Modelin in Non-Equilibrium
Thermodynamics

Preview

Until now, we have dealt with appucations trom either ciassical me-
chanics or electrical circuits exclusively. I.nthh:hlphﬂ.ﬂlhlﬂdh—

dents consider thermodynamics a rather difficult topic. The reason
for this seeming difficnlty lies in the fact that basically all available
treatises of thermodynamics have been written by physicisis rather
than by engineers, Physicists are, by education, phenomenalogically

world, only to understand it. Therefore, their approach to dealing
rﬂhmuﬂmhqﬂhﬁhmﬁmm Rather than looking at a
system as a whole and trying to analyze the couplings of its subsys-
tems (as we engineers do), they always try to single out individual
phenomena and discuss those in isolation. As a consequence, most
physics texts present the topic through a collection of various formu-
las which are all individually correct and meaningful, but which are
hard to relate to each other. It is the aim of this chapter to bridge
the gap between those individually well-known equations that govern
the behavior of non—equilibrium state thermodynamic systems. Ac-
cording to Jean Thoma, another reason why most thermodynamics
textbooks are obscure is the fact that they avoid to work with en-
tropy flow as a physical variable. He remarks rightly that textbooks
for electrical circuit theory would be equally obscure if they were to
deseribe all electrical phenomena in terms of the electrical potential
and the stored energy alone while avoiding the concept of current
ena will be described through a set of adjugate variables comparable
to those used in electrical circnits and in mechanieal motion.
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8.1 Energy Flow

Traditionally, twe separate approaches have been used for dealing
with thermodynamics, a macroscopic approach that describes ther-
modynamics through varisbhles such as temperature, heat and en-
ergy, and which is deterministic in nature [8.7,8.17], and a micro-
scopic approach that analyzes the movement of particles, and which
is stochastic in nature [8.8,8.9,8.15). In this text, we deal with the
macroscopic, and therefore deterministic aspects of thermodynam-
ics exclusively. For this purpose, we shall empioy the bond graph
methodology once more that was introduced in the previous chap-
ter. It turns out that this methodology can present us with a good
insight into the macroscopic processes that govern thermodynamic
systems.

Let us start by revealing one more property of the bond graph
approach to modeling which is related to the flow of energy.

Let us perform the following experiment. We take the simple
electrical cireuit drawn in Fig.8.1,

=i u;'T 100
} .
Figure 8.1. Simple RC circuit

and simulste this cirenit during 0.5 msec. During the first 0.3 maec,
the switch is closed, thereafter it is open. We coded this problem in
ACSL (a trivial exercise). The results of the simulation are shown
in Fig.8.2. From Fig.8.2, we see that the capacitor is being charged
whenever the current and the voltage (proportional to the charge)
have the same sign, and it is being discharged otherwise.
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Figure 8.2. Trajectory bebavior of the RC cirenit

Fig.8.3 shows the relation between current and voltage in the [i,, uz]
plane which is sometimes referred to as the phase plane of this first

order system.

RC—Circuit

Vollage [V]

ARRE

106, i i i !
1.0 -8 -8.2 83 0.8 1.0
Currant [A]

Figure 8.3. Trajectory in the phase plane
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It turns out that, as long as we operate the capacitor in the first or
the third quadrant of its phase plane, energy flows inio the capacitor,
otherwise it flows out of the capacitor.

This property actually holds not enly for capacitors, but for all
circuit elements: energy flows into the element if the effort variable
and the flow variable have the same sign, and it flows out of the
element otherwise,

Let us now look once more at the bond graph describing our simple
passive circuit which was previously shown in Fig.7.13. This bond
graph is repeated below in Fig.8.4.
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Figure 8.4. Bond graph of the passive cirenit

The directions of the harpoons were, on purpose, chosen such that
they indicate the direction of energy flow. The bond graph shows
clearly how the energy is generated in the voltage source, and then
spreads through the cirenit and gets absorbed by the passive com-
ponents. Of course, in case of an oscillation, the energy flow in the
capacitor and inductor can temporarily be reversed, i.e., the capaci-
tor and the inductor can temporarily be operated in the second and
fourth quadrant of their phase planes.

‘What happens with the energy flow in a resistor? Obviously, since
the voltage and the current in a resistor are proportional to each
other, they both change their sign simmitanecusly, ie., the phase
plane plot of the resistor occupies the first and the third quadrant
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only. Consequently, energy can flow inio the resistor only, but never
bhack out.

This property actually holds for all types of resistors, not only
the linear ones. All resistors are represented in the [f, ¢] plane (the
phase plane) through (possibly non-linear) functions which are lo-
cated in the first and the third quadrant of the phase plane exciu-
sively.
effort
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Figure 8.5. Energy dissipation in a hydranlic system

The electrical diode shown in Fig.6.5 is another example of a non—
linear resistor.

How does this agree with the energy conservation law (the first
law of thermodynamics) which states that, in every closed system,
the total amount of energy must be preserved? This diserepancy
cannot be solved within the concepts of electrical systems alone.
However, we have no difficulty solving this problem if we consider the
thermic behawvior of the resistor. The resistor simply gets heated. As
we sée, our previously advocated resistor bond graph representation
was actually incomplete. We should replace it by the enhanced bond
graph representation shown in Fig.8.6 [8.16].

ig RS _@

Figure 8.8. Enhanced bond graph of & resisior
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Consequently, resistors are actually two-port elements. They have
one electrical port and one thermal port. Energy can flow from
the electrical side to the thermal side only, but never the other way
arcund. On the thermal side, we use temperature as the effort vari-
able, and entropy flow as the flow variable. In many textbooks, the
entropy flow is replaced by the heat flow, but this is not such a good
idea since the product of temperature and heat flow is not of type
power. Consequently, temperature and heat flow cannot be con-
sidered adjugate vartables. The equations governing this enhanced
resistor model are as follows:

ug = R(AT) -ip, R(AT)= Ra+ R, AT + Ry-AT? (8.1a)

: 1 :
3=§'Pﬂui. Poloes = up - in (8.18)

The relationship between the resistance £ and the temperature T is
empirical. AT denotes the difference between the temperature of the
resistor and the temperature of its environment, &, is the resistive
value at room temperature, and R, and R, are the first and second
temperature coefficients. Eq(8.1b) simply denotes the continuity of
power flow through the resistor. The causalities on either side of the
RS element is arbitrary, i.e., four different cansalities exist that an
RS element can assume.

Sinee the equations for the resistor are now different from those
that we used before, it has become customary among bond graphers
to denote this enhanced resistor with the symbol £5 rather than K.
The 5 symbolizes the source character of this element’s thermic side
[8.16).

Obviously, the £S5 model can also be used to symbelize the heat
produced in mechanical friction or any other related dissipative phe-
DOMenon.

What happens with the heat once it has been produced? Three
separate physical phenomena provide mechanisms for heat transport

or heat flow, namely conduction, convection, and radiation. Let us
discuss these three phenomena one at a time.
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8.2 Thermal Conduetion

Heat conduction occurs naturally whenever there is & gradient in
temperature. Heat flows from the warmer to the colder spot in order
tutpp:unhththmﬂmﬂ[hﬂum. The reasons for this lmhl.rlu

Let us analyze how heat is dissipated along a rod, one end of
which is hot while the other is cold. The physical law that governs
the thermal conduction along the rod is as follows:

ﬂT ﬂ"]"
i ™ 1

wuﬁulpﬂwmﬁﬂﬁ}mthmm
mt[tﬁm}ud#[m] One way to approximately solve
thilPDEllhj'&mﬁlh; space axis r while leaving the time
axis ¢ continuous. We can approximate the second derivative in space

through:

(8.3)

BTl n)  Tlhava) = W(han) + Tzes) ()
B3 ozt

where z, denotes any particular value #, and £+, are abbreviations
for 2 + Az. By applying this transformation, the PDE is reduced to
a set of ordinary differential equations (ODE's) of the type:

% = 25t = 200 + Tacalt)), k€ {1h...u{n}  (84)

where T,(t) denotes the temperature T at z = z, as a function of
time. Now, we are back in business since we know already how to
solve a set of ODE"s. This technique is usually referred to as the
method of lines,

Let us now lock at one such equation, namely that for k = i

22). D op, mam, (85)
Since T, is an effort variable, this equation looks exactly like the

electrical circuit equation that would result from modeling the circuit
shown in Fig.8.7:
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simoss
C-Bhoio, io=im—im (8.60)
PR, = Tl . ek L '
. R m & (8.88)
Comparison of coefficients suggests that:
enl® 5 amais (8.1

However, we could also multiply the constant 22~ to the other side
of the equal sign, and then, we find that:

O =10, h:ﬂ,=g {8.8)

Obviously, the analogy is not completely determined. Any combins-
tion of A 's and C "s is possible as long as:

R-C=Ry.0=22 (89)

It is obvious that we ean model the entire chain of ODE"s through
the electrical circuit analogon shown in Fig.8.8.
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Figure 8.8, Electrical cirenit analogon of a diffusion chain
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A bond graph representation of this RC chain iz shown in Fig.8.9

This representation would be perfectly correct if all we wanted was
to model the temperature distribution along the rod as a function
of time. However, our rod lives in an environment, and we mmst
somehow model the interaction of our rod with its environment by
applying appropriate boundary conditions. Here, we run into dif-
ficulties with our approach. How do we aitach an entropy source
to the hot end of the rod since we threw out entropy as a variable
in our model aliogether! Remember that, in order to represent a
physical system correctly, it is insufficient to model it through a set
of individual signals. The most important property of any physical
system is the fact the it conserves energy, but energy was thrown out
from our “model” altogether. Fig.8.10 shows the same bond graph
once more, but, this time, the effort and flow variables have been
appropriately named, and the causalities have been introduced. We
shall find that the energy comservation requirement will present us
with the missing condition to come up with & unique and correct
distribution of the &2 factor between the R and ' elements.

5.8 = n R
4&*%‘{? *E*L: t*‘m:if‘m‘

¢ c c
Figure 8.10. Causal bond graph of the diffasion chain
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According to the first law of thermodynamics, the total energy E; of
& closed system is constant. The total energy is defined as the sum
of the free energy E; and the thermal energy or heat Q:

Es=Ej+Q (&.10)

The free energy is the sum of all types of energy except for the
thermal one.

Eq(8.10) can be reformulated in terms of differentials. If the total
energy of & closed system is constant, then the power flow into and
out of the system must be zero:

E'; + g = 0.0 (8.11)

We shall define the entropy flow § of a body as its heat flow §
divided by its temperature:

@

5=¥ (E.12)
Notice that our definition of entropy flow is not totally in accordance
with the usual thermodynamic definition of entropy. However, it
is commonly used among bond graphers, and it is useful for our
purpose.

The capacity of a body to transport heat in a dissipative manner

can be described by the equation:

AT=68.Q=(8.T)-§ (8.13)

where § is the thermal resistance of the body. This looks very much
like Ohm's law, and we can thus also write:

AT=R-5, R=#8-T (8.14)

Here, the reason becomes evident why many textbooks prefer to use
the heat flow () rather than the entropy flow 5 as the bond graph's
flow variable: using heat flow, the resistor assumes & constant value,
while using entropy flow, the resistor is modulated (mmltiplied) with
the effort variable T'. However, using DYMOLA as a modeling tool,
this does not cause any problem and is therefore a small price to pay.

For a rod of length { and cross-section A, we find that the thermal
resistance can be written as:

o= (3 () (s15)



8.2 Thermal Conduction 305

where A denotes the specific thermal conductance of the material.
Again, this looks exactly the same as the corresponding equation for
a rod-shaped electrical resistor. Since we have cut our rod into small
segments of length Az, we replace eq(8.15) by:

Az-T
R=0.T=S"— (8.18)
The capacity of a body to store heat is expressed through the equa-
tion:
ey
.ﬂ.-q=‘fﬁ— {I.lf_l

where 7 denotes the thermal capacifance of the body. This equation
can also be written as:
: aT

M:ﬂi, C=
MNotice that the terms “thermal resistance™ and “thermal capaci-
tance” were traditionally introduced for the relationship between
temperature and heat, and not for the relationship between tempera-
ture and entropy which is truly regrettable. The thermal capacitance
of & body can be written as:

(2.18)

W

T=g-m (8.18)

where m is the mass of the body, and ¢ is the specific thermal ca-
pacitance of the material. The mass can further be written as the
product of density p and volume V':

m=pg¥ (8.20)
and, for our rod segment:
V=dA-Az (8.21)
and thus:
g.%.% (8.22)

Consequently, we can determine the time constant of our diffusion
equation to be:

R-C=8.v=Las? (8.23)
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or:
om n (8.24)

At this point, we know how to dimension both the resistive and ca-
pacitive elements in our bond graph in order to reflect the physicality
of our equations.

The bond graph shown in Fig.8.10 exhibits still one small problem.
As in the electrical case, we seem to have resistances that dissipate
heat, and thereby “lose™ energy. Well, the energy is not lost, it is
simply reintroduced right away at the next node as shown in Fig.8.11.

T, 1,4:,".:1 s W ﬂ,r“j
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Figure 8.11. Corrected causal bond graph for the diffusion chain

Therefore, the i** computational cell of our diffusion chain can be
described through the following set of equations:

% = éﬂ& (8.25a)
ATy=Tiy - T (8.258)
Sici= %-ﬂﬂi (8.26¢)
Sa =S (8.254)
ASi =514 85. -5 (8.25¢)

where T;_, is being determined by the computational cell to the left,
while §; is being determined by the computational cell to the right.

Notiee that our modified bond graph is no longer exactly equiv-
alent to the electrical circuit analogon. While the electrical circuit
is able to represent the temperature distribution correctly, it fails to
also represent the energy flow adequately.
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The bond graph shown in Fig.8.11 is not symmetrical, i.e., it fa-
vors heat flow from the left to the right. This is, of course just an
approximation to what is really going on in the distributed param-
gter system. We could as well have decided to reintroduce the lost
heat one element further left instead of one element further right, or
we could have split the RS element into two equal parts, one tumn-
ing left, and the other turning right. However, the last alternative is
not such a desirable cholce since it introduces algebraic loops as can
be easily verified since we have now some freedom in assigning the
causalitics at the ES clements as shown im Fig.8.12.
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Figure 8.12. Causality choices in symmetric cansal bond graph

It is usually a good idea to bias the BS elements away from the hot
and towards the cold end of the rod.

How about the boundary conditions? Let me first assume that
the “rod™ being modeled is the electrical resistor itself. In that case,
we must cutl our electrical resistor into small resistors of length Az
which are connected in series. Each one of thess resistors contains
a small entropy source which introduces entropy into the thermal
network as shown in Fig.8.13.

A series connection of resistors is represented in the bond graph as
a set of resistors all attached to the same 1-junction which, for topo-
logical reasons, has been split into several “1-junctions™. However,
the harpoons in between those junctions were left out to symbol-
ize that these represent, in reality, one and the same junction. Since
the capacitances determine the temperatures at each 0—junction, the
thermal input at each of these junctions must assume the cansality of
an entropy source rather than that of a temperature source. Had we
decided to introduce the external energy at the 1-junctions instead
of at the 0-junctions, we would have introduced algebraic loops as
can be easily verified. Also, it is important to introduce the electri-
cal power in the form of & current source rather than in the form of
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Figure 8.13. Causal bond graph for the heated rod resistor

If the resistor represents & source of heat or temperature at one end
of & narrow and radially well insulated thin air channel (say, my
meerschaum pipe), then the entropy source is simply introduced at
the “hot™ end of the “rod™ as shown in Fig.8.14.
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Figure 8.14. Causal bond graph for the heated air channel

G

If we decide to introduce the external energy at the nearest 0
junction, we must nse a heat source in order to avoid a structural

Sexiility which MRl avehiting: Suphosis laage au )
can or
structural singuiarities.
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The concepts shown so far can easily be extended to multidimen-
sional heat flow problems. In this case, the heat equation is modified
as follows:

%IF-?’T 'l#.i""}
where V?, for the three-dimensional case, is the Laplacian operator:

8
?"m+5+5 (8.26)

Let us discuss the two-dimensional case. In order to apply the
method of lines approach to an n—dimensional problem, we always
discretize n—1 independent variables, and leave one variable (usually
the time t) continuous. Consequently:

?'T"' T4, 1 ’ Hﬂh Thgr. ) — m‘t'ip n] B ﬂf, By “] ™

Az

which leads to the electrical circuit analogon shown in Fig.8.15 as
can be easily verified.

f

Figure 8.15. Electrical analogon for a two—dimensional diffusion

Such electrical circuit analogies for the representation of distributed
parameter systems are sometimes referred to as Beuken models [8.6].

I refrain from presenting here the correct bond graph for the two-
dimensional case since the graph would be rather busy. However,

generating such a bond graph is not conceptually difficult, just a
little more work.
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At this point, one may jump to the conclusion that the bond graph
r:muﬂmunmﬂrmmmphuhdﬁnlhw
electrical analogon, but this is not really the case. Remember that
the bond graph is not simply another representation scheme for the
same thing. [t provides more mformation than the electrical circuit
diagram since it represents the topological as well as the compu-
tational structure of the system, and moreover, since the electrical
cirenit diagram is even ncorrect with respect to the representation
of the energy flow in the system.
Let us model & computational eell of a three—dimensional heat flow
model in DYMOLA. The DYMOLA equivalent of the BS element is
presented below.

model type £5

cut Alel/f1) Ble2/ - [2)
main eut O4 B
main path F < A~ B >
parameter = 1.0
Hi?l—:j:

ele fl=uln

end -

However, 15 elements with a thermal primary side must be modeled
using a modulated RS element as shown below, since the resistance
is multiplied with the temperature (i.e., the effort variable).
ﬂm-ﬂ
cut 1 -
S
main path F < 4 - B >

parameter theta = 1.0
R = thetaw el

Rsfi=el
gls fl =&de 2
amed

Motice that the modulation uses the secondary effort e; and not the
primary effort e,, since ¢; denotes an absolute temperature whereas
£y is & temperature difference.
Similarly, thermal capacitances must also be “modulated”, since
the capacitor mmst be divided by the temperature.
model type mC

eut Ale/f)
parameter gamma = 1.0
&= —-;‘-
Cwdar(s) = f

end

Notice that the “modulation™ of a capacitance is a rather dubious
undertaking. How do we ensure that the “modulated” capacitance
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is still an energy storage element, and does not suddenly start to
dissipate energy! This problem requires some further contemplation.

The energy stored in a capacitor (or inductor) is the integrated
power that flows into that capacitor (or inductor), thus:

[ ] ]
E() = [ P(rydr = J e(r)- f{r)dr (8.28)
Eil

whereby the energy for t = (L0 has arbitrarily been normalized to
ﬁﬂ'nhgthhmhﬁwthmﬂﬂyhm{thnM]nf
capacitor:

o0 = [ firsar (8.29)
we can write:
E() = ! )it = [ otabi (8.30)

Thus, in order for an element to behave like a capacitor, the effort £
must be expressible as a (possibly non-linear) fonetion of ¢:

ec = $oige) (8.31)

Similarly, we can use the formmla for the generalized momentum (the
fux) of an inductor:

o) = [ etriar (32)

Therefore, in order for an element to behave like an inductor, the
flow f must be expressible as a (possibly non-linear) function of pe
fr=%¢(py) (8.33)

Let us check whether our “modulated” capacitance satisfies eq(8.31).
We know that:

felty=C- i.g{l} = m iﬂ-[l} {I.I-'l}

and therefore:
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] =
wlt)= [ folrkdr=7 [ “€ir =1 logtec) (839
a a

The capacitive charge g is indeed a non-linear function of the effort
ec, and the capacitive nature of our “modulated” capacitance has
thus been verified.

Let us return to our heat flow problem now. We want to assume
that each cell consists of one “modulated” capacitor, and three mod-
ulated resistors, namely the one to its left, the one to its front, and
the one below as shown in Fig.5.16. Remember that, for DYMOLA
modeling, bond graphs mmst be enhanced to aveoid the necessity to
attach any elements to 1-junctions.

The following DYMOLA model describes a three—dimensional diffu-
sion. cell:
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model type «3d

submodel (mAS) Bz, Ry, Hs

submodel (mC) Cle « = 198.0)

submodel (bomd) B2l, Bz2, Bea, Byl, By?, Bya, Bzl, Bsl, Bsa
node Ne, Nza, Ny, Nys, Nz, Nza

cut Calenffz), Cylen/fy), Colez/fz), Cileif - fi)
path Pea c Ca=Chia, Py Op—Ci>, Prec O =00

connect Bzl from Cz  to Ne
connect Byl frem Cy  to Ny
connect Bzl from Cr to Nz
conneect Bzl from Vs  to Oi
connect Byl from Ny Lo O
connect Bzl from iV ta Ch
connect Sea from Nz 1o Nee
connect Bya from Ny  to Nyo
connect Hea from Ne  to Nza
connect Bz from Nea to O
connect By from Nya to O
connect Bz from Nas to Ci
connect & at O

end

Notice one additional new concept: While invoking the submodel &
of model type mC, we assigned an initial condition of T = 298.0°K
to the integrator inside the mC model.

Now, we can create a diffusion model that contains as many com-
putational cells as we need, say the 27 c3d cells C111, ... 0333, three
in each direction. These cells are then best connected through their
paths with statements such aas:

connect (Pe) 0111 = 0311 — 311, €112 - £313 - O3
connest [Py} C111 = 0131 = 0131, O112 — 0122 — 0132
conmest (Pz) C111 — C112 = 0113, C121 = C132 — C173

Altogether, 27 such connections will be needed. Then, we mmust
attach additional capacitors to each of the left-most, fromt-most,
and bottom-most c3d cells, and set the entropy flow equal to zero
at each of the right-most, back-most, and top—most cells. Finally,
we may attach entropy sources to any of the cells as desired for the
purpose of modeling thermal input.
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8.3 Thermal Convection

So far, we have discussed only one mechanism of heat transfer,
namely diffusion, i.e., heat transfer that is caused by the micro-
scopic motion of individual particles. However, heat is attached to
matter, and a second form of heat transfer is by means of moving
matter around on a macroscopic scale. Obviously, the heat stored
in any moving piece of matter is transferred together with that mat-
ter. This physical phenomencn is called convection. It describes the
transfer of heat as a result of macroscopic rather than microscopic

movement.

Convection can occur autonomously. If we heat the floor of a
room, the surrounding air expands, and thereby its density is being
reduced. Consequently, the hot air moves upward toward the ceiling,
and is replaced by colder air that moves down toward the floor. This
is a typical example of a convective phenomenon.

Convection can also be artificially induced. In a room which s
heated through a warm water radiator, the convection can be in-
creased by installing & fan that blows at the radiator. This fan will
increase the air circulation in the vicinity of the radiator, and thereby
increases the convection.

Let us model convection mechanisms in a solar heating system.
Water is contained in a pipe which connects the water heater with
the solar collector. At the solar collector, the water is heated by the
sun (mostly through thermal radiation). The sun also feeds a solar
battery which drives a small pump that circulates the water from
the water heater to the collector and back, i.e., the mechanism of
transferring the heat from the solar collector to the water heater is
primarily convective.

Let us assume that the pipe is free of air, and that the water in the
pipe is totally incompressible. Under this assumption, water will low
through the entire pipe with a constant velocity v, as soon as the
solar battery turns on the pump. Heat will thereby be transferred
from one computational cell to the next.

Let g denote the hydranlic flow rate expressed in m? sec=!. The
volume of water in one computational cell is V' = A - Az. Therefore,
the amount of entropy that leaves the ** computational cell per time
unit to the right is:

5:-.=ﬂ.-!:r% (8.38)
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which can also be written as:
S =(C-3L) T (8.37)

In the same time unit, a similar amount of heat is transferred into
the cell from its left neighbor:

fu=(C- %]'Tt—i (8.38)
These two equations can be combined into:
$i wome = Guoms ' ATh)  Gosne =C- 3 (8.39)

Consequently, the effect of the convection is simply a second con-
vective resistance which is connected in parallel with the conductive
resistance, Le., convection simply increases the thermal conductivity.

Obviously, the above equations contain a number of implicit sim-
plifications. In reality, we ought to consider the friction between the
liquid and the wall, and the friction within the liguid. By doing so,
we would see that the liqguid flows faster at the center of the pipe,
and slower in the vicinity of the wall. The hydraulic friction is again
a dissipative process which produces more heat and therefore should
result in additional small entropy sources applied to the thermal
model.

If we let go of the assumption of Incompressibility, for example,
Enm&d:pﬂnwhgtbrm;hthepipcrﬂhutluiﬁqﬂﬂ,

process,
pneumatic process will generate a time- and space—dependent flow
rate g{t,z) which can be used to modulate the convective resistance
of the thermal model. The fluid dynamics model would also have
to provide equations for the pneumatic dissipation which could then
be used to drive additional RS elements which bridge over from the
pneumatic to the thermal subsystem. However, we shall not pursue
this avenue any further.

8.4 Thermal Radiation

The third mechanism of heat transport is through thermal radiation,

Le., the emission/absorption of light. In order to fully understand
the rationale behind thermal radiation, we would again need to look
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into the microscopic aspects of thermodynamics. However, we can
analyze the macroscopic effects of thermal radiation using the law of
Stefan-Boltzmann which states that the emitted /absorbed radiation

of a body is proportional to the fourth power of its temperature:
R=e. T (8.40)

where o is different from the o that we met previously in thermal
conduction. ¢ here denotes the capability to emit and/or absorb
light which depends on the body's color. Black bodies emit/absorb
much more strongly than white bodies — that is why there aren’t so
many dark painted cars here in Arisona. R is the emitted /absorbed
power per unit surface. Consequently, this equation can be rewritten

Fit.H
Q=c-A-T* (B.41)

where A denotes the emitting surface, or, in terms of the emit-
ted /absorbed entropy:

S=g.A.-T* (8.42)

which is the version of the Stefan—Boltsmann law that I prefer. Also

the radiation phenomenon is clearly dissipative. It can be deseribed
by yet another (non-linear) R or RS element where:

n-g-ﬁ (8.43)
which is again a modulated resistor. As with all other dissipative el-
ements, the causality of this element is not predetermined. Emitted
radiation usnally uses temperature as a caunse while absorbed radia-
tion usually assumes the causality of an entropy source. Therefore,
IS elements describing radiation are usually located between two
0-junctions as shown in Fig.8.1T:
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Figure B.17. Power exchange between two bodies through radiation

™ denotes the percentage of the surface of the first body that radiates
toward the second body, and 1, denotes the percentage of the surface
of the second body that radiates toward the first. This is shown in

Fig.8.1Th. The thin full arrows are signal paths. They symbolize
the temperature modulation of the dissipative elements. This bond

graph leads to the following set of equations:
1
Siee = m fi= H'E-T'i (8.44a)
i'm-{l-m]'E'T:. [8.448)
é.,-%v#u. (8.44c)
§n=h-1-:;'ﬂ (3.44d)
5--[1—&}-%-‘1': (8.44e)
Sa =72 e (8.441)
Aoty (14%)

By = oy dg-T0 (8.44h)
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8.5 Thermal Inertance: The Missing Link

A strange discrepancy may be noticed in Table 7.1. The table sug-
gests that thermodynamic systems don't possess a generalized mo-
mentum. Since the generalised momentum can always be expressed
as the product of inertance and flow, this is equivalent to saying that
thermodynamic systemns don't possess inertance. Indeed, none of the
bond graphs shown in this chapter exhibits any inertances.

It has been shown that the existence of a thermic inertance would
be in contradiction with the second law of thermodynamics which
states that, in a closed system, the total entropy can never decrease
(8.1]:

Stotet 2 0 (8.45)

In reversible thermodynamics, according to eq(8.17), the total en-
tropy is always kept in balance, while in irreversible thermodynam-
ics [8.13,8.18), according to eq(8.13), the total entropy always grows,
unless the RS element has two thermic ports, in which case the en-
tropy stays in balance. One of the consequences of the second law is
the fact that spontanecus heat flow can never occur from a point of
lower temperature to a point of higher temperature. (A cold body
can radiate heat to a hot body, but the radiation in reverse direc-
tion will always over—compensate, i.e., in the balance, heat still flows
from the hot to the cold body.)

Now, let us assume that we found a thermic inertance. Its state
equation would be:

ds
AT=I = (B.48)

Le., the thermic inertance can be used as a storage element for en-
tropy flow which indicates that a constant entropy flow may exist
even for AT being equal to zero. This is clearly in contradiction
with the second law, and thus, thermic inertances indeed do not
exist.

Is this statement in contradiction with the observed heat wave [or:
“second sound™ wave) in superfluld Helium (Helimm-II) [8.10,8.11,
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8.12]? It is correct that a linear system with constant £ and C co-
efficients can never cscillate. However, this statement is no longer
true when we allow the B and O parameters to be modulated by
other variables, One possible explanation for the second sound wave
is through convection. If the hydranlic subsystem produces an oscil-
lating flow rate q, then this flow rate will modulate the convective
resistance in such a way that a heat wave can indeed occur. Also, the
thermal capacitance is strongly non—linear in the vicinity of the so—
called A-point, Le., the point of transition between liquid Helium~1
and superfiuid Helium-II. A nice research topic would be to for-
mulate the so—called two—fiuid theory in terms of the bond graph
methodology, and thereby come up with a simulation model that
reproduces the observed second sound wave while conserving both
energy and mass in the system.

8.8 Irreversible Thermodynamics

Une of the properties of state-space models is the fact that they
allow us to “reverse time” (at least in a mathematical sense) in a

trivial manmer. Let me explain this concept. We want to discuss the
general non—linear state—space model:

=) — flxfe) uie), ) (8.47)
which we can simulate forward in time:

titg—=iy, iy>ip

Now, we wish to “reverse time”, and simulate the system backward
in time:

rily — g, lg <y

such that the final state of the reversed model is the same as the
lniﬂdmdthnmi;lnﬂmndnl. Obviously, this can be achieved

Tttty —t (8.48)
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and therefore:

i
Consequently, we can rewrite our state—space model in the new in-
dependent variable v as:

i:L:.'l * i"jﬂ 2 b (8.50)

In other words, by simply placing an inverter at the input of every in-
tegrator in the state—space model, we can reverse the time—behavior

of any state—space model.

Let us demomstrate this concept by means of a second order aun-
tonomous time—invariant system, the famous Van—der—Pol oscillator,
in which the time reversal can be easily visualised. This example will,
in addition, teach us some basic properties of trajectory behavior of
state—space models,

The Van-der—Pol oscillator is described by the following second
order differential equation:

F-pll-2"Y+e=0 (8.51)

By choosing the outputs of the two integrators as our two state
variables:

m=s Hn=@

we obtain the state—space model:
h=ﬂ| tm}
ds=p(l - af)ea -z ()

We coded this model in ACSL (another trivial exercise), and ran
six different simmuiations with various sets of initial conditions for
the two state variables z, and ;. Fig.8.18 shows the results of this
simmiation.
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Van—der—FPol Oscillator

H . "-.
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Figure 8.18. Trajectory behavior of the Van—der—Pol oscillator

Fig.8.18 shows & phase-portrait of @, plotted as a function of =,.
Four of the initial conditions were chosen very close to the origin
which is an unstable singularity. It becomes obvious that the solu-
tion is extremely sensitive to the initial condition when the initial
condition is chosen close to the origin. The other two initial condi-
tions were chosen far away from the origin. It turns out that a stable
limit cycle exists which attracts all trajectories emanating from any
point in the phase plane except for the origin itself.

We then applied the above described time reversal algorithm which
leads ns to the following set of equations:

By = —83 (8.53a)
£ = —p(1 = )y + 2y (8.5%)

which we again simmiated using four different initial conditions as
shown in Fig.8.19. The former limit cycle is here not part of any
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trajectory. It was simply copied over from Fig.8.18 for an easier
comparison between the two figures.

Reversed Van—der—Pol Oscillator
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Figure B.18. Trajectory behavior of the reversed Van—der—Pol equation

The formerly unstable singularity at the origin has now become a sta-
ble singularity, a so~called attractor. The formeriy stable limit cycle
has turned into an unstable limit cycle. Trajectories emanating from
anywhere inside the limit cycle are attracted by the singularity at
the origin, whereas irajectories emanating from anywhere outside
the limit cycle escape to infinity. The limit cycle has thus become
& border line between two domains, the region of stability (the do-
main of attraction) of the singularity at the origin, and the unstable
domain encompassing it.

It can be observed that, in the phase plane, the two sets of time—
trajectories look exactly the same, only the direction of the arrows
has been reversed.

We also ran the following experiment. Starting from the initial
condition [2,, 23] = [0.1, 0.1), we simulated the original Van-der-Pol
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equation over 2 sec. Thereafter, we reversed the sign of the imputs to
the two integrators, and continmed to simmlate the system for another
2 sec. This ACSL program is a little more interesting, therefore, let
me write down the code:

Program oscullaior
Inltial
cwu.--u.l, el =01, 20 =0.1, ¢ = 1.0
Cloterval ciné = 0.05
schedule revers -ai. 1.0
Exnd 8 "of Initial™
Diynamie
Derivative
wld = n2
#3d = Lis{l0—eleel)wel—=l
ezl = INTEG(c»zld, =10)
22 = INTEG{c» zid, s20)
End § "of Derivative”
Discrein revers
&= =10
End § "of Discreis revers™

The time—event revers was used to model the discrete event of switch.
ing between the two modes of the simmlation. Fig.8.20 shows the
results of this simmlation. The final values of the two state variables
were again [2,,z,] = [0.1,0.1], correct up to eight digits, i.e., we have
successfully reversed the model to the original initial conditions.

x, and 1,

Figure 8.20. Time reversal for the Van—der-Pol equation
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However, let us see what this seeming “time reversal” really means.
Fig.8.21 shows the plot of the two state derivatives #, and £, over
time.

- Time Reversal in Van—der—Fol Equation
= I t H i i
: & : : :

[T S

= 2.3 ) 1.8 a8 28 =8 B %D
Time [sec]

Figure 8.21. Time reversal for the Van—der-Fol equation

Obviously, these two variables were not properly reversed. “Time
reversal”, in a mathematical sense, means the reversal of all siaie
variables in the model. However, the state derivatives are not re-
versed; they change their sign. This can be easily seen from the
“reversed” state—space model.

are the currents through the inductances, and the voltages across
capacitors. Consequently, in a time reversal, those will remain the
same. However, the voltages across inductances and the currents
through eapacitors will change their sign. Therefore, time reversal
is an Mlusicn.

Let us now repeat the above experiment, but, this time, we shall
apply time reversal.

The final state after 40 sec is now [z,,2,;] = [L.59 x 10~%,1.50 x

lﬂ"],Li.,nmnplltdIm Fig.8.22 shows the time trajectories of
the two state variables.
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Figure 8.22. “Time reversal™ for the Van—der-Pol squation

but thereafter, around time 28 sec, the trajectories suddenly devi-
ate from their expected paths, and skip one whole cscillatory cycle.
What is the reason for this unexpected behavior?

The Van-der-FPol oscillator exhibits two types of singularities. The
origin, i.e. the point |£,,2;] = [0,0], is an unstable equilibrizm point.
If we start at the origin, 2, and #; will stay at the origin forever,
i.e., the trajectory consists of a single point. However, the small-
est disturbance away from the origin in any direction will make the
trajectory move away from the origin, and approach the second sin-
gularity which is a stable Emit cycle.

It becomes immediately evident that the sensitivity of the trajec-
tory to the initial condition grows larger and larger, the closer to
the unstable singularity the initial condition is chosen. At the singn-
larity itself, the sensitivity is infinite. This can be easily seen from
Fig.8.18 where four of the initial conditions were chosen very close to



328  Chapiler §: Modeling ;. Non-Eguilibrinm Thermodynamics

the origin, and the resuiting trajectories were rather different. For
all practical purposes, we can say that the trajectory behavior is
non—deterministic if the initial condition is chosen in the vicinity of
the unstable singularity.

If we reverse the time, the previously unstable equilibrium point
turns into a stable equilibrfium point (an attractor), whereas the pre-
viously stable limit cycle turns into an unstable limit cycle, i.e., the
region inside the unstable limit cycle is now the domain of attraction
of the stable equilibrium point. This provides us actually with an ex-
cellent technique to determine the domain of attraction of any stable
equilibrium point of a second order system. We simply reverse time
and simmulate the system until the trajectory becomes periodie, i.e.,
traverses its (meanwhile stable) limit cycle. If we start the reversed
simulation from somewhere in the vicinity of the unstable limit cycle,
the trajectory behavior is extremely sensitive to the precise choice
of the initial condition, although, as Fig.8.22 demonstrates, the sen-
sitivity does not have to become evident immediately.

In our example, since both types of simmlations tend towards a
singular solution, time becomes irreversible for all practical purposes
if we just wait long enough, Le., if we perform one type of simmlation
for sufficiently long and then “forget” the trajectory that we just
generated, we cannot hope to retrieve the trajectory by executing
the reversed simmlation starting from the final value of the original

It is true for all (arbitrarily non-linear) systems, that the trajec-
tories are always repelled by unstable singularities, and attracted by
stable singularities. For & long time, it was therefore believed that,
if we just wait long enough, all trajectories of antonomous systems
do either approach stable singularity points, stable limit cycles, or
escape to infinity. This is unfortunately not so. Other types of sys-
tem behavior exist that are stable, non-stationary, and non—periodic.
These are called chaotic motions, and we shall analyze examples of
such behavior in Chapter 10 of this text.

According to a number of highly reputed physicists, it is this type
of time “irreversibility” that is at the origin of the seemingly stochas-
tic microscopic behavior of thermic systems (the Brown movement),
mmawmhmwm
that is expressed in the second law of thermodynamics [8.14]. This
rationale was thought to explain the seeming discrepancy between
the “time—reversibility” of any state—space model, and the obvi-
ous time—irreversibility of thermic systems due to the second law.
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However, & much simpler explanation can be found for the time-
irreversibility of thermal systems.

Let us lock a little more closely at the physics of “time—reversal®,
What does the mathematical operation of inverting the inputs of all
integrators mean physically? For this purpose, let us analyze time-
reversal in the context of a simple electrical circuit. What does it
mean in this context to invert the inputs of all integrators? Let us
look at the simple state equation:

g (8.54)

1
= f B.55
o e (8.55)

and, since we wish to retain the capacitive current iz, we need to
accept the necessity of a “negative capacitor® which is not exactly a
physically sound concept. But let us accept this answer for the time
being. “Time-reversal” in a simple passive circuit is accomplished by
replacing every capacitor in the circuit by a “negative capacitor”, and
every inductor by a “negative inductor”. If we then let all sources run
backward through time, we have achieved the desired time—reversal
in terms of the electrical variables, i.e., all voltages and currents in
the circuit run “backward™ in time.

However, since the currents and voltages over the resistors have not
changed after the time—reversal (according to our premises), power
is still being dissipated by them, and the resistors continue to heat
up rather than cool down (in accordance with the second law). How
can we get the thermal variables to reverse as well? Mathematically,
the answer is straightforward. We simply mmst include dissipated
energy into our model as an additional state variable, i.e.:

H“T = Pss = up - ig (8.58)
Time—reversal turns this equation into:
—ﬂ:;" = —Pilpgs = —ug - ig (8.5T)

Unfortunately, this equation is physically simply wrong. The dissi-
pated energy is the integral of the electrical power over the resistor,
and not the integral of the negative electrical power. We could defer
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the negative sign to either the resistive voltage or current (by intro-
ducing a “negative resistance™), but this would not be in accordance
with the time—reversal of the electrical variables.

What we learned is the fact that the operation of “simply placing
an inverter in front of every integrator in the system™ is not & phys-
ically meaningful proposition. This Is exactly what I meant when
I wrote in Chapter 1 of this book about the danger of “falling in
love with our model”. Many mathematically correct manipulations
can be applied to a model, which could never be applied to the real
system becanse they violate its physicality conditions. Therefore,
the mathematically feasible time—reversal of state-space models is
not in contradiction with the second law of thermodynamics. The
facts are much simpler than that. The mathematical operation of
“time-reversal” simply violates the physicality of the model.

8.T Summary

In this chapter, we have discussed thermodynamics from a systemic
rather than from a phenomenclogical view point. We have seen that
bond graphs present us with a tool to ensure adherence to phys-
icality in modeling thermodynamic systems, and we have seen by
means of an extended (drastic) example what can happen if physi-
cality is being ignored in the process of model manipulations. Bond
graphs are not just another tool for mathematical modeling. In fact,
bond graphs are quite meaningless when applied to the description
of mathematical equations bare of their physical interpretation. It is
therefore not currently feasible to apply bond graphs to the descrip-
tlon of a macro—economic model, for example, since we don't know
what “energy conservation” means in such a model. What means
“economic power” in a system theoretical rather than in a political
sense? We don't know. Consequently, we cannot define a set of
adjugate variahles that describe the behavior of a macro—economy.

However, | would like to go one step forther. While I cannot prove
this to be correct, [ am personally convinced that any real system,
that can meaningfully be described by a differential equation model
(and macro—economic systems are among those without any ques-
tion), possesses some sort of "energy™ which obeys the law of energy
conservation. It is just that, to my knowledge, nobody ever has
looked into systems, such as jes, from quite that per-
spective, and has tried to come up with a meaningful and consistent
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definition of the terms “energy” and “power”, and from there has
derived a set of adjugate variables, the product of which is “power”.
This would be a very worthwhile topic for a Ph.D. dissertation.

Bond graphs have been successfully applied to most areas of phys-
ical systems which result in ordinary differential equation models. In
this chapter, we have seen & meaningful application of bond graphs
to one case of a partial differential equation as well, namely the
diffusion equation eq{8.2). However, bond graphs have not yet been
successfully applied to most other types of PDE models such as those
occurring in fluid dynamics [8.3,8.4]. The reason is again a simple
one. Most systems that are governed by PDE's require more than
Just energy conservation. Liquids can change their shape while they
still preserve their volume. Gases don't even preserve their volume.
Yet, all these systems conserve mass. Consequently, we must ensure
that our models not only conserve energy, but also that they conserve
mass. In a bond graph, mass appears as a parameter. Distributed
poeumatic systems would therefore have to be described through
modulated parameters, a technique which does not guarantee that
the mass is properly conserved. It Is currently unclear how we can
come up with a systematic methodology, a generalized bond graph
maybe, that ensures conservation of both energy and mass simulta-
necusly. Such an investigation might therefore be a fruitful topic for
yet another Ph.D. dissertation — not exactly an easy task either.
I shall pursne this avenue quite a bit further in Chapter 9, but the
final answer to this guestion has certainly not yet been given.

Please, notice that the theoretical foundations from which the
bond graph methodology was derived are mmch deeper than I was
willing to reveal in this book. In particular, notice the similarity
between the concept of “adjugate variables” as used in the bond
graph approach to the modeling of physical systems, and the “ad-
jugate variables™ that were briefly introduced in Chapter 4 relating
to the Hamiltonian of a system, and yet, the Hamiltonian was only
defined for conservative (i.e., non—dissipative) systems, while bond
graphs extend naturally to cover dissipative processes as well. This
similarity is not accidental and needs to be explored further. The
question of finding a “generalized bond graph™ may be just another
formmlation of the desire to find a “generalized Hamiltonian™, & hot
topic among applied mathematicians who are interested in the study
of dynamical systems.

Finally, I would like to acknowledge the contributions of Pe-
ter Breedveld of the Technical University Twente (Enschede, The
Netherlands). His insight into the principles of thermodynamics and



330 Chapter §: Modeling in Non-Equilibrium Thermodynamics

into the bond graph methodology, as expressed in his Ph.D. dis-
sertation (8.1], were essential to my understanding of the material
presented in this chapter.
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Homework Problems

[H8.1] Heat Flow Along a Copper Rod

A copper rod of length £ = | m and radius r = 0.01 m is originally in an
equilibrium state at room temperatuze T = 208.0°K. At time ¢ = 0.0 sec,
the left end of the rod is brought in contact with a body which is kept at
& temperature of Ty = J90.0°K.

Model the rod through a set of 10 one—dimensional cells. Model the
boundary conditions through an effort source attached to the input port
of the first segment, and specify that the heat flow out of the output port
of the last segment is sero. We want to assume that the heat transport
in the rod oceurs purely by means of diffusion, and that the rod is so well
insulated that no heat escapes through its surface.

The density of copper is p = 8080.0 kg m~2, the specific thermal condue-
tance is A = 4010 JF m~" sec™? K -1, and the specific thermal capacitance
is com 386.0 J kg~ “K -1,

Simulate the system during 20000.0 sec, and display the temperature in
the middle of the rod and ai the end of the rod.
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[HB8.2] Lightning Rod

A copper lightning rod of length £ = 5 m and radius r = 0.01 m is cnpoauy
in an equilibdom state at room tempernture T = 208.0°K. AL time ¢ =
0.0 sec, the left end of the rod is hit by lightning which results in a current
lﬂuifu:imld-ﬂHIhldlﬂﬁnﬂiﬁ.=Tlpm

Model the rod through a set of 10 one—dimensional cells with &5 elements
attached to ench cell which represent the heat input through electrical
dissipation. Model the boundary conditions through a flow source attached
to the single electrical port, and specify that the heat flow out of the output
port of the last cell is sero. We want to assume thai the heat transport
in the rod occurs purely by means of diffusion, and that the rod is so weil
insulated that no heat escapes through its surface.

The density of copper is p = 8960.0 kg m~?, the specific thermal con-
ductance is A = 401.0 J m~L see~! "K-1, the specific thermal capaci-
tance is ¢ = 386.0 J kg~' "K', and the specific electrical resistance is
P =1T:-107* 0 m.

Simulate the system during 5+ 10™* sec, and display the temperature in
the middle of the rod and at the end of the rod. Which is the marimnm
temperniure increase that the lightning rod experiences?

Projects

[P8.1] Solar Heated House

Fig.P8.1a depicts a solar heated house. One or several collectors act as
black bedies which absorb incoming sclar radiation. Comsequently, the
temperature inside the collsciors raises. The collectors can be filled with
any material with a large heat capacity. Usually, it is simply air. Inside
the collectors, n water pipe meanders back and forth betwesn the two ends
of the collector thereby maximising the sxposed pipe surface. We shall
call this & “water spiral” [8.2]. A (mostly conductive) heat exchange takes
place between the collecior chamber and the water pipe, thereby heating
the water in the pipe. A pump circulates the water from the collectors
to the storage tank, thereby transporting the heat conwectively from the
collectors to the tank. We call this the “collector water loop” [8.2). The
water spirals in the warious collectors cam be either series connected, or
they ean be connecied in parallel. The pump is usually driven by & solar
panel. In the panel, the solar light is converted Lo electricity which drives
the pump, Thereby, the pump circulntes the water only while the sun is
shining which is exacily what we want. In addition, & freese protection
device is often installed which also switches the pamp on whenever the
outside temperature falls below 5°C.
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Figure P8.1a. A solar heated house

The storage tank is often realised simply as a large and well insulated
waler container (o water heater). However, such a solution would get us
into mixing thermodynamics, and may be a little difficalt to model at this
point. Therefore, we shall assume that a solid body storage tank is used
together with another water spiral which deposits the heat in the stormge
tank just the same way as it was picked up in the collectors. Consegquently,
the water from the collector loop and from the heater loop never mix.

A second waier spiral inside the storage tank belongs to the “hesier
waler loop”. It picks up the heat from the storage tank. An additional
mmnmmwﬂmmmmm
whenever the storage tank temperature falls below a eritical value, but does
so only during night hours when slectricity is cheap.

The heater water loop is driven by another pump which is switched on
whenever the room tempersture falls below 20*C during the day or 18*C
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during the night, and which is switched off whenever the room temperature
raises beyond 22°C during the day or 20°C during the night.

In the house, we use one or several “radintors” (more water spirals)
which, contrary to what their name suggests, exchange heat with the room
in & partly conductive and partly convective manner,

Fig.P8.1b depicts the collector in more detadl.

Figure PA.1b. The sclar callectar

The water spiral is modeled through a series of one—dimensicnal cells as
introduced in this chapter. We want to model each such cell as shown in
Fig.P8.1e.
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Figure P8.1c. Bond graph of & one—dimensional cell
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Ench cell is deseribed by a DYMOLA model type ealled cfd dym which,
from now on, can be used as an additional bond graph element. The
correct causalities have been marked on the graph. The mG5 element is
& “modulated conductive source”™. It is modulated with temperature (as
always in thermal systems), but, in addition, it is also modulated with the
water velocity in the pipe as shown in Fig.P8.1d. Since the conductance
changes lineazly with the water velocity v, it was preferred to model this
element through its conductance rather than throngh its resistance.

o T

convective
heat transport

conductive heat transport
PV

L j

Flgure P8.14. Modulated conductive sonrce

The cld model references three submodels, a tempemature modulated ca-
pacitance m, & temperature and water velocity modulated conduective
source mG'S, and finally the reguiar bond submodel. Remember to ang-
ment the bond graph by additional 0—junctions to ensure that all elements
are attached to O-junctions only.

Fig.F8.12 shows the heat exchanger model which is used to describe the
exchange of heat across the border of two medis.

ru/_‘m“ﬂw
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Flgure PA.1e. Bond graph of & besi exchanger
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The heat exchanger is used here to model the transfer of heat from the
collsctor chamber to the water spiral

The water spiral is modeled through a series conneetion of several ¢ld
elements with heat axchangers attached in between. Fig.P8.17 shows the
water spiral. We decided to eut the spiral into three diserets links. Obvi-
ously, this is an approximation of & process with distributed parameters.
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Figure F8.1L Bond graph of & waier spiral

Notiee that the newly introduced bond graph symbal representing the water
spiral is & J-port element,
We need to model also the loss from the colleetor chamber to the envi-

ronment. This loss is partly conductive and partly convective. Fig. Pa.1g
depicts the loss element (a 1-port element).

mG
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Figure P8.1g. Bond graph of thermic loas
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The effort souree denotes the outside tempersture. The mG aslement de-
notes the heat dissipation to the environment. The dissipated heat is pro-
portional to the difference in temperatures between the inside and the out-
side. mi7 is & modulaied conductance similar to the mGS element found
enrlier, but this time, the secondary port (the environment) is not modeled,
and ithe modulation i now with reapect to Lhe wind velocily sy a4 raiher
than with respect to the water velosity =,

We are now ready to model the overall collector. Fig.F8.1h shows the

x = (0—ycol —Y0)
SF— 0 —YLoss l

| =
g .

J

Figure P8.1h. Bond graph of ihe collecior

The mC element is the (temperature modulated) heat capacitance of the
collectar chamber. The SF clement denotes the heat input from sclar
Bt

We use the hierarchical cut concept of DYMOLA to combine the two
cuts (i.e., bonds), inwater and owtwaler, into one hierarchical cut, water.
This can be pictorially represented by & double bond. This aggregaied bond
ygraph representafion has, of course, the disadvantage that causalities can
no longer be depicted.

Let us now model the heni input from the solar madistion. Fig PE.li
shows a typical heat flow enrve over a peniod of three days.
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Flgore PA.1l. Heat flow from salar radiation
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Of course, the curve changes somewhat with the time of the year and with
the location on the globe (the latitude). We wish to model the heat fow
cortectly for an arbitrary time of the year, and for an arbitrary latitode.
For this purpose, creste s model that describes the motion of planet Earth
around the sun. Neglect the influence of the moon and of the other planets.
The output of that model will be the celestial coordinates (declination and
right ascension) of planet Earth as & function of the time of the year ex-
pressed in sun—centered coordinates. Create s second model that converts
these coordinates to the celestinl position of the sun expressed in Earth-
centered coordinates. Create s third model that, for any position on our
i.e., use the sidereal time to comvert the right ascension of the sun to its
hour angle equivalent.

By now, we know the apparent position of the sun for any Iatitude, for
any day of the year, and for any time of the day. We need to comvert
this to the available solar heat fiow. This depends on the angle of the sun
above the horison, or more precisely, it depends on the thickness of the
asimoapheric layer that the solar rays must travel through before reaching
the surface. This fumction has been tabulaied and can be found in the
Hiersture. Create s model thai converts the solar position to the available
heat flow (nssuming optimal visibility and a spotless blue sky).

At this point, we know how much solar heat is available per time unit
and per visible unit surface. The visible surface of the collector depends on
one st collector, We shall certainly position the collsctor exnctly towards
the south when located anywhers on the northern hemisphere, and exacily
towards the norih when locaied on the souihern hemisphere. The oplimal
slanting angle with the horisontal depends on the Intitude. AL the equator,
the optimal angle is 0°, at the pole it is 00®. It turns out that & good
choice for the slnnting angle is the Iatitude itsell. Standard collectors come
in sizes of 1 m ¥ 2 m. Create a model that converts the awailable solar
heat to effectively used solar heat per optimally positioned but fixed flat
collector ab any given lstitudes, ai any given day of the year, and ai any
given time of the day.

Since heat flow is the product of entropy flow and temperature, we can
divide the effectively used heat by the collecior temperaiure, and model
the resulting entropy flow into the collector as a (lime and temperature
modulated) heat source.

We are now ready to model the transport of hest from the collector
to the storage tank, i.e., the collector water loop. We model each of the
pipes through a series of one—~dimensional cells, and we shall assume that
the pipes are thermically well insuisted, ie., that no heat is lost to the
environment on the way, Fig.P8.1j depicts the water loop.
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Figure FP8.1). Bond graph of the water loop

This bond graph element is & 4—port. We shall combine the cut mwaier]
with the cot ouwiwater? to the hicrarchical cut inwater, and the cut out-
water] with the cut inwaterf to the hictazchical cut owiwaier. We shall
furthermore declare & main path weter which creates a logical bridge from
the hierarchical cut mwater to the hicrarchical cut owiwater.

The storage tank contains two water spirals, one which belongs to the
collector water loop, and one which belongs to the henter water loop. In
addition, an elecirical resistance heater has been installed as a backup
device. The electrical heater is turned on only if the tempersture in the
storsge tank falls below & critical wlue. Furthermore, the backup device is
never naed during day—time bours when the sleciricity is expensive, instend,
we shall wait with elecirically heating the storage tank until the evening
hoars when the price for electricity is lower. Fig P8.1k shows the storage
tank.

The m{ element denotes the heat capncity of the storage tank. The flow
souree together with the mAS element denote the electrical backup heater.
The primary side of the resistive source is elecirical while the secondary
side is thermie,

This is another 4—port. This time, we shall combine the cut inwater!
with the cul outwaier] to the hicrarchical cul inwaier, and the cut oui-
waterf with the cut imweler? to the hierarchical cut outwater. We shall
again declare s main path weter which creates a logical bridge from the
hierarchical cut inwater to the hierarchical cut ontwater.
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Figure P8.1k. Bond graph of the storage tank

The heater water loop is modeled in exactly the same manner as the col-
lector water loop.

Finally, let us discuss the house itself. For simplicity, we shall assume
that the house is & cube of 10 m x 10 m x 10 m. We shall model the house
ﬂhﬂmmmﬂnmhm&mmumm
the entire house consists of one room only, and that a single (large) radintor
is used o heat the house, The radiator is sitached to the left wall of the
house somewhere close to the floor, ie., heat input occurs ai the left low
outside center Jd—cell. We shall not model the radintor explicitly since it
is much smaller in dimensions than the house itsell Therefore, we shall
simply connect the outwater! of the heater water loop with the fnwaler?
of the heater water loop. At this node, we atiach another heat exchanger
which is responsible for the exchange of heat between the heater water loop
and the hounse,

We shall also assume that the house loses some heat throngh the four
walls and through the roof, but not through the floor. Attach Losselements
to ench of the 0-junctions as appropriste. If & cell is adjacent to two or
three outside walls, attach one combined loss element to the corresponding
node only since otherwise an algebraic loop will occur.

This comeludes the deseription of the system. Fig.P8.11 depicts the over-
all system ms & series comnection of the previously presented aggregated
bend graph elements.
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Figaure P8.1L. Aggregated bond graph of the overall system

Since, in a solar henting system, we pay for the installed energy rather
than for the uiillized energy, such & heating system s only economical is a
climate with extended heating periods combined with lots of sunshine. Let
us assume that our solar house is situated in Denver, Colarade. We wish
to analyse the effectivencss of our heating system. For this purpose, we
study the behavior of our heating system for December 21, the beginning
of winter. The sun shines from & spotless blue sky. The outside tempern-
ture is time dependent. The time dependence can be modeled with a sine
function. The low temperature is —10°C. It is reached at 3 a.m. The high
temperature is +5°C, It is reached at 3 pom.

We first want to determine the critieal temperature of the storage tank.
For ths purpose, we simulate the heating of the house with a constant
storage tank tempersturs. Lei us sssume that our imitial temperature in
the house is 15°C. We should be sble to hest the house to 20°C within
four hours. Determine the sise of the madiator (i.e., the conductance of
the heat exchanger between the heater waier loop and the house), and an
appropriste storage tank temperature which will allow you to attain this
goal. Of course, the smaller you choose the radiator, the higher must be
the storage tank tempernture. You can find decent values in Duffie and

Next, we want to dimension the electrieal backup system. The electrieal
heater should be able to raise the storage tank temperature from room
temperature, Le. 20°C, to the eritical tempersture within one hour.

Next, we want to dimension the collector system. Determine how many
of the (seties connected) standard collectors are required to keep the siorage
tank temperature at & periodic steady state for the December 21 situation
without activating the backup heating device.

Muany parameter values must be selected. Use recommended values from
the liternture [8.5] where available, otherwise use physieal intuition and
comimon sense Lo determine appropriate values for these parameters. Sim-
ulate the overall system for wrious climatie conditions. Use published
weather data to determine the frequency of utilisation of the electric backup
system. What is the reduction in the utility bill achievable with this sys-
tem in comparison with an eleciric only solution? Simulate the slectric
only sclution by permanently disabling the collector water loop pump.
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Research

[RB.1] Second Sound Wave in Superfiuid Helium—II

Formulate the two—finid theory, which explains the behavior of liquid He-
lium in the vicinity of the so—called A-point, in terms of & bond graph.
Come up with a simulation model that reproduces the observed second
sound wave while conserving both energy and mass in the sysiem.

[R8.2] Bond Graphs for Maxwell's Equations, Non-linear Opties,
and Fluid Dynamics

In this chapter, we have shown one successinl application of bond graphs
for modeling distributed parameter systems. For the reasons explained in
the summary section, other types of PDE problems don't lend themselves
as ensily to & bond graph formulation. The simplest other type of practical
PDE problem is the wave equation:

#u #u
T e — {R3.2a)
& F o

which can describe the transport of voltage and current along s lossless
transmission line, the pressure and flow rate of a compressible liquid or
gas in a pipe, the longitudinal cecillation of an elastic rod, sound waves in
gases or lquids, and optical waves,

Also the wave equation can be modeled easily in terms of an squivalent
electrical cireuit, and therefore, in terms of & bond graph. Fig.RE.2a shows
the equivalent electrical cirenit:
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Flgure B8.2s. Equivalent elecirical circuit modeling the wave squation

and Fig.R8.2b shows a corresponding bond graph:
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Figure B8.2b. Bond graph for the wave equation

The variables are specified for an slectiromagnetic wave.

Unfortunately, this brings us to the end of the simple analogies. Prob-
lems in electromagnetics and non—linear optics are probably a little easier
to tackle than those in flunid dynamies since we don't need to comesrn our-
selves with an additional equation (the mass conservation equation), and
yei, already these problems are quite tough.

Let us look at a fairly simple problem, the electrical transmission line
with dissipative losses. This system can be modeled by the telegraph equa-
tion:

#u i

—-Eﬂ-+[lﬂ'+m‘]—+mF (f8.2¢)
$-m+{m+mh+m::: (AB.2d)

where:
Zw=R+al (R8.2e)

is the impedance of & unit length segment of the short—circuited transmis-

Yo =G 4+ 0 (RB.2f)

is the admittance of & unit length segment of the open transmission line.
An spproximate solution can be found by combining the bond graph of
Fig.R8.2b with that of Fig.8.10, i.e. by adding RS-elements to the bond
graph of Fig.R8.2b. However, this bond graph does not model the tele-
graph equation exactly. It is possible to add RS5-elements emanating from
the 1-junctions and (F5-elements emanating from the O-junctions without
introducing algebraic loops, but it is not clear that this will bring much of
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an improvement. On the other hand, if we solve a PDE problem numeri-
cally, we discretize anyway, and therefore appromate the troe distdbuted
parnmeter system by n lumped parameter system. I is not clear that the
nbove proposed circuit analogy & worse than any other apprommation that
we may choose,

Fluid dynamics problems are governed by the Navier-Siokes equation
mass balance]. These are tough problems to solve. A bomd graph modesl
that shows how the energies and masses fow through ithe sysiem would
indesd be very useful. [ am convineed Lhat any good mamerical algorithm
cught to take energy and mass fows into considerstion, and should try to
map into & numerical scheme what the physics dictats in the real system,
not only in the overall solution, but also in the implementation of individual
steps.

[LB.3] Bond Graphs for Macro—Economies

Define a set of adjugate variables for models of macro—sconomic systems
together with a formulation of the energy comservation law as applisd to
these adjugate varishles. Show, by means of examples, how this concept
can be wsed to model mecro—sconomic sysiems.



