European Journal of Engineering Education, 9 (1984) 135—151 135
Elsevier Science Publishers B.V., Amsterdam — Printed in The Netherlands

The Use of Computers in the Education of
Control Engineers at ETH Ziirich

M.A. Mansour, W. Schaufelberger, F.E. Cellier, G. Maier and M. Rimvall

1. Introduction

The education of control engineers is in a transient state. Computers
are introduced for various purposes into the educational process. The
goals of compulsory education in computers and control in the elec-
trical engineering curriculum at ETH Ziirich are described briefly in
the following. Different ways of using computers to a considerable
extent in control education are surveyed. The operating environment,
consisting of hardware, software and laboratory processes, is also
described because of its importance in the educational process.

2. The Curriculum in Electrical Engineering at ETH Ziirich

The programme leading to the Diploma Degree in Electrical Engineer-
ing is a four-year programme plus a Diploma semester. There is also
a one-year postgraduate programme in control and communication.
The eight semesters of the four-year degree programme are organized
as follows:

— semesters 1—3: propaedeutical education;
— semesters 4—6: general electrical-engineering education;
— semesters 7—8: projects and specialization.

The curriculum is fairly rigid for the first three years. The total time
spent in classroom and laboratory is ~3600 hours, of which 500 hours
are devoted to nontechnical education. Projects are vital for the last
year (50% of the total time). In addition, a diploma thesis has to be
written to obtain the Diploma Degree.

2.1 Compulsory Computer Education in the Electrical Engineering Department

Every student in Electrical Engineering Department has to take the fol-
lowing three courses in computer science:

0304-3797/84/$03.00 © 1984 Elsevier Science Publishers B.V.

136

Frangois E. Cellier is Lecturer in Simulation Techniques at
the Swiss Federal Institute of Technology {ETH) in Ziirich,
Switzerland. He received his Diploma in Electrical Engineer-
ing from the same university in 1972, an M.S. in Automatic
Control in 1973, and a Ph.D. in Technical Sciences in 1979,
His main scientific interests concern modelling and simula-
tion methodology and the design of advanced software sys-
tems for simulation and computer-assisted modelling, His
research activities range from the numerical aspects of
simulation software (software/hardware interface} to the
information-processing point of view (user/software inter-
face). He has published more than 25 papers in this area.

Mohamed Mansour received his B.Sc. and M.Sc. in Electrical
Engineering from the University of Alexandria, Egypt, in
1951 and 1953, respectively, and a Dr.Sc.Techn. in Electrical
Engineering from ETH Zirich, Switzerland, in 1965, when
he was awarded the silver metal of ETH. He was Assistant
Professor in Electrical Engineering at Queen’s University,
Canada, from 1967 to 1968, He has been Professor and Head
of the Department of Automatic Control at ETH Zurich
since 1968, Dean of Electrical Engineering (1976—1978),
and Director of the Institute of Automatic Control and
Industrial Electronics, ETH Zirich, during 1976—1978 and.
1980—1982 and since 1984. He is aiso President of the Swiss
Federation of Automatic Contro!, and member of the Coun-
cil and Treasurer of IFAC. His fields of interest are control
systems, especially stability theory and digital control, the
stability of power systems, and digital filters.

Georg Maier was born in 1954 in Schaffhausen (Switzerland}.
in 1979 he received his Diploma Degree in Electrical Engi-
neering from ETH Zirich, and since then he has been work-
ing as an assistant in the Department of Automatic Control
and Industrial Electronics of ETH Zirich. His main topics
are real-time programming and real-time operating systems
using the high-level language Modula-2. From 1979 to 1982
he was an active member of the Technical Committee on
Real Time Operating Systems of the European Workshop
on Industrial Computer Systems (EWICS-TC8). He is cur-
rently working on a Ph.D. thesis on methods for exception
handling and synchronization in real-time programming.

C. Magnus Rimvall was born in Laholm, Sweden, in 1957, He
received his Diploma Degree in Physics Engineering from
Lunds Tekniska Hdégskola in 1982, He is currently a Ph.D.
candidate at the Institute for Automatic Control and Indus-
trial Electronics at ETH, His research interests include com-
puter-aided control systems design and simulation language
design. Mr. Rimvall is a member of IMACS and SCS.

137

Walter Schaufelberger is Professor of Control Engineering in
the Electrical Engineering Department of the Swiss Federal
institute of Technology (ETH). He received his Diploma
Degree in 1964 and his Ph.D. in 1969, both from ETH. He
spent the academic year 1971—-72 as a Visiting Lecturer at
Queen’s University, Kingston, Canada, and became Assistant
Professor at ETH in 1972, He is interested in new teaching
methods, such as group teaching and laboratory-oriented
teaching. His research interests are in the fields of adaptive
control and system identification.

First Semester: The Use of Computers (4 hours per week)
Introduction to programming using PASCAL; examples from data-
processing and numerical analysis; development of simple programs
for Apple computers.

Fourth Semester: Computer Techniques I (3 hours per week)
Advanced PASCAL programming, data structures, algorithms,
compilers, debuggers, operating systems.

Fifth Semester: Computer Techniques IT (3 hours per week)
Hardware of minicomputers and microcomputers, structures, tech-
nologies, interfaces, assembly-level programming, real-time pro-
gramming.

In addition, there are compulsory courses in linear algebra and numer-
ical mathematics.

2.2 Compulsory Control Education in the Electrical Engineering Department
Every student has to attend the following three control courses:

Fourth Semester: Control Systems I (3 hours per week)
Theory of linear continuous-time systems; system equations; input—
output and state-variable representation; Controllability, observabil-
ity, stability.

Fifth Semester: Control Systems II (2 hours per week)
Analysis and synthesis of continuous-time systems; stationary
and transient behaviour; stability, sensitivity; compensation, state
feedback, observer, optimal control.

Sixth Semester: Control Systems III (2 hours per week)
Description, analysis and synthesis of linear discrete-time systems;
sampling; time and z-domain description; controllability, observabil-
ity; stability, stationary and transient behaviour; realization of sam-
pled data control; compensation, state feedback, observer.

138

2.3 Options in Control and Computer Science
There are many options in the seventh and eighth semesters for stu-
dents interested in computers and control, for example:

— control theory (nonlinear systems and optimal control);
— control techniques (application-oriented);

— power electronics and drives;

—- signals and systems;

— $ensors;

— software engineering;

— real-time software;

— simulation.

Students have to take a minimum number of courses in the seventh and
eighth semesters (credit system). The Control Group also offers a short
course in PDP 11 programming.

3. The Use of Computers in Control Education

A brief summary of the principal uses of computers in control educa-
tion is given here.

3.1 Classroom
Simulation studies or computer-controlled processes are used to illus-
trate the behaviour of control systems.

3.2 Exercises
Students have to design several control systems, sitting at terminals
during the exercise periods.

3.3 Laboratory Experiments
Many small processes controlled by computers are available for one-
afternoon exercises in the fifth and sixth semesters.

3.4 Student Projects
The main use of computers is in students’ projects. Design and analysis
of control systems or implementations are typical projects.

3.5 Graduate Programme

Much use of computers is also made at graduate level. Experimental
verification of theoretically obtained results is often an integral part
of a doctoral dissertation,

139

4. Hardware and Software for Educational Use: Overview and
Experience

4.1 Hardware

The following computers are those used primarily in control education
at ETH:

1 VAX 11/780

3 PDP 11/03’s with process-control interface

1 PDP 11/34 with process-control interface

2 PDP 11/45°’s

1 PDP 11/60 with process-control interface

1 HP 1000 with process-control interface

1 VISOGYR industrial controller with real-time BASIC (Landis &
Gyr Zug AG)

1 SESTEP programmable logic controller (Sprecher & Schuh)

All offices, laboratories and classrooms are connected by a local area
network. This provides access to many additional computing facilities
within ETH.

4.2. Software

The software used and the philosophy behind it will be described in
some detail, because it is crucial for successful use of computers, and
because the various control laboratories differ mainly in this respect.
Two typical areas are first treated: languages and packages in use for
simulation and for computer-aided control systems design. Thereafter,
some aspects of educational practice in real-time programming are
described.

In addition the Control Group also maintains a large collection of sub-
routines for control systems design (AUTLIB) to be used with high-
level programming languages.

5. Software for Simulation and Computer-Aided Control Systems
Design

In the last few decades, digital simulation has emerged as one of the
most important tools for research as well as development in control
theory. However, as no universally usable simulation software is avail-
able, a large number of simulation packages are needed to cover all
types of simulation and at the same time provide packages as user-
friendly as possible. Therefore, a large number of simulation pack-
ages are available at ETH, many of which have been developed locally
either in part or fully. In the following list of simulation packages

140

available and used at ETH Zirich, no reference to alternative products
(superior or inferior) is made. Furthermore, the mention of any present
in-house software project neither implies nor guarantees the future
availability of any product.

5.1.ACSL (Advanced Continuous Simulation Language)

An easy-to-learn, well-structured interactive simulation language for
continuous and sampled data systems, ACSL includes features such as
macros, procedurals and nonlinear functions. In the interactive mode,
the user can change model parameters and perform simulations using
color graphics at terminals, as well as analyze a simulated system through
its Jacobian matrix and eigenvalues.

Available from Mitchell & Gauthier Associates, Inc., ACSL is presently
used in the first simulation lectures, and in research projects at ETH
Zirich.

5.2, COSY {COmbined SYstems)

This is a simulation language for combined continuous and discrete sys-
tems, and offers a high-level input language. The syntactical language
definition of COSY has been defined using a general-purpose parser.
At present, the COSY definition describes a state-of-the-art simulation
language with a structurability and versatility not available in any other
language. Preprocessor and run-time systems are presently not available
(see Cellier and Bongulielmi, 1979). A subset of COSY (SYSMOD) is
currently implemented by Systems Designer Ltd. on command by the
British Ministry of Defence (Baker and Smart, 1983).

The general-purpose parser is one part of the SYNTAX package. Using
this package it is possible to test asyntax for ambiguity and consistency.
After the syntax has been found to be correct, it is possible to test
whether examples written in the language are syntactically correct.
Furthermore, it is possible to plot syntax diagrams automatically.
Most of the SYNTAX package was developed at ETH Ziirich in the late
1970s; the plot-generating part originates from the Institute of Com-
puter Science, ETH (Bongulielmi and Cellier, 1979).

5.3. CSMP-6000

A batch-oriented simulation language for continuous systems, this
well-known IBM simulation language was the only language used in
the first simulation lectures (continuous simulation) until two years
ago. In the last two years, students have been able to choose between
ACSL and CSMP.

5.4 DARE-ELEVEN (Differential Analyzer REplacement)
Most of this package, an interactive version of the DARE simulation

141

language, is written in assembler for the PDP 11/RT, making the pack-
age fast but badly maintainable and not portable.

Developed at the University of Arizona, Tucson, AZ, this language was

used in one laboratory until a year ago, when it was replaced by DARE-
INTERACTIVE.

5.5 DARE-P

This simulation language for continuous systems features a very versa-
tile postprocessor for tabular and graphical output of simulation
results. The connection between the simulation package and the post-
processor can be seen as one of the first attempts to connect a simula--
tion package to a data base. The language was developed at the Univer-
sity of Arizona, Tucson, AZ.

5.6 DARE-INTERACTIVE

An extension to DARE-P, DARE-INTERACTIVE makes the language
interactive in a fashion similar to that of DARE-ELEVEN. New features
include color graphics, a run-time display and split-screen graphics.
Future versions of this software will include additional modules for
sensitivity analysis, replication and batch, and trend analysis. DARE-
INTERACTIVE will eventually also provide access to a general data-
base. It has been developed and remains under development by ETH
Ziirich, and runs under VAX/VMS.

5.7 DYMOLA
DYMOLA is a simulation processor to transform dynamic equations
given in the form

Fi(x,%,%, ...,0,4,...) = 0 i=1,...,

to a system of first-order differential equations, and can be used as a
preprocessor to SIMNON to prepare models. It was developed at the
Lund Institute of Technology (LTH), Lund, Sweden, and runs under
VAX/VMS.

5.8 EARLY DESIRE

This direct-execution simulation language belongs to the next genera-
tion of the DARE family, Developed at the University of Arizona,
Tucson, AZ, this new package is not yet used frequently at ETH
Ziirich,

5.9 ENPORT-4

This interactive simulation language for models represented by bond-
diagrams runs on the PDP 11; it was developed at MIT, Massachusetts,
MA.

142

5.10 FORSIM-VI

A Dbatch-oriented simulation language for solving partial differential
equations, FORSIM-VI is used primarily by researchers from other
departments; it is available from the Atomic Energy Commission of
Canada at Chalk River, Ontario.

5.11 GASP-IV

This batch-oriented, FORTRAN-coded simulation package for com-
bined continuous/discrete systems, developed by Pritsker & Asso-
ciates in the 1970s, is a true subset of GASP-V. It is available, but
used only in connection with GASP-V,

5.12 GASP-V

This batch-oriented simulation package for combined continuous/dis-
crete systems provides special facilities for partial differential equations
and discontinuities. GASP-V also contains a large number of different
integration algorithms. GASP-V was used in the latter part of the simu-
lation lectures (discrete simulation) until two years ago, when it was re-
placed by SLAM-II, another successor of GASP-IV, which provides ad-
ditional features for discrete system modelling. GASP-V is still used in
research for the analysis of strongly discontinuous and coupled algebra-
ic/differential systems. GASP-V was developed from GASP-IV at ETH
Ziirich in the late 1970s, and has been distributed worldwide.

5.13 GASP-V/INTERACTIVE

This is an interactive version of the GASP-V package. Through the use
of MIDGET and an interactive postprocessor from the DARE family,
the user can enjoy a very flexible version of the powerful GASP-V
package. GASP-V/I was and is being developed at ETH Zirich, and
runs under VAX/VMS.

5.14 GASP-VI

An extension to the GASP-V package, GASP-VI includes discrete
processes, a more versatile list-processing mechanism, and enhanced
output facilities. It is under development at ETH Ziirich (Cellier and
Rimvall, 1982).

5.15 MICRODARE-IV

This fix-point version of the DARE simulation program is used for
laboratory instrumentation. It was developed at the University of
Arizona, Tucson, AZ.

5.16 SDL (Simulation Data Language)

A portable relational data base specially adapted to storage and retriev-
al of data from simulations, SDL can easily be connected to any simula-
tion program providing for a FORTRAN interface. Developed by

143

Pritsker & Associates, Lafayette, Indiana, IL, SDL is used in the latter
part of the simulation lectures (discrete simulation) in connection with
SLAM-II.

5.17 SIMNON

SIMNON, an interactive simulation program for continuous and sam-
pled data systems, features a very natural model description as well as
an easy-to-use dialogue form. It was one of the first packages to include
terminal graphics to support interactive analysis/synthesis/optimization.
Developed at the Lund Institute of Technology (LTH), Lund, Sweden,
SIMNON runs under VAX/VMS.

5.18 SLAM-II

SLAM-II is a batch-oriented simulation language using a PERT network
description of discrete models to be simulated. As SLAM-II is a superset
of GASP-1V, it can also be used for combined continuous/discrete
simulation with only part of the system described by a network.
SLAM-II was developed by Pritsker & Associates. It is presently used
in the latter part of the simulation lectures (discrete simulation).

5.19 THTSIM

An interactive simulation language for models represented by bond-
diagrams, THTSIM runs on the PDP 11. It was developed at Twente
University, The Netherlands.

5.20 TRNSYS (Transient System Simulation Program)

This is a batch-oriented simulation language specially designed by the
Solar Energy Laboratory, Wisconsin, WI, to simulate solar-heating sys-
tems. A simplified coded input gives access to several premodelled
components and output facilities.

Although there is a large common area between the fields of simulation
software and computer-aided control systems design (CACSD) soft-
ware, the two fields are here treated separately. By CACSD systems we
understand packages providing a maximally user-friendly interface to
algorithms, data bases and graphics packages. Some of the CACSD sys-
tems mentioned therefore also contain simulation features.

5.21 IMPACT (Interactive Mathematical Program for Automatic Control Theory)
IMPACT is the newest CAD project at ETH Ziirich. It is to replace
and enhance INTOPS. The package will be fully interactive, using a
simple but versatile command language similar to that of MATLAB.
Supported data structures will include matrices, polynomial matrices
and linear as well as nonlinear system descriptions. Access to a data
base will be provided. Several new polynomial algorithms are to be
included, as well as a multitude of control-theory algorithms.

144

The package is implemented in Ada in a portable manner. The block
structure of the package makes extensions relatively simple; in partic-
ular, very general data-base and graphics-device interfaces exist (Rim-
vall, 1983a; Cellier and Rimvall, 1983).

5.22 INTOPS (INTeractive OPerationS)

INTOPS was developed at ETH Ziirich during the 1970s and incor-
porates many partly externally produced control algorithms. This
FORTRAN-coded software system gives the user access to a fairly
large number of algorithms for control theory in an interactive manner
(several of these algorithms are also included in the AUTLIB library).
This software is implemented on a PDP 11/34 under RSX. Some
parts require a Hewlett-Packard 2648 terminal for execution.

5.23 MATLAB (MATrix LABoratory)

Developed at the University of New Mexico, NM, MATLAB provides
an easy-to-use, interactive interface to the matrix-manipulation algo-
rithms of LINPACK and EISPACK. It is probably the most widely
used program at ETH Ziirich at the present time,

5.24 MIDGET (Menu-driven Interactive Development system for Generic
Engineering Tasks)

MIDGET was developed in 1983 at ETH Zurich. It is a software pack-
age standing between the user and the VMS operating system of our
VAX computer. MIDGET simplifies access to several software pack-
ages and performs several accounting functions. MIDGET can thus be
considered a special-purpose operating system implemented on the
basis of VMS. Highlights of the MIDGET system are as follows.

(a) MIDGET gives access to several development systems (in particular,
a development system for the construction of new development sys-
tems makes extensions to MIDGET an easy task). Generally, a devel-
opment system provides the user with a number of commands (typ-
ically 5—30) adequate for solving a particular task. These commands
are presented in a menu form; the use of “syspics” (pointers to the
specific problem part being treated) speeds up processing considerably.
At the present time, development systems exist for many of the sim-
ulation languages mentioned here and for the syntax package. Systems
are planned for the development of larger software packages (in FOR-
TRAN, PASCAL or Ada), which will include an automatic updating
feature,

(b) A MIDGET internal-accounting system adiministers several func-
tions not supported by the standard operating system. For example,
it is possible to split any user account into several logical subaccounts;
each user obtains access to a directory (logical work-area) of his own

145

after typing in a private password. This is especially practical for
accounts on which several students work: the disk quota is used op-
timally, and some file security is ensured.

(c) A jump facility gives the user easy access to his directory tree.

(d) Automatic terminal initialization makes it possible for other pack-
ages to adjust automatically to the terminal type used.

MIDGET is presently implemented on a VAX under the VMS oper-
ating system. In principle, however, a system similar to MIDGET
would be implementable on any interactive system (Rimvall, 1983b).

Table I indicates at which levels of education the various packages for
simulation and computer-aided design are used. Furthermore, a dis-
tinction is made between whether a package is used as a tool only,
or whether development of the package itself is undertaken at ETH.

TABLE 1

ETH Software Packages for Use in Simulation and Computer-Aided Design 2

Language Use at various levels Use as Devel-
or software tool opment
package Semesters Semesters Labo- Student Graduate Research at ETH

5 and 6 7 and 8 ratory project prgramme

ACSL
COSY
CSMP

DARE-11
DARE-P
DARE-INT

DESIRE
DYMOLA
ENPORT-4
FORSIM

GASP-IV
GASP-V
GASP-V/I
GASP-VI

MICRODARE
SDL
SIMNON

SLAM-II
THTSIM
TRNSYS

IMPACT
INTOPS

MATLAB
MIDGET

| o000 cooo oroO © | ©
| o000 coro coo v | W
|oco cooo Moo © | ©
| PNO HOHO PNO M| N

OO ©COO
HEDN NN

OO0 HOO
CON kMO
NN ON OO NMEKH NHHEHO HOOO NNO HDNN

NN OO HHO NQO OCONO OO0 COHO OO
NO ON HOKFH OO NNNO HFOOO NDNO HNH
MO ON HFOO OFHKM RPDNNNO HOOO NNO ON KR

nN = l\')]
Ho o |
o O |
[N

2 The symbols indicate the following: 2, much used; 1, used; 0, hardly ever used; —, not
applicable/not available.

146

6. Practical Education in Real-Time Programming

6.1 Goals :

In the Department of Automatic Control undergraduate student pro-
jects in the field of real-time programming are carried out regularly
(2—5 per year) as an opportunity to get to know and use a real-time
programming language environment extensively.

6.2 Project organization

Students should take part in the PDP 11 short course before their
project starts. Good knowledge of PASCAL is assumed. The course
in real-time software is recommended. Two recently developed real-
time tools, namely Modula-2 (Wirth, 1980) (together with the real-
time operating system kernel MODEL written in Modula-2 (Maier,
1982)) and PORTAL (Lienhard, 1978; Nigeli, 1981) are used on the
PDP 11 computers under RT-11 (Modula-2) or RSX-11 (PORTAL).

Typical projects are the design and implementation of a control task for
one of the more complex laboratory processes. Through some ten
student projects, a model railway has been connected to a minicom-
puter (PDP 11/03), and two large program packages written in Modula-2
and PORTAL have been developed to control and supervise up to ten
trains simultaneously. Another couple of projects have been carried
out on a power-system model.

6.3 Experience

Normally, students have been able to learn Modula-2 in a few days
starting from their knowledge of PASCAL. The time to get started
with PORTAL has been slightly longer, because compared to PASCAL
this language includes more special features than Modula-2.

It has become evident that the design of a real-time program is much
more complex and time-consuming than the design of a sequential
program: besides all commonly known problems of sequential pro-
gramming, the following tasks cannot be neglected:

— getting started with the real-time operating system and with the
real-time aspects of the programming language to be used;

— understanding synchronization (normally, in a real-time system
several actions have to be carried out in parallel: therefore, a real-
time program consists of several parallel processes which must
be coordinated with each other by means of synchronization
operations);

— learning interface programming (in many real-time systems, non-
standard devices (e.g., A/D and D/A converters) are used: their
handling needs special knowledge in system programming, e.g.,
interrupt handling).

147

The applicability of Modula-2 and MODEB as well as of PORTAL
indicates that there is no need for a large number of synchronization
concepts. The design of real-time programs becomes simpler if only a
few powerful synchronization operations are available.

The efficiency of the programming environment used influences the
programmers’ productivity to a high degree. The advantages of the sep-
arate compilation of Modula-2 have been proved: a module of 500 lines
can be compiled and linked with a set of other modules to an execut-
able program within about two minutes. The PORTAL implementation
on the PDP 11 does not provide separate compilations. Therefore, the
whole program must be recompiled after each change, which takes
about three-quarters of an hour for 3000 lines. Delays of this order of
magnitude are hardly acceptable and may be the reason that such a
tool is not used widely.

For both Modula-2 and PORTAL a symbolic debugger is available and
has been recognized as a very important tool during the test phase.

6.4 Conclusions

A real-time operating system or a real-time language is a prerequisite
for a practical education in real-time programming. The applications
should be coded in a higher-level, PASCAL-like programming language.
Alternatives to Modula-2 and MODEB or PORTAL are one of the
numerous PASCAL dialects with real-time enhancement (e.g., Micro
Power PASCAL) or, within a few years hence, Ada.

Besides the programming language, a suitable language environment
in terms of editing, compiling, debugging, etc. is essential. Students
should get to know a powerful system, so that they themselves will be
able to estimate the influence of another language environment pro-
grammer’s productivity.

Laboratory processes and models form another element of a successful
education in real-time programming: experiments on laboratory pro-
cesses cannot be replaced by theory or simulation.

7. Laboratory Processes and Experiments

We here provide a brief overview of many experimental applications.
The goals to be reached are described for different courses, and related
typical experiments are summarized. Additional details may be found
in Mansour and Schaufelberger (1981).

148

7.1 Undergraduate Control Laboratory (fifth and sixth semester)

This feature consists of simple one-afternoon experiments to introduce
sequencing control and classical control methods, of which examples
are now given.

(1) Traffic lights. A model of a street intersection with five lanes in
the city of Ziirich is controlled by a computer. In automated operation,
the system has six different states. Students write a LASIC program
(Logical BASIC) for fully automated operation of the corner, and
carry out experiments on the installation.

(2) High-bay warehouse. Wooden blocks can be stored and retrieved
from a fully automated model warehouse with 360 storage places. Ex-
periments with the crane-position control subsystem (preprogrammed
in PASCAL) are carried out by students, using different control algo-
rithms.

(3) Coin-exchanging machine. A fully automated coin-exchanging
machine using small balls as coins is available. Students write real-
time PASCAL programs for simple changing strategies, and operate the
installation. Several balls may reside concurrently at different stages
of the plant.

(4) Speed control of a DC motor. A 4 kW DC motor is controlled by
thyristors. Students are required to investigate discrete proportional—
integral—differential controllers programmed by assistants. Students
can change the controller parameters and the sampling time, and
investigate the system both theoretically and practically.

(5) Heating and ventilation control systems. A model of a room is
available in this experiment. An industrial controller is used for tem-
perature and air-flow control.

(6) Three-basin level control system. On—off and proportional—inte-
gral controllers are used to control two water levels in this system.
Students verify the operation of all parts and the model obtained
theoretically. They then operate the system with a preprogrammed
solution.

(7) ““Helicopter” model. A two-degree-of-freedom model of a heli-
copter with two drives is controlled by analogue or digital control.

7.2 Undergraduate Student Projects

Typical goals at this stage are the design and implementation of state-
variable feedback and output feedback controllers for various pro-
cesses. Students have much more time available for a project than
for a laboratory assignment, so that they can carry out the entire
design cycle.

(8) Three-mass—spring system. Output feedback controllers have been
designed and implemented on this sixth-order system.

149

(9) DC servo. State-variable feedback control has been implemented
successfully on a fourth-order servo by using an observer. Two sys-
tems are controlled simultaneously by use of a real-time operating
system.

(10) Inverted pendulum. An inverted pendulum is controlled by various
control algorithms. Swing-up strategies have been developed for a
single-stick pendulum, and stable controllers have been realized for all
equilibrium states of a two-stick pendulum.

(11) Model railway. A model railway has been connected to a PDP
11/03 and is used for projects in real-time programming. Program
packages written in Modula-2 as well as in PORTAL have been im-
plemented to control and supervise up to ten trains simultaneously.

7.3 Graduate Control Laboratory

Some experiments have been especially designed to complement the
theoretically oriented lectures in some of the graduate control courses,
i.e., identification, adaptive control and control by microprocessors.
The experiments in adaptive. control have been summarized by Schau-
felberger (1977).

(12) Adaptive control of DC generators. Several adaptive-control meth-
ods (model reference, self-tuning) are used to control small DC
generators with varying turbine speed.

(13) On-line identification. Several programs are available for on-line
identification of different electromechanical systems.

(14) Speed and tension control in a tape transporting machine. Design
and implementation of a controller consisting of two proportional—
integral controllers and a static decoupling network is another example
-of a laboratory assignment at this stage.

7.4 Graduate Student Projects

The implementation of advanced control strategies on nontrivial ex-
amples is the goal at this stage.

(15) Speed and tension control in a tape transporting machine, State-
variable feedback control with observer has been implemented on this
two-input/two-output system.

(16) Positioning of antennas. Adjustment of antennas for optimum
data transmission as an example of. extremalizing control has been
designed and implemented.

7.5 Research Projects

Results as obtained in theoretical investigations in research work are
often implemented to obtain insight into the feasibility of the results
obtained.

150

(17) Adaptive control. Identification and adaptation techniques can
easily be tested by changing the masses of the three-mass—spring
system manually.

(18) Power-systems model. A computer-controlled power-systems
model with three generators is under construction jointly with other
groups in the department. It operates at 4 kW and will be used for
experimental work on new control algorithms in power systems.

8. Conclusions

Simulation, computer-aided control system design and the imple-
mentation of control systems by real-time languages are important
aspects of control engineering. The proper use of computers in engi-
neering education requires considerable expenditure on installations
and on manpower to develop and maintain such installations and pro-
gram packages and languages.

The infrastructure available in this area to the Control Group of ETH
Zirich has been described to some extent in this paper to provide
information about the actual situation in Ziirich, We are conviced
that efforts in this area are justified by the improvements in teaching
and research that have resulted from the increased use of computers.

References

Simulation and Computer-Aided Control Systems Design

Baker, N.J.C. and Smart, P.J. (1983). “The SYSMOD simulation language”, in
W. Ameling, ed., Proceeding of the First European Simulation Conference,
ESC’83. Berlin: Informatik-Fachberichte, Springer.

Bongulielmi, A.P. and Cellier, F.E. (1979). “On the usefulness of using deter-
ministic grammars for simulation languages”, Proceedings of the SWISSL Work-
shop, St. Agata (Italy) (to appear in Simuletter).

Cellier, F.E. and Bongulielmi, A.P. (1979). “The COSY simulation language”,
Proceedings of the IMACS Congress on Simulation of Systems. Amsterdam:
North-Holland.

Cellier, F.E. and Rimvall, M. (1982). “The GASP-VI simulation package for pro-
cess-oriented combined continuous and discrete system simulation”, Proceed-
ings of the 10th IMACS World Congress on Simulation and Scientific Compu-
tation, Montreal (Canada).

Cellier, F.E. and Rimvall, M. (1983). “Computer aided control systems design”,
in W. Ameling, ed., Proceedings of the First European Simulation Conference,
ESC’83. Berlin: Informatik-Fachberichte, Springer.

Rimvall, M. (1983a). IMPACT, Interactive Mathematical Program for Automatic
Control Theory: A Preliminary User’s Manual. Ziirich, Switzerland: Institute
for Automatic Control and Industrial Electronics, ETH Ziirich.

Rimvall, M. (1983b). MIDGET Users’ Guide. Ziirich, Switzerland: Institute for
Automatic Control and Industrial Electronics, ETH Ziirich.

151

Real-Time Programming

Maier, G. (1982). “MODERB: a real time operating system kernel written in the high-
level programming language Modula-2” 3rd IFAC/IFIP Symposium on Software
for Computer Control, SOCOCQ’82, Madrid, Spain, 5—8 October 1982, Pre-
prints, pp. 15—21.

Maijer, G. and Kuster, F. (1981). “Echtzeitprogrammierung in einer héheren Pro-
grammiersprache (Modula-2): steuerung einer Modelleisenbahn”, Zusammen-
fassung der Referate des 4. DECUS Miinchen Symposiums an der Universitit
Konstanz, 18—20 March 1981.

Nageli, H.H. (1981). “Programmieren mit PORTAL: eine Einfithrung”, Landis &
Gyr Zug AG.

Wirth, N. (1980). “Modula-2”, Instituts fur Informatik, ETH Zurich, Bericht 36.

Wirth, N. (1982). Programming in Modula-2. Berlin: Springer.

Laboratory Process and Experiments

Huguenin, F., Kraus, F., Kuster, F., Maier, G., Maletinsky, V., Schaufelberger,
W., Scheuren; J.J. and Toedtli, J. (1980). ‘“Automatische Steurerungen und
Regelungen mit Mikrorechnern’, Fachgruppe fir Automatik, ETH Zirich,
Report 80-01.

Mansour, M, and Schaufelberger, W. (1981). ‘“Digital computer control exper-
iments in the control group of ETH Ziirich’’, 8th IFAC World Congress, Kyoto.

Schaufelberger, W. (1977). “Laboratory experiments in adaptive control”, IFAC
Symposium on Trends in Automatic Control Education, Barcelona.

