ISSN 0923 - 2268

1 ‘ Number 10 March 1994

UJ A EUROPEAN FORUM ON SIMULATION ACTIVITIES

Teaching Physical System Modeling at the University of Arizona

Francois E. Cellier
Dept. of Electr. & Comp. Engr., The University of Arizona
Tucson, Arizona 85721 U.S.A.
Cellier@ECE.Arizona.Edu

Abstract

This paper deals with the subject of teaching univer-
sity students the art of physical system modeling, a
topic notoriously downplayed in the education of our
future scientists and engineers. It is shown that, al-
though modeling is truly an “art” and not a “science”,
itis not a “black art”, i.e., it is a subject that can indeed
be taught successfully, since it observes a set of general
rules and practices - almost like a science. Moreover,
computer programs can be provided that gently push
the user towards following recommended procedures
in the making of physically sound models, that help him
or her in verifying the consistency and completeness of
these models, and support him or her in detecting errors
and unraveling shortcomings in them.

Introduction

Students are trained to accept the fact that a program
is “incorrect” as long as it produces error messages
during compilation or at run time, but they assume it to
be “correct”, as soon as these error messages have
disappeared. I have rarely seen students in my career as
a university teacher who would turn around once they
received beautifully looking multi-colored graphs from
their simulation program to check whether their model
carries any physical meaning or not.

Simulation languages have traditionally been opti-
mized for short user programs, thereby sacrificing all
redundancy - and most possibilities to discover errors
in the code. For example, few of today’s simulation
languages require variables to be declared. Thus, mis-
typing of variable names will often go unnoticed. You
write:

variable| = parl * cons2
variable2 = variable3 + par2 * varaiblel
plotvariable2

. but don’t despair! You’ll still get nice multi-colored
graphs Variablel is now a variable that is defined but
never used (well, why not!), and varaiblel is another
variable that is used but never defined ... but the simulation
compiler is “helpful” - it simply defaults varaiblel to 0.0,
making variableZ equal to variable3, which can be

plotted beautifully and elegantly. Thus, the program
“runs,” and our student can turn to the next homework
problem - after all, time is money, right?

Traditionally, most classes on continuous-system
simulation offered at our universities have focused on
the process of translating models into the format requi-
red by the simulation language in use. This trend was
encouraged by simulation language manuals that do
exactly the same. Simulation languages are very useful.
They support the user in encoding his or her model, and
offer nice interfaces to the numerical software (the
integration algorithms) and to the graphing software.
However, simulation languages offer no support at all
for helping the user in getting his or her equations right
- zero, nil, zip! Yet, this is the most difficult part of the
overall system analysis cycle.

For these reasons, we, at the University of Arizona,
have split the task of teaching modeling and simulation
into two. In a first semester, the student is taught how
to model physical systems, i.e., how to get the equations
of his or her model right, and in the subsequent semes-
ter, the student is then taught the trade of simulating
these previously obtained equations. Thus, the first
semester [2] has a flavor of theoretical physics, in-
structing the student what to watch out for when
applying his or her meta-knowledge to a particular
situation or when turning experimental observations
into mathematical equations, whereas the second se-
mester [6] has a flavor of applied mathematics, training
the student in techniques of numerical integration of
ordinary differential equation (ODE) systems and dif-
ferential algebraic equations (DAE) systems, the con-
version of partial differential equations (PDEs) into sets
of ODE:s by the method-of-lines, simulation with noise,
and problems in numerical and semi-analytical parame-
ter estimation and state identification.

Modeling Software

While the process of modeling, i.e., the codification
of knowledge about physical systems into mathemati-
cal equations, cannot usually be fully automated, this
does not say that computers and computer programs
have no part in that process. Modeling programs can:

EUROSIM - Simulation News Europe

-p5-

Number 10, March 1994

support the user in organizing partial knowledge
about the physical system under study,

help the user with identifying missing equations, i.e.,
pointing out to him or her which phenomena have
not yet been modeled,

aid the process of verifying internal consistency
within equations, and cross-consistency between
equations, and finally

preprocess the model through symbolic formula ma-
nipulation to generate a syntactically correct and
semantically sound simulation program.

Dymola

The most advanced of the currently available mode-
ling tools is Dymola {2, 5, 7, 8]. We found that Dymola
is a big help in teaching modeling to students.

Dymola supports the user in several different ways:

[y

Dymola forces the user to declare all variables (he-
las!), and provides valuable diagnostic aids during
the model translation process.

Dymola is object-oriented and thereby truly modu-
lar. It enables the user to encapsulate descriptions of
physical phenomena in hierarchically structured
model classes. True, most simulation languages of-
fer a macro capability, but macros are a much less
powerful concept. Dymola supports the construction
of truly modular domain libraries of properly
debugged component models representing task-re-
levant aspects of physical objects.

Dymola supports the topological connection of
subsystems. Topology is a powerful concept in en-
suring model correctness. If the component sub-
models are correct, the topologically connected
higher-level model is most likely correct as well.
Humans are quite good at discovering wiring errors
in topological descriptions, and Dymola again intro-
duces helpful redundancy to ensure the discovery of
wiring errors - as it is on purpose made rather dif-
ficult to squeeze a European 220 Volt plug into a
U.S. 110 Volt socket, and vice-versa, Dymola pro-
vides mechanisms to ensure the compatibility be-
tween software “plugs” and software “sockets.”

Maybe most importantly of all: Dymola supports
the use of bond graphs [1, 2, 3, 4, 10]. Bond graphs
are a very powerful object-oriented tool for ensuring
correctness of models of physical systems. Bond
graphs model the flow of power through a physical
system. Thereby, strict observation of the energy
conservation law is automatically enforced, an im-
portant concept in model validation.

This last item gives rise to an interesting comment.
When Hilding Elmqvist designed Dymola in 1978 [7],
he did not think about bond graphs at all. Yet, the model
definition and connection capabilities designed into
Dymola turned out to be powerful enough to support
bond graph modeling without necessity to change a
single line of code in the Dymola translator. This fact
alone is a strong argument in favor of object-oriented
modeling. However, it is by no means the only one that
can be made. The object-oriented approach to modeling
allows complete encapsulation of all relevant properties
of a physical object in a software module called a
model class. Many domain-specific model classes can
be stored together in a domain library. In this way,
mathematical descriptions (models) of physical objects
can be encoded and carefully debugged once and for all
for the benefit of later users of these models. Very
elaborate domain libraries have already been made
available, e.g. one for modeling all kinds of tree-
structured multi-body systems, such as robots [9].

For all these reasons, Dymola has become a major
backbone in supporting my modeling class at the Uni-
versity of Arizona [2]. Since Dymola has been intro-
duced into the class, the quality of student simulation
programs as well as the student understanding of the
mechanisms of modeling have been drastically impro-
ved. Also, the students love it! They are highly motiva-
ted in the class because they understand that their
learning focuses around fundamental properties of phy-
sical systems rather than the nitty-gritty details of the
- necessarily contemporary - syntax of a programming
language.

Teaching bond graphs, a modeling technique that
many engineers and scientists out in the field still shun
away from because the graphical representation looks
unfamiliar and non-intuitive to them, turned out to be
easily accepted by students. Contrary to accomplished
engineers and scientists who already know (or at least
believe to know) how physical systems are to be mode-
led and who don’t have either the time or the inclination
to learn something drastically different unless they are
forced to do so, students are open-minded. It is their
raison d’étre to digest new ideas and master new con-
cepts, and they have plenty of time set aside for this
task. They find bond graphs neither obscene nor other-
wise repulsive, and once they got the hang of it, they
turn quickly into experienced physical system mo-
delers. The problem is not jotting down some equations
and getting them to compile without producing error
messages ... that is the easy part. The problem is what
to do if these equations turn out to poorly reflect reality.
How do you go about determining which part of the
model is inappropriate and needs to be modified? Bond
graph modelers have a much better chance of getting

Number 10, March 1994

p6

EUROSIM - Simulation News Europe

the model right the first time around, and they find it
much easier to enhance/modify a given model in order
to incorporate additional facets of reality into it.

It is the same as with programming in general. It is
very hard to convince a programmer “of the old
school”, i.e., someone who grew up on Fortran and has
years of experience in Fortran programming to try
something new. The fact is that he or she indeed can
program anything and everything in Fortran. However,
itis easy to teach students structured programming, and
they will undoubtedly and quickly become more relia-
ble and efficient programmers in comparison with the
old-timers.

Justification

Why is it important to train our students in the “art”
of physical system modeling? Is it not true that a de-
tailed and very specific domain knowledge is necessary
for coming up with useful mathematical models in
any domain? Do I truly and earnestly believe that I can
turn my students into “renaissance men and women”,
into “scientists” who are at the same time mathema-
ticians, physicists, engineers, and philosophers, i.e.,
into generalists that can compete with the domain
specialists in solving the relevant problems of this
world?

I believe strongly that there is still need for both the
specialist and the generalist. It is true that in the past, at
the time of an Isaak Newton maybe, it was possible for
a physicist to know everything about all aspects of
physics. At that time, there was no need for specializa-
tion. This is no longer true. Without the specialists who
know everything there is to be known about a very small
and specialized subset of physics, no true progress can
be achieved any longer. Thus, the domain specialists
have become an essential and valuable part of our
scientific community, and indeed, there are many more
specialists needed than generalists.

However, this does not mean that there is no longer
any need for generalists at all. Many problems in scien-
ce and engineering are interdisciplinary in nature. Our
domain specialists usually suffer from a syndrome that
the French call déformation professionelle. They feel
so cozy and comfortable in their small niches of science
that they have no inclination what-so-ever to look out-
side their realms and consider the interactions of their
tiny empires with the larger world. This is where the
generalists are still needed. Generalists are the media-
tors between domain specialists of different domains.
They translate the language of one domain specialist to
another. They look at the larger picture. It is also true
that, even in this century, the most important new

discoveries in physics were made by generalists rather
than by specialists, and I predict that this will remain
$0.

A tree has many small branches and only one stem.
The small branches are responsible for carrying the
leaves and for keeping the tree alive. Small branches
can eventually grow thicker and branch into new sub-
branches. Yet, the overall shape of the tree can’t be
fundamentally changed by activities of the many small
branches alone. Sometimes, an entirely new branch has
to grow out of the stem directly, a branch that will then
grow much more rapidly than the small branches and
quickly develop an entire new subsystem of branches
and sub-branches and leaves.

References

[1] Brooks, B.A., and F.E. Cellier, “Modeling of a Distillation Co-
lumn Using Bond Graphs”, Proceedings [CBGM’93: SCS
International Conference on Bond Graph Modeling, San
Diego, Calif., pp. 315-320, January 17-20, 1993.

[2] Cellier, F.E., Continuous System Modeling, Springer-Verlag,
New York, 1991.

[3] Cellier, F.E., “Hierarchical Non-Linear Bond Graphs: A Uni-
fied Methodology for Modeling Complex Physical Sy-
stems”, Simulation, 58 (4), pp. 230-248, 1992.

[4] Cellier, F.E., “Bond Graphs - The Right Choice for Educating
Students in Modeling Continuous-Time Physical Sy-
stems”, Proceedings ICSEE’92: SCS International Confe-
rence on Simulation in Engineering Education, Newport
Beach, Calif., pp. 123-127, January 20-22, 1992.

[5] Cellier, F.E. and H. Elmqvist, “Automated Formula Manipulati-
on Supports Object-Oriented Continuous-System Mode-
ling”, IEEE Control Systems, 13 (2), pp. 28-38, 1993.

[6] Cellier, F.E., Continuous System Simulation, Springer-Verlag,
New York, 1995.

(71 Elmqyvist, H., A Structured Mode! Language for Large Conii-
nuous Systems, Ph.D. Dissertation, Report CODEN:
LUTFD2/(TFRT-1015), Dept. of Automatic Control,
Lund Institute of Technology, Lund, Sweden, 1978.

[8] Elmgyvist, H., F.E. Cellier, and M. Otter, “Object-Oriented Mo-
deling of Hybrid Systems”, Proceedings ESS’93, Europe-
an Simulation Symposium , Delft, The Netherlands, pp.
xxxi-xli, October 25-28, 1993.

[9] Otter, M., H. Elmgvist, and F.E. Cellier, “Modeling of Multibo-
dy Systems With the Object-Oriented Modeling Language
Dymola”, Proceedings NATO/ASI, Computer-Aided Ana-
lysis of Rigid and Flexible Mechanical Systems, Troia,
Portugal, Vol. 2, pp. 91-110, June 27 - July 9, 1993.

[10] Weiner, M., and F.E. Cellier, “Modeling and Simulation of a
Solar Energy System by Use of Bond Graphs”, Procee-
dings ICBGM’93: SCS International Conference on Bond
Graph Modeling, San Diego, Calif., pp. 301-306, January
17-20, 1993.

EUROSIM - Simulation News Europe

Number 10, March 1994

