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COMPUTER AIDED
CONTROL SYSTEMS DESIGN

Dr. Frangois Cellier, CH-8092 Zirich

Mr. Magnus Rimvali, CH-8092 Zirich

Summary: This paper reflects our experience with Computer Aided Control System
pesign (CACSD). A first section briefly presents a CACSD-system for student use
CINTOPS) which has been developed by our group some years ago. Qur experience with
this software system is outlined. A second section discusses a few State-of-the-art
CACSD~systems developed by other research groups. In particular, the systems de-
veloped by K.J. Rstrdm and his group are mentioned (SIMNON, IDPAC, MODPAC, POLPAC,
and SYNPAC), as they seem to be among the most advanced systems currently available.
A next chapter discusses the advents of a more general expression parser at hand of
the MATLAB matrix manipulation program, It is shown that, though MATLAB was not
really aesigned for the implementation of control algorithms, many control problems
can be formulated and solved very elegantly by means of MATLAB. A new CACSD=-system
(IMPACT), which is currently under development by our group, is then presented. This
system. shall enhance the capabilities of MATLAB by encompassing additional oper-
ations and data structures particularly useful in control system analysis and de-
sign. A final chapter concludes this discussion by mentioning some perspectives for
further development.

1. Introduction.

control Theory has become a well established topic with a history of roughly
50 years and an extensive number of publications. The topic¢ has meanwhile gained so
much that recently a decision was taken to issue the first Epncyclopedia_of_Control
/ SING84/ .

However, there exists a Large gap between the fairly sophisticated control
algorithms being developed and the simple PID-controllers which are predominantL?
used in practice. One of the reasons for this gap may lie in the fact that modern
controllers are quite difficult to design. Their evaluation requires in most cases
large skill and a substantial number of sophisticated numerical algorithms. The use

of a computer for this purpose is a ¢onditio sine_qua_nhon.




In the early seventies, several research groups developed extensive Llibraries of
FORTRAN subroutines 1implementing many numerical control algorithms. One of the
largest collection of such subroutines is AUTLIB /CELL77/. AUTLIB contains more than
300 FORTRAN-c¢oded subroutines for control system analysis and synthesis, and still
there are many problems nét tackled, In particular, we have only few programs for
multivariable systems, and even less for nhonlinear systems. Another good Llibrary has
recently been developed at Kingéton Polytechnic /DENH82/. Most of these Llibraries
(AUTLIB not excluded!) suffer from the fact that the  therein contained programs are
coded predominantly by control engineers rather than by numerical mathematicians.
Their numerical behaviour is not in all cases sound. It is only recently that con-
trol theory became sufficiently well reputed among numerical mathematicians (1),
that also they started to look into these problems, hopefully withrtheVLOng-time ef-
fect that gradually better numerical algorithms and computer programs will be made
available, which shall be equally sound and eLéborafe as currently LINPACK (for
linear matrix cperations), EISPACK (for eigenvalue and eigenvector analysis) and
lMSL (matrix and statistical operations).- A first conference on Numerical problems
in control was organized in 1980 jointly by K.J. Astrdm (Control Engineering) and
G. Golub (Numerical Mathematics), two highly reputed researchers who were able to
attract a rather unique collection of the best researchers from both fields to

discuss these probliems.

However, even the use of these subroutine libraries is a fairly complicated and time
consuming undertaking. Let us assume that somebody who has never before written a
program to compute the eigenvalues and eigenvectors of a matrix wants to do this by
the use of such library routines. He shall start by asking the numerical group at
his institution whether they know of any avaiLabLe'and adequate sdftware for his
taék. Being advised to use EISPACK, he shall have to consult the EISPACK document-
ation (/SMIT74/, /GARB77/), which in itself is fairly voluminous, to find out which
subroutines to use. Next, he shalt have to organize matrix input and also matrix
output (for checking on input errors), then call one after the other somewhat Like 5
different EISPACK subroutines (each with a fairly large number of parameters), and
finally priht out the results. The resulting FORTRAN program comprises o¥ about 50
statements (includfng comments). Its coding shall, in the best of all cases, Keep
him busy for a couple of hours. In the desigh of an advanced control algorithm, this

may be just a very little subproblem to be solved.

As - this is very inconvenient, it is important that the control engineer is supportéd
by the computer to a much Larger extent. This can be achieved by developing

interactive CACSD programs with interactive machine-readable documentation (the

briefly the requirements of such CACSD systems: A CACSD program should be



‘easily_learnable and easily useable; it should be optimally adapted to control pro-

in competition with each other. The most easily Llearnable CACSD program, and thus a
‘program being optimally suited for student use, 'is one which uses a rigid
question-and-answer format, in that "the computer" (that is: the program) poses the
pertinent questions, and the user is asked to provide the answers., Whenever a user
does not fully understand a question, he may type in a question mark to obtain a
more comprehensive explanation. Obviously, the same program is not very flexible, as
the program stays in control of the operation thoughout the session, that is: it is
not possible to depart from the foreseen paths. A command driven program-is cer-
tainly more flexible, but lLess easy to use. A program which offers few commands onty
js certainly easier to learn than one which provides the user with a large .variety
of commands. However, the same program may be much more difficult to use, as more
complex operations might have to be composed from those few primitives of the former
program by the user, whereas the latter program probably provides for the required

operations directly. That is: CACSD_means_making compromises. The quality of a CACSD

program is determined much more by its man-machine communication interface than by
the operations it offers., In recent years, a noticeable progress has been achieved

in this respect, as shall be shown in this paper.

2-_INTOPS_: A_Question—and-Answer Driven CACSD Program Suite.

INTOPS /AGAT79/ has been .developed by our group a couple of years ago. In fact,
INTOPS was conceived as an interactive front-end to our control tibrary AUTLIB
JCELL?7/. The INTOPS package has been developed largely by students in their term—
and diploma projects , and this unfortunately is reflected in the code. The modules
do not always match very well together, Therefore, the maintenance of the program

creates some headache. INTOPS consists of three programs:

al POLOPS: for polynomial operations (comprising 35 commands),

B) MATOPS: for matrix operations (comprising 35 commands),

c) LTDOPS: for Llinear time~domain operations (comprising 17 commands).

INTOPS has been conceived from its beginning as a program to be used primarily by

students. Therefore, a strict question-and-answer dialog is used.

Let us illustrate the INTOPS dialog by means of a simple example. We want to compute

the Bode diagram of the transfer function:

1
G(s) =

53+552+98+S



This can be performed by the following dialog (user input is underlined):

RUN_INTOPS

INTOPS>

> FOR SELECTING PROGRAM OPTIONS:
OPTION = POLOPS (POLYNOMIAL OPERATIONS), OR
OPTION = MATOPS (MATRIX OPERATIONS), OR
OPTION = LTDOPS (LINEAR TIME DOMAIN OPERATIONS),

I>  OPTION = POLOPS

POLOPS> _

P> HELP IS AVAILABLE

P> OP CODE = ENTER

P> NAME = NUME

P> COMMENT = NUMERATOR

P> ORDER = Q

P> PCO) =1

P> NUME NUMERATOR

P> PC 0) = 0.10000E+01

P> OP CODE = ENTER

P> NAME = DENO

P> COMMENT = DENOMINATOR

P> ORDER = 3

P> PCO) =9

P> PC1) =5

P> PC2) =9

P> PC3) =1

P> DENO DENOMINATOR

P> PC 0) = 0.90000E+01

P> PC 1) = 0-50000E+01

P> PC 2) = 0.90000E+01

P> PC 3) = 0.10000E+01

P> OP CODE = BODE

P> GH NUMERATOR = NUME

P> GH DENOMINATOR = DENO

P> NUMBER OF FREQUENCY VALUE = 1000

P> OMEMAX = 1000

P> OMEMIN = .1

finally resulting in:
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For this particular problem, INTOPS proved fairly comfortable, as the requested path
had been foreseen by us when implementing INTOPS. On the other hand, if one tries to
find out (by use of INTOPS) whether or not a linear system is controliable (a ques-
tion which at Least still can be answered!), INTOPS proves extremely clumsy, because

the requested path was not preprogrammed.

INTOPS certainty fulfils the task it was designed for, Our students are extremely
happy with this software. There is no need for an INTOPS manual, the onLi thing the
student needs to know is how to Sign on to the machine and how to start the program.
Afterwards, all operations are self-explanatory, and the little help still required

is available by means of "on-line" help support.




Where then lie the deficiencies of INTOPS:

A) Shortcomings of INTOPS from a users! point of view:

AD

A2)

A3)

Ab)

INTOPS is not user extendable. There exists no possibility at the dialog-
(that is: INTOPS-) interface to combine a sequence of operations into a new
command. Addition of new " algorithms at the implementation-— (FOR?RAN—)

interface proves unnecessarily complicated.

Once the user has entered an incorrect code, he has no possibilities to
correct it, but is forced to\StrictLy follow the programmed path, and wait for

the end of this now senseless dialog until he can restart again.

After a whiLe; the guestion-and-answer scheme gets rather boring, and compara-

tively time-consuming.

Although it is possible to stash INTOPS variables away on a file for reuse in
another session, this data interface has not been properly designed. It is not
always possible to retrieve data produced by one program module from within
another program module, and there is hardly any chance that one might read

INTOPS-produced data into another program.

B) Shortcomings of INTOPS from a software engineer’s point of view:

B1)

B2)

The heart of each Llarger software system should be a set of carefully designed
data structures which are used consistently throughout all program modules.
There can hardly happen anything worse to a software engineer than being
forced to modify the central data structures of an existing large software
system. In INTOPS, such:- a central data concept does not even exist. Each
student who contributed to INTOPS has designed his own data structures with
the effect that INTOPS is difficult to maintain and update. This deficiency

shines through to the user in shortcoming A4.

No CACSP program can be made entirely machine independent. There does, for
instant, not yet exist a standard graphics interface. First steps towards the
development of such an intefface (SIGGRAPH, GKS /GKS83/) are not yet accepted
enough to make them really useable, (The only widely used interfaces are the

CalComp subroutines used to drive most plotters, and the PLOT]I0 software used

.to drive most graphical terminals. Both "standards" are, however, entirely in-

sufficient in any respect.) For this reason, most graphical softwWare systems
use their own kernel of virtual graphics primitives, leaving it up to the
implementer tc map these primitives into those which are avaitable at his
instal lation (a fairly simple task though). INTOPS has no centralized graphics
interface. Instead, each module basically uses its own plot routine, partly by
caltling PLOTI0 routines, and partly by utilizing the HP-2648 graphics
capabilities. This makes INTOPS badly portable.



B3) It makes sense to provide an interface to a relational data base in which all
permanént data are stored for reuse (preferrably, also the graphics system
should make use of this interface). Such a design strategy ensures that data
are easilty exchangeable between all program modules as well as with the outer
world. Unfortunately, INTOPS does not make use of such a concept. Instead, it
uses a private (badly designed) direct access data file. This shortcéming
comes through to the user in A4, For the same reason, a central data
administration 1is hardly imaginable 1in INTOPS, and there ‘exists no

well-dgfined interface between the different program modules.

Attogether is to be said that, although INTOPS is certainly a useful program, it no

Longer represents the state-of-the-art in CACSD-programs.

3. _State-of-the-art CACSD_programs

Beside INTOPS, there exist quite a few other CACSD-programs on the "program market".
D.K. Frederick has recently compiled an impressive list of such systems /FRED82/,
which is stiil far from being complete. Most of these CACSD programs are comparable
to INTOPS both in complexity and sophistication. They vary largely with respect to
the types and numbers of operations (and thus algorithms) implemented, but Little in
their man-machine interface. Most of them suffer from similar shortcomings and a
lack of systematic design methodology as INTOPS. Among the best currently available
CACSD programs are those developed by K.J. fstr8m and his group. While in many
research groups the CACSD programs were developed as éide products - often by less
qualified people which were considered not bright enough to conduct theoretical
work (1), Rstrdm early realized the potentiat impact of CACSD, and put highly
qualified software engineers and professional programmers on the task. These efforts

resulted in a suite of five CACSD programs:

1) SIMNON  /ELMQ7Y/, a simutation program for continuous systems with

discrete-time regulators (sampled data'systems),

2) IDPACK /WISL8Da/, a program system for data analysis and identification of

linear deterministic or stochastic multi-input, single-output systems,
3) SYNPAC /WISL80b/, a state-space oriented control systems design program,
4) POLPAC, a frequency-domain oriented design program, and
S MODPAC /WISLBOc/, a program for transformations between different control

system representations.

A short overview of these five programs can be found in Rstr8m /ASTR83/. Many of the

previously mentioned shortcomings of INTOPS are eliminated in these programs:



A1) AlL programs are command-driven. A MACRO feature (INTRAC /WISL78/) exists in
all of these programs, providing for a unified means of generating additional
operators at the CACSD interface tevel. INTRAC contains the expression parser
which is, therefore, common to atl five programs. This makes the programs more
uniform and better maintainable. At the implementation interface Level
(FORTRAN), some of the packages (e.g. SIMNON) allow the user to add new

algorithms in a standardized (although not necessarily convenient!) manner.
A2) This drawback is automatically removed by the command-driven dialog.

A3) The beginner cannot run any of these programs without having studied a manual
beforéhand. Unfortunately,  those are the weakest parts of these software
systems! However, the MACRO-concept allows to make the dialog as convenient as
possible, (It is even feasible to implement a question—and-answer dialog by

use of these macros.)
A4) Not optimally resolved.
B81) ALl programs use the same data structure concept.
B2) Not resolved.
B3) The data interface between the different program modules is better than in

INTOPS, although still far from optimal.

It has to be stated that all these programs stem from a time when computer power was
still expensive, while programmers were still cheap (!). Accordingly, the design
goal weighed execution efficiency higher than software portability, maintainability

and updateability. This decision must certainly today be considered wrong.

4. _MATLAB - A Matrix Laboratory.

A somewhat different approach was taken by C. Moler in the development of MATLAB
IMCLEBO/, an interactive program for all sorts of matrix operations. MATLAB is a
futl-fledged interpretive Llanguage using complex, double precision matrices
(including vectors and scalars as special cases) as its only data type. On these

data, all kind of operations can be performed by use of -a very natural notation.
Matrices are specified by use of angular brackets:
A=<1,2,3;4,5,6>

where "," or SPACEs separate column elements, while ";" or the continuation on a new
row part each of the rows. Each matrix element may be a submatrix in itseltf, and may

be compiled as an expression of almost unlimited complexity.



Let us assume that we want to know whether or not the system

% = Ax + Bu
with
0100 o]
SILERS BT
-3 —4 -5 -6 1

is controllable. This can e.g. be computed in MATLAB by the statements :

A = <<0;0;0>,EYE(3);<-3,-4,=5,-6>>
B = <0;0;0;1>

QS = <B,A*B, A%xA%B, Ax*3xB>

RANK(QS)

where EYE(3) denotes a 3 by 3 unity matrix. If the same operation is to be executed
many times for systems with different matrices A and B as well as different system
orders N, we might want to store onto the file CONTR.MTL the fol lowing statements:
QS = B; AUX=B;
FOR I=2:N, AUX=A*AUX; QS = <Q@S5,AUX>; END

RANK(@S)
RETURN

which can then be executed by:

A=<...>; B=<X...>; N=...;

EXECC'CONTR.MTLY)
Why 1is MATLAB that much easier and more comfortable to use than all the other pro-
grams which have been specially designed for control operations? We assume that the
reason has something to do with the enhanced capabilities of the highly recursive
expression parser.. Even the CACSD programs developed by Rstroém are far Less advanced
in this respect. This commonly found Limitation has presumably to do with the fact
that most CACSD programs are coded in FORTRAN which makes the use of recursions
parser is rather sophisticated and certainly not a FORTRAN program which a

second-class control engineer is Likely to develop (!).)
Let us show at a somewhat more elaborate example that MATLAB is quite useful for in-
volved control applications. Let us compute for the Linear system
. n
R = AX + Bu ; XgR

a state feedback such that

Item

[ -]
S(x'ax + U'RWdt min.
-]
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According to the eigenvalue method proposed by P. van Doren /DORESQ/, we can solve

this Riccati problem by means of the following algorithm:

a)

b>

c)

&)

e)

Check on controllability of the system. If the system is not controllable

return with an error message.

Compute the Hamiltonean:

A -BR g

-q -A?

pa o
i

Compute the eigenvalues and eigenvectors of the Hamiltonean (24N). As the
system is controllable, the eigenvalues will be symmetrical'to the imaginary

axis, and have all their real parts different from zero.

Take those eigenvectors belonging to negative eigenvalues (dimension: 2N*N),

and split this reduced eigenspace into equally sized upper and lower parts:

Vo= <V1;v2>

Now the Riccati feedback can be computed as

K =-R 'B'P

where

o
H

Re(%if%ij)

For this algorithm, we may write the following MATLAB "brogram" (file: RICC.MTL):

EXECC 'CONTR.MTL")

IF ANS <> N, SHOW ('SYSTEM NOT CONTROLLABLE'), RETURN, END
<V, D>=EIG(<A,~B*(R\B') ;-Q,~A'>);

D=DIAG(D); K=0;

"FOR J=1:2%N, IF D(J)<0, K=K+1; V(:,K)=V(:,J); END

P=REALCV(N+122%N,1:K)/V({:iN,1:K));

K=—R\B'*P
D=<>; V=<>;
RETURN

wh{ch is a reasonably compound way of specifying a fairly complex algorithm.

Where then Llie the deficiencies of MATLAB with respect to control applications?

These are still manifold:

(D)

The EXEC-file concept is no valid replacement for a true MACRO facility. For
example, there is no way to pass actual parameters during a macro call. INTRAC

is much better in this respect.



2)

3

4)

5)

62

ih!

Atthough'there exists the possibility in MATLAB to store data away for later

reuse {(SAVE and LOAD commands), one soon ends up with a large number of un-

'structubed data files. A clean data base access mechanism would be much

better.

Control engineers want to see nice graphs. The output facilities offered by
MATLAB are insufficient in this respect. (A data base interface would soften
that problem as well, in that the stored curves ceuld then at least be

same data base.)

Although there exist currently few numerically sound algorithms for polynomial
operations, control engineers want to have the possibility to analyze and
synthesize their systems in the freguency domain as well. This requires an
extention to the data structures offered by MATLAB.

Even linear systems often reguire nonlinear controllers (e.g. when using
wind-up technigques in otherwise classical PIb~-controllers, or when using adap-
tive controllers). Therefore, an extention to nonlinear system descriptions is

required,

A library of controlL algorithms should be provided with the system. (This

final request is the one which is easiest to supply!)

AlLso some other control engineers have meanwhile realized that MATLAB has a great

potential as a basis for an excellent CACSD program. At {east one extension of
MATLAB (MATRIX, /WALK82/) is currently available on the software market. This pro-

duct, which provides for Linear system descriptions (in the time domain), for some

frequency domain operations (such as Bode diagrams), and for graphical output, has

just two major disadvantages:

a)

It just solves a few of the previously mentioned demands, namely numbers 3 and
6. In particular, no new data structures have been provided., MATRIXy makes use

of the fact that a linear system

X
Y

Ax + Bu n o P
Cx + Du XER i UER i YER

can unequivocally be represented by the matrix:

_ a B
- [t 3]
a matrix with dimension (N+P)*(N+M), when the system—order N is Kknown. Uun-

fortunately, such a system description is not extendable to encompass non-

linear structures as well, and neither is a decomposition into subsystems or a

composition from subsystems achievable.
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b) MATRIX, is unaffordable to universities!

At least one of the other CACSD programs (CLADP /MACI82/) shares some of the ad-
vantages of MATLAB and MATRIX, by providing a similar (though less appealing) exres—
sion parser. CLADP is particularly useful for the analysis of multivariable systems

in the frequency domain,

5. IMPACT, Interactive Mathematical Program for Auiomatic_Control Theory

After we had realized that INTOPS was no longer up-to—-date, and as we felt that - on
the basis of MATLAB - an excellent CACSD program could be produced, we decided to
start with the IMPACT project which shall in the sequel be briefly presented.

5.1 Polynomial Qperations

factorized form) or roots of polynomials (factorized form). In this way, polynomial
matrices can be formulated, and even transfer function matrices (rational function

matrices) can be represented as a set of tWwo such tensors.

Let us discuss once more the Bode example. This can be solved in IMPACT by one
single statement:

BODE(1/E54945411)
or scmewhat more verbous (but better readable) by

s = [M]

NUME = 1;

DENO = S#%3 + 5%3%S + O*S + 5;

G = NUME/DENQ;

BODE(G)

The "A"-operator separates polynomial coefficients.

Cascading of systems is performed by the normal multiplication applied in reverse
order
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— —
— 6, 5, SR
S——— | .
\ 7
N
Gtot

GTOT = G2*G1
parallel connection is performed by addition, and the "\\'"-operator has been

introduced to represent the feedback Loop:

+
> G »
H —
— /
\/
Gtot

GTOT = G\\(-H)

More complex operators are performed on these structures as easily as in MATLAB.

E.g. can the transfer function matrix of a Linear system:

%
Y

Ax + Bu
€x

be computed as:

G = C*INV(S*EYE(N)-A)*B



14

5.2 Macros:

e e it e e

Four types of macros are provided in IMPACT:

5.2.1 Function macros

me=ssmenmunessannan - a

Example: We want to expand a transfer function matrix such that all denominators are

equal,. This can be performed by the function:

FUNCTION EQLIZ(G

H = REDUCE(G);
L = LCDCDENOM(HI);
D = REDUCE( (ONES(G * L ) ./ DENOM(H) );

EQLIZ = (D .* NUMCH) ./'L);
ENDFUNCTION
where REDUCE cancels common factors of the numerator and the denominator; LCD com—
puteé the least common divisor of a polynomial matrix; DENOM extracts the de-
nominator polynomial matrix of a rational funcfion_matrix; ONES(G) produces a matrix
wWwith the same dimensions as G whose elements are all scalars equal to 1; and NUM
extracts the numerator polynomial matrix. For numerical reasons, it is recommended

to apply this FUNCTION only to transfer function matrices in factorized form.

5.2.2 Procedural Macros

Example: We want to write a procedure to add a new MACRO to our private MACRO
ltibrary (PRILIB.INT), or replace an old one by a newer update. This can be-performed
by:
PROCEDURE ADDMAC (FILNAM)
LOAD('PRILIBY)
READ(FILNAM)

SAVE('PRILIB' ,MACRO)
ENDPROCEDURE

This procedure is executed by .
ADDMAC('NEWMAC. IMP')

Upon call, only one variable is known within the procedure, namely the variable
FILNAM which is of type text-string and contains the name of the file which the new
MACRO is currently stored in. LOAD('PRILIB') Lloads all variables from file
PRILIB.INT cbntaining the MACRO Llibrary. READ(FILNAM)} reads the new MACRQ and con—
verts it to its internal representation. If such & MACRO variable was already in the
lLibrary, this variable is now overwritten by the new definition.
SAVE('PRILIB' ,MACRO) saves all currently accessible MACRO's (but not the text-string
variable FILNAM) in a new cycle of the file PRILIB.INT. Upon return from the pro-

cedure, the old context is reestablished, and all previously visible variables are
accessible again.
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There exist two special procedures (LOGIN.MTL) on the system account as well as on
the user's account. These are executed automatically upon call to IMPACT. The users
LOGIN-file could lock Llike:
PROCEDURE LOGIN ‘
SHOW ('What the hell are YOU doing on my account number?')
PI = 4*atan(i);
WHO
ENPPROCEDURE
AlLL variables or MACRO's created during the execution of the LOGIN-file are

read-onty.

5.2.3 String MACROS

String macros (paranthesized by the keywords "MACRO" and  "ENDMACRO") are general
purpose MACRO's for all types of applications. These MACRO's are more versatile than
FUNCTIONS or PROCEDURE's, but they are also more dangerous to apply as they alilow
for less error checking. For that reason, the use of string MACRO's is not recom-

mended to beginners.

5.2.4 System MACROS

EXAMPLE: Let us formulate a system description for the Van-der—Pol oscillator

2

M ep(1=xTIR +x =0

This can be performed by:

SYSTEM VANDERPOL(MY)
STATE X(2)
INITIAL X0=<0;0>;
QUTPUT Y

XD,

X(2).

Y=X(1);
ENDSYSTEM

X(2);
MY*(1=X (1D %X (1) I*X(2)=X(1);

uon

A new variable of type VANDERPOL may now be created by:
éYS1 = VANDERPOL(2.)

or
SYSZ2=VANDERPQOL(.5 //X0=<.75;-.75>)

The "//"-operator is used to overwrite defaulted parameters which, in IMPACT, are

There exist many predefined SYSTEM MACRO's, e.g.
SYS3=LCSYS(A,B,C)

to denote linear continuous systems, or
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CON1=LDSYS(F,6,H,TS)

to denote linear discrete-time systems (with sampling interval TS).

5.3 Time-Domain Operations.

Example: Let us create a system description for the compound system:

204
sWp p—»|  CONI 5YS3 >y
-  Z0H

'

'

where ZOH denotes the predefined system type zero—order—-hold, and SMP(TS) denotes
the predefined system type sampling.

This task can be accomplished in IMPACT by
STOT = (SYS3 * <ZOH,0;0,Z0H> = CON1 * SMP(.1)) \\ (-1)

involving a Little compiler to generate a new system macro (of a hidden type) and,
thereafter, create the variable STOT of this hidden system type.

The more complex structure:

— 581 $52

SS3
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"~ coutd be handled by writing:

SYSTEM STOTTYPE(SS1,S$52,553)
IMPORT $S1,SS2,5S3

INPUT U

OUTPUT Y
ss1.U = U;
§S2.US = §81.Y1;
$S2.U2 = S$83.Y;
§S83.U1 = SS81.Y2;
§S83.U2 = $82.Y2;
Y = §82.Y%1;

ENDSYSTEM

As one can see, the system description operators in IMPACT are defined such that
operations in the time-domain resemble those in the frequency domain as much as
possible. However, due to the possibility of describing alse nonlinear and sampled

data systems, they are even more versatile.

Let us assume, the three systems above were specified in the frequency domain. In

that case, one possible solution to achieve the interconnection would be to write

$1
s2

DFORM(GT) ;

DFORM(G2) ;

DFORM(G3);
STOTTYPE(S1,52,83);
LINEARCSTOT);
TRANS(SLINI;

w

-

=

=
won

GTOT

whereby DFORM transforms the systems intc a time~domain description in controll-
abjlity canonical form (companion matrix representation), LINEAR transforms STOT
back into a system description of type LCSYS, and TRANS computes again a transfer

function matrix.

5.4 Simulation

v S e 1 s e 2 et

A new concept has been proposed to simplify the simulation of (linear as well as
nonlinear) models. To show how this concept works, we have to introduce two more
data types:

S.4.1 The Time-Domain

BB sassnspEmaAnRee =Y

A time-domain is a collection of points on the independent axis which form a table.
E.g. would

TIME = DOMDEF(0,100,G.5);

create a table with 201 elements starting with O,Aand using increments of D.S5.
Time-domains can also be concatenated by use of the '&'-operator. Thus, ancther

legal time domain would be:

TAU=18&28&58& 10 & 20 & 50 & 100;
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In the vocabulary of current CSSL's, the entries in a time-domain are the communic-

ations peoints.

S5.4.2 The Trajectory

Most operations on time-domains reguLt in variables of type trajectory. E.g. would
TR1 = SIN(TIME);

create a twoe-column table wWith the SINE-value computed for each entry in the
time—-domain and stored as the second column. Also on trajectoriés,'operations can he

performed. E.g. would
PLOT(TRT //TITLE='SINE FUNCTION")
graph the sine function versus time.
TRIN = <TR1;COS(TIME)>;

creates a column vector with two elements, each being a trajectory. That is, beside
from scalars, polynomials, and systems, also trajectories may be elements of
.matrices (they must be specified over the same time~domain though).

With this concept, an elegant way of formulating a simulation problem can be found.
- .
TROUT = SS3*TRIN;
applies the two trajectories to the two inputs of the system SS3, performs a spline
interpolation, executes a simulation of system §$3, and stores as a result the
output trajectory in variable TROUT, sampled at the same communication points. That

is: TROUT is a trajectory over the same time~domain.

SIN(TIME) ——»
SS3 % TROUT(TIME)
COS(TIME) —————

It is now interesting tc see whether the normal algebraic rules for the '#'-operator

apply to this new definition as weil. Let us check this at hand of the following

example:
> ——
B > 5 > S2 T2
I— Emmm——
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82%51%T1;

N
1

(82%81)*T1;

15

S2*(S1*T1);

In the first formutation, our Llittle system compiler is jnvolved to create a new
system for §2%51, then one simulation is performed on this new system by use of the
input trajectory T1. In the Llatter case, a simulation is performed on system S
dnLy, and the three resulting‘trajectories are stored in an intermediate trajectory
vector, Then, this vector is once more interpolated to perform a second simutation,
this time on system S$2. It is quite clear. that the results will be numerically
different (in particular, if the time-domain is not dense encugh to keep track of
the high frequencies of system S$1). However, it is quite evident as well that con-

ceptually the equality holds.

5.5 Status of the Project.

IMPACT has been designed by the use of a general purpose LL{1) parser /BONG79/.
Apart from a formal syntax, there also exists a preliminary version of the IMPACT
User's Guide /RIMJSS/. As IMPACT enhances the data structures of MATLAB
significantly, it has been decided, not to extend fhe MATLAB expression parser, but
to recode the IMPACT scanner and parser from scratch. This shall not be dane by use
of FORTRAN (as in the case of MATLAB), but rather by the use of ADA. IMPACT shall be
coded as portably as possible, However, we shall not try to keep the code
sufficiently small to make it implementable on a 16 bit machine without virtual
memory., A typical machine to implement IMPACT on shall be a 32 bit machine with

virtual memory (e.g. a VAX).

6._Perspectives for Further Development,

Although we are convinced that IMPACT shall mean a large step forward in CACSD soft-
ware, we are aware of the fact that not even IMPACT can be the final answer to all
problems. In particular, the I/0 still creates some headache. There does not yet
exist an exeptable standard for graphical 1/0 (for graphicét input even Lless than
for graphical output). The proposed database concept reduces this problem to some
extent, as a large amount of advanced I/0-operations can be separated from IMPACT
and placed in one or several separate programs linked to the same data base. These
pfograms need not be Jimplemented in the first version of IMPACT. Some very
interesting results concerning graphical input were presented recently by
H. Elmquist /ELMQ82/, more shall certainly follow, and we are convinced that these

techniques: shall once more revolutionize the CACSD software in the future. This,
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together with the rapid development in computer hardware, shall provide us with
cost-effective implementations of sophisticated CACSD programs prior to the end of

this decade,

There exists already a book on CACSD by H.H. Rosenbrock (/ROSE74/). The -software
engineering aspects of CAD systems are dealt with in a book by J.J. Allén
(/ALLA77/). However, these books may already be a Little too old, as publications in
this field outdate very quickly. Two very interesting reports on the expected per-
spectives of CACSD software have been written recently by K.J. Xstrdm /ASTR83/ and
D. Birdwell /BIRD83/. An interesting Symposium on CACSD ﬁas organized not Long ago
by M. Mansour (/MANS79/). A brand new state-of-the-art of CA(CSD software has been
edited by C.J. Herget and A.J. Laub (/HERG82/) as a special {ssué of the new-IEEE

Control Systems Magazine.
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