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ABSTRACT

Traditionally, two different classes of computer
programs have served control engineers as tools for
systems-modeling; noniinear simulation packages and
linear CACSD programs., In this paper, we show how
nonlinear modeling and simulation facilities have
been incorporated within the IMPACT linear control
environment, A detailed example illustrates the
flexibility of this system when dealing with sys-
tems having mixed linear and nonlinear components.

INTRODUCTION

During design of controllers for physical, nonlin-
ear systems, some variant of the following itera-
tive three-step overall scheme is often employed:
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the system is modeled and analyzed through non-
linear simulation

the model is linearized for further analysis and
linear design of the controller

the thus obtained controller is tested on the
nonlinear model through simulation.

Until recently, at least two different software
packages were needed during these three stages.

For step one and three, simulation languages
such as ACSL [6] and CSSL-IV [8] are employed
for modeling and simulation of nonlinear systems
described through differential equations., These
packages are not specifically developed for
control-engineers, but to meet the simulation
needs of a much more heterogeneocus group of en-
gineers; therefore they seldom include any con-
trol algorithms.

For step two, linear analysis and design algo-
rithms may be accessed through one of over 50
linear control-packages available [4]. However,
few of these packages directly support a nonlin-
ear modeling capability.

Because of the limited scope of each of these two
classes of software, models and/or data have to be
transferred several times between different pro-
grams, As this can become quite cumbersome anu
time-consuming, several control and/or simulation
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packages try to connect these two worlds. Hence,
links have been constructed between nonlinear simu-
lators and linear control-~tools through lineariza-
tion or eigenvalue algorithms, Unfortunately, such
links do not remove the following drawbacks:

- the full expression power of an algorithmic,
command-driven control enviromment can not be
used to control nonlinear simulations.

- whereas modern control enviromments have a very
natural and fast-to-use notation for entering
and manipulating linear systems, it is much more
awkward to enter linear {sub-)models in conven-
tional nonlinear simulators [12].

- the user has to master two program interfaces.

- in control education with computer exercises,
the limited time available makes it hard to in-
troduce one complex software package during a
lecture, let alone two., Thus, control exercises
normally have to be limited to the linear part
of a complete design cycle.

A better approach is the inclusion of nonlinear
modeling and simulation facilities within a linear
CACSD-package. In MATRIXx [13], a graphical editor
({SYSTEM_BUILD) allow the user to enter nonlinear
models. These models can also be invoked as fixed
entities from the alphanumeric command-driven part
for linearization and simulation, In IMPACT, non-
linear capabilities have been built into the inter-
active command-language itself. This makes non-
linear models better accessible from the linear
part of the package, as will be shown in this
paper.

Both the IMPACT and MATRIXx approach makes it
easier to perform mixed linear/nonlinear modeling.
Although this does not automatically enhance the
operations we can perform on the different classes
of systems, it certainly simplifies the handling of
a system through the whole control cycle. Also,
linear subparts can be described more easily than
is normally the case in nonlinear simulators.,



IMPACT

IMPACT (Interactive Mathematical Package for Auto-
matic Control Theory) is an interactive CACSDw-
kernel system presently being implemented at the
Swiss Federal Institute of Technology (ETH) [101,
[11). It belongs to the group of control environ-
ments which are, at least conceptually, based on
the MATLAB package [7] [4]. Unlike other control
enviromments, most of IMPACT has been implemented
in Ada [1), It is presently composed of more than
50 000 lines of Ada code for the kernel-system and
a set of FORTRAN-coded numerical algorithams.

The development of IMPACT is made with the objec-
tive of serving a very heterogeneous group of users
ranging from the undergraduate student to the
skilled control researcher with programming experi-
ence, Therefore, the following basic concepts have
guided the design of the IMPACT user-interface:

- the basic commands must be fast and easy-to-use.
Thus, a parser accepting free-form input-data
has been implemented. The used expression-syntax
is an extension of the one used by MATLAB (7].

-~ an algorithmic interface is needed for flexibil-
ity. IMPACT accepts statements following a syn-
tax similar to that of Ada. Functions and proce-
dures may be interactively defined.

- the transition from basic to advanced use must
be gradual. In IMPACT, the user calling complex
functions can switch from the command-language
interface to a question-and-answer interface
(the query-facility) at will.

- different, but equivalent, entities should be
treated equally., This is particularly true for
the modeling of systems, IMPACT will therefore
use the same language constructions to simulate,
manipulate or interconnect system descriptions,
regardless if these are linear or nonlinear,
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Figure 1, The treated cable system.

LINEAR SYSTEMS MODELING IN IMPACT

To illustrate the versatility of IMPACT in modeling
control-related systems, the benchmark cable~spool

system depicted in Figure 1 will be used. Linear
approximations are used for the motor and
tachometer, as shown in the block-diagram picrure

of Figure 2. The spool is nonlinear,

We will start by defining representations for all
linear subsystems of Figure 2. As IMPACT supports
polynomial matrices as well as rational matrices,
we can enter the two transfer functions of the mo-
tor and the tachometer directly. We commence by de-
fining the proportional controller KP and there-
at'ter we define the two rational functions (">>" is
the IMPACT prompt to indicate that it is waiting
for further interactive input):

single-level or hierarchical. >> KP = 13
- small and large systems should be equally >> TACHO = 3/[170.51);
treated by the user-interface.
>> MOTOR = 7./[171];
Reference 3 Reference , Error‘ kP Control 7] Torque Roll-up speed.
speed voltage ¥- signal |'*S %
Controller Motor Spoo'l
dynamics
3 ¢
1+05s |
Tachometer

Figure 2. Block~-diagram of the treated system.



To illustrate how linear systems are connected and
simulated, let us neglect the spool-nonlinearity
caused by changing radius and mass of the roll.
Then the spool transfer function is given by

>> SPOOL = 0.019/_s;

We have now entered all elements of the system in
linear transfer-function form. As multiplication
has been defined for ratiomal functions in IMPACT,
a representation of two cascaded systems is cor-
rectly obtained through this operation. In addi-
tion, the operator "\\" has been included for the
feedback loop. Thus, the total transfer function of
our system is

>> 8YS = ( SPOOL * MOTOR * KP \\ - TACHO ) * 3;
where SYS of course again is a rational function

scalar. Simulation has also been defined as a triv-
ial operation. Given the structure
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the output signal Y 1s obtained by multiplying the
system-representation F with an input signal, In
IMPACT, signals are represented as trajectories
containing arbitrary values defined over a collec-
tion of independent points (domain). For simula-
tions, these independent points of course must take
increasing {(decreasing) values on the real axis;
for frequency responses they have to lie on the
imaginary axes. Hence, if we wish to simulate the
step-response for ten seconds with a 0.1 second
resolution on the output, we define the time-domain

>> TIME = LINDOM(0,10,101);

and the trajectory {signal)
>> U = ONES(TIME);

The simulation is thereafter invoked as
>> VOUT = SYS * U

The result is graphically displayed and saved in
the trajectory (signal) VOUT for later use.

IMPACT supports not only frequency-domain, but also
time-domain models. Thus, having entered the A, B,
C and (optionally) D-matrix of a linear state-space
representation, a system is formed by:

>> SYS = LINSYS(4A,B,C);

As in the frequency-domain, state-space system ine
terconnections can be made using the operations
n#n, nut oand Y\\" for series, parallel and feedback
structures, respectively. Moreover, the more gener-
al connection mechanism of nonlinear systems pre-
sented in the next section can be used on linear
systems as well.

NONLINEAR SYSTEM REPRESENTATIONS IN CACSD

Apart from the obvious advantage of avoiding trans-
portation of data between different software tools,
the main advantage of incorporating nonlinear mod-
eling capabilities into interactive, command-driven
CACSD-packages is that the full expression-power of
the CACSD-package can be used., This simplifies tne
incorporation and use of nonlinear tools such as

- nonlinear time-simulators. It should be possible
to use some model-external driving function. Re-
sults of the simulation should be available in
trajectory form for further usage. package,

- algorithms for nonlinear controller design,

- nonlinear sensitivity _analysis either through
linearization algorithms or over a worst-case
multiple~simulation approach.

- a linearizer creating models for the linear
operations of the control package. If a linear
controller-design is made, it must be possible
to use this linear controller within the nonlin-
ear model for verificational simulations.

- tools for hierarchical modeling of larger non-
linear systems using modular subsystems.

Although a nonlinear (sub-)system is described
through a fixed set of equations, these equations
are accessed completely differently in each of
these tools, requiring a model to have alternative
outward interfaces. In the most general case, all
of the following interfaces may be needed for a
single model definition:

- parameter constants. During the modeling and/or
design phase, individual physical parameters of
a system may not be known or not yet determined.
In particular, the definition of predefined sub-
models with free, changeable parameters should
be supported.

- input and output signals. In control environ-
ments where simulations are invoked as simple
operations (e.g. as multiplications between a
system and a trajectory), inputs and outputs
must be definable for each (sub-)system.

- initial conditions for simulation and equilibri-
um points for linearization.

- submodel connections. For simple submodel inter-
connections, the overloaded operations for par-
allel, series and feedback connections suffice.
However, for a general modular modeling, possi-
ble interconnections ("cuts") between submodels
must be defined in each subsystem. These cuts
are then be connected to each other in the hier-
archically higher system,

Hence, the descriptive language for nonlinear mod-
els must be quite versatile. In particular, to be
able to submit a submodel to all the mentioned non-
linear tools, generic model-interfaces have to be
defined.



NONLINEAR MODELING IN IMPACT

We will in this section show how all nonlinear
operations can be invoked without inereased com-
plexity compared to the linear case. The nonlinear
model for the spool of our example is:

v=r*av

dav _ lorque

dt  inertia =003
inertia = cable x r* + roll w =06
ir cable = 23.5
5= ~kl *xav ) roll = 2.1
pp= G4
2% THxWw

where "v" is the roll-on/-off speed, "r" the in-
stantaneous radius of the roll and "av" the angular
velocity of the spool. The two constants "d" and
"yt denote the cable diameter and spool width. Typ-
ical values of "w", "d" and the inertia constants
"cable" and "roll" are indicated to the right.

As the model we wish to enter contain more than a
dozen lines, the risk of making errors during a
line-by~-line direct entry is relatively large. We
therefore invoke the systems editor from within IM-
PACT and define the system using this editor.

SYSTEM Spool(r0,d,w : SCALAR)
IN torque : SCALAR
RETURN v : SCALAR IS

r : STATE := r0;
av : STATE := 0.0;
inertia : SCALAR;
cable : SCALAR := 23.5;
roil : SCALAR := 2.1;
k1 : SCALAR := d¥*d/(2%_pi%w);
BEGIN
v = r¥*av;
inertia = cable¥r#¥§ - roll;
av’® =z torque/inertia;
r* = ~ki¥av;
END Spool;

This system definition declares a spool-template
with not yet determined initial condition "r0" and
system constants "d" and "w". These free parameters
of the defined model must be specified by all oper-
ations on the spool., The system-declaration header
also includes information on input and output pa-
rameters to the system, which are implicitly used
when we for example perform a simulation using com-
mands identical to those used for linear systems:

>> VOUT={SPOOL(1.2,0.03,0,6)*MOTOR*KP\\-TACHO)¥3¥*U

In the shown examples, default integration
parameters have been used during simulation, For
complete simulation control, each trajectory may
contain additional information on integrational
wmethods, step sizes, error conditions et cetera.

If we wish to "%“freeze" the parameter-values and
initial conditions, we may do so by creating a new
norlinear system as:

>> MYSPOOL = SPOOL(1.5,0.03,0.6);

Whenever a model is invoked without the correct
number of parameters and if specially formatted
textual information has been included in the model
definition {see [11] for details), the powerful IM-
PACT query facility will jump into action., For ex-
ample, if we perform a simulation without specify-
ing the free parameters, as in

>> VOUT = ( SPOOL * MOTOR * KP \\ - TACHO ) ¥3%U
(user

IMPACT will ask for the missing parameters
input is underlined:

$>>The nonlinear system SPOQL has been invoked
S>>with missing parameters. This system models
S>>the roll-off of a cable from a spool.
S>>Please enter missing parameters.

S>>

S>>Initial roll-diameter RO
8>>Diameter of the cable D
S>>Width of the spool W

(NO DEFAULT): 1.2
(NO DEFAULT): 0.03
(NO DEFAULT): 0.6

If the user is uncertain on the meaning of a par-
ticular parameter, he can enter a HELP for further
information.

$>>Initial roll-diameter RO (NO DEFAULT): HELP
S>>This parameter indicate the thickness of the
S>>layers of cable on the spool at the outset
S>>of the simulation (this thickness includes
S>>the radius of the spool axis).

S>>

S>>Initial roll-diameter RO (NO DEFAULT): 1.2
The query facility is particularly useful for sys~
tems with many parameters and for cases wnere the
user and the constructor of a system are different
persons. Especially students using predefined mod-
els appreciate this question-and-answer mode as a
complement to the faster, but more complex,
command~driven input.

The other operations working on nonlinear systems,
with the exception of the hierarchical modeling:
are invoked through commands implemented in the
normal command-language of IMPACT. For example, a
linear state~space representation of SPOOL may. be
calculated by symbolic linearization [9]

>> LINSPOOL = LINEARIZE(SPOOL(1.2,0.6,0.03));

Also here, the query facility would jump in when
either the function LINEARIZE or system SPOOL (or
both) was missing a parameter.

Yet another example illustrates the use of the IM-
PACT command language as an experimental frame for
simulation runs. Assume that the parameters "rO"
"d" and "w" are known with 10% precision and that
we wish to plot the envelope of the step-responses
from all worst-cases of this parameter-variation
(2). We would then create a matrix where each row
corresponds to a set of parameters:

>> MEAN = [1.2, 0.03, 0.6];
>> ERR = [0.1, 0.1, 0.1];
>> RUNS = PERMUTE(MEAN, ERR, "RELATIVE")



resulting in

RUNS =
1.0800 0.0270 0.5400
1.0800 0.0270 0.6600
1.0800 0.0330 0.5400
1.0800 0.0330 0.6600
1.3200 0.0270 0.5400
1.3200 0.0270 0.6600
1.3200 0.0330 0.5400
1.3200 0.0330 0.6600

A trajectory with the results from the eight simu-
lation using with the above parameter sets is con~
structed through the commands

>> FOR INDEX IN RUNS(I,:) LOOP

Note that the body of this system is empty as all
dynamic equations are contained within the subsys-
tems. "IN" and "OUT" are reserved words denoting if
an input or output is connected., The total subsys-
tem is thereafter invoked through the call

>> TOT = TOTAL(F,G,H);

where "Fv, "G" and "H" must be linear systems with
the correct number of inputs and outputs, The
thereby created system TOT is also a linear system
of the same type as the systems "F" through "H".
All physically realizable interconnections can be
processed using an algorithm described in [3].

Nonlinear systems may be connected in the same man-
ner, using either positional or named signal speci-

-> S{I) = {SPOOL(RUNS{I,1..3))%MOTOR¥KP\\-TACHOQ)*3%U;fication. The result is another nonlinear system.

~> END LOCP;

The envelope of these nine time-responses is then
obtained through the command

>> PLOT(S, "ENVELOPE");

GENERAL MODEL CONNECTIONS IN IMPACT

The feedback structure in Figure 2 is common enough
to warrant the introduction of a special feedback
operator "\\", However, for general topologies,
such as the one shown in Figure 3, our connection
operators n#w, M4n and "\\" do not suffice., To cov-
er these cases, a more general, hierarchical inter-
connection facility is available. Assuming that all
the systems in Figure 3 had linear representations
(and thereby positional rather than named input-
output signals), we would define a connectivity
system through

SYSTEM TOTAL{A,B,C : SYSTEM) IS
CONNECT A.IN(1) C.OUT(1) = OUT,

AJINC2) = 1IN,
B.IN = A.OUT(3),
C.IN(1..2) = A, 0UT(1..2),
C.IN(3) = B.OUT;
BEGIN
NULL;
END TOTAL;
[~* 1 1 1
A 2 ouT
N 2 E § C =
B

Figure 3. Non-trivial interconnection.

However, whereas linear systems in transfer-
function or state-space form have well defined in-
puts and outputs, this must not be the case for
systems described in algebraic and/or differential
equation form. Even a model of the simplest of sys-
tems, a resistor, may be used in two ways, depend-
ing on its surrounding connections:

I

]

U = R¥I or I= U/R

Hence, for a modular design of large systems in IM-
PACT, the interface concepts of Elmgvist will be
used., In his pioneer work, Elmgvist (5] allows the
system equations to be entered in any form, for ex-
ample would Elmqvists program DYMOLA accept the
equation set

torque = av ¥inertia;

av = v/r;

inertia = cable¥*r*#} - rolil;
rt = ~ki*av;

Jjust as well as our original equations. This allows
the user to enter equations as they were first oo-
tained e.g. from physical laws. DYMOLA, as well as
a not yet finished version of IMPACT, will sort the
equations into correct order ("vertical" sorting)
and also sort each equation so that the correct
variable is on the left-hand-side ("horizontal™
sorting). The sorter will also check the equations
for completeness and consistency and detect any al-
gebraic loops requiring special treatment.

To fully utilize the freedom of vertical and hori-
zontal sorting over different submodels, it must be
possible to define modules without having to speci-
fy if a connection variable is an input or output
signal., Elmqvist has shown that there generally ex-
ist two kinds of connecting variables; "ACROSS"
variable which are set equal at the interfaces (as
the voltages at the connection of three resistors)
and "THROUGH" variables which are summed to zero at
the interface (as the currents at the same connec-
tion). Returning to our example, if we wish to in-
clude the inertia of the motor in our system, the
motor would have to be modelled in greater detail
and our spool model could be defined having the



torque as through and angular velocity as across

variable at the interface to the motor:

SYSTEM Spool(r0.d,w : SCALAR)
IN torque : SCALAR
RETURN v : SCALAR IS
CUT axis(torque : THROUGH;
av : ACROSS);
cable(v ¢ ACROSS);

Note that this system has in/return parameter and
cut declarations. This allows us to use the same
model either as previously with fixed inputs/out-
puts or in a hierarchical model as follows: assum-
ing the motor has a similar cut axis, then the two
systems can be combined in a hierarchical system
having the header

SYSTEM Motor_spool{spool, motor : SYSTEM)
IN uin : SCALAR
RETURN vout : SCALAR IS
CONNECT spool.axis = motor.axis;
CONNECT vout = spool.cable;
CONNECT uin = motor.uin

END Motor_spool;

This model can then again be used to form the
system of Figure 2.

CONCLUSIONS

It is a cruel side of reality that most control al~
gorithms work only on linear systems whereas all
physical systems are nonlinear, forcing many con-
trol engineers to work in the linear as well as
nonlinear domain. However, the same engineers are
often extra punished by having to work with differ-
ent, incompatible software packages, giving them
problems of transferring data from one package (do-
main) to another.

In this paper, we have shown how a nonlinear model-
ing and simulation envirorment can be fully inte-
grated into a command-driven control environment.
This allows the user to work with a unified user-
interface during the whole design cycle, It also
allows for a complete mixture between nonlinear
(symbolic) and linear (numeric) models, something
particularly useful when linear controllers are de-
signed for nonlinear systems. Moreover, the algo~
rithmic interface of IMPACT can be used as a flexi-
ble simulation environment for invoking complex
simulation operations.
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