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high-autonomy intelligent command and control architec- h ure has been developed for unmanned plants to conduct 
scientific experiments or process local planetary resources. Two 
applications are: a biotechnology laboratory designed for Space 
Station Freedom and a working prototype of a plant for producing 
oxygen fr'om the Martian atmosphere. Adistributed command and 
control architecture has been designed to teleoperate such plants 
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in a high-level task oriented mode with supervisory control from 
one or several remote sites. The architecture integrates advanced 
network communication concepts and modem madmachine in- 
terfaces with recent advances in autonomous intelligent control. 
A complete testbed has been developed to demonstrate several 
applications of the architecture. 

High Autonomy 
within Remote Supervisory Control 

A distributed command and control architecture has been 
developed to provide the capability to teleoperate one or several 
process plants located on Mars, Luna, the asteroids, andor other 
objects in space in a supervisory control mode from one or 
several locations on planet Earth. The architecture is able to 
guarantee autonomous, reliable, and robust control over an ex- 
tended time period with high-level task-oriented teleoperation. 
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The goal 3f achieving high autonomy within a remote supervi- 
sory control umbrella necessitates a distinctive design that inte- 
grates cc'ncepts originating in the intelligent control and 
communication networks areas. Here we discuss the architecture, 
the considerations that led to it, and the current state of its 
implementation. 

Model-Based High Autonomy Architectures 
Autonomy is the ability to function as an independent unit or 

element over an extended period of time, performing a variety of 
actions necessary to achieve predesignated objectives while re- 
sponding to stimuli produced by integrally contained sensors. 
Emerging from the control field, intelligent control is viewed as 
a new paradigm for solving control problems [ 161. However, its 
relatively narrow interpretation of the "control problem" does not 
fully accord with high autonomy requirements since it does not 
include the control needed by a system to diagnose and repair 
itself afte- significant insults to its physical structure. Requiring 
greater di:grees of autonomy from a system forces the more 
expanded view presented by Antsaklis and Passino [ 2 ]  in their 
framework for autonomous control systems: full integration of 
knowledg e-based reasoning (derived from artificial intelligence) 
together with perception and action components (derived from 
robotics and control). 

To achieve such integration, Saridis [ 191 developed a three 
layer hierarchy (execution, coordination, and organization) for 
intelligent control which is supposed to reflect increasing intel- 
ligence with decreasing precision. Antsaklis and Passino [2] 
refine the hierarchy to an arbitrary number of layers, depending 
on the paqicular application. The coupling of control and infor- 
mation at various layers characterizes the framework proposed 
by Albus[l]. At the core of Albus's "reference model architec- 
ture" is a world model, the intelligent system's "best estimate of 
objective reality." In such a model-based architecture, knowledge 
is encapsulated in the form of models that are employed at the 
various control layers to support the predefined system objec- 
tives. One major hurdle to 
be overcc,me in such archi- 
tectural concepts is the 
heavy on-line computa- 
tion t i r e s  needed for  
higher level task-oriented 
functions such as planning 
and diagnosing. In high 
autonomi4 applications to 
planetary resource utiliza- 
tion a pr?mium is placed 
on payload size and weight 
and thus (in the present 
state-of-the-art at least) 
computational load is a 
major ccmcern. To over- 
come this obstacle, Zeigler 
and Chi 1281 proposed a 
model-based architecture 
that seehs to reduce on- 
line computation by off- 
line precompilation to 
produce simplified models 

the tasks needing to be performed. Such models are attached to 
generic engines that can interpret them efficiently with reduced 
processing times. As will be described later, the task-oriented 
models are developed as abstractions of a full-dynamics simula- 
tion model of the plant. Such models must be expressed in a 
variety of formalisms and at various levels of abstraction. Lower 
control layers are more likely to employ conventional differential 
equation descriptions and other forms of dynamic system mod- 
els. Symbolic models derived from artificial intelligence (AI) 
research, such as logics for reasoning and planning, are more 
applicable at higher layers. A key requirement for achieving high 
autonomy is the systematic development and integration of such 
dynamic and symbolic models. In this way, traditional control 
theory, where it is applicable, can be interfaced with AI tech- 
niques, where they are essential. 

Remote Supervisory Control 
Interaction with human operators at the very highest levels of 

a high-autonomy system provides the flexibility to deal with 
those rare but unavoidable events which are either impossible to 
foresee, or, if accounted for, would unacceptably increase the 
computational load and memory requirements [20]. To facilitate 
such remote supervisory control requires that a distributed com- 
mand and control system enable operators to observe the ongoing 
in situ process and issue high level commands from one or several 
remote sites. Ultimately there will be many remote sites geo- 
graphically distributed throughout the world. Such sites will 
communicate with each other and with the earthside command 
center over the national data communication network (currently 
the Internet). The command communication center will be lo- 
cated at the primary uplink, most likely at White Sands, NM. This 
network will eventually also employ other uplinks, as well as 
various relay satellites orbiting the earth, Luna, and Mars. The 
space-based portions of this network will utilize optical links for 
increased bandwidth. At any time, there will be one operator in 
charge of each distinct plant, while other observers may watch 
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from other remote sites. It should be possible to switch operations 
authority from one operator to another arbitrarily during an 
experiment without jeopardizing the overall mission. Moreover, 
if the remote controller or its connection to the plant fails then 
the latter should be able to continue on its own, possibly at a 
lower level of performance. When supervisory authority is reas- 
serted by another remote workstation the local plant controller 
should relinquish its full autonomy and resume operation under 
remote supervision. 

Such a command and control system must be resilient to 
temporaq. breakdowns in communication links, and must be able 
to accommodate a varying number of remote participants and 
local plants to be controlled. New remote observers should be 
able to join at any time, while others may sign off. New plants 
should be attachable to the control umbrella at will. Conversely, 
those that have accomplished their missions or are no longer 
serviceable should be easily removable. 

In what follows we shall first overview the command and 
control architecture that was developed to meet the foregoing 
requirements. Then we shall describe the model-based kernel that 
provides local highly autonomous operation. 

Command and Control Architecture 
Fig. 1 s.hows the overall command and control architecture. Each 

global site, whether local to the processing plant, or remote, hosts a 
Command Communication Center (CCC). On one hand, such a 
center serves as the gateway to the "longhaul" network that links this 
CCC to other CCCs; on the other hand, the center manages the 
resources available at the site. The reliability of the CCCs themselves 
can be guaranteed by standard technology such as resource dupli- 
cation. Plants and operators communicate with their own CCC 
through an interface computer. For operators this interface computer 
is a VMS or Unix workstation running the Operations and Science 
Instrument System (OASIS) software developed at the University 
of Colorado [7], [ 141. OASIS has been successfully employed in a 
number of NASA applications. 

OASIS is a layered software architecture developed specifi- 
cally for remote supervisory control. It provides a convenient 
human-computer interface with color graphics, mouse, or key- 
board command entry, and multiple window displays of teleme- 
try data from the plant site. OASIS itself controls data flows, 
translates mouse clicks and pull-down menu actions into com- 
mand streams, receives and processes telemetry data, and con- 
trols the communication process using TCP/IP protocols. Lower 
levels (TAE+, Motif, X) provide window editing, management, 
and control. The software is database driven, so that program- 
ming new applications can be accomplished very quickly. 

The operator workstations are called Remote Commanding 
Computers (RCC) and Remote Observing Computers (ROC) 
respectively. There is no fundamental difference between the two 
types of .workstations. They run the same software. They differ 
only in the privileges given to the operator of the workstation at 
any time. The privileges are a resource that is maintained by the 
CCC. Additional privileges can be requested from the CCC at 
any point in time. The CCC will grant these privileges if the 
operator of the workstation has a sufficiently high priority, and 
if granting these privileges is not in conflict with other demands. 
For example, no plant should be commanded by several remote 
commanders simultaneously in an intrusive fashion. The reason 
for this i*i that, at least in initial operations capability, there will 
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Fig.  2. Local control architecture. 

be no direct communication between the remote commanders. 
Thus allowing multiple simultaneous operation would lead to 
situations where remote commanders try to drive the plant toward 
inconsistent goals. 

The operator privileges are symbolized in our current imple- 
mentation by a privilege "key," that is maintained by the CCC. 
This key can be requested by remote operators to establish them 
as the new remote commander. If the key has been requested, but 
is currently in use by another operator, the CCC will inform the 
current key holder of the request. It is then the responsibility of 
the key holder to relinquish the key when it is no longer needed. 

The CCCs (local or remote) serve three purposes: 

1. SofhYare-decoupling of individual computers from each 
other: Each interface computer needs to know only the language 
of its client (the plant or the operator) and the language of the 
CCC. Different interface computers need not know anything of 
each other's characteristics and physical location, how many 
such computers are in the system, and how they operate. 

2. Managing the resource umbrella of clients. Each CCC is 
responsible for managing the limited resources of its clients For 
example, a restricted resource of the RCCs is their privilege level, 
implemented through the privilege key in the current prototype. 
Restricted resources of the Local Controlling Computers (LCCs) 
may be the amount of energy to be used at any one time or the usable 
communication bandwidth between the LCC and its CCC. 

3. Managing the communication with the other CCCs. To- 
gether, the CCCs manage the longhaul communication network. 
The time delays between the RCCiROCs and their closest CCC 
will be short and a simple message acknowledging protocol can 
be employed. The duty of the CCCs will be to ensure proper 
transmission of commands and telemetry packets across the 
potentially less reliable longhaul network. 

Local Intelligent Control Architecture 
Having discussed the communications portion of the com- 

mand and control architecture, we now come to the command 
structure. At the "local" site the plant communicates with its CCC 
through the Local Controlling Computer (LCC). As shown on 
Fig. 2, the LCC comprises a distributed control architecture in 
itself [ 1 1 1 .  The plant itself is interfaced with a hardware control- 
ler, called a Programmable Interface Unit (PIU), that is respon- 
sible for implementing low-level control strategies. The PIU, a 
commercially available DataPac 1 OK4T [8], has an advanced 
multiprocessor architecture and a fixed operating software that 
enables preprogramming to recognize and instantly respond to a 
number of simple commands. Several analog signal conditioner 
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Fig. 3. Prctocol in the LCC for communicating with the CCC and the PIU. 

cards acccmnodate different types of transducers. The interface 
unit has intemal registers for one thousand intemal binary vari- 
ables. These bits may be used for direct logic inputloutput (VO) 
for process control, automatic triggering of executable com- 
mands, arid initiation of limit-violation responses. It also has 
calibration functions for its I/O channels, limit status monitoring 
on user selectable channels, and digitallanalog signal I/O func- 
tions. Numeric functions can be defined with one or more data 
channels as arguments. With a combination of the above func- 
tions, simple control programs can be downloaded to the inter- 
face unit from the LCC. 

The LCC translates high-level task-oriented commands re- 
ceived from the CCC into sequences of low-level commands, 
downloads the corresponding low-level control programs into 
the PIU, and initiates the control action by enabling the PIU 
control. hotice that, in Fig. 1, the term LCC denotes the overall 
local control architecture, whereas in Fig. 2 ,  LCC is only a part 
of the local control architecture. This is only for our convenience 
in showing details of the current implementation. In the generic 
representation (Fig. 1) the LCC could of course be implemented 
as one or several processors. 

The LCC is the heart of the autonomous control system at the 
site of the plant. The LCC communicates with its CCC to receive 
control parameters and to send telemetry data back to the RCC 
on Earth. Users' commands include commands to set control 
parameters, telemetry data requests, system start-up commands, 
and system shut-down commands. The LCC communicates with 
other computerskontrollers while also executing the local con- 
trol procedures. Thus the communication process is included as 
part of thr. control program. Fig. 3 shows the overall protocol for 
the communication between the LCC and CCC. The LCC, physi- 

cally a PC-386, first sets up 
communication links to the 
PIU in order to initialize the 
sensors and actuators of the 
plant. Then it tests the commu- 
nication link to the CCC. Upon 
receipt of the control parame- 
ters and the start-up command 
from the CCC, the LCC begins 
to control the plant. Fig. 4 
shows the decision process for 
control of start-up and steady- 
state operations. In order to op- 
erate in real-time, the inference 
engine of the architecture has a 
clock to check time constraints 
on control rules. When the real- 
time expert system receives 
tasks from the RCC, it schedules 
the appropriate control actions 
to execute them. During the exe- 
cution, it continually monitors 
the state of the plant. 

The LCC and PlU together 
form a two level hierarchical 
control architecture. Reason- 
ing and high-level logic are re- 

alized in the LCC in an expert 
system shell written in C. In con- 

trast, the PIU contains simple control programs in memory and 
executes low-level control tasks in accordance with the parame- 
ters received from the LCC. This bi-level partition of function- 
ality enables fast local control under the guidance of slower, more 
global, intelligent control. 

Full-Dynamics Model 
of a Martian Oxygen Production Plant 

To provide a concrete example of the design methodol- 
ogy, we will describe the design of an oxygen production 
plant that would eventually operate on Mars. In keeping 
with the model-based architecture paradigm for high auton- 
omy, we briefly describe the oxygen generation process and 
the full-dynamics model of the plant that we developed to 
support the design. 

To exploit the Martian atmosphere, which is 90% carbon 
dioxide, a process of oxygen extraction has been studied by 
several investigators [ 131. The process requires that input gas, at 
a pressure of 6 millibar and at a temperature of approximately 
200K) be compressed (and thereby heated) to a pressure of 1 bar. 
It is then heated further to a temperature of approximately 800 
K. At that temperature, carbon dioxide decomposes through 
thermal dissociation into carbon monoxide and oxygen. The 
heart of the oxygen production plant is an array of Zirconia tubes 
or disks which separate the two gasses in an electrocatalytic 
reaction. The oxygen is liquified and stored and the carbon 
monoxide is either discarded or converted to methane by a 
Sabatier process. Parenthetically, this process is also important 
for Lunar oxygen production, as many of the proposed processes 
(e.g., carbon ilmenite reduction), result in carbon dioxide as an 
intermediate product. 
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To develop a high fidelity simulation model of the oxygen 
producticn system we employed a modeling and design method- 
ology ba!,ed on Bond Graphs [4]. The Bond Graph formalism 
affords the ability to unify various processes in terms of energy 
flow relaionships. For example, the power flow in the thermal 
dissociation of carbon dioxide into oxygen and carbon monoxide 
can be foimulated in a separate model which can be conveniently 
connected to the thermal model of the overall system. In this way 
we can construct a full-dynamic system model that can be used 
to represznt both steady-state operation (flow equilibrium) as 
well as start-up and shutdown phases with high accuracy. Space 
limitations preclude a detailed presentation of the Bond Graph 
models. However, the general methodology is fully explained by 
Cellier [4] and application of the methodology to the oxygen 
plant is discussed in a technical report [ 101. The following gives 
a brief 01 erview of the methodology and its application. 

The oxygen production system consists of concentric cylin- 
ders of different materials that perform different tasks as shown 
in Fig. 5.  A cylindrical ceramic heater surrounds a metal pipe and 

is surrounded by a cylinder of 
insulation. Carbon dioxide gas 
enters the system through an alu- 
minum pipe and then passes over 
the surface of the surrounding 
Zirconia tube. To form the Bond 
Graph thermal model, the cylin- 
ders can be described in terms of 
thermal resistance and capaci- 
tance elements [ 121. To conform 
to the Bond Graph requirement 
that all quantities be expressed in 
terms of power, the resistance to 
entropy flow is used instead of 
the resistance to heat flow. The 
temperature dependent relations 
for the specific heat of the differ- 
ent materials are available in the 
literature [ 181. Some of the cyl- 
inders contain gas, which means 
heat flow due to convection as 
well as conduction must be ac- 
counted for. The radiation heat 
transfer from the pipe in contact 
with the heater to the Zirconia 
tubes is also modeled. Since the 
system is symmetric the tem- 
perature distribution along the 
cylinders is expected to be ap- 
proximately uniform. Thus the 
cylinders were divided into at 
most two sections. This allows 
for a smaller, less complex 
model with better simulation re- 
sponse, yet with acceptable ac- 
curacy [lo]. 

To model the thermal disso- 
ciation of carbon dioxide into 
carbon monoxide and oxygen, 
requires consideration of chemi- 
ca l ,  t he rmic ,  and  hydrau-  

lic/pneumatic forms of power. The oxygen production rate is 
predicted using the number of moles of the reactant. This model 
is modularly connected to the tube model at the point where the 
input gas has been heated. The molar flow rate of oxygen 
produced is then multiplied by the efficiency of the Zirconia tube 
separation process, which is dependent on temperature and ap- 
plied tube voltage. 

Design of the Process Controller 
To meet the needs of the control and fault management tasks 

involved in autonomous operation, the full-dynamics simulation 
model is recast into various abstractions. Fig. 6 illustrates three 
such abstractions, for use in tuning the parameters of a fuzzy- 
logic process controller, training a neural net diagnoser and 
testing the operation of a command interface, respectively. The 
abstractions are employed as fast running stand-ins for the base 
model in constructing the specific task engines [27], [28]. To be 
useful surrogates, the abstractions should be valid simplifications 
of the full dynamics base model. 
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Event-Based/Fuzzy Logic Process Control 
To illustrate this model-based approach, we first describe the 

design of the real-time process controller within the LCC. Three 
kinds of state variables of the plant must be controlled, viz., 
temperatures of the Zirconia tubes, flow rate of the C02 gas and 
voltages across the Zirconia tubes. Since the unit must operate at 
high temperature, a control algorithm is used to increase the 
temperature as fast as possible while still preventing the seal 
between metal pipe and Zirconia input tubes from breaking. To 
achieve such a temperature trajectory, a fixed rate of increase, 
e.g., 10"C/min, can be set as the goal rate for the control algo- 
rithm. It should be noted that the thermal system is highly 
non-linear and therefore not amenable to classical linear control 
theory. 

With this in mind, an approach called event-based control [26] 
was integrated with fuzzy logic [ 151 to design the temperature 
controller. The structure of the controller is illustrated in Fig. 7. 
In event-based control, finite-state threshold sensors divide the 
control state space into a finite output partition. The control task 
is to move an initial state from a position on a given partition 
block boundary through a succession of boundaries to a goal set. 
Rather than continuously monitor the state trajectory, the con- 
troller has time windows in which it expects appropriate sensor 
responses to confirm expected boundary crossings. Such time 
windows can be developed as abstractions from a model of the 
controlled object [25]. A sensor response that occurs too early or 
too late indicates that an operations failure has occurred and 
causes the controller to cede control to a higher level process to 
deal with the abnormal situation. Moreover, the arrival of a sensor 
response outside its expected time-window provides important 
diagnostic information to a diagnoser tasked to discover the 
responsible fault, as the temperature example coming up will 
show. In sum, the event-based control paradigm provides a 
"seamless" transition from operations under normal conditions 
to fault-management after anomalies occur. 

To implement event-based control, when the LCC receives a 
goal temperature from the RCC, the expert system sets a number 
of checkpoint temperatures between the initial temperature and 
goal temperature as shown in Fig. 8. A pair of successive check- 
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Fig. 8. Evtnt-based temperature control. 

points can be considered as a small segment that must be suc 
cessfully 8iontrolled to reach the final goal temperature. Event- 
based control is employed for each segment, i.e., after reaching 
one checkpoint and issuing a control command to reach the next, 
the latter s,hould be reached within apredetermined time window. 
If the next checkpoint temperature is reached too early or too late, 
this represents a fault situation that the system needs to diagnose. 
To start its work, the diagnoser can use input from the event- 
based controller. For example, a late goal crossing suggests that 
the heater output is too low and starts a chain of reasoning in this 
direction. On the other hand, an early response might indicate a 
faulty thermocouple with a different sequence of considerations 
to initiate. 

At each checkpoint, the fuzzy logic controller computes an 
appropriate control command, which is realized as a pair of on/off 
heater durations as shown at the bottom of Fig. 9 (for example, 
<2,3> might mean heater on for 2 s, then off for 3 s.) High thermal 
mass in the plant necessitates this kind of operating regime (that 
is, the Zirconia temperature tends to lag and overshoot the 
nominal value). Fig. 9 also shows the fuzzy controller rules and 
the associated fuzzy membership functions for the rate of Zir- 
conia temperature increase. The rate of increase is obtained by 
sampling the temperature at 1 s intervals. The breakpoints in 
these membership functions are parameters that can be adjusted 
to produce a temperature trajectory that closely matches that 
desired. Such adjustment can be supported by an appropriate 
abstraction of the base model to be discussed later. 

The integration of event-based and fuzzy logic control para- 
digms provides a powerful means of meeting "hard" real-time 
subgoal:.. (offered by event-based control), while providing for 
flexible behavior-based "soft" control responses (offered by 
fuzzy control). Later in this article we discuss results of experi- 
mentation with this new approach and compare it with conven- 
tional alternatives. 

' c  

Fault Management 
Interspersed with the control tasks just described, the LCC 

reads sensory data from the PIU and reports telemetry data to the 
CCC to update the RCC's data base. If the LCC detects a faulty 
situation, it reports the fault detection to the RCC and starts its 
diagnosis inferencing engine. The behavior of each state variable 
is contrdled by a dedicated watchdog monitor [5] .  Each watch- 
dog monitor has upperflower limits for its state variable. Viola- 
tion of these limits causes the watchdog monitor to activate 
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diagnosis rules to execute appropriate recovery actions. During 
the diagnosis process, the LCC sends data more frequently to the 
RCC, which represent the error state transition behavior of the 
plant. This alerts the user at the RCC to the deviant behavior of 
the plant. On such an occasion, or indeed, at any time, the RCC 
can route new commands or parameter values through the CCC 
to the LCC to re-schedule control tasks andor to establish new 
control set points. Also, the RCC can send shutdown commands 
to interrupt the system. This can happen even while the system 
is in startup mode. At the same time, if recovery is not possible, 
the expert system automatically executes a benign shutdown 
procedure to protect the plant from further damage. 

The nature of extraterrestrial environments makes automated 
fault diagnosis an essential prerequisite for high-autonomy con- 
trol of in situ plants. This fault diagnoser must be very reliable. 
Model-based diagnosers [ 131 have been demonstrated to provide 
high coverage of anticipated and unforeseen faults. However, 
since it is impossible to foresee all faults that might occur, it is 
desirable to build some redundancy into the fault monitoring and 
diagnosis procedures. For this reason, a second process fault 
diagnosis system using multiple sensors for data acquisition and 
neural networks for information processing has been developed 
[W. 

The execution of this system is divided into three stages: 
I .  Fault Detection: At this stage a possible process fault is 

detected by checking if particular measurable or estimable vari- 
ables are within a certain tolerance of the normal values. For 
example, the measured temperature of the Zirconia tube should 
be above 790K but below 815K under normal situation. If this 
check is not passed, it leads to a fault message that activates the 
next stage of fault diagnosis. 

June 1993 d5 



2. Fau,'t Diagnosis: The fault is located and the cause of it is 
establishel at this stage using a neural network that fuses the data 
from several sensors. A multilayer feedforward net with one 
hidden layer was used. The reason to choose this type of network 
is mainly h e  to its simplicity and available software. However, 
some recent studies have suggested that multilayer feedforward 
network with a hyperbolic tangent as the nonlinear element 
seems bert suited for the task of fault detection and diagnosis 
[22]. The input layer has ten nodes representing ten sensor 
readings, md the output layer has eight nodes - one for each of 
eight selected fault situations. The hidden layer has six nodes. 
The stand,ird sigmoid was used as the activation function for the 
output neurons, while the hyperbolic tangent was used for hidden 
neurons in order to speed up the learning process. 

3. Fau't Evaluation: An assessment is made of how the fault 
identified in the second stage will affect the production process. 
The faults have been classified into different hazard classes 
according to a simple fault tree analysis. After the effect of the 
fault is determined, a decision on the actions to be taken will be 
made. If the fault is found to be tolerable, the production process 
may continue. If it is conditionally tolerable, a change of opera- 

tion has to be performed by either modifying the local control 
algorithm or sending a request to the higher level of control for 
guidance. However, if the fault is intolerable, the process will be 
shut down immediately and an emergent request will be made to 
the higher level to eliminate the fault. For example, if a malfunc- 
tion in the heater has been determined to be the cause of high 
temperature, the operation will be stopped immediately and a 
request for changing the heater will be made. 

To design the fault diagnoser ten sensor readings were used 
for sensor fusion in the neural network. One thermocouple 
transducer is located inside the Zirconia tube. On each of the C02, 
0 2 ,  and COdCO pipes, one thermocouple, one pressure 
transducer, and one flow rate transducer are located. All readings 
are scaled to a range from -1.0 to +1.0. The scaling makes the 
sensor fusion easier to perform because the original measurement 
data contains both small and large values. Eight representative 
fault situations were chosen: 1 )  C02 valve partially opened; 2) 
0 2  valve partially opened; 3) COdCO valve partially opened; 4) 
thermocouple transducers broken; 5) leak flow in tube; 6) mal- 
function in heater; 7) C02 flow rate too high; and 8) CO2 flow 
rate too low. 
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Verification and Validation 
To aswre that a complex high-autonomy system such as that 

described actually achieves its intended mission requires a com- 
prehensi ve plan for verification and validation. Since our goal is 
to establish the proof-of-concept of the underlying command and 
control architecture, it is important that testing be sufficiently 
extensive to provide some confidence that an actual system 
would perform as required. This section reports on the state of 
completion of the prototype, some of the tests of performance 
that were done, and some lessons leamed from the experience. 

A version of the prototype has been completed that demon- 
strates a respectable level of functionality for the communica- 
tions and control portions separately. However. the overall 
system has not yet been put to test for reasons not related to the 
automation but to the development of the oxygen production 
plant itself. The highest priority for the latter is to demonstrate 
sufficient efficiency of production to suggest plausible space 
application. All efforts of the group in charge of its development 
are devoted to this end. At this time, we have had access to the 
plant on few occasions. On one such occasion, the operation of 
a rudimentary version of the architecture was demonstrated in a 
week long experiment with an actual prototype of the oxygen 
production plant. A truly unforeseen disturbance occurred during 
this period - a thunderstorm caused a transient power outage. The 
ability of the controller to recover from this unplanned anomaly 
was not,ible and lends some credibility to the proposed fault 
management approach. The incident is described in [6]. 

Although the general outlines of the architecture have been 
verified, the specific incarnation as a command and controller of 
the oxygen production plant has yet to be fully tested. The reasons 
for this (can be found in the delays encountered in our progress 
that caused departure from an ideal development of a model- 
based ar:hitecture. Such an ideal progression is predicated on the 
prior construction of the plant. Once the plant exists, a full dynam- 
ics base model is constructed and validated against the plant. Work 
on the abstractions intended to support various tasks can be started 
concurrently with development of the base model and validated 
against the latter when it has itself been validated against the real 
system. 'fie task engines can be designed while the abstractions are 
validated and then tuned with the help of these abstractions after 
they have been validated. Once verified in this manner, the engines 
can be tested against the plant individually and collectively within 
the completed command and control system. 

To date we have been able to follow this scenario mainly with 
respect to its development aspects. Thus, as indicated before, the full 
dynamics base model was completed as were several engines and 
abstractions. However, we have not been able to adhere very well 
to the vdidation aspects of the scenario. To clarify this distinction, 
we first 'describe progress in the development of task engines. 

Event-Based/Fuzzy Logic Controller 
The event-based/fuzzy logic temperature controller was 

tested on a plant prototype containing only one Zirconia tube. 
Fig. 10(a) shows that, after tuning on a discrete-event abstraction 
of the thermal system, the controller was able to raise the tube 
temperature so as to closely match the desired constant ramp 
increase of IO"C/min. Fig. 10(b) shows that. except at startup, 
the instantaneous error rate was confined within narrow bounds. 

The performance of the event-based/fuzzy logic control com- 
pares wsll with altemative conventional techniques such as PID 

and PLC controllers [29]. One altemative that was investigated 
takes account of the extreme nonlinearity of the thermal system 
by partitioning the trajectory into three phases: initial startup, 
ramping up to the goal temperature, and regulation of the steady 
state. In each phase, a PID algorithm with different gains was 
employed. Such tuning of PID controllers is a major research 
direction in the area known as expert control [3]. In comparing 
the performance of the PID-based approach, we found that it was 
not able to match the accuracy in following the desired trajectory 
exhibited by the event-basedfuzzy logic controller. This is prob- 
ably due to the large number of adjustable parameters and the 
inherent nonlinearity of the fuzzy logic scheme. 

Although a PID-based algorithm can be designed to implement 
a given control strategy, such as the preceding temperature example, 
its structure is fixed and only its parameters can be modified to meet 
a non-linear or changing environment. Adaptive controllers add a 
second level of control that can adjust such parameters, but work 
within the imposed structure. By contrast, event-basedfuzzy logic 
control, is extremely flexible in that its basic structure can be readily 
adjusted by reprogramming. Moreover, discrete-event control is 
needed to command certain kinds of discrete actions such as start-up, 
shutdown, tuming odoff valves, etc. This kind of control is beyond 
the reasonable capabilities of continuous state controllers. 

Neural Net Diagnoser 
The neural net diagnoser was trained on an abstraction of the 

full-dynamics base model that included both normal and abnormal 
behavior. The training data obtained from the model consisted of 450 
measurement pattems (each pattem contains 10 sensor readings), for 
the normal operation and for the fault situations such as a valve 
partially opened, sensor or device malfunction, or abnormal gas flow 
rate. The output nodes each represented a fault. For the normal 
operation, the network was required to produce a value near zero 
(<O. 1) at all the output nodes. whereas the presence of a fault should 
be indicated by a value near 1 (S .9 )  at the corresponding output and 
near zero (<0.1) at the rest of the output nodes. The learning was 
conducted using the conjugate back-propagation algorithm [22]. The 
network was trained I O  OOO times to learn the specified fault situ- 
ations. For 100 additional measurement pattems that are not in the 
training data, 83 pattems were classified correctly [24]. 

Communications Prototype 
The operation of the communications prototype was verified 

using a mock geographic distribution of workstations playing the 
roles the various computers. A simplified abstraction of the plant 
oriented to testing the command interface was employed. This 
abstraction, the LCC, and the local CClC were located in a 
mechanical engineering laboratory across the University of Ari- 
zona campus from a computer engineering laboratory where the 
RCC and several ROCs were located. The ME and CE labs thus 
played the roles of a planet (local site) and Earth (remote site) 
respectively. Communication was via campus ethemet using 
TCPAP protocols. Since the remote CCC was not implemented, 
the local CCC managed the resources of the plant and also those 
of the remote operators [9]. Actual remote observation and 
control of the simulated plant was successfully demonstrated. 

Model Validation 
Now we retum to our difficulties in the validation of the model- 

based architecture. Based on the Bond Graph methodology and 
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integrating complex thermal, chemical and electrical processes, 
a full-dynamics simulation model has been completed. This base 
model runs on a 386 PC approximately an order of magnitude 
slower than real time. It has not yet been fully validated against 
the real plant, nor have the task-oriented models abstractions 
been valiclated against it. Moreover, as already indicated, the 
oxygen production plant has evolved through several prototypes, 
and is stili under development. As a consequence of such pre- 
varication in the underlying plant design, developing a base 
model, and therefore all its subsequent derivatives, is not only 
subject to delay but is also an exercise in hitting a moving target. 

Although the methodology is not proceeding in the ideal 
manner, it is still possible to claim benefits for it. Without the 
approximate realism afforded by the base model and its abstrac- 
tions, design of the plant control system could not proceed until 
the plant had actually been constructed. The existence of these 
models facilitates early design of, and experimentation with, the 
task engines in a realistic test bed environment without incurring 
the cost and risking the destruction of actual equipment (this early 
start capaliility has become known as concurrent engineering in 
manufacturing literature). Therefore our response to "life in the 
real world" is to try to build in greater flexibility in the design of 
the base model, its abstractions, and the task engine structures so 
that when finally a fm plant comes into existence, the models and 
engines have a greater chance of being calibrated to it. For example, 
rather than optimize the parameters of the fuzzy controller against a 
single model, it can be optimized against a family of models 
representing the uncertainty ranges in plant parameter values. 

Future Directions 
The bitsic outlines of the architecture for high autonomy 

command and control of space-based processing plants have 
been validated in the experimental work described. However, 
future work must extend and strengthen the model-based archi- 
tecture methodology to apply to diverse processes and plant 
designs. Improved techniques and tools are required to facilitate 
faster dehelopment of faster running, more flexible models to 
support the design and tuning of task-oriented engines More 
advanced concepts in the higher levels of hierarchical planning, 
sensing, control, and exception handling must be integrated into 
the framework of the model-based architecture. Design for in- 
creased autonomy must emphasize graceful degradation of per- 
formance with reduced resource availability that arises when 
resources must be shared among commanders or as a conse- 
quence of system failure. This will require integration of com- 
puter visim and other advanced sensory capabilities (including 
sensor fusion) for world state assessment as well as fault detec- 
tion, diagnosis, and recovery. For eventual deployment of in situ 
processing systems, the major challenge will be to reduce to 
practice the architectural concepts discussed here [ 5 ] .  This will 
require addressing the tradeoffs between higher autonomy and 
remote supervision and between high component redundancy 
and intellgent self-diagnostic capability. These tradeoffs may be 
ameliorated by the increased computation and memory afforded 
by light weight and low power but will continue to pose severe 
limitations in the foreseeable future. 
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