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AD’s Role in Control of Systems:
Structural and Behavioral Knowledge

Francois E. Cellier and Bernard P. Zeigler
Department of Electrical and Computer Engineering
University of Arizona
Tucson, AZ 85721

ABSTRACT

This paper surveys the role of Artificial Intelligence
techniques in the control of real systems. A broad view
of the control problem is taken which includes aspects
such as long term planning, system management, fault
diagnosis, user interfacing, etc. Within this scope, we
identify. opportunities for research combining Al and
simulation methodologies including: comprehensive
frameworks for knowledge representation, -knowledge
based automated model synthesis and system design, and

combining qualitative and conventional systems modelhng

for multilevel control.
INTRODUCTION

The role of Al applications .can be understood by
starting with our desire to influence and control nature to
suit our purposes. -To do this, we try to predict the
behavior of real systems, and how our actions influence
this behavior. |f our predictions are reliable, we can take
effective action. Models of real systems help us to
predict their behavior and find actions that will achieve
our goals. We build models by observing real systems and
organizing the results of our observations in a useful
form. We test models by comparing their predictions
against new observations, and modify them if significant
discrepancies are noted. Once validated, models Can be
used to design new systems and to control the behavior of
existing ones. Having knowledge about a system and
having a valid model for it are basically two dlfferent
ways of saymg the same thing.

Control of a system can be illustrated by an example.
Piloting an ocean liner begins by planning a course to sail
to a destination. We employ our knowledge, or madel, of
ocean currents and winds, and of the ships capabilities, to
lay out the course that will make our journey pleasant and
get us to where we want to be on time. If our knowledge
is faulty, i.e., our model's predictions are not borne out,
our voyage will not be as smooth as planned. Normatlly,
the winds and currents are close to what we expected,
and all that is required is to steer the ship in the right
direction despite small disturbances that are ever
present. If something major goes wrong, and we find
ourselves off course, we try to find out what it is, and

having done so, take corrective action.

~ We see that control of nature, broadly interpreted,
involves system design, long range planning, and short
range monitoring and compensation. it also involves
diagnosis (finding out what went wrong) and repair.
Models are essential to effective handling of each aspect,
but they are different. To steer the ship, we need to know
how it will respond to movements of the steering wheel
and changes of motor speed. Classical automatic control
systems employ dynamic models. for this purpose.
However, such models are not suitable for the other
aspects of system control. It is in the latter aspects,
that the knowledge representation schemes and concepts
of Al come primarily into play. -

THE CONTROL OF COMPLEX SYSTEMS

Different aspects of’ the {local and global) control of
complex technical processes, the types of knowledge used
for .these control purposes, -and the tools that are

primarily employed in these aspects are summarized fn
Table /. :

It can be seen that a distinction is made between
structural and behavioral knowledge. Roughly, structural
knowledge refers- to knowing -how a system is
constructed. The behavior of a system refers to what it
does rather than how it is constructed = Behavioral
knowledge refers to knowledge of its behavior deduced
from observations that are made on the system over time.

It is in the use of structural knowledge that Al has
made .its largest impact. For example, in long range
pianning, such as for the ocean liner's route, we must
have available an accurate map of the world showing the
relatively fixed patterns of currents and winds. Such
structural knowledge can be contrasted with the on—line
measurements of current and wind velocities that are fed
to the automatic steering control system (behavieral
knowledge). Similarly, to diagnose a problem in the ship's
motor, we must know the details of the motor's
construction, what parts are most likely to fail
(structural knowledge), and how these faults manifest
themselves as observable symptoms (behavioral
xnowiedge).
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7avle 7. Aspects involved in the control of complex multivariable
systems, the types of knowiedge that are appropriate, and the
associated tools that make use of this knowledge.

_Aspect of control _Type of knowledge Tool or_instrument
system design structural/behay ioral expert system/simulation
prediction structural/bshav ioral expert system/simulation
long range planning structural/behavioral Al planner/simulation
state monitoring behaviorai sensors
state reconstruction behavioral observers/filters/estimators
control of state variables behavioral feadback control system

{e.g. position and velocity control) .
fault disgnosis (find out what went wrong) structural/behayioral oxpert system/simulation
fault correction (system repair) structural expert system
- 8dvise human operator structural/bshavipral consultation system

While Al has brought us the ability to ‘employ
structural knowiedge, this is not to say that behavioral
knowledge is unimportant. Neither would it be correct to
assume that Al has no role to play in the processing of
behavioral - knowledge, - or that structural knowledge
processing and behavioral knowledge processing are two
separate issues that are completely decoupled from each
other. An effective global control system must be able to
deal with both forms of knowledge simuitaneously, as is
evident from 7ab/e /.

While structural knowiedge concerning a process is
normally time—invariant, and thus static, behavioral
knowledge is always time-dependent, and thus dynamic.
However, even the -structural properties of a control
system may experience changes, in particular as a result
of the occurrence of a fault.

Let us assume, our ocean liner was involved in a
collision with an iceberg. After the collision has taken
place, we can no longer trust that our static structural
information about the system is still completely correct,
and we require a means to qualitatively verify certain
hypotheses about the ship’s way of functioning on the
basis of new structural as well as behavioral
observations.

MODEL AND KNOWLEDGE REPRESENTATION

The models that are being employed by simuiation
programs (e.g. for the purpose of the design of feedback
controllers) and by expert systems (e.g. for the purpose of
city—wide traffic control) are traditionally very different
and usually incompatible in many dimensions such as
formalism, level of aggregation, etc.

Simulation models for the purpose of control system
design are usually specified either as state-space models
or by means of transfer functions. If the system
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variables-are viewed as varying continuously over time,
the models are expressed as a set of first-order
differential equations in the time domain or by means of
one or several transfer functions in the frequency domain
(Laplace transformation). - If the system- variables are
viewed as changing at discrete time instants only (time
slicing), the models are written as a set of first—order
difference equations in the time domain or by means of
one or several transfer functions in the frequency domain
{z-transform). Sequencing control problems (eg. for
fiexible manufacturing - systems) are more - often
represented by discrete event models. Although, few
aigorithms for control system design exist -for these
types of models, there is increasing interest in
developing a suitable control theory for this domain(e.g. a
special issue of IEEE Proceedings will be devoted to the
Dynamics of Discrete Event Systems). :

in contrast, modeis employed by rule-based
controllers are commonly static in nature. The knowledge
processed by these control systems is mostly structural.
if behavioral knowledge is utilized at all, it occurs in the
form of statistical data. If time does appear as a
variable, it is used only to ‘switch between several (in
themselves static) models. A typical example of such a
control system might be the traffic control of an urban
area, where the structural knowledge is represented by a
street map, and the behavioral knowledge is represented
by an origin—destination matrix (OD~matrix) which
contains statistical data concerning the frequency of
particular traveling needs by the traffic participants.
Time appears in the form of different OD-matrices being
used at different times of the day, and at different days
of the week (behavioral knowledge), and in the form of
incorporation of ongoing street constructions (structural
knowledge). The expert system allows the construction
engineer to. judge the effects on the statistical
distribution of individual traffic loads, of a scheduled
construction activity and/or plans for new streets to be



added to the street plan.

.We suggest that the current state-of-the-art in
both areas has not reached a level of maturity yet.
Although the way how knowledge is utilized by the two
types of knowledge processing systems (simulation
system and expert system) may differ drastically, they
should still be able to refer to and extract data from one
and the same knowledge base. They should also be able to
communicate with each other through this knowledge base
by modifying data entries in it.

Local control - (micro~control) - of - individual
subprocesses can be improved by .providing global
information about the overall system performance.
Currently, adaptive controllers identify the parameters of
a system in order to adapt the control parameters to
varying environments. In like manner, the structural
knowledge about the overall system can be used to switch
between entirely different control strategies. Conversely,
global control (macro—control) of the overall process can
be improved by making available to it time-varying
properties of the local subsystems.  For example, overall
traffic control can be improved by providing the
controtler with information about momentary congestions
in the system (besides broadcasting this information to
the traffic participants).

To implement this approach, we must be able to
represent knowledge about the system so that it can be
extracted by different processes for different purposes.
This requirement has been a major obstacle in the past.
Expert systems require structural knowledge of the
system to be stored in the form of abstract data items.
So~called knowledge based simulation models!-2 are
developed on the basis of such a structure representation.
Unfortunately, execution of simulation runs using these
models tends to be stow since the simulation engine must
be able to manage both structural and behavioral changes
as potentially present. Especially, knowledge based
continuous—time models are painfully slow to execute as
the data structures representing the differential
equations are being re-interpreted during each
integration step. ~ :

Run time improvement can be obtained by extracting
only the structural knowledge required for the task at
hand from a more comprehensive representation.
Techniques have been proposed, called model pruning’,
that are capable of automatically performing such
extraction.  After the model has been pruned, the
resulting (simplified) model. is still stored in an abstract
data format. At this stage, an additional preprocessing
step can be used to synthesize a coded model from
components in a model base (DEVS—Scheme®3). Other
possibilites are to generate the model in the form of a
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SIMSCRIPT . 115  (discrete -event) or  ACSL
{continuous—time) program that can be compiled and
linked: Alternatively, a direct executing SLAM (discrete
event} or ‘DESIRE (continuous-time) program can be
generated that can be immediately run. DESIRES is a
continuous system simulation language able to process
state-space models consisting of mixed differential
equations and difference equations. DESIRE .has been
designed with the goal of maximizing the program
execution speed -under the - constraint that no
(time-consuming) compilation and linkage is needed. An
ultra-fast microcompiler translates the differential
equations  ihto an internal data structure while the
surrounding flow control statements are executed in an
interpretive manner. For models consisting of up to 100
differential equations, the compilation time needed is
below 0.8 sec. on an iBM PC/AT.

It should be remarked that the manner in which
simulation programs were traditionally specified, e.g. by
means of a state—space model of the process to be
controlled, is not the only possible means to represent
the model structure for simulation processing. Indeed,
this ‘may not even' be the most adequate way of
representing the model structure for some of the
«simulation tasks» identified in 7ab/e 7, eg. for the
purpose of determining global behavioral patterns. -in
such a case, ‘it may be advantageous to process the
behavioral information in a gua//tative rather than-a
quantitative manner. A methodology for extracting
qualitative information from behavioral system data, and
a means to construct qualitative (inductive) input/output
models from behavioral information is currently being
investigated?-8.

MULTIPLE USES OF THE KNOWLEDGE BASE

Yet another contribution of the emerging Al
technology deserves to be mentfoned. It concerns
additional uses of the same knowledge base besides that
of control, '

. In retrospect, it seems like a very natural thing to
do: separate the knowledge initially given to a program,
and acquired during its operation, from the procedures for
processing it. Yet the concept that knowledge is somehow
different from the rest of computer code and could be
treated as a thing in, and of, itself, was slow in coming -
its power is only now becoming widely appreciated. When
knowledge is interlaced with the rest of the code of a
program, there is no easy way of using it for more than
one related purpose. For example, when a conventionally
programmed logic controller encounters an exceptional
condition in the process under control, it quickly aborts
all ongoing activity. To restart the process, a8 human
operator must be able to figure out what went wrong.



Little help is afforded by the controller, since it cannot
report the information it has acquired about the current
state of the process in the course of its operation.
However, this information is just what the operator needs
to know to be able to set the process back on course.

In contrast, a controller designed with Al concepts
has 3 separate component, called a knowledge base, which
stores both structural and behavioral knowledge. This
knowledge is then usabie not only for the primary purpose
of direct control but also for such purposes as providing
the operator with a good picture of the current state of
the process as well as helping :to diagnose syste
failures as they occur. ~

Indeed, any or all of the aspects shown in 7ap/e /
may be implemented by different procedures, alt of which
share the same knowledge base. In this way, a system can
be designed which is not only more effective in carrying
out its primary functions, but also provides much greater
help to the user than was possible before.

COMBINING Al AND SlHULATlON METHODOLOGY

There is much interest in. combining Artificial
Intelligence (Al) and simulation methodologies. Al
knowledge representation schemes go beyond classical
model formalisms ~ in  allowing -dimensions = of
representation such as inference of new. knowledge,
associative and other access to existing knowledge,
matching of patterns, and meta—knowiedge®'%-1?.
Although such schemes can organize much of the
knowledge about systems that was unrepresentable with
dynamic formalisms, they are not adept at representing
the dynamics that the latter was invented for. Thus,
there needs to be a paradigm whose scope of
representation includes both classical and Al schemes.
This is an area of research with at least two sources of
inspiration. One stems from the hypothesis that for a
computer to reason about physical systems, it must have
more of a qualitative and common sense representation
than exists In the classical modelling formalism?2-13,
However, in attempting to capture common sense
knowledge about physical systems, qualitative modelling
may drastically coarsen the state descriptor space from
the real numbers to small discrete sets. Accordingly,
much ambiguity arises in generating the behavior
(reasoning) of such models. Recent approaches use
symbolic means to summarize dynamic system behavior
rather than to derive it'4-15,

Another source of inspiration for a wider paradigm
comes from computer simulation. Here the world views
"of discrete event simuiation have been found to be highly
compatible with the representation schemes of Artificial
Inteitigence®. Object—oriented programming!?-18 can be

viewed as providing a computational basis for knowledge
representation by allowing the programmer to associate
methods with objects organized in taxonomic classes.
Such methods can perform operations on the giobal object
state (the ensemble of its slots), and invoke each other by
passing messages. Actually already in 1967, the discrete
event simulation language SIMULA introduced class
inheritance and association of both procedures and data
structures with class instances. it is not surprising
therefore, that languages are being developed to express
both the dynamic knowledge of discrete event formalisms
and the declarative knowledge of Al frame paradigms!9.
Other articles published in the same volume are also
relevant in this context.

Among the many opportunities for research are the
following: - , '

® knowledge representation schemes encompassing
both classical dynamical formalisms and Al
representation schemes, ’

® use of knowledge representation to organize mode)
bases and direct automated model synthesis, and

e approaches to combine qualitative and simulation
models in system control.

We shall briefly describe our own research in these
areas. v

MIXED KNOWLEDGE REPRESENTATION SCHEMES

A knowledge representation scheme to combine the
expressive power of both classical dynamical system
formalisms and the newer Al based schemes has been
proposed29-2' The system entity  structure
incorporates decomposition, taxonomic, and coupling
knowledge concerning a domain of real systems. An
extensive entity structure was constructed for the
domain of local area networks (LANs) and their
interconnection via gateways22-23.24 :

ORGANIZING HODEL BASES AND AUTOMATED
MODEL SYNTHESIS

An intelligent manager for model specification,
storage, and retrieval has been developed to mediate
between the user and the DEVS-Scheme simulation
environment®S_ - The manager contains a system entity
structure manipulation module, called ESP (Entity
Structurer and Pruner). In such a system, one uses ESP
to prune a comprehensive entity structure according to
the objectives of the modelling study. ‘This results in
a so~called pruned entity structure that specifies a
hierarchical discrete event model. Upon invoking the
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stransforms» procedure, the system searches the model
base for components specified in the pruned entity
structure. When all components are found, the system
synthesizes the desired model by coupling them tegether
in a hierarchical manner employing coupling knowledge
contained in the pruned entity structure. The result is a
simulation model expressed in DEVS—Scheme which is
ready to be executed to perform simulation studies.

Current research seeks to employ the system entity
structure concepts to develop a model-based system
design methodology?3-26, |n such a methodology, the
designer would be aided by an intelligent -advisor in
pruning the entity structure in order to meet his design
objectives, taken individually, and in trade-off
combinations. Structural constraints are associated with
the decompositions in the entity structure and give rise
to production rules for automated synthesis of models
retrieved from the design model base. Synthesized
models are amenable to simulation experimentation in
experimental frames associated with stated design
objectives. :

COMBINING QUALITATIVE AND SIMULATION
MODELS IN CONTROL

Just as classical dynamlc models are employed in
automatic feedback control, so can qualitative models be
employed at levels of supervision above the conventional
Jevels. Such qualititative models may be developed to
support rule-based detection of global patterns. in
controlled system structure changes®. For example, such
production rule systems (expert systems) may monitor
sensor outputs (usually in highly aggregated form) for
trends that indicate that the system trajectory is heading
toward a disaster state. Such models may be built using
on line data with automated inductive modelling
techniques?-8, or adaptive system approaches?’.

Simulation models can be combined with such
rule—based predictors in the following ways:

o the simulation model, assumed to be valid, is
employed to produce behavior for off-line
identification of the qualitative model, and hence
of the rule—based predictor?,

the state of the simulation model is synchronized
with the controlled system and runs in faster than
real time; the output is fed continuously to the
rule-based predictor, thus enabling earlier warning
of impending critical states and use of higher level
advisor systems for stragegy selection?®
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QUALITATIVE SIMULATION FOR GLOBAL
PATTERN EXTRACTION

in this paragraph, it is eur aim to demonstrate the
potential power of qualitative simulation for the purpose
of global pattern identification in continuous-time

systems.

For this purpose, let us consider the simple state
space model: ‘

0
oju
1

NOO

1 0
0 1}x +
-3 -4

We simulated this system quant/tatively over time
using a random number generator for the input signal 4
and recorded both the input signal and the three state
variables at predetermined instants of -time.  The
simulation results were collected .into a matrix of
dimensions 101x4, where each row denotes one recording,
and each column denotes one variable. These simulation
results were to represent our «measurement datas.
Thereafter, the variables were guantized (recoded) into a
finite state space. (We could also say that the data were
categorized that is: classified into several categories
such as «lows, «averages, and «high».) The recoded data
represent the gua/itative behavior /nfovmatloﬂ about the
system to be analyzed. :

We then used the first 90 recordings (rows) to
automatically generate a qualitalive  inductive
Inputsoutput model with optimized forecasting power.
For that purpose, we used the sgeneral system problem
solving (GSPS) formalism?-8-29-%  ysing this model, we
then forecasted (that is: qualitatively simulated the
model) over 11 steps which we were able to compare to
our «measurement datay as obtained from the previous
quantitative simulation, and thereby, we were able to
validate our qualitative simulation model.

It turned out that the prediction using this
qualitative mode/ with some random streams did not
contain a single error, while other input streams led to
very few differences between the «measured» (that is:
guantitatively simulated) and the e¢predicted» (that is:
qualitatively simulated) data streams.

These results encourage us to apply the same
methodology to more interesting problems. Currently, one
of our students works on the quantitative simulation of
an aircraft where «accidents» are being simulated. it
will be the task of our globa! controller to:

(1) identify «on the fly» &3 something went wrong,



determine a new qualitative model of the
modified aircraft (which e.g. may just have lost
an engine),

)

(3) determine which controls are still operational,

identify the effect of these controls on the
qualitative model of the damaged aircraft,

(s) compute an optimal control strategy using the
forecasting model to e.g. successfully land the
damaged aircraft, and finally

(4)

(6) apply this optimal control strategy to the «irue»
aircraft (that is: the quantitative model) to verify
the success of the approach.

CONCLUSIONS

This survey has attempted to outline the
contributions that artificial intelligence can make to the
control of dynamic systems. We have viewed system
control within 3 broad framework so as to put into
perspective the areas in which Al and classical control
paradigms can be fruitfully combined. Among the many
opportunities for research, we have focussed on:
development of knowledge representation ~schemes
encompassing both classical dynamical formalisms and Al
representation schemes, use of knowledge representation
to organize model bases and direct automated model
synthesis, and approaches to combine qualitative and
simulation models in muitilevel system control.
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