrator
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Examples of gyrators are most electro-mechanical converters, for
example the DC-motor shown in Fig.7.23.

Tm= Vi
=Yy

Figure 7.23. Example of an ideal gyrator

Motice that no real difference exists between the two transducer types
[7.2,7.3]. If the effort and flow variables in the mechanical system
were exchanged (as earlier suggested), the DC-motor would in farct
become a transformer.

Let us go through an example. We want to model the mechanical
system of Fig.4.5 driving it with an armature controlled DC-motor
with constant field such as the one depicted in Fig.4.13. The resulting
bond graph is shown in Fig.7.24.

Rl R:By H:B llii'.‘l, R:Bg
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troke. We proceed by satisfying the desired causality constraint on
the “inertia™ L., which fizes all causalities for the l1-junction. At
this point in time, also the gyrator is fized. At the next 1-junction,
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we proceed in the same way, by satisfying the desired cansality con-
straint for the inertia J,. This fixes all cansalities for that junction.
At the O-junction, we still have a choice. Since we cannot decide at
once, we proceed to the next 1-junction where we satisfy the desired
causality constraint for the inertia J;. This fixes all cansalities for
that junction, and now also fixes the causalities for the 0—junction
in between. At this point, also the following transformer is fizxed.
And now, we are in trouble. All cansalities at the final 1-junction
are already determined, and we are unable to satisfy the cansality
constraints for the “inertia™ m. Consequently, we have detected a
structural singularity. The system contains four “inertias™ and two
“compliances”, and therefore, we would expect this system to be
of sixth order. However, it is, in fact, only a fourth order system.
We had determined, analyzed, and solved this problem already in
Chapter 4 by reducing the forces that are attached to the secondary
side of the transformer to its primary side. We shall not repeat the
analysis at this point.

7.8 Bond Graph Modeling in DYMOLA

After we have seen how bond graphs can be constructed, let us dis-
cuss next how we can use these bond graphs to perform actual sim-

ulation runs.

The first bond graph simulation language written in the early sev-
enties was ENPORT [7.15,7.16]. This software used an approach
similar to SPICE, i.e., it did not request causalities to be specified,
and it transformed the topological input description into & branch
admittance matrir which could then be solved employing similar
techniques to those used in SPICE. Consequently, ENFORT is able
to handle structurally singnlar problems. The current version of the
code, ENPORT-T [7.16], offers an alphanumerieal topological input
language similar to SPICE, and it offers also & menu—driven graphical
input language which, however, is not yet very user—friendly. A full-
fledged graphical window system is currently under development.
ENPORT-T runs on various mainframe computers, but a slightly re-
duced version, ENPORT /PC, exists for [BM PC's and compatibles.
ENFPORT offers also & macro capability (somewhat comparable to
the subcircuits in SPICE) which is, however, rather clumsy, and does
not provide for full hierarchical decomposition capabilities.
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In the late seventies, another bond graph simulation language was
developed at Twente University in the Netherlands, called THT-
SIM in Europe, and TUTSIM in the United States [7.17). TUTSIM
translates bond graphs into a state—space representation. The user
is required to specify the causalities, and structurally singular sys-
tems cannot be handled. TUTSIM"s simmlation engine is somewhat
poor in comparison with other state—space solvers such as ACSL. The
same research group is currently prototyping a new bond graph mod-
eling system, CAMAS [7.4], which runs on SUN"s, has nice graphics
capabilities, and is able to handle algebraic loops. CAMAS em-
ploys an object—oriented language (SIDOPS) for the model descrip-
tion which has similar properties as DYMOLA. Once available, this
might become a good product.

The third product on the market is CAMP [7.8,7.9), a preprocessor
to ACSL [7.13] which transiates bond graphs into ACSL programs.
CAMP has the same limitations as TUTSIM, i.e., it does not han-
dle algebraic loops or structural singularities, but it has the better
simulation engine {ACSL). The input format is topological (as for
the two other products). It is not truly flexible with respect to
handling non-standard cirenit elements. Non-linear elements need
to be edited manually into the generated ACSL program which is
very clumsy. A graphical front end exists meanwhile also for CAMP
[7.10). However as in the case of ENPORT-T, the graphics editor is

menu—driven rather than window—operated.

With the exception of the unfinished CAMAS system, none of the
above products is able to handle hierarchically structured models
in a general fashion which is essential for the analysis of complex
systems. For these reasoms, [ prefer not to discuss any of these

in greater detail, but to explain instead how DYMOLA
[T.7] can be used as & bond graph modeling engine. The approach is
actually straightforward. DYMOLA's “nodes™ are equivalent to the
O—junctions in bond graph terminology. DYMOLA has no equivalent
for 1-junctions, but as explained before, 1-junctions are the same
as 0—junctions with the effort and flow variables interchanged [7.5].
Therefore, we created a model type “bond™ which simply exchanges
the effort and flow variables:

model type bond
ent Afz(y) Bly/ - =)
main ent OA B]
maln path P < A - B >
amnd
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The bond acts just like a null-modem for a computer. Since neigh-
boring junctions are always of opposite sex, they can both be de-
scribed by regular DYMOLA *nodes” if they are connected with a
“hond"”.

Since we don't want to maintain different types of R, C, L, TF,
and GY elements, we add one additional role: in DYMOLA, all
elements {except for the bonds) can be attached to 0—junctions only.
If they need to be attached to a l-junction, we simply must place a
bond in betwesn.

The following DYMOLA model library suffices to describe the
basic bond graphs.

misdal typs 5E
eunt Ale/.)
terminal ED
Elme

end

modal types 5F
cut A/ = f)
terminal F
Fo=f

end

model type R
cut Als/f)
parameter A = 1.0
Refme

end

modal type O
cut Ale/f)
parameter & = 1.0
Cederie) = f
end

modal fype [
eut Afe/f)
parasmeter [ = 1.0
Isdar{f) = &

end
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model iype T'F
eat Alel/f1) Bie2/ = 1)
main eut C[A H]
maln path P< A- 8B >
parameier m = 1.0
el = me el
fimme [l

end

model type &Y
cut Alel/f1) Biel/ — f1)
main cut C[4 B]
main path P < 4 - F >
parumeisr r = 1.0
el=r= fi
gl=rufl

end

With these modeling elements, we can formulate a bond graph de-
scription of our simple passive circuit. Fig.7.25 shows the DYMOLA

wmmﬁmmmwmhAmHm

R:my
=10080
r-él-n
I:L]
= 1.5 mH 0

Figure 7.25. DYMOLA expanded bond graph of the passive circuit
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I did not mark down the causalities here since DYMOLA is per-
fectly able to handle the cansality assignment by itseif (although no
struetural singularities yet).

Notice that my “bond™ model type is actually a gyrator with
r = L0. This special gyrator has sometimes been called symplac-
tic gyrator in the bond graph literature [7.2,7.3].

This bond graph model can directly be coded in DYMOLA as
shown in the code below:

model RLC

submodel (5E) [0

submodal (E) RI(E = 100.0), R R = 20.4)
submodel (1] L1{] = 1.5E-3)

submodel () C1[C = 0.1E-8)

submodel (bond) 81, B2, B3

node vl, irl, vrl, v2

ouatpat yl, 2

econmect U0 at vl
connect L1 at vl
connect A1 at vrl
conmect R32 at vl
conmeet U1 nt vl
connect H1 from vl toerl
connect 52 from irl to vl
connect B3 from ]l to erl

Fo.EQ = 10.0
¥l =Clae

¥2 = R1.f
end.

The interpretation of this code is straightforward.
Let us see how the DYMOLA compiler preprocesses this code. We
enter DYMOLA, and specify the model to be compiled as follows:

t dymola
> enter model
— @bond lub
= @rledym
out file ric.eq
> cutpul equations

DYMOLA"s answer is shown in the next code segment.
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o El=e

Rl Refme

1 Cedere s f

L1 Loderf=0¢e

Ry Raf=e

REC o EQ = 10.0
Fl=Cla
v2=Rif
Lla= Bl=
INie = Li.e
Clewm By
RlemCle
Cl.f+ Rif=Hix
Bixzm Bix
Bly= Bla
Bly+ Bly= Bl=
Rlae = Bl.y
Rl.f= Bi=

We can now execute the algorithm which assigns the causalities,
i.e., which determines what variable to compute from each of the
equations. In DYMOLA, this is achieved with the following set of
instructions:

> partition

> outfile ric.aor

= ocuipsi soried equations
which results in the following answer:

RLC ['0.B0) = 10.0

o EQ = [e]

REC Fia = [L1.se]
Ll.a=[Fl.z]
Cle = [Bl.y]
Biy)+ Bly=Bla
RL-]-B.'I:..

Rl Ra[fl=e

RLC Rl.f = [B3.=]
Bl.z] = Bd.s
|Bly| = Bls
[Ri.e] = Cle

R3 Re[fl=¢

RLC [C1.f] + R1.f = B2z

L4 | C w [dere] = f

L1 Low[derf]me

REC [']]-G'I...

[¥3) = R2.f
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The variables enclosed in “| |* are the variables for which each equa-
tion must be solved. This set of equations contains many trivial
equations of the type a = b DYMOLA is capable of throwing those
out. This is accomplished through the following set of instructions:

> partition sliminate

> ouwlfils vesrd

> ouipsé soried sgucizonas

which results in the following answer:

Rz Buyl] =yl
RLC [Bi.g] + §l = 10.0
R1 R+[Blz]= Bly
RLC [C1.f]+vi= Bi=
=1 C # [dere] = f

L1 L« [der f] = 10.0

which is a mmch reduced set of equivalent equations. The next step

will be to actually perform the symbolic manipulation on the equa-
tions. In DYMOLA, this is done in the following way:

> opuijfile rie.scw
> cuiput solved equations

which results in the following answer:

Rz y2=yl/R

REIC Biyg=100-—yl
R1 Biz=Hig/R
RLC Cl.f=8B3zs-yi
1 dere m /O

E1 derf = 100/ L

We are now ready to add the experiment description to the model
We can for instance use the one presented in Chapter 6. The set of
DYMOLA instructions:

> snlgr sxperiment

= Dheirenit.at]

> pud file ric.des

> cuipul derire program

tells DYMOLA to generate the following DESTRE program:
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e T T o e e o e e i M - (S i o B s T oty e

—— STATE 1 L13)f

—— DER dC1%e dL13)

—— PARAMETERS and CONSTANTS:
Ki1iR = 100.0

O om 01 E-6

L= 1.5E-3

RIER = 0.0

—= INITIAL VALUES OF STATES:
yl=0

Lisf=0

TMAX =1E-8 | DT =1E-T | NN =10
scale = ]

XOCCm1

label TRY

dronr

If X000 < 0 then XOOC = —XOOC | scals = 1w scale | go to TRY

elss procesd

O N NS BN EER R O R EER SR EES WSRO O EER NE R R D CEES N R S . —

Cl8f = Biss — y2

— — Submedsl: C1
d/dt vl = C15f/C
= = Submodel: L1
d/de L18f = 10.0/L

which can be executed at once using the following instructions:
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> atep
¥ desire 0

> losd "rledes’
= TUR

desired output variables ur, and ips on the sereen. Both DY-
MOLA [7.7] and DESIRE [7.12] are currently running alternatively
on VAX /VMS or PC/MS5-D03. The code will run fine on a PC/XT,
but minimum requirements are a 10 MByte hard disk and an 8087
co—processor. Faster versions exist for the PC/AT, and the 386
based machines. DESIRE [7.12] supports CGA, EGA, and VGA

graphics.

7.9 The Dual Bond Graph

Iln some cases, bond graphs may result which have many more el-
ements attached to 1-junctions than to O0—junctions. By using the
previously introduced methodology, this would force us to introduce
many additional O0-junctions and bonds in order to be able to attach
all elements to 0-junctions only.

It is possible to circumvent this problem by introducing the con-
cept of the dual bond graph [7.5]. For any bond graph, an equiva-
lent dual bond graph exists in which the role of all effort and flow
variables is interchanged. Table 7.2 illustrates what happens to the
various bond graph elements under the transition from the regular
to the dual bond graph.

Table 7.2 Relation between regular and dual bond graph

regular bond graph dual bond graph

e
R
c

SE

TF

GY

—junection 1=j

Eﬂzﬂvmn
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the regular bond graph. However, in the regular bond graph, all

for the friction element H, were attached to 1-
would have forced us to create 10 additional june-
tions with 10 additional bonds (one for each element attached to
a l-junction). In the dual bond graph, all elements except for the
friction B, are attached to O—junctions. Consequently, we need to ex-
pand the bond graph only with one additional 0-junction and bond

just introduced & “new” bond graph element: the conduc-
. f = & - e, which DYMOLA
L. f. This element is non-
essential. Instead of replacing the resistors with conductances in
dual bond graph and writing for instance “G:R," in Fig.7.26,
could equally well have kept the resistors and could have writ-
just seemed more convenient this way.
this decision absolutely nothing to do with the as-
sumed causality. Both resisiors and conductances can assume either

|
|

Notice that the duality transformation can also be applied to sub-
systems only. Natural places where the bond graph can be cut into
subsystems are the transformers and gyrators where one sort of en-
ergy is transformed into another. Fig.7.27 shows yet another version
of the same system. This time, only the electrical subsystem has
been transformed to its dual equivalent.
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G:R, R:By Ry G/l

o N i L 1

sr|_-.g—l-1-|rn—-|1|—§l-n-&q:|—"‘-‘rl1—'“-1
%

R T T

Cily I:dy I:dg I:m ™¢

Figure T7.27. Partially transformed bond graph of the mechanical system

In this duality transformation, gyrators become transformers and
vice versa. The reason why the bond graph of the DC-motor exhibits
a gyrator at the interface between its electrical and its mechanical
subsystem is because of the peculiar way in which Paynter defined
iﬂ:‘?ﬂ%ﬂl” and his “Hows” for mechanical and for electrical systems
T.14].

However, it is possible to cut systems also at other places. Let me
illustrate the concept by means of a series of snapshots of a portion
of the previcusly used bond graph of Fig.7.26. Fig.7.28a shows the
portion that we want to concentrate on.

G:Bj G:B L1/ky
O¥ss Yul*m  ©O2Ta
L) ]

0 = 1 =29

B

F

C:q C:dg

Figure T.28a. Portion of the DC-motor bond graph

In Fig.7.28b, the two 0-junctions have been streiched out into two
junctions each. The arrowless line between the two (—junctions indi-
cates that this is, in fact, the same junction. The solid line symbolizes
a “wire” that exists between the two junctions.
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G:Eﬂ. G;Bl I:l.l'lkl
mq:m WﬂTfm “’;1;*1
w L]

g ot

oo %
C:q C:Jg

Figure 7.28b. Expanded bond graph

Obviously, any such “wire” can be replaced by a “symplectic trans-
former™, e, a transformer with m = 1. Such a transformer is obvi-

ously equivalent to a “wire”, This replacement is shown in Fig.7.28e.

G:Bs G:By L1lk,
T L NnT"-‘m “4;11
—adF— :’E‘l'l 1l "L‘-ﬂlﬁ-‘*rlrlihn

: Tm 1 Tm Tm Tm Tm
@1 M-EJ!

c!-T]_ l::Jg

Figurs 7.28¢. Further expanded bond graph

At this point, we see that the bond graph contains two (—junctions
with two connections only. These junctions are unimportant and can
be eliminated. This is shown in Fig. 7.23d.



Figure 7.28d. Reduced bond graph

Now, we have two transformers in the cirenit which isolate the por-
tion of the circuit between them. We can, thus, apply a duality trans-
formation to that portion of the circuit., This is shown in Fig.7.28e.

G.n! R:B]_ I:l-l'll

wqfTps Tia-mn “"ET‘H.
T

symplectic gyrators which, of course, are the same as our Dymola
bonds. I still prefer to leave these gyrators explicitly in the cr-
cuit and use the GY.dym model rather than the bond.dym model
since a reduction to a normal bond might be graphically confusing.
However, we just learned that a bond graph can be cut into sub-
systems at an arbitrary bond. In the duality transformation, the
cutting bond {an implicit symplectic ) is transformed into an
explicitly shown symplectic gyrator.
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7.10 Summary

In this chapter, we have looked at a number of different graphical
modeling techniques, and we have analyzed one among them, the
bond graph modeling technique, in greater detail. It was the aim
of this chapter to relate this seemingly quite different approach to
modeling back to the previously introduced methodologies and ter-
minologies.

Future chapters will make more references to bond graphs, and, in
particular, Chapter 8 will discuss the application of bond graphs to
non—equilibrium state thermodynamics. This application will pro-
vide us with even more motivation for the bond graph methodology
as & whole.
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Homework Problems

[HT.1] Algebraie Loop
Draw a bond graph for the simple resistive circuit of Fig.8.11. To refresh
your memory, the circuit is shown once more in Fig. H7.1.

Bl- m

+

S

,l Ra=200

F

Figure HT.1. Schemniic of o irivial resistive crcait

you have & choice in assigning the cansalities. Create s DYMOLA program
process, the set of equations which initially looks quite different from the
ome obtained in Chapter 8, is reduced to the same set of three algebraically
coupled equations that we came across in Chapier 8.

[HT.2] Electrical Circuit
Solve hw|H6.8) once more this time using the bond graph approach. The
circuit is presented again in Fig HT.2.

Since, also in the bond graph library, the sources have been declared ns
terminals, the dependent current source can be treated im the DYMOLA
program exactly in the same manner as in Chapter 6. Since the canse /effect
relationship between the driving voliage and the driven current contains
only one rather than two variables, this connection is not & bond. It ism
regular signal paih (us in & block dingram), and, also in the bond graph, it
is represented through a thm full srrow that emanates from the 0—junction
at which all bonds have the driving voltage as their effort variable, and
that ends at the SF element that is being driven by this signal.
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[HT7.3] Mechanical System
Solve hw{H4.3) once more this time using bond graphs. Fig.H7.3 shows
the system again.

Head
Mpmizie| T

t"”"'ﬁ% HI B, = 0.8 kgz!

Upper Torso
H'I.llii"

H'.!_I IH’:- -
8 kga 2 10 kes’

Arms ey = |__-.-_| Ea=12kll'1
IST Mg=32kg| 8kgs®

1

|

Lower Body
H‘_'E“h T

Ly

Figure HT.3. Mechanical model of & sitting homan body
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Create & bond graph for this system, transform the bond graph into »
DYMOLA program, and generate either a SIMNON [7.6] or » DESIRE
[7.12] program from it. Contrary to the simulstion of Chapter 4, this time,
we shall simulate the system in the time domain for & sinuscidal input of
varying frequency. In gemeral, & sinusoidal input of any frequency wy can
be written as:

u = sinfwet) (HT-3a)
In our experiment, we wish to vary wy using a slow ramp of time, ie.:
we = kot (HT.38)
By plugging q(HT.3b) into eq(H7.3a), we find:
u o ginik - ') (HT.32)

Set k = 0.01, and simulate the system during 100 sec. Use o step size of
0.01 sec. Observe the input and the cutput over time.

[HT.4] Electro—Mechanical System

For the system shown in Fig. HT.4, genernte a bond graph, assign the proper

This system had once before been discussed as hw{H4.4). Use & duality
transformation prior to coding the bond graph in DYMOLA, and generate
a minimal state—space model using the DYMOLA preprocessor. Compare
the resulting model with the one thai you had found in hw{H4.4).
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[HT.5] Non-Ideal Transformer
Fig.H7.5a shows & non-ideal transformes, and Fig.H7.5b shows an equiv-

alent circuit that reduces the transformer to elements which we already
know.

u{ ‘i‘e;j‘! . {r{h-" }:.-ui; I_’

Figare HT.5. Non—ideal iranaiormer

Crente n bond graph for the transformer using the equivalent circuit ap-
proach. Introduce the causalities, and determine that the system contains
a structural singuiarity. Extrmect the equations from the bond graph, snd
verify the struciural singularity by means of these equations. Mammally
reduce the structural singularity. This will anfortunately introduce an al-
gebraie loop. Redunce the algebraic loop, and determine & state—space model
thai describes the non—ideal transformer. Create a DYMOLA model (not
n bond graph model) which deseribes this executable set of equations, but
assign cuts to this model such that the model can be nsed as & component
model type (named RTF) anywhere within s bond graph model.

[B7.6] Hydraunlic System

Fig-HT.6a shows a schematic diagram of & hydmulic motor with & four-way
servo valve. The input to this sysiem is the position of the piston, z. If the
piston of the serve valve is moved far to the right, then the pressure py in
the first chamber is the same as the high pressure Pz, and the pressure py
of the second chamber is the same as the low pressure Fy. Consequently,
the hydraulic motor will wish to incrense the volume of the first chamber
and decrease the volume of the second by moving the motor block to the
right. In the given seiup, the axis of the hydraulic motor is & screw which
therefore starts rotating. If the piston of the servo valve is moved far to
the left, then the pressure py is equal to the low pressure Fy, the pressure
P is equal to the high pressure Py, and the hydraulic motor rotates in the
opposite direction. In between, one position exisis where py = p. In that
position, the hydranlic motor does not move. We call this position = = 0.0,
Hydranlic motors are able to move large masses with little comtrol power,
and yet, the inertia of the motor is much smaller than for an equivalent
elecirical motor.
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Figure HY.8a. Hydrsulic motar with & four—way serve walve

The fows from the high pressare line inte the servo valve and from the
servo valve back inio the low pressure line are turbulemi. Conseguently,
the relation between flow and pressure is quadratic:

o1 = k{ze + 2}/ Ps-m (HT.6a)
fa=k{za — 2}/ — P (HT.68)
s = kize + 2)y/pa = P (HT.8e)
go = k{ze —z}y/Ps -1 (HT.6d)

Por out servo valve, we wani to use ihe bollowing parameter valoes: Py =
0137 = 10* N m~2, Py = 0.0 N m™?, 25 = 0.05 m, and k = 0.248 x
102 kg—% m}. You have to be s little careful with thess squations since
the expressions x4z must never become negative, and the same is troe for
the expressions under the square roots. A negative pressure difference is
even physically possible due to camiation, but our model does not represent
uvﬂ-ﬂummm In your computer programs, you better

‘I‘hﬁuw-ghlnmulﬂ.lﬂhgulwwh:luh-nu and therefore
linesr in the load pressure pr, ie

f=c-pr =cim —p) (HT.8e)
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where &; = 0.737 x 10='* kg~' m* sec. The flows g,y and g.3 are external

fu =S P (ET.8f)
el = s *Pa (HT.8g)

where ¢, = 0.737 x 10~ kg~ m* sec.

The change in the chamber pressures is proportional to the effective fows
in the two chambers:

A = ol =6 = ga = Giad) (HT.8h)
F1 = o1 Gimd + ¢ — F3 — L3} {HT.84)

where ¢ = 5857 x 10'® kg m™ sec™?. guq is the induced flow which is a
rerult of the moving motor block:

Pimd = ¥ e (HT.55)
and it is proportional to the angular velocity of the hydraulic motor. In
our cass ¢ = 0.5TE x 10~F m?.

The torque produced om the hydraulic motor is proportional to the load
pressure pr:
T =% pt = ¥{m ~ ;) (E7.64)
On the mechanical side of the motor, we have an inertis of J,, = 008 kg m?,
and a viscous friction of p = 1.5 kg m? sec~?,
Fig.H7.6b ahows the overall position control cireuii.

Figure HT.0h. Hydraalic motor position contrael cireait
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The first order controller represents the transiation from the (electrical)
control signal = to the {mechanical) position of the pistom of the servo
valve. 7,, = 0.005 sec is the mechanical time constant of the servo valve,
The error signal e is imited between -1.0 and +1.0.

Cenerate & block disgram that describes the overall system. Code this
position conirol problem in any CSSL, and simulate the siep response of
this system during 0.2 sec.

[HT.7T] Hydraulic System

For the system of hw{H7.6), generate & bond graph description. The con-
trol signals are represented by signal paths, but the hydraslic and the
mechanical parts can be easily deseribed in terms of a bond graph. Discuss
the energy flow in this system. Code the bond graph model in DYMOLA,
generate either s DESIRE [7.12] or & SIMNON [7.6] program, and simulate
the step response of this system during 0.2 sec. Compars the results with
those found in hw{HT7.6).

[HT.8]* Surge Tank Simulation

In hw{H5.4), we have already once analysed the behavior of & water turbine
with & surge tank. To refresh your memory, the schematic of that system
is shown sgin in Fig HT.8.

Flgure HT.8. Power generation using & water turhine

This time, we wish to represent this system using & bond graph notation.
This will ensure that we have modeled the energy flow through the system
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correctly. For this purpose, we need to know one more piece of information
which was not required for the previous model: the pressure tunnel is at
an altitude of 3100 m.

Code your bond graph model in DYMOLA, generate cither & DESIRE
[7.12] or & SIMNON [7.6] program, and simulste the system. Compare your
results with those found in hw{H5.4).

Projects

[PT.1] Code Generation

Develop & new code generaior for DYMOLA for the generation of ACSL
[7.13] programs in addition to the currenily implemenied DESIRE [7.12]
and SIMNON [T7.6] interfaces.

Reassarch

[RT.1] Graphical Input

Develop & graphical front end for bond graph models. Using this software,
we should be able to draw bond graphs om the screen using & soom and
pan capability. We should also be able io aasign new bond graph symbols
{icons) to subnetworks for hierarchical modeling of bond graphs. Finally,
we should be able to deseribe new atomic bond graph models as DYMOLA
model types and assign thess model types io new bond graph icons. A
graphical preprocessor is to be developed which can translats the schematic
into & DYMOLA program.



