


TRANSACTIONS

of the Society for Computer Simulation International

VoLume 13 No 2 JUNE, 1996

55. Parallel DEVS: A parallel, hierarchical, modular modeling
formalism and its distributed simulator
A.C.-H. Chow

69. An artificial neural network simulator with integrated fault
L.A. Belfore, Il




Tearing algebraic loops in bond graphs

W. Borutzky and F. E. Cellier

Department of Computer Science, Cologne Polytechnic, D-51643 Gummersbach, Germany
FAX:49.2261.8196.15 E-mail: wolfgang.borutzky@uni-koeln.de

Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona 85721-0104
Tel: 602-621-6192 FAX: 602-621-8076 E-mail: cellier@ece.arizona.edu

For bond graphs with causal paths between resistive ports the mathematical model is a set of Differen-
tial Algebraic Equations. Depending on the purpose of the model, and the available software, there are
different options to process algebraic constraints. A bond-graph-based approach is proposed that
exploits tearing. By inserting special sinks into causal paths, indication is provided to the model pro-
cessor as to which variables could be used as tearing variables, and which equations for their determi-
nation. An algorithm is proposed that identifies suitable locations for those sinks in the bond graph
such that the number of tearing variables is small. It is shown how the approach can be applied to

bond graphs with causal paths between stores as well.
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1. Introduction

It is well known that causal paths between resistive ports in a
bond graph (class two ZCPs [1]) mean that there exist in the
model algebraic constraints in addition to the state equations.
If all storage elements are independent of each other, the math-
ematical model is of the semi-state-space form

x=f(x,h,ur1 (1.a)

O=g(x,h,ui) , (1.b)

in which h is a vector of auxiliary variables.

Depending on the purpose of the model, its structural prop-
erties, and the available software, a model of the above form
can be treated in different ways. One possible way that does
not require any changes to the model is to pass the equations
(automatically) derived from the bond graph without any in-
vestigation directly to a DAE solver such as the DASSL code
[2] that approximates the derivative X in terms of X by using a
Backward Differentiation Formula (BDF), and then solves the
resulting non-linear algebraic system by a modified Newton
iteration. Structural properties of the linearized algebraic sys-
tems can be exploited by using an appropriate linear algebra
package that accounts for the structure of the system matrix.

The Differential Algebraic Equation (DAE) solution, how-
ever, may not always be the most efficient way to deal with
the problem. For example, if the model is non-stiff, a DAE
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approach forces the use of an iterative solution, which, in this
situation, is numerically inefficient.

An alternative approach that has been known for a long
time is to add small storage elements to the graph that have a
negligible impact on the overall dynamic behavior of the sys-
tem (e.g., see [3]). As a consequence, the resulting explicit
Ordinary Differential Equations (ODEs) will be stiff, and an
implicit stiffly-stable integration method is needed for their
solution. A crucial point that requires some experience is the
proper choice of parameter values for the added storage ele-
ments and for resistors, which ensure that the introduced high
frequency oscillations quickly fade away. A disadvantage of
this approach is that the complexity of the model is increased,
while, on the other hand, the resulting high frequency tran-
sients are unwanted.

In order to avoid an (unnecessary) introduction of stiffness
into a model, Barreto and Lefévre proposed in an earlier paper
|4] replacing the implicit algebraic part of a bond graph char-
acterized by uncompleted causalities by an R-field, to solve
for the output variables of that field, and to use an explicit
integration method. As they reported, the procedure can be
carried out by means of a rather simple program like TUTSIM
[5]. if the R-field is further replaced by a block diagram, since
TUTSIM does not support multiport elements. The approach
is mainly applicable to rather small models that can be handled
manually.

The objective in this paper is to process efficiently large-
scale systems that may comprise a considerable number of
implicit algebraic equations. To achieve that goal, it is pro-
posed to exploit symbolic formulae manipulation capabilities,
as they are available, for instance, in the program Dymola,
before numerical integration takes place. Certainly, Dymola
supports the generation of code for a direct numerical solution
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of DAE systems as a compiler option; however, a symbolic
transformation of DAE systems to explicit ODE form may often
lead to more efficient simulation code, especially if appropri-
ate tearing information is provided to the compiler by the user.
In this paper, it will be shown how the bond graph helps to
determine appropriate tearing information,

The approach that is proposed exploits the structure of the
set of algebraic equations and is based on tearing, a method
introduced by Kron [6] in the early 60's, which splits up a
large system of algebraically coupled equations into a number
of smaller systems. Tearing is not limited to linear algebraic
equations. The method can just as easily and profitably be em-
ployed in the case of nonlinear equation systems, as discussed,
for instance, in [7]. In order to be able to apply this technique,
tearing variables must be determined somehow. Since the task
of determining a minimal set of tearing variables is an NP-
complete problem, as has been shown by Mah [8], it is im-
practical to determine the minimal set in an exhaustive search.
There are a number of heuristic methods, however, for finding
a small (but not necessarily the smallest) set of tearing vari-
ables. In [8], Mah presents 12 different algorithms.

In this paper, it will be shown that, by inserting controlled
sinks in causal paths of a bond graph between resistive ports,
information can be passed from a bond graph to a model pro-
cessor that helps it identify possible tearing variables and their
associated residual equations used to compute them. Of course,
it is not satisfactory to have the modeler inspect the causally
augmented bond graph to look for algebraic loops and to manu-
ally add sinks in appropriate places. Rather, these steps should
be implemented in a bond graph preprocessor.

If the algebraic equations are linear with respect to the tear-
ing variables, then, by solving them symbolically, an initial
index-one DAE system can be reduced efficiently to an ex-
plicit ODE problem such that there is no need for a DAE solver.
Certainly, as indicated above, it is a comfortable and rather
safe way to pass a model containing algebraic constraints di-
rectly to a DAE solver. Nevertheless, the approach we shall
present here may be a more efficient alternative in some cases.
For instance, if the ODEs are non-stiff, there is no need for an
implicit integration algorithm, and a costly Newton iteration
at each time point can be completely avoided. Of course, for
nonlinear algebraic constraints, a symbolic solution is not pos-
sible. Due to tearing, however, iteration is only required on a
small number of variables (the tearing variables), which re-
duces the costs of calculating, updating, and LU-decomposing
the Jacobian and is an attractive feature. With regard to large
systems of linearized algebraic equations, tearing can be viewed
as an alternative to sparse matrix approaches applied to the
overall non-partitioned system matrix [9]. Finally, since the
solution of the algebraic equations can be interpreted as the
substitution of a bond graph part by a multiport R-element with
causalities according to the rest of the bond graph, the objec-
tive of our approach can be viewed as being similar to that of
Barreto and Lefévre [4]. Like those authors, we also suggest
not excluding explicit methods from consideration, if there are

implicit algebraic constraints. In contrast to Barreto and
Lefévre, however, we advocate a combined symbolic/numeri-
cal approach. Moreover, by employing tearing, we address
large-scale systems. The key point is to identify a small but
sufficient number of tearing variables.

2. Tearing algebraic loops

In this section, a heuristic approach to determining a small set
of tearing variables is explained by means of a fairly small
linear bond graph model. As pointed out above, the technique
is, however, not limited to the linear case.

Let us consider a bond graph with a tree structure with five
resistors and one storage element as depicted in Figure 1. In
that graph the resistive ports are labeled by encircled num-
bers. Application of the Sequential Causality Assignment Pro-
cedure (SCAP) [10] immediately reveals that there is some
freedom in assigning causality to the resistors. This indicates
that algebraic loops will result. Since the standard SCAP does
not provide any help in case of an incomplete causality, Lorenz
and Wolper [11] investigated different choices of causality on
unassigned bonds in some small examples, and initiated a
search for the missing rules that help to minimize the compu-
tational costs for solving the algebraic loops. Moreover, in [12],
Gawthrop and Smith propose a modification to the SCAP in
order to make the algebraic variables associated with algebraic
loops explicit on the bond graph by adding a special effort
source to a causally incomplete zero junction, or a special flow
source to a causally incomplete one-junction, respectively. In
bond graphs, they label those sources SS “to emphasize that
there is an implicit sensor associated with the additional
sources” [12]. In our approach we shall exploit similar sources.
The objective of this paper, however, is different than that of
Gawthrop and Smith in [12]. As stated earlier, our aim is to
introduce tearing information into a bond graph that can be
exploited by the formulae manipulation capability of a model
processor prior to the subsequent numerical solution of the
model. The aim is not that “the choice of such variables is
made by the bond grapher at the bond graph level and not left
until the equation formulation and solution stages™ [12]. In-
stead, as already pointed out, the proposed heuristic approach
of adding sources to a bond graph indicating possible tearing
variables can be implemented into a bond graph preprocessor
such that the bond grapher does not need to be concerned with
the choice of variables in algebraic loops. Similar to a choice
among different integration algorithms, the modeler should
have the option to choose between using a symbolic/numeri-
cal approach based on tearing, or passing the model directly to
a DAE solver. Although rather straightforward, however, an au-
tomated implementation of this feature has not yet been attempted.

The approach will be demonstrated by means of the ex-
ample shown in Figure 1. In order to link our bond-graph-
based approach to a classical tearing approach at the level of
equations, we first provide the equations for the bond graph in
Figure 1 and verily that the variables resulting from an inspec-
tion of the causal bond graph indeed represent a possible choice
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of tearing variables. In order to pass tearing variables and cor-
responding equations that determine those variables to a model
processor, we add sinks to the bond graph that are similar to
those introduced by Gawthrop and Smith in [12]. Since the
mechanism is based on the features of the equation processing
capabilities of Dymola, we need to explain the implementa-
tion of those sinks that we term residual sinks. They are not
motivated by physical reasons. They are mathematical objects
that support a symbolic/numerical approach based on tearing.
As pointed out above, such an approach may be
computationally attractive in some cases. The sinks can be in-
terpreted as Lagrange multipliers.

Let us return to the example under consideration. For in-
stance, assigning resistive causality to the R-elements attached
to the one-junctions results in algebraic loops between the
resistors R -R,, R,-R,, R -R,, and R -R_, coupled by another
algebraic loop between R and R.. Bond graphers will see
immediately that the flow variables f, . f, . and f, break all

algebraic loops. We shall verify this in a conventional manner
at the level of equations. By looking at the bond graph in Fig-
ure 1, the following equations can be derived:

e,=R,F, (2.2)
e,=1,f, @2.b)
L=h-1, 2.e)
b e (2.d)

R, -f.=E-e,-¢,-¢ 2.¢)

R: & R: Rs R: Rs
@ ® ®
. g ®
E
S 458 @,{0 @,{1 {0 i Bt R
fa fa
@ R: Ry @ R: Ry
Figure 1. Tree-structured bond graph with algebraic loops
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Figure 2. Bond graph with residual flow sinks
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R,-f,=E-e, 2.0
R-[=E-¢-¢ 2.2)
- 1
b= Efs ; (2.h)

By writing the algebraic equations in the form of a matrix
equation:

(100, 0,10 <o) [hds [y 9]

e B e T R R es 0

00 ke o Dbl <ok ik B 0

RPN B R T N A o | @
1 Ee iR b fs E-ec
10R 0|0 o o h E

110 RO 0 0 TNE] A B

it can be seen that, indeed, since the upper left submatrix is in
lower triangular form, all variables e, e, . f, . f, , can be com-
puted by Gaussian forward substitution once the flows f, . f,,
and f are known; cf., also equations (5), (7), (8), and (10).
Consequently, if I-elements providing the unknown flows are
attached to the three one-junctions, then all algebraic loops
apparently disappear. The flows |, f,, and f; become state vari-
ables that determine all other non-state variables. Of course,
the inertance parameters associated with the added I-elements
must be made small, in order to keep the impact on the overall
dynamic system behavior negligible. Consequently, the result-
ing state equations may be stiff, If the parameter values of the
inertances tend to zero, their state equations turn into a set of
coupled algebraic equations, which, in general, must be solved
simultaneously. The variables of that subsystem (along with
the state variable), however, still determine all other variables.
Hence, they may be chosen as tearing variables. Since the flows
f,+ £, and f; are determined such that their corresponding ef-
forts vanish, they may be considered Lagrange multipliers. In
a bond graph, those non-state variables can be represented by
controlled flow sinks. In order to avoid the introduction of an-
other bond graph element and to make the sensing of the effort
explicit, we adopt a representation used by Bos [13, page 124]
and van Dijk [14]; cf., Figure 2.

Observing that the effort into the flow sinks vanishes, the
following equations can be derived from the bond graph in
Figure 2:

e,=R,-f, (4.2)
e,=R,(f,-f) (4.b)
e,=R,-f, (4.0)
e,=R,(f,-f) (4.d)
e,=R,-f, (4.¢)
O=E-e¢ -e, @.9
O=e,-e,-¢, (4.2)
O=e¢,-¢,-¢, (4.h)
te=2 1, @)

Note that since the flows f, , £, , and f, are not state variables,
we need five equations for the effort variables of the resistors
and another three equations (4.f)-(4.h) that determine the flows
of the controlled sinks.

The algebraic equations can be written in the following
form:

Ay Ap e b
= (%)
Ay Agp f b,
withe=(e e, e e e).f=(f f, f):
1940 0 0 |-R 0 0 ( €1 \ ( 0
1.0 0 0 |—-R; R, 0 €2 0
Sy 0 0 0 -R; O €3 0
0 0 0 1 1] 0 —Rq Rq LF] 0
- = (6)
00 0 0 1 0 0 -Rs es 0
.t 8 0 0 0 0 0 h E
01 -1 -1 0 0 0 0 f 0
\ Bt 0 1 -1 0 0 0 \ fs k € )

Since in this simple example the matrix A | is an identity ma-
trix of size 5 x 5, the equation

A e+A, f=b, ©)

-r = Am RT. A T ALTO ASATTALTS ane
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can be solved symbolically for e and inserted into
A,e+A f=b,, (8)

which gives an equation determining the tearing variables f, ,
L andj;; cf., also [7]. In the example, the submatrix A22 isa
zero matrix of size 3 x 3, and we obtain for the vector f the
equation

(AZI A)f=A, b -b,. 9)

That is, the controlled flow sources introduced into the bond
graph indeed represent possible tearing variables.

In the general case, permutation matrices P and Q are
needed to transform the algebraic equations into a matrix equa-
tion (5) with a submatrix A that is lower block-triangular with
non-vanishing diagonal elements. Consequently, if A, is non-
singular, equation (5) can be solved symbolically for e in the
general case as well.

If the tearing variables and the equations that determine
them are known, transformation of a system of linearized equa-
tions to a system with a bordered block-triangular matrix is
always possible, and will be performed by Dymola if a com-
piler switch requesting tearing to be used is set on. The trans-
formation of a structural non-singular matrix PA into a block
triangular matrix Q’(PA)Q is based on Tarjan’s algorithm [15],
finding the strong components in a directed graph.

Finally, we shall give an idea of the savings with respect to
computational time due to tearing, if the algebraic equations
are solved numerically. Suppose that the equations are linear
and that A is a non-singular lower-triangular matrix. Insert-
ing equation (7) into equation (8) gives

Ap-Ay A Apf=b,—AyApb, . (10)

Suppose there are n algebraic unknowns and p tearing vari-
ables. Since the matrix A is lower-triangular, the computa-
tional cost for the transformation into equation (10) is O((# -
). Solving a linear system with a dense matrix of dimension
p requires O(p?) long operations, Consequently, comparing the
computational cost for solving the system with and without
the use of tearing roughly reveals the ratio
3
ratio T

For the above small example (cf., Figure 2) withn=38,p =3, itis
about 15.5 times more costly to solve the overall system by
Gaussian elimination than to employ a solution based on tearing.

3. Residual sinks in Dymola

One reason for using the language Dymola is that it provides
an operator, residue(), allowing the model processor for iden-
tifying a tearing variable and an equation that determines the

tearing variable. The purpose of this section is to explain that
mechanism.
An inertance with integral causality provides a flow such that

A
Idf—.',. (11)

For I — 0, zero on the left-hand side is replaced by residue(f):
residue(f) = e . (12)

(Obviously, the limit only exists if the parameter / is not in the
denominator.) For the Dymola model processor, the meaning
of equation (12) is that f is a tearing variable, and residue(f) a
variable that must be kept zero. Consequently, with these two
variables, the equations (4.f), (4.g), and (4.h) derived from the
bond graph depicted in Figure 2, can be written equivalently
in the form:

residue(f) = E-e¢ -e, (13.a)
residue(f,) = e,-e, -e, (13.b)
residue(f,) = e,-e -e¢, (13.¢)

Adding a vanishing term to equations (4.), (4.g), and (4.h)
enables the Dymola model processor to identify them as the
residual equations for the tearing variables f,, f,, and f. .

Equation (12) can be interpreted as the constitutive equation
of a flow sink that provides a flow such that the input effort
vanishes. Its output can be viewed as a Lagrange multiplier.

In the object-oriented language Dymola, such a sink can
be described by means of a model class, which is a generic
model for that type of sink and which can be instantiated to
represent an actual sink of that type in the bond graph.

model class ResS [
main cut Portl (e/f)
residue(f) = e
end

In the second line, a port with the name Portl is declared by
means of the keyword cut. Cuts are connection points for across
variables. They are associated by a list of across variables and
a list of through variables specified in parentheses. The two
lists are separated by a slash. Since the essential equation in
the body of that model class employs the residue() operator,
we call the sink a residual (flow) sink.

Obviously, the way in which causalities and flow sinks have
been added to the bond graph in Figure 1 is not the only pos-
sible one. Instead of flow sinks, dual controlled effort sinks
could be used as well (cf., Figure 3). They are specified by the
model class:
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model class ResSe
main cut Port 1 (e/f)
residue(e) = f

end
R: Ry R: Rs
= T" T’”
Bever——{ 1 ~—{ S _— 1= R: Rs
[ [ ‘rfs
SAr—,cre
i qu
R: Rz R: Ay

Figure 3. Bond graph with controlled effort sinks added

(In Bond Graphs of rigid multibody systems, that type of
sink represents a constraint force in a joint [16].) Apparently,
as has been discussed by Gawthrop and Smith in [12], this is
another way of breaking algebraic loops; cf., Figure 3. Notice
that, in this example, the dual approach leads to a smaller num-
ber of tearing variables.

4. An algorithm for adding tearing information
to a bond graph

Guided by the consideration of bond graphs with class-2 ZCPs,
we propose a simple, heuristic algorithm for adding tearing
information to a bond graph.

The first step is to start from a resistive port and to track all
causal one-way paths from that port to other resistive ports;
that is, to follow all class-2 ZCPs starting from that port. This
tracking must be done for all resistive ports in the bond graph.,
Fortunately, since normally a resistive element is not connected

to all others, even if it is a multiport element, the number of

class-2 ZCPs is usually much smaller than n - (n-1)/2, in case
there are n resistors. (If there are n vertices in a graph, and
each node is connected to all others, then there are n - (n-1)/2
edges.) From electronic circuits, it is well known that an ele-
ment normally is not connected to all others but only to a small
number of them, which leads to a sparse nodal admittance
matrix for large circuits. If there is a multiport R-element with
mixed causalities, then there are causal one-way paths through
that element that may link resistive ports of other elements.
If resistive ports are numbered (cf., the bond graph in Fig-
ure 1), a bookkeeping of the algebraic loops in a bond graph
can be done by means of an algebraic loop matrix of which the
rows as well as the columns represent resistive ports. An entry
(x) in position (i, /) means that there is an algebraic loop from
port i to port j and, since each bond represents two opposite
signals, there is also an algebraic loop from port j to port i.
One loop relates the effort variables, while the other estab-
lishes a relation between the corresponding flows. Hence, the

algebraic loop matrix we introduce is square symmetric. It is
sufficient to consider only the effort, or the flow relations, and
to store only the upper, or the lower, triangular part of the ma-
trix. For instance, for the bond graph in Figure 1, we obtain
the algebraic loop matrix given in Table 1. Indeed, by looking
at the bond graph in Figure 1, we see that there are, for in-
stance, causal one-way paths from port 1 to port 2, as well as
from port | to port 4 and from port 1 to port 5. Therefore, the
first row of the matrix in Table 1 (representing port 1) has en-
tries in columns 2, 4, and 5.

Table 1. Algebraic loop matrix corresponding to bond graph 1

- 3 4 5
e X .
3 x ..... ¥
i x -

As can be seen from the bond graph in Figure 1, it is likely
that long causal one-way paths between resistive ports have
Jjoint internal bonds with other algebraic loops. Since the aim
is to break as many algebraic loops as possible by introducing
one tearing variable, the row (and the column) containing the
most entries is chosen and eliminated from the matrix because
the entries in one row indicate algebraic loops that have joint
bonds. For instance, if there is a causal one-way path from
port | to port 2 and another disjoint algebraic loop from port 4
to 5, then there are entries in position (1,2) as well as in posi-
tion (2,1), but not in positions (1,4) and (1.5). If there are sev-
eral rows (columns) having the same number of entries, the
first one is selected. The procedure is repeated until all entries
in the array are eliminated. In the above example, removing
the first row and first column, and subsequently the third row
and third column, indeed leads to an empty array. If instead
the first row and first column and the fourth row and fourth
column were removed deliberately, entries in position (3.5)
and (5,3) would remain. In that case, port three would have to
be chosen additionally.

As a result, we obfain a small, not necessarily minimum
number of resistive ports (in the bond graph of Figure 1 the
resistors with parameters R, respectively, R.). If we cut the
incident bond at each of those ports and insert a residual sink
(cf., Figure 3), causality is reversed at that port, so that other
resistive ports in the bond graph cannot be reached any longer
from that port via causal one-way paths, i.e., all algebraic loops
in the bond graph vanish. If all resistors in Figure | have a

L & SIS BUSISSRE, I N SR I ARTO A OTTARTS e
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nonlinear, non-invertible characteristic, causality at their ports
is predetermined. In that case, controlled flow sinks attached
to one-junctions along with controlled effort sinks added to
the zero-junctions break the algebraic loops. This means that
the algebraic loops are cut at the internal bond with the associ-
ated pair of power variables (f, , ¢,) and at the internal bond
with the variables (f,, ¢,).

In the above matrix, a causal one-way path between two
resistive ports is characterized only by the two bonds incident
to the terminal ports. None of the internal bonds that contrib-
ute to a causal one-way path are stored. As has been shown by
Lorenz and Wolper in [11], in some cases there may be a smaller
number of variables that break all algebraic loops, if variables
of internal bonds are chosen. In particular, in case a closed
causal path (cycle) in the junction structure touches a causal
one-way path between resistive ports, the algebraic loops in-
volved are torn if a residual sink is inserted in a joint internal
bond of both causal paths. In regard to an automatic, generally
applicable approach, however, further investigation is needed
and will be the subject of further research. There is no unique
choice for good tearing variables. In our search for a simple
algorithm that automatically provides possible tearing variables
as well as their residual equations in a form that is understood
by the model processor Dymola, variables at internal bonds
have been excluded from consideration in a first approach. As
a consequence, causal cycles and causal meshes [1] in a junction
structure are not torn, and in some cases a more sophisticated
algorithm may reveal a smaller number of tearing variables.

The algorithm presented here has been tested on a number
of bond graphs with different structural properties. Some of
them have been considered by other authors as well; see [11],
[12], [14], and [17].

5. Bond graphs in Dymola

Dymola is a language that was not designed for bond graphs.
Tt is based on the concept of generalized networks using across
and through variables. Nevertheless, as shown in [18], bond
graph elements can be described in Dymola. Although fea-
sible, descriptions of bond graphs in Dymola are not completely
satisfactory up to now, since there is no equivalent element to
a bond graph 1-junction in the language. To overcome this
deficiency, one may use gyroscopic bond graphs only (as done
in [ 18]), or define a model class for that bond graph element
(the approach advocated here), which is not convenient either.
For instance, since the number of cuts cannot vary in a Dymola
model, and since power flow directions must be incorporated
into the definition of the cuts, several model classes are needed,
differing in the number and orientation of bonds attached to
the 1-junction. Once appropriate model classes have been de-
fined (in a hierarchical manner), however, they can be stored
in a library, and the user does not need to be concerned with
those details any longer. A graphical description can be auto-
matically translated into Dymola by referencing models from
that library. For instance, for each one-junction the number of
ports is known. After power reference directions have been

4no TR ARMC ATTIARE  Walicemaa 12 Aa 2

added automatically to a bond graph, for each one-junction in
the bond graph the proper model class from the library can be
instantiated automatically.

Such a library has been set up and used for the above ex-
ample, as well as for bond graphs of multibody systems (MBS).
A Dymola description of the bond graph in Figure 2 is shown
below; cf., Figure 4. It is beyond the scope of this paper fo
explain the syntax of Dymola. It is explained in full in [19]. It
can easily be seen, however, that, in the upper part of the model
description, models of the appropriate classes are invoked from
the bond graph library for each of the bond graph elements
used later on in the program. The lower part of the code sim-
ply describes the connectivity in a straightforward manner.

model RCnet {using residual flow sinks}
submodel (Se) Se

submodel (ResSf) Sf1, Sf2, 513
submodel (R) R1, R2, R3, R4, R5
submaodel (C) C

submodel (one4P) onel, one2, onel
node zerol, zero2
input E

connect Se at onel: Portl
connect zerol at onel : Port2
connect Rl at onel : Port3
connect Sf1 at onel : Portd
connect R2 at zerol
connect zerol at one2: Portl
connect zero2 at one2: Port2
connect R3 at one2: Port3
connect Sf2 at one2: Portd
connect R4 at zero2
connect zero?2 at one3 : Portl
connect RS at oned: Port2
connect C at oned: Port3
connect Sf3 at oned: Portd
Se EO=FE

end

Figure 4. Dymola description of bond graph with residual flow sinks

6. Causal violations at junctions

If resistive ports have a non-invertible, or preferred, character-
istic, causal violations may occur at junctions instead of alge-
braic loops; in particular, if the method of relaxed causality of
Joseph and Martens [20] is used. This type of problem can be
solved as well by adding controlled sinks representing a pos-
sible tearing variable.

Consider a simple circuil with two nonlinear resistors
in series for which the constitutive law is assumed to be
non-invertible. The bond graph is depicted in Figure 5.
G () and G,() symbolize that these are nonlinear resistors
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with conductance causality. Inserting a (small) capacitor as
indicated in Figure 6 obviously removes the causal violation
at the 1-junction. Instead of the small C-element, a controlled
effort sink can be introduced that imposes an effort E such that
the corresponding flow vanishes. From the bond graph in Fig-
ure 7 the following equations can be derived:

fR = E €c (].4.4':‘1)

fRE = G](EC ot E‘) (]-4-b)

f &, = GaE) (14.c)
residuelE) = fg ~f g, (14.d)
ec= ¢ (F~fe—ra) (14.0)

If the tearing variable E is known, all other non-state variables
can be computed. The residual equation, in this case, is non-
linear:

G, (e, - E)=GE) , (15)

and must be solved by iteration.

R =R R : Gl(}
N
Ir IR
S i —| 1
€c fﬂz
Y
(5518 6: R : Gy()

Figure 5. Bond graph with a causal violation at a 1-junction

Lf Ry

R :Gy)

Figure 6. Bond graph with C element added

fr Ifr
SII—F7 0——1
ec
/ E l

C:C Ob——=1}——>>=.
residue(E)

fRz

R : Ga()

Figure 7. BG with residual effort sink added

If an inductance with a small parameter ¢ is attached to the
one-junction instead of the small capacitance (cf., Figure 8),
the causal violation is not removed. However, it is interesting
to note that the algebraic equations that need to be solved in
order to evaluate the right-hand side of the ODE, are decoupled
by means of the additional state variable.

é(;=é,{F—%-ec~ﬁ) (16.2)
e f= [ec —ep, ~eR2] (16.b)
G, (eRI] =f (16.c)

G, [ER::J =f (16.d)
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If the inertance is replaced by a controlled flow sink, its flow
obviously is not any longer a state variable, but is a tearing vari-
able, i.e., instead of the second ODE (16.b), a residual equation
must be solved. In any case, the algebraic equations (16.c) and
(16.d) remain decoupled; that is, they can be iterated separately.

The second part of the consideration of this example shows
that a causal violation of type 2 [20] may indicate a possible
tearing variable. This can be seen, for instance, from the bond
graph of a bridge circuit (cf., Figure 9), also considered by
Gawthrop and Smith in [12]. If all resistors are assumed to
have a conductance causality, a causality conflict either oc-
curs at the one-junction representing the current through the

R:R R : Gil)
N N
fr fR17
Sy | — 0 J/‘1 I:e
F /& fr
i
€c fr,
/ Y
S R ZGQ()

Figure 8. Bond graph with residual flow sink added

load or at both zero-junctions representing the voltages at the
terminals of the load. Following the rule that a causal viola-
tion at a junction may indicate a tearing variable, we attach a
controlled effort sink at both zero-junctions and end up with
the same result as given by Gawthrop and Smith.

R: Rl

T

N

4
&
=

Figure 9. Bond graph of a bridge circuit

R: Ry Se R: Ry
| |
1 0 —| 1
— L —
Se —4 1 =< 0 — 1 — 0 = 1 |—"8.
) |
R: R3 R : Bigud R: Ry

Figure 10. Bond graph of a bridge circuit with controlled effort sinks added
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7. Causal paths between stores of the same type

If there exists a causal path between two storage elements of
the same type (class-1 ZCP, [ 14, page 45]), this means that the
state variables of these stores are related to each other by an
algebraic equation. The approach explained so far can be ex-
tended such that it is applicable to this type of problem as well.
To this end, we adopt an approach that is well known in circuit
analysis, and by which the initial DAE system is transformed
into an algebraic problem. Once we have implicit algebraic
equations, we can employ the proposed approach again. In order
to perform the transformation from a DAE system to a pure
algebraic one, we need a modification of the initial bond graph.
That is, the method presented so far is not directly applicable
to bond graphs with class-1 ZCPs. For that reason, we shall
reduce the problem of causal paths between storage elements
to that of causal paths between resistive ports. In [21], we
propose an alternative approach that does not require such a
transformation.

In circuit analysis, model equations and the numerical in-
tegration formula are interleaved; that is, the integration for-
mula (most commonly a BDF) is applied to the constitutive
equations of the storage elements leading to a resistive com-
panion model [9]. Let x (¢,) be the analytical solution of x at
time instance 7_, and let x,_ denote an approximation obtained
by numerical integration. If x, =x (1) and f = f(x, 1),
application of, for instance, the Backward-Euler formula,

X=X Hth-f (17)

to the state equation of a capacitance,

a=é¢, (18)

gives

|
Uy =ty + h E Ly - (19)

In circuit analysis, equation (19) is solved for i and repre-
sented by the parallel connection of a conductance and a con-
stant current source of known value; cf., Figure 11. While a
small value of the step size /& in the denominator of the con-
ductance helps to ensure diagonal dominance of the nodal ad-
mittance matrix allowing for the application of relaxation meth-
ods, it was shown in [22] that the approach leads to difficulties
in solving general DAE systems, when the derivative X =/(x ,
t ) is expressed in terms of x_and values of v at past time points.
In [22], it is recommended to insert equation (19) into the state-
space model eliminating x, instead of X . In terms of bond graph
elements, this means that a one-port C-element has to be re-
placed by a linear resistor of resistance #/C and a known con-
stant effort sink; cf., Figure 12. Correspondingly, an inertance
is replaced by a parallel connection of a conductance and a
constant known flow sink; cf., Figure 13. Having replaced all

storage elements in a bond graph by their resistive companion
models (Figure 12 and Figure 13, respectively), again the bond
graph can be analyzed for algebraic loops, which can then be
broken by introducing residual effort or flow sinks at appro-
priate places.

in

O

?l'un—l

Ql=

Figure 11. Companion model of a capacitance common in
circuit analysis

u.
|.—n_/' 1 |—7 Se:un—l

in
R::

Figure 12. Resistive bond graph model of a capacitance

&
c

u'ﬂ
bt ) ] B

=|

Figure 13. Resistive bond graph model ol an inertance

In the sequel, we shall consider the simple example of two
parallel capacitances. Replacing the storage elements by their
resistive companion models, a bond graph with algebraic loops
is obtained: cf., Figure 15. The algebraic loops can be solved
by introducing two controlled sinks; cf., Figure 16. From the
bond graph in Figure 16, the following equations can be de-
rived directly:

uy = R(i} +13) (20.a)
n h "
W = CI I (20. b)

EF_T...__4m RT_. A AT ARTOASTTARTS  asa
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The above equations can be written in matrix form:

w = i i (20.c)
&) 10 0 0 0f -R -R uf 0
B a0 Ae R e ub 0
T, e n
E" = ug+uc, (20.9) 60 Ve e e e ul 0
1 b 5000 e lifnd 0 BT g oy @n
g, = uy +ug, (20.e)
i i e G g 0 ug, 0
i T i n=1
= "":’f“g 20.6) e R T RS 0 i uy
86 =t gl n 0 \ i )\ !
n—-1
ug, = 1+ g, (20.g)
In the above equations, superscripts indicate time points 7 R R
and {_, respectively.
Se b= 0 =1 F——35.
E uc
8 — 1 e 0 ] 0:Ch /
P
Uey
R:R Gy P{
Figure 14. Bond graph with two parallel capacitances Figure 15. Resistive equivalent of parallel capacitors
h
R:ER D=
R G
\
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E™ ug 5T
| C: -
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! l i Y
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Figure 16. Resistive equivalent with controlled flow sinks
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As was to be expected, the set of equations is in the form of
equation (5). Since the A | matrix is in lower-triangular form,
it is trivial to eliminate the non-tearing variables from equa-
tion (8) by successive substitution. This results in the matrix
equation of reduced size:

(R+ —) R i E™ —ug!

" - (22)
R (R+ Z:Z) i3 E" —ug?

which can be solved easily for i{ and i3 . The following
equation is found for i} :

. Reus )+ (B ut)
=3 R(CL+C2]h+h2 o

(23)

Recognizing that ' = uE’T , equation (23) can be simplified to:

-1
i = ﬂu@) (24)
'UR(CH+Cy)+h

Then, the remaining (non-tearing) variables can be solved for
by back-substitution:

R(C,+C))ug,' +hE"
bt oo ey T

In this simple example, both capacitors can alternatively
be combined into one. If the resulting capacitor is replaced by
its resistive companion model, the same equation (25) is ob-
tained. Whereas dependent storage elements may be conve-
niently combined only in simple cases, as in the above ex-
ample of two parallel capacitors, the tearing approach presented
is general.

Figure 17. Resistive bond graph of combined capacitors

8. Conclusions

One of the advantages of causally augmented bond graphs is
that algebraic loops can be immediately identified as causal
paths between ports of resistors. In case the corresponding DAE
system is unwanted, a bond graph representation suggests
places where small storage elements can be inserted into alge-
braic loops that break them, which has been a well-known prac-
tice for a long time.

In this paper, it has been shown that the storage elements
can be replaced by controlled residual sinks representing tear-
ing variables (Lagrange multipliers). The tearing variables are
not state variables. Rather, they are determined by a set of
coupled algebraic equations. Once the resulting small sub-
system has been solved for the tearing variables, however, all
other algebraic variables can be expressed through the tearing
variables and the state variables. There are different possibili-
ties for adding controlled residual sinks, and. in some cases, a
single sink may break more than one algebraic loop. As a re-
sult, the number of controlled sinks depends on the approach.
According to Mah [8], determination of a minimal number of
tearing variables is an NP complete problem. Hence, a sub-
optimal heuristic algorithm providing a small, but not necessarily
the smallest possible, number of tearing variables has been pro-
posed that can be implemented in a bond graph preprocessor.

Since the Dymola language supports a mechanism allow-
ing tearing information to be passed from a bond graph to the
model processor, it has been chosen for the description of bond
graphs. The approach of adding controlled sinks to a bond graph
in order to identify tearing variables and to provide equations
that determine them is, however, independent of a particular
implementation language. Any language providing equivalent
features to those offered by Dymola could be used just as easily.

In case the residual equations are linear in the tearing vari-
ables, the Dymola model processor can solve them symboli-
cally. In that case, an initial DAE problem of index one can be
reduced to an explicit ODE system. Obviously, solving a large
set of algebraic constraints symbolically without exploiting
tearing is very inefficient. Therefore, a proper selection of tear-
ing variables is crucial. In this paper, a rather simple algorithm
for bond graphs with class two zero-order causal paths is pro-
posed that has been tested on a number of examples.

If the algebraic equations are nonlinear, tearing is still ad-
vantageous. The sets of nonlinear algebraic equations that must
be solved by Newton iteration are reduced. Consequently, cal-
culating, updating and LU-decomposing the Jacobians is less
costly. Hence, a combined symbolic and numerical approach
is advocated that avoids the disadvantages of small additional
storage elements, and that provides a computationally attrac-
tive alternative to passing the original model directly to a nu-
merical DAE solver.

Finally, it has been shown that, by using a resistive compan-
ion model for the storage elements, the approach can easily be
extended to bond graphs with causal paths between storage ports
(class one ZCPs) as well. The resistive companion model corre-
sponds to a BDF applied to the constitutive equation of the store.
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For an actual solution of the resistive equivalent of an initial
bond graph, a prerequisite is that the model equations be inter-
leaved with a numerical integration formula. This technique
has been termed in-line integration in [22]. In another article,
[21], an alternative approach is investigated that attempts to
tackle the problem of causal one-way paths between ports of
storage elements directly. Tearing in bond graphs with causal
cycles that touch causal paths of class two, respectively, class
one, will be the subject of future research.
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